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Abstract

Relational database systems suffer from the lack of a rich update language. In
this paper we present the Update Dependency Language which allows the database
designer to specify a procedure for each update that is activated when attempts are
made to perform the update. Each procedure integrates the update dependencies for
an update and provides an operational semantics for the update which is maintained
by the system. We provide a formal definition for this language, illustrate its use, and
discuss concurrency control issues related to integrating such a language into a database
system.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages - data
manipulation languages (DML); H.2.4 [Systems]: Concurrency - transaction processing
General Terms: Design, Languages

Additional Keywords and Phrases: Database Update Specifications, Integrity, Consistency,
View Update, Active Databases

1 Introduction

It is a well-recognized fact that the semantics for retrieval in the relational model is well-
defined and polished, but it is missing a rich update language. Such an update Janguage
must provide mechanisms for maintaining integrity constraints, functional dependencies,
and inter-relational dependencies during database update. Additionally, it should provide
the ability to specify view update policies.

In most commercial systems, applications compensate for the lack of a rich update
language by chaining updates together in transactions [Gra78] which are embedded in an
application program. Every application programmer is required to understand and specify
the logic for enforcing the dependencies between updates. This logic will be replicated in

each application program that updates the database, and all of these application prograins
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must be updated to reflect all changes in the logic. This duplication and maintenance of
code is costly and prone to error.

We propose an update language that is based on the concept of update dependencies.
An update dependency is a requirement that an update cannot be performed on a database
state that satisfies a given condition unless another update is also performed. For example,
the requirement that an update U cannot be performed on a database state that satisfies
condition C unless update T is also performed is an update dependency. We refer to U as
the owner of the update dependency since it is the dependent update, and we say the pair
(C, T) is an update dependency of U.

A mechanism that supports the specification and enforcement of update dependencies
provides a general framework for enforcing several well-known categories of dependencies
between data in the database, including integrity constraints and functional dependencies.
It can also be used to record application-specific knowledge. This type of knowledge may
provide information about how a violation of a dependency should be resolved. It may
also be used to define and maintain policies for view update, view materialization and data
evolution.

Integrity constraints support database consistency through a specification of the correct
states of the database. However, this technique fails to capture the action that must be
performed when an integrity constraint is violated. For example, a referential integrity con-
straint between suppliers and shipments in the suppliers-parts-shipments database states
that suppliers for all shipments must exist in the suppliers relation. It does not specify
what action should be performed if an attempt is made to delete a supplier that is refer-
enced by at least one shipment. ! With update dependencies, one can specify the consistent
evolution of a database. The above referential integrity constraint can be expressed by two

update dependencies:

1. If a supplier is deleted from the suppliers relation, then all shipments that de-
pend on the supplier must also be deleted. Alternatively, we could specify that all
shipments that depend on the deleted supplier be moved to a temporary relation for
later examination by the database administrator (DBA). A third alternative might

prevent deletions of a supplier if there exists any shipment that depends on it.

2. If a shipment is inserted with a supplier that is not in the suppliers relation, then

-

'We consider here the pure definition of referential integrity. Several systems actually allow the user to
choose one of three actions to be performed when referential integrity is violated by deletion of a tuple in the
parent relation. Our language allows the user to specify an arbitray action for referential integrity violations

caused by insertions and updates as well as insertions.



the supplier is inserted, or the shipment is placed in a temporary relation for later

examination. Alternatively, such updates may not be allowed.

This style of formulating referential integrity specifies how the database can avoid consis-
tency violations by taking actions that are specific to an application as opposed to an all
out rejection of updates if an integrity violation occurs.

Normalization {Cod72,Cod74,Arm74,Ber76,Fag77,Fag79] is a design technique that was
introduced to eliminate inherent functional dependencies that result from the existence
of redundancy. Although we do not advocate the use of our language as a replacement
for normalization, it provides an alternative to enforcing functional dependencies when
it is undesireable to normalize. Additionally, it can be used to enforce inter-relational
dependencies that cannot be modeled in normal form representations.

QOur language can also be used for specifying policies for updating views. The database
designer often knows how a view should be updated, even when the view is not theoretically
updatable [FC85,BS81]. This application-specific knowledge cannot currently be captured
in the view definition. It can, however, be stated as update dependencies between updates
on the view and updates on the base relations that are used to derive the view. For example,
suppose an insurance database consists of the base relations accounts(ins-no, payer) and
insured(ins-no, patient), and the view dep(payer, patient) in which dep.patient
is covered by an insurance policy paid by dep.payer. From the perspective of the DBMS
it is unclear how to delete a tuple from the view dep; this tuple can be deleted either by
deleting the payer from the accounts relation or by deleting the patient from the insured
relation. However, there could be an application specific policy that says that deleting a
tuple from the dependents relation can be performed by deleting the patient from the
insured relation (see example 3). Such a policy is expressible with update dependencies.

More recent research efforts have proposed using such concepts as triggers [Esw76], alert-
ers [BC76], condition-actions [HM76], event procedures [BFM79], and database production
rule systems [Coh89, DE89, Han89, MD89,SLR88,SIGP90, WF90] to specify dependencies
between data. These systems provide a facility for specifying and enforcing update depen-
dencies. Even though several of these systems have a well-defined semantics for their rules,
they do not provide a deterministic behavior when several rules trigger simultancously. The
conflict resolution mechanism, which sometimes allows user-defined priorities, determines
which rule is considered first for execution. It is a current rescarch issue how to provide con-
flict resolution strategies that have a deterministic semantics and encorporates user-defined
priorities [ACL91,SHP88,Y189].

In the above systems, the update dependencies that must be enforced are specified by

a collection of triggers or production rules. The designer specifies one rule for each update



dependency of an update. When the update occurs, all these rules are triggered. The
system attempts to run one rule at a time until all of the rules are run or until one of the
rules performs an action that nullifies the update.

This paper describes the Update Dependency Language, which also supports the specifi-
cation of update dependencies. The first version of this language was introduced in [Mar85].
In contrast to production systems, this language encourages the designer to integrate the
update dependencies for a given update into a procedure which is activated when attempts
are made to perform the update. Although such a procedure is composed of several rules,
the semantics of the language specifies that exactly one of these rules will be applied to any
given update. Hence, the DBA must integrate all the updates that apply to a given state
of the database into one rule, explicitly stating the order in which update dependencies are
applied. Each rule in a procedure defines a transition which will transform a valid database
state satisfying the condition of the rule into another valid database state when the update
is requested. Each database update is transformed into an update request which is granted
only if a correct transition can be found.

This paper proceeds as follows. Section 2 formally presents the syntax and semantics
of the Update Dependency Language. We describe the general format of the procedures
of this language and define a safeness criterion'for them. Section 3 demonstrates the use
of the Update Dependency Language to encode several application specific solutions to
well-known problems. In section 4 we present two different strategies for executing the
procedures of this language, and in section 5 we discuss issues related to integrating these
executions into a traditional database environment. Section 6 discusses work that is related
to or has inspired our work, and finally, section 7 contains conclusions and directions for

future research.

2 The Update Dependency Language

The Update Dependency Language provides support for the operational specification of
updates in relational database systems (RDBMSs). The data model in these systems is
the relational model [Cod70,Cod79], which supports the definition of named relations and
views. Each relation has a schema which defines its name and the name and domain of each
of its attributes. Each element (or row) of a relation is a tuple. Several database systems
allow duplication and hence support tables rather than relations. We make no assumptions
with respect to this matter.

Users query and modify relational databases through data manipulation languages. The

standard database languages, such as SQL and QUEL, perform sct-oriented operations,



while other paradigms, such as Prolog, manipulate the database with a tuple-at-a-time
semantics. Queries and operations are typically grouped intoc transactions which have the
notion of atomicity. If the transaction commits then all the operations are performed; if
the transaction fails then all the operations are rolled back.

With our language, the database designer can integrate the update dependencies of an
update into an update procedure which has the notion of success or failure. This procedure is
activated whenever an attempt is made to perform a tuple-level update (i.e. there is one ac-
tivation of a procedure for each updated tuple). If the procedure fails, the update is rejected
and the database remains unchanged; if the procedure succeeds, the update is granted and
the database is modified to correctly contain the update. Updates to the database can only
be performed by update procedures. Since a procedure has the option of rejecting or grant-
ing an update, user updates are translated into update requests. Note that, for languages
with set-oriented semantics, several update requests may be generated for one user up-
date. For example, the SQL statement “update R set Aj = fy, ..., Ay = f, where P;”
is translated into one update request for each tuple that satisfies the selection P. We also
make the assumption that if no procedure has been specified for an update, then the update
will be processed normally by the RDBMS.

Since an update procedure is activated by a user operation, all updates the procedure
makes will be either comitted or aborted atomically with the transaction that issued the
operation (the containing transaction). Furthermore, the transaction can test the result of
the procedure activation and react accordingly. These tests can be explicitly specified by
the user or inherent in the semantics of the containing transaction, such as in the execution

of update procedures to be discussed in the next section.

2.1 Overview of Update Procedures

Each relation and each view has three update procedures associated with it — one for each
type of update (i.e. insert, delete, or update). Each procedure groups together a set of
candidate rules that might apply to an update that activates the procedure. A rule has a
condition which tests the database state, followed by a sequence of actions that are tried if
the condition is satisfied. These actions either request other updates, perform external i/o
which can be used to get information that is needed to complete the update, or actually
make physical updates to the database. Note that the activation of one procedure may
activate other procedures including itself. ’

Each update procedure has a structure represented by the following template:



op-type rel-name (aj; = vy, ..., an=Vn; by = wy, ..., by = wy)
-> condy, actiy, ..., actin,.
=> ...
-> condg, actqy, ..., actqng-

The first line of this template is the procedure head and each line following an -> represents
one candidate rule.

The procedure head contains the operation type op-type and the relation name rel-name
of the procedure. There is at most one update procedure for each combination of the
op-type and rel-name. The op-type is either insert, delete, or update and the relation
name rel-name identifies the base relation or view of the update.

