
Fault Tolerant K-Center ProblemsSamir Khuller �Dept. of Computer Science and UMIACSUniversity of MarylandCollege Park, MD 20742 Robert Pless yDept. of Computer ScienceUniversity of MarylandCollege Park, MD 20742Yoram J. Sussmann zDept. of Computer ScienceUniversity of MarylandCollege Park, MD 20742AbstractThe basic K-center problem is a fundamental facility location problem, where we areasked to locate K facilities in a graph, and to assign vertices to facilities, so as to minimizethe maximum distance from a vertex to the facility to which it is assigned. This problem isknown to be NP-hard, and several optimal approximation algorithms that achieve a factorof 2 have been developed for it.We focus our attention on a generalization of this problem, where each vertex is requiredto have a set of � (� � K) centers close to it. In particular, we study two di�erent versionsof this problem. In the �rst version, each vertex is required to have at least � centers close toit. In the second version, each vertex that does not have a center placed on it is required tohave at least � centers close to it. For both these versions we are able to provide polynomialtime approximation algorithms that achieve constant approximation factors for any �. Forthe �rst version we give an algorithm that achieves an approximation factor of 3 for any �,and achieves an approximation factor of 2 for � < 4. For the second version, we providealgorithms with approximation factors of 2 for any �. The best possible approximationfactor for even the basic K-center problem is 2. In addition, we give a polynomial timeapproximation algorithm for a generalization of the K-supplier problem where a subset ofat most K supplier nodes must be selected as centers so that every demand node has atleast � centers close to it. We also provide polynomial time approximation algorithms forall the above problems for generalizations when cost and weight functions are de�ned onthe set of vertices.�Research supported by NSF Research Initiation Award CCR-9307462, and NSF CAREER Award CCR-9501355. Email addr: samir@cs.umd.eduyResearch supported by NSF Grant IRI-90-57934 Email addr: pless@cs.umd.eduzResearch supported by NSF CAREER Award CCR-9501355. Email addr: yoram@cs.umd.edu1

1. IntroductionThe basic K-center problem is a fundamental facility location problem and is de�ned as follows:given an edge-weighted graph G = (V;E) �nd a subset S � V of size at most K such that eachvertex in V is \close" to some vertex in S. More formally, it is de�ned as follows:minS�V maxu2V minv2S d(u; v)where d is the distance function. For example, one may wish to install K �re stations andminimize the maximum distance (response time) from a location to its closest �re station. Theproblem is known to be NP-hard [4].An approximation algorithm with a factor of �, for a minimization problem, is a polyno-mial time algorithm that guarantees a solution with cost at most � times the optimal solution.Approximation algorithms for the basic K-center problem have been very well studied and areknown to be optimal [3, 5, 6, 7]. These schemes present natural methods for obtaining anapproximation factor of 2. Several approximation algorithms are known for interesting general-izations of the basic K-center problem as well [1, 6, 9], including costs [6, 9] and weights [1, 9].The �-neighbor K-center problem is discussed in a recent paper by Krumke [8]. The problemis formally de�ned as follows: given an edge-weighted graph G = (V;E) �nd a subset S � V ofsize at most K such that each vertex in V � S is \close" to a set of � vertices in S. Formally,minS�V maxu2V�S �(�)(u;S)where �(�)(u;S) = minA�S;jAj=�maxa2A d(u; a)where d is the distance function. Krumke [8] gives an algorithm with an approximation factorof 4, by generalizing the notion of an independent set of vertices.The main motivation to study this problem is to provide some notion of fault-tolerance.Namely, if we are concerned with the placement of emergency facilities, then providing \backup"centers, when one center fails to respond is useful [10].We consider a variation of this problem as well, called the �-all-neighbor K-center problemthat is formally de�ned as follows: given an edge-weighted graph G = (V;E) �nd a subsetS � V of size at most K such that each vertex in V is \close" to a set of � vertices in S.Formally, minS�V maxu2V �(�)(u;S):We also consider a variant of this problem called the �-neighbor K-suppliers problem thatis formally de�ned as follows: given an edge-weighted bipartite graph G = (U; V; E), �nd asubset S � U of size at most K such that each vertex in V is \close" to a set of � vertices inS. Formally, minS�U maxu2V �(�)(u;S):2

