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An Arnoldi{Schur Algorithm forLarge EigenproblemsG. W. StewartABSTRACTSorensen's iteratively restarted Arnoldi algorithm is one of the most suc-cessful and 
exible methods for �nding a few eigenpairs of a large matrix.However, the need to preserve structure of the Arnoldi decomposition, onwhich the algorithm is based, restricts the range of transformations thatcan be performed on it. In consequence, it is di�cult to de
ate convergedRitz vectors from the decomposition. Moreover, the potential forward in-stability of the implicit QR algorithm can cause unwanted Ritz vectors topersist in the computation. In this paper we introduce a generalized Arnoldidecomposition that solves both problems in a natural and e�cient manner.1. Introduction and backgroundIn this paper we are going to describe a new implementation of the Arnoldi method thatresolves some di�culties with the implicitly restarted Arnoldi method. To understandthe di�culties and their solution requires a detailed knowledge of the Arnoldi process.We therefore begin with a survey, which will also serve to set the notation for this paper.Let A be a matrix of order n and let u1 be a vector of 2-norm one. Let u1; u2; u3 : : :be the result of sequentially orthogonalizing the Krylov sequence u1; Au1; A2u1; : : : . In1950, Lanczos [5] showed that if A is Hermitian then the vectors ui satisfy a three termrecurrence of the form �kuk+1 = Akuk � �kuk � �k�1uk�1; (1.1)a recursion that in principle allows the economical computation of the uj .There is an elegant representation of this recursion in matrix terms. LetUk = (u1 u2 � � � uk)be the matrix formed from the Lanczos vectors uj . Then there is a tridiagonal matrixT formed from the �'s and �'s in (1.1) such thatAUk = UkTk + �kuk+1eTk ; (1.2)where ek is the vector whose last component is one and whose other components arezero. From the orthogonality of the uj , it follows that Tk is the Rayleigh quotientTk = UHk AUk:1



2 Arnoldi{Schur GWSWe will call (1.2) a Lanczos decomposition.Lanczos appreciated the fact that even for comparatively small k the matrix Tkcould contain accurate approximations to the eigenvalues of A. When this happens,the column space Uk of Uk will usually contain approximations to the correspondingeigenvectors. Such an approximation|call it z|can be calculated by computing asuitable eigenpair (�; w) of Tk and setting z = Ukw. This process is called the Rayleigh{Ritz method; � is called a Ritz value and z a Ritz vector.In 1951, Arnoldi [1], building on Lanczos's work, showed that if A is non-Hermitianthen the Lanczos decomposition becomesAUk = UkHk + �kuk+1eTk ; (1.3)where Hk is upper Hessenberg. We will call (1.3) an Arnoldi decomposition. Once again,Hk may contain accurate approximations to the eigenvalues of A, especially those onthe periphery of the spectrum of A. Moreover, approximations to the eigenvectors maybe obtained by the natural generalization of the Rayleigh{Ritz process.Since Hk is not tridiagonal, the Arnoldi vectors do not satisfy a three term re-currence. To compute uk+1 all the columns of Uk must be readily available. If n islarge, these vectors will soon consume the available storage, and it the process must berestarted. The problem then becomes how choose a new u1 that does not discard theinformation about the eigenvectors contained in Uk . There have been several proposals,whose drawbacks have been nicely surveyed by Morgan [9].In 1992, Sorensen [10] suggested an elegant way to use the QR algorithm to restartthe Arnoldi process. Speci�cally, suppose we have an Arnoldi decompositionAUm = UmHm + �mum+1eTm (1.4)of order m that cannot be further expanded because of lack of storage. For some�xed k, choose m � k shifts �1; : : : ; �m�k and use them to perform m� k steps of theimplicitly shifted QR algorithm on the Rayleigh quotient Hm. The e�ect is to generatean orthogonal matrix Q such that QHHmQ is upper Hessenberg. Then from (1.4)A(UmQ) = (UmQ)QHHmQ+ �mum+1eTmQ:or A ~Um = ~Um ~Hm + um+1cH:Sorensen then observed is that the structure of Q is such that the �rst k�1 componentsof c are zero. Consequently, if we let ~Hk be the leading principal submatrix of ~Hm oforder k and set �k~uk+1 = �
kum+1 + ~hk+1;kuk+1; (1.5)April 24, 2000 Draft