The procedure head also contains either one or two attribute-parameter lists which
provide a mechanism for passing values between a request and its corresponding procedure
activation. Values are passed from a request to its activation when the attribute whose
value is supplied by the request is mapped to a variable in one of these lists. The first
attribute-parameter list, which occurs in all procedures, maps the values of the request’s
selection attributes a; to the variables vj,1 < i < qn. For procedures with operation
type insert, these values are the attribute values of inserted tuple. For procedures with
operation type update or delete, these values are the existing attribute values of the tuple
that was selected for update or deletion. The second attribute-parameter list, which only
occurs in procedures of type update, maps the values of the request’s update attributes b;
to the variables wi,1 < i <m. These values are the new attribute values for the updated
tuple.

The attribute-parameter lists do not need to contain a variable mapping for each at-
tribute in the procedure’s relation. Furthermore, an update request that activates a proce-
dure does not need to provide values for all attributes represented in the parameter lists.

If the latter occurs, then there are variables in the parameter lists which do not have val-
ues at the beginning of the procedure activation. However, these variables are guaranteed,
by procedure safety (see section 2.4), to be mapped to a value as a result of a successful ac-
tivation. Hence, this provides a mechanism for passing values back to the activating request
which is commonly used by requests that are made from within modification procedures
(see section 2.3).

The procedure head is followed by a set of candidate rules. Each candidate rule consists
of a condition cond; followed by a sequence of actions actj j,1 < j <nj. The conditions
are queries on the database state, written in a language similar to domain relational cal-
culus. The actions perform physical updates to the database, activate other procedures by

requesting further updates, or perform external i/o.



When a rule is applied, it first executes its condition as a query to the database. If no
tuples satisfy the query the condition fails and, consequently, the rule fails. Otherwise, the
rule chooses exactly one tuple that satisfies this query and attempts to sequentially execute
all of its actions. Since actions can be update reduests that depend on the attribute values
of the chosen tuple, they may result in a rejection. Hence, not all tuples that satisfy the
condition will result in a successful exection of the actions. If there is at least one tuple
that does, then the rule chooses exactly one such tuple (the chosen tuple), and succeeds.
Otherwise it fails.

An update procedure succeeds if ahy one of its rules succeed. Exactly one of the suc-
cessful rules is elected as the solution rule and only the effects of this rule persist. If no
rules satisfy these requirements, the update procedure fails and the database state remains
unchanged. The choice of the solution rule is not explicitly stated by the language, and the
order in which candidate rules appear in a procedure is irrelevant. If the designer wants
control over which rule is chosen, then the conditions of the candidate rules should be
mutually exclusive.

The variables that occur in update procedures are analogous to logical variables [LS86]
and behave differently from conventional variables (such as those found in C and Fortran).
If a variable has a value, the value cannot be overwritten. However, if the action that
mapped a value to a variable is undone, then the mapping is also undone and the variable
returns to a state of being uninstantiated.

The scope of all variables that occur in the procedure head is the entire procedure, and
the scope of a variable that only occurs within a candidate rule is limited to the rule in
which it occurs. If a variable is passed a value by the activating request, then the variable
acts as a constant in the procedure activation; its value cannot be overwritten. On the other
hand, any variables that occur only within the scope of a rule or occur in the procedure
head but are not passed a value from the activating request may have different values within
the scope of each rule; there is no correlation between common variables in different rules.
Since only one rule is chosen as the solution rule, each variable in the head of the procedure
will have a unique value at the end of the procedure activation.

When a rule is applied, it maintains a substitution which provides a unique mapping of
variables to values for all variables in the scope of the rule and its procedure. A variable
is instantiated if there is a mapping for it in the rule’s substitution. This substitution is
initialized, through the attribute-paramemeter lists of the rule’s procedure, to the values
supplied by the activating request. It is updated by the evaluation of the rule’s condition
and the execution of its actions. As will be explicated in the following section, each tuple

that satisfies a condition defines a mapping of values to the condition’s variables. A rule’s



substitution is appended with the mapping defined by its chosen tuple. Note that the
chosen tuple’s mapping cannot conflict with the rule’s substitution (i.e have a different
value for any variable that is already mapped to a value in the rule’s current substitution).
The substitution must also reflect the mappings that are supplied through external i/o
and those that result from successful activations of update procedures (section 2.3). The
values returned by an update procedure are the values represented by the substitution of

its solution rule.

2.2 Conditions

Conditions are queries on the database state that are written in a language that is similar
to domain relational calculus (DRC) [U1188]. DRC provides a convenient notation for in-
dicating which parameter values in the procedure head are substituted for variables in the
condition, and which attribute values of tuples that satisfy the condition map to variables
used in the actions of the rule. Instantiation tests, which are meta-logical predicates (a la
Prolog [LS86)), are included for testing if a parameter is supplied in a given activation of a
procedure.

As with DRC, our conditions are defined recursively. The atomic formulas in this

condition sub-language are defined as follows:

literal: rel-name(a; = vy, ..., ax = Vx)
Evaluates to true if there exists at least one tuple in relation (or view) rel-name
such that, for every instantiated variable vi, the value of attribute aj is equal to the
value of vi. Every uninstantiated variable v will be instantiated as a result of the
evaluation. The instantiated variables act as selection values and the uninstantiated
variables act as either join or return value variables.

comparison: X 0 Y, 0 € {<, £, =<, >, >}
Evaluates to true if the algebraic relation € holds between symbols X and Y. X and Y
are either constants or variables.

empty condition: Always evaluates to true. This condition is useful for a rule that is always
possible for a given procedure, independent of the database state.

negative-instantiation test:  var(vj)
Evaluates to true if the variable v;, introduced in the procedure head, is not supplied
by the update request that activated the current procedure.

posilive-instantiation test: nonvar(vj) ,
Evaluates to true if the variable vi, introduced in the procedure head, is supplied by
the update request that activated the current procedure.

Conditions can be combined, negated, and quantified to form other conditions as follows:



negation: not C
Evaluates to true if the sub-condition C, which cannot contain any instantiation tests,
does not evaluate to true.

conjunction: Cy AND ... AND C;
Evaluates to true if every condition Cj, 1 < i < n evaluates to true.

disjunction: Cy OR ... Cp
Evaluates to true if at least one condition Cj, 1 < i < n evaluates to true.

existential quantification: exists vy ... vy C
Evaluates to true if there is at least one mapping of values to variables vi, 1 <i<n
that satisfies the sub-condition C. C cannot contain any instantiation tests, and there
must be at least one occurrence of each variable v; that is free in C.

nesting: (Cj)
Evaluates to trueif C; evaluates to true. Parenthesis are used to alter the default prece-
dence of operators. The unary operators, negation and existential quantification, have
the highest precedence and are applied right to left when they occur consecutively.
As usual, conjunction has a higher precedence than disjunction.

Occurrences of variables in conditions are distinguished as either free or bound. All
occurrences of variables in an atomic formula C are free in C. An occurrence of a variable in
a condition C that is a negation, conjunction, disjunction or nesting is free or bound in C if
it is free or bound in the subcondition in which it occurs. All free occurrences of variables
vi, 1<i<nin C are bound in the existential quantification exists vy ... v, C; all
other occurrences of variables in existential quantifications are free or bound if they are free
or bound in the subconditions in which they occur.

In DRC, variables that occur free in a condition define the relation that corresponds to
the condition. In our language, only the instantiated-free variables define the relation that
correspond to the condition. A free variable is not an instantiated-free variable if it only

occurs in negative instantiation tests in the condition.

Condition Safety

There are restrictions that must be imposed on conditions to insure that they are domain-
independent. A condition is domain-independent if, for any given instantiation of the vari-
ables from the procedure head, the relation generated by the condition depends only on
the constants in the condition and the domains of the relations named in the condmon
For this reason, universal quantification is not included in our condition sublanguage. "This
does not reduce the expressiveness of the conditions since universal quantification can be
expressed with negation and existential quantification. Domain-independence is guaranteed

by insuring that conditions are safe.



A condition of a rule is safe if all instantiated-free variables in the condition are limited,
and any variable that occurs bound in an existential quantification exists vy ... v, C
is limited in the sub-condition C. 2 Each condition can be considered as a conjunction of
one or more sub-conditions. For the following discussion, let C = Cy AND ... AND C,. A
variable v; is limited in C if one of the sub-conditions in which it occurs is of the following
type:

1. positive instantiation test, nonvar(v;j). If a variable satisfies this test, the value of the
variable is supplied by the originating request and is therefore a constant with respect
to the condition.

2. literal, rel-name(a; = x1, ..., ax = xx) where v; is one of the xj. Since the un-
derlying database is finite, there are only a finite number of possible values for the
variable.

3. equality comparison, vi = X or X = vj where X is a constant or limited.

4. a disjunction Ky OR ... OR Kq in which v; is limited in all Kj. Hence, disjunctions
are only allowed when they specify either a union or a selection condition for a given
set of variables. Any variable that occurs in a disjunction that is not otherwise limited
by the enclosing condition, must be limited in all sub-conditions of the disjunction.

5. an existential quantification exists vy ... vy K, in which vi #vj, 1 < j <n and
v; is limited in K.

Any instantiated-free variable that appears in either a negation test or a negative-
instantiation test, which are sources of domain-dependence, must also occur in one of the
above types of sub-conditions that will limit the domain of the variable. The safeness of
variables that are not instantiated-free is guaranteed by procedure safety, which is discussed

later.

2.3 Actions

There are three types of actions: doit-actions, req-actions, and i/o-actions. Doit-actions per-
form the physical updates for the request that activated the procedure, while req-actions
request other updates from within the procedures. I/o actions perform i/o operations that
are external to the database and can be used to get information that is needed to complete

the update or to notify the user of the actions taken by the database.

Doit-actions have one of the following forms:

2The discussion of safe conditions here is similar to that in [Ul188] with a few minor exceptions. We allow
the meta-logical type predicates to limit variables. We also relax the safety conditions of disjunctions and
incorporate these conditions into the definition of himited.

