Fault Tolerant K-Center Problems

Samir Khuller * Robert Pless 1
Dept. of Computer Science and UMTACS Dept. of Computer Science
University of Maryland University of Maryland
College Park, MD 20742 College Park, MD 20742

Yoram J. Sussmann *
Dept. of Computer Science
University of Maryland
College Park, MD 20742

Abstract

The basic K-center problem is a fundamental facility location problem, where we are
asked to locate K facilities in a graph, and to assign vertices to facilities, so as to minimize
the maximum distance from a vertex to the facility to which it is assigned. This problem is
known to be NP-hard, and several optimal approximation algorithms that achieve a factor
of 2 have been developed for 1t.

We focus our attention on a generalization of this problem, where each vertex is required
to have a set of o (oo < K) centers close to it. In particular, we study two different versions
of this problem. In the first version, each vertex is required to have at least « centers close to
it. In the second version, each vertex that does not have a center placed on it 1s required to
have at least « centers close to it. For both these versions we are able to provide polynomial
time approximation algorithms that achieve constant approximation factors for any «. For
the first version we give an algorithm that achieves an approximation factor of 3 for any «,
and achieves an approximation factor of 2 for @ < 4. For the second version, we provide
algorithms with approximation factors of 2 for any «. The best possible approximation
factor for even the basic K-center problem is 2. In addition, we give a polynomial time
approximation algorithm for a generalization of the K-supplier problem where a subset of
at most K supplier nodes must be selected as centers so that every demand node has at
least « centers close to it. We also provide polynomial time approximation algorithms for
all the above problems for generalizations when cost and weight functions are defined on
the set of vertices.

*Research supported by NSF Research Initiation Award CCR-9307462, and NSF CAREER Award CCR-
9501355. Email addr: samir@cs.umd.edu

TResearch supported by NSF Grant TRI-90-57934 Email addr: pless@cs.und.edu

{Research supported by NSF CAREER Award CCR-9501355. Email addr: yoram@cs.und.edu

1. Introduction

The basic K-center problem is a fundamental facility location problem and is defined as follows:
given an edge-weighted graph GG = (V, F) find a subset S C V' of size at most K such that each
vertex in V is “close” to some vertex in §. More formally, it is defined as follows:

min max min d(u, v)

SCV ueV ves
where d is the distance function. For example, one may wish to install K fire stations and
minimize the maximum distance (response time) from a location to its closest fire station. The
problem is known to be NP-hard [4].

An approximation algorithm with a factor of p, for a minimization problem, is a polyno-
mial time algorithm that guarantees a solution with cost at most p times the optimal solution.
Approximation algorithms for the basic K-center problem have been very well studied and are
known to be optimal [3, 5, 6, 7]. These schemes present natural methods for obtaining an
approximation factor of 2. Several approximation algorithms are known for interesting general-
izations of the basic K -center problem as well [1, 6, 9], including costs [6, 9] and weights [1, 9].

The a-neighbor K-center problem is discussed in a recent paper by Krumke [8]. The problem
is formally defined as follows: given an edge-weighted graph G = (V, F) find a subset § C V of
size at most K such that each vertex in V' — & is “close” to a set of a vertices in §. Formally,

min max_§)(u,S)
SCV ueV =8
where
§(u,8)= min maxd(u,a
(,5) ACS,|A|l=a a€A (u,a)
where d is the distance function. Krumke [8] gives an algorithm with an approximation factor
of 4, by generalizing the notion of an independent set of vertices.

The main motivation to study this problem is to provide some notion of fault-tolerance.
Namely, if we are concerned with the placement of emergency facilities, then providing “backup”
centers, when one center fails to respond is useful [10].

We consider a variation of this problem as well, called the a-all-neighbor K-center problem
that is formally defined as follows: given an edge-weighted graph G = (V, F) find a subset
S C V of size at most K such that each vertex in V is “close” to a set of a vertices in S.
Formally,

min max 6 (u, §).
SCV ueV

We also consider a variant of this problem called the a-neighbor K-suppliers problem that
is formally defined as follows: given an edge-weighted bipartite graph ¢ = (U, V, E), find a
subset & C U of size at most K such that each vertex in V is “close” to a set of a vertices in
S. Formally,

min max () (u, S).
SCU ueV

For all the problems considered in the paper, we also address the generalizations when
vertices have costs and weights. The cost generalization is formally defined as follows: given a
graph G and a cost function ¢(v) defined on V, find a subset S of vertices of total cost at most
K such that each vertex that needs to be covered by a center is “close” to a set of « vertices in
S. Formally, we have to pick a set § satisfying

Z c(s) < K.