For all the problems considered in the paper, we also address the generalizations whenvertices have costs and weights. The cost generalization is formally de�ned as follows: given agraph G and a cost function c(v) de�ned on V , �nd a subset S of vertices of total cost at mostK such that each vertex that needs to be covered by a center is \close" to a set of � vertices inS. Formally, we have to pick a set S satisfyingXs2S c(s) � K:The weight generalization is formally de�ned as follows: given a graph G and a weightfunction w(v) de�ned on V , �nd a subset S of vertices of size at most K such that each vertexthat needs to be covered by a center is \close" to a set of � vertices in S, where the distancefrom vertex u to vertex v depends on the weight of v. Formally, we change the de�nition of thedistance measure to �(�)(u;S) = minA�S;jAj=�maxa2A d(u; a) �w(u)where d is the distance function.Finally, we study the most general case, when the vertices have weights and costs. Theresults are summarized in the table given below.1.1. Our ResultsWe improve Krumke's result, and show that we can obtain an approximation factor of 2 forthe problem considered in his paper. This matches the bound for the basic K-center problem,which is the best possible [7]. The algorithm is a very natural extension of the method givenby Hochbaum and Shmoys [6] for the basic K-center problem.We also show that for the �-all-neighbor K-center problem, we can obtain an approximationfactor of 3 for any �, and a similar algorithm gives an approximation factor of 2 for � < 4(perhaps the practically interesting case).In addition, we provide constant approximation bounds for generalizations of the probleminvolving costs and weights, as well as for the �-neighbor K-suppliers problem. For the K-supplier problem, Hochbaum and Shmoys [6] give a proof (originally due to Howard Karlo�)showing that the factor of 3 is the best possible unless P = NP . Thus 3 is a lower boundfor all the K-supplier generalizations that we consider. Since the basic K-center problem withweights and costs is a generalization of the K-supplier problem, a factor of 3 is also the bestpossible. The results are summarized in the table below. A y indicates that the bound is thebest possible unless P = NP , while a z indicates that this matches the best known bound forthe basic K-center problem. Let � denote the ratio of the maximum and minimum weights.Fault-Tolerant K-Center Approximation FactorsBasic Weights Costs Weights + Costs�-All-Neighbor K-Center 3 (2y)� 3 3z 3y�-Neighbor K-Center 2y 3 4 4� + 1�-Neighbor K-Suppliers 3y 3y 3y 3y� if � = 2 or 33

2. �-All-Neighbor K-Center ProblemsWe may assume for simplicity that G is a complete graph, where the edge weights satisfythe triangle inequality. (We can always replace any edge by the shortest path between thecorresponding pair of vertices.)The algorithm uses the threshold method introduced by Edmonds and Fulkerson in [2] andused for the K-center problem by Hochbaum and Shmoys in [6]. Sort all edge weights in non-decreasing order. Let the (sorted) list of edges be e1; e2; : : :em (where m = �n2�). For each i, letthe threshold graph Gi be the subgraph obtained from G by including edges of weight at mostw(ei). Run the algorithm below for each i from 1 to m, until a solution is obtained. (One canalso use binary search to speed up the computation as suggested by Hochbaum and Shmoys [6].)In each iteration, we work with the subgraph Gi and view it as an unweighted graph. SinceGi is an unweighted graph, when we refer to the distance between two nodes, we refer to thenumber of edges on a shortest path between them. In iteration i, we �nd a solution using somenumber of centers. If the number of centers exceeds K, we prove that there is no solution withcost at most w(ei). If the number of centers is at most K, we return an approximate solution.Let G2i denote the graph obtained by adding edges to Gi between nodes that have a commonneighbor.2.1. Any �We give an algorithm that obtains an approximation factor of 3 for any value of �.The following technique was introduced by Hochbaum and Shmoys [5, 6] and has been usedextensively to solve K-center problems. Find a maximal independent set in G2i . Note that ifthe independent set has size I , then any solution with radius w(ei) must use at least �I centers,because nodes in the independent set cannot be assigned a common center. We therefore place� centers at each node in the independent set. At this point, every node in the graph is atdistance at most 2 (in Gi) from � centers.We now have to distribute the centers so that no two centers are placed on a common node.Note that if there is a solution with radius w(ei), then every node has degree at least � � 1 inGi. We can therefore move �� 1 centers from each node in the independent set to a subset ofits neighbors in Gi. Since every node in the graph is at distance at most 2 from a node in theindependent set, we must have that every node in the graph is at distance at most 3 from �centers, which implies that this approach gives an approximation factor of 3.2.1.1. Any � with weights and costsThe �-all-neighbor K-center problem with weights and costs is a generalization of the �-all-neighbor K-center problem where weight and cost functions are de�ned on the vertices andthe objective is to pick a set of centers whose total cost is at most K, such that the radius isminimized, where the distance from u to v is now de�ned by d(u; v) � w(v), the weight of edgee(u; v) multiplied by the weight of node v. 4

