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research within collective robotics.  Researchers have gained inspiration from biological 

systems and proposed a variety of industrial, commercial, and military robotics 

applications.  In order to bridge the gap between theory and application, a strong focus is 

required on robotic implementation of swarm intelligence.  To date, theoretical research 

and computer simulations in the field have dominated, with few successful 

demonstrations of swarm-intelligent robotic systems.  

In this thesis, a study of intelligent foraging behavior via indirect communication 

between simple individual agents is presented.  Models of foraging are reviewed and 
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required stigmergic cooperation.  Real robots are shown to achieve increased task 

efficiency, as a group, resulting from indirect interactions.  Experimental results also 

confirm that trail-based group foraging systems can adapt to dynamic environments.    
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Chapter 1: Introduction

Children spend hours closely studying the wanderings of ants in their backyards.  

How do the ants know how to follow the path to a source of food?  How do they know 

how to return to the nest?  From inquisitive children to the researchers of academia, 

insect swarms tend to generate a unique sense of wonder.  There is a certain mysterious 

synergism present in the swarms of ants, bees, and other social insects.  An external 

human observer, simultaneously viewing individual simplicity and group complexity, 

fails to comprehend the nature of the cooperation.  This is the essence and the appeal of 

swarm intelligence.  It is also the difficulty in studying such systems.

This research is motivated by the segment of swarm intelligence research that 

joins two otherwise unrelated fields: entomology and robotics.  Within the past fifteen 

years, a movement has begun to move beyond the theoretical understanding of biological 

swarms.  Instead, engineering and artificial intelligence researchers are seeking to 

replicate the efficacy of biological swarms to solve real-world problems.  While the 

applications of swarm intelligence have propagated beyond the fields of engineering and 

computer science into business, telecommunications, finance, social psychology, etc., 

robotics-based applications are the focus of this research.  A number of researchers have 

undertaken the task of demonstrating complex, intelligent system behavior in groups of 

cooperative, mobile robots.  This has been accomplished with some success, albeit 

limited to highly constrained experimental situations.  The tendency of most researchers 

is to discuss the potential benefits of swarm-based robotics without developing an 

operational robotic swarm.
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The primary goal of this thesis is to employ current theoretical knowledge to 

achieve a physical swarm-intelligent system composed of real robots.  Implicit in this 

statement of purpose is the necessity of establishing metrics for swarm intelligence in a 

multi-agent system.  In order to do so, the benchmark example of foraging will be 

examined in detail.  The task of collective foraging is highly appropriate for such an 

investigation, due to direct biological inspirations and generally accepted metrics for task 

completion efficiency.  In addition, since group foraging is often used to demonstrate 

swarm intelligence in multi-robot systems, this task provides a basis for comparison to 

past research efforts.

The primary goal of implementing a functional robotic swarm requires a detailed 

working knowledge of swarm-intelligent systems.  First of all, a theoretical 

understanding of group foraging is required as a foundation of system design.  Therefore, 

mathematical models of foraging are reviewed and analyzed in order to thoroughly 

understand foraging system dynamics.  Computer simulations of swarms then function to 

bridge the gap between theory and experimentation.  The simulations foster deeper 

understanding of system behavior dependence on several important variables.  These 

simulations are particularly valuable for investigating system behavior as a function of 

swarm size.

Insights gained via theoretical modeling and computer simulations direct the 

experimental design of a robotic swarm.  In an idealized situation, the robotic system 

should precisely duplicate the system behavior predicted theoretically.  However, the 

constraints and uncertainties of real-world implementation make such an expectation 
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unreasonable.  Therefore, it is necessary to limit the scope of the experimental system and 

focus on several key elements of foraging behavior.  In this case, the experimental multi-

robot system was designed to demonstrate swarm-intelligent foraging behavior under 

specific design constraints in order to investigate a limited subset of system 

characteristics.  The design constraints are as follows:

• no direct communication

• decentralized control

• behavior-based control

The key system attributes under investigation are the following:

• task efficiency

• system dynamics

• food source exploitation modes

These attributes depend on a number of system parameters; the following three are 

investigated here: 

o number of robots

o pheromone decay rate

o item distribution

Having provided the motivations and goals of the research, an overview is 

presented to provide the reader with a broad perspective of each chapter in relation to the 

complete work.  In the following two chapters (2 and 3), the literature relevant to the field 

of swarm intelligence is reviewed. Chapter 2 provides a thorough review of collective 

robotics research, from the historical foundations of the field to the current state of the 

art.  Special attention is given to successful demonstrations of swarm intelligence through 
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physical robotic implementation.  Chapter 3 covers, in a similar manner, the biological 

inspirations of this research.  The foraging behavior of insect societies is discussed.  In 

Chapter 4, mathematical models of foraging are reviewed and employed to predict and 

explain specific characteristics of swarm-based systems.  Computer simulations in 

Chapter 5 demonstrate many of the theoretical propositions presented in Chapter 4.  The 

software simulations also allow for the study of large-scale swarms that involve as many 

as 100 individual agents.  The chief aims of this research are addressed in Chapters 6 and 

7, which focus on foraging experiments with physical robotic agents and a synthesis of 

the results from simulation and experimentation.  In Chapter 6, the details of robot

design, experimental setup, and results are provided.  In Chapter 7, the results of 

simulations and experimentation are analyzed and the results from these two types of 

investigation are compared and related to the predictions of theoretical models.  Chapter 

9 contains general conclusions, lessons, and directions for future research.    
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Chapter 2: Background – Swarm Robotics

Swarm intelligence claims historical underpinnings from both biology and 

engineering.  Reviewing the genesis and subsequent development of swarm intelligence 

research therefore requires approaching the subject from both entomology and robotics.  

First, the subject will be discussed from the perspective of historical robotics research.

Section 2.1: Cooperative Mobile Robotics

Swarm-based robotics falls within the broader classification of cooperative, 

autonomous, mobile robotics.  This popular area of robotics research focuses on the study 

of multi-robot systems designed to cooperatively achieve a task.  Multi-robot cooperation 

has become increasingly important for a number of reasons.  Among these are the 

following [1]:

• Tasks are often inherently too complex for a single robot to accomplish.

• Several simple robots can be a cheaper and easier solution than one 

powerful robot.

• Multi-robot systems are generally more flexible and fault-tolerant than 

single robots acting alone.

The broad field of cooperative mobile robotics has flourished for decades, while swarm-

based robotic systems have emerged fairly recently.  The historical origins of swarm 

robotics are presented in the next section.  The remainder of the chapter examines key 

aspects of a swarm-based robotic system--control architecture, communication, physical 

morphology—and concludes with an explanation of important robotic tasks related to 

swarm intelligence. 
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Section 2.2: Origins of Swarm-Based Robotics

In order to fully trace the intellectual heritage of swarm-based robotics, one must 

begin in the early 1970s.  At that time, coordination and interaction of multiple agents 

were being studied in the field of distributed artificial intelligence (DAI) [1], but 

investigations were limited to problems involving software agents.  This tendency 

persisted until the late 1980s, when the robotics research community began to explore 

cooperative robotic systems [2].  The earliest forays into cooperative robotics related to 

cellular (or reconfigurable) robotic systems, cyclic swarms, multi-robot motion planning, 

and primitive architectures for multi-robot cooperation.  The first two of these topics 

eventually merged into the current field of swarm intelligence.  Cellular robotic systems, 

such as CEBOT (CEllular roBOTs), were initially explored by Fukuda et al. [3].  CEBOT 

drew direct inspiration from biological organisms to generate an architecture based on 

decentralized hierarchies of robotic cells [1].  Gerardo Beni started working on the same 

topic from a more theoretical perspective in 1988 [4]. Within a year, Beni had coined and 

popularized the term “swarm intelligence” in relation to robotics [5].  He later identified a 

vague definition of the term swarm intelligence: “a property of systems of non-intelligent 

robots exhibiting collectively intelligent behavior” [6].  The most precise definition 

provided by Beni was not a written verbal definition, but a mathematical construct is 

presented graphically in Figure 1.   Note that the generalized definition (on the right) is 

less strict than the original, as it allows for systems to be termed swarm-intelligent by 

completing effective work, W, more efficiently than a non-cooperative group.  Beni’s 



7

definition requires that the useful work in a given task can only be performed by N 

interacting agents, and only for N greater than a critical number, Nc.

Figure 1. (a) Beni's definition of swarm intelligence (b) the generalized 
definition.  W(N) denotes the amount of work achieved by N 
interacting agents, and W0(N) denotes the work achieved by N

independent agents (taken from [7], p. 344)

Deneubourg, Theraulaz, and Beckers, who study swarm intelligence from an ethological 

perspective, define a swarm as “…a set of (mobile) agents which are liable to 

communicate directly or indirectly (by acting on their local environment) with each other, 

and which collectively carry out a distributed problem solving” [8], p. 123.  These 

definitions conveniently avoid the problem of defining intelligence, although Deneubourg 

et al. imply that intelligence is somehow related to problem solving. The reader is 

referred to [9] for a thorough discussion of robotic intelligence, the definition of which is 

debated philosophically as much as technically.

Around the same time that cellular robotics research was taking shape, Rodney 

Brooks, from MIT’s Artificial Intelligence Laboratory, published a groundbreaking paper 

in the still undeveloped field of cooperative robotics [10].  In what has clearly become the 
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most widely cited source in the swarm intelligence community, Brooks outlines a “robust 

layered control system for a mobile robot” known as subsumption architecture.  Brooks’ 

paper initiated the rapid progression of the behavior-based control movement [11].  

Combined with the inertia of cellular robotics and identified by Beni’s terminology, 

swarm intelligence emerged in the early 1990s as a major component of mobile robotics 

research.  Brooks and Beni provided the impetus for the emergence and rapid expansion 

of swarm intelligence as a research field.  This is evidenced by the nearly omnipresent 

references to behavior-based control in the robotics literature [11].  However, despite the 

rapid advance of swarm intelligence, a number of robot control architectures were 

developing simultaneously.  These control strategies are described in the following 

section.

Section 2.3: Swarm Control Architectures

Regardless of the intended application, each robot in a multi-robot system 

requires some preprogrammed processes by which it can assimilate sensory input and 

respond with appropriate actuation.  A small group of popular design architectures have 

emerged that control the “brains” of these robots.  The techniques of each architecture are 

applicable to a range of programming and hardware domains, but the central design 

framework remains consistent.  Currently, these architectures exist amidst the opposing 

viewpoints of two philosophical approaches to robotic intelligence.  The classical AI 

approach, which dominated the mobile robotics community for years, gives rise to 

architectures focusing on intensive central processing and high-level reasoning.  On the 

other hand, swarm intelligence adherents advocate a far simpler approach based on the 
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nature of interactions between individual robots.  This behavior-based approach is 

presented first, followed by an assortment of specific architectures spanning the spectrum 

from classical AI to swarm intelligence. 

Subsection 2.3.1: Behavior-based Control

As mentioned previously in Section 2.2, behavior-based approaches to controlling 

agents in a multi-robot system have had a great impact on the course of cooperative 

robotics.  Many of the current leaders in robotic swarm intelligence research cite Brooks’ 

landmark subsumption architecture as an important influence (e.g., [1, 12-17]). 

Brooks’ 1985 paper presented a novel control strategy that is both flexible and 

robust.  It differed fundamentally from any of the prevailing control schemes of the day 

by decomposing the control system based on task achieving behavior.  This stood in stark 

contrast to the traditional functional decomposition of contemporary strategies.  In 

developing this new decomposition, Brooks considered certain requirements for 

controlling intelligent autonomous mobile robots.  He postulated that an effective control 

system must meet four basic requirements:

1. Multiple Goals

2. Multiple Sensors

3. Robustness

4. Additivity

In addition to these four requirements, Brooks made certain largely philosophical 

assumptions.  Three of these assumptions have become central tenets in swarm-based 

robotics, and are reproduced below (quoted from [10], pp. 3-4) :
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� “Complex (and useful) behavior need not necessarily be a product of an 

extremely complex control system.  Rather, complex behavior may simply be 

the reflection of a complex environment.  It may be an observer who ascribes 

complexity to an organism—not necessarily its designer.”

� “Things should be simple….When building a system of many parts one must 

pay attention to the interfaces.  If you notice that a particular interface is 

starting to rival in complexity the components it connects, then either the 

interface needs to be rethought or the decomposition of the system needs

redoing.”

� “The worlds where mobile robots will do useful work are not constructed of 

exact simple polyhedra.  While polyhedra may be useful models of a realistic 

world, it is a mistake to build a special world such that the models can be 

exact.  For this reason we will build no artificial environment for our robot.”

Brooks proceeds from these points to explain a system of layered levels of 

competence for a robot aiming to explore the MIT robotics laboratory.  Each level above 

the default is constructed in sequence to form a cascade of competence levels.  Each 

higher level subsumes, or includes, the roles of lower-level layers when they request 

control of actuators.  Conversely, the lower levels are in subsumption to the higher 

behavioral levels; thus, this arrangement is termed subsumption architecture.  Partitioning 

at any level in the structure leaves behind a complete operational control system.  

In order to implement such a control system, Brooks suggests that one should first 

build and fully debug the simplest level of competence.  When this is achieved, the next 

layer is built on top of the “zeroth” layer, and the process is repeated (see Figure 2).  The 
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method of architectural development has come be known as the “constructivist

approach,” which is an important accompaniment to behavior-based control.  Higher 

levels are permitted to sample the input of and suppress the output of lower levels.

Figure 2. Layered competence levels (taken from [10], p. 7)

In 1991, Brooks published two companion papers to further develop his novel 

conception of artificial intelligence in distributed robotics.  “Intelligence without 

Representation” [18]  and “Intelligence without Reason” [9] combine to argue a strong 

case against traditional AI models.  Brooks’ essential argument is that tradition artificial 

intelligence has an unrealistic goal of replicating “human level intelligence in a machine”

[9], p. 5.  The complexity of such an undertaking, he posits, is beyond the grasp of 

research efforts in the foreseeable future.  Rather than focusing on a fantastic and distant 

dream of Turing equivalence, Brooks proposes that researchers first focus on highly 

simplified intelligent systems.  Once simple and complete intelligent systems are created, 

incremental improvements automatically ensure the validity of subsystems and interfaces.  

Traditional AI robots generate abstract representations of the world around them in order 

to plan future actions.  In the opinion of Brooks and other advocates of behavior-based 
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robotics, representations of the world are an unnecessary abstraction in many cases.  

Rather, they contend that it is better to “use the world as its own model.”

Finally, in [9], Brooks cements his case with an extremely thorough defense of 

behavior-based robotic control.  He argues quite convincingly that traditional AI ignores 

the intelligence evident in the natural world, while behavior-based approaches more 

closely resemble efficient biological systems.  Four canonical statements of behavior-

based control are provided from [9] to conclude and summarize his important work:

1. The world is its own best model.

2. The world grounds regress.

3. Intelligence is determined by the dynamics of interaction with the world.

4. Intelligence is in the eye of the observer.

Subsection 2.3.2: Other Control Architectures

The behavior-based, or subsumption, architecture described above is more general 

than some of the well-defined architectures employed in multi-robot systems.  The work 

of Brooks and Mataric has developed into an overriding control philosophy more than a 

specific architecture.  Many of these other architectures were influenced by both 

traditional AI and behavior-based approaches to robotic problem solving.  As a rule, the 

following architectures are quite explicit and precise, making them less important in the 

overarching philosophical control debate.  More than anything, the following 

architectures are reflections of broader philosophical approaches to multi-robot systems 

research.
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• CEBOT (Cellular Robotics System) is a decentralized, hierarchical control 

system inspired by cellular organization in biology.  A dynamically 

configurable system is created using autonomous “cells” that are capable of 

reconfiguration in response to changing environments [2]. 

• SWARM, as the name suggests, is the closest architecture to a strictly 

behavior-based approach.  It is a distributed system of many (usually) 

homogeneous robots (refer to [1] for a more detailed description).

• ALLIANCE/L-ALLIANCE were developed to study cooperation in a 

heterogeneous, small group of loosely coupled robots [1].  Each robot senses 

the effects of their own actions and those of other agents through perception 

and explicit communication.  L-ALLIANCE incorporates reinforcement-

learning into the architecture.

• ACTRESS consists of a group of “robotors,” including 3 robots and 3 

workstations working together to perform specified tasks [2].  Issues such as 

communication efficiency between robots and environment managers are 

studied.

• GOFER has been used to study distributed problem solving by a group of 

mobile robots using traditional AI techniques.  A central task planning and 

scheduling system communicates with all robots based on a global view of the 

environment [1].

• Neural networks are similar to behavior-based architectures, with some 

important distinctions.  Both strategies employ mainly reactive control 

schemes, but in neural networks the response is based on a weighted 
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combination of all input signals [19].  Neural networks are also always state-

free.

Section 2.4: Communication

Cao, Fukunaga, and Kahng [1], Arai, Pagello, and Parker et al [20], and Dudek et 

al [21], in their seminal reviews of advances in cooperative mobile robotics, all focus on 

the importance of communication in swarm-based robotic systems. The very essence of 

cooperative robotics requires some type of communication, however indirect, in order to 

produce meaningful, beneficial interactions.  Of the five taxonomic axes for swarm 

robots proposed in [21], three are based on inter-robot communication: communication 

range, topology, and bandwidth.  Clearly, the nature and extent of communication within 

a robotic swarm is vital to successful demonstrations of swarm intelligence.  Arai, 

Pagello, and Parker identify the important distinction between implicit and explicit 

communication, stating that “implicit communication occurs as a side effect of other 

actions, or ‘through the world’, whereas explicit communication is a specific act designed 

solely to convey information to other robots on the team” [2], p. 656.  Further discussion 

of communication divides the continuum into these same two halves: explicit and implicit 

communication.

Subsection 2.4.1: Explicit Communication

Cao, Fukunaga, and Kahng provide a through review of explicit communication 

techniques used in cooperative robotics [1].  Explicit communication consists of sending 

and receiving of messages that are intended to convey information.  In some cases, each 
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message is intended for an individual robot.  Each robot may have some kind of 

identification signal, for example, allowing other robots to receive its position, heading,  

velocity, etc.  Messages can be sent from one individual to many recipients, as in “sign-

board” type communication.  In [22], explicit communication takes the form of a “hello-

call” protocol.  This signaling protocol allows the robots to form communication chains, 

effectively extending the communication range of a single robot.  Explicit 

communications become increasingly complex as the number of robots increases.  For 

very large groups of robots, these schemes may become impractical.  

