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An Arnoldi-Schur Algorithm for
Large Eigenproblems

G. W. Stewart
ABSTRACT

Sorensen’s iteratively restarted Arnoldi algorithm is one of the most suc-
cessful and flexible methods for finding a few eigenpairs of a large matrix.
However, the need to preserve structure of the Arnoldi decomposition, on
which the algorithm is based, restricts the range of transformations that
can be performed on it. In consequence, it is difficult to deflate converged
Ritz vectors from the decomposition. Moreover, the potential forward in-
stability of the implicit QR algorithm can cause unwanted Ritz vectors to
persist in the computation. In this paper we introduce a generalized Arnoldi
decomposition that solves both problems in a natural and efficient manner.

1. Introduction and background

In this paper we are going to describe a new implementation of the Arnoldi method that
resolves some difficulties with the implicitly restarted Arnoldi method. To understand
the difficulties and their solution requires a detailed knowledge of the Arnoldi process.
We therefore begin with a survey, which will also serve to set the notation for this paper.

Let A be a matrix of order n and let uy be a vector of 2-norm one. Let uq, ug, us. ..
be the result of sequentially orthogonalizing the Krylov sequence uy, Auy, A%uq,.... In
1950, Lanczos [5] showed that if A is Hermitian then the vectors u; satisfy a three term
recurrence of the form

Brurs1 = Agur — apug — Br_1Up—1, (L.1)

a recursion that in principle allows the economical computation of the u;.
There is an elegant representation of this recursion in matrix terms. Let

Uk:(ul Uy - Uk)

be the matrix formed from the Lanczos vectors u;. Then there is a tridiagonal matrix
T formed from the a’s and 5’s in (1.1) such that

AU, = Ui Ty, + ﬁku;ﬂ_leg, (1.2)

where e is the vector whose last component is one and whose other components are
zero. From the orthogonality of the u;, it follows that T}, is the Rayleigh quotient

T, = ULAU,,.
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We will call (1.2) a Lanczos decomposition.

Lanczos appreciated the fact that even for comparatively small & the matrix T
could contain accurate approximations to the eigenvalues of A. When this happens,
the column space Uy of Uy will usually contain approximations to the corresponding
eigenvectors. Such an approximation—call it z—can be calculated by computing a
suitable eigenpair (p, w) of T and setting z = Uiw. This process is called the Rayleigh—
Ritz method; i is called a Ritz value and z a Ritz vector.

In 1951, Arnoldi [1], building on Lanczos’s work, showed that if A is non-Hermitian
then the Lanczos decomposition becomes

AU, = Uka—l—ﬁkuk_Heg, (1.3)

where Hy is upper Hessenberg. We will call (1.3) an Arnoldi decomposition. Once again,
Hj, may contain accurate approximations to the eigenvalues of A, especially those on
the periphery of the spectrum of A. Moreover, approximations to the eigenvectors may
be obtained by the natural generalization of the Rayleigh—Ritz process.

Since Hp is not tridiagonal, the Arnoldi vectors do not satisfy a three term re-
currence. To compute ug4q all the columns of Uy must be readily available. If n is
large, these vectors will soon consume the available storage, and it the process must be
restarted. The problem then becomes how choose a new wuq that does not discard the
information about the eigenvectors contained in i;. There have been several proposals,
whose drawbacks have been nicely surveyed by Morgan [9].

In 1992, Sorensen [10] suggested an elegant way to use the QR algorithm to restart
the Arnoldi process. Specifically, suppose we have an Arnoldi decomposition

AU, = Uy Hyp + Bt 1€l (1.4)

of order m that cannot be further expanded because of lack of storage. For some
fixed k, choose m — k shifts k1,...,kn_; and use them to perform m — k steps of the
implicitly shifted ) R algorithm on the Rayleigh quotient H,,. The effect is to generate
an orthogonal matrix @ such that Q" H,,Q is upper Hessenberg. Then from (1.4)

A(UmQ) = (UmQ)QHHmQ + ﬁmum-l—leTTnQ-

or
AU, = Uy Hy + um_|_1cH.