For weighted versions of the problems, consider the list of weighted distances wuv = d(u; v) �w(v). List them in non-decreasing order as w1 � w2 � � � � � w2m. For each i, de�ne the directedgraph Gi as follows. Edge e(u; v) is included in Gi if d(u; v) �w(v), the weighted distance fromu to v, is at most wi.A small modi�cation of the above algorithm yields a 3-approximation algorithm for theproblem with weights and costs. When choosing the initial set, we always select the highestweight available node v. We then mark all nodes whose weighted distance from v is at most2wi. The directed graph ensures that, if a node u has a directed edge to node v in Gi, and vhas a higher weight than u, then v also has a directed edge to u in Gi, and therefore can coverin two steps any node that u can cover in one step. Once we have placed � centers at each nodev in the independent set, we simply move all � centers to the � cheapest neighbors of the node(including itself), where a neighbor of v is a node with a directed edge to v in Gi. A simpleextension of the proof given in [9] shows that the vertices so obtained cover all vertices in thegraph with radius at most 3wi. Since the node must have at least � neighbors in any solution,the cost of the solution obtained is a lower bound on the cost of any solution with radius wi.2.2. � = 2; 3If � is 2 or 3, we can obtain an approximation factor of 2. The algorithm gives an approximationratio of 3 for any �. We can prove that for � < 4 the obtained ratio is actually 2.The algorithm consists of � iterations. Consider the graph G2i . Every node is assigned a\covering number" C(v) (initially 0). The multiset of centers is S = ;. In each iteration wepick an independent set of nodes. At the end of each iteration j = 1; 2; : : : ; �, we guaranteethat each node is covered by at least j centers within two steps.In each iteration, when there is a choice for a vertex to be chosen as a center, we preferpicking vertices that do not have a center already assigned to them. We assign a center at thechosen vertex, and increase the covering number for all vertices within distance two in Gi.�-all-neighbor K-center Algorithm(G2i).1 for all v2 C(v) = 0.3 extra(v) = 0.4 helps(v) = ;.5 for j = 1 to � do// Phase I6 while 9v =2 S with C(v) < j do7 create new center at v and set S = S [fvg.8 C(v) = C(v) + 1.9 C(u) = C(u) + 1 if (u; v) 2 E(G2i).// Phase II10 while 9v with C(v) < j do11 create new center at v and set S = S [fvg.12 C(v) = C(v) + 1. 5

13 extra(v) = extra(v) + 1.14 if 9u with C(u) < j and (u; v) 2 E(G2i)15 C(u) = C(u) + 1.16 Set helps(v) = u.17 for all v 2 S with extra(v) � 1 do18 if helps(v) = ;19 Shift extra(v) centers to neighbors of v in G2i that are not in S.20 else21 Shift one center to a common neighbor of v and helps(v) in G2i not in S.22 Shift extra(v)� 1 centers to neighbors of v in G2i that are not in S.23 end-procLemma 2.1: The above algorithm uses no more centers than the optimal solution.Proof. In each iteration we select an independent set in G2i . Let I� be the size of the largestindependent set picked in any iteration. Any solution with radius w(ei) must use at least �I�centers, and we must have that jSj � �I�.Notice that this algorithm produces a multiset of centers. We now show how to make thecenters distinct.Theorem 2.2: The above algorithm returns a solution to the �-all-neighbor K-center problemwith an approximation ratio of two if � = 2 or 3.Proof. Call a node v satis�ed in iteration j if C(v) � j. Although in each iteration we preferto pick nodes not previously chosen as centers, after the �rst phase all nodes remaining withC(v) < j are in S. De�ne Hj to be subgraph of G2i induced by these (unsatis�ed) nodes inround j. Now consider the structure of Hj . The graph H2 is a collection of singleton nodes,disconnected in G2i (because they were all picked in the independent set in the �rst iteration).Therefore all nodes in H2 will be added to S.First suppose � = 2. Since the nodes in H2 form an independent set, helps(v) = ; for allnodes in H2. Therefore we can shift all but one center to unassigned neighbors of v in Gi. Suchneighbors must exist because v must have at least one neighbor in Gi and at most two centerstotal are placed in the neighborhood of v in G2i .Now let � = 3. Consider a node v that was assigned as a center multiple times. If helps(v) =;, then we can shift all but one center to unassigned neighbors of v in Gi, by the above argument.If helps(v) 6= ; then we must have jhelps(v)j = 1, because H3 is a graph with maximumvertex degree of 1 (since any node in H3 with degree 2 must be satis�ed). Assume helps(v) =fug. Note that only 2 centers are assigned to v. This follows from the fact that the center onu covers v. We must shift the extra center so that it covers both u and v within distance 2. Ifu and v are adjacent in Gi, then we can shift the extra center on v to any neighbor of v in Gi.Otherwise, there must exist a node w adjacent to both u and v in Gi. Node w does not have6

