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1 Introduction

The classical secretary problem (see Freeman (1983) and Ferguson (1989) for excellent

reviews) considers a decision maker (DM) who observes a random sequence of N

applicants for a job and wants to hire the very best one, assuming they can be strictly

ordered and N is fixed and known ahead of time. After she evaluates each applicant,

she must decide whether to end the search and accept the most recent applicant or

continue the search and permanently reject him. She must make this decision based

solely on the rank of the applicant relative to those already rejected, and seeks to

adopt a decision rule to maximize the probability that she chooses the best of the N

applicants. Gilbert and Mosteller (1966) show that the optimal policy for large N is

to always skip the first N/e (∼ 37%) of the applicants, and accept the next applicant

who ranks higher than all previous applicants, a surprisingly concise and heuristic

strategy.

This model provides a useful framework to examine the dynamics of sequential

search. Many real-world decision makers face a similar situation where they ini-

tially have little or no information about their options, and gain useful context and

experience as they search. Examples might include a venture capitalist evaluating

investment proposals, a young couple looking to buy their first home, or an eBay

bidder deciding which auction she should participate in. Lindley (1961) refers to the

secretary problem as the marriage problem: A bachelorette goes on dates with po-

tential mates and must decide whether to propose marriage or reject the current date

and consider another. We assume that she cannot go back and propose to someone

she has already rejected, and that marriage proposals are always accepted. She wants

to choose the very best mate, but can only compare the current potential mate to

ones she previously dated and rejected. So she may meet someone who is better than

1



anyone she has ever dated before but worry that proposing to him will deny her the

opportunity to marry someone even better later on.

Solving for the optimal decision rule also gives us a solid benchmark to analyze

decision-making by experimental participants. Seale and Rapoport (1997, 2000) test

stopping times under the classical secretary problem and find that participants may

tend to stop too soon. They propose that this may be a result of endogenous search

costs that affect the decision maker but are not explicitly accounted for in the ex-

periment’s payoffs. Stein et al. (2003) analyze classes of heuristic decision rules that

real-world decision-makers might use to solve the secretary problem.

However, the classical formulation makes several unrealistic assumptions:

1. The decision maker is only concerned with selecting the very best of all the

applicants. Choosing the second-best applicant is no better than choosing the

worst applicant; both yield zero value.

2. There is no cost to searching.

3. The number of applicants is fixed and known ahead of time.

A large body of literature tries to address these issues by extending the problem

in a number of different ways. To improve the first assumption, Chow et al. (1964)

specify that the objective is to minimize the expected overall rank of the selected

applicant. Later, Mucci (1973) generalizes this objective to maximizing the expec-

tation of any monotonic payoff function on the overall ranks. Bearden et al. (2006)

investigate experimental decision-making under this framework and still find a bias

towards stopping too early.

Rasmussen and Robbins (1975) solve a secretary problem when the number of

applicants is finite but unknown. Gianini and Samuels (1976) consider an infinite

problem, where the DM can observe an unlimited number of applicants and the
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payoff depends on the selected applicant’s rank as well as an increasing loss function

through the search. Gianini (1977) shows that the optimal result can be found by

solving the finite problem and taking the limit as the number of applicants goes to

infinity.

In a closely related problem studied by Moser (1956) that we will refer to as

the full information problem, the DM observes a true value for each applicant when

he arrives and seeks to maximize the value of the applicant that she selects. We

refer to the classical secretary problem as the no-information problem because the

DM’s objective function and information are based solely on the ordinal ranks of the

applicants and need not also have underlying cardinal values. Many extensions of the

secretary problem fall somewhere in between, and so may be referred to as partial

information problems. Bruss and Ferguson (1993) solve a full information problem

with an objective of minimizing the expected rank of the selected applicant. Bearden

(2006) proposes a hybrid problem where applicants have random values but the DM

only observes an indicator variable for whether the applicant is the best so far. This

construction leads to another threshold rule where the DM always rejects the first
√
N applicants. Mahdian et al. (2008) allow the DM to fully observe each applicant’s

value when he arrives but specify that the distribution of values is unknown.