10



ins rel-name(aj; = ey, ..., ap = ey),

del rel-name(aj = ey, ..., ap = ep),

upd rel-name(aj =eg, ..., ap = ep] by =f1, ..., by = fa).
The expressions e; and £;,1 < i < n, are evaluated using the current substitution of the
action’s rule. All variables that occur in these expressions must be instantiated. As with
update procedures, there are two types of attribute-parameter lists. However, these lists
serve to provide values from the variables to the attributes.

The first attribute-parameter list occurs in every doit-action and the second one only
occurs in doit-actions of type upd. Not all attributes of relation rel-name must be present in
each attribute-parameter list. However, for actions of type ins, the value for any attribute
not specified in the attribute-parameter list is initialized to NULL. For actions of type del
and upd, the set of attributes a3, ..., ap in the first attribute-parameter list must contain
the attributes in the key of the relation rel-name. For upd actions, the second attribute-
parameter list indicates the update values for the attributes by, ..., by.

Reg-actions have a form that is similar to the procedure heads:

insert rel-name(a; = ey, ..., ag = ep),
delete rel-name(a; = ey, ..., an = @p),
update rel-name(a; = eg, ..., an = ep; by = f1, ..., by = fn).

The expressions ej,1 < i<n, and f;,1 < i <m, are either uninstantiated variables or
arithmetic expressions whose variables are instantiated. Those expressions that are unin-
stantiated will be mapped to a value if the request is granted and this mapping will be
added to the substitution of this action’s rule. If the expression ej (f;) is an uninstanti-
ated variable, then it will be instantiated to the value of the variable that corresponds to
a; (bj) in the procedure that is activated by the request. Note that update procedures
may be recursive since an action may request an update that activates the action’s update
procedure.

The i/o-actions read and write provide interaction between procedures and external
sources. A write must follow an operation that substitutes a value for the write’s variable.

Hence, the variable must occur as either 3
e a limited variable in the condition cond; or

e a parameter in a read or req-action act; x, k < j.

On the other hand, a read cannot follow any operation that substitutes a value for the

read’s variable. Hence, the variable of the read action acti, j cannot occur as

3If the variable occurs in the procedure head, its value must be supplied by the user or obtained from

the database. In either case it will be limited by the condition.

11
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:’.:J%zESMT ? S

R S

Figure 1: Encapsulation of Updates

¢ a limited variable in the condition cond;,
¢ a parameter in any read or req-action actj x,k < j, or

e a parameter in the procedure head, unless it occurs as an unlimited variable in a
negative instantiation test.

All actions have the notion of success or failure. Since req-actions request other up-
dates, they succeed only if the request is granted. Doit-actions and write i/o-actions always
succeed. * However, since read actions depend on receiving some input from either an
interactive terminal or a file, they may not always succeed. If the request is being processed
by an interactive process and the user does not respond within some fixed amount of time
the read will fail. The read also fails if it is being processed by a non-interactive process
unless a non-empty input file was specified when the process was initiated.

Since doit-actions make the physical update to the database, they are only allowed from
an update procedure that has the same operation type and relation as the doit-action.
Furthermore, they are not allowed in update procedures for views. Update requests for
a view are performed by requesting updates on the base relations from which the view is
derived. These restrictions encapsulate all update access to a relation in the relation’s three
update procedures. Figure 1 shows that the the doit-action ins R(....), which is defined
only if R is a base relation, is only allowed in the procedure insert R(...), but procedure
insert R(...) can be activated by a req-action from another procedure.

When an action is performed, its effects are only visible to actions that subsequently

follow it in the candidate rule unless its candidate rule succeeds and is chosen as the solution

“Note that these actions may fail if there is a database or system failure, however, we do not consider

these kinds of failures here.
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rule. If this is the case, the effects of all the actions of the rule become the effects of the
request and are visible only where the effects of the request are visible. If the request
is from a user update, then visibility of the request’s effects is governed by the containing
transaction. If the request is from another update procedure, then this visibility is governed
by the requesting update procedure. Section 4 describes two execution strategies which give

executional semantics for the evaluation of an update procedure.

2.4 Procedure Safety

There are constraints that must be imposed on the update procedures to insure that any
given execution is domain-independent. There are two sources of domain-dependence in
these procedures that can be eliminated by applying the constraints for safe rules and safe
domain-relational-calculus formulas as described in [U1188]. We define the concept of “safe”
procedures that adapts these two concepts to our update procedures. A safe procedure is
one in which each candidate rule is safe with respect to the procedure head and all conditions
of the candidate rules are safe (as defined in section 2.2).

Notice, for the purpose of defining safety, a procedure with head h and candidate rules
bj,1 < i <, is similar to a set of Datalog rules dj,1 < i < n, such that h is the head of
each d; and bj is the body of d;. The safe rule requirements apply to each candidate rule
with respect to the procedure head. Every variable in the procedure head must be limited
in each candidate rule. A variable is limited in a rule if it is limited in the rule’s condition
or it occurs either in a req or a read action. Furthermore, any variable in a mod action

act;j j must be limited by the condition or by some preceding action actj x,k < j.

3 Examples

Example 1 View Materialization

Assume that the view v(x,y,2) is defined as the join of r(x,y) with s(y,z). If the system
maintains a materialized version of v (i.e. the database administrator defines v as a base
relation, but v is modified only by updates to r and s), then update procedures can be used
to specify the incremental maintenance of v. The following update procedures perform
incremental maintenance for insertions to v that result from insertions to r and s. We show

only the tuple insertion rule for r; the rule for s is similar.

insert v{x=vl, y=v2, z=v3)

-> nonvar(v1i) and nonvar(v2) and nonvar(v3) and
not v(x=v1, y=v2, z=v3),
ins v(x=v1, y=v2, z=v3).

13



insert r{(x=vi, y=v2)
-> r(x=v1, y=v2) and
not exists v3 (s(y=v2, z=v3) and not v(x=vl, y=v2, 2z=v3)).
-> r(x=v1, y=v2) and
v3 (s(y=v2, 2z=v3) and not v(x=vl, y=v2, z=v3)),
insert v(x=vi, y=v2, z=v3),
insert r(x=vi, y=v2).
-> not r(x=vl, y=v2),
ins r(x=vi, y=v2),
insert r(x=vi, y=v2).

The insertion procedure for v simply enforces a set-semantics (i.e. no duplicates). The
insertion procedure for r recursively triggers insertions into v until v is consistent with r.
Note that the conditions for the rules of this procedure are mutually exclusive. If there
were a fixed order for selecting qualified rules, the designer may have been tempted to use
this order to imply semantics about the conditions. For example, suppose rules are tried in
the order they appear in the procedure. Then, she may have been tempted to exclude the
existential clause from the second rule’s condition and to not include any condition for the
third rule.

Note that it is possible to generate correct update procedures for incrementally maintain-
ing views. Incremental maintenance is a a fundamental design goal of ADMS [Rou91], which
performs incremental maintenance for all SPJ views defined. Recently, [CW91] specified
how Starburst production rules can be generated to support incremental view maintenance.

Example 2 View Update - Application Independent

Suppose that an application requires the ability to specify updates for the view v defined
in the previous example. Then v is defined as a base relation with the additional integrity
constraint, v(x,y,z) =r(x,y) join s(y,z). Update procedures to maintain this integrity
constraint must be specified. The following is one such insertion procedure for v, where the

tuple insertion rules on r and s are specified above.

insert v(x=v1, y=v2, z=v3)

-> not v{x=vl, y=v2, z=v3),
ins v(x=v1, y=v2, z=v3),
insert r(x=vi1, y=v2),

insert s(y=v2, z=v3).

The tuple procedure for v makes the insertion into v and requests insertions into r and s;

these, in turn, recursively request any additional needed insertions into v as above. This
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is another example where the update procedure can be generated from the view definition.
The view contains all attributes from its deriving relations and hence this update is well-

defined, independent of the application semantics of v. »

Example 3 View Update - Application Dependent

Recall the insurance database from the section 1 that consisted of the base relations
insured(ins-no, patient) and accounts(ins-no, payer) and the view dependent (payer,
patient) in which dependent patients are those persons whose insurance is covered by some
other person. The following update procedures support the deletion, insertion and update
through the view defined above for one given set of application specific rules.

The only restrictions that exist for this application are:

e a patient can only be inserted as a dependent of a payer that has exactly one policy.
(This restriction can be lifted by accepting a dependent to be inserted under any one
of the insurances paid by the payer, or by adding information to the base relations

that indicates the primary insurance policy for a given person.)

e when a dependent tuple is deleted, then the insured patient is no longer covered by
the payer’s policy. The account relation is not affected by updates to the dependent

view.

delete dependent(payer=p, patient=q)
/* delete q as a dependent of p */
-> nonvar(p) and nonvar(q) and p<>q and
accounts(ins-no=s, payer=p) and insured(ins-no=s, patient=q),
delete insured(ins-no=s, patient=q),
delete dependent(payer=p, patient=q).
-> nonvar(p) and nonvar(q) and
not exists s (accounts(ins-no=s, payer=p) and insured(ins-no=s, patient=q)
and p<>q).
/* delete q as a dependent of any p */
-> var(p) and nonvar(q) and
insured(ins-no=s, patient=q) and account(ins-no=s, payer=p) and p<>q,
delete insured(ins-no=s, patient=q),
delete dependent(patient=q).
-> var(p) and nonvar(q) and

not exists s (insured(ins-no=g, patient=q) and account(ins-no=s, payer=p) and

-

p<>q).
insert dependent(payer=p, patient=q)

/* q is inserted as a dependent of p on p’s one and only account */
-> nonvar(p) and nonvar(q) and p<>q and
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account (ins-no=s1, payer=p) and

not exists s2 (account(ins-no=s2, payer=p) and s1<>s2) and
not insured(ins-no=si, patient=q),

insert insured(ins-no=si, patient=q).

update dependent(payer=pl, patient=q; payer=p2)

/* q is removed as a dependent from (all) pl’s account(s) and
made a dependent on p2’s one and only account */

-> nonvar(pl) and nonvar(p2) and nonvar(q) and account(payer=p2),
delete dependent(payer=pl, patient=q),
insert dependent(payer=p2, patient=q).