Subsection 2.4.2: Implicit Communication

Implicit communication, also known as stigmergy, occurs through the 

environment.  This type of communication scales well for potential future applications 

requiring hundreds or thousands of robots [23].  It is most often implemented in 

cooperative foraging, clustering, or sorting tasks [12, 16].  Messages are “sent” only by 

altering some aspect of the environment which is then sensed by another individual robot.  

The environmental alteration can be intentional, as in the case of trail-laying [24], or 

unintentional, as in clustering or sorting tasks [25, 26].  Information gained through 

implicit communication tends to be extremely limited.  Messages cannot be designated 

for particular individuals, as the environment is available to all agents.  Information 

acquisition and processing is often much faster than the case of explicit communication.



16

Section 2.5: Learning

Learning tends to be much more difficult to implement in cooperative mobile 

robotics as compared to traditional robots acting alone.  Cooperative tasks, due to the 

nonlinear interaction between individuals, make it necessary to use specialized learning 

algorithms.  Despite the complexity of such algorithms, it is highly desirable to develop 

multi-robot systems capable of learning to cooperate.  This could augment or replace the 

difficult task of “finding the correct values for control parameters that lead to a desired 

cooperative behavior” [1], p.10.  Current efforts to develop learning in multi-robot 

systems are motivated by this reasoning.

Most of the learning algorithms used in cooperative robotics are based on 

reinforcement [1, 27].  This traditional formulation is posed in terms of states and actions.  

The robot executes an action from within a particular state, at which time it may change 

states.  The action may or may not be reinforced, depending on the desired behavior.  In 

time, the robot learns to correlate states and actions to produce meaningful behavior.  

This type of paradigm is used in the L-ALLIANCE control architecture to help robots 

learn to estimate the performance of neighboring robots.  It has also been used to teach a 

group of robots a simple, artificial robot language [1].  Some researchers have even 

designed tasks with the sole purpose of “teaching” a group of robots how to cooperatively 

perform a separate task [28].  One example of this is the work of Gaussier and Zrehen, 

who employ a neural network technique designed to allow each individual in a group of 

Khepera robots to learn its body geometry through repetitive obstacle avoidance [14].

Mataric proposes a reformulation of the reinforcement paradigm that uses basis 

behaviors, rather than actions, as the focus of reinforcement [27].  In this manner, the 
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learning search space is reduced considerably.  A space of a few basis behaviors replaces 

more common spaces involving dozens of actions.  The result is a more rapid learning 

process.  While work continues in the area of learning, it remains one of the least 

developed aspects of cooperative robotics research.

Section 2.6: Morphologies

The physical morphology of each individual in a swarm-based robotic system is 

an important consideration in any swarm design.  Mechanical design is also highly 

interdependent with the control architecture, making it a critical element of robotic

design.  In most cases of swarm intelligence demonstrations with real robots, the swarm 

is at least physically homogeneous (if not behaviorally as well).  There are rare cases  

where this is not the case, but this discussion focuses on morphologies common for 

individuals within a homogeneous swarm.  Methods of locomotion and environmental 

manipulation will be discussed, followed by a review of commonly used commercial 

platforms of autonomous mobile robots.

Subsection 2.6.1: Locomotion

Two main classes of locomotion are present for autonomous mobile robots: 

wheeled or legged.  While both approaches are valuable for specific purposes, swarm-

based systems nearly always employ wheeled locomotion.  Walking, legged robots 

involve a higher degree of mechanical complexity [19], especially in loosely constrained 

or dynamic environments common to swarm applications.  Legged robots also tend to be 

more expensive and incapable of high maneuverability or rapid movement.  For these 
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reasons, legged robots are generally unsuitable for swarm investigations and will not be 

discussed further.  Rather, the discussion will focus on the broad class of wheeled 

locomotion.

[29],[30], and [31] provide excellent summaries of the most common types of 

wheeled locomotion in autonomous robots, which are described briefly below:

1. Differential Drive – Composed of two parallel, independently-powered drive 

wheels on opposite sides of the robot and one or more casters for stability, this 

drive is very simple and quite common.  Note that differential refers to the 

fact that the velocity vector of the center of mass is the resultant of two 

independent components.  A differential gear system is not involved.

2. Dual Differential Drive – Designed to mechanically solve the problem of 

following a straight path, this drive includes two differentials in a more 

complex gear system than the simple differential drive.  Two motors are used: 

one for driving both wheels the same direction to go straight, and one to turn 

by driving them in opposite directions.  This drive configuration is simple 

enough to be built easily with LEGO components (see Figure 3).
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Figure 3. LEGO Dual Differential Drive [30]

3. Skid-Steer Drive – This variation of the differential drive is often used with 

tracked vehicles, but sometimes with four or six wheel platforms as well.  As 

the name implies, this configuration relies on tire or track skidding in order to 

turn.  

4. Steering Drive – This is the standard locomotion setup in modern cars and 

most other vehicles, but is somewhat rare in the robotics community.  It 

features one or two front steering wheels and two fixed rear wheels.  As in 

cars, the front, rear, or all four wheels can be powered.  Steering drives suffer 

from large turning radii and the inability to rotate without translation.    

5. Tricycle Drive – In what is actually a subset of the steering drives, the tricycle 

drive uses a single, powered front wheel and two passive rear wheels to 

achieve certain mobility advantages.  The powered front wheel maintains 

driving force at any turning angle.  

6. Synchro Drive – The synchro drive uses three or more wheels, all of which 

are driven and steered.  All of the wheels turn and rotate in sync, remaining 
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parallel at all times.  Through complex gearing, a synchro drive employs only 

two motors to produce changes in direction without altering robot orientation.  

7. Articulated Drive – Commonly seen in wheeled excavators, articulated drives 

consist of front and rear chasses joined at a central pivot point.  Steering is 

accomplished by rotating the front chassis with respect to the rear chassis 

about the pivot point.  This is essentially a variation of the steering drive.

8. Pivot Drive – This drive system is composed of a four-wheeled chassis with 

non-pivoting wheels and a central rotating platform capable of vertical 

motion.  While in motion, the pivot drive travels in a straight line.  To turn, 

the robot stops, lowers the pivot platform until the wheels are suspended, 

rotates through the desired angle, and finally raises the platform.

These are the most fundamental types of wheeled locomotion for autonomous robots.  

The advantages and disadvantages of each are summarized below in Table 1.

Table 1.  Robotic Locomotion Configurations

Drive Configuration Advantage(s) Disadvantage(s) Example(s)

Differential simplicity control (straight line) Pioneer3 [32]

Dual Differential control (straight line)
efficiency

(frictional losses)
LEGO robots [29]

Skid-Steer simplicity
control

odometry (skidding)
Pioneer3-AT [33]

Steering simplicity path planning various, see [34]

Tricycle
maneuverability 

(compared to regular 
steering drive)

handling uneven 
terrain

Fiat [35]

Synchro control complexity B21r [36]

Articulated simplicity path planning M96 Rover [37]
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Pivot control complexity Ritorno [29]

A few other highly specialized types exist, including the “Killough Drive” or 

Omnidirectional Holonomic Platform (OHP) developed by Pin and Killough.  This

special case introduces the issue of holonomy.  A non-mathematical definition of 

holonomy is given by Ferrari, Ferrari, and Hempel [29]: “the capability of a system to 

move toward any given direction while simultaneously rotating” p. 151.  In practice, 

holonomic systems are more difficult to design in terms of mechanical complexity.  

However, they are desirable due to increased maneuverability [29] and simplified control 

theory.  Yamaguchi, [38], discusses some of the theoretical difficulties in developing a 

distributed control law for multiple nonholonomic robots.  In particular, he cites the lack 

of established methodologies for asymptotically/exponentially stabilizing nonholonomic 

systems.  Despite the increased complexity in control theory, most researchers employ 

nonholonomic locomotion schemes (e.g., [23, 24, 26, 38-43]). 

Subsection 2.6.2: Manipulation of the Environment

The requirements for environmental manipulation vary greatly between swarm-

based applications.  In some instances, the group of multiple robots has no need to alter 

the environment in any manner.  However, in tasks such as cooperative foraging or 

sorting, it is of course necessary to manipulate objects in the environment.  Indirect 

communication also takes place via changes to the environment, some of which are 

intentional communication markers.  In most cases, physical manipulation of the 

environment is limited to simple end effectors such as grippers.  These types of tools are 
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easily augmented to a preexisting robot, which explains the popularity of building upon 

one of the available commercial platforms.

Subsection 2.6.3: Commercial Platforms for Multi-Robot Systems

One of advantages to behavior-based multi-robot systems is the inherent 

simplicity in individual behavior.  In terms of sensing, processing, and manipulation 

abilities, individual robots can be extremely simple.  As a result, the majority of swarm-

based robotics experiments take place with “off-the-shelf” commercial robots.  In many 

cases, very minor (if any) modifications are required before the robot(s) are properly 

equipped for swarm-compatible tasks.  Communication protocols are sometimes added or 

modified, along with the addition of actuators for specific environmental manipulation.  

The onboard processing unit and locomotion design rarely require modification, except in 

highly unusual applications. A summary of the most widely-used commercially available 

robotics platforms is provided below in Table 2.

Table 2. Commercial Robot Platforms

Processor RAM 
(K)

ROM 
(K)

Cost Size

Khepera II [35] Motorola 6833 512 Kb 512 Kb $2,300 70 mm D X 30 mm H

Moorebot [36] Intel 386SX 4 Mb 80 Mb ? 25 cm D X 28 cm H

Pioneer3 Hitachi H8S 32 Kb 1 Mb ? 44 cm X 38 cm X 22 cm H

Handy Board

(processor only)
Motorola 6811 32 Kb NA $300 varies

LEGO 
Mindstorms

Hitachi H8 32 Kb 16 Kb $200 varies
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Section 2.7: Cooperative Tasks in Mobile Robotics

Cooperative systems of autonomous, mobile robots exhibit an array of control 

schemes, communication modes, and physical morphologies.  The choice of each of these 

elements is generally dictated by the desired task.  Most multi-robot systems are designed 

with a global task or goal.  Cooperating to achieve this goal is what drives the system 

architecture, morphology, etc.  While a great many tasks have been proposed and studied, 

swarm-based multi-robot systems generally focus on a handful of major task 

classifications.  These task categories are presented below.

Subsection 2.7.1: Formation Control

As is the case for each of the major tasks in swarm-based robotics, dynamic 

formation control relates closely to a biological parallel.  Formation control, however, 

relates on the broadest scale to the natural realm.  Many of the behaviors used to model 

cooperative robotic formations arise from social insects such as bees, ants, wasps, and 

termites.  However, flocks of birds, schools of fish, and herds of land animals also exhibit 

elements of swarm intelligence as they establish and maintain complex formations while 

moving as a social unit.  Such a richness of inspiration from ethology has resulted in 

formation generation and control being one of the earliest and most rapidly developed 

areas of swarm-based robotics research [2, 20].  While the early efforts at formation 

generation and maintenance focused on very simple behaviors, recent work has moved 

into the realm of sophisticated self-organized flocking [44], pursuit problems [38, 40] , 

dynamic formation shifting [45], etc.  Hayes and Dormiani-Tabatabaei define flocking as 

“the formation and maintenance of coherent group movement” [44], p. 3900.  From the 
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perspective of swarm-based robotics, flocking tasks are accomplished using only local 

sensing.  Individual agents rely on information such as the position and velocity of their 

nearest neighbors in order to plan movement [46].  Hayes developed robust flocking 

algorithms resistant to agent failure.  These algorithms were then demonstrated 

successfully in simulation and with real robots.  Their flocking experiments with real 

robots feature Moorebots, one of the popular choices for swarm-based robotics.  A 

detailed description of Moorebots, which were developed and utilized extensively at 

CalTech, is found in [47].  Fredslund and Mataric [45] use the Pioneer2 DX from 

ActivMedia, Inc. as a robot platform to validate their simulation results predicting the 

ability of a robotic swarm to shift formations dynamically.  Their physical experiments 

also highlight obstacle avoidance within the framework of a formation.  

The above examples of flocking and formation control were developed 

independent of a specific application.  However, much of the work done in robotic 

flocking relates to military applications [38, 40, 46].  Cooperative hunting has become of 

great importance to the military, due to a number of factors presented in [48]:

• Physical

o Robots can access and maneuver in space too small for humans.

o Robots survive in contaminated environments.

o Robots can remain motionless indefinitely.

• Psychological

o Robots are not influenced by fear in carrying out military 

operations.

o Robots complete tedious tasks without suffering mental fatigue. 
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• Risk

o Robots can perform kamikaze missions.

o Inexpensive robots can be chosen for high-payoff/high-risk 

situations.

Balch and Arkin, [46], employ strictly behavior-based control to simulate 

complex formation control in a group of five virtual robots.  Simple behavioral rules were 

used to generate formations such as line, column, diamond, and wedge.  Formation 

location and centering was accomplished using one of three referencing methods: (1) 

unit-center-referencing, (2) leader-referencing, and (3) neighbor-referencing.  Developed 

for the United States Army, this system could soon be found in real-world combat 

situations.  Perhaps the most important researcher in the field of cooperative formation 

control for military use is Yamaguchi, from the University of Tokyo.  Yamaguchi has 

studied combat-related behaviors such as surrounding a target [38, 40] and invasion 

prevention [49].  Target location and enclosure is one of the most impressive 

demonstrations to date of practical formation control in a group of mobile robots.  

Yamaguchi recently developed the control algorithms for implementing this behavior in a 

group of Hilare-type nonholonomic mobile robots [38], but experimental results with real 

robots have yet to appear.  The near future promises to provide realistic physical 

demonstrations of flocking and cooperative hunting in the same vein as current 

simulation results.
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Subsection 2.7.2: Object Manipulation

The second major class of tasks within swarm-based cooperative mobile robotics 

is object manipulation.  This is a generic term that encompasses an array of subtasks.  

The subtasks can be organized into two main classes: payload transportation and 

strategic, competitive manipulation in a dynamic environment.

Payload transportation describes a subset of object manipulation tasks often used 

to demonstrate multi-robot cooperation.  Cooperative transport by a group of robotic 

agents is often based on the behavior of ants and termites.  Sudd’s studies of cooperative 

transport in ants revealed that a group of ants will resort to cooperative lifting or dragging 

in the event that an item of food or prey is too heavy to be moved by an individual [50].  

In physical robotics experiments, the problem is often formulated as box-pushing or 

cooperative lifting.  Kube and Zhang [51] developed control algorithms for cooperative 

lifting, with special attention to stagnation recovery.  They also simulated a group of 

robots in cooperative lifting situations.  Bay, from Virginia Polytechnic Institute, 

describes the development of “Army-Ant” cooperative lifting robots for implementation 

as a flexible material handling system [52].  A slight variation from Bay’s homogeneous 

group of robots is the leader/follow strategy employed in [53].  Both control schemes 

accomplish the basic task of cooperatively lifting a box and transporting the item to a 

specific location.  

Competitive, strategic object manipulation within a dynamic environment is one 

of the most complex tasks in cooperative robotics.  A wide variety of approaches exist for 

this class of tasks, ranging from artificial intelligence (AI) to swarm intelligence.  AI 

approaches depend largely on high-level processing and reasoning abilities of each 
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individual robot [11], while swarm intelligence techniques adhere to the tenets of Brooks’ 

reactive, behavior-based control.  The exemplification of this set of tasks is RoboCup, an 

international and educational research initiative in the form of an annual robotic soccer 

competition [54].  Each participant designs a group of mobile robots with the task of 

scoring as many goals as possible against a team of robot opponents.  As in human 

soccer, a goal is scored by cooperatively manipulating a ball through a field and into a 

designated goal region. Papers abound describing various design and control schemes 

used in RoboCup competitions (e.g., [11, 39, 54-57].  Two examples of behavior-based 

approaches are found in [11] and [57].  In [11], Werger makes a convincing argument for 

the superior performance of behavior-based approaches to this task as compared to the 

classical AI methodology.      

Subsection 2.7.3: Foraging

Cooperative foraging is one of the most important tasks in the study of multi-

robot cooperation.  Of the three major areas of application (formation control, object 

manipulation, and foraging), the latter has the closest ties to biological swarms.  

Therefore, foraging is also the obvious task undertaken to demonstrate swarm 

intelligence in a simulated or physical robotic system.  Drogoul and Ferber [58] note that 

foraging is “widely accepted as the best illustration of ‘swarm intelligence’…” (p. 1) and 

Cao, Fukunaga, and Kahng, [1] describe foraging as “one of the canonical testbeds for 

cooperative robotics” (pp. 3-4).  As will be discussed in the following chapter, biological 

swarms are highly efficient examples of swarm intelligence.  Foraging in ants and bees 

provides some of the clearest examples of swarm intelligence in nature.  Further, these 



28

examples from nature often motivate the models upon which foraging robot systems are 

designed.  This tight correlation between robotic and natural foraging provides the 

impetus for a multitude of efforts to demonstrate swarm-like robotic cooperation in

foraging.

The fundamental definition of foraging is the location and collection of objects (or 

targets) [58].  In biological systems, the targets are generally considered to be food or 

prey.  For robotic implementation, the objects to be collected are application dependent.  

In the research and development of foraging swarms, the objects often chosen are small 

“pucks” or discs capable of being grasped and released by a robotic end effector.  Note 

that the generalized definition of foraging makes no constraint on the location of object 

aggregation.  However, the most common type of foraging is central-place foraging.  In 

fact, the terms have become synonymous in the swarm intelligence literature.  Central-

place foraging describes a system in which objects are returned to a “home,” which is 

usually located at or near the center of the foraging environment [59].  The spatial and 

temporal distribution of objects within the foraging environment is unspecified by this

definition.  Researchers have studied a wide range of distribution schemes, including 

uniform, random, and clustered spatial distributions, as well as the introduction of objects 

at varied intervals in time.  Object distribution and the number of foragers tend to be the 

most important parameters studied with respect to system behavior.

Before discussing the historical and recent attempts to demonstrate cooperative 

foraging, it is instructive to consider the methods of foraging used by traditional robotics.  