GWS Arnoldi{Schur 3then A ~Uk = ~Uk ~Hk + ~uk+1eTkis an Arnoldi decomposition of order k. This process of truncating the decompositionis called implicit restarting.A second key observation of Sorensen suggests a rationale for choosing the shifts.Speci�cally, if p(t) = (t� �1I) � � �(t� �m�kI), then~u1 = p(A)u1kp(A)u1k :It follows that if we choose the shifts to lie in the part of the spectrum that we are notinterested in then the implicit restart process deemphasizes these very eigenvalues.Each iteration of Sorensen's algorithm consists of two stages: an expansion stage,in which the decomposition is expanded until it is inconvenient to go further, and acontraction or purging stage, in which unwanted parts of the spectrum are suppressed.The contraction phase has two variants. In the exact variant, the shifts are taken to beunwanted eigenvalues of Hm. If, for example we were concerned with stability, we mightchoose to retain only the eigenvalues with largest real parts. In the general variant, theshifts are not necessarily eigenvalues of Hm. For example, they might be the zeros of aChebyshev polynomial spanning an ellipse containing unwanted eigenvalues.The implicitly restarted Arnoldi algorithm has been remarkably successful and hasbeen implemented in the widely used ARPACK package [7]. However, the method hastwo important drawbacks.First, for the exact restart procedure to be e�ective the unwanted Ritz values �must be moved to the end of Hm, so that the Rayleigh quotient has the form illustratedbelow for k = 3 and m = 6: 0BBBBBB@h h h h h hh h h h h h0 h h h h h0 0 0 � h h0 0 0 0 � h0 0 0 0 0 �1CCCCCCA : (1.6)If Hm is unreduced| that is, if the elements of its �rst subdiagonal are nonzero|then mathematically Hm must have the form (1.6). In the presence of rounding error,however, the process can fail (for a treatment of this phenomenon see [12]). This haslead Lehoucq and Sorensen to propose an elaborate method for permanently riddingthe decomposition of persistent unwanted Ritz values [6].Draft April 24, 2000



4 Arnoldi{Schur GWSThe second problem is to move converged Ritz values � to the beginning of Hk, sothat it assumes the form illustrated below:0BBBBBB@� h h h h h0 � h h h h0 0 h h h h0 0 h h h h0 0 0 h h h0 0 0 0 h h1CCCCCCA :When the converged Ritz values are thus de
ated (or locked), one does not have toupdate the corresponding eigenvectors u1 and u2 in the Arnoldi decomposition. Onceagain, Lehoucq and Sorensen have proposed a complicated de
ation algorithm.1Most of the complications in the purging and de
ating algorithms come from theneed to preserve the structure of the Arnoldi decomposition (1.3)| in particular, theHessenberg form of the Rayleigh quotient and the zero structure of the vector ek . Thepurpose of this paper is to show that if we relax the de�nition of an Arnoldi decompo-sition, we can solve the purging and de
ating problems in a natural and e�cient way.Since the method is centered about the Schur decomposition of the Rayleigh quotientwe will call the method the Arnoldi{Schur method.We will be concerned with the exact-shift version of the algorithm. In the nextsection we introduce generalized Arnoldi decompositions and, in particular, the Arnoldi{Schur decomposition. Section 3 we will treat the expansion step, which is essentially thesame for implicitly restarted Arnoldi and Arnoldi{Schur. In Section 4 we will treat thecontraction step and in Section 5 treat the numerical stability of the combined steps.In Section 6 show how to de
ate the Arnoldi{Schur decomposition. In Section 7 we willcompare the work done by iteratively restarted Arnoldi and Arnoldi{Schur. We endwith some general comments. Throughout this paper k � k will denote the vector andmatrix 2-norm ([11, Section 1.4.1]).2. Generalized Arnoldi decompositionsThe structure of an Arnoldi decomposition restricts the operations we can perform onits Rayleigh quotient. The following de�nition introduces a less constraining decompo-sition.De�nition 2.1. A generalized Arnoldi decomposition of order k is a relation of theform AUk = UkBk + uk+1bHk+1; (2.1)1Lehoucq [personal communication] has written code that is related to the de
ation method proposedhere.April 24, 2000 Draft