Sorensen then observed is that the structure of @) is such that the first k— 1 components
of ¢ are zero. Consequently, if we let Hy be the leading principal submatrix of H,, of
order k and set

Brlik41 = Vilmt1 + ilk+1,kuk+17 (1.5)
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then
AUy, = UpHy + iipyre

is an Arnoldi decomposition of order k. This process of truncating the decomposition
is called implicit restarting.

A second key observation of Sorensen suggests a rationale for choosing the shifts.
Specifically, if p(t) = (t — x11) - - (t — Kpm—gI), then

i = P(A)Ul
(A

It follows that if we choose the shifts to lie in the part of the spectrum that we are not
interested in then the implicit restart process deemphasizes these very eigenvalues.

Each iteration of Sorensen’s algorithm consists of two stages: an expansion stage,
in which the decomposition is expanded until it is inconvenient to go further, and a
contraction or purging stage, in which unwanted parts of the spectrum are suppressed.
The contraction phase has two variants. In the exact variant, the shifts are taken to be
unwanted eigenvalues of H,,. If, for example we were concerned with stability, we might
choose to retain only the eigenvalues with largest real parts. In the general variant, the
shifts are not necessarily eigenvalues of H,,. For example, they might be the zeros of a
Chebyshev polynomial spanning an ellipse containing unwanted eigenvalues.

The implicitly restarted Arnoldi algorithm has been remarkably successful and has
been implemented in the widely used ARPACK package [7]. However, the method has
two important drawbacks.

First, for the exact restart procedure to be effective the unwanted Ritz values p
must be moved to the end of H,,, so that the Rayleigh quotient has the form illustrated
below for £k = 3 and m = 6:

oo oo T
oo o >
oo o >
co®m >
o >
> >

I

If H,, is unreduced —that is, if the elements of its first subdiagonal are nonzero—
then mathematically H,, must have the form (1.6). In the presence of rounding error,
however, the process can fail (for a treatment of this phenomenon see [12]). This has
lead Lehoucq and Sorensen to propose an elaborate method for permanently ridding
the decomposition of persistent unwanted Ritz values [6].
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The second problem is to move converged Ritz values p to the beginning of Hy, so
that it assumes the form illustrated below:

h

cC oo o oxr
cocoooxm
o T T
Papiie e ) s s
Papiie e ) s s
Pplibsp e B ) i B

0 A

When the converged Ritz values are thus deflated (or locked), one does not have to
update the corresponding eigenvectors u; and ug in the Arnoldi decomposition. Once
again, Lehoucq and Sorensen have proposed a complicated deflation algorithm.!

Most of the complications in the purging and deflating algorithms come from the
need to preserve the structure of the Arnoldi decomposition (1.3)—in particular, the
Hessenberg form of the Rayleigh quotient and the zero structure of the vector e;. The
purpose of this paper is to show that if we relax the definition of an Arnoldi decompo-
sition, we can solve the purging and deflating problems in a natural and efficient way.
Since the method is centered about the Schur decomposition of the Rayleigh quotient
we will call the method the Arnoldi-Schur method.

We will be concerned with the exact-shift version of the algorithm. In the next
section we introduce generalized Arnoldi decompositions and, in particular, the Arnoldi—
Schur decomposition. Section 3 we will treat the expansion step, which is essentially the
same for implicitly restarted Arnoldi and Arnoldi-Schur. In Section 4 we will treat the
contraction step and in Section 5 treat the numerical stability of the combined steps.
In Section 6 show how to deflate the Arnoldi-Schur decomposition. In Section 7 we will
compare the work done by iteratively restarted Arnoldi and Arnoldi-Schur. We end
with some general comments. Throughout this paper || - || will denote the vector and
matrix 2-norm ([11, Section 1.4.1]).

2. Generalized Arnoldi decompositions

The structure of an Arnoldi decomposition restricts the operations we can perform on
its Rayleigh quotient. The following definition introduces a less constraining decompo-
sition.

Definition 2.1. A generalized Arnoldi decomposition of order k is a relation of the
form

AU, = U By, + uk+1bll;l+1, (2.1)

!Lehoucq [personal communication] has written code that is related to the deflation method proposed
here.
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where By, is of order k and (Uy ug41) is orthonormal. If By, is upper triangular we say
the decomposition is an Arnoldi-Schur decomposition.