1,4

3

1,2,3,4

2Figure 1: The circled nodes are cliques of 4 nodes, and edges to circled nodes represent edgesto each of the four nodes in the clique.any centers assigned to it because it already has 3 centers adjacent to it. Therefore we can shiftthe extra center to w.Any node which does not have a center placed on it has at least � centers adjacent to it inG2i . As shown above, a node which has a center placed on it also has at least � centers adjacentto it in G2i . Therefore all nodes have at least � centers within radius w(ei).The following example (Fig. 1) shows that this algorithm fails when � = 4. Our algorithmmay do the following. In the �rst three rounds, it chooses a center from the central clique andone of the corners | this forms a maximal independent set in G2i . In the fourth round, itplaces a center on the �nal remaining vertex in the central clique, and the only nodes that thenremain unhappy are the corner vertices, all of whom have been picked in earlier rounds. It nowpicks one of the corners on which to place a second center. This center would have to be shiftedo� to a node which covers all three corners, and there is no vertex that is distance 2 from allcorners. It is important to note that the algorithm fails not because it places too many centers.In fact, in this example the optimal solution uses 16 centers (one on every node in each of thefour cliques) while our algorithm places 8 and leaves one vertex unsatis�ed. While in this casewe can see where to add the extra center, it is not clear how to automate this process.3. �-Neighbor K-Center ProblemsWe assume that G is a complete graph with edges satisfying the triangle inequality. Iterate foreach i from 1 to m until a solution is obtained.7

In this section, we describe an algorithm which gives an approximation factor of 2 for the�-neighbor K-center problem.Consider the graph G2i . Every node is assigned a \covering number" C(v) (initially 0). Theset of centers is S = ;. At the end of each iteration j = 1; 2; : : : ; �, we guarantee that each nodenot chosen as a center is covered by at least j centers within distance two. In each iteration,we pick a center that is not covered by j centers. We assign a center at the chosen vertex, andincrease the covering number for all vertices within distance two in Gi.�-neighbor K-center Algorithm(G2i).1 for all v2 C(v) = 0.3 for j = 1 to � do4 while 9v with C(v) < j do5 create center at v and and set S = S [fvg.6 C(v) = �.7 C(u) = C(u) + 1 if (u; v) 2 E(G2i).8 end-procWe �nd at most � independent sets in � iterations.Theorem 3.1: The above algorithm �nds a solution to the �-neighbor K-center problem withan approximation ratio of two.Proof. When the algorithm terminates, each vertex has a covering number equal to �. Thisguarantees that each vertex was either chosen as a center, or is covered by at least � centerswithin distance two. We now prove that if there is a feasible solution with K centers in someGi, then our algorithm will not assign more than K centers in Gi.Assume that this does not hold. In other words, there is a graph for which there is a solutionthat uses at most K centers, and our algorithm assigns more than K centers. Consider thesmallest value of K for which the algorithm fails, and consider the smallest graph G that isa counter-example for that value of K. Assume that the centers assigned in iteration j havelabel j. Let SOPT be the set of K vertices in graph G that have centers placed on them by theoptimal solution. Note that each vertex in V � SOPT has at least � neighbors in SOPT .If our algorithm places centers only on vertices in SOPT then we certainly do not place morethan K centers. Assume that j is the highest labeled center placed at v 2 V � SOPT by thealgorithm. Let NOPT (v) be the neighbors of v in SOPT . Clearly jNOPT (v)j � �. Let VOPT (v)be all the vertices that are adjacent to some vertex in NOPT (v).We claim that there are at most � centers placed by the algorithm in v[NOPT (v)[VOPT (v)from G. If v had a center placed on it in iteration j, then at the instant it was placed it hadat most j � 1 centers within distance 2 in Gi. Hence, there were at most j � 1 centers withlabel < j in this region. Since all centers with label > j are placed only at nodes in SOPT thisimplies that we cannot place two nodes with the same label in NOPT (v) (since the nodes placed8