GWS Arnoldi{Schur 5where Bk is of order k and (Uk uk+1) is orthonormal. If Bk is upper triangular we saythe decomposition is an Arnoldi{Schur decomposition.In the generalized Arnoldi decomposition the Rayleigh quotient Bk = UHk AUk is nolonger required to be Hessenberg, and the vector �keTk is replaced by a full vector bHk+1.This generality allows us to operate freely on Bk. Speci�cally, let Q be unitary. Thenwe say that the generalized Schur decompositionsAUk = UkBk + uk+1bHk+1 and A(UkQ) = (UkQ)(QHBkQ) + uk+1(bHk+1Q)are (unitarily) similar.2 Since generalized Arnoldi decompositions are closed undersimilarity transformations, we can reduce the Rayleigh quotient to any desirable formby unitary similarities. In particular, any generalized Arnoldi decomposition can bereduced to an Arnoldi{Schur decomposition by computing a Schur form of its Rayleighquotient.Before proceeding, we must dispose of the possibility that generalized Arnoldi decom-positions are Arnoldi in name only. The following theorem shows that any generalizedArnoldi decomposition can be associated with an Arnoldi decomposition and hence aKrylov sequence. For convenience we drop the subscripts in k.Theorem 2.2. Let AU = UB + ubT (2.2)be a generalized Arnoldi decomposition of order k. Then (2.2) is similar to an Arnoldidecomposition. If the Hessenberg part of the Arnoldi decomposition is unreduced, thetransformation is essentially unique.Proof. The proof of the theorem is based on a variant of a standard theorem on thepartial uniqueness of the reduction to Hessenberg form (e.g., see [3, Theorem 7.4.2]).Speci�cally, there is a unitary matrix Q whose last column is b=kbk2 such that H =QHBQ is upper Hessenberg. If H is unreduced the transformation is unique up to thescaling of the columns of Q by factors of modulus one. Since bHQ = kbk2eTk , (2.2) issimilar to the Arnoldi decompositionA(UQ) = (UQ)H + kbkueTk :It should be stressed that the theorem is constructive, in the sense that the simi-larity transformation can be e�ected in a stable and e�cient manner by Householdertransformations.32We restrict ourselves to unitary similarities because they preserve the orthonormality of U . However,it is possible to de�ne nonorthogonal generalized Arnoldi decompositions and manipulate them withnonorthogonal similarities.3In brief, the reduction is started by choosing a Householder transformation Q1 such that bHQ1 =kbkeTk . The matrix QH1 BQ1 is then reduced to Hessenberg form by using Householder transformationsDraft April 24, 2000



6 Arnoldi{Schur GWS3. ExpansionThe expansion phase of the Arnoldi{Schur method consists of the expansion proper,which destroys the Schur form, and a �nal reduction to Schur form. We will write theinitial decomposition as AUk = UkSk + uk+1bHk+1;where the letter S (for Schur) stresses the triangularity of the Rayleigh quotient. It willbe more convenient to work with the equivalent factored formAUk = Uk+1Ŝk ;where Ŝk = � SkbHk+1� :The expansion proceeds as in the usual Arnoldi algorithm: the vector Auk+1 isorthogonalized against Uk�1 and normalized to give uk+2, after which Sk+1 is formedfrom Sk . The following algorithm implements this sketch. We assume that Uk+1 andŜk are contained in arrays U and S.1. v = A�U [:; k+1]2. w = UH�v3. v = v � U�w4. � = kvk25. U = (U v=�)6. Ŝ = �Ŝ w0 �� (3.1)Note that in a working implementation we would have to reorthogonalize to insurethat the vector v is orthogonal to the column space of U to working accuracy (see [11,Algorithm 4.1.13]).After this process the array Ŝ has the form illustrated below for k = 3:0BBBB@s s s h0 s s h0 0 s hb b b h0 0 0 h 1CCCCA :to introduce zeros rowwise from the bottom up. These similarity transformations do not disturb thezeros in the vector kbkeTk .April 24, 2000 Draft



GWS Arnoldi{Schur 7Here the s's stand for the elements of the original Sk and the b's for the elements of bk+1.The process may be repeated. After m � k steps, the array S has the form illustratedbelow for k = 3 and m = 6: 0BBBBBBBBBB@s s s h h h0 s s h h h0 0 s h h hb b b h h h0 0 0 h h h0 0 0 0 h h0 0 0 0 h h0 0 0 0 0 h1CCCCCCCCCCA : (3.2)At this point the Rayleigh quotient, which resides in S(1:m; 1:m), is reduced toSchur form to give the Arnoldi{Schur decompositionAUm = UmSm + um+1bHm+1: (3.3)This reduction to Schur form begins with a reduction of the Rayleigh quotient to Hes-senberg form, and some minor savings can be obtained at this stage by taking advantagethe structure illustrated in (3.2). Although (3.3) suggests that we are computing com-puting the entire decomposition, including Um, in fact it will be more e�cient to deferthe computation of the vectors uj until later. We will return to this point in Section 7.4. ContractionWe now turn to the problem of purging the unwanted Ritz values from the Arnoldi{Schur decomposition (3.3). The key is the observation that an Arnoldi{Schur decom-position can be truncated at any point. Speci�cally, if we partition an Arnoldi{Schurdecomposition in the formA(U1 U2) = (U1 U2)�S11 S120 S22� + u(bH1 bH2 ); (4.1)then AU11 = U1S11 + ubH1is also an Arnoldi{Schur decomposition. Thus the purging problem can be solved bymoving the unwanted Ritz values into the southeast corner of the Rayleigh quotient andtruncating the decomposition.The process of using unitary similarities to move eigenvalues around in a Schur formhas been well studied (see [2] for references and the current front-running algorithm,Draft April 24, 2000