We propose a new partial-infomation problem that resolves all three of these

issues and also allows for convenient comparisons to the full information problem.

We address the first unrealistic assumption by using Bearden’s (2006) more gradated

objective function that allows for a continuum of values rather than an all-or-nothing

payoff. By using cardinal values, we can generate lists which are consistent with

our underlying ordinal rankings but express an intensity of preference as well. Our

formulation maintains the structure of the problem by only providing the DM with

ordinal information but allows for a more realistic model of payoffs and time-costs
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of continuing the search. An appealing feature of the classical secretary problem

is that the interviewer only observes relative ranks and must make decisions based

on this limited information. This means that the DM is building up a database of

information over time as she continues to interview more and more applicants, and

this experience allows her to better evaluate later applicants. One of the reasons

the secretary problem is so interesting is that it allows us to examine this tradeoff

between an information gain from interviewing more applicants and a cost (which

appears as an opportunity cost in the classical secretary problem and also as an

explicit time-cost in our formulation) of continuing the search. Almost all of the

extensions of the secretary problem in the literature still lead to a threshold strategy

of the form “always skip the first f(N) applicants, then select the next applicant who

satisfies some minimum qualification”. These cutoff rules have attractive heuristic

interpretations but are not asymptotically robust. Skipping the first .37N or
√
N

applicants with certainty is not realistic for arbitrarily large N . We provide the DM

with slightly better information and show that the optimal policy does not have to

follow this kind of threshold strategy.

Later, we eliminate the third unrealistic assumption by relaxing the finite appli-

cant limit N . We find that the DM may still skip a certain number of applicants with

certainty, but as N →∞ this exploration phase depends only on her impatience and

search costs, as measured through her discount rate r. For very low values of r, she

may be willing to skip a large number of applicants in order to build up information,

but this approach is not optimal for high r. The optimal policy also differs from the

previous literature in that after the exploration phase is over, the DM follows a more

nuanced search strategy. Her selectivity gradually decreases over time as the marginal

informational benefit of each additional applicant diminishes. The acceptance deci-

sion doesn’t just depend on whether the applicant is the best or not, but takes into
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account his relative rank and how far she is into the search.

2 The Model

1. There is one job opening available.

2. The number N of applicants is fixed and known ahead of time.

3. Applicants arrive sequentially at random times according to a homogeneous

Poisson Process, and are interviewed by the decision maker (DM). The interar-

rival times Ti between the arrival of the i− 1th applicant and the ith applicant

are i.i.d. exponential random variables with density g(t) = λe−λt. T1 can be

thought of as the time between the announcement of the job opening and the

arrival of the first applicant. So the length of time elapsed before the arrival of

the mth applicant is tm =
m∑
i=1

Ti.

4. The true value Xm of the mth applicant is an i.i.d. uniform random variable on

[0,1]. However, the DM observes only the relative rank of all of the applicants

who have been interviewed so far, and must make an immediate decision about

whether to accept or reject the applicant.

5. If an applicant is rejected, he cannot be recalled and accepted later. The search

ends when an applicant has been accepted. Let S be the index of the applicant

who is selected. Then the stopping time is tS =
S∑
i=1

Ti.

6. The DM’s objective is to adopt a strategy to maximize the expected discounted

value of the applicant selected:

max
S

E[e−rtSXS]
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subject to her limited information about Xm, where r is the DM’s constant

time-discounting rate. Alternately, we could think of the discount factors e−rTi

as all-inclusive search-and-interview costs, which are random and vary from

applicant to applicant.