in a single iteration form an independent set in G2i). Thus there can be at most �� j nodes oflabel > j in v [NOPT (v) [VOPT (v) from G. Adding gives at most � nodes in this region.We now claim that if we delete v [NOPT (v) [VOPT (v) from G, this gives us a smallercounter-example (unless the deleted nodes are exactly G, which is not a valid counter-exampleas we use only � nodes).3.1. Any � with weightsUsing a di�erent algorithm, we can obtain an approximation factor of three for the �-neighborK-center problem with weights. The algorithm repeatedly selects a node which is not at least�-covered as a center and increments the covering number of all nodes within distance 3 of thecenter.Consider the list of weighted distances wuv = d(u; v) � w(v). List them in non-decreasingorder as w1 � w2 � � � � � w2m. For each i, de�ne the directed graph Gi as follows. Edge e(u; v)is included in Gi if d(u; v) � w(v), the weighted distance from u to v, is at most wi.�-neighbor weighted-K-center Algorithm(Gi).1 for all v2 C(v) = 0.3 S = ;.4 while U = fu j C(u) < �g 6= ;5 let v = max weight vertex in U .6 create center at v and and set S = S [fvg.7 C(v) = �.8 C(u) = C(u) + 1 if d(v; u) � w(u) � 3wi.9 end-procTheorem 3.2: The above algorithm �nds a solution to the �-neighbor K-center problem withweights with an approximation ratio of 3.Proof. Clearly this algorithm satis�es every vertex within a factor three of the optimal radius(because the algorithm loops until no vertex is left uncovered); we have to argue that it doesnot use too many centers. Assume on the contrary that there is a graph for which there is asolution that uses at most K centers, and our algorithm assigns more than K centers. Considerthe smallest value of K for which the algorithm fails, and consider the smallest graph G thatis a counter-example for that value of K. Note that each vertex in V � SOPT has at least �neighbors in SOPT .De�ne the j-neighborhood of a vertex N j(x) = fv 2 V j d(v; x) � w(x) � j �wig; intuitively,the set of all nodes which could cover x within radius j �wi. De�ne the neighborhood of a vertexN(x) = N1(x). Let NOPT (x) = N(x) \ SOPT , the nodes in the optimal solution that coverx, and let VOPT (x) = fv 2 V j 9w 2 NOPT (x) such that d(w; v) � w(v) � wig, or equivalently,9