SES

The weight generalization is formally defined as follows: given a graph G and a weight
function w(v) defined on V, find a subset S of vertices of size at most K such that each vertex
that needs to be covered by a center is “close” to a set of a vertices in §, where the distance
from vertex u to vertex v depends on the weight of ». Formally, we change the definition of the
distance measure to

8 (u, 8) = Acgn|{411|:a max d(u,a) - w(u)

where d is the distance function.

Finally, we study the most general case, when the vertices have weights and costs. The
results are summarized in the table given below.

1.1. Our Results

We improve Krumke’s result, and show that we can obtain an approximation factor of 2 for
the problem considered in his paper. This matches the bound for the basic K-center problem,
which is the best possible [7]. The algorithm is a very natural extension of the method given
by Hochbaum and Shmoys [6] for the basic K-center problem.

We also show that for the a-all-neighbor K-center problem, we can obtain an approximation
factor of 3 for any «, and a similar algorithm gives an approximation factor of 2 for a < 4
(perhaps the practically interesting case).

In addition, we provide constant approximation bounds for generalizations of the problem
involving costs and weights, as well as for the a-neighbor K-suppliers problem. For the K-
supplier problem, Hochbaum and Shmoys [6] give a proof (originally due to Howard Karloff)
showing that the factor of 3 is the best possible unless P = NP. Thus 3 is a lower bound
for all the K-supplier generalizations that we consider. Since the basic K-center problem with
weights and costs is a generalization of the K-supplier problem, a factor of 3 is also the best
possible. The results are summarized in the table below. A { indicates that the bound is the
best possible unless P = N P, while a i indicates that this matches the best known bound for
the basic K-center problem. Let 3 denote the ratio of the maximum and minimum weights.

Fault-Tolerant K-Center Approximation Factors

Basic | Weights | Costs | Weights + Costs
a-All-Neighbor K-Center | 3 (27) 3 3+ 3T
a-Neighbor K-Center ot 3 4 460+ 1
a-Neighbor K-Suppliers 3t 3t 3t 3

*ifa=2o0r3

2. a-All-Neighbor K'-Center Problems

We may assume for simplicity that G is a complete graph, where the edge weights satisfy
the triangle inequality. (We can always replace any edge by the shortest path between the
corresponding pair of vertices.)

The algorithm uses the threshold method introduced by Edmonds and Fulkerson in [2] and
used for the K-center problem by Hochbaum and Shmoys in [6]. Sort all edge weights in non-
decreasing order. Let the (sorted) list of edges be eq, ez, .. .€, (Where m = (3)). For each i, let
the threshold graph G; be the subgraph obtained from G by including edges of weight at most
w(e;). Run the algorithm below for each ¢ from 1 to m, until a solution is obtained. (One can
also use binary search to speed up the computation as suggested by Hochbaum and Shmoys [6].)
In each iteration, we work with the subgraph ¢; and view it as an unweighted graph. Since
(; is an unweighted graph, when we refer to the distance between two nodes, we refer to the
number of edges on a shortest path between them. In iteration 7, we find a solution using some
number of centers. If the number of centers exceeds K, we prove that there is no solution with

cost at most w(e;). If the number of centers is at most K, we return an approximate solution.

Let G2 denote the graph obtained by adding edges to (¢; between nodes that have a common
neighbor.

2.1. Any «

We give an algorithm that obtains an approximation factor of 3 for any value of a.

The following technique was introduced by Hochbaum and Shmoys [5, 6] and has been used
extensively to solve K-center problems. Find a maximal independent set in G?. Note that if
the independent set has size I, then any solution with radius w(e;) must use at least al centers,
because nodes in the independent set cannot be assigned a common center. We therefore place
a centers at each node in the independent set. At this point, every node in the graph is at
distance at most 2 (in G;) from a centers.

We now have to distribute the centers so that no two centers are placed on a common node.
Note that if there is a solution with radius w(e;), then every node has degree at least a — 1 in
G;. We can therefore move a — 1 centers from each node in the independent set to a subset of
its neighbors in ;. Since every node in the graph is at distance at most 2 from a node in the
independent set, we must have that every node in the graph is at distance at most 3 from «
centers, which implies that this approach gives an approximation factor of 3.