/* q is removed as a dependent from all accounts and
made a dependent on p2’s one and only account */

-> var(pl) and nonvar(p2) and nonvar(q) and account(payer=p2),
delete dependent(patient=q)
insert dependent(payer=p2, patient=q).

Example 4 Data Evolution

Suppose an IRS database records information about taxpayers and dependents. Infor-
mation about independent taxpayers is recorded in the relation taxpayer(payer-ss#,
payer-name, addr, #dep) with key payer-ss# and the dependents of all independent
taxpayers is recorded in the relation dependent(payer-ss#, dep-ss#, dep-name) with

key dep-ss#. The following rules govern the evolution of data in this database:

e a person cannot simultaneously be an independent taxpayer and a dependent of an

independent taxpayer.
e no person can claim themselves as a dependent

e A person is never deleted from the database. However, dependents can evolve into

independent taxpayers.

The following set of update procedures maintains these rules.

insert taxpayer(payer-ss#=s, payer-name=n, addr=a)
-> nonvar(s) and nonvar(n) and nonvar(a) and
not taxpayer(payer-ss#=s) and not dependent(dep-ss#=s),
ins taxpayer(payer-ss#=s, payer-name=n, addr=a, #dep=0).
-> nonvar(s) and nonvar(n) and nonvar(a) and
not taxpayer(payer-ss#=s) and dependent(payer-ss#=p, dep-ss#=s),
ins taxpayer(payer-ss#=s, payer-name=n, addr=a, #dep=0),
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delete dependent(dep-ss#=s),
update taxpayer(payer-ss#=p, #dep=nd; #dep=nd - 1).

insert dependent(payer-ss#=p, dep-ss#=d, dep-name=n)
-> nonvar(p) and nonvar(d) and nonvar(n) and
not taxpayer(payer-ss#=d),
update taxpayer(payer-ss#=p, #dep=nd; #dep=nd+1),
ins dependent(payer-ss#=p, dep-ss#=d, dep-name=n).

delete dependent(dep-ss#=d)

=> nonvar(d) and dependent(payer-ss#=p, dep-ss=d, dep-name=n)
and taxpayer(payer-ss#=p, addr=a) and not taxpayer(payer-ss#=d),
del dependent(dep-ss#=d),
insert taxpayer(payer-ss#=d, payer-name=n, addr=a, #dep=0).

-> nonvar(d) and taxpayer(payer-ss#=d),
del dependent(dep-ss#=d).

-> nonvar(d) and not dependent(dep-ss#=d) and
taxpayer(payer-ss#=d).

The procedure for updating taxpayers is left as an exercise to the reader. It should ensure

that the taxpayer being updated is an independent taxpayer.

Example 5 Non-full Functional Dependencies

It is often undesirable to normalize a relation, in which case functional dependencies that
have a determinant which is not a candidate key of the relation cannot be enforced by
key constraints. For example, the relation shipments(s#, sname, saddr, p#, qty) has
the functional dependencies s# — (sname, saddr), and (s#,p#) — qty. Both s# and (s#,
p#) are required as keys to enforce these functional dependencies but cannot coexist as
such. The following set of procedures ensures that updates to relations do not violate the
functional dependencies despite the fact that the relation is not properly normalized. Note
that, in several cases, the actions taken to enforce the functional dependencies are one of

several possible solutions and the choice depends on the semantics of the data.

delete shipments(s#=s, p#=p)
-> nonvar(s) and nonvar(p) and shipments(s#=s, p#=p),
del shipments(s#=s, p#=p).
-> nonvar(s) and nonvar(p) and not shipments(s#=s, p#=p).

The first rule of this procedure assumes that the key (s#,p#) uniquely identifies a tuple.

The second rule allows the deletion of non-existing tuples.
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insert shipments(s#=s, sname=n, saddr=a, p#=p, qty=q)

-> nonvar(s) and nonvar(n) and nonvar(a) and nonvar(p) and nonvar(q) and
not shipments(s#=s),
ins shipments(s#=s, sname=n, saddr=a, p#=p, qty=q).

-> nonvar(s) and nonvar(p) and nonvar(q) and
not shipments(s#=s, p#=p) and shipments(s#=s, sname=n, and saddr=a),
ins shipments(s#=s, sname=n, saddr=a, p#=p, qty=q).

This procedure maintains the functional dependencies during insertions to shipments.
The first rule handles the case when the inserted shipment is the first one for the specified
supplier. In the second rule, the specified supplier is the supplier for existing shipments, but
does not supply the specified part for any of these shipments. In this case, if the specified
(sname,saddr) are inconsistent with those in the database for the specified supplier, then
the insertion fails. Otherwise, it succeeds. Note that the procedure assumes that the

functional dependencies are enforced at the outset.
update shipments(s#=s1, p#=pl; s#=s2, sname=n2, saddr=a2, p#=p2, qty=q2)

/* Update p#; s# remains the same */

-> nonvar(s1) and nonvar(pl) and nonvar(p2) and
(nonvar(q2) or shipments(s#=s1,p#=pi,qty=q2)) and
pl1<>p2 and si1=s2 and not shipments(s#=s2,p#=p2),
upd shipments(s#=s1, p#=p1; p#=p2, qty=q2),
update shipments(s#=s2; sname=n2, saddr=a2).

/* Update s# to a new supplier; p# may be updated as well;
supplier name and address must be given */
-> nonvar(s1) and nonvar(pl) and nonvar(s2) and s1<>s2 and
nonvar(n2) and nonvar(a2) and
((nonvar(p2) and p1<>p2) or pl=p2) and
(nonvar(q2) or shipments(s#=s1,p#=p1,qty=q2)) and
not shipments(s#=s2),
upd shipments(s#=si, p#=pl; s#=s2, p#=p2, sname=n2, saddr=a2, qty=q2).

/* Update s# to existing supplier; p# may updated as well; */
-> nonvar(s1) and nonvar(pi) and nonvar(s2) and s1<>s2 and
((nonvar(p2) and p1<>p2) or pi=p2) and
(nonvar(q2) or shipments(s#=s1,p#=p1,qty=q2)) and
shipment(s#=s2, sname=Xx, saddr=y),
upd shipments(s#=s1, p#=pl; s#=s2, p#=p2, sname=x, saddr=y, qty=q2):
update shipments(s#=s2; sname=n2, saddr=a2).

/* Update of sname and saddr */
-> nonvar(s1) and si1=s2 and
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((nonvar(p1) and p1=p2) or (var(pl) and var(p2) and var(g2))) and
shipments(s#=s1, p#=pl, sname=x, saddr=y, qty=q2) and

(nonvar(n2) or n2=x) and (nonvar(a2) or a2=y) and (x<>n2 or y<>a2),
upd shipments(s#=s1, p#=pl; sname=n2, saddr=a2),

update shipments(s#=s1; sname=n2, saddr=a2).

/* Termination rules */
-> nonvar(sl) and si=s2 and
((nonvar(p1) and p1=p2) or (var(pi) and var(p2) and var(q2))) and
nonvar{(n2) and var(a2) and
shipments(s#=s1, p#=p1, sname=n2, saddr=a2, qty=q2) and
not exists x (shipments(s#=s1, sname=x) and x<>n2).

-> nonvar(sl) and s1=s2 and
((nonvar(p1) and p1=p2) or (var(pl) and var(p2) and var(q2))) and
var(n2) and nonvar(a2) and
shipments(s#=s1, p#=p1, sname=n2, saddr=a2, qty=q2) and
not exists y (shipments(s#=s1, saddr=y) and y<>a2).

-> nonvar(sl) and si=s2 and
((nonvar(p1) and p1=p2) or (var(pl) and var(p2) and var(q2))) and
nonvar(n2) and nonvar(a2) and
shipments(s#=s1, p#=pl, sname=n2, saddr=a2, qty=q2) and
not exists x y (shipments(s#=s1, sname=x, saddr=y) and (x<>n2 or y<>a2)).

This procedure maintains the functional dependencies during insertions to shipments. The
rules isolate updates to different fields; one rule modifies one field, and requests all other
updates recursively. The first rule performs all updates to part numbers (p#) when the
supplier number (s#) remains the same. Any further updates of supplier name and addresses
are handled by a recursive request. The second and third rules handle all cases where the
supplier is updated. For the second rule, the update must be updating the supplier number
to a number that is not already in the database. If this is the case, then the supplier name
and address must also be given, and the execution terminates. The third rule updates
the supplier number to a number for an existing supplier. A shipment tuple satisfying the
selection criterion is updated with the new supplier number given the name and address
of another shipment in the database with the new supplier number. Any further updates
of supplier name and address are handled by a recursive request and performed by the
fourth rule. To maintain the functional dependencies, all shipments with the same supplier
number must be updated with the new supplier name and address, and this is also handled
by a recursive request to the same procedure. The second, fifth, sixth, and seventh rules

terminate execution of the procedure. The fifth, sixth, and seventh rules have empty action
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clauses, and serve just to successfully terminate the procedure. ]

Example 6 Dependency Preservation

It is often impossible both to preserve intra-relational dependencies and to obtain Boyce-
Codd normal form (BCNF) in a relational scheme. The well-known SJT example from
[Dat86] illustrates this problem. The database designer wants to model class enrollment
with the relation enroll(student,teacher,subject). However, there are two restric-
tions about the class enrollment that must be observed. First, each student takes a
given subject from only one teacher; this is represented by the functional dependency
(student,subject) — teacher. Second, each teacher teaches only one subject, but there
may be several teachers of the same subject; this is represented by the functional dependency
teacher — subject. So the original relation, enroll(student,teacher,subject), is not
in BCNF since teacher — subject and teacher is not a candidate key of enroll. Hence,
the original relation is replaced with the two projections roster(student,teacher) and
courses(teacher,subject), in which the original intra-relational functional dependency
(student,subject) — teacher is no longer preserved. If the two projections are updated
independently, they may violate this dependency. However, this functional dependency can
be expressed as an inter-relational constraint by specifying update procedures for the insert
and update requests of the two projections. The following are the update procedures for

insert requests:

insert roster(student=x, teacher=y)
-> nonvar(x) and nonvar(y) and
not roster(student=x, teacher=y)
and not exists yl1 z (roster(student=x, teacher=yl) and
courses(teacher=yl, subject=z) and
courses (teacher=y, subject=z) and
yi <> y)),
ins roster(student=x, teacher=y).
-> roster(student=x, teacher=y).

insert courses(teacher=y, subject=z)
-> nonvar(x) and nonvar(y) and
not courses(teacher=y) and
not exists x y1 (roster(student=x, teacher=y1l) and
courses(teacher=y1, subject=z) and
roster(student=x, teacher=y) and
yi < y)),
ins courses(teacher=y, subject=z).
-> courses(teacher=y, subject=z).
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Notice that the last rule in each procedure enforces a set-semantics: attempts to insert a

duplicate tuple returns true without modifying the database. ]

4 Execution Strategies

In this section we first define the update dependency ezecution pyramid (Figure 2) which
is a model of execution for update procedures. We use this model to describe two control
strategies for executing the procedures. .