These methods are generally employed in the case of a single robot, but are also used in 
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non-cooperative multi-robot systems.  Werger and Mataric [41] identify the following 

single-agent foraging methods:

• The Omniscient Planner: The use of a planner that is aware of the entire 

foraging environment, including the position of the forager.

• Position/Orientation Sensing: The use of absolute global position 

information, including GPS, compass, radio-sonar positioning, and/or 

dead reckoning systems.

• Taxis: Following some sort of beacon.

• Unique Location Recognition: The use of local environmental features to 

identify landmarks to which the agent orients itself.

While some of these methods are also useful in cooperative multi-robot foraging systems, 

they tend to be utilized less than methods unique to swarm-based robotics.

The first main approach used in swarm-based foraging is an exception to the 

above generalization: beacons.  Beacon-following methodology characterized the earliest 

efforts at cooperative robotic foraging (e.g., [16, 41, 60] ), and persists in more recent 

research efforts [7, 43].  Beacon and beacon chains emerged as an initial solution method 

in the early 1990s.  Goss and Deneubourg, [16], pioneered the field of cooperative 

foraging, or “harvesting,” in 1992 with one of the first discussions of this topic.  Drawing 

upon their experience in social insect behavior, Goss and Deneubourg simulated a group 

of mobile robots that form dynamic chains of beacons within the foraging field.  Their 

simulation results predicted that future attempts at physical implementation would 

succeed in efficient cooperative foraging.  The more common beacon-based approach is 

for each forager to broadcast a signal upon location of a group of targets.  Other robotic 
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agents are able to recognize the signal and engage in homing behavior to locate the 

“food” source.  Altenburg [60], one of the earliest researchers to conduct foraging 

experiments with real robots, designed a group of robots utilizing beacons and homing to 

achieve central-place foraging.  Sugawara, Sano, and Watanabe [7, 43] have conducted 

similar experiments with real robots to demonstrate swarm intelligence via successful 

foraging.  Beacon signals range from visible light [7, 43] to modulated infra-red (IR) [60]

to auditory communication [61].  Werger and Mataric [41] present a novel extension of 

beacon-based foraging by eliminating the need for a traditional signal.  Their approach 

consists of constructing physical chains of robots to guide foragers to targets.  Arranged 

and maintained only through touch sensing, the robotic chain functions as a hybrid of a 

beacon and a trail.  This hybrid technique of creating chains of foragers, studied 

theoretically in [58], represents a conceptual segue to trail-based approaches.

The fundamental problem in cooperative foraging is defining the nature of the 

inter-robot cooperation.  In general, some form of direct or indirect communication is 

employed to produce cooperation and improved task performance.  The method of trail-

based foraging moves further along the spectrum from direct to indirect communication.  

Scientists have long understood the effectiveness of trail laying and following in the 

foraging strategies of social insects, such as ants [62].  These biological swarms provide 

inspiration for recent work in robotic foraging.  Despite the large amount of theoretical 

simulation of trail-based foraging in robotics (e.g., [39, 40, 43, 58, 63]), which is 

discussed in more detail in Chapter 4, physical experimentation is much less developed.  

In fact, robotics researchers have yet to successfully demonstrate trail-based foraging in a 

physical system of robots.  One of the early attempts to perform robotic trail-laying and 
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following actually used toilet paper as the trail [64].  The greatest progress toward trail-

based foraging comes from the work of Russell et al., from Monash University in 

Australia, who studies trails with the general aim of improved mobile robot navigation.  

In a series of papers [24, 65, 66], Russell presents successful development of robots 

capable of laying and following two types of trails.  In both cases, the trails are designed

for use as short-lived navigational markers in a variety of applications.  Russell, [24],

describes the design and testing of robots capable of laying and following a heat trail.  

The heat trail is generated by an on-board quartz-halogen lamp directed toward the floor 

by a parabolic reflector.   This trail is detected by a pyroelectric sensor sensitive to infra-

red energy emitted by the heat trail.  These robots were demonstrated to successfully 

follow the heat trail up to 10 minutes after application.  Russell notes in conclusion that, 

despite a successful demonstration, the halogen heat source “is a considerable power 

drain for a mobile robot” [24], p. 431.  Deveze et al., [65], and Russell, [66], suggest the 

use of chemical markers as “virtual umbilical trails indicating the route back to their 

starting position” [66], p. 5.   The chemical marker or odorant, camphor, is chosen for 

non-toxicity, invisibility, safe use on floor materials, and slow sublimation rate.  Each 

robot was also equipped with a piezoelectric quartz crystal gravimetric sensor, allowing 

the robot to track the odor trail with considerable accuracy.  The main drawback of this 

approach, as acknowledged by the author(s), is the slow response time of the chemical 

sensor (several seconds).   While neither of these demonstrations attempted to display 

group foraging using trail-laying and following, they represent the most advanced 

examples of robotic trail-based navigation.
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Along the continuum from direct to indirect communication, the far extreme of 

indirect communication is represent by “stigmergy.”  Stigmergy refers to indirect 

communication through the environment, which is also termed “implicit communication" 

[57] .  A more precise definition, given in [12], identifies stigmergy as “the production of 

a certain behaviour in agents as a consequence of the effects produced in the local 

environment by previous behaviour” (p. 181).  This term has been adopted from the 

biological swarm intelligence community, where the term originated in 1959.  A French 

biologist, Grasse, gave this name to the emergent cooperation observed in nest building 

of termites [67].  The most conservative view does not consider trail laying and following 

as an example of stigmergy, due to the fact that the trails are deposited with the purpose 

of communication.  However, the concept has developed in time to include trail-based 

foraging as well as traditional insect corpse-gathering and some forms of nest 

construction.  Pure stigmergy--interaction through the environment without the intent of 

communication--is the inspiration for the third major method of swarm-based robotic 

foraging.  This method of foraging is actually adopted from observations of corpse-

gathering, not foraging, in insects.  Beckers, Holland, and Deneubourg [12] designed a 

robotic foraging system using pure stigmergy.  In order to collect a random distribution 

of pucks in an experimental foraging environment, the robots pick up or release each 

puck based solely on the local puck density.  In areas of low puck density, the robot has a 

high probability of collecting one or more pucks.  Where puck density is high, the robot 

tends to release all of its pucks.  In this manner, the pucks are eventually arranged in a 

single cluster.  Technically, this example does not fall under the heading of central-place 

foraging, due to the fact that the pucks are not clustered in a predetermined location.  
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Despite this caveat, the multi-robot system forages successfully and achieves cooperative 

behavior with completely indirect communication.

Subsection 2.7.4: Clustering and Sorting

The task of cooperative sorting in swarm-based robotics is closely related to 

foraging.  In fact, many sorting experiments emerge from robotic demonstrations of 

foraging [12], or vice versa.  Both tasks take direct inspiration from the behavior of social 

insects.  While foraging corresponds directly to biological food searching, sorting reflects 

a variety of clustering behaviors.  For example, the brood sorting or corpse gathering 

behaviors of ants and termites are well-documented [8, 62, 68-72].  This body of 

literature observes the efficiency of sorting with only stigmergic cooperation.  

Deneubourg et al. [25] laid the theoretical groundwork for a swarm-based robotic sorting 

system.  Basing their analysis on biological data, these authors developed a simple 

probabilistic model of collective sorting and generated simulations of robotic swarms 

performing similar tasks.  More recently, two groups of researchers have sought to 

implement sorting with real robots [26, 73].  Martinoli, Ijspeert, and Mondada [73] use 

the popular Khepera mobile robots to achieve cooperative sorting under the influence of 

probabilistic behavioral control.  The sorting takes place according to a probabilistic 

model very similar to that of [25] and [12].  Clusters of items are incremented or 

decremented on the basis of local item density and cluster geometry.  These simple rules 

are sufficient in [73] to generate a single cluster of 20 objects in approximately 3 hours 

using 10 Khepera robots.  The work of Melhuish, et el., [26] represents the first 

successful demonstration to date of robotic sorting of two dissimilar types of targets.  
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Using red and yellow plastic discs as targets, Melhuish’s group of robots achieved 

segregated clustering in the span of several hours.  While the task efficiency (as measured 

by completion time) is fairly low in this experiment, it is an important first step toward 

more efficient swarm-based sorting.  Cooperative sorting of dissimilar targets promises to 

soon be an area of greater research focus.  In fact, Bonabeau, [68], issues challenges to 

the swarm intelligence community for future robotics research on the topic of swarm-

based sorting.

Subsection 2.7.5: Miscellaneous Applications

Although the majority of swarm-based robotic tasks lie within the bounds of one 

of the above categories, a number of isolated special cases exist in the literature.  These 

outliers compose a group of other miscellaneous tasks related to swarm intelligence.  

Some of the interesting tasks being studied are:

• Self-replication (started by [3]; see Ch. 6 of [68] and references therein)

• Reconfigurable robots ([74, 75])

• Odor localization ([76, 77])

• Geographical exploration and map-making ([1, 22])

• Military reconnaissance and surveillance ([48, 78])

Section 2.8: Conclusion

The conceptual and historical roots of swarm intelligence have been presented 

from the perspective of cooperative mobile robotics.  A number of popular control 

architectures were described; the most significant of these is Brooks’ behavior-based, 
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subsumption, approach.  Physical morphologies were described and compared, as well as 

a brief discussion of learning in multi-robot systems.  Finally, the canonical tasks for 

robotic swarms were discussed, with particular focus on foraging.
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Chapter 3: Biological Inspirations

At this point, the reader is reminded that two complementary disciplines converge 

at the point of swarm intelligence.  The engineering background of the field has been 

discussed, leaving the important biological inspirations for swarm-based systems.  The 

term swarm naturally evokes thoughts of living systems such an angry beehive.  This 

biological association makes perfect sense when one remembers the influence of natural 

systems on pioneering robotics researchers such as Beni [5], Brooks [10], et al.  Within 

the ethology community, swarm intelligence is part of a broader class of phenomena 

know as self-organization (SO).  Self-organization and swarm intelligence are sometimes 

used synonymously, but the former term is less common outside of the biological 

community.  Swarm intelligence can be considered to be the application or engineering 

branch of self-organization research.  Due to the predominant usage of the term self-

organization in the ethology literature, this term will be preferred in the remainder of this

chapter.

Section 3.1: Self-Organization in Biological Systems

Subsection 3.1.1: What is Self-Organization?

In their authoritative book on self-organization, Camazine et al. present the 

following definition of SO:

Self-organization is a process in which patterns at the global level of a system 

emerge solely from numerous interactions among the lower-level components of 

the system.  Moreover, the rules specifying interactions among the system’s 
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components are executed using only local information, without reference to the 

global pattern. [70], p. 8

This definition attempts to be as precise as possible while maintaining generality to 

include the wide array of manifestations of self-organization.  The multitude of examples 

of SO is attested to by the origins of the term itself.  A few examples are sand grains 

forming rippled dunes, swirling spirals emerging from chemical reactants, cells 

generating highly structured tissues, geese flying in a V-shaped formation, fish traveling 

in schools, and, of course, a host of examples from bees, wasps, ants, and termites.  

Biological scientists actually adopted the term after its introduction in the context of 

physics and chemistry.  It was introduced to describe the emergence of macroscopic 

patterns and structures out of processes and interactions defined at the microscopic level 

[68].  Ethologists later extended the term to apply to a wide range of collective 

phenomena in animals, especially social insects [69].  Yet another definition from 

Bonabeau and the Brussels group (Theraulaz, Deneubourg, and Camazine) focuses more 

directly on ethological SO:

[SO] does not rely on individual complexity to account for complex 

spatiotemporal features that emerge at the colony level, but rather assumes that 

interactions among simple individuals can produce highly structured collective 

behaviours. [69], p. 188

 Before moving on to discuss how self-organizations works, it is important to clarify the 

definitions provided for SO.  The terms “complexity” and “patterns” have been supplied 

as descriptors of global system characteristics in a self-organized system.  These terms 

can be rather nebulous, requiring further elaboration and specification.  First of all, 
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complexity is a relative term in these definitions [70].  Self-organization produces 

complex behavior or complex patterns compared to the complexity of the individual 

agents producing the global organization.  In social insects, the complexity of an 

individual is simply insufficient to explain the organization, flexibility, and robustness 

exhibited in an insect colony.  The concept of a pattern is another potentially ambiguous 

term found in definitions of SO.  Whether a pattern is composed of living units or 

inanimate objects from the environment, it is always an organized arrangement of objects 

in space or time.  In SO, these patterns emerge without any direction or orchestration 

from external influences.  Examples of biological patterns include raiding columns of 

army ants, synchronous flashing of fireflies, termite mounds, pigmentation patterns on 

shells, etc. [70].  The next subsection moves from defining self-organization to 

understanding the mechanisms that produce system complexity from local simplicity.

Subsection 3.1.2: Mechanisms of Self-Organization

It has been established while defining self-organization that system complexity is 

produced through many interactions between individuals.  Therefore, the first and most 

important mechanism of SO is interactions.  The nature of these interactions is the key to 

investigating any self-organized system.  Two general forces influence the frequency of 

these interactions: positive and negative feedback.  Finally, self-organized systems often 

rely on the potential benefits of random fluctuations.  Together, the following four 

elements are the major mechanisms of SO:

1. Interactions

2. Positive Feedback
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3. Negative Feedback

4. Random Fluctuations

These four mechanisms are discussed below in further detail.

Interaction is the only essential mechanism required for self-organization or 

swarm intelligence.  The nature and extent of interactions between individuals varies, but 

their existence is a clear prerequisite for the complex system behavior evident in self-

organized systems.  In biological systems, these interactions often allow an individual to 

obtain the information used to determine a response.  Gathering information from an 

interaction is generally a result of some type of communication with nearest neighbors.  

In the case of flocking (and many other examples), however, the local information 

obtained in each interaction is simply the position (and possibly velocity) of a handful of 

nearest neighbors.  This information is sensed directly; there is no need for each neighbor 

to communicate directly or indirectly.  It is also unnecessary to leave some sort of 

environmental marker to communicate via the environment.  In cases such as these, 

sensing information during an interaction is sufficient to produce complex system 

behavior.  In most other cases, the information is gained through communication intended 

to convey information, or direct communication.  A clear example of this type of 

interaction is the well-known dancing performed by some species of bees.  When a 

foraging individual returns to the hive laden with nectar, it performs a “dance” that 

conveys the approximate location of the food source [69, 70, 79, 80]  Often, however, the 

interaction and communication take place indirectly.  This is the case in the trail-laying 

and following behavior of many species of ants [62].  Trails are laid with the intention of 

conveying directional information to other ants, but the communication is indirect in the 
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sense that a trail is neither individual-specific nor time-specific.  It can be followed at any 

time (until it evaporates) and by any individual forager.  Another type of interaction 

produces information transfer through the environment.  This has also been referred to as 

implicit communication, or, more commonly, stigmergy.  Derived from the Greek stigma

(sting) and ergon (work), Grasse introduced the term in his studies of task coordination 

and nest reconstruction of termites [67-69].  In termite-mound building, an individual 

termite is more likely to release a grain of building material on a preexisting mound.  

Each builder is also more likely to pick up a grain of dirt or sand in a flat area.  In this 

way, each termite responds to the actions of other termites through the environment, and 

complex nest structures result [68].

Positive feedback, or amplification, is a common mechanism in self-organized 

systems.  Positive feedback promotes radical changes in the system by taking an initial 

change and reinforcing it in the same direction.  An important example of positive 

feedback, or autocatalysis, is found in the trail-based foraging of ants [62, 70, 81].  When 

a single forager discovers food, it leaves a pheromone trial while returning to the nest.  

Other ants follow this trail from the nest to the food source and reinforce the initial trail 

as they return home.  In turn, more foragers leave the nest and so on.  As a result of 

positive feedback, the pheromone concentration of the trail increases rapidly, as does the 

number of ants leaving the nest.    

Negative feedback balances the effects of positive feedback and stabilizes 

collective patterns.  The catalytic nature of positive feedback requires an opposing force 

in most cases.  Otherwise, systems could commit unreasonable amounts of resources to a 

particular activity.  In fact, negative feedback often occurs due to depletion of limited 
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individual or system resources.  Negative feedback takes forms such as saturation, 

exhaustion, overcrowding and/or competition.  Returning to the example of foraging ants, 

negative feedback stems from a limited number of available foragers, colony-level 

satiation, food source exhaustion, local crowding at the food source, competition between 

food sources, and/or pheromone evaporation [68]. 

Random fluctuations are surprisingly common in biological systems that exhibit 

self-organization.  Many of these systems actually rely on certain stochastic elements for 

behavioral flexibility. The amplification of these random fluctuations (random walks, 

errors, etc.) allows for the discovery of new solutions as well as acting as seeds from 

which new structures can nucleate and grow.  An excellent example of this is caused by 

stochastic trail-following in ants.  It is well-known that ants follow trails imperfectly, 

especially trails with low pheromone concentrations [71, 82].  When an individual loses 

the trail and becomes “lost,” it has the potential to “stumble across” an undiscovered 

source of food [83].  This could be a better (e.g., closer, richer, larger) food source than 

that currently being exploited by the colony.  Clearly, random fluctuations are vital to 

efficient self-organization.

Subsection 3.1.3: Characteristics of Self-Organization

After discussing the internal mechanisms of self-organization, the perspective 

now shifts to an external, global viewpoint.  The mechanisms of interaction presented in 

the previous section arise from the perspective of an observer focusing on individual 

behavior.  Identifying global characteristics of these systems requires a much broader 

perspective—that of an external observer viewing the result of interactions, rather than 
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the interactions themselves.  Three primary characteristics of any self-organized 

biological system are presented below:

• Emergent Pattern Formation – As discussed above, the creation of 

complex spatiotemporal structures in initially unstructured media is 

omnipresent in self-organized systems.  The term “emergent” refers to a 

property that arises “…unexpectedly from nonlinear interactions among a 

system’s components” and that “…cannot be understood as the simple 

addition of their individual contributions” [70], p. 31.