2.1.1. Any a with weights and costs

The a-all-neighbor K-center problem with weights and costs is a generalization of the a-all-
neighbor K-center problem where weight and cost functions are defined on the vertices and
the objective is to pick a set of centers whose total cost is at most K, such that the radius is
minimized, where the distance from u to v is now defined by d(u,v)- w(v), the weight of edge
e(u, v) multiplied by the weight of node v.

For weighted versions of the problems, consider the list of weighted distances w,, = d(u,v)-
w(v). List them in non-decreasing order as wy < wy < -+ < wyy,. For each 7, define the directed
graph G; as follows. Edge e(u,) is included in G if d(u,v) - w(v), the weighted distance from
u to v, is at most w;,.

A small modification of the above algorithm yields a 3-approximation algorithm for the
problem with weights and costs. When choosing the initial set, we always select the highest
weight available node v. We then mark all nodes whose weighted distance from v is at most
2w;. The directed graph ensures that, if a node u has a directed edge to node v in G;, and v
has a higher weight than u, then » also has a directed edge to u in G, and therefore can cover
in two steps any node that w can cover in one step. Once we have placed a centers at each node
v in the independent set, we simply move all a centers to the a cheapest neighbors of the node
(including itself), where a neighbor of v is a node with a directed edge to v in ;. A simple
extension of the proof given in [9] shows that the vertices so obtained cover all vertices in the
graph with radius at most 3w;. Since the node must have at least a neighbors in any solution,
the cost of the solution obtained is a lower bound on the cost of any solution with radius w;.

2.2, a=2,3

If ais 2 or 3, we can obtain an approximation factor of 2. The algorithm gives an approximation
ratio of 3 for any a. We can prove that for a < 4 the obtained ratio is actually 2.

The algorithm consists of a iterations. Consider the graph G?. Every node is assigned a
“covering number” C'(v) (initially 0). The multiset of centers is S = (). In each iteration we
pick an independent set of nodes. At the end of each iteration j = 1,2,...,a, we guarantee
that each node is covered by at least j centers within two steps.

In each iteration, when there is a choice for a vertex to be chosen as a center, we prefer
picking vertices that do not have a center already assigned to them. We assign a center at the
chosen vertex, and increase the covering number for all vertices within distance two in Gj.

@-ALL-NEIGHBOR K-CENTER ALGORITHM(G?).

1 for all »
2 C(v)=0.
3 extra(v) = 0.
4 helps(v) = 0.
5 for j=1toado
// Phase 1
6 while 3v ¢ S with C'(v) < j do
7 create new center at v and set S = S U {v}.
8 C(v)=C(v)+1.
9 C(u) = C(u)+ 1if (u,v) € E(G?).
// Phase 11
10 while Jv with C'(v) < j do
11 create new center at v and set S = S U {v}.
12 C(v)=C(v)+1.

13 extra(v) = extra(v) + 1.

14 if Ju with C(u) < j and (u,v) € E(G?)
15 C(u)=C(u)+ 1.
16 Set helps(v) = u.

17 for all v € § with extra(v) > 1 do
18 if helps(v) =0

19 Shift extra(v) centers to neighbors of v in G? that are not in S.

20 else

21 Shift one center to a common neighbor of v and helps(v) in G? not in S.
22 Shift extra(v) — 1 centers to neighbors of v in G? that are not in S.

23 end-proc

Lemma 2.1: The above algorithm uses no more centers than the optimal solution.

Proof. In each iteration we select an independent set in GZ. Let I* be the size of the largest
independent set picked in any iteration. Any solution with radius w(e;) must use at least al*
centers, and we must have that |S| < al*.

O

Notice that this algorithm produces a multiset of centers. We now show how to make the
centers distinct.

Theorem 2.2: The above algorithm returns a solution to the a-all-neighbor K -center problem
with an approximation ratio of two if @ = 2 or 3.

Proof. Call a node v satisfied in iteration j if C'(v) > j. Although in each iteration we prefer
to pick nodes not previously chosen as centers, after the first phase all nodes remaining with
C(v) < j are in 8. Define H; to be subgraph of ¢ induced by these (unsatisfied) nodes in
round j. Now consider the structure of H;. The graph H; is a collection of singleton nodes,

disconnected in G2 (because they were all picked in the independent set in the first iteration).
Therefore all nodes in Hy will be added to S.