Pyramids are related to AND/OR trees [Nil80]. They contain nodes that are linked
together in parent-child hierarchies and ordered-lists called chains. A parent-child hicrarchy

represents a disjunction between siblings; the parent is analogous to an OR-node. Chains
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represent a conjunction between the nodes of the chain in which the nodes are evaluted
in a pre-defined sequential order; the first node in the chain is similar to an AND-node.
It is this sequential execution of the nodes in a chain that distinguishes pyramids from
AND/OR trees. The pictorial representation of the chains in the parent-child hierarchy

abstractly looks like a pyramid.
A pyramid contains four types of nodes:

procedure activation nodes (PANs)
represent activations of update procedures from user transactions or from rule appli-
cations.

rule application nodes (RANs)
represent applications of candidate rules from procedures.

tuple instance nodes (TINs)
represent tuples in the database that satisfy conditions.

primitive nodes (PINs)
represent doit-actions and i/o-actions.

The root of a pyramid is a PAN, representing the procedure activated for the update
requested by a user transaction. Each PAN has one or more children RAN nodes, repre-
senting the disjunction between the candidate rules of the PAN. All non-root PAN nodes
occur in chains and represent req-actions.

A RAN is the condition choice point for a rule application. It has one child TIN for
each tuple that satisfies the rule’s condition. If the condition of a rule cannot be satisfied,
then the RAN will not have any children. If the condition of a rule is the literal “true”, the
RAN will have exactly one TIN child which represents the empty tuple. All the TIN nodes
of a RAN are in a disjunction, representing the tuple-oriented semantics of the rules.

A chain links a sequence of PANs and PINs to a TIN node. The first node of a chain
is always a TIN node, and TIN nodes only occur as the first node of a chain. The chain’s
remaining nodes represent instances of the rule’s sequence of actions.

A leaf in a pyramid is a node that has no children. TINs and PINs are always leaves,
even though they may be linked in a chain. - RANs whose condition cannot be satisfied
by the database are also leaves. Since update procedures must always have at least one
candidate rule, a PAN will always have at least one child and will never be a leaf.

The execution pyramid for an activation may be infinite since update procedures can be
recursive. At first it might seem that the search space could be reduced without affecting
the semantics by preventing multiple requests of the same update with the same set of

parameters. This is true only if the database state did not change between two identical
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requests. But since the database state may change between requests, and the success of a
candidate rule depends on this state, we cannot perform such optimizations.

The successful executions of an activation are sub-pyramids, called solution pyramids,
of the activation’s corresponding execution pyrémid. Solution pyramids have the following

properties:
¢ each PAN node has exactly one child RAN,
e each RAN node has exactly one child TIN,
o the substitutions for each node in a chain are consistent,
o all leaf nodes of the pyramid are either PINs or TINs.

Several solution pyramids are show in boldface in Figure 2.

The execution of an update procedure activation is equivalent to searching the activa-
tion’s execution pyramid for a solution pyramid. Note that there may be several solution
pyramids for a given activation of an update procedure. Only one of these is chosen by
the execution strategy as the solution pyramid. The sequence of actions and queries that
are performed as a result of the execution corresponds to a left-to-right traversal of the leaf
nodes of the chosen solution pyramid. TINs represent database reads, and PINs represent
either database updates or i/o-actions. A TIN never reflects database updates that corre-
spond to leaf nodes that follow it in this traversal, but it may reflect database updates that
correspond to leaf nodes that precede it.

Figure 3 shows a subset of a database and the corresponding solution pyramid for the
database request delete(dependent(payer=’’Joe’’, patient=’’Bobbie’’)) when the
update procedure from example 3 has been defined. Note that the two TIN nodes are
leaves, and that the update procedure delete(dependent(...)) is activated from both a
user transaction and from within a candidate rule.

In the remainder of this section, two tentative A tentative control strategy is one in which
a rule is selected (either arbitrarily or using some heuristics) and applied, but provisions
are made to return later to the point immediately before the rule was applied to try some
other rule [Nil80]. control strategies for searching an execution pyramid are explored. Both
strategies involve dynamically building the solution pyramids, sometimes searching paths
in the execution pyramid that must be undone. The first strategy performs depth-first
search, using a single process, and backtracks when it discovers that it is building a non-
solution pyramid. The second strategy performs a concurrent search for solution pyramids,

exploiting parallelism among all alternative child links.
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Figure 3: Sample Solution Pyramid
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4.1 A Depth-First Search Strategy

Like all depth-first search (DFS) techniques, the DFS of a pyramid (PDFS) must maintain
a stack of choice points and return control to the most recent choice point whenever a
node fails. There are two types of choice points for pyramids: the selection of a RAN for
a PAN and the selection of a TIN and its associated chain for a RAN. The selection of a
RAN represents the selection of a rule to apply for a given activation of a procedure. The
selection of a TIN and its associated chain represents the selection of a substitution for the
variables in the rule’s condition.

What makes PDFS unique is the existence of chains in the pyramid. A PDFS of a chain
must maintain the sequential order between the nodes in the chain. Since the variable
substitutions for nodes in the same chain must be consistent in a solution pyramid, a PDFS
must also maintain the left-to-right dependency of nodes in the chain on the current variable
substitution and the database state. When a PDFS backtracks, it must undo any variable
mappings and database updates that occured after the backtrack point.

PDFS begins at the root PAN. At a PAN, PDFS chooses a RAN to investigate, ini-
tializing the RAN’s variable substitution according to the attribute values specified by the
activating request.

A PDFS of a RAN involves choosing one of the RAN’s TINs. TINs represent mappings
of values to variables. Only a subset of a RAN’s TINs are applicable for a given instance
of the rule application since several of the TIN’s mappings may not be consistent with
the current substitution. So, PDFS chooses one TIN that represents a mapping which is
consistent with the RAN’s current substitution.

A PDFS must then search for a successful execution of the TIN’s chain. To search
the chain, the sub-pyramids rooted at each node in the chain are searched in the order in
which they occur. After each execution of a node, the RAN’s substitution S is updated to
reflect any variable mappings obtained by the node. If the node is a PIN, all external reads
must be reflected in the RAN’s substitution. If the node is a PAN, then all uninstantiated
variables in activating request will have a value upon the successful completion of the PAN.

When the search reaches the end of a chain it returns control to the RAN that is the
parent of the chain’s TIN. The RAN, in turn, returns control to its parent PAN, passing
along appropriate return values for the variables in the PAN’s modification request. If this
PAN is the member of a chain, PDFS updates the substitution of the chain’s RAN with
the appropriate return values, and continues to process the next node in the chain. [f the
PAN is the root, then the search terminates successfully.

Since pyramids can potentially be infinite structures, PDFS may get stuck searching an

infinite alternative. This can be prevented by imposing a bound for the maximum height

25



of the search pyramid. Whenever this height is reached, PDFS assumes that the current
node fails and backtracks to the most recent choice-point.

A PAN fails when all of its RANs fail, reflecting that a procedure activation fails if
none of the procedure’s rules can be successfully applied given the input attribute values
and the database state. A RAN fails when it is impossible to successfully complete at least
one of the TIN’s chains, reflecting that there are no tuples that satisfy the rule’s condition,
are consistent with the rule’s substitution, and for which a successful execution of the
rule’s actions can be found. A chain cannot be successfully completed when there is not a
successful PDFS of the chain under the rule’s substitution appended with the substitution
implied by the chain’s TIN. Since PINs fail, then a chain fails when one of its PANs fails.

If a failure is followed to the node where backtracking must occur, this node is always
a RAN for which no TINs are consistent with the current variable substitution. When this
failure happens, the search must find another substitution by chosing a different TIN for
a previously searched RAN or a different RAN for a previously searched PAN. In a PDF'S
strategy, this is done by backtracking to the most recent such choice point. When this
occurs, all database updates and mappings of values to variables that occured after the
choice point must be undone.

To enable backtracking, a state for all choice points is maintained in a stack. Each state

is a triple < N, 5,T > defined as follows:
N the node in the pyramid where the execution should resume.

S the substitution of values for variables before N is applied. This substitution is affected
by the external activation, TINs, external reads, and the activation of other update
procedures. We assume the proper handling of scope as is typical in all procedure

oriented languages.
T the timestamp assigned by the database when the state enters the stack.

Assume that SU B is the current substitution and 7S is the current timestamp assigned by
the database. Whenever a PAN is visited, the search pushes the state < RAN,SUB, TS >
onto this stack for each of the PAN’s RANs. Similarly, whenever a RAN is visited, the
search pushes the state < TIN,SUB,TS > onto the stack for each RAN’s TINs that is
consistent with SUB.