3 The Optimal Policy

We derive the DM’s stopping criteria after interviewing the mth applicant, m < N :

Since the DM does not observe the true valuation of Xm, she must make her deci-

sion based on the rank of the current applicant relative to the m total applicants who

have been interviewed. We follow a mathematically convenient (but conversationally

somewhat counterintuitive) convention for ranking these applicants: If we observe m

applicants, we say that the worst applicant has a rank of 1 and let X(1) represent their

value. Likewise, the best of the m applicants has rank m and value X(m). The kth

order statistic X(k) of m i.i.d. U [0, 1] random variables (here we follow the convention

that X(1) ≤ X(2) ≤ · · · ≤ X(m), meaning that higher values of k correspond to higher

values of X(k)) has a beta distribution B(k,m− k + 1), with expected value

E[X(k)] =
k

m+ 1
(1)

The DM should stop and accept the current applicant if and only if the expected

value of the current applicant is at least as great as the expected discounted value

of rejecting him and continuing the search. Note that the length of time tm elapsed

before the arrival of the mth applicant will not affect the DM’s choice because the

discounting factor e−rtm will be applied to the eventual payoff regardless.

To assist the DM in this decision, define V (m) as the expected discounted value
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of rejecting the current applicant and continuing the search after the mth applicant

is interviewed. V (m) can be thought of as the residual value of the search process to

the DM when she continues to follow an optimal decision rule. V (m) does not include

discounting for time that has already elapsed, since these are sunk costs for the DM

and should not affect her decision, as noted above.

V (m) ≡ E[e

−r

S∑
i=m+1

Ti

XS | S ≥ m+ 1] (2)

So the DM will stop if and only if

E[Xm | Xm is the kth order statistic ] ≥ V (m) (3)

k

m+ 1
≥ V (m) (4)

k ≥ (m+ 1)V (m) (5)

If we denote the rank of the mth applicant by km ∈ N, this means that the DM

stops and accepts the current applicant when:

km ≥ d(m+ 1)V (m)e ≡ k∗(m) (6)

and rejects that current applicant and continues when:

km ≤ d(m+ 1)V (m)e − 1 (7)

Conditioning on whether the DM stops or continues after interviewing the next ap-

plicant leads to a first-order recursion:
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V (m) = E[e

−r

S∑
i=m+1

Ti

XS | S = m+ 1]P (S = m+ 1)

+E[e

−r

S∑
i=m+1

Ti

XS | S > m+ 1]P (S > m+ 1)

(8)

Since the values Xi are independent and identically distributed, it’s easy to show

that the rank km+1 of the m+ 1th applicant has an equal probability of taking any of

the values 1, 2, . . . ,m + 1. Our decision rule tells us that S > m + 1 ⇐⇒ km+1 ≤

d(m+ 2)V (m+ 1)e − 1, so

P (S > m+ 1) =
d(m+ 2)V (m+ 1)e − 1

m+ 1
(9)

P (S = m+ 1) = 1− P (S > m+ 1) =
m+ 2− d(m+ 2)V (m+ 1)e

m+ 1
(10)

Conditioning (8) on the length of time Tm+1 elapsed between the arrival of the mth

and m+ 1th applicants, we have

V (m) = E[E[e−rTm+1Xm+1 | km+1 ≥ d(m+ 2)V (m+ 1)e] | Tm+1]
(
1− P (S > m+ 1)

)

+E[E[e−rTm+1 e

−r

S∑
i=m+2

Ti

XS | S ≥ m+ 2] | Tm+1]P (S > m+ 1)

(11)
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V (m) = E[e−rTm+1E[Xm+1 | km+1 ≥ d(m+ 2)V (m+ 1)e]]
(
1− P (S > m+ 1)

)

+E[e−rTm+1E[e

−r

S∑
i=m+2

Ti

XS | S ≥ m+ 2]]P (S > m+ 1)

(12)

V (m) = E[e−rTm+1 ]

(
E[Xm+1 | km+1 ≥ d(m+ 2)V (m+ 1)e]

(
1− P (S > m+ 1)

)

+E[e

−r

S∑
i=m+2

Ti

XS | S ≥ m+ 2]P (S > m+ 1)

)
(13)

We calculate E[Xm+1 | km+1 ≥ d(m + 2)V (m + 1)e] by conditioning on the rank of

the accepted applicant, and again using (1) and the fact that we are equally likely to

observe each of these ranks:

E[Xm+1 | km+1 ≥ d(m+ 2)V (m+ 1)e]