In the generalized Arnoldi decomposition the Rayleigh quotient By = U,?AUk is no
longer required to be Hessenberg, and the vector ﬁkeg is replaced by a full vector bI,;I_I_l.
This generality allows us to operate freely on Bj. Specifically, let ¢) be unitary. Then

we say that the generalized Schur decompositions

AU, = U,By + uk_|_1bI,;I_|_1 and A(U,Q) = (UkQ)(QHBkQ) + Uk+1(bll;l+1Q)

2 Since generalized Arnoldi decompositions are closed under

are (unitarily) similar.
similarity transformations, we can reduce the Rayleigh quotient to any desirable form
by unitary similarities. In particular, any generalized Arnoldi decomposition can be
reduced to an Arnoldi-Schur decomposition by computing a Schur form of its Rayleigh
quotient.

Before proceeding, we must dispose of the possibility that generalized Arnoldi decom-
positions are Arnoldi in name only. The following theorem shows that any generalized
Arnoldi decomposition can be associated with an Arnoldi decomposition and hence a

Krylov sequence. For convenience we drop the subscripts in k.
Theorem 2.2. Let
AU = UB + ub® (2.2)

be a generalized Arnoldi decomposition of order k. Then (2.2) is similar to an Arnoldi
decomposition. If the Hessenberg part of the Arnoldi decomposition is unreduced, the
transformation is essentially unique.

Proof. The proof of the theorem is based on a variant of a standard theorem on the
partial uniqueness of the reduction to Hessenberg form (e.g., see [3, Theorem 7.4.2]).
Specifically, there is a unitary matrix ¢ whose last column is b/]|b||2 such that H =
QU BQ is upper Hessenberg. If H is unreduced the transformation is unique up to the
scaling of the columns of @ by factors of modulus one. Since b'Q = ||b]|2ef, (2.2) is
similar to the Arnoldi decomposition

AUQ) = (UQ)H + ||blluel. m

It should be stressed that the theorem is constructive, in the sense that the simi-

larity transformation can be effected in a stable and efficient manner by Householder

transformations.>

2We restrict ourselves to unitary similarities because they preserve the orthonormality of U. However,
it is possible to define nonorthogonal generalized Arnoldi decompositions and manipulate them with
nonorthogonal similarities.

°Tn brief, the reduction is started by choosing a Householder transformation @i such that »7Q; =
||lbllef . The matrix QI BQ, is then reduced to Hessenberg form by using Householder transformations
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3. Expansion

The expansion phase of the Arnoldi-Schur method consists of the expansion proper,
which destroys the Schur form, and a final reduction to Schur form. We will write the
initial decomposition as

AUy, = Ui Sy, + tgp1biy s

where the letter S (for Schur) stresses the triangularity of the Rayleigh quotient. It will
be more convenient to work with the equivalent factored form

AUy, = Ugs1 Sy,

R Sy
4, = ( ) |
b1

The expansion proceeds as in the usual Arnoldi algorithm: the vector Augiq is
orthogonalized against Ui_; and normalized to give ugyo, after which Si4q is formed
from S;. The following algorithm implements this sketch. We assume that Ugiq and
S are contained in arrays U and S.

where

1. v = AxU[:, k+1]
2. w= Ul
3. v=v—Ux*w
4. v =02 (3.1)
5. U=(Uv/v)
5 S w
o 5= (5 0)

Note that in a working implementation we would have to reorthogonalize to insure
that the vector v is orthogonal to the column space of U to working accuracy (see [11,
Algorithm 4.1.13]).

After this process the array S has the form illustrated below for k = 3:

o T O O ®»
ST O » ®»
S T ®m »
>SS

to introduce zeros rowwise from the bottom up. These similarity transformations do not disturb the
zeros in the vector ||b|er .
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Here the s’s stand for the elements of the original Si and the b’s for the elements of b4 1.
The process may be repeated. After m — k steps, the array 5 has the form illustrated
below for k = 3 and m = 6:

(3.2)

o0 O T OO ®
COoOOC OO ®m ®»
OO Do m b ®»
coo T > >
o TS T>S
Ll aibep P AR i b e

At this point the Rayleigh quotient, which resides in S(1:m, 1:m), is reduced to
Schur form to give the Arnoldi-Schur decomposition

AU, = U S + U104 1. (3.3)

This reduction to Schur form begins with a reduction of the Rayleigh quotient to Hes-
senberg form, and some minor savings can be obtained at this stage by taking advantage
the structure illustrated in (3.2). Although (3.3) suggests that we are computing com-
puting the entire decomposition, including U,,, in fact it will be more efficient to defer
the computation of the vectors u; until later. We will return to this point in Section 7.