• Multistability – The possible coexistence of multiple possible stable states, 

or attractors, is known as multistability.  Depending on the initial 

conditions in a self-organized system, there can be a number of stable 

states to which the system evolves.  A range of initial conditions 

corresponding to a particular stable state is a basin of attraction for that 

state, or attractor.  For example, in ant colonies utilizing mass recruitment 

where two equal food sources are present, the colony tends to exploit one 

of the two sources.  There are two stable states; the one that is actually 

chosen depends partly on randomness, but also on whichever source is 

discovered first [84]. 

• Bifurcations – Dramatic changes in system behavior, or bifurcations, 

occur in many self-organized systems.  Camazine at al. define bifurcations 

as “the appearance of a qualitative change in behavior when a parameter-

value changes quantitatively” [70], p. 33.  In response to variations in 

certain system or environmental parameters, a system can switch from one 
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state to another through bifurcation phenomena [85].  Bonabeau and 

Cogne [86] contend that some biological systems ensure adaptability by 

maintaining themselves in the vicinity of a point of instability (a 

bifurcation point). 

Section 3.2: Microscopic Organisms

Self-organization has been observed even on the simplest biological scale: 

microscopic organisms.  Much of the research in this area relates to the human immune 

system.  Since there are several main types of microorganisms within the immune 

system, it can be considered a heterogeneous system of self-organization.  The key 

elements of the human immune system are lymphocytes (B-cells and T-cells), antibodies 

and antigens [87].  In a very simplified explanation, the lymphocytes produce antibodies

and the antibodies recognize and eliminate antigens, which are unwanted infectious 

agents.  The human immune system of an adult male contains over a trillion lymphocytes, 

which together utilize about 1020 antibody molecules [23].  Via countless interactions 

between these cells, the human immune system is able to self-organize in response to the 

dynamic environment that is the human body.  Recognizing this efficiency, robotics 

researchers have developed swarm-based robotic systems using the human immune 

system as a model [23, 87-89].

Various species of unicellular organisms—bacteria, myxobacteria, myxomycetes, 

and cellular (amoebic) slime molds—exhibit remarkably complex system behavior 

despite the clear lack of individual intelligence or planning ability.  Myxobacteria, for 

example, are predators that feed on other microorganisms.  They travel in large clusters, 
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or swarms, that demonstrate highly coordinated overall movement.  In some species, 

periodic waves of movement, or ripples, have been observed [70].  Many types of 

bacteria create highly complex spatial patterns when grown on agar plates.  Eschera coli, 

Salmonella typhimurium, Bacillus subtilis, and other species produce patterns such a 

spirals or concentric rings under specific environmental conditions [70].  The classic 

example of unicellular self-organization is that of the slime mold.  These amoebas exist 

independently when food is plentiful, but during times of starvation, they aggregate into 

one cluster that begins to act as a multicellular creature [70, 84].  This creature, known as 

a “slug,” composed of 10,000 to 100,000 cells, sometimes develops a well-defined body 

and even reproduces.  Studies have shown that this process occurs in a completely 

homogeneous group; that is, there are no specialized “leader” slime molds [90].  The 

process of slime mold aggregation is one of the most complete examples of self-

organization in any biological system [84].

Section 3.3: Social Insects

Subsection 3.3.1: Foraging

Ant colonies have come to be viewed widely as a prototypical example of how 

complex group behavior can arise from simple individuals [84].  For this reason, the 

behaviors of ant colonies have been studied with far more intensity than those of any 

other social insect.  This trend is also due to the ease of observing and experimenting 

with ants.  They are readily visible and respond well to testing in laboratory situations.  

Ants are robust in their behaviors, meaning that fundamental changes do not occur when 

their environment is altered slightly for observation or testing.
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OVERVIEW

Foraging behavior in ants occurs in a wide variety of strategies, with several of 

these strategies exhibiting characteristics of self-organization.  Some species utilize a 

combination of these strategies, depending on environmental conditions such as food 

availability and distribution [91-93].  This adaptability in ant foraging systems is 

discussed later in this section.  Other species exclusively employ a single foraging 

method.  A number of authors have attempted to classify the multitude of foraging 

methods used by ants, with two classic works containing the most important 

classifications [62, 94].  Oster and Wilson provide a fairly broad classification, 

identifying five basic foraging methods.  These methods are presented below in Table 3.

Table 3. Foraging Methods Used by Ants (adapted from [94], pp. 248-251)

Foraging Method Description

I
Workers leave the colony singly and retrieve prey and other food 

items as solitary individuals.

II

Solitary foragers signal the location of the food to nest mates by 

means of odor trials, ritualized “dances,” or some other mode of 

directional communication.

III
Foragers move away from the nest along trunk trails, departing at 

intervals to search unmarked terrain as individuals.

IV
Solitary foragers recruit fellow workers to a food source using 

odor trails; the group then assaults or collects the food as a group.

V
Workers proceed from the nest in bands or entire armies of 

individuals to engage in group hunting.

Holldobler’s The Ants [62], which has become the Bible of myrmecology (the study of 

ants), provides a more thorough system of classification.  Holldobler’s classification is 
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preferred in this work for its thorough treatment of all observed strategies.  This system 

of organizing the foraging methods breaks all phenomena into three categories: hunting, 

retrieving, and defense.  Three to four possibilities exist within each of these categories, 

presenting the possibility of 48 possible three-state foraging strategies.

Hunting

(1) by solitary workers

(2) by solitary workers directed to search sectors by trunk trails

(3) by groups of workers searching together

Retrieving

(1) by solitary workers

(2) by individuals who return home along trunk trails

(3) by individuals recruited to a food source by scouts

(4) by groups of workers who carry items as a group

Defense

(1) by guard workers during hunting

(2) the absence of such defense

(3) by guard workers during harvesting/retrieval

(4) the absence of such defense

While a full accounting of ant foraging strategies has not been completed, 

Holldobler suspects that virtually all of the 48 strategic combinations are employed in 

some species of ants [62].  In the remainder of the discussion, attention will be focused 

on the first two categories: hunting and retrieving.  Combinations of techniques from 

these categories represent fairly complete systems of behavior, with defensive strategies 



47

coming into play only in the event of an attack of some sort to the foragers.  Defensive 

behavior is also less related to self-organization, so it will be overlooked in this 

investigation.  The following two subsections will look more closely at hunting and 

retrieving strategies, respectively.   

HUNTING

Hunting techniques range from solitary exploration to group raids.  Where each 

species falls on this continuum depends on factors such as the size of the colony, the 

climate, and the nature of the food.  It is important to note that, while “hunting” connotes 

the active tracking and elimination of live prey, it is used in a more general sense in this 

context.  Hunting also refers to the more common situation of searching for inanimate 

food items.  Colonies most often employ solitary foragers in situations where the food 

distribution is characterized by a large number of widely distributed small food items 

[92].  This type of hunting is also referred to as diffuse foraging, due to the more or less 

random “diffusion” of workers from the nest [94].  In many species, such as Cataglyphis 

bicolor, solitary foragers set out from the nest in a generally straight line extending 

radially from the nest in a specific direction [62].  Initially, this direction is selected at 

random, but an individual worker tends to maintain a generally constant foraging 

direction on successive forays, especially if food was located on a prior trip.  A particular 

direction will be abandoned if many unsuccessful trips fail to locate food, but an 

individual tends to persist in one or a very few directions throughout their lifetime [62].  

Random fluctuations in foraging direction have been proven to improve deployment 

efficiency.  Unpredictable deviations from the previous path “increase the chance that the 

workers will strike food items missed in earlier efforts” [62], p. 245.  This type of 
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hunting, combined with solitary retrieval, is thought to be the most primitive method in 

evolutionary terms [94]. 

The next type of hunting, which relies on trunk trails, has been studied 

extensively in the self-organization community [68, 70, 95-98].  Harvester ants are one 

species that utilize trunk trails to direct solitary foragers [62].  This species tends to 

exploit patchy food supplies with limited spatial distribution.  Therefore, trunk trails 

leading to regions of locally high food density represent an effective biological adaptation 

of foraging behavior.  Individual workers stray from the trunk trail to forage in the local 

vicinity for items of food [94].  Their chances of finding food are increased greatly by 

straying short distances from the trunk in short looping patterns.   

African army ants are famous for their raids composed of millions of completely 

blind workers [70, 94].  The raid system is composed of a dense swarm front, a large 

delta-shaped region of intermediate trails, and finally one principal trail leading back to 

the nest.  The swarm front is linked by a series of looping trails back to reinforcements 

arriving along the main trunk trail.  Despite the rapid dynamic growth of such swarming 

raids, the trail is surprisingly stable.  In a single day, an E. burchelli raid can travel over 

100 meters through the jungle with very high trail fidelity [70].  While the details are not 

fully understood, scientists know that individuals periodically deposit pheromones along 

the trail, creating a stable trunk of high pheromone concentration through the mechanism 

of positive feedback.  This is the clearest and most impressive example of ants hunting in 

groups.  
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RETRIEVAL

Prey (or food) retrieval is the second major category of foraging techniques.  As 

presented above, there are four major retrieval techniques: (1) by solitary workers, (2) by  

individuals who return home along trunk trails, (3) by individuals recruited to a food 

source by scouts, and (4) by groups of workers who carry items as a group.  The first of 

these four cases is the simplest technique, as it requires absolutely no cooperation 

between individual workers.  A worker simply locates a food item and navigates toward 

the nest without the aid of pheromone trails or any other assistance from the colony.  

Navigation on the trip home is achieved in a number of ways [84].  Visual cues 

sometimes play a role, as ants can reference the sun, moon, physical landmarks, or an 

image of the forest canopy for orientation [62, 93].  In some other species, it is believed

that memory alone allows for navigation, although this hypothesis has not been solidly 

established [62].  

Trunk trails were described above in reference to hunting techniques.  The 

existence of trunk trails makes prey retrieval a trivial task.  These well-defined ant 

“highways” make the homing process very simple.  Even in the case of the blind African 

army ant, homing is accomplished with high accuracy and speed by following the main 

trunk trail back to the nest.

The third retrieval category and, to some extent, the fourth, both assume that some 

type of recruitment has taken place.  Group transport of a food item can occur without 

recruitment in the case of hunting in groups, as described above.  This is the only 

exception to the use of recruitment, which is the predominant foraging method.  

Recruitment, in one form or another, is extremely common in ants and can be found in 



50

nearly every species.  Recruitment is also the basis for the majority of investigation into 

self-organization in ant foraging.  For this reason, recruitment is presented as a separate 

topic below.  In that context, the two remaining retrieval strategies are covered.  

RECRUITMENT

Recruitment strategies represent the most highly-evolved prey and food retrieval 

mechanisms in the insect world.  Recruitment is defined as “…communication that brings 

nestmates to some point in space where work is required” [62], p. 265.  This definition 

includes recruitment utilized for colony defense, nest construction and repair, emigration 

to new nest sites, and a variety of other colony activities.  However, this discussion of 

recruitment will be limited to the context of foraging.  Holldobler divides the various 

types of foraging recruitment into four groups [62], which are outlined below:

(1) Tandem Running – First, an individual worker returns to the nest after finding 

a food source.  This worker employs tactile and/or visual stimulation to invite 

one worker on the journey back to the food source.  On the return trip, the two 

run in tandem, maintaining close physical contact during the entire trip.  As 

positive feedback takes effect, the number of foragers doubles on each 

successive trip (assuming that the food source does not become exhausted or 

overcrowded, which introduces negative feedback).

(2)  Group Recruitment – Similar to tandem running, a laden worker returns to the 

nest and signals mainly via touch to invite a group of 2-10 nest mates to the 

source [93].  The recruiter then leads this group to the food source, often while 

depositing a pheromone trail.  Other workers do not follow the trail without 



51

tactile stimulation and an escort from a recruiter.  This type of recruitment is 

common in species employing cooperative group transport.  

(3) Trail-based Group Recruitment – This process is closely related to the 

previous technique, but with less dependence on leadership behavior.  The 

recruiter conducts similar invitation behavior to a group of recruits at the nest 

after laying a pheromone trial from the source to the nest.  In most cases, the 

leader returns to the food source, but this is not necessary for other recruits to 

follow the trail.  Workers that did not witness the invitation behavior will 

rarely follow the trial.

(4) Mass Recruitment – In the early 1960s, entomologists first discovered mass 

chemical communication in ants, which is one of the most complex forms of 

social behavior in the social insects [62].  A worker lays a pheromone trail 

back to the nest and continues foraging (usually by following its own trail).  

There is no ritualized display, tactile, or acoustical communication with other 

workers at the nest.  The pheromone trail alone provides sufficient impetus to 

draw foragers from the nest to the food source [86].  Other workers foraging 

in the field also follow the trail if they wander into its active space.  Those 

workers who begin following the trail at some intermediate point need some 

way of knowing which way leads to the food source.  This binary decision is 

made either through a priori knowledge of the direction of home (based on 

navigational cues, memory, etc.) or by encountering other workers along the 

trail.  If a worker is met head-on laden with food, the trail-follower interprets 

this information to understand that it is headed in the correct direction.  It has 
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been established that directional information is most likely not encoded in 

pheromone trials [62].

Recruitment is sometimes simply regarded as a method of assembling many workers in a 

specific location.  That is hardly the case; rather, sophisticated foraging recruitment, such 

as mass recruitment, actually enables the colony to make decisions through the 

mechanisms of self-organization [70].  Ant colonies are able to collectively choose the 

most profitable food source from among a number of options, using only positive and 

negative feedback, and amplification of random errors.  Consider the example simulated 

by Resnick in [84]:

So what happens when ants are released in an environment with three food 

sources?  In some ways, it is helpful to think about the food sources as 

competitors, each trying to attract a stable trail of ants.  In this competition the 

food source closest to the nest has two advantages: it is the one most likely to be 

discovered in a random walk from the nest, and it has the lowest critical density 

(that is, it needs the smallest number of ants to form a stable pheromone trail).  So 

as the ants march out of the nest and explore the world, the…colony’s first stable 

trail is likely to go to the closest food source.  Once an ant joins a stable trail, it is 

unlikely to leave…so ants on the stable trail are taken out of circulation.  

Assuming a fixed supply of ants, there are fewer free ants remaining to explore 

and form trails to the other food sources. …But once the closest food source is 

fully depleted, the situation changes.  The pheromone trail to that source 

dissipates, freeing the ants that had been gathering food along that trail.  After 

that, there are again enough ants to form a new trail.… In this way the colony 



53

exploits the food sources one by one, in a seemingly planned fashion, moving 

outward from the closest food source to the most distant.[84], p. 67

In this example of three food sources at different distances from the nest, we see all of the 

major mechanisms of self-organization (positive feedback, negative feedback, and 

amplification of random errors) producing the characteristics of emergent pattern 

formation, multistability, and bifurcation phenomena.  Positive feedback initially 

catalyzes the random discovery of a food source [81], creating the initial pheromone trail.  

This trail is reinforced by positive feedback, generating the emergence of a pattern in the 

form of the stable trail.  This pattern formation could occur at any one of the three food 

sources, with unequal probabilities.  Each stable trail is possible, representing three 

possible stable states—multistability.  Negative reinforcement caused by pheromone 

evaporation and food source exhaustion allows the system to pass through a bifurcation 

point, observed as a rapid shift in behavior from focusing on one source to again 

searching for a source to exploit [85].  Experimental and theoretical studies have 

reproduced this type of collective decision-making, proving the self-organization allows a 

colony to choose between sources on the bases of distance, quality, and/or inter-colonial 

competition [70, 82, 85, 86, 99].  It becomes clear, even in such a simple example, why 

mass recruitment is one of the purest examples of self-organization [70].

COMMUNICATION

All forms of recruitment inherently require some type of communication between 

individuals.  Ants have the ability to communicate via a number of modes, most of which 

are employed in recruitment behavior.  The above discussion of the types of recruitment 

intentionally simplified the details of communication.  The aim of this section is to 
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present the various ways in which ants perform the communication necessary for 

recruitment.  The major types of communication used by ants are chemical, tactile, 

visual, and acoustical.

Chemical communication is by far the most common form of communication 

used by ants for any purpose.  Holldobler notes that an average ant colony possesses 

between 10 and 20 kinds of signals, with most being chemical.  He contends that 

“…pheromones play the central role in the organization of ant societies” [62], p. 227.  It 

is extremely important for a number of colony functions, including worker recruitment in 

foraging.  Of course, in mass recruitment, workers rely solely on chemoreception to 

obtain information regarding the location of a food source.  The primary means of 

chemical communication is pheromonal deposition and sensing.  Mandibular 

regurgitation and fecal odor sometimes convey information, but pheromones are far more 

important.  Pheromones are a type of semiochemical.  A semiochemical is defined as 

“…any substance used in communication, whether between species (as in symbioses) or 

between member of the same species” [62], p. 227.  A pheromone is somewhat narrower 

in meaning: “A pheromone is a semiochemical, usually a glandular secretion, used within 

a species” [62], p. 227.  These chemicals can be classified as either olfactory or oral, 

according to the site of their chemoreception.  Individual workers follow the “vapor 

tunnel” created by evaporation and diffusion of the deposited pheromone.  A semi-

ellipsoidal-shaped active space exists surrounding the central liquid trail, within which 

ants are able to detect the presence of a pheromone.  The size of this active space depends 

on trail evaporation, diffusion rate, and the threshold concentration at which an individual 

responds.  Workers have sensitive chemoreception systems, allowing them to move up 
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gradients of molecular concentration, a process of orientation known as osmotropotaxis 

[62].  Intensive study of ant physiology has also uncovered the anatomical origins of 

many of the chemical systems.  Without going into unnecessary detail, it is sufficient to 

identify the hindgut and midgut as the production sites for most recruitment-related 

pheromones [100, 101].  The Dufour’s gland is particularly important in pheromone 

production [93].  Trail-laying behavior in ants often consists of pheromone production in 

the Dufour’s gland, followed by deposition via the anus.  Myrmecologists suspect that 

trail-laying behavior may have evolved as an adaptation from defecation [62].  Early ants 

may have responded to the odor of fecal matter deposited by workers returning from a 

source of food.  This unintentional communication may have developed into the 

production of highly-specialized pheromones as a recruitment strategy.

Tactile communication, while far less important than chemical, is commonly used 

in recruitment strategies.  In all recruitment types other than mass recruitment, tactile 

communication plays a potential role.  The invitation behavior commonly seen in tandem 

running or group recruitment is commonly characterized by tactile communication [93].  