=
m+1∑

k=d(m+2)V (m+1)e

E[Xm+1 | km+1 = k]P (km+1 = k | km+1 ≥ d(m+ 2)V (m+ 1)e)

=
m+1∑

k=d(m+2)V (m+1)e

k

m+ 2
· 1

m+ 2− d(m+ 2)V (m+ 1)e

(14)

We also note that

E[e−rTm+1 ] =

∫ ∞
0

e−rtλe−λtdt =
λ

λ+ r
(15)

Substituting (9), (10), (14), and (15) into (13) and simplifying, we get
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V (m) =
λ

λ+ r

( m+1∑
k=d(m+2)V (m+1)e

k

(m+ 1)(m+ 2)
+
d(m+ 2)V (m+ 1)e − 1

m+ 1
V (m+1)

)
(16)

The coefficient λ
λ+r

represents the expected discount factor from waiting for the

next applicant. The first term represents the expected payoff if that applicant ranks

highly enough to be accepted, and the second term represents the expected payoff

if the next applicant is rejected and the search continues further, with both terms

weighted by their probabilities of occurring.

We can then solve for the continuation values V (m) and critical ranks k∗(m) via

backwards induction from a boundary condition: If the DM chooses to continue after

observing the N − 1th applicant, she must accept the N th and final applicant.

So after interviewing the N − 1th applicant:

V (N − 1) = E[e−rTNXN ] (17)

= E[E[e−rTNXN | TN ]]

= E[e−rTNE[XN ]]

= E[e−rTN ]E[XN ]

V (N − 1) =
λ

2(λ+ r)
(18)

The recursion is too complex to derive an explicit solution for the infinite problem,

where we let the applicant limit N → ∞. However, we can show that the sequence

of values converges as we relax this boundary condition.
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Theorem 1: Let VN(m) be the expected value of continuing the search after ob-

serving the mth applicant when the maximum number of applicants is N ≥ m + 1.

Then VN(m) converges as N → ∞ for all m ≥ 0. We write this succinctly as

{VN} → {V∞}, where {VN} represents the finite sequence of N continuation values

that guide the DM in the finite problem and {V∞} represents the infinite sequence

of continuation values that guide the DM in the infinite problem.

This means that we can choose a large enough value of N to approximate the

sequence of values and cutoffs that guide the DM in the infinite problem. Figure 1

shows how the sequences {VN} of continuation values increase to {V∞} as we relax

the applicant limit N . Observe that for any fixed m, VN(m) is increasing to the limit

V∞(m). Also note that the continuation values V∞(m) increase (at a diminishing

rate) as m increases. This reflects the informational improvements from the DM’s

added experience. She uses this database of rejected applicants to better evaluate

future applicants, which leads to better decisions and improvements in the expected

outcome. Figure 2 shows the corresponding selectivity of the DM, expressed at each

stage of the search by the fraction of applicants who will be rejected if they follow the

optimal strategy with the continuation values from Figure 1. The search is largely

driven by the continuation values {V∞}, but we see that the DM starts to lower her

selectivity as she nears the applicant limit N . The DM is more willing to compromise

when she knows that she only has the opportunity to choose among a handful of

remaining applicants. This strategy is driven by the fear of exhausting the applicant

list and being forced to accept the very last applicant regardless of their rank. In

the infinite problem, this boundary condition never shows up and so we don’t see

the continuation values and selectivity drop off. However, we do observe a gradual

decrease in selectivity as m increases even in the infinite problem. We can attribute

this to the declining marginal benefits of additional experience. When m is low, the
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DM can afford to be more selective because she knows that rejecting applicants will

help her make a better choice later on. When m is high, rejecting more applicants

adds little to the DM’s ability to evaluate future applicants, so there is less incentive

for her to reject the current applicant. Figures 3 and 4 demonstrate the effects of

different discount rates. When the discount rate is high (indicating that the DM is

impatient), the continuation values are lower and she is less selective. Likewise, a

lower discount rate leads to higher continuation values and selectivity.
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of applicants rejected after the mth

interview) for finite and infinite problems when λ = 1 and r = 0.1
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4 The Full Information Model

Now we introduce a full information analogue of the partial information sequential

search that we solved above. Here the DM always observes the true value of each

applicant as he arrives, so she no longer gains information from her past search

experience. As a result, her decision at each stage is driven purely by the time-

discounting and the limited number of applicants N . The full information model will

provide us with a useful benchmark that we can use to examine the effects of the

informational limitations when the DM can only observe ordinal rankings. Our full

information search generalizes Moser’s (1956) results by introducing interarrival times

and discounting and yields a recursion formula that agrees with Moser’s for r = 0.