4. Contraction

We now turn to the problem of purging the unwanted Ritz values from the Arnoldi—-
Schur decomposition (3.3). The key is the observation that an Arnoldi-Schur decom-
position can be truncated at any point. Specifically, if we partition an Arnoldi—Schur
decomposition in the form

S11 S

then
AUy = Uy Sy + ubt!

is also an Arnoldi-Schur decomposition. Thus the purging problem can be solved by
moving the unwanted Ritz values into the southeast corner of the Rayleigh quotient and
truncating the decomposition.

The process of using unitary similarities to move eigenvalues around in a Schur form
has been well studied (see [2] for references and the current front-running algorithm,

Draft April 24, 2000



8 Arnoldi—Schur GWS

which has been implemented by the LAPACK routine xTREXC). Consequently, our defla-
tion algorithm consists of little more than moving the unwanted Ritz values, which are
visible on the diagonals of 5,,, to the southeast corner of the Rayleigh quotient and
truncating the decomposition.

The following theorem shows just what a combined expansion and contraction step
produces.

Theorem 4.1. Let P be an unreduced Arnoldi-Schur decomposition and let P’ be
the results of applying the the expansion and contraction steps to P with exact shifts
[l fbm—p that are distinct from the other Ritz values of P!. Let Q be the Arnoldi
decomposition corresponding to P and let Q' be the result of applying Sorensen’s ex-
pansion and contraction algorithm to Q . If Q' is unreduced, then P’ is a Schur form of

Q.

Proof. The proof is in the style of Morgan [9]. By Theorem 2.2, Q is uniquely deter-
mined, and (in an obvious nomenclature) has same U-space and u-vector as P. Con-
sequently, the expansion phase yields decompositions with the same U-spaces and u-
vectors. Because exact shifts are used, the contraction phase for Q eliminates the Schur
vectors corresponding to the unwanted eigenvalues and does not change the u-vector
[hk+1% in (1.5) is zero]. By the distinctness property of the p, the space spanned by the
discarded Schur vectors is uniquely determined, and hence so is the U-space. Similarly,
contraction phase on P gives the same U-space and u-vector. Since, Q' is unreduced, it
must be similar to P’. m

The import of this theorem is that no matter hwo you perform the expansion and
contraction, mathematically you end up with a decomposition that has been filtered
through the polynomial (t — p1)...(¢t — ptn—i). However, the procedure based on the
Arnoldi—Schur form is numerically more reliable than the one based on implicit restart-
ing.

5. Numerical stability

We now briefly consider the numerical stability of the algorithm. From standard tech-
niques of rounding error analysis it can be shown that as the Arnoldi—Schur algorithm
proceeds the computed generalized Arnoldi decompositions satisfy

AU =UB +ub + R (5.1)

where ||R||/||A]| is of order of the rounding unit and grows slowly. If U is computed
with reorthogonalization in the expansion phase, UU = I + F, where ||F|| is the order
of the rounding unit and also grows slowly. The following theorem shows that we can
throw the error R back on the matrix A.
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Theorem 5.1. Let (5.1) be satisfied and assume that U is of full rank. Let £ = RUT,
where UT = (UMU)~1UM is the pseudo-inverse of U. Then

(A+ EYU = UB + ub, (5.2)

and

2]
TR £l < IRINUT.

The lower bound holds for any matrix I/ satistying (5.2).

Proof. The equation (5.2) is established by direct verification. The upper bound
follows from taking norms in the definition of E. On the other hand, if F is any matrix
satisfying (5.2), then EU = R, and ||R|| < || F||||U||, which establishes the lower bound.
|

Since U is nearly orthonormal, ||U|| and ||UT|| are near one. Hence the theorem
shows that the computed generalized Arnoldi decomposition is an exact decomposition
of a matrix near A. In this sense the Arnoldi-Schur algorithm (as well as the iteratively
restarted Arnoldi algorithm) is backward stable.