8 Arnoldi{Schur GWSwhich has been implemented by the lapack routine xTREXC). Consequently, our de
a-tion algorithm consists of little more than moving the unwanted Ritz values, which arevisible on the diagonals of Sm, to the southeast corner of the Rayleigh quotient andtruncating the decomposition.The following theorem shows just what a combined expansion and contraction stepproduces.Theorem 4.1. Let P be an unreduced Arnoldi{Schur decomposition and let P0 bethe results of applying the the expansion and contraction steps to Pwith exact shifts�1; : : : ; �m�k that are distinct from the other Ritz values of P0. Let Q be the Arnoldidecomposition corresponding to P and let Q0 be the result of applying Sorensen's ex-pansion and contraction algorithm to Q . If Q0 is unreduced, then P0 is a Schur form ofQ0.Proof. The proof is in the style of Morgan [9]. By Theorem 2.2, Q is uniquely deter-mined, and (in an obvious nomenclature) has same U-space and u-vector as P. Con-sequently, the expansion phase yields decompositions with the same U-spaces and u-vectors. Because exact shifts are used, the contraction phase for Q eliminates the Schurvectors corresponding to the unwanted eigenvalues and does not change the u-vector[hk+1;k in (1.5) is zero]. By the distinctness property of the �k the space spanned by thediscarded Schur vectors is uniquely determined, and hence so is the U-space. Similarly,contraction phase on Pgives the same U-space and u-vector. Since, Q0 is unreduced, itmust be similar to P0.The import of this theorem is that no matter hwo you perform the expansion andcontraction, mathematically you end up with a decomposition that has been �lteredthrough the polynomial (t � �1) : : :(t � �m�k). However, the procedure based on theArnoldi{Schur form is numerically more reliable than the one based on implicit restart-ing.5. Numerical stabilityWe now brie
y consider the numerical stability of the algorithm. From standard tech-niques of rounding error analysis it can be shown that as the Arnoldi{Schur algorithmproceeds the computed generalized Arnoldi decompositions satisfyAU = UB + ubH + R (5.1)where kRk=kAk is of order of the rounding unit and grows slowly. If U is computedwith reorthogonalization in the expansion phase, UHU = I +F , where kFk is the orderof the rounding unit and also grows slowly. The following theorem shows that we canthrow the error R back on the matrix A.April 24, 2000 Draft



GWS Arnoldi{Schur 9Theorem 5.1. Let (5.1) be satis�ed and assume that U is of full rank. Let E = RUy,where Uy = (UHU)�1UH is the pseudo-inverse of U . Then(A+E)U = UB + ubH; (5.2)and kRkkUk � kEk � kRkkUyk:The lower bound holds for any matrix E satisfying (5.2).Proof. The equation (5.2) is established by direct veri�cation. The upper boundfollows from taking norms in the de�nition of E. On the other hand, if E is any matrixsatisfying (5.2), then EU = R, and kRk � kEkkUk, which establishes the lower bound.Since U is nearly orthonormal, kUk and kUyk are near one. Hence the theoremshows that the computed generalized Arnoldi decomposition is an exact decompositionof a matrix near A. In this sense the Arnoldi{Schur algorithm (as well as the iterativelyrestarted Arnoldi algorithm) is backward stable.6. De
ationThe conventional way of determining whether the Ritz pair (�; z) has converged is tolook at the residual norm krk � kAz � �zk: (6.1)The justi�cation for this is the fact that if kzk = 1 then there is a matrix E = �rzHwith kEk = krk such that (A + E)z = �z|i.e., (�; z) is an exact eigenpair of A + E.If E is small enough compared to A and the Ritz pair (�; z) is well conditioned, then itis accurate.Generalized Arnoldi decompositions share with their ordinary counterparts the factthat residual norms like (6.1) are easy to compute. For let AU = UB + ubH be ageneralized Arnoldi decomposition and let Bw = �w so that (�; Uw) is a Ritz pair.Then r = AUw � �Uw = UBw � �Uw + ubHw = ubHw:Hence krk = jbHwj;Draft April 24, 2000