When a worker ant returns to the nest laden with food, it signals to recruits by tapping 

“the nestmate’s body very lightly and rapidly with her antennae, often raising one or both 

forelegs to touch the nestmate with these appendages as well” [62], p. 258.  The recruiter 

then commences in leaving a trail and/or physically leading one or more followers to the 

food source.  Experimentation has shown that workers will not follow the recruiter in the 

absence of this tactile communication (see [62, 101], and references therein).  In the case 

of tandem running, the leader and follower communicate continuously along their 
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journey back to the food source.  If contact is broken between the two, the leader will 

stop and wait for contact to be reestablished before continuing.

Visual communication at any range beyond one or two body lengths has not been

documented in any species of ants, despite the excellent vision and motion recognition in 

some species [62].  In recruitment behavior, extremely short range visual signaling 

sometimes accompanies the tactile signals described above.  Invitation behaviors 

sometimes include ritualized dances characterized by jerking movements intended to 

resemble turning toward the food source [94, 101].  These behaviors are always 

accompanied by tactile stimulation, however, making visual communication of only 

minor importance.

Acoustical communication is much less developed that chemical or tactile 

communication in ants, but some species do generate sound to accompany other forms of 

recruitment communication.  Acoustical communication takes two forms: drumming and 

stridulation.  Drumming describes the rhythmic beating of an ant’s body on the substrate 

(soil, clay, tree branch, etc), while stridulation results from the rubbing together of

specialized body parts to produce a “chirp” like a cricket [93].  In both drumming and 

stridulation, communication is far more effective on firm ground.  This is because of the 

heightened ability of ants to detect vibration via a solid substratum compared to their near 

deafness to airborne vibration.  In species such as Aphaenogaster, Leptogenys, and 

Messor, acoustical signals enhance the effectiveness of pheromones during recruitment 

[62].    
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ADAPTABILITY IN FORAGING 

One of the defining characteristics of foraging behaviors in ants is adaptability.  

Ant colonies are well-known for their ability to adapt to a variety of changes in the 

environment.  While some species of ants utilize only one method of foraging, most 

species employ a number of variations, depending on a number of external factors [62].  

Some types of ants, such as the African weaver ant, utilize more than five distinct 

foraging strategies [101].  A number of researchers have explored the capability of ant 

colonies to respond collectively to environmental conditions.  Studies of the European 

harvester ant, for example, show that solitary foraging is employed for initial discovery 

of food sources and for collection of widely distributed seeds.  However, upon discovery 

of a large food source, or in the case of sparse seed distribution, a recruitment system is 

used.  This type of adaptation ensures that resources are not wasted in conditions of 

meager food availability.  Three species of desert ants demonstrate similar behavior in 

response to variable food density.  They also modulate the number of active foragers 

according to altitude and season of the year [92].  Beckers, Deneubourg, and Goss, [99],

and Holldobler, [62], discuss modulation of pheromone trail intensity based on food 

source quality.  When returning from a rich food source, ants were shown to deposit more 

pheromone than on a return trip from an average food source.  Trail networks have even 

been shown to transition from well-defined trunk trails to more traditional recruitment 

networks [81, 97].  Bonabeau and Cogne suggest a possible mechanism behind such 

adaptations, showing that ant colonies may maintain responsiveness to the environment 

by allowing certain colony-level parameters (e.g., the number of active workers) to 
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oscillate in time [86].  Foraging adaptability is very common in ant species, as it provides 

for increased foraging efficiency.

Subsection 3.3.2: Sorting

The efficiency with which insects perform the related tasks of clustering and 

sorting has stimulated researchers to design new swarm-based algorithms for data 

analysis and graph partitioning [68].  Both clustering and sorting are found 

predominantly (and studied most thoroughly) in ants.  Several species are known to 

cluster corpses within the nest to form a “cemetery.”  Others sort larvae into several piles 

based on the age and size of each larva.  While neither of these behaviors is fully 

understood, simple models in the vein of self-organization have generated similar 

patterns to those found in ant colonies [68].  These models hypothesize that clustering 

and sorting occur when agents move randomly in space and pick up or deposit items on 

the basis of local information.  Observations of corpse clustering in Lasius niger, Messor 

sancta, et al., suggest that positive feedback is the dominant mechanism behind clustering 

[68].  Workers tend to deposit each corpse near another corpse or pile of corpses.  In 

another example of stigmergic coordination, hundreds or thousands of ants interact 

through the environment in this manner to produce larger and larger piles or corpses until 

one or a very small number of piles remains.  A somewhat more complicated 

phenomenon is brood sorting.  Like cemetery formation, this behavior is widespread in 

ants, but it has only been studied intensively in Leptothorax unifasciatus.  Workers of this 

species sort the larvae generally according to size and developmental progress.  Eggs and 

prelarvae are clustered in the center of the area, medium larvae in the middle, and large 
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larvae and prepupae around the perimeter.  This clustering occurs by allocating different 

amounts of space to each type of larva.  Eggs, for instance, are deposited with the 

minimal amount of individual space separating it from neighboring eggs, resulting in a 

central, tightly-knit cluster.  A possible advantage to this type of spatial sorting is that 

items with similar needs are located together, facilitating efficient care of the developing 

ants. 

Subsection 3.3.3: Nest Building and Assembly

Bonabeau asserts that, among all of the activities of social insects, nest building is 

the most “spectacular” [68].  He makes such a claim based on the great difference 

between individual and collective ability.  Clearly, the ability of a single termite is 

dwarfed by the relative enormity and structural complexity of a termite mound.  The 

impressive ability of social insects to perform assembly is most clearly demonstrated in 

termites, wasps, and bees.  Each case is detailed further in the following paragraphs.

Mound-building behavior has long been studied, due in part to the awe-inspiring 

architecture of a large termite mound.  After all, it was the study of termite behavior that 

inspired Grasse’s creation of the term stigmergy.  Understandably, nest building in 

termites and other insects is the clearest example of stigmergic behavior in all self-

organized systems [68].  Camazine et al. [70] describe the mound of African termites as 

“air-conditioned skyscrapers immensely larger and arguably more sophisticated than the 

vast majority of human buildings” (p. 377).  Refer to [70] for a thorough description of 

the intricate internal structure of a termite mound.  If these termites and their mounds 

were scaled up to human size, the biggest would be “about a mile high…and five miles in 
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diameter” [102].  While the complete group of processes by which termites build these 

mounds is beyond the scope of this work, the building can be reduced to two fundamental 

activities: digging and building.  Combinations and variations in these activities result in 

mounds as high as six meters.  The basic script that enables coordinated digging and 

building in termites is stigmergic.  A simplified model of termite digging is described in 

[8].  The model suggests that digging progresses through positive feedback and stigmergy 

in the following manner.  A termite moves randomly about the nest, with some 

probability at each time step of extracting a soil particle.  When the particle is extracted, a 

pheromone is deposited that increases the probability of digging for future builders

(Figure 4).  

Figure 4. Stigmergy in termite digging (taken from [8], p. 125)

Pillar construction follows a very similar pattern, as described in [69].  The main 

difference in pillar construction is the existence of two behavioral phases.  The first 

phase, the non-coordinated phase, is characterized by a random deposition of soil pellets.  

At some point, one of the deposits (piles) reaches a critical size, initiating the coordinated

phase, during which this particular pile grows rapidly in size.  Again, one observes the 
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mechanisms of autocatalysis and amplification of random fluctuations.  Michael Resnick 

programmed a simple computer simulation of this building behavior that reproduced 

some of the complexity in termite pillar construction.  His observations of the non-

coordinated phase produced an interesting musing on the building behavior of termites:      

As long as a pile exists, its size is a two-way street: it can either grow or shrink.  

But the existence of a pile is a one-way street: once it is gone, it is gone forever.  

Thus a pile is somewhat analogous to a species of creatures in the real world.  As 

long as the species exists, the number of individuals in the species can go up or 

down.  But once all of the individuals are gone, the species is extinct, gone 

forever.  In these cases, zero is a “trapped state”: once the number of creatures 

in a species (or the number of wood chips in a pile) goes to zero, in can never 

rebound. [84], pp. 79-80

This reasoning led Resnick to understand the process by which the number of pillar 

nucleation sites steadily decreases in the non-coordinated phase. 

Wasps, like termites, produce complex nests known as combs.  Each nest is 

composed of a large number of cells arranged in parallel vertical tubes.  Cells are added 

sequentially by individual wasps, who build a cell at one of a number of potential 

building sites [70].  Certain building locations are preferred due to geometric factors that 

tend to maintain symmetry and even weight distribution in the nest.  Since the nests hang 

vertically from a single stalk, weight distribution becomes an important consideration.  

There are essentially three types of sites available for adding a cell, with each site 

distinguished by the number of adjacent walls available for attachment. The probability 

of building at a site with three adjacent open walls is far higher than the probabilities for 
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sites with one or two open walls [68].  These probabilities generate stigmergic 

cooperation that maintains progress toward a stable nest.

Figure 5. Potential building sites on a wasp nest (S1 = one side, S2 = 
two adjacent sides, S3 = three adjacent sides, taken from [70], p.423)

Comb construction and organization in honey bees is another excellent example 

of self-organization in social insects.  These spatial patterns are generated and maintained 

over the course of several individual life-spans, making it likely that individuals act based 

on local spatial and temporal information rather than memory [70].  A typical honey bee 

colony comprises approximately 25,000 adult workers, a single queen, as well as brood 

(eggs, larvae, and pupae) and accumulated food.  The brood and food are stored in wax 

combs that are subdivided into about 100,000 cells [79].  These cells are organized 

according to a distinct pattern of three concentric rings—a central brood area, a 

surrounding rim of pollen, and a large peripheral region of honey. The biological 

significance of this structure in terms of its benefit to the colony arises from 

thermoregulation of the brood and efficient locations of pollen and honey for feeding.  

The conventional explanation of this global phenomenon is a blueprint hypothesis.  
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Proponents of this view suggest that individuals have an understanding that each cell or 

region of cells is meant for brood, pollen, or honey.  The blueprint could be based on a 

temperature gradient from the center of the comb to the periphery, or it could be an innate 

function of instinct.  This hypothesis is not supported by experimental observations, such 

as the frequent deposition of pollen and honey outside of their appropriate positions [79].  

Camazine offers the main alternative view, which is based on self-organization theory.  

The self-organization hypothesis, which accurately reproduced the brood organization in 

simulation, describes the following process of pattern generation [79]:

(1) The central brood area develops from the queen’s attempts to lay eggs near 

one another.

(2) The brood area is continually freed of honey and pollen to allow egg-laying, 

which enhances the compactness of the center.

(3) Honey and pollen are initially both present on the periphery, but emptied 

pollen cells near the outer edge are more likely to be filled with honey due to 

the much higher collection rate of honey.

(4) The only place remaining for new pollen to be deposited is near the outer 

fringe of the brood.   In this narrow band, the removal of pollen and honey is 

very rapid due to the proximity to the brood.

Again, one observes that positive and negative feedback and stochastic elements generate 

complex spatial patterns.  Also, note that this complexity occurs only through stigmergy, 

the most elegant mechanism of self-organized systems. 
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Subsection 3.3.4: Cooperative Transport

Ants are well-known for their extremely high weight-to-carrying capacity ratio.  

An adult ant of the species Pheidologeton diversus, for example, is able to carry prey as 

heavy as 10 times its own body weight.  At approximately the same velocity, a group of 

100 of these ants carried an earthworm weighing 5000 times the weight of a single 

worker [68].  Working together, each ant managed a burden 50 times its own weight, 

representing a five-fold improvement in task efficiency.  A wide variety of ant species 

demonstrate similar cooperative transport behavior [62, 100, 103].  When an item of food 

is too large for a single forager to carry back to the nest, ant colonies have two options.  

In both cases, the solitary forager first returns to the nest to recruit nest mates.  

Depending on a number of factors, the recruits either cut the prey into smaller pieces or 

assist in cooperative transport.  There are two interesting elements of this behavior.  The 

first relates to the ability of an ant colony to automatically switch from solitary to group 

transport, which represents an example of a bifurcation in system behavior.  The second 

concerns the actual mechanisms of coordination employed by the ants cooperating in 

transport.  Studies in myrmecology have revealed that cooperative transport in ants is 

produced solely through stigmergy (see [68] and references therein).  In other words, the 

ants “communicate” only through the object being carried.   Each individual worker 

senses the forces applied to itself by the object that result from the summed forces of the 

other workers.  This allows cooperative transport to occur without direct communication 

between individuals.  Stigmergic cooperation in this task results in a prolonged period of 

organization early in the carrying process.  Initially, each worker ant involved in the task 

repositions itself several times around the item.  At some point, which is unpredictable in 
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experimentation, cooperative behavior emerges and the ants are able to carry the object.  

Presumably, the applied forces of the ants become balanced during this initial alignment 

phase. 

Section 3.4: Birds, Fish, and Mammals

Social insects are well known for their self-organized communities.  However, the 

rest of the animal kingdom possesses demonstrations no less convincing than those of 

ants and bees.  The primary difference in higher animals is cognitive ability; animals with 

some reasoning ability sometimes intentionally create complex system behavior.  These 

systems can be mistaken for self-organized systems.  Although this complication in 

identifying self-organized systems in high animals does exist, a multitude of examples 

remain clear.  Camazine et al. [70] describe the array of examples outside of the insect 

world:

Noisy flocks of a thousand starlings burst into flight at the approach of a barking 

dog and maneuver gracefully around tall city buildings.  At Carlsbad Cavern 

millions of Mexican free-tailed bats stream from the cave each evening to begin 

their nightly feeding foray.  A herd of several hundred thousand wildebeest moves 

fluidly along the Serengeti plains of Africa.  In the sea schools of millions of 

Atlantic cod swim together in tight formation as they migrate along the cold, deep 

waters off the Newfoundland coast. (p. 167)

Mataric discusses the appearance of coordinated homing behavior in rats, pigeons, and 

salmon [61].  Cooperative hunting has also been studied in packs of wolves, tuna, and 

other predators [40, 45, 70, 104].  Trail-based foraging and recruitment behavior has been 
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observed in such esoteric species as naked mole-rats [104].  A number of examples are 

provided below in Table 4.

Table 4. Examples of self-organization in nature (adapted from [70], pp. 170-171)

Organism Scientific Name Self-organized Process

Fish many species Coordinated movements in a school

Canada geese Branta Canadensis Chevron-shaped flight formation

Wildebeest Connochaetes taurinus Coordinated movements in a herd

Spiny lobster Panulirus argus Mass migration in single file

Locusts Schistocerca gregaria Coordinated movements in a swarm

Slime molds Dictyostelium discoideum Cohesive movements in aggregation

  Easily the most popular example of SO in animals is flocking.  Whether in birds 

or fish (schooling), flocking is a commonly studied behavior in biological systems [46, 

61, 70].  Mataric identifies flocking as “…a ubiquitous form of structured group 

movement that minimizes interference, protects individuals, and enables efficient 

information exchange” [61], p. 19.  Predator evasion is perhaps the most impressive 

property of flocks or schools.  The two major methods of evasion are known as the 

Trafalgar Effect and flash expansion (see Figure 6).  The Trafalgar Effect is “the rapid 

transfer of information throughout the school that enables the entire group to execute 

swift, evasive maneuvers at the approach of predators” [70], p. 172.  Schools of fish, for 

example, are known for their incredible ability to spontaneously change direction despite 

an apparent lack of communication between individuals.  Studies have shown that fish 

operate mainly based on the movements of their nearest neighbors.  In this way, the 
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reaction to a predator moves in a wave of propagation through the school at a rate much 

faster than the approach of the predator [70].  

Figure 6. Flash expansion in a school of fish (taken from [70], p. 172)

This is just one example of a plethora of impressive examples of SO outside of the insect 

realm.  Natural examples of swarm intelligence abound, and it remains to be seen what 

can be gained by deeper understanding of these systems.    

Section 3.5: Misconceptions of Self-Organization

Due to the novelty of the field of self-organization and swarm intelligence, certain 

misconceptions are bound to arise.  Fundamental misunderstandings generate these 

askew conceptions of self-organization and related ideas.

Misconception #1: Self-organization fosters a falsely simplified view of nature.

The study of biological systems has proven the immense complexity of even the 

smallest-scale systems.  In the case of self-organized systems, however, it is often 

possible to explain this manifested complexity in terms of a small set of 

surprisingly simple mechanisms.  In these cases, the complexity may be generated 

by a simple response to a complex environment, rather than an inherently 
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complex system.  It is also important to note that models of self-organization only 

try to capture the essence of a system, not every minute detail of its operation.

Misconception #2: Emergence is a mystical notion without scientific basis.

Due to the abrupt and seemingly spontaneous appearance of emergent patterns or 

behaviors, they are often considered beyond the scope of scientific inquiry.  As 

discussed above, the mechanisms behind many emergent properties have been 

uncovered.  In self-organization, as in many other fields of scientific study, 

observations simply defy intuitive understanding.  This tendency does nothing to 

reduce their amenability to scientific investigation.

Misconception #3: Individual agents intend to produce complex global behavior.

While this idea is often mentioned with respect to higher animals, such as herding 

mammals or flocking birds, it is often hypothesized about social insects.  It is 

clearly unreasonable when applied to microscopic organisms.  In the case of 

social insects, it is difficult to argue convincingly in favor of such a concept.  

Insects such as ants and bees have such limited cognitive abilities that even the 

simplest types of planning or processing are unlikely.  Some higher animals with 

significant cognitive abilities could have some notion of the overall system 

behavior, but studies especially on flocking and schooling dispel such notions (see 

[70] and references therein).  The fact that mathematical models and simulations 

closely reproduce self-organized biological behavior indicates that individuals 

need little to no understanding of group strategy.
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Chapter 4: Foraging Theory and System Modeling

Section 4.1: Individual Agent Dynamics

Modeling the dynamics of the individual robots is not stressed in this work, due to 

the behavior-based control architecture.  Such a control scheme places no emphasis on 

the implementation of traditional control theory to achieve optimal path planning.  As in 

the world of social insects, the motion of an individual includes a significant stochastic 

component, and path trajectories in time and space are rarely smooth.  Therefore, for the 

sake of completeness, only a brief development is provided of individual robot dynamics.