First suppose a = 2. Since the nodes in Hy form an independent set, helps(v) = () for all
nodes in 3. Therefore we can shift all but one center to unassigned neighbors of v in G;. Such
neighbors must exist because v must have at least one neighbor in ; and at most two centers
total are placed in the neighborhood of v in G?.

Now let & = 3. Consider a node v that was assigned as a center multiple times. If helps(v) =
(), then we can shift all but one center to unassigned neighbors of v in GG;, by the above argument.

If helps(v) # 0 then we must have |helps(v)| = 1, because Hj is a graph with maximum
vertex degree of 1 (since any node in Hsz with degree 2 must be satisfied). Assume helps(v) =
{u}. Note that only 2 centers are assigned to v. This follows from the fact that the center on
u covers v. We must shift the extra center so that it covers both « and » within distance 2. If
u and v are adjacent in G;, then we can shift the extra center on v to any neighbor of » in G;.
Otherwise, there must exist a node w adjacent to both w and » in G;. Node w does not have

Figure 1: The circled nodes are cliques of 4 nodes, and edges to circled nodes represent edges
to each of the four nodes in the clique.

any centers assigned to it because it already has 3 centers adjacent to it. Therefore we can shift
the extra center to w.

Any node which does not have a center placed on it has at least « centers adjacent to it in
G?. As shown above, a node which has a center placed on it also has at least a centers adjacent
to it in 2. Therefore all nodes have at least a centers within radius w(e;).

0

The following example (Fig. 1) shows that this algorithm fails when o = 4. Our algorithm
may do the following. In the first three rounds, it chooses a center from the central clique and
one of the corners — this forms a maximal independent set in G?. In the fourth round, it
places a center on the final remaining vertex in the central clique, and the only nodes that then
remain unhappy are the corner vertices, all of whom have been picked in earlier rounds. It now
picks one of the corners on which to place a second center. This center would have to be shifted
off to a node which covers all three corners, and there is no vertex that is distance 2 from all
corners. It is important to note that the algorithm fails not because it places too many centers.
In fact, in this example the optimal solution uses 16 centers (one on every node in each of the
four cliques) while our algorithm places 8 and leaves one vertex unsatisfied. While in this case
we can see where to add the extra center, it is not clear how to automate this process.

3. a-Neighbor K-Center Problems

We assume that G is a complete graph with edges satisfying the triangle inequality. Iterate for
each 7 from 1 to m until a solution is obtained.

In this section, we describe an algorithm which gives an approximation factor of 2 for the
a-neighbor K-center problem.

Consider the graph G?. Every node is assigned a “covering number” C(v) (initially 0). The
set of centers is & = (). At the end of each iteration j = 1,2,..., a, we guarantee that each node
not chosen as a center is covered by at least j centers within distance two. In each iteration,
we pick a center that is not covered by j centers. We assign a center at the chosen vertex, and
increase the covering number for all vertices within distance two in Gj.

@-NEIGHBOR K-CENTER ALGORITHM(G?).

1 for all »

2 C(v)=0.

3 for j=1toado

4 while Jv with C'(v) < j do

5 create center at v and and set S = S U {v}.
6 C(v) = a.

7 C(u) = C(u) + 1if (u,v) € E(G?).

8 end-proc

We find at most a independent sets in « iterations.

Theorem 3.1: The above algorithm finds a solution to the a-neighbor K -center problem with
an approximation ratio of two.

Proof. When the algorithm terminates, each vertex has a covering number equal to a. This
guarantees that each vertex was either chosen as a center, or is covered by at least o centers
within distance two. We now prove that if there is a feasible solution with K centers in some
G;, then our algorithm will not assign more than K centers in Gj.

Assume that this does not hold. In other words, there is a graph for which there is a solution
that uses at most K centers, and our algorithm assigns more than K centers. Consider the
smallest value of K for which the algorithm fails, and consider the smallest graph G that is
a counter-example for that value of K. Assume that the centers assigned in iteration j have
label j. Let Sopr be the set of K vertices in graph G that have centers placed on them by the
optimal solution. Note that each vertex in V — Sppr has at least a neighbors in Sopr.