6. Deflation

The conventional way of determining whether the Ritz pair (u, z) has converged is to
look at the residual norm

[l = | Az = pz|l. (6.1)

The justification for this is the fact that if ||2|| = 1 then there is a matrix £ = —rzH
with [|[F|| = ||r]| such that (A + E)z = pz—i.e., (p, z) is an exact eigenpair of A 4+ F.
If ¥ is small enough compared to A and the Ritz pair (u, ) is well conditioned, then it
is accurate.

Generalized Arnoldi decompositions share with their ordinary counterparts the fact
that residual norms like (6.1) are easy to compute. For let AU = UB + ub!! be a
generalized Arnoldi decomposition and let Bw = pw so that (u,Uw) is a Ritz pair.
Then

r=AUw — pUw = UBw — pUw + ubw = ubw.
Hence

I7[] = (6],
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so that when the quantity b™w is small, we can declare that the Ritz value has converged.

If we are working with an Arnoldi-Schur decomposition, AU = US + ub!, we can
deflate a converged value from the problem as follows. Let ¢} be a unitary matrix that
moves the Ritz value y to the (1,1)-element of 5 =0Q"50Q, and let

AU =US +ub = UQS + wb'Q (6.2)

be the transformed Arnoldi-Schur decomposition. Since the eigenvector corresponding
to pin S is eq,

7| = |6 w| = |bMeq| = [by].

Thus the modulus of the first component of b is ||7||. If ||7|| is small enough—say
|7|| < €]|A||, where € is a prescribed tolerance — then we may set the first component of
b to zero. The Arnoldi-Schur decomposition then assumes the partitioned form

~ ~ 4 §~1T2
A(ay Uy)= (a3 Uy) | O 5:22
0 by

Thus the Ritz value p has been decoupled from the decomposition. This allows us to
save operations in the contraction phase.

This deflation technique amounts to replacing b by b+ e. The effect is to add
quantities of size ||e]| to the residual R in (5.1). Theorem 5.1 says that e contributes a
like error to the backward error in A. Thus, if our criterion for deflation is sufficiently
stringent, the deflation process will not affect the backward error unduly.

The problem becomes more difficult when more than one eigenvalue is involved.
Suppose that we have moved { eigenvalues to the beginning of the Rayleigh quotient,

and partition it in the form
_ (511 Sz
5= ( 0 522 )

The matrix of eigenvectors corresponding to the first ¢ eigenvalues has the form

(W)

0 ?

where X1y is an upper triangular matrix of order (. If we partition b5 = (b1 by)
conformally, then the residual norms of the first ¢ Ritz vectors are the absolute values
of the components of g{{ = b?XH. Thus the components of b; can be as large as

IX s llgi oo Tt follows that if the system of deflated eigenvectors is ill conditioned,
a small residual does not guarantee a small value of by.
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Fortunately, we can monitor the components of b as we attempt to deflate Ritz pairs.
Theorem 5.1 shows that we should not deflate a pair with a large b component, no matter
how small its residual, since such a deflation corresponds to a large perturbation in A.
This does not mean that the offending Ritz pairs cannot be kept around or that they
cannot be returned to the user. It only means that they cannot provide us the benefits
of deflation.?

Although we have focused on the deflation of Ritz pairs, the process can be applied
to any pair (u,Uz) which has a small residual, in particular to the refined Ritz pairs
of Jia [4] and the harmonic Ritz pairs of Morgan [8]. Specifically, let the pair (p, Uw)
([Jw|] = 1) have the residual,

r=AUw — pUw.
Since the residual is minimized when
p=(Uw)TA(Uw) = w' Bw (6.3)

(see [13, p.172]), we will assume that u satisfies (6.3). Let @ be a unitary matrix such
that QHw = e; and transform the decomposition as in (6.2) to get the decomposition

AU = UB + ub",
in which the first column of U is Uw and the (1,1)-element of B is u. Partition the
column in the form

Ay Uy) = (a1 Uy) (I;'Zl 31222) + u(frt11 bI,;I_FLQ).

From the first column of this partition it follows that

r = Usboy + Bk-l—l,lﬂ-

|Gslz )=
Brt1,1

Hence if r is sufficiently small the decomposition deflates at its first column.