VOPT (x) = fv 2 V j NOPT (v) \ NOPT (x) 6= ;g, the nodes covered in the optimal solution bythe nodes in NOPT (v). Since more than K centers were chosen by our algorithm, at least onecenter must have been chosen from V � SOPT . Let v be the last such center.Let u be the last center chosen from NOPT (v), after v was chosen. (If no such centerexists, then set u = v.) We claim that in the set v [NOPT (v) [VOPT (v) there are at most� centers placed by the algorithm. To see this observe that when u was placed, every centerplaced in the set is in N3(u) and thus at most � � 1 centers were placed when we placed u,the last center in the set. Let x be a center placed in V � SOPT , and let y be a vertex inNOPT (v) \NOPT (x). (If x 2 SOPT the proof is even easier.) To show that x 2 N3(u), observethat w(u)�d(u; x)� w(u)(d(u; v)+d(v; y)+d(y; x))� w(v)�d(u; v)+w(v)�d(v; y)+w(x)�d(y; x).This is at most wi + wi + wi � 3wi. Therefore we can delete v [NOPT (v) [VOPT (v) from Gand obtain a smaller counter-example.3.2. Any � with costsWe describe an algorithm that gives an approximation factor of 4 for the �-neighbor K-centerproblem with costs. We �rst run the �-neighbor K-center Algorithm, to obtain an initial setof centers S. We then shift these centers to low cost neighbors as follows.We create a bipartite graph H = (S; V; E 0), where an edge (s; v) 2 E0 if v = s or if the edge(s; v) is in Gi and the degree of s in Gi is at least �. We de�ne cost of an edge e = (s; v) tobe c(e), the cost of v. We then �nd a min-cost perfect matching M in H . Let S 0 be the set ofnodes in V which are matched to a node in S. Return the set S 0.Theorem 3.3: The above algorithm �nds a solution to the �-neighbor K-center problem withcosts with an approximation ratio of 4.Proof. We �rst show that the cost of S0 is at most the cost of any solution with radius w(ei).Clearly a perfect matching between S and V exists, since each node in S can be matched toitself. We prove there exists a matching from S to the nodes in the optimal solution, whichimplies that the min-cost matching has cost at most that of the optimal solution. Let SOPT bethe set of K vertices in graph G that have centers placed on them by the optimal solution.Consider the nodes in S which are also in SOPT . These nodes get matched to themselves.Notice that all nodes with degree < � must be in SOPT and these nodes are all matched tothemselves in the above algorithm. Now consider a node s 2 S not in SOPT . Remove s from Hand recursively �nd a matching in the remaining subgraph. In the neighborhood of s there areat least � centers of SOPT and at most � � 1 nodes in S. Therefore at least one of the nodesin SOPT that are in the neighborhood of s is not matched. Match s to this node.We now prove the approximation bound. Consider a node v. If v =2 S, then it has �neighbors in S in G2i . These neighbors are shifted by distance at most w(ei), implying that vhas � neighbors in S0 within distance 3w(ei). If v 2 S, and v is matched to itself, then v iscovered by itself. Otherwise, there must be a node u in the neighborhood of v in Gi which is10

not in S. This node has � centers within distance 3w(ei), which implies that v has � centerswithin distance 4w(ei).3.3. Any � with weights and costsA modi�cation of the above algorithm for weights gives an approximation algorithm for the�-neighbor K-center problem with weights and costs. We �rst run the �-neighbor weighted-K-center Algorithm, to obtain an initial set of centers S. We then shift these centers to low costneighbors as in the �-neighbor K-center problem with costs.Let � denote the ratio of the weight of the maximum weight node in G to the weight ofthe minimum weight node in G. A vertex that has a center placed on it may not have a centerplaced on it after the shifting of centers. Two points need to be noted here: if a vertex has lessthan � incoming edges in the directed graph Gi then we do not need to move its center. If ithas at least � incoming edges, then since all those vertices either have centers, or are coveredby centers, we can argue that the algorithm provides an approximation factor of 4� + 1. (Theproblem is that these vertices may have a low weight and thus the centers that cover them maybe far away.)4. �-Neighbor K-Suppliers ProblemsWe assume that G = (U; V; E) is a complete bipartite graph with edges satisfying the triangleinequality. Iterate for each i from 1 to m until a solution is obtained.In this section, we give an algorithm that obtains an approximation factor of 3 for the�-neighbor K-suppliers problem.De�ne Hi to be the subgraph of G2i induced by V and �nd a maximal independent set inHi. This returns a multiset S � V of centers. We shift these to the set S0 � U by placing acenter on � neighbors in U of each node in the independent set.Let SOPT be the set of K vertices in S that have centers placed on them by the optimalsolution. Let P = jSOPT j.We �rst prove that jS 0j is at most P . Each node chosen as a center has at least � neighborsin Gi that are in SOPT . No other neighbor of these � nodes in SOPT can be picked. Thereforewe chose at most jP� k nodes in V . Thus the algorithm chooses at most � jP� k � P centers.Since each node in the independent set has at least � neighbors in U , and no two nodes inthe independent set can share a neighbor in U , each node in the independent set can place acenter on � of its neighbors in U .We now prove the approximation bound of 3. Consider a node v 2 V . Node v has � centersadjacent to it in Hi. Each of these centers shifts by distance at most w(ei) to a node in U ,implying that v has � centers in S0 within distance 3w(ei).11