If our algorithm places centers only on vertices in Sopr then we certainly do not place more
than K centers. Assume that j is the highest labeled center placed at v € V — Sopr by the
algorithm. Let Nopr(v) be the neighbors of v in Sopr. Clearly |[Nopr(v)| > a. Let Vopr(v)
be all the vertices that are adjacent to some vertex in Nopr(v).

We claim that there are at most o centers placed by the algorithm in vUNopr(v)UVopr(v)
from G. If » had a center placed on it in iteration j, then at the instant it was placed it had
at most j — 1 centers within distance 2 in G;. Hence, there were at most j — 1 centers with
label < j in this region. Since all centers with label > j are placed only at nodes in Sopr this
implies that we cannot place two nodes with the same label in Nopr(v) (since the nodes placed

in a single iteration form an independent set in G?). Thus there can be at most a — j nodes of
label > j in v U Nopr(v) U Vopr(v) from G. Adding gives at most a nodes in this region.

We now claim that if we delete v U Nopr(v) U Vopr(v) from G, this gives us a smaller
counter-example (unless the deleted nodes are exactly &/, which is not a valid counter-example
as we use only a nodes).

3.1. Any o with weights

Using a different algorithm, we can obtain an approximation factor of three for the a-neighbor
K-center problem with weights. The algorithm repeatedly selects a node which is not at least
a-covered as a center and increments the covering number of all nodes within distance 3 of the
center.

Consider the list of weighted distances wy, = d(u,v)- w(v). List them in non-decreasing
order as wy < wg < -+ < wy,y,. For each ¢, define the directed graph G as follows. Edge e(u, v)
is included in G if d(u,v) - w(v), the weighted distance from u to v, is at most w;.

Q-NEIGHBOR WEIGHTED-K-CENTER ALGORITHM((G;).

1 for all »
2 C(v)=0.
3 S=0.

4 while U ={u|C(u)<a} #0

5 let » = max weight vertex in U.

6 create center at v and and set S = S U {v}.
7 C(v) = a.

8 Clu)=C(u)+ 1if d(v,u) - w(u) < 3w;.

9 end-proc

Theorem 3.2: The above algorithm finds a solution to the a-neighbor K -center problem with
weights with an approximation ratio of 3.

Proof. Clearly this algorithm satisfies every vertex within a factor three of the optimal radius
(because the algorithm loops until no vertex is left uncovered); we have to argue that it does
not use too many centers. Assume on the contrary that there is a graph for which there is a
solution that uses at most K centers, and our algorithm assigns more than K centers. Consider
the smallest value of K for which the algorithm fails, and consider the smallest graph G that
is a counter-example for that value of K. Note that each vertex in V — Sopr has at least «
neighbors in Sopr.

Define the j-neighborhood of a vertex N7(z) = {v € V | d(v,2) - w(z) < j - w;}; intuitively,
the set of all nodes which could cover & within radius j-w;. Define the neighborhood of a vertex
N(z) = NY(z). Let Nopr(z) = N(z)N Sopr, the nodes in the optimal solution that cover
z, and let Vopr(z) = {v € V | 3w € Nopr(z) such that d(w,v) - w(v) < w;}, or equivalently,

Vopr(z) = {v € V| Nopr(v)N Nopr(z) # 0}, the nodes covered in the optimal solution by
the nodes in Nop7(v). Since more than K centers were chosen by our algorithm, at least one
center must have been chosen from V — Sopr. Let v be the last such center.

Let u be the last center chosen from Nopr(v), after v was chosen. (If no such center
exists, then set w = v.) We claim that in the set v U Nopr(v) U Vopr(v) there are at most
a centers placed by the algorithm. To see this observe that when u was placed, every center
placed in the set is in N3(u) and thus at most a — 1 centers were placed when we placed u,
the last center in the set. Let x be a center placed in V — Sopr, and let y be a vertex in
Nopr(v)N Nopr(z). (If @ € Sopr the proof is even easier.) To show that z € N3(u), observe
that w(u)-d(u,z) < w(uw)(d(u,v)+d(v,y)+d(y,z)) < w(v)-dlu,v)+w(v)-dv,y)+w(z)-dy,z).
This is at most w; + w; + w; < 3w;. Therefore we can delete v U Nopr(v) U Vopr(v) from ¢
and obtain a smaller counter-example.