As described in Section 2.6, the choice of the drive system for a mobile robot 

determines the overall kinematics of locomotion.  From a modeling perspective, the ideal 

case is a holonomic mobile robot, with rotation and translation uncoupled [38].  

Unfortunately, such drive systems are highly complex and rarely implemented in robotics 

research applications. Yamaguchi presents pioneering work in his development of “…a 

distributed smooth time-varying feedback control law for coordinating motions of 

multiple nonholonomic mobile robots…” [38], p. 2984.  This type of advancement in 

control theory reflects the infrequent use of holonomic mobile robots.  The most common 

type of robot used in foraging research applications is the differential drive [24, 25, 41, 

57, 60, 65, 73, 105], for which kinematics are discussed.

A wheeled mobile robot with a differential drive is modeled as a planar rigid body 

moving in a horizontal plane.  The rigid body is connected via axles to the wheels on 

which it rolls.  Driven independently, the two drive wheels are capable of producing both 

rotation and translation.  The position of a robot, ri, is given by (xi, yi), and its orientation 

by θi, in the static Cartesian coordinate system, Σ0. The rotation angles of the two drive 
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wheels are denoted φ1i and φ2i.  The radius of each wheel, R, and the width between them, 

W, complete the preliminary definitions.  The velocity and angular velocity of orientation 

of ri are given as:
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A local coordinate system, Σi, is located at the midpoint of the two drive wheels.  Refer to 

Figure 7 for a diagram of the robot with dimensions, vectors, and coordinate systems.

Figure 7. Vector and coordinate system definitions (taken from [38], p. 2987)

The unit vector, ei, is defined on an axis of this local coordinate system.  The axis 

specifies the orientation of ri, i.e. θi, in the static coordinate system.  Let vi be the velocity 

vector of ri.  Expressed in the static coordinate system, Σ0,
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It is useful to know the angular velocities of each wheel required to achieve a desired 

translational or angular velocity.  In order to rotate at a general time-varying angular 

velocity, the difference in wheel velocities is given by:
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For rotation about the midpoint of the rear axles (the origin of Σi), the required velocities 

are:

)(21 t
R

W
iii θφφ ��� == (4-5)

Assuming translation in a straight path (either forward or reverse), the appropriate wheel 

velocities for translation are:
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These simple kinematic relationships determine the required actuation for controlling 

each individual robot.  The issue of traveling in a curved path was not addressed, due to 

the fact that many robotic applications completely decouple rotation and translation.  The 

experimentation found in Chapter 6 also does not require the ability to travel along a 

curved path.  Instead, navigation is accomplished by alternating between straight forward 

or reverse translation and rotation.

Section 4.2: Foraging Theory and Task Efficiency

Before discussing the process of modeling self-organized systems, it is necessary 

to discuss the issue of task efficiency from the perspective of foraging theory.  Task 

efficiency is an important ethological system performance metric with obvious 

importance to robotic systems as well.  Maximization of task efficiency is, of course, 

desired in the design of a self-organized robotic foraging system.  This requires metrics 

for measuring task efficiency.  These metrics, if standardized, are also useful for 
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comparing task efficiency to that found in biological systems, as well as between 

experiments conducted by different groups.

Foraging theorists identify two major methods of achieving efficient food source 

exploitation: time minimization and energy maximization [62, 94].  These two methods 

of optimizing foraging processes apply not only to social insects, but to the foraging 

practices of most animal life.  The vast majority of foraging species are time minimizers, 

who tend to “…have a fixed quota of energy required for body maintenance and 

reproduction” [62], p. 388.  Examples of time minimizers include animals such as birds, 

fish, and foraging mammals (e.g., deer).  In these systems, the goal is to obtain the 

necessary energy quota in a minimum time (with minimal energy expenditure).  In most 

microorganisms and insect societies, energy maximization is the goal.  These 

communities are capable of utilizing a continuous influx of energy from the environment.  

In an ant colony, for example, excess energy corresponds to colony growth, which 

increases the overall survival probability of the colony.  As a result, ant foraging seeks 

the maximum net yield of energy.  

The most important methods of calculating and modeling theoretical task 

efficiency in ant foraging are concerned with energy maximization.  Oster and Wilson, in 

their classic work on the ecology of social insects, describe several models of task 

efficiency for recruitment-based foraging [94].  These models either focus on the 

activities of individual workers or global parameters of the colony.  In both cases, reward 

and cost functions are calculated based on the time and energy gains and expenditures 

associated with specific foraging activities.  These functions are combined to calculate 
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the net energy profit rate for an individual or group.  Efficiency is increased to optimality 

by maximizing the net energy profit rate.  

Robotic implementation of cooperative foraging also requires some consideration 

of task efficiency.  In most experimental setups, some type of foraging task is defined.  

Completion of the task must be analyzed in some way with respect to efficiency.  

Unfortunately, the models of task efficiency developed by ethological foraging theory 

translate poorly into such scenarios.  The main reason is that robotic foraging tasks are 

short-term processes, as opposed to the continuous nature of foraging in the societies of 

social insects.  A colony of ants is never finished with the task of foraging.  For this 

reason, robotic foraging tasks are generally viewed in terms of time minimization.  Like 

most vertebrate animals, the foraging tasks of robots involve collection of a limited 

energy quota.  Of course, in robotic experimentation, the “energy” takes the form of 

small targets collected in an enclosed foraging field.  Robotics literature reflects this 

notion of time minimization as a measure of task efficiency.  The most common metrics 

by which efficiency is calculated are the total time required for completion and the 

number of targets collected per unit time [7, 12, 58, 60].  Currently, it is difficult to use 

these measures of efficiency to compare the performance demonstrated in separate 

experiments.  The use of time as an efficiency measure also makes it difficult to 

generalize results or compare to the efficiency of social insects.  This disparity in 

measures of task efficiency between ethological foraging theory and robotic 

implementation highlights the need for standardized performance metrics in the swarm 

intelligence community.
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Section 4.3: Modeling Self-Organization

The development of mathematical modeling in the field of self-organization and 

swarm intelligence has occurred almost exclusively from an ethological perspective.  

Each of the major classes of self-organization models arose from attempts to model the 

behavior of biological systems.  Only rarely have researchers from the robotics 

community sought to develop independent models.  Most often, robotics research 

borrows or adapts models with biological origins.  This pattern seems appropriate--and 

perhaps the development of independent models is misguided--given the efficiency of 

biological systems such as groups of social insects. In any case, rigorous models of self-

organization are essential for continued progress toward real-world robotic applications 

of swarm intelligence.  Bonabeau, Dorigo, and Theraulaz convincingly argue in favor of 

using biological models of SO:

…very few applications of swarm intelligence have been developed.  One of the 

main reasons for this relative lack of success resides in the fact that swarm-

intelligent systems are hard to “program,” because the paths to problem solving 

are not predefined but emergent in these systems and result from interactions 

among individuals….  Therefore, using a swarm-intelligent system to solve a 

problem requires a thorough knowledge not only of what individual behaviors 

must be implemented but also of what interactions are needed to produce such or 

such global behavior. …[A] reasonable path consists of studying how social 

insects collectively perform some specific tasks, modeling their behavior, and 

using the model as a basis upon which artificial variations can be developed, 
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either by tuning the model parameters beyond the biologically relevant range or 

by adding nonbiological features to the model. [68], p. 7

This is the type of reasoning that has led most robotic researchers to design swarm-

intelligent systems based on adapted biological models of self-organization.

The development of fairly simple mathematical models based on SO requires 

certain philosophical presuppositions.  First of all, one must accept that it is possible, at 

some level of description, to explain complex collective behavior in terms of simple 

interacting entities.  From a certain perspective, a social insect is a complex creature 

capable of processing many sensory inputs and making decisions on the basis of a large 

amount of information.  From a modeling perspective, however, one assumes that this 

complexity can be reduced significantly while maintaining complex system behavior.  

Behavior-based control architectures in mobile robotics make the same fundamental 

assumption.  In the development of SO models, researchers have therefore taken the 

approach of using very simple models unless further complexity is found necessary to 

reproduce the observed biological behavior on which the model was based [59].  This 

process is illustrated in Figure 8.
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Figure 8. Research cycle for self-organized systems (taken from [70], p. 71)

Simplifying assumptions are only removed from the model if necessary.  This process has 

proven successful in generating a number of surprisingly simple models of self-organized 

systems.  Some of these models are presented below in Section 4.4.

Models of SO can be divided into three main classes: differential equation, 

probabilistic (or stochastic), and cellular automaton models.  While not every model fits 

neatly into one of these categories, the classification accounts for the vast majority.  Each 

class of models is described below.

The most common type of model for self-organized systems is differential 

equation models.  This approach is most amenable to thorough analysis, as a set of 

differential equations allows one to investigate equilibrium conditions, bifurcation 

phenomena, etc.  It is desirable to obtain a precise quantitative description of the behavior 

of a system over time by solving the system of equations.  Although many such systems 

do not have closed-form solutions, numerical techniques are used to produce the system 
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trajectories.  This type of model requires that certain assumptions be made in models of 

discrete processes.  Differential equation models assume that individual agents are 

infinitely divisible individuals behaving deterministically, which is valid for systems with 

large populations.  However, it can be very difficult--due to continuity assumptions and 

other factors--to formulate a set of differential equations describing the behavior of 

certain biological systems.

Probabilistic models are commonly employed when differential equations are 

inappropriate.  As opposed to the previous class, these models tend to use a discrete 

approach that models the behavior of each individual in the group.  Simple behavioral 

rules based on probability are used to generate a few governing equations.  Monte Carlo 

simulations are often conducted to produce similar results as those obtained from an 

actual experiment.  The stochastic nature of these models yields qualitatively different 

results than those obtained from differential equations.  Rigorous analysis is more 

difficult, but the model development process is generally simpler.  Probabilistic modeling 

also tends to be very computationally intensive, sometimes requiring considerable 

computer processing resources.

The final class of models, cellular automaton (CA) models, was probably the first 

modeling technique used to investigate self-organization [4].  This type of modeling 

“…simulates groups of biological components by arranging components as points in a 

lattice or grid and allowing the components to interact according to simple rules” [70], p. 

76.  Usually performed within a two-dimensional lattice, CA simulations involve many 

cells characterized by a location and state.  At discrete time steps, each cell updates its 

state based on its current state and the state of neighboring cells.  While CA models 
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exhibit highly complex behavior, the cell interactions are governed by only a few simple 

rules.  For this reason, CA models are excellent for modeling and simulating SO.  

Conway’s Game of Life is one famous example of such a CA model.  Cellular automaton 

models have the advantage of providing impressive visual results, but, like Monte Carlo 

simulation, can be computationally intensive.  Depending on the software 

implementation, CA can also require considerable programming expertise.

Section 4.4: Foraging Models

In the following three subsections, models are reviewed from the literature for 

foraging systems.  The models are divided into the three main classes mentioned above: 

differential equations, probabilistic, and CA models.  Each section presents the models 

most relevant to the computer simulation and experimental work in Chapters 5 and 6.  

Although several may be discussed, one primary model is featured and developed in each 

section.  It is important to note that each of the models presented differs significantly 

from the simulation and experimental work described in later chapters.  Unfortunately, 

current foraging models make significant simplifying assumptions, making it 

inappropriate to apply them directly to complete foraging systems based on mas 

recruitment.  Therefore, the models are used to generate only qualitative predictions 

regarding system performance.  The predictions are presented in Section 4.5.
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Subsection 4.4.1: Differential Equations

SYSTEM MODEL

Foraging models consisting of one or more differential equations provide the most 

complete mathematical descriptions currently available for recruitment-based foraging.  

The systems of equations used in these models are sometimes linear and often simple 

enough to investigate analytically.  Stability analysis, bifurcation phenomena, and 

analysis of steady-state solutions are common procedures performed while studying these 

models.

One particular subset of differential equation models merits special mention 

before focusing on the mainstream techniques.  A handful of researchers have

incorporated pseudo-stochastic elements into their differential equations models (e.g., 

[43, 83]).  These models can be termed state transition models, owing to the formulation 

of the set of differential equations.  A number of system states are defined, along with 

relationships governing transitions between states.  The stochastic state transitions, if any, 

are cleverly included into the model by creating customized probability parameters.  

Pasteels, Deneubourg, and Goss present the clearest example of a state transition model 

[83].  Their model describes trail recruitment by N ants to two identical sources.  The 

model includes three system states: 

• Number of ants at food source 1, X1

• Number of ants at food source 2, X2

• Number of lost ants, E

The lost ants are those that strayed from a pheromone trail in the following process.  All 

remaining ants, numbering N - (X1 + X2 + E), exist at the nest as potential recruits.  A 
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simple block diagram (see Figure 9) representing the system dynamics leads to a system 

of three differential equations.

Figure 9. Simplified block diagram of foraging system and resulting 
system of differential equations (taken from [83], p. 166)

The authors present both steady-state analysis and solution trajectories.  Results 

demonstrate bifurcation phenomena and multistability between two food sources.  As the 

number of total foragers, N, is increased, the system passes through a bifurcation point 

and switches from symmetrical to asymmetrical exploitation of the two sources.  
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Sugaware and Watanabe develop a similar model for a single-source robotic 

foraging system [43].  Notably, the robots employ beacon-based communication rather 

than laying trials.  The model contains a system of five differential equations, each 

corresponding to the number of robots in each of five possible behavioral states.  As a 

result, this model meshes well with behavior-based control.  The model is used to 

validate simulation results and show the dependence of task efficiency on group size and 

interaction duration.

A number of more typical models appear in the literature.  These other models 

focus on state variables such as trail length [81, 97], number of feeding workers [71], or 

outgoing ant flux from the nest [70, 85].  Edelstein-Keshet et al. present two models 

based on trail length, but both models feature continuous trail-laying rather than mass 

recruitment [81, 97].  The authors analyze the models with respect to global adaptability 

in response to external conditions.  Deneubourg, Pasteels, and Verhaeghe, develop 

another model of similar structure and purpose to illustrate “…that the degree of 

randomness [can] be optimally ‘tuned’ to particular ecological conditions, such as food 

quantity and distribution” [71], pp. 259.

A fairly recent (1999) foraging model based on differential equations is, by far, 

the most rigorous theoretical representation of a recruitment system.  Nicolis and 

Deneubourg present “a model of food recruitment by social insects accounting for the 

competition between trails in the presence of an arbitrary number of sources…” [85], p. 

575.  This publication represents a significant advancement in foraging modeling, as it 

tackles the problem of inter-source competition between more than three sources.  Prior 

to this model, such problems remained unsolved.  The model is rigorous in an analytical 
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sense, yielding the full bifurcation diagram of steady-state solutions.  It is also relatively 

simple in formulation, which is not surprising in a self-organized system.  

The model takes a macroscopic approach to the mass recruitment system, using 

pheromone concentration as the principal variable.  It is mainly devoted to the choice of 

orientation among more than one trail upon leaving the nest.  Nicolis and Deneubourg 

make important initial assumptions regarding the recruitment system, as listed below:

• Pheromone trails are always followed error-free from nest to food source.

• Ants are either within the nest or following a trail; wandering does not occur.

• Direct interactions between individuals are ignored; only stigmergy is possible.

• The outgoing flux of ants from the nest is a constant.

These simplifying assumptions render the model unable to manifest certain 

characteristics of self-organization.  For example, error-free line following makes the 

accidental discovery of a new food source impossible.  In fact, the assumptions listed 

above constrain the scenario to one in which all sources have already been discovered.  

Another limitation of the model is the inability to investigate behavioral dependence on 

the number of foragers.  Despite these limitations, as will become apparent, the model 

illuminates a number of significant system characteristics.

The development that follows closely resembles that presented originally in 

[85], with only minor variations and/or simplifications.  Refer to [85] for the full model 

derivation.  Let ci be the pheromone concentration on trail i = 1,2,…,s.  The time 

derivative of pheromone concentration consists of two parts: (1) a positive term from trail 

deposition and (2) a negative term from trail evaporation.  The resulting equation for the 

time rate of change of pheromone concentration on trail i is:
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where σi is the quantity of pheromone on trail i, vi is the corresponding evaporation rate, 

and Fi({ci}) is a function describing the relative attractiveness of trail i compared to all 

other trails.  The form of Fi is a choice function commonly used in probabilistic models 

(e.g., [96]):
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where s is the total number of sources; k, a concentration threshold beyond which 

pheromone begins to be effective; and l, the sensitivity of the process to ci. Equation 4-8 

accounts for three types of dynamic feedback:

1. Positive, nonlinear feedback of trail i onto itself through Fi.

2. Negative, linear feedback of trail i onto itself through pheromone evaporation.

3. Negative, nonlinear feedback of trail j ≠ i onto trail i from competition.

It is convenient to introduce the following non-dimensionalization of the key parameters:
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Assuming that evaporation is constant on all trails, all v i can be set to a common v.  Then, 

scaling time allows v to be set to unity.  Introducing the non-dimensionalization results in 

the reduced system:
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The parameter l is set at l  = 2 to reflect experimental data with several ant species, 

including Lasius niger [99].  With these simplifications, the solutions of Equation 4-10
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depend entirely on Φq and s.  For the trivial case of one food source, j = 1, there exists 

one, stable steady-state solution given by
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The trail concentration reaches a steady value proportional to the output flux and 

deposition rate, and inversely proportional to the evaporation rate and concentration 

threshold.  These relationships, for the trivial case, make intuitive sense.  The steady-state 

solutions of Equation 4-10 for multiples sources are of particular interest, obtained by 

setting the time derivative equal to zero.  Dividing the equations applied to trails i and j, 

one obtains:
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The set of steady-state solutions to Equations 4-12 and 4-13 are denoted Ci, st.  Stability 

analysis of the different solutions determines the state actually chosen by the system.  