4.1. Any � with weights and costsThe above algorithm can be extended to provide an approximation algorithm to the �-neighborK-suppliers problem with weights and costs. The basic idea is to pick heaviest unmarkedvertices from V to add to S. We then mark all nodes that are close to this node, and continueuntil all vertices are marked. We �nally pick a set of the cheapest � centers from the supplierneighbors of the vertices in S. This algorithm gives a 3-approximation to the �-neighbor K-suppliers problem with weights and costs. When a node v is added to S, it marks all nodes uwhose weighted distance d(v; u) �w(u) from v is at most 2wi.�-neighbor weighted-K-supplier with costs Algorithm(G;wi).1 S = ;.2 while there is an unmarked node in V do3 let v = max weight unmarked vertex in V .4 create center at v and and set S = S [fvg.5 mark v.6 mark u if d(v; u) � w(u) � 2wi.7 end-procAfter selecting the set S, each node in S places a center on each of its � cheapest neighborsin U , where a neighbor of v is a node u such that the weighted distance d(u; v) �w(v) from u tov is at most wi. These nodes comprise S0, which is the �nal set of centers.For any node v 2 V , let NU(v) be the set of nodes u 2 U whose weighted distance d(u; v) �w(v) to v is at most wi.Lemma 4.1: For any s1; s2 2 S; NU(s1) \NU(s2) = ;.Proof. Consider nodes s1; s2 2 S. Suppose s1 was chosen before s2, so that w(s1) � w(s2).Assume there exists some u 2 NU(s1)\NU(s2). The distance from s1 to s2 can then be boundedby d(s1; s2) � w(s2) � (d(s1; u) + d(u; s2)) � w(s2) � d(u; s1)) � w(s1) + d(u; s2) � w(s2) � 2 � wi.Thus, s2 would have been marked when s1 was chosen as a center, contradicting the fact thats2 was chosen as a center.Let P =Ps2SOPT c(s), the cost of the optimal solution.Lemma 4.2: The cost of the solution returned is at most P .Proof. Since each node must be covered by at least � nodes in SOPT , the nodes in SOPTmust incur a cost at least as much as that of the � lowest-cost neighbors of each node in S.Moreover (by the previous lemma), these vertices do not share any common neighbors. ThusPs2S0 c(s) � P .Theorem 4.3: The above algorithm achieves an approximation ratio of 3.12

Proof. Consider a vertex v 2 S. Let u be a vertex that was marked by v. We need to arguethat the weighted distance from the set of centers chosen by v to u is at most 3wi, where wiis the cost of the optimal solution. Let y be a center chosen by v. We argue this as follows:d(y; u) � w(u) � (d(y; v) + d(v; u)) � w(u) � d(y; v) � w(v) + 2wi � 3wi. (We used the fact thatw(v) � w(u).)References[1] M. Dyer and A. M. Frieze, \A simple heuristic for the p-center problem", OperationsResearch Letters, Vol 3:285{288, (1985).[2] J. Edmonds and D. R. Fulkerson, \Bottleneck extrema", Journal of Combinatorial Theory,Vol 8:299-306, (1970).[3] T. Gonzalez, \Clustering to minimize the maximum inter-cluster distance", TheoreticalComputer Science, Vol 38:293{306, (1985).[4] M. R. Garey and D. S. Johnson, \Computers and Intractability: A guide to the theory ofNP-completeness", Freeman, San Francisco (1978).[5] D. Hochbaum and D. B. Shmoys, \A best possible heuristic for the k-center problem",Mathematics of Operations Research, Vol 10:180{184, (1985).[6] D. Hochbaum and D. B. Shmoys, \A uni�ed approach to approximation algorithms forbottleneck problems", Journal of the ACM, Vol 33:533{550, (1986).[7] W. L. Hsu and G. L. Nemhauser, \Easy and hard bottleneck location problems", DiscreteApplied Mathematics, Vol 1:209-216, (1979).[8] S. O. Krumke, \On a generalization of the p-center problem", Information ProcessingLetters, Vol 56:67{71, (1995).[9] J. Plesnik, \A heuristic for the p-center problem in graphs", Discrete Applied Mathematics,Vol 17:263{268, (1987)[10] L. Smith, \Volunteers' rescue response rates worsen in Pr. William", The WashingtonPost, April (1996).
13