3.2. Any o with costs

We describe an algorithm that gives an approximation factor of 4 for the a-neighbor K-center
problem with costs. We first run the a-neighbor K-center Algorithm, to obtain an initial set
of centers §. We then shift these centers to low cost neighbors as follows.

We create a bipartite graph H = (S, V, E’), where an edge (s,v) € E'if v = s or if the edge
(s,v) is in G; and the degree of s in () is at least a. We define cost of an edge e = (s,) to
be ¢(e), the cost of v. We then find a min-cost perfect matching M in H. Let &’ be the set of
nodes in V which are matched to a node in S. Return the set S’

Theorem 3.3: The above algorithm finds a solution to the a-neighbor K -center problem with
costs with an approximation ratio of 4.

Proof. We first show that the cost of S’ is at most the cost of any solution with radius w(e;).
Clearly a perfect matching between § and V exists, since each node in & can be matched to
itself. We prove there exists a matching from & to the nodes in the optimal solution, which
implies that the min-cost matching has cost at most that of the optimal solution. Let Sopr be
the set of K vertices in graph G that have centers placed on them by the optimal solution.

Consider the nodes in & which are also in Sopr. These nodes get matched to themselves.
Notice that all nodes with degree < a must be in Sopr and these nodes are all matched to
themselves in the above algorithm. Now consider a node s € § not in Spopr. Remove s from H
and recursively find a matching in the remaining subgraph. In the neighborhood of s there are
at least a centers of Sppr and at most @ — 1 nodes in §. Therefore at least one of the nodes
in Sopr that are in the neighborhood of s is not matched. Match s to this node.

We now prove the approximation bound. Consider a node v. If v ¢ S, then it has «
neighbors in § in G?. These neighbors are shifted by distance at most w(e;), implying that v
has o neighbors in &’ within distance 3w(e;). If v € S, and v is matched to itself, then v is
covered by itself. Otherwise, there must be a node u in the neighborhood of » in G; which is

10

not in §. This node has a centers within distance 3w(e;), which implies that v has a centers
within distance 4w(e;).

3.3. Any o with weights and costs

A modification of the above algorithm for weights gives an approximation algorithm for the
a-neighbor K-center problem with weights and costs. We first run the a-neighbor weighted- K -
center Algorithm, to obtain an initial set of centers &. We then shift these centers to low cost
neighbors as in the a-neighbor K-center problem with costs.

Let 3 denote the ratio of the weight of the maximum weight node in & to the weight of
the minimum weight node in G. A vertex that has a center placed on it may not have a center
placed on it after the shifting of centers. Two points need to be noted here: if a vertex has less
than a incoming edges in the directed graph G; then we do not need to move its center. If it
has at least o incoming edges, then since all those vertices either have centers, or are covered
by centers, we can argue that the algorithm provides an approximation factor of 43 + 1. (The
problem is that these vertices may have a low weight and thus the centers that cover them may
be far away.)

4. a-Neighbor K-Suppliers Problems

We assume that G = (U, V, E)is a complete bipartite graph with edges satisfying the triangle
inequality. Iterate for each ¢ from 1 to m until a solution is obtained.

In this section, we give an algorithm that obtains an approximation factor of 3 for the
a-neighbor K-suppliers problem.

Define H; to be the subgraph of G? induced by V and find a maximal independent set in
H;. This returns a multiset S C V of centers. We shift these to the set &’ C U by placing a
center on « neighbors in U of each node in the independent set.

Let Sopr be the set of K vertices in 5 that have centers placed on them by the optimal
solution. Let P = |Sopr|.

We first prove that |S’| is at most P. Each node chosen as a center has at least a neighbors
in G; that are in Sopr. No other neighbor of these a nodes in Sopr can be picked. Therefore
P P

we chose at most {EJ nodes in V. Thus the algorithm chooses at most « {EJ < P centers.

Since each node in the independent set has at least a neighbors in U, and no two nodes in
the independent set can share a neighbor in U, each node in the independent set can place a
center on « of its neighbors in U.

We now prove the approximation bound of 3. Consider a node v € V. Node v has a centers
adjacent to it in H;. Each of these centers shifts by distance at most w(e;) to a node in U,
implying that v has a centers in S’ within distance 3w(e;).