The caveats about the deflation of more than one vector apply here. An minor
inconvenience with the method is that the matrix Bay is no longer triangular. However,
if we use plane rotations to reduce the vector w to e from the bottom up, B, will be
Hessenberg.

and hence

*One might be tempted to mark the deflated Ritz pairs as “good” in order to contrast them with
“bad” pairs that would not deflate. But that is to miss the point. Any pair with a small residual is a
good pair. It is only sets of pairs that cannot accurately determine their eigenspaces that are bad.
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7. Assessment

In comparing the Arnoldi-Schur algorithm with implicitly restarted Arnoldi, we must
distinguish the sources of work in the algorithms. The first is the multiplication of a
vector by A. Since A will usually be sparse, the cost of this product is unpredictable
in general, but it is reasonable to assume that it forms a significant part — perhaps the
dominant part—of the computation.

The second source of work is the expansion of the Arnoldi decomposition from one
of order k to one of order m. It is easily seen from (3.1) the the work is 2n(m? — k?)
floating-point adds and multiplies, assuming reorthogonalization is performed. This
count is the same for both algorithms.

In the contraction step, both algorithms must transform the Rayleigh quotient and
accumulate the transformations in U. For efficiency, we do not accumulate the trans-
formations in U as they are generated but instead accumulate them in an mxXm matrix
) and then compute the new Uy in the form

UnxQ[:, 1:k]. (7.1)

If » > m, the last step will dominate the transformations applied to the Rayleigh
quotient and their accumulation in Q.

For the Arnoldi-Schur method we must compute the Schur decomposition of the
Rayleigh quotient and transform the triangular factor. This means that ¢ will be full,
and the final accumulation step (7.1) will require nkm floating-point additions and
multiplications.

For the implicitly restarted Arnoldi we must also compute the Schur decomposition
of the Rayleigh quotient H,,. But it is only used to determine the shifts, which are
applied directly to H,,. The structure of the transformations is such that Q[:, 1:£] is
zero below its m — k subdiagonal. This means that the operation count for (7.1) is
nmk — %kQ additions and multiplication.

To put things together, if m = 2k and reorthogonalization is performed during the
expansion, the Arnoldi-Schur algorithm has an operation count of 7nk? whereas implic-
itly restarted Arnoldi has a operation count of 6%nk2. Thus implicitly restarted Arnoldi
is marginally superior to Arnoldi Schur when it comes to accumulation of transforma-
tions. Against this must be set the fact that Arnoldi-Schur deflates in an inexpensive
and natural manner and does not require a special routine for purging.

8. Concluding remarks

The Arnoldi-Schur method admits variations. An important one is based on the ob-
servation that we can truncate an Arnoldi-Schur decomposition at any point where the
Rayleigh quotient is block triangular [see (4.1)]. This means that when A is real we can
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work with real Schur forms of the Rayleigh quotient and avoid the necessity of complex
arithmetic. The algorithm for exchanging eigenvalues mentioned above will also move
the 2x2 blocks of the real Schur form so that the contraction phase proceeds as usual.
In deflation, the block in question is moved to the position just after the previously de-
flated eigenvalues and blocks, and two components of b are tested. An unusual feature
of complex eigenvectors is that they may fail to deflate, not because they are dependent
on other deflated vectors, but because the real and imaginary parts of their eigenvectors
are not sufficiently independent.

When A is Hermitian, the Arnoldi-Schur method becomes a restarted Lanczos algo-
rithm. The Rayleigh quotient is diagonal, so that reordering of the eigenvalues reduces
to simple permutations. Moreover, because the eigenvectors of the Rayleigh quotient
are orthogonal, a Ritz pair with a small residual norm ¢ will deflate with backward error
of order e.

Since the Arnoldi-Schur method works explicitly with the eigenvalues of the Rayleigh
quotient, it is an exact-shift method. Nonetheless, it stands ready to help the general
shift method to deflate Ritz pairs and to get rid of unwanted pairs. One simply com-
putes an Arnoldi-Schur form of the current decomposition and performs the procedures
described above. Theorem 2.2 assures us that we can then return to a pure Arnoldi
decomposition.

In fact Theorem 2.2 is really the heart of the matter. It allows us to operate freely
on the Rayleigh quotient with the knowledge that we are always attached to a Krylov
sequence. It is hoped that this freedom will find other applications.
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