10 Arnoldi{Schur GWSso that when the quantity bHw is small, we can declare that the Ritz value has converged.If we are working with an Arnoldi{Schur decomposition, AU = US + ubH, we cande
ate a converged value from the problem as follows. Let Q be a unitary matrix thatmoves the Ritz value � to the (1; 1)-element of ~S = QHSQ, and letA ~U = ~U ~S + u~bH = UQ ~S + ubHQ (6.2)be the transformed Arnoldi{Schur decomposition. Since the eigenvector correspondingto � in ~S is e1, krk = jbHwj = j~bHe1j = j~b1j:Thus the modulus of the �rst component of ~b is krk. If krk is small enough| saykrk � �kAk, where � is a prescribed tolerance| then we may set the �rst component of~b to zero. The Arnoldi{Schur decomposition then assumes the partitioned formA(~u1 ~U2) = (~u1 ~U2)0@� ~sT120 ~S220 ~b2 1A :Thus the Ritz value � has been decoupled from the decomposition. This allows us tosave operations in the contraction phase.This de
ation technique amounts to replacing ~b by ~b + e. The e�ect is to addquantities of size kek to the residual R in (5.1). Theorem 5.1 says that e contributes alike error to the backward error in A. Thus, if our criterion for de
ation is su�cientlystringent, the de
ation process will not a�ect the backward error unduly.The problem becomes more di�cult when more than one eigenvalue is involved.Suppose that we have moved ` eigenvalues to the beginning of the Rayleigh quotient,and partition it in the form S = �S11 S120 S22� :The matrix of eigenvectors corresponding to the �rst ` eigenvalues has the form�X110 � ;where X11 is an upper triangular matrix of order `. If we partition bH = (bH1 b2)conformally, then the residual norms of the �rst ` Ritz vectors are the absolute valuesof the components of gH1 = bH1X11. Thus the components of b1 can be as large askX�H11 k1kg1k1. It follows that if the system of de
ated eigenvectors is ill conditioned,a small residual does not guarantee a small value of b1.April 24, 2000 Draft



GWS Arnoldi{Schur 11Fortunately, we can monitor the components of b as we attempt to de
ate Ritz pairs.Theorem 5.1 shows that we should not de
ate a pair with a large b component, no matterhow small its residual, since such a de
ation corresponds to a large perturbation in A.This does not mean that the o�ending Ritz pairs cannot be kept around or that theycannot be returned to the user. It only means that they cannot provide us the bene�tsof de
ation.4Although we have focused on the de
ation of Ritz pairs, the process can be appliedto any pair (�; Uz) which has a small residual, in particular to the re�ned Ritz pairsof Jia [4] and the harmonic Ritz pairs of Morgan [8]. Speci�cally, let the pair (�; Uw)(kwk = 1) have the residual, r = AUw � �Uw:Since the residual is minimized when� = (Uw)HA(Uw) = wHBw (6.3)(see [13, p. 172]), we will assume that � satis�es (6.3). Let Q be a unitary matrix suchthat QHw = e1 and transform the decomposition as in (6.2) to get the decompositionA ~U = ~U ~B + u~bH;in which the �rst column of ~U is Uw and the (1; 1)-element of ~B is �. Partition thecolumn in the formA(~u1 ~U2) = (~u1 ~U2)� � ~bH12~b21 ~B22�+ u(~�k+1;1 ~bHk+1;2):From the �rst column of this partition it follows thatr = U2~b21 + ~�k+1;1~u:and hence 



� ~b21~�k+1;1�



 = krk:Hence if r is su�ciently small the decomposition de
ates at its �rst column.The caveats about the de
ation of more than one vector apply here. An minorinconvenience with the method is that the matrix ~B22 is no longer triangular. However,if we use plane rotations to reduce the vector w to e1 from the bottom up, ~B22 will beHessenberg.4One might be tempted to mark the de
ated Ritz pairs as \good" in order to contrast them with\bad" pairs that would not de
ate. But that is to miss the point. Any pair with a small residual is agood pair. It is only sets of pairs that cannot accurately determine their eigenspaces that are bad.Draft April 24, 2000