When the search encounters a RAN that does not have any TINs that arc consistent
with the current substitution, it pops the top node < N, S,T > from the choice-stack. It
resets the current substitution to S, the current node to N, and rolls the database back to

the timestamp T'. Concurrency control for PDFS is discussed in section 5.
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4.2 Concurrent Search Strategies

In this section we describe a concurrent search strategy for pyramids, PCS. Several research
efforts in logic programming utilize concurrent search to improve the response time of a
query [Sha87,KKMS83]. Other efforts [Wol88, WS88, CW89, Don89, W090, GST90] study
Datalog [Ull188, Chapter 4] parallelization, which involves bottom-up evaluation of Datalog
queries. However, the paradigms investigated in these efforts do not consider the behavior
of updates in the concurrently searched substructures. Our main interest in describing a
concurrent search strategy for pyramids is to investigate the issues involved in supporting
concurrent search in a multiuser database system. In such systems, concurrency control
must be provided for any set of transactions that are simultaneously executing. Concurrency
control issues are discussed later in section 5.

Concurrent search can be applied only to a restricted set of update procedures. 1/o-
actions implicitly interface with a sequential medium (either a file or a terminal) and cannot
be executed in parallel without confusion. Hence, concurrent search strategies can only be
applied to procedures that do not activate i/o-actions. Such procedures cannot contain
i/o-actions in their rules, and they can only contain modifications that do not activate
i/o-actions.

A search strategy can employ concurrency at any node whose children represent in-
dependent parts of the structure. In pyramids, every parent-child hierarcy represents a
disjunction in which the siblings are not dependent on each other. Hence, there are two

dimensions of concurrency corresponding to the two types of parent-child relationships:

rule concurrency exploits the disjunctive relationship between the sibling RANs of a PAN,
indicating that a search strategy can simultaneously (but independently) try to apply

all the rules of an update procedure to a given activation.

tuple concurrency exploits the disjunctive relationship between the sibling TINs of a RAN,
indicating that, for a given application of a rule, a search strategy can simultaneously

try to apply the actions of the rule to each tuple that satisfies the rule’s condition.

It is no coincidence that these dimensions of concurrency are identical to the choice-points
for PDFS since a concurrent search that exploits both forms of concurrency is equivalent
to a breadth first search that uses multiple processes.

As with PDFS, a concurrent search strategy for pyramids has some unique requirements.
Since pyramids contain actions that update the database (which is shared by all processes), a
concurrent search strategy must ensure that the database updates performed by concurrent

processes are mutually exclusive. I'or the remainder of thissection, we assume that processes
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parent(P) reactivates P

P finds solution P fails
parent(P) suspends P parent(P) terminates P

Figure 4: Execution States of Process P

that are concurrently searching subpyramids of disjunctive sibling nodes do not see each
other’s updates and a parent only sees the updates of its chosen successful child. Mechanisms
for obtaining this mutual exclusion are discussed later in subsection 4.2.1.

A concurrent search strategy must also maintain the left-to-right dependencies between
the nodes in a chain that arise when nodes update either the database or the curent variable
instantiation. These dependencies are maintained if the nodes in a chain are executed
sequentially, and the current variable instantiation is passed into and updated by each node
of the chain as it executes.

Since we are only interested in finding one solution pyramid, the concurrent search
strategy for pyramids described in this section is optimistic but precautious. Whenever a
successful child is found, its parent optimistically assumes that the child is its one and only
child in the solution pyramid. Being somewhat precautious, the parent suspends, rather
than terminates, all concurrent searches for the siblings of the chosen child. In addition, the
successful child suspends itself. If the search later discovers that the chosen child does not
lead to a solution pyramid, the parent can resume the suspended searches. Furthermore,
since there may be more than one instance of a node that leads to a solution, the chosen
child’s search is also resumed. Because searches are suspended and resumed, our search is
not entirely concurrent and must employ some backtracking.

When a concurrent search of a pyramid encounters a parent-child hierarchy, it spawns
a process to independently search each of the children. There are three types of search
processes employed: two corresponding to the two types of concurrency, and one for the
root PAN node. Chain processes secquentially execute the nodes in a chain for a given TIN.
They are spawned by RAN processes and initiate all backtracking for the concurrent search.
RAN processes execute RANs and are spawned either by the root PAN process or a chain
process.

Before describing PCS, it is helpful to analyze the possible execution states of a process.

A process is in one of three states as depicted in Figure 4, which shows the states for a
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process P with parent parent(P). When a process is spawned, it is initially active. An
active process searchs for a partial-solution to its assigned portion of the search structure.
If it finds one, it returns this solution to its parent and suspends itself - i.e. its state becomes
suspended. An active process also becomes suspended if some other child is chosen as its
parent’s solution child. A suspended process is known to the system and can become active
again at any time; it is reactivated by its parent. Before a process is suspended, it must
return a resume-state to its parent that contains the information that is needed to resume
its search. A process is dead when it no longer has the potential to find more solutions.
This happens when it has exhausted all possible searches or when it is terminated by its
parent.

Having introduced these states, we describe the relationship between processes and their
states. Every process except the root process has a parent process. The parent of a chain
process is a RAN process, and the parent of a RAN process is either a chain process or
the root process. The relationship between the possible states of the nodes in a hierarchy

exhibit the following properties:
¢ all descendents of a suspended node are either suspended or terminated,
o all descendents of a terminated node are terminated,
e a parent of an active node is always active, and
e descendents of an active node can be either active, suspended, or terminated.

We now describe the basic execution of a PCS. It begins at the root node PAN of the
pyramid. This root process spawns a RAN process for each of the PAN’s RANs. The input
for each spawned RAN process is the substitution of values for variables that represents the
user-activated PAN’s input parameters. If all of the RANs fail, then there is no solution
pyramid and the user request is rejected. If one of the RANs succeeds, a solution pyramid
has been found. The user request is satisfied, and the successful RAN’s substitution is used
to synthesize the return values of the root PAN.

Each RAN process initializes its substitution to the input values supplied by its parent
process, which is either a chain process or the root process. Given this substitution, it then
evaluates its condition against the database. It spawns a chain process for each qualifying
tuple, passing in the substitution. If all the chains fail, then the RAN reports failure to its
parent process and terminates.

A solution for the RAN has been found if one of the RAN’s chains succeeds. The RAN
immediately suspends all spawned chain processes that have not yet failed. It builds a RAN

resume-state consisting of the set of chain resume-states, one for each suspended chain,
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plus the resume-state for the chosen solution chain. It reports success to its parent process,
returning as output both the RAN resume-state and the substitution of the successful chain.
It then suspends itself so that it can be reactivated in the case that its parent chain process
is forced to backtrack at some later time.

A chain process tries to find a complete chain for its TIN by sequentially executing the
PANs and PINs of its chain. It maintains a substitution that is initialized by its TIN and
the input substitution from its parent RAN. If it can successfully execute all the nodes in
its chain, it has found a successful execution. It reports success to its parent RAN process,
returning the final value of its substitution and its resume-state. This resume-state contains
a resume-stack which is used during backtracking. It is empty when the process is initially
spawned and maintained during the execution and reactivation of the chain.

Since concurrent search is not performed on pyramids that contain i/o-actions, the only
type of PIN node that a chain process must execute are doit-actions. The chain process
adds an undo-action for the PIN to the resume-stack that, when executed, undoes the
effects of the PIN. Although doit-actions always succeed, they may be blocked by another
transaction or another concurrent search within the same transaction. In this case, the
chain process must wait. However, this is not considered a failure since the chain process
will either eventually be allowed to proceed or, in the rare event that a deadlock, crash,
or media failure occurs, it will be rolled back and restarted by the database concurrency
control manager or the mechanism that provides mutual exclusion for the concurrent search.

A chain process executes a PAN node by spawning a RAN process for each of the PAN’s
RANs. If one RAN process returns successful, the chain process optimistically assumes that
this RAN and its return substitution will lead to a successful completion of the chain. * The
chain process suspends all of the PAN’s spawned RAN processes that have not yet failed.
It pushes a PAN resume-state on the stack. This resume-state consists of the set of RAN
resume-states returned by the suspended RANs, a RAN resume-state for the successful
RAN, and the current substitution. It then updates the current substitution according to
the return values synthesized from the successful RAN’s substitution.

Backtracking occurs when all RAN processes for the PAN return failure. When this
happens, the process pops and performs all undo-actions that are on the top of the resume-
stack until the stack is empty or until a PAN resume-state is found. This restores ("rolls™)
the database state back to the backtrack point. If the backtrack stack is empty, then the
chain process has failed and unsuccessfully returns to its parent RAN process. Otherwise,

it pops the PAN resume-state off the stack, sets the current substitution to the substitution

® At this point we could have chosen concurrently investigate all possible correct completions of the chain

for each RAN process that returns successfully.
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contained in the resume-state, and reactivates all the RAN processes whose RAN resume-
state is in the PAN’s resume-state.

At any point, a parent process can suspend any of its active subprocesses. When a RAN
process is suspended by its parent chain process, it, in turn, suspends all its spawned chain
processes that have not yet failed. It builds a RAN resume-state consisting of the set of
chain resume-states returned by each suspended chain. When a chain’s parent RAN process
asks it to suspend itself, it suspends all currently spawned RAN subprocesses that have not
yet failed. It pushes on the stack a PAN resume-state that contains the current substitution
and a set of the RAN resume-states returned by the suspended RANs. It returns to the
parent RAN a chain resume-state that consists of the resume-stack.

PCS depends on the ability to resume searches when RAN and chain processes are
reactivated. A RAN process resumes its search by reactivating all suspended chain processes
in the RAN resume-state. A chain process resumes its search by initially backtracking. Its
resume-state contains a resume-stack whose top element is a PAN resume-state that contains
the resume-states for all RANs that were currently executing when the chain process was
suspended. This element is popped from the resume-stack, the chain’s current substitution
is re-initialized to the substitution contained in this PAN resume-state, and all the RANs
that have a RAN resume-state in the PAN resume-state are reactivated.

When a solution for the user request is found, there must be a clean-up procedure that
terminates all the suspended processes. There is no such procedure required when the user
request fails since a failure implies that all sub-processes have failed.

It is possible that a more realistic execution strategy would exploit only rule concurrency
and not tuple concurrency, since the expensive computation is the evaluation of conditions
against the database. In such a strategy, a separate RAN processes would be spawned for
each RAN of a PAN, but the RAN process would sequentially process each TIN and the
TIN’s corresponding chain. In such a strategy, the functionality of chain processes would
be absorbed by the RAN processes.