Equation 4-10 is linearized with respect to perturbations by setting 
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and, using Equations 4-12 and 4-13, rewriting Equation 4-10 as

∑=
k

kik
i CA

dt

Cd δδ
(4-15)

kr
ik

i

i

ii

ki
ik C

C

Cq

CC
A δ

+
−

+
+Φ
+−=

1

1

)1(

)1(2
2

2

(4-16)



85

The “st” subscript has been dropped, as it is understood that Ci are steady-state.  Stability 

is determined by examining the roots of the characteristic equation, 

0det =− kr
ijijA ωδ  (4-17)

with the stability condition Re ωi < 0 for all i. While this model can be extended to 

examine the case of non-identical sources (see [70, 85]), the assumption is made for this 

analysis that each source is identical, or qi = q for all i. This assumption is valid 

especially for application in robotic experimentation, which generally predetermines 

source similarity.  The homogeneous solution of equation (4-15) is given by 
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representing equal exploitation of all sources.  For example, in the case of equal 

exploitation of two identical sources, the trail concentrations are
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In order to check the stability of this solution, we examine the elements of the Jacobian 

matrix, which can only take two values:
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The characteristic equation takes the form,

0))())()1((( 1 =−−−+− −sbabsa ωω , (4-20)

yielding the following solutions:
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The first solution, ω1, is always stable, but the group of s-1 solutions loses stability for 

Φq > s.  This result shows that the homogeneous solution may lose stability, causing the 

system to assume another stationary state.  The only such solutions are semi-

inhomogeneous, in which j trails having concentration C1 are exploited in a different 

manner than the other s-j trail with concentration C2. These concentrations are given by
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where the + and – superscripts correspond to a trail more or less heavily marked, 

respectively.  These solutions exist as long as

jjsq )(2 −≥Φ . (4-25)

The stability is determined separately for the cases j = 1 and j > 1.  The former case 

corresponds to differential exploitation of one trail as compared to all others; the latter to 

preferential exploitation of a group of trails compared to another group.  For j = 1, the 

characteristic equation takes the form
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Numerical evaluation of the roots reveals that the high concentration, C1
+ (and the 

corresponding C2
-), is always stable while the low concentration, C1

- (and C2
+), is always 

unstable.  This is expected, based on experimental observations of collective decision-

making in ants between trails [70, 71, 82, 99].  For j = 1 and s > 2, these solutions 
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correspond to a limit point bifurcation.  For s even and j = s/2, there is a pitchfork 

bifurcation of unstable branches emerging from Φq = s.  Refer to the bifurcation diagram 

below for s = 4 (Figure 10). The homogeneous state loses stability at Φq = 4, the locus of 

a pitchfork bifurcation of two unstable branches (corresponding to j = 2).  The limit 

points are located at Φq = 3.5, generating four semi-inhomogeneous solutions, two of 

which are stable.  In the domain 3.5 < Φq < 4, three simultaneous stable solutions exist, 

while two exist for Φq > 4.  Note the multistability present in this system, one of the 

characteristic properties of self-organization.

Figure 10. Bifurcation diagram for s = 4 (taken from [85], p. 582)

For the case of j > 1, manipulation of the characteristic determinant reveals the 

following two j and s – j roots:  
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Given that the stability conditions for these roots are incompatible, one concludes that at 

least one root is positive.  Hence, the semi-inhomogeneous solutions with j > 1 are 

always unstable. The state diagram of the system is shown in Figure 11, with Φ = 10.  

Note the three main regions of the graph, each corresponding to different stability 

conditions of the homogeneous and semi-inhomogeneous solutions.  Multistability is 

represented in the middle region, in which a number of stable states are possible.  Note 

that bifurcation phenomena are possible as environment factors cause the system to move 

from one region to another.

Figure 11. State diagram with exploitation modes (taken from [85], p. 582)

The critical values of s, denoted sc1 and sc2, correspond to the number of food sources 

required to switch from one exploitation mode to another (for a given set of system 

parameters).
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The first critical number represents the transition point from exploitation of a single 

source to mixed exploitation.  The second number, Equation 4-29, corresponds to 

transition from mixed to homogeneous exploitation of multiple sources.  Note that these 

values depend on the colony size (related to φ), quality of sources (σ), and evaporation 

rate (v). These critical values explain the ability of an ant colony to adapt foraging 

behavior in response to global environment changes, such as addition of food sources.  

Due to the system dynamics presented above, colony-level behavioral plasticity is 

achieved without the need for individual awareness of the changes. 

 

PURSUIT MODEL

While the other models in this section describe complete systems of central-place 

foraging, this particular model focuses on one specific element.  As described in 

Subsection 3.3.1, some species of ants employ group recruitment.  In this process, the 

recruiter leaves a trail to the food source while being followed by a number of recruited 

workers.  The followers sometimes deposit trails of their own, reinforcing that of the 

leader.  Ethologists have observed that ant trails become more direct as more followers 

reinforce the trail, eventually resulting in a straight line connecting the nest and food 

source.  Bruckstein presents a mathematical analysis of this pursuit problem in [106], 

aiming to show “…that globally optimal solutions for navigation problems can be 

obtained as a result of myopic cooperation between simple agents or processors” (p. 62).

Bruckstein’s analysis of the ant-inspired pursuit problem proceeds as follows.  

The “pioneer” ant, denoted A0, follows an arbitrary path, P0, at unit speed from home 

located at (0,0) to the food source, located at (L,0).  The initial path is parametrized as:
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where the parameter, time (equivalent to arc length), runs from 0 to T0 = L0, the length of 

P0.  At time τ1 > 0, the first follower, A1, starts walking with its velocity vector always 

pointing toward A0 (see Figure 12).  The path of A1 is given by:

[ ])(),()( 111 tytxtP = , (4-31)

where t runs from τ1 to T1 = τ1 + L1, with L1 being the length of P1.  At time τ2 > τ1 + δ,  

A2 begins following A1, and so on.  If ant An+1 catches An, the two are joined on the path 

of An.

Figure 12. Diagram of theoretical pursuit problem (taken from [106], p. 60)

The rule of pursuit says that the velocity vector of An+1 is always directed toward An, 

with unity magnitude.  Therefore, the path of ant An+1 is the solution of the differential 

equation:
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Bruckstein proceeds to provide a rigorous proof for the following theorem:
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THEOREM: The sequence of pursuit paths, Pn, converges to the straight line segment

connecting (0,0) to (L,0).

This proof of the limiting behavior of solutions to the governing differential equation, 

Equation 4-32, is an important result in self-organization.  While reproduction of the 

proof is beyond the scope of this work, the result shows that a very simple rule of pursuit 

on the individual level generates self-organization on the group level.  

Subsection 4.4.2: Probabilistic Models

Probabilistic modeling of biological self-organization is quite common, although 

it is less frequently employed for studies of complete foraging systems.  The most 

prevalent usage of probabilistic modeling and Monte Carlo simulation relates to trail-

following behavior.  In particular, probabilistic models are traditionally used to examine 

the choice of a worker ant at a trail bifurcation point.  These models are incapable of 

capturing the full behavioral complexity of a mass recruitment system, but they provide 

valuable insight into the mechanisms of self-organization in such systems.  One popular 

example prevails in the swarm intelligence literature: the “binary bridge” or “binary 

choice” model [68-70, 96, 99].  The model was initially developed by Deneubourg et al.

in 1990 in relation to a binary bridge experiment with the Argentine ant [96].  Subsequent 

investigations have borrowed the same model for foraging analysis of different ant 

species (e.g., [99]).  

The binary bridge experiment was designed to study the transition in the 

Argentine ant “…from the uncoordinated state (the diffuse front) to the coordinated state 

(the exploratory trail)” [96], p. 159.  The setup consists of a diamond-shaped bridge 
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placed between the nest and the food source.  In this way, the researchers were able to 

analyze the exploration traffic on two alternative routes.  In [69], additional 

experimentation is presented with unequal bridge length.  These experiments demonstrate 

collective decision-making in a swarm of foraging ants, as the ants regularly choose the 

shorter path.  

The model formulation is quite simple, but it accomplishes the goal of 

reproducing the experimental results using a few simple probabilistic relationships.  The 

model makes the following initial assumptions:

• The amount of pheromone on each branch is proportional to the number of ants 

that used the branch to cross.

• Pheromone evaporation does not occur.

• The probability of choosing either branch can be calculated using a simple 

general choice function.

The assumption regarding pheromone evaporation applied to the Argentine ant, but the 

assumption breaks down at large time scales.  Therefore, the model is not valid steady-

state analysis of long-term trajectories.  According to these assumptions, let Ai and Bi be 

the numbers of ants that have used branches A and B, respectively, after i total ants have 

used the bridge.  The probability that the (i + 1)th ant chooses branch A is:
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The complementary probability is given by PB = 1 – PA, due to the fact that one of the 

two bridges must be chosen.  This equation quantifies the way in which a higher 

concentration on branch A corresponds to a greater probability of an ant choosing trail A.  
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The form of the equation was obtained from trail-following experiments in [83].  The 

parameter n determines the degree of nonlinearity of the choice function.  Large n

corresponds to sensitive dependence on differences in Ai and Bi.  The parameter k 

quantifies the degree of attraction to an unmarked branch.  A high value of k necessitates 

a greater amount of pheromone to make the choice nonrandom.

In addition to the choice function, Equation 4-33, it is necessary to define the 

dynamics of trail reinforcement.  The dynamics follow directly from the first assumption 

of the model (see previous page):
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where δ is a random variable uniformly distributed over [0,1].  These dynamics ensure 

that Ai + Bi = i, the number of discretized time steps (and ant passages).  A simple Monte 

Carlo scheme can be used to analyze the model.  Deneubourg et al. used a Monte Carlo 

simulation to compare the model’s predictions to experimental results [96].  By tuning 

the parameters n and k, the model agrees closely with experimental results (Figure 13).

The graph below shows the percentage of ants that followed the dominant trail as a 

function of the total number of ant passages on either trail.  For low values of total ant 

passages, the percentage of preference is only slightly above 50%.  But, as the total 

number of passages increases, over 90% of the ants have chosen the dominant branch 

during a given trial.  
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Figure 13. Theoretical model (solid curve) compared to experimental data 
points (taken from [96], p. 163)

This model clearly demonstrates the mechanism of positive feedback.  Positive feedback 

amplifies initial fluctuations in the system, causing the colony to preferentially exploit 

one of the two equal alternatives.  Multistability is clearly present, as exclusive 

exploitation of either source is a potential stable state.  While [68] mentions the extension 

of this model to include branches of unequal length, only experimental results are 

reported.

Subsection 4.4.3: Cellular Automaton Models

Of the three main classes of foraging models, cellular automaton models are least 

applicable to central-place foraging via mass recruitment.  Due to the limitations of using 

very simple rules to determine the state of each cell, it is difficult, if not impossible, to 

use CA to model a complete foraging system.  Instead, CA is often employed to simulate 

trail networks (e.g., Figure 14). By far the most common application of CA to self-

organization in ant foraging is modeling of the exploratory swarm raids of army ants [68, 



95

70, 81, 95, 107]. Figure 14 shows the results of three CA simulations of swarm raid 

patterns of army ants.  The trail patterns illustrate a central trunk trail trail leading away 

from the nest, with a delta-shaped front at the leading edge of the swarm.  The three 

simulations, A, B, and C, correspond to various distributions of food within the 

environment.  In scenario A, no food was present in the virtual environment; in B, food 

was distributed evenly in many clusters; in C, food was located in only a few large 

clusters. 

Figure 14. Results of CA simulation of swarm raids (taken from [70], p. 275)

This type of behavior is more amenable to CA modeling than mass recruitment-based 

foraging.  The effort that comes closest to modeling mass recruitment is found in two 

related papers by Ermentrout, Watmough, and Edelstein-Keshet [108, 109].  The first of 

these papers, published in 1993, represents the definitive publication on using CA to 
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model biological systems [108].  The paper presents a CA model of the formation of 

persistent foraging trails, showing “…that the formation of a dominant trail depends on 

the total ant density” [109], p. 357.  The subsequent work uses the same model to 

investigate the initial formation of a trail by ants emerging from a central nest location.  It 

is important to note from the outset that, in both investigations, the simulated “ants” 

continually deposit pheromones.  This represents a significant departure from mass 

recruitment behavior, in which pheromones are only deposited on the trip home from a 

food source.  However, these two papers represent the best example of CA modeling for 

a foraging system.  

Ermentrout and Edelstein-Keshet identify two major classes of CA models—

deterministic and “lattice gas”—that are employed simultaneously for their simulation 

[108].  The formation and decay of trails obey a deterministic model, while motion of the 

ants follows the “lattice gas” approach.  As the name implies, the deterministic model 

changes the state of each cell based on deterministic rules incorporating the states of 

neighboring cells.  The “lattice gas” method allows for partially random motion of 

particles within a spatial grid.

The basic CA model includes an algorithm for “ant” behavior within the two-

dimensional grid and simple deterministic rules for the formation and decay of trails on 

the stationary cells.  The “ant” behavior is given by the following rules:

1. The ants move at a fixed speed.

2. Each ant deposits pheromone at a constant rate.  When following a trail, a 

larger constant rate ensues.
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3. There is a constant probability (nonzero) that an ant following a trail will lose 

the trail.

4. There is a constant probability (nonzero) that an ant will cross a trail and not 

follow the trail.

5. When an ant comes to a fork, it has a higher probability of choosing the path 

with higher pheromone concentration.

6. While wandering, each ant has a probability per time step of turning a random 

angle.

The rules governing the trail formation and pheromone decay are:

1. The state variable for pheromone concentration increases when an ant passes.

2. The pheromone decays at a steady rate.

Given these simple rules, the automaton requires the following parameters for operation:

• grid size, m

• number of ants, N

• maximum and minimum pheromone concentrations, φmax and φmin

• amount of pheromone deposited while off trail, τoff

• amount of pheromone deposited while on trail, τon

• probability of a wandering ant turning an angle of 45n°, Bn

• probability of losing a trail, P (fidelity α P-1)

All of the probabilities are per ant per time step.  In [108], the grid has periodic (toroidal) 

boundary conditions, with m = 50.  The continuous boundaries allow uninterrupted 

simulation for analysis of steady-states.  In [109], a grid with “absorbing” boundary 

conditions was used to simulate an infinite domain, and m = 256.
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The results of these complementary CA models are three-fold.  First, [108]

establishes that a critical ant density is required to establish a dominant trail.  Second, the 

same investigation also identified an initial disordered phase prior to trail establishment.

Figure 15 illustrates this early phase of the simulation, with each ant leaving a continuous 

trail but failing as a colony to establish any stable trails.  Figure 16 shows the eventual 

formation of a dominant trail. Note that only two virtual ants are wandering and not 

following the one stable trail.  Third, results from [109] indicate that the ability of a group 

to form strong trails is inversely related with individual fidelity to the trails.
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Figure 15. Early, disordered phase of CA simulation (taken from [108], p. 
122)

Figure 16. Formation of a dominant trail (taken from [108], p. 123)
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Section 4.5: Model-Based Predictions

The models presented above effectively reproduce much of the complex system 

behavior seen in the recruitment-based foraging of social insects.  Each model has a 

different perspective and level of mathematical rigor, making their contributions 

complementary to a full theoretical understanding of mass recruitment and self-

organization.  Taken as a whole, the results of these models provide several key 

qualitative predictions pertaining to the results of simulation and experimentation with 

real robots.  The predictions are listed below and arranged according to their 

correspondence to one of the three characteristic properties of self-organization (see 

Subsection 3.1.3).

• Emergent Pattern Formation

o A critical density of foragers is required to generate some trail patterns.

o Formation of an established trail (or trails) may follow an initial 

“disordered phase” of unpredictable duration.

o The nature of the trail pattern depends on parameters such as the number 

of foragers, food distribution, pheromone decay, etc.

o Trail formation relies on autocatalysis of random fluctuations in the paths 

of searching foragers.

• Multistability

o When multiple food sources are present, a number of stable states may 

exist, ranging from exclusive exploitation of one source to uniform 

exploitation of all available sources.
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o When multiple food sources are present, under certain conditions, only 

one stable state exists.

o The foraging group may collectively choose a suboptimal stable state.

• Bifurcation Phenomena

o Variations in key system parameters may correspond to dramatically 

different food source exploitation schemes.

o Oscillations in certain parameters (especially in the number of active 

foragers) may allow a system near a bifurcation point to switch from a 

suboptimal to an optimal solution.
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Chapter 5: Simulation

Section 5.1: Why Simulate?

Computer simulation is extremely common in the research of swarm intelligence.  

In fact, simulations are the most common method of researching such systems.  They 

tend to be far simpler to implement than experimentation with real robots, especially for a 

large number of agents. Simulations are popular due to the ability to test the behavior of 

hundreds or thousands of individual agents, which is still unprecedented in physical 

experiments.  Simulated swarms often generate results to confirm the predictions of 

theoretical models.  They are also commonly used to predict the behavior of real robots.  

Due to these different aims, there are two major classes of computer simulations: those 

attempting to closely simulate and/or forecast real-world operation of physical robots, 

and those seeking to verify or augment theoretical understanding of self-organization.  

The computer simulations in this work fall into the second category.  The aim is 

not to accurately represent physical robots in a simulated computer environment.  For 

example, two or more individual agents in this simulation were permitted to momentarily 

occupy the same space.  In a simulation used to directly predict robot performance, 

collisions avoidance behavior would be included in the simulation.  The overall goal here 

is to investigate the predictions of theoretical modeling from the literature (see Chapter 

4), visualize system behavior to enhance understanding, and extend theoretical 

knowledge of scenarios for which mathematical modeling is intractable.  It is important 

to emphasize the last point regarding cases in which theoretical work is either incomplete 

or absent altogether.  In these cases, simulations are extremely important, as they advance 
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the understanding of swarm-intelligent systems where mathematical models are as yet 

undeveloped.

A number of simulation tools exist for the purpose of investigating swarm 

intelligence and self-organization.  These tools range in complexity and platform 

compatibility, as well as availability to an independent researcher.  For this work, 

StarLogo was chosen as the simulation utility.  This software is widely available, free, 

PC-compatible, and user-friendly.  An introduction is provided in the next section.   