1. There is one job opening available.

2. The number of applicants N is fixed and known ahead of time.

3. Applicants arrive sequentially at random times according to a homogeneous

Poisson Process, and are interviewed by the DM. The interarrival times Ti

between the arrival of the i− 1th applicant and the ith applicant are i.i.d. expo-

nential random variables with density g(t) = λe−λt. The length of time elapsed

before the arrival of the mth applicant is tm =
m∑
i=1

Ti.

4. The true value Xm of the mth applicant is an i.i.d. uniform random variable on

[0,1] and is fully observable by the DM .

5. If an applicant is rejected, he cannot be recalled and accepted later. The search

ends when an applicant has been accepted. S again denotes the index of the

applicant who is selected. tS =
S∑
i=1

Ti.
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6. The DM’s objective is to adopt a strategy to maximize the expected discounted

value of the applicant selected:

max
S

E[e−rtSXS]

where r is the DM’s constant time-discounting rate.

5 The Full Information Optimal Policy

As before, the DM will assign a sequence of values, which we will write as V FI(m),

that capture the expected discounted value of rejecting the mth (current) applicant

and continuing the search, excluding the discount factor for the time tm that has

already elapsed and assuming the DM continues to follow an optimal policy. There

is no longer any uncertainty about the value of the current applicant, so the decision

rule is straightforward:

Stop if and only if

Xm ≥ V FI(m) (19)

Conditioning on whether the DM stops or continues after interviewing the next ap-

plicant leads to a simple first-order recursion:

V FI(m) = E[e

−r

S∑
i=m+1

Ti

XS | S ≥ m+ 1] (20)

V FI(m) = E[e

−r

S∑
i=m+1

Ti

XS | S = m+ 1] · P (S = m+ 1)

+E[e

−r

S∑
i=m+1

Ti

XS | S > m+ 1] · P (S > m+ 1)

(21)
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Conditioning (21) on the length of time Tm+1 elapsed between the arrival of the mth

and m+ 1th applicants,

V FI(m) = E[E[e−rTm+1Xm+1 | S = m+ 1] | Tm+1] · P (S = m+ 1)

+E[E[e−rTm+1 e

−r

S∑
i=m+2

Ti

XS | S > m+ 1] | Tm+1] · P (S > m+ 1)

(22)

Our decision rule tells us that S = m+ 1 ⇐⇒ Xm+1 ≥ V FI(m+ 1), so

P (S > m+ 1) = P (Xm+1 < V FI(m+ 1)) = V FI(m+ 1) (23)

P (S = m+ 1) = 1− P (S > m+ 1) = 1− V FI(m+ 1) (24)

and

V FI(m) = E[e−rTm+1E[Xm+1 | Xm+1 ≥ V FI(m+ 1)]] · (1− V FI(m+ 1))

+E[e−rTm+1E[e

−r

S∑
i=m+2

Ti

XS | S ≥ m+ 2]] · V FI(m+ 1)

(25)

V FI(m) = E[e−rTm+1 ]

(
(
1

2
+
V FI(m+ 1)

2
)(1−V FI(m+1)+V FI(m+1) ·V FI(m+1)

)
(26)

V FI(m) =
λ

2(λ+ r)

(
V FI(m+ 1)2 + 1

)
(27)

We get the same boundary condition as before by considering the DM’s choice

after interviewing the N − 1th applicant. If she continues the search she must accept

the N th and final applicant, meaning
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V FI(N − 1) = E[e−rTNXN ] (28)

= E[e−rTN ]E[XN ]

V FI(N − 1) =
λ

2(λ+ r)
(29)

Again, we allow N →∞ in order to analyze the DM’s strategy in the infinite full

information problem, where there is no limit on the number of applicants.