4.2.1 Mutual Exclusion

The concurrent search strategy described assumes that the database updates of concurrently
executing processes are mutually exclusive. In this subsection we briefly suggest two ways
in which such exclusion can be obtained.

Nested Transactions

The first solution treats the concurrent processes as nested transactions [RM89, Mos81,
Mos87, HR87] that compete with ecach other for access to the database. However, the
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locking rules for nested transactions do not apply directly. The rules for releasing and
inheriting locks differ due to the behavioral differences between a failed process and an
aborted process. A failed process is one that aborts itself because it detects something in
the database state or the user input that indicates that it should not proceed.® An aborted
process is one that is aborted by the system because of a deadlock or fails due to a system
crash or a media failure.

The modified locking strategy is as follows. Read-locks are obtained when a RAN
process evalutes a condition, and write-locks are obtained when a chain process executes a
doit-action PIN. Locks can only be obtained if the only other processes that hold the lock
are ancestors of the requestor. Otherwise, the requestor must wait. When a subprocess is
chosen as the successful child of its parent, the parent inherits all the locks of the subprocess.
The subprocess releases all its locks, but keeps a record of them to use if it is reactivated
during backtracking. All other suspended processes hold their locks until they succeed and
are chosen or until they are terminated.

When a subprocess fails, its read-locks must be inherited by its parent process. They
can only be released when a solution has been found for the root process. If no such solution
exists, they must be held until the user transaction commits. However, the write-locks need
not be inherited. These issues are further discussed in section 5. The failed subprocess
releases all its locks and terminates. When bactracking occurs, suspended processes are
reactivated as described before with the exception that the previously chosen child first
reclaims the locks it previously held from its parent.

The advantages to this mechanism are that it can use the locking mechanisms provided
by the underlying database system and it does not require any copying of page-tables or data
items. However, this solution could potentially cause severe blocking, reducing concurrency
to a point where the search is effectively being done sequentially. Furthermore, it is possible
for a suspended process to hold a lock that is needed by an active process, blocking the
active process indefinitely. If the active process is the pyramid’s only opportunity for success
when the suspended process is not chosen, a deadlock occurs. The suspended process will
not release a lock until the search fails and backtracks. But the search will not fail and
backtrack unless the active process obtains the desired lock. Therfore, in order to make
this solution to mutual exclusion useable, no nodes can be suspended. When a solution
for a RAN or PAN node is éhosen, all competing processes must be terminated rather
than suspended. If the execution backtracks to the RAN or PAN at some future point in

the execution, all of the terminated processes must be restarted; all of the previous work

SThis is referred to as program-enforced abort in [HR87].
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performed by these processes is lost.

Shadow Paging

The second solution employs techniques similar to shadow-paging. Each spawned proccess
records its updates locally. These updates are seen by all of the process’ subproccesses, but
are propagated to its parent only if the process is chosen as the parent’s successful child.

The advantages of this solution are that it maximizes concurrency and does not redo
any work. When necessary, previous computations of processes are reused. The problem is
that it requires exponential overhead in copying and propogating database states between
processes.

Obviously, the entire database need not be copied each time a process is spawned.
Furthermore, chain process are the only processes that update the database, so updates
need only be maintained and propagated by chain processes.

Each chain process maintains a local delta-page table that reflects any changes that have
been made to the database since the root PAN was activated. If the chain’s grandparent is
also a chain, then its delta-page table is initially the value of its grandparent’s page table.
Otherwise, the grandparent is the root and the delta-page table is initially empty.

When a chain process chooses a successful RAN for the execution of a PAN, it replaces
its delta-page table with the delta-page table of the chosen RAN’s chosen chain. When a
chain process executes a doit-action PIN, it must make this update visible to itself and all
processes it subsequently spawns, but invisible to all concurrently executing searches. If
the update is to be made to a logical page LP1 that is in the chain’s delta-page table, then
the update can be made directly to the page referenced by LP1. Otherwise, the physical
page P1 that is pointed to by LP1 is copied into P1’. LP1 is updated to reference P1’ and
added to the chain’s delta-page table. The update can then be performed on the local copy
of LP1. ‘

In the concurrent search strategy described previously, a doit-action PIN must be undone
when a chain backtracks over the PIN. However, the delta-page tables never nced to be
updated during backtracking; nor do they need to be saved with each PAN resume-state in
the chain’s resume-stack. When backtracking, a chain can only be successful if some PAN
is found that has an alternative solution RAN. When this happens, the chain’s delta-page
table is replaced with that of the new solution RAN’s chosen chain.

When a successful execution is found for the root, then the updates in the delta-page
table for the chain of the successful RAN are applied to the database. All copies of pages

for terminated processes should be garbage collected.
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5 Concurrency Control Issues

The Update Dependency Language is executed in a subsystem of a traditional DBMS and
any activation of a procedure is part of some user transaction, referred to as the contain-
ing transaction. Hence, a procedure activation executes concurrently with other database
operations and other procedure activations. The correctness criteria for the concurrent exe-
cution of transactions, called serializability, requires that the effects on the database of any
concurrent execution of a set of transactions can be obtained by some serial execution of
the same set of transactions.

For the most part, concurrency control can be correctly handled by applying the exist-
ing mechanisms provided by the DBMS. We assume support for basic two-phase locking
[EGLT76], in which locks are obtained on data items that are read or written. Concurrency
control for a sequential search strategy, such as PDFS described in section 4.1 is the most
direct application of the DBMS locking mechanism. Read-locks are obtained for all tuples
accessed when computing the conditions of RANs and write-locks are obtained for all tuples
updated by doit-action PINs.

The concurrency control mechanisms for the concurrent search strategy described in
4.2 depend on the type of mutual exclusion mechanism employed. If the subprocesses
are run as nested transactions, then the locks are obtained as described previously. If the
shadow-paging technique is used, then locks can be obtained using the DBMS lock manager.
However, so that the subprocesses do not conflict with each other, all locks are obtained on
behalf of the containing transaction. Read-locks are obtained from the DBMS as the logical
pages are read. However, write-locks are only obtained when a solution to the root process
is found and the updates are actually made to the DBMS. They are not obtained when the
updates are made to the subprocess’ local pages. Hence, only updates that persist obtain
write-locks, and all write-locks are obtained together.

It may seem that this delay in obtaining write-locks may not guarantee serializability.
But serializability can only be affected if a data-item that is read by the search is subse-
quently written by another transaction before the search completes. This will not happen
since the read-locks are obtained as the conditions are computed. If another transaction is
reading or writing a data-item that is to be written by the search, then the search must

wait until the transaction releases the lock on the item.

Early release of locks

As described in section 4, not all nodes in a pyramid participate in solution pyramids;

furthermore, only the effects of one solution pyramid persist after the procedure activation
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completes. Therefore, there may be several data-items that are read or updated at nodes
that do not participate in the selected solution pyramid. Consequently, there may be some
data-items that are read- or write- locked by the containing transaction only at these nodes.
We shall refer to such locks as false locks.

It may be possible to improve concurrency by releasing false locks before the containing
transaction commits, as suggested for partial rollbacks [MHL191]. In some cases, this can
be done without jeopardizing serializabily. In the remainder of this section we show that it
is always possible to release false locks early when a solution pyramid is found. However,
unlike partial rollbacks, read-locks must be maintained either until a solution pyramid is
found or, if there is no solution pyramid, until the containing transaction commits or aborts.

It is worth noting that a lock that is requested at a node that is not in the solution
pyramid is not considered a false lock if it was obtained prior to the activation or from
some other node that participates in the solution pyramid. Also, sometimes write-locks are
obtained by escalating existing read-locks. If an escalated write-lock for data-item is only
used by nodes that are not in the solution pyramid, we still refer to this lock as a false lock.
However, when such a lock is released, we mean that it is demoted back to a read-lock.

When a search for a solution pyramid detects a failure, it can release (or demote to
read) known false write-locks immediately, without jeopardizing serializability. The false
write-locks protect data items that are only updated by the containing transaction during
an unsuccessful search. If the search is depth-first, a failure results in a partial rollback to
the database state prior to the most recent choice point. During this partial rollback, all
database updates that resulted from the doit-action PINs between the choice-point and the
failure are undone. Similarly, if the search is concurrent using locking for mutual exclusion,
then the updates are undone when the chain processes backtrack. * Hence, all updates that
occurred since the most recent branching node will never be performed on the database
since they will not be part of the solution pyramid. In both cases, the update will not be
seen as part of the containing transaction and will therefore not need to be serialized with
other concurrent operations.

However, false read-locks cannot be released as soon as a failure is detected. All read-
locks must be kept during the entire search for a solution pyramid, since this search makes
decisions based on the data-items it reads (or does not read). If these false read-locks
are released before a solution pyramid is chosen, other transactions can update data-items

that would have otherwise been locked. These updates could potentially cause somme of

"As described above, for concurrent scarches that employ shadow-paging techniques, locks are never
obtained for these updates since they are not part of the solution pyramid updates that are performed on
the database.
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the rejected sub-pyramids to be successful. However, the search will not reconsider the
sub-pyramids and may incorrectly reject a valid update.

The problem is even worse if the other transactions also make updates that make it
impossible for the search to find a solution pyramid. Now, this scenario is always possible
since nodes can never be locked until they are searched. However, a correct transaction
will likely only invalidate a solution pyramid if it makes updates that create new solution
pyramids. So, it is possible for a concurrent execution of a set of transactions to give a
value for the success or failure of a procedure activation which could never be obtained with
a serial execution of the same set of transactions.

Since the update dependency procedure and the user transaction may make database
updates based on the result of an procedure activation, this type of behavior is not desirable.
It may lead to concurrent executions that are not serializable. Consider the following

example.