12 Arnoldi{Schur GWS7. AssessmentIn comparing the Arnoldi{Schur algorithm with implicitly restarted Arnoldi, we mustdistinguish the sources of work in the algorithms. The �rst is the multiplication of avector by A. Since A will usually be sparse, the cost of this product is unpredictablein general, but it is reasonable to assume that it forms a signi�cant part|perhaps thedominant part|of the computation.The second source of work is the expansion of the Arnoldi decomposition from oneof order k to one of order m. It is easily seen from (3.1) the the work is 2n(m2 � k2)
oating-point adds and multiplies, assuming reorthogonalization is performed. Thiscount is the same for both algorithms.In the contraction step, both algorithms must transform the Rayleigh quotient andaccumulate the transformations in U . For e�ciency, we do not accumulate the trans-formations in U as they are generated but instead accumulate them in an m�m matrixQ and then compute the new Uk in the formUm�Q[:; 1:k]: (7.1)If n � m, the last step will dominate the transformations applied to the Rayleighquotient and their accumulation in Q.For the Arnoldi{Schur method we must compute the Schur decomposition of theRayleigh quotient and transform the triangular factor. This means that Q will be full,and the �nal accumulation step (7.1) will require nkm 
oating-point additions andmultiplications.For the implicitly restarted Arnoldi we must also compute the Schur decompositionof the Rayleigh quotient Hm. But it is only used to determine the shifts, which areapplied directly to Hm. The structure of the transformations is such that Q[:; 1:k] iszero below its m � k subdiagonal. This means that the operation count for (7.1) isnmk � 12k2 additions and multiplication.To put things together, if m = 2k and reorthogonalization is performed during theexpansion, the Arnoldi{Schur algorithm has an operation count of 7nk2 whereas implic-itly restarted Arnoldi has a operation count of 612nk2. Thus implicitly restarted Arnoldiis marginally superior to Arnoldi Schur when it comes to accumulation of transforma-tions. Against this must be set the fact that Arnoldi{Schur de
ates in an inexpensiveand natural manner and does not require a special routine for purging.8. Concluding remarksThe Arnoldi{Schur method admits variations. An important one is based on the ob-servation that we can truncate an Arnoldi{Schur decomposition at any point where theRayleigh quotient is block triangular [see (4.1)]. This means that when A is real we canApril 24, 2000 Draft



GWS Arnoldi{Schur 13work with real Schur forms of the Rayleigh quotient and avoid the necessity of complexarithmetic. The algorithm for exchanging eigenvalues mentioned above will also movethe 2�2 blocks of the real Schur form so that the contraction phase proceeds as usual.In de
ation, the block in question is moved to the position just after the previously de-
ated eigenvalues and blocks, and two components of b are tested. An unusual featureof complex eigenvectors is that they may fail to de
ate, not because they are dependenton other de
ated vectors, but because the real and imaginary parts of their eigenvectorsare not su�ciently independent.When A is Hermitian, the Arnoldi{Schur method becomes a restarted Lanczos algo-rithm. The Rayleigh quotient is diagonal, so that reordering of the eigenvalues reducesto simple permutations. Moreover, because the eigenvectors of the Rayleigh quotientare orthogonal, a Ritz pair with a small residual norm � will de
ate with backward errorof order �.Since the Arnoldi{Schur method works explicitly with the eigenvalues of the Rayleighquotient, it is an exact-shift method. Nonetheless, it stands ready to help the generalshift method to de
ate Ritz pairs and to get rid of unwanted pairs. One simply com-putes an Arnoldi{Schur form of the current decomposition and performs the proceduresdescribed above. Theorem 2.2 assures us that we can then return to a pure Arnoldidecomposition.In fact Theorem 2.2 is really the heart of the matter. It allows us to operate freelyon the Rayleigh quotient with the knowledge that we are always attached to a Krylovsequence. It is hoped that this freedom will �nd other applications.AcknowledgementI would like to thank Rich Lehoucq and Dan Sorensen for their comments on preliminaryversions for this paper.References[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrixeigenvalue problem. Quarterly of Applied Mathematics, 9:17{29, 1951.[2] Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form. LinearAlgebra and Its Applications, 186:73{95, 1993.[3] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins UniversityPress, Baltimore, MD, second edition, 1989.[4] Z. Jia. Re�ned iterative algorithm based on Arnoldi's process for large unsymmetriceigenproblems. Linear Algebra and Its Applications, 259:1{23, 1997.Draft April 24, 2000
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