Theorem 2: Let V FI
N (m) be the expected value of continuing the search after ob-

serving the mth applicant when the maximum number of applicants is N ≥ m+ 1 in

the full information problem. Then V FI
N (m) converges as N →∞ for all m ≥ 0.

We write this succinctly as {VFI
N } → {VFI

∞ }, where {VFI
N } represents the finite

sequence of continuation values that guide the DM in the finite problem and {VFI
∞ }

represents the infinite sequence of continuation values that guide the DM in the

infinite problem.

Theorem 3: V FI
∞ (m) = λ+r

λ
−
√

2λr+r2

λ
≡ V FI

∞ ∀m ≥ 0. This is a very strong result,

condensing the entire search process in the infinite full information problem down to

a single continuation value V FI
∞ . After observing any applicant at any time, the DM

simply compares his value to this continuation value and accepts if and only if his

value is at least as large as V FI
∞ .

Figure 5 illustrates how the sequences {VFI
N } of continuation values in the finite

full information problems converge to {VFI
∞ }. Note that these values also define

our stopping rule, so higher continuation values imply higher selectivity. As noted

before, we see that V FI
∞ (m) takes the constant value λ+r

λ
−
√

2λr+r2

λ
for all m. Figure

6 compares the infinite full information problem with our infinite partial information

problem from before. Since continuation values are fixed in the full information case,

18



it serves as a useful benchmark to look at how the DM gains information through the

search when she can only observe the relative ranks of previously observed applicants.

Figure 7 provides a table comparing expected values at the beginning of the search,

before the DM has interviewed any applicants. We see that these ex ante expected

search payoffs are a bit higher in the infinite problem than in the finite problem, and

this improvement is larger for lower discount rates because the boundary condition is

more likely to affect the DM. We also see that the expected payoffs are significantly

higher with full information than when the DM only observes relative ranks (partial

information). This increase is largest when the discount rate is high, because the DM

tends to interview only a few applicants before ending her search. This means that

she does not have the time to build up experience to help her make a decision. So

having full information from the beginning of the search yields a huge improvement

in her ability to make a good decision. Full information still benefits a DM with a

low discount rate, but she is patient so she can afford to build up a large database

of rejected applicants that help her make a better decision later on. As a result, her

expected search payoff doesn’t show as large of an increase when she is given full

information.
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Figure 5: Continuation values for finite and infinite full information prob-
lems when r = 0.1 and λ = 1.
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Figure 6: Comparison of continuation values from the infinite problem with
full information and with only relative ranks when r = 0.1 and λ = 1.
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Ex Ante Expected Payoffs 
 Discount Rate:     

r = 0.01  r = 0.05  r = 0.2 

Par6al 
Informa6on 

(Finite Problem, N = 10):  V10(0)  .7241  .6012  .4167 

(Infinite Problem):  V∞(0)  .7898  .6079  .4167 

Full 
Informa6on  

(Finite Problem, N = 10):  V10(0)  .8263  .7239  .5366 

(Infinite Problem):  V∞(0)  .8682     .7298  .5367 

Figure 7: Table of ex ante expected search payoffs V (0) with full information
and with only relative ranks for various r values when λ = 1.

6 Discussion

Our hybrid secretary problem addresses the three major shortcomings of the classical

secretary problem and yields a more realistic optimal policy. The other advantage

of our model is that it allows us to isolate and quantify the DM’s three primary

considerations when constructing a strategy:

1. The DM has to make decisions based on limited information, but accumulates

more and more information as she continues to search. Every new applicant

who is rejected adds to the database of experience that allows the DM to better

place future applicants (this is what motivates the DM to skip the first 37%

of the applicants with certainty in the classical problem). So the DM will

be more selective earlier in the search because of the informational benefit of

rejecting applicants. In the infinite problem, we can quantify the marginal

information improvement from rejecting themth applicant by comparing V∞(m)

and V∞(m+ 1). We can also look at the cost of the limited information at any

point in our search (in either the finite or infinite problems), by comparing
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V (m) with the corresponding V FI(m) from the full information problem. In

particular, the quantity V FI
∞ (0) − V∞(0) gives us the ex ante value of having

full information compared with the purely ordinal information in our infinite

discounted problem.