11

4.1. Any o with weights and costs

The above algorithm can be extended to provide an approximation algorithm to the a-neighbor
K-suppliers problem with weights and costs. The basic idea is to pick heaviest unmarked
vertices from V to add to §. We then mark all nodes that are close to this node, and continue
until all vertices are marked. We finally pick a set of the cheapest o centers from the supplier
neighbors of the vertices in &. This algorithm gives a 3-approximation to the a-neighbor K-
suppliers problem with weights and costs. When a node v is added to &, it marks all nodes u
whose weighted distance d(v,u)- w(u) from v is at most 2w;,.

Q-NEIGHBOR WEIGHTED-K -SUPPLIER WITH COSTS ALGORITHM(G, w;).
1 §=0.

2 while there is an unmarked node in V do

3 let » = max weight unmarked vertex in V.
4 create center at v and and set S = S U {v}.
5 mark v.

6 mark w if d(v,u) - w(u) < 2w;.

7 end-proc

After selecting the set §, each node in § places a center on each of its a cheapest neighbors
in U, where a neighbor of v is a node u such that the weighted distance d(u,v)- w(v) from u to
v is at most w;. These nodes comprise §’, which is the final set of centers.

For any node v € V', let Ni7(v) be the set of nodes u € U whose weighted distance d(u,v) -
w(v) to v is at most w;.

Lemma 4.1: For any s1,82 € S, Np(s1) N Ny(s2) = 0.

Proof. Consider nodes s1,s2 € S. Suppose s; was chosen before sz, so that w(s1) > w(sz).
Assume there exists some u € Ny(s1)NNy(sz). The distance from s; to s can then be bounded
by d(s1,52) - w(sz) < (d(s1,u) + d(u,s2)) - w(sz) < d(u,s1)) - w(s1) + d(u,s2) - w(sz) < 2-w,.
Thus, s would have been marked when s; was chosen as a center, contradicting the fact that
s9 was chosen as a center. 0

Let P =3 .cs5,,p €(5), the cost of the optimal solution.
Lemma 4.2: The cost of the solution returned is at most P.

Proof. Since each node must be covered by at least a nodes in Sppr, the nodes in Sopr
must incur a cost at least as much as that of the « lowest-cost neighbors of each node in S.
Moreover (by the previous lemma), these vertices do not share any common neighbors. Thus

Yosesr c(s) < P. O

Theorem 4.3: The above algorithm achieves an approximation ratio of 3.

12

Proof. Consider a vertex v € §. Let u be a vertex that was marked by v. We need to argue
that the weighted distance from the set of centers chosen by v to u is at most 3w;, where w;
is the cost of the optimal solution. Let y be a center chosen by v. We argue this as follows:

d(y,u)-wu) < (d(y,v)+ d(v,u)) w(u) < d(y,v) - w(v)+ 2w; < 3w;. (We used the fact that

w(v) > wu).) 0
References
[1] M. Dyer and A. M. Frieze, “A simple heuristic for the p-center problem”, Operations

[2]

[9]

[10]

Research Letters, Vol 3:285-288, (1985).

J. Edmonds and D. R. Fulkerson, “Bottleneck extrema”, Journal of Combinatorial Theory,

Vol 8:299-306, (1970).

T. Gonzalez, “Clustering to minimize the maximum inter-cluster distance”, Theoretical
Computer Science, Vol 38:293-306, (1985).

M. R. Garey and D. S. Johnson, “Computers and Intractability: A guide to the theory of
NP-completeness”, Freeman, San Francisco (1978).

D. Hochbaum and D. B. Shmoys, “A best possible heuristic for the k-center problem”,
Mathematics of Operations Research, Vol 10:180-184, (1985).

D. Hochbaum and D. B. Shmoys, “A unified approach to approximation algorithms for
bottleneck problems”, Journal of the ACM, Vol 33:533-550, (1986).

W. L. Hsu and G. L. Nemhauser, “Fasy and hard bottleneck location problems”, Discrete
Applied Mathematics, Vol 1:209-216, (1979).

S. 0. Krumke, “On a generalization of the p-center problem”, Information Processing
Letters, Vol 56:67-71, (1995).

J. Plesnik, “A heuristic for the p-center problem in graphs”, Discrete Applied Mathematics,
Vol 17:263-268, (1987)

L. Smith, “Volunteers’ rescue response rates worsen in Pr. William”, The Washington
Post, April (1996).

13