Section 5.2: Introduction to StarLogo

The StarLogo programming and simulation environment was born out of a 

collaborative research effort in the late 1980s between Mitchel Resnick and Seymour 

Papert of MIT’s Media Laboratory.  As an aside, Papert’s book entitled Mindstorms 

inspired LEGO’s Mindstorms brand name (see Section 6.2).  They developed an 

educational programmable robotics system known as LEGO/Logo.  The system 

employed the Logo programming language to operate robots built from LEGO 

components.  The Logo programming language had previously (late 1960s) been 

developed as an educational tool for children.  It allowed a programming novice to 

manipulate one or a few on-screen “turtles” using a series of commands.  Inspired by 

decentralized systems, cellular automata, and Brooks’ subsumption architecture, Resnick 

sought to create a versatile simulation tool with Logo as a foundation.  The result is 

StarLogo, which Resnick describes as:

…a massively parallel programming language that lets people control the actions 

of (and interactions among) thousands of computational objects.  Whereas 
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traditional versions of Logo allows users to control a single graphic "turtle" (or 

maybe a few graphic turtles), StarLogo give users control over thousands of 

graphic turtles.  With StarLogo, people can create and explore a wide variety of 

decentralized systems.[84], p. 33

Like the original Logo, StarLogo is an object-oriented programming language with two 

main types of objects: “turtles” and “patches.”  Unlike in more advanced programs such 

as C or C++, the user cannot create new classes of objects.  The user can create several 

“breeds” of turtles, however.  In many situations, such as simulation of an ant colony, 

only one breed of turtle is required.  Both turtles and patches possess a small number of 

state variables, and both are able to execute StarLogo commands.  Instructions are 

provided to the turtles and patches by writing procedures.  Several of these procedures 

constitute a StarLogo program.  The turtles and patches are capable of parallel operation, 

facilitating study of massively-parallel decentralized systems.  Refer to [84] or [110] for 

more information, or Appendix A for StarLogo documentation. 

Section 5.3: Program Description

StarLogo programs contain two accompanying sections: turtle procedures and 

observer procedures.  Turtle procedures define the set of instructions carried out by each 

turtle, in parallel.  From within a turtle procedure, an individual turtle can also ask a patch 

to execute a patch command.  Observer procedures serve a variety of functions, from 

program initialization to data collection.  The observer can ask patches or turtles to 

execute commands, create or destroy turtles, and/or monitor the status of patches and 

turtles.
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Subsection 5.3.1: Turtle Procedures

There are three turtle procedures, which can be cast in terms of behavior-based 

control.  Each procedure represents a particular behavior necessary to complete the task 

of foraging.  The behaviors are based closely on the mass recruitment behavior of an 

individual worker ant, as described in Subsection 3.3.1.  Each ant operates completely in 

parallel, acting as an autonomous agent with a homogeneous group.  Refer to Appendix B

for the complete StarLogo code for each procedure.

The default behavior is wander, in which each virtual ant moves forward along a 

partly random path.  Each forward step of one unit is followed by a random heading 

perturbation of at most 25°.  The result is a meandering path with fairly smooth and wide 

turns, and devoid of abrupt changes in direction.

If, during wander, an ant lands on a patch with pheromone greater than zero, the 

follow procedure begins.  The ant rotates in place while checking the status of the patch 

one unit ahead of its current location.  If the patch ahead is part of the trail and farther 

from home than the current location, the turtle moves to that patch and begins the process 

again.  If the patch ahead is a food patch, the turtle moves onto it and starts go-home.  In 

this manner, the turtles follow the trail of virtual pheromone to a food source.  A timeout 

setting causes a turtle to abandon following and resume wander when the trail disappears 

or dead-ends.  

The third procedure, go-home, involves “picking up” the food item (coloring the 

patch black) and returning to home.  The ant sets a heading for the Cartesian origin, the 
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center of the foraging field, and moves toward home.  Setting a heading toward home 

contains a slight random element, producing minor deviations from the straight-line path 

to home.  As it moves toward home, the virtual ant increments the value of pheromone on 

each patch by five.  

Subsection 5.3.2: Observer Procedures

There are four observer procedures in this program, but one of the procedures is 

essentially a sub-procedure called by another procedure (see Appendix B).  This leaves 

three main procedures, listed below along with the function(s) of each.

Table 5. StarLogo Observer Procedures

Procedure Function(s)

setup

* draws foraging field boundary and home

* generates distribution of food patches

* creates turtles (virtual ants)

decay decreases pheromone concentration (periodically)

color-patches updates color of patches based on pheromone concentration

Most of the functions of the observer procedures are trivial, but the pheromone decay 

merits elaboration.  Each patch is assigned a state variable, called pheromone, which 

represents the virtual pheromone concentration.  This variable has a maximum of 100 and 

a minimum of zero.  The maximum corresponds to a light shade of green (almost white), 

zero to black, and five to a very dark shade of green.  Each time a trail-laying ant passes 

over a patch, pheromone is increased by ten.  At periodic time intervals, which vary in 

length depending on the selected decay rate, pheromone is decremented by five for all 
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patches.  The decay procedure also ensures that pheromone does not fall below zero or 

rise above 100 for any patch.  While this simplistic decay mechanism does not attempt to 

mimic biological pheromone evaporation, it is sufficient to produce swarm-intelligent 

system behavior very similar to that found in real ant colonies.  Through these computer 

simulations, it became evident that biologically precise decay trends were unnecessary. 

As a result, the decay mechanism required no further sophistication for this application.

Section 5.4: Simulated Scenarios

Computer simulations were conducted of six separate scenarios, five of which 

involve variations of group foraging via mass recruitment.  The first scenario is the 

exception, as it investigates a related but separate facet of self-organization in foraging.

The process of group recruitment in ants generates pheromone trails in straight lines 

extending from the nest to the food source. This tendency is explored theoretically in 

Section 4.4 and simulated using StarLogo as the first scenario.

The remaining scenarios simulate full-scale foraging tasks.  The first, Case 1, is 

the only non-cooperative foraging situation.  All others include trail deposition and 

following, as well as trail decay in time.  The trails are represented by varying shades of 

the color green.  Brighter shades correspond to higher pheromone concentrations.  Data 

collection in each trial occurred internally, using StarLogo constructions designed for 

monitoring simulations.  
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Subsection 5.4.1: Straight Trail Simulation

Trail-straightening behavior has been discussed from a theoretical perspective in 

Subsection 4.4.1.  A simple simulation provides confirmation of the theoretical result and 

allows one to easily visualize the self-organizing process.  The simulation includes one 

virtual “leader” ant that starts at home and wanders along a random path while leaving a 

trail.  After some time interval, the first follower ant begins walking, maintaining a 

heading directed toward the leader.  The follower also leaves a trail, but of a different 

color.  This process is repeated several times, with each follower treating its immediate 

predecessor as the leader.  The time interval between each follower is varied to 

demonstrate the effect on convergence to a straight path.

Subsection 5.4.2: Case 1

The first case is an example of non-cooperative group foraging.  A number of 

virtual ants depart from home and retrieve single items of virtual food without leaving 

trails.  The food distribution is generated randomly before each trial within the StarLogo 

program.  100 food patches are distributed randomly within the foraging area to start the 

test.  When only 25 remain, the simulation is stopped.  The simulation was run using a 

range of 2-90 virtual ants.

Subsection 5.4.3: Case 2

The second case is the first to involve cooperative group foraging.  Mass 

recruitment is the mechanism of cooperation that produces useful and complex group 

behavior.  The food distribution is a single cluster of 60 food items, located near the edge 
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of the foraging field.  Positive reinforcement allows the virtual ants to generate persistent

pheromone trails to the cluster of virtual food.  When 12 food patches remain, the 

simulation is stopped.  The simulation was run using a range of 5-90 virtual ants and the 

pheromone decay rate was varied as a parameter.

Subsection 5.4.4: Case 3

This case is similar to Case 2, but with two virtual food clusters.  The ant behavior 

is identical, as are the mechanisms by which self-organization occurs.  In order to study 

more complex group behavior, a number of variations were introduced in this case.  The 

simplest case is two clusters of equal size (41), equidistant from home, and located on 

opposite sides of home. One simulated variation of this was making one of the two 

clusters closer to home (ratio of distances = 2/3), while maintaining equal size and 

angular position.  A second variation was to introduce the closer food source at some 

time later than the farther source.  The source close to home was introduced after 10 out 

of the 41 food items were retrieved from the original source.  These variations allow 

observation of system behavior such as multistability, bifurcation phenomena, 

adaptability, and collective decision-making.  The simulation was stopped after all food 

items were retrieved.  The simulation was run using a range of 30-100 virtual ants.  Trail 

decay rate was also varied as an experimental parameter.

Subsection 5.4.5: Cases 4 and 5

Cases 4 and 5 differ only in the number of food sources present.  In Case 4, 3 food 

sources of equal size (22) were presented, equidistant from home.  The same applies to 
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Case 5, except four sources were used (of size 25).  These two cases allow observation of 

multistability and bifurcation phenomena, due to a number of potential exploitation 

patterns in each situation.  Current theoretical modeling fails to explain all of the 

phenomena present in competition between multiple sources, especially more than three.  

The simulations were stopped after all clusters were fully depleted.  The simulation was 

run using a range of 30-90 virtual ants; pheromone decay rate was also varied.

Section 5.5: Results

Subsection 5.5.1: Straight Trail Simulation

This simulation was performed to confirm and provide visualization of the 

theoretical result presented in Subsection 4.4.1.  In the following figures, the path of the 

initial ant is shown in black.  The first follower ant sets out from home and heads directly 

toward the leader ant.  The second follower operates according to the same rules, but 

following the first follower ant, rather than the original leader.  As expected, for any 

random initial path taken by the “leader” virtual ant, the paths of subsequent followers 

converged to a straight line.  One example of this is shown in Figure 17, with the initial 

path shown in black.  Note that the path of the final ant begins to approximate a straight 

line.  Using higher numbers of followers results in a perfectly straight line.  Figure 18

illustrates the progression from the initial to final path, using six total virtual ants.  Six 

snapshots in time are provided (from top left to bottom right), with each figure showing 

the trail pattern shortly after each ant departs from home.
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Figure 17. StarLogo simulation of trail straightening

Figure 18. Six steps in the sequence of trail straightening (top left to bottom 
right)

Note that a similar process of convergence to a straight path occurred in multiple tests

with random initial paths.  The convergence was accelerated by using shorter intervals of 

time between departures from the nest.
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Figure 19. Trail straightening with short departure interval

Figure 20. Trail straightening with long departure interval

The simulation shown in Figure 19 featured a short departure interval between ants.  As a 

result, each ant followed the preceding path more closely, resulting in slower 

convergence to a straight line.  By comparison, the longer interval illustrated in Figure 20

produced accelerated convergence to a straight line.  The path of the fifth follower ant is 

nearly a direct path from home to the endpoint.

Subsection 5.5.2: Case 1

In the first simulated case of non-cooperative foraging, the initial food distribution 

is generated automatically through StarLogo.  As shown in Figure 21, the initial test setup 

includes 100 randomly distributed food items represented on-screen by 100 yellow 
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“patches,” or pixels.  The outer boundary of the simulation is colored red, which cannot 

be crossed by a simulated ant.  Home is shown at the center of the foraging field in 

brown.  Initially, as in experimentation with real robots (see Chapter 6), the foragers are 

arranged facing directly away from home with uniform angular distribution.  When the 

simulation is started, each forager begins to search, with a significant random element to 

the search path.  The initial direction of each ant, therefore, does not determine which 

sector of the field it will visit first.  Figure 22 shows the status of the simulation after 20 

time steps.  With such a large number of ants (N=70), most of the initial 100 food patches 

have been retrieved.  Note the absence of pheromone trails, which are useless in such a 

food distribution.

Figure 21. StarLogo simulation (100 distributed food patches, 70 ants, time = 0)
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Figure 22. StarLogo simulation (70 ants, time = 20)

The rate at which food is retrieved by the colony provides a useful global description of 

the foraging dynamics.  Results (both simulation and experimental) will be presented, in 

part, by showing the time evolution of food collection.  Figure 23 is one example of such 

a graphical representation of the foraging system.  Notice that the task was considered 

complete after 75 out of 100 food items were retrieved.  An interesting observation from 

the case of random food distribution is that the general curve shape remains the same for 

different numbers of ants in a given trial.  The example shown in Figure 23 is very 

similar to the progression seen for 5 < N < 90.  In each case, the collection rate 

diminishes gradually as the system approaches task completion.  This reduction in 

retrieval rate reflects the decreasing food density in the foraging field.  At the beginning 

of a trial, the probability of each individual ant finding a food patch is higher than near 

the end of the test.  As this applies to each individual, the global result is a steadily 

decreasing collection rate.  This trend is seen for the entire range of N, but in every case 
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the trend is weak.  From beginning to end, the collection rate varies only slightly, but 

according to a reliable and gradual decay.

Figure 23. Time evolution of food remaining (N=10)

In order to investigate the dependence of performance on the number of foragers, N, the 

total time required to complete the task was chosen as a performance parameter.  As 

discussed in Section 4.2, robotic (simulated and physical) foraging systems are often 

analyzed in this manner.  Essentially, the system efficiency is defined according to time 

minimization.  Figure 24 illustrates the relationship between the number of ants and the 

task completion time.  As expected, the completion time rises asymptotically as N 

approaches zero.  The trend closely resembles a power law relationship between the two 

variables.  As N is increased, the performance improvement continues, but at a 

decreasing rate.  In this simulation, the completion time begins to level off completely 

around N=100, at which point the task requires very few time steps.  Saturating the 

foraging field with simulated ants does not correspond to a realistic biological system, as 

energy would be wasted by many of the foragers. 
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Time Steps vs. Number of Ants
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Figure 24. Completion time versus N (average of 3 trials1)

Especially in the case of robotic foraging systems, unintended interaction between robots 

is an important issue.  Many systems are not scalable to large numbers of robots, due to 

the detrimental effect of collisions between robots.  In the simulation, two or more 

simulated ants were allowed to occupy the same space, thereby ignoring collisions.  

However, an accounting was kept of these “interactions.”  The data is shown below in 

Figure 25, in terms of collision frequency.  The frequency of collisions allows 

comparison across trials of different duration.  In what resembles another power law 

relationship, the collision frequency increases dramatically with the density of ants in the 

environment.  Refer to Chapter 7 for a more detailed discussion of power laws and their 

appearance in foraging systems.

1 All subsequent graphs of this type reflect averages over three trials, unless otherwise noted.
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Collision Frequency vs. Number of Ants
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Figure 25. Collisions frequency versus N (average of 3 trials2)

It is evident from this test that a trivial foraging task can be accomplished without 

cooperation, as one would expect.  The group performance increases with group size, but 

solely due to increased spatial density, resulting in faster coverage of the finite area of the 

foraging field.

Subsection 5.5.3: Case 2

In the second scenario simulated using StarLogo, cooperation is introduced.  The 

food is clustered together in one corner of the foraging field, a short distance from the red 

boundary.  In this scenario and those to follow, the virtual ants are equipped with trail-

laying and following behavior.  Mass recruitment is used to exploit the single source.  

However, negative feedback is also present in the form of simulated pheromone 

evaporation.  The rate of pheromone evaporation, or decay, is a parameter varied in these 

simulations.  A typical foraging process is shown in Figure 26 and Figure 27.  These 

figures show the initial formation and subsequent reinforcement, respectively, of a 

2 All subsequent graphs of this type reflect averages over three trials, unless otherwise noted.
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pheromone trail to the single source in the top left corner of the field.  Note the increased 

intensity (brighter shades of green) and width of the trail in the second figure.  For 

sufficiently slow pheromone decay rates, d, the colony of virtual ants builds a stable trail 

to the food source.  In Figure 26 and all subsequent StarLogo screens, ants following a 

trail are colored red.



119

Figure 26. StarLogo simulation (N=40, time=30)

Figure 27. StarLogo simulation (N=40, time=50)

The rate of pheromone decay, d, is an important parameter in these simulations.  

Three values of d were used in the case (d = 10, 20, and 35).  The first corresponds to a 

decay rate slow enough for a single ant to follow its own trail back to the food source.  

For d = 20 or d = 35, this is not possible.  In the case of d = 35, the pheromone trail 

decays so rapidly that the end of the trail nearest to the food source (deposited first) 
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disappears before the ant arrives at home.  As the parameters d and N are varied, the 

system exhibits three main types of behaviors.  From small d and/or large N, the colony 

reliably establishes a strong trail to the food source.  The resulting time evolution of food 

collection is shown in Figure 28.

Figure 28. Time evolution of food remaining (N=70, d=10)

By comparing this curve to the one from the non-cooperative case (see Figure 23), a 

fundamental difference becomes evident between the two cases.  While non-cooperative 

foraging produces a gradually decreasing collection rate, simulated mass recruitment 

generates a steadily increasing rate of collection.  Due to positive feedback via the 

pheromone trail, the rate at which items of food are retrieved increases throughout the 

test.  This represents a clear advantage of cooperation, as the performance of the group 

improves over time.  The difference in concavity between the two types of curves shown 

in Figure 23 and Figure 28 illustrates the clear benefit of cooperation.  The downward 

concavity of Figure 28 is a signature of cooperation in foraging.

The second type of system behavior (higher d and/or lower N, compared to 

behavior described in previous paragraph) represents a transition from effective 

cooperation to the failure of stigmergic cooperation caused by rapid trail decay.  This 

transition behavior is characterized by short intervals of time in which the collection rate
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begins to increase.  These periods occur when a trail is briefly established and utilized by 

a few followers.  However, as shown in Figure 29, negative feedback due to rapid trail 

decay, combined with insufficient ant density, periodically interrupts the momentum of 

the system.  In terms of the food vs. time curve, this type of behavior is characterized by 

intervals with the signature downward concavity interspersed with flat sections of the 

curve.

Figure 29. Time evolution of food remaining (N=25, d=35)

The third type of system behavior (high d and/or small N) resembles that seen in 

the non-cooperative case, Case 1.  The number of food items remaining in the field tends 

to follow a nearly linear trend in time, with a slight leveling-off near the end of the trial.  

The concavity is slightly positive, as shown in Figure 30, which is quite similar to 

behavior of the system foraging without trails for randomly distributed food items.  The 

main difference is that food discovery is much less probable, due to the spatial 

concentration of food items in one corner of the field.  This low probability of discovery 

results in extended periods during which no items are collected.  The curve in Figure 30

remains flat from t = 425 to t = 600, indicating a period of fruitless searching by the 

colony.  For rapid trail decay (d = 35) and small group size (N < 30), the system exhibits 

this non-cooperative type of behavior, despite the ability to deposit and follow trails.
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Figure 30. Time evolution of food remaining (N=10, d=35)

The task completion time for each test reflects the three modes of system behavior 

described above.  Figure 31 shows the completion time versus group size with