2. WhenN is finite, the DM worries about reaching the end of the list of applicants.

This forces her to be less selective as she gets closer and closer to this boundary.

We can quantify the cost of this limit by comparing VN(m) with V∞(m) from

the full information problem (as well as the optimal cutoffs k∗N(m) and k∗∞(m)).

3. There is a time cost to the search and the ultimate payoff is discounted according

to how long the search took. So the DM has an incentive to be less selective

and stop sooner than she otherwise might have in order to reduce this cost. We

can quantify the effects and expected reduction in payoff of this discounting by

comparing V (m) when r > 0 with V (m) when r = 0 (as well as the optimal

cutoffs k∗(m) in each case).

This framework also outlines a complementary structure for the limited informa-

tion models that often show up in the economics literature. In auction theory (see

Krishna, 2002), valuations are frequently defined through interdependent or common

value models, where players are endowed with private signals and must infer infor-

mation about other players’ signals from their behavior. Under the structure of our

hybrid secretary problem, the player would also be updating her own information as

she makes decisions.

For example, we could explore the connections between matching theory and de-

cision making under uncertainty by studying behavior in a dynamic matching game

with interdependent values. Classic two-sided matching theory (see Roth and So-

tomayor, 1990) provides a simple but powerful framework to define a stable match
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and an algorithm that guarantees a solution. Remarkably, these results only require

that the individuals provide a strict ordinal ranking of their preferences over all in-

dividuals on the other side of the market. This type of model is useful for exploring

behavior and designing incentive-compatible mechanisms in a number of situations,

including medical labor markets, the college admissions problem, and public school

choice. However, the model assumes that individuals have full information about

their preferences. This means that their rankings are static and only submitted once

at the start of the matching process, with no dynamic interactions beyond computa-

tion of the equilibrium. By limiting players’ information to ordinal rankings of the

individuals whom they have already observed, we would be able to consider matches

generated over time that might not otherwise meet the stability criteria of classic

static matching theory.

Our hybrid secretary problem can also be extended in a number of different direc-

tions. We could generalize the underlying value distributions and arrival process and

relax the assumption of independence between applicants. This would increase the

mathematical complexity of the problem, but would allow us to examine the effects of

correlation between applicants. Another interesting study would test the experimen-

tal behavior of decision makers in our framework, which would complement previous

research on decision making in the classical secretary problem. The more nuanced ob-

jective and strategy sets would give us a better look into the decision making process,

and the controls λ, N , and r might provide explanations for the biases that previous

studies have suggested. The increased size of the strategy sets would also allow for a

broader spectrum of heuristics to compare to the mathematically optimal strategy.
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Appendix: Proofs

Proof of Theorem 1: Fix any integer m ≥ 0. VN(m) can be calculated via back-

wards induction for any finite N ≥ m+ 1 (the lowest N for which VN(m) is defined).

Recall that VN(m) is the expected value of rejecting the current applicant and con-

tinuing the search after observing the mth of N total applicants and consider the

sequence {VN(m)}∞N=m+1. VN+1(m) ≥ VN(m) because we are simply adding an addi-

tional applicant (whose true value is independent of any previous applicants) on to

the end of the list of remaining selections for the DM. So the DM could follow the

exact same stopping strategy as before, when there were N total applicants, and sim-

ply accept the N th with certainty. This would mimic the search process and expected

payoffs exactly. However, the DM is maximizing her search policy over a larger set

of possible strategies than before, and she may choose a different policy. But if she

wants to do so it must be the case that VN+1(m) is at least at high as VN(m). This

holds for all N , so VN(m) is monotonically nondecreasing in N . Also note that VN(m)

is trivially bounded below by 0 and above by 1 since 0 ≤ ert ≤ 1 and 0 ≤ XS ≤ 1. So