Example 7 Suppose a database schema has one relation for each state that records in-
formation about the suppliers in that state. This schema may contain relations such as:
VaSupp(S#, ...), MdSupp(S#, ...), ..., CaSupp(S#, ...). Suppose that there is a
view LocShpmnt (S#, P#, Qty, Loc) which records shipments whose supplier, S#, is local
to the shipment’s location Loc. Then the update procedure may contain the following two
rules that apply to shipments that are located in Washington, DC. (For simplicity, assume

that all the actions of each of these rules succeed.)

insert LocShpmnt(S# = S, P# = P, Qty = Q, Loc = L)
-> L = ‘‘Washington, D.C.’’ and VaSupp(S#), ... . (r1)

-> L = ‘‘Washington, D.C.’’ and MdSupp(S#), ... . (r2)

Consider the following database state and set of transactions.

DBstate: supplier Si is currently in MdSupp.

T1: tries to insert supplier S1 as a local supplier for a shipment

which is located in Washington

T2: modifies the database to reflect the fact that S1 has

moved from Maryland to Virginia with the following two actions:
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(1) deletes S1 from MdSupp
(2) inserts S1 into VaSupp

Any serial execution of these two transactions will result in the granting of T1’s request.
If T1 is executed before T2, then the request will be granted by a successful application of rule
r2. If T2 is executed before T1, then the request will be granted by a successful application
of rule r1. However, the following sequence of events shows a concurrent execution that is

permissible if read-locks along failed paths are released.

(1) T1: tries to insert supplier S1 as a local supplier for a shipment

which is located in Washington

4

(2) T1: activates procedure °‘insert LocShpmnt?’’

(3) T1: tries r1; ri1 fails since S1 is not in VaSupp
(4) T2: delete Si from MdSupp

(5) T2: insert S1 from VaSupp
/* T2 could not do this if the read-lock on VaSupp was kept */

(6) T2: commits and releases all locks

(7) Ti: tries r2; r2 fails since S1 is not in MdSupp

This execution results in the rejection of T1’s request; it is not equivalent to either of

the serial executions.

Since false read-locks keep other transactions from updating the database in such a way
that makes the decision to reject a path incorrect, they should be released only when a
solution pyramid is found for the user-activated update procedure. If there is no solution
pyramid, all read-locks must be kept until the containing transaction commits or aborts.

Suppose transaction T' replaces one correct solution pyramid with another (like trans-

action T2 above). Suppose transaction § is performing a search for a correct solution
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pyramid. If S keeps its false read-locks, the locks prevent T from making solution pyramids
that include the locked nodes. If T' creates new solution pyramids before invalidating old
ones, then T is blocked until S completes. If T" invalidates the old solution pyramids first,
then, in the worst case, a conflict between T and S will result in a deadlock, which will be
resolved by the underlying lock manager. In the above example, T2 would wait at step 5
until T1 completes.

When a solution pyramid is found for a user request (i.e. a root node PAN), all false-
locks, both read and write, can be released. Recall from section 4 that, to the user trans-
action, the sequence of actions and queries that a successful update procedure activation
performs corresponds to a left-to-right traversal of the leaf nodes of the chosen solution
pyramid. TINs represent database reads, and PINs represent either database updates or
i/o-actions. Therefore, locks obtained on the solution pyramid must behave as if they
were obtained directly by the transaction and not through the activation. However, the
false-locks can be safely released.

In summary, for procedure activations that occur in a DBMS that supports two-phase
locking, false write-locks can be released as soon as they are detected, and false read-lock

can be released only when the request is granted.

6 Related Work

The oldest and best known technique for supporting constraints in database systems is
database normalization, which results in database designs that enforce some functional
dependencies through the use of keys in the model [Cod72,Cod74, Arm74, Ber76, Fag77,
Fag79].

However, several applications require constraints that are too complex to be represented
by relations and keys alone. Hence, a number of extensions to the relational model and
semantic data models have been defined. Most of these extensions and new models provide
different types of relations with different update semantics [SS76,Che76, BFM79,Cod79].
Some of these extensions and new models also provide a variety of types of constraints
on domains (e.g. no-nulls, subrange) and between active domains (e.g. equality, subset,
exclusion, partition).

Several proposals include a general constraint definition capability; some extend SQL
[EC75] and some use general predicate logic [HM76] or first-order logic [GJ82] to formulate
constraints. A general problem with most of these proposals is that they are prohibitively
inefficient to use during database update, and substantial efforts have been invested in
trying to make them more eflicient [Sto75,HS78,BP79].
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The notion of a database transaction [Gra78] was introduced to allow the grouping of
several database updates, suspending integrity constraint checking until the transaction
commits. Hypothetically, all the integrity rules would be explicitly represented in the
database and the database system would check that the database state is consistent with
the integrity constraints at the end of each transaction. Since only few database systems
support any integrity constraints, transactions are usually used to group a set of updates
which must be executed together. In this environment, the integrity of the database is
fragile since the logic for enforcing constraints is replicated in each application. A system
based on update dependencies replaces commit-time integrity constraint checking.

Update dependencies are closely related to a class of concepts which includes triggers
[Esw76], alerters [BC76], condition-actions [HM76), and event procedures [BFM79]. These
concepts originated from early work on integrity constraints and have had a substantial
impact on the database area. The basic idea behind this work is that the database moni-
tors database activity and executes a corresponding action when certain conditions on the
database state are met. If the condition that triggers the action is a violation of an integrity
constraint, then the database administrator can program the action to either reject the of-
fending update request or to perform some corrective-actions that make the new database
state consistent. _

Our work has been influenced by related work on transaction specification (as found in
the TAXIS system [Bro81,MBW80]), goal oriented approaches to constraint statisfaction
[SK84], and early work on providing a Prolog front-end to relational systems [JCV84].
Our language is largely rule-based, but, unlike other rule-based languages that have been
integrated into databases [DE89,dMS88,Han89,MD89,SPAM91,SLR88,SJGP9I0,WF'90], it
is goal-oriented. Its purpose is to support update dependencies, not to provide a general
rule-system environment. We feel, for integrity constraint maintenance, a goal-oriented
approach is preferable because it allows and requires the user to integrate all the update
dependencies for an update into the same procedure. However, the integration is modular
in the sense that only the update dependencies that have the same condition must be
integrated together in the same rule.

The concept of defining higher abstractions on existing models such as the relational
systems is in line with that of the direction taken in [SAHR84,TZ84,Zan83]. The use of
abstractions to maintain semantic integrity constraints has been influenced by the constraint
connections of the Structural Model [WESO0].

Our formalism is related to various update semantics that have been defined in logic
programming. We extend the algebraic semantics of updates presented in [AG85], i.e. up-

dates are viewed as mapping between database states. As in [Nic82], we assume that the
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database is in a valid state, satisfying all integrity constraints, at the beginning of each
update procedure activation. Our update procedures are similar to the update procedures
of DLP, [MW87,Man89] and the update predicates of LDL [NT89]. All of these formalisms
assume an immediate update policy (i.e. a transaction can see its own updates) and sup-
port hypothetical reasoning. In LDL, there is no execution order among update predicates
for rules that satsify the Church-Rosser property. However, they do not have provisions
for undoing updates during backtracking. They also only allow update operations for base
relations. DLP, on the other hand, allows update operations for views and undoes updates
during backtracking. Like Update Dependency procedures, there is an implied order be-
tween updates in the rules. Both DLP and LDL serve as a uniform interface to a logic
database, and updates to base relations can be issued from any query. The focus of their
work is to provide semantics for updates in pure prolog and LDL respectively. On the other
hand, our language focuses more on the interaction between user requests and the actual
operations that are performed on the physical database in an effort to providing a means
for specifying the correct evolution of the database. We therefore have update procedures
for all base table updates in addition to views. Updates to the database are only allowed
through the ﬁpdate’s corresponding procedure.

In addition to supporting integrity constraint maintenance, our language also inherently
supports (because it is based on update dependencies) the specification of view update poli-
cies and view maintenance. In systems that do not support updates to views, our language
can be used to specify view update algorithms for theoretically updatable views[FFC85,BS81].
It can also be used to specify updates for non-theoretically updatable views by incorporating

domain-specific knowledge as suggested in [FC85,Kel85].

7 Conclusions and Future Work

In this paper, we formally defined a language which supports update dependencies in the
relational model. We demonstrated its use with numerous typical database examples. We
described two different strategies, depth-first and concurrent search, for executing proce-
dures of this language, and we developed new modified two-phase locking strategies with
early write lock release for executing these procedures in a traditional database environment.

The Update Dependency Language has been used to specify interoperability in engi-
neering information systems [RMSF91] and multidatabases [LMR90]. We have also im-
plemented a prototype interpreter for the Update Dependency Language in Prolog, which
is currently being used in a joint project with The Mechanical Engincering Department

at Maryland [HM89]. The purpose of this project is to develop, validate and test oper-
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ational specifications of a Computer Integrated Manufacturing system that integrates the
CAD/CAPP/MRP II Systems. The mechanical engineers have written a large set of mod-
ification procedures, and have been able to specify all of the selected operations in their
CIM system with only small amount of consultation from us.

We are currently approaching the implementation of this language from two angles.
First, we are building an interpreter, UDappl, as an application which issues SQL queries
and modifications to a commercial DBMS (we are currently using Oracle). The interface to
UDappl will allow the user to issue modification requests in a form similar to the reg-actions
described in section 2.3. This is the next generation of interpreter that will be used in the
CIM project, and is useful because it is easily ported to any commercially available DBMS
with an SQL query language.

Secondly, as described in this paper, we plan to integrate a subsystem for executing mod-
ification procedures into a DBMS, such as ADMS [NR91]. This will allow the modification
procedures to truly guard their relations and to be activated by set-oriented modifications
which are typically issued from SQL. We will also be able to experimentally investigate
the concurrency issues for the different control strategies described in sections 4 and 5.
Furthermore, the implementation must consider efficiency and pragmatic issues involved in
implementing a system that backtracks and undoes modifications and processes one tuple
at a time in search for a solution. We are currently exploring the use of incremental access
methods in backtracking.

In addition to building interpreters for this language in a centralized environment, we
would like to investigate how the update dependency concept can be adapted to decentral-
ized client-server architectures [DR91]. For example, in a workstation-server architecture,
it is too restrictive to have the server delay operation while waiting for a workstation.
However, it seems reasonable to have a workstation wait for the server. These types of

observations will require a slightly modified semantics for the modification procedures.
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