if we let N →∞, VN(m) converges to a limit V∞(m) by the Monotonic Convergence

Theorem. Since this holds for all nonnegative integers m, we can construct a lim-

iting sequence {V∞} whose terms V∞(m) are the continuation values in the infinite

discounted secretary problem. �

Proof of Theorem 2: Fix any integer m ≥ 0. Then V FI
N (m) is easily calculated via

backwards induction for any finite N . Starting at N = m+1 (this is the lowest N for

which V FI
N (m) is defined), increment N upwards and consider the sequence of values

of V FI
N (m). The first term of the sequence is then V FI

m+1(m) = λ
2(λ+r)

, the boundary

condition.
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We can write the recursion from our decision rule as

V FI
N (m) = f(V FI

N (m+ 1)),where f(x) =
λ

2(λ+ r)
(x2 + 1)

Now observe that for fixed boundaries N and N + 1, backwards induction gives us

V FI
N (m) = f(f(. . . f(︸ ︷︷ ︸

N−m−1

λ

2(λ+ r)
) . . . ))

V FI
N+1(m) = f(f(f(. . . f(︸ ︷︷ ︸

N−m

λ

2(λ+ r)
) . . . )))

So we have

V FI
N+1(m) = f(V FI

N (m))

The first term of our sequence satisfies 0 < V FI
m+1(m) = λ

2(λ+r)
< 1 and we show by

induction on N that all other terms in the sequence also satisfy 0 < V FI
N (m) < 1.

Assume 0 < V FI
N (m) < 1. Then 0 < V FI

N (m)2 < 1 and 1 < V FI
N (m)2 + 1 < 2, so

multiplying through by λ
2(λ+r)

gives us 0 < λ
2(λ+r)

< f(V FI
N (m)) = V FI

N+1(m) < λ
λ+r

<

1. Observe that f is continuous and f ′(x) = λ
λ+r

x. So by the Mean Value Theorem,

for all N ≥ m + 1, there exists c between V FI
N (m) and V FI

N+1(m) (so 0 < c < 1) such

that

f ′(c) =
f(V FI

N+1(m))− f(V FI
N (m))

V FI
N+1(m)− V FI

N (m)

λ

λ+ r
c =

V FI
N+2(m)− V FI

N+1(m)

V FI
N+1(m)− V FI

N (m)

0 < λ
λ+r
≤ 1, so 0 < λ

λ+r
c < 1. In particular, this satisfies

|V FI
N+2(m)− V FI

N+1(m)| ≤ λ

λ+ r
c |V FI

N+1(m)− V FI
N (m)|

25



Letting N →∞, our sequence is contractive and therefore convergent. �

Proof of Theorem 3: Conditioning on the DM’s choice after observing the mth

applicant in the infinite full information problem (the recursion follows exactly as it

did in the finite full information problem) gives us V FI
∞ (m) = f(V FI

∞ (m + 1)). Also,

observe that

V FI
∞ (m) = lim

N→∞
V FI
N (m) = lim

N→∞
f(f(. . . f(︸ ︷︷ ︸
N−m−1

λ

2(λ+ r)
) . . . ))

= lim
N→∞

f(f(. . . f(︸ ︷︷ ︸
N−m−2

λ

2(λ+ r)
) . . . )) = lim

N→∞
V FI
N (m+ 1)

= V FI
∞ (m+ 1)

Substituting into the recursion, we get

V FI
∞ (m) = f(V FI

∞ (m)) =
λ

2(λ+ r)
V FI
∞ (m)2 +

λ

2(λ+ r)

λ

2(λ+ r)
V FI
∞ (m)2 − V FI

∞ (m) +
λ

2(λ+ r)
= 0

=
λ+ r

λ

(
1±

√
1− (

λ

λ+ r
)2

)

=
λ+ r

λ
±
√

2λr + r2

λ

Note that the first term is ≥ 1 and the second term is ≥ 0 and 0 ≤ V (m) ≤ 1. So

the only solution is V FI
∞ (m) = λ+r

λ
−
√

2λr+r2

λ
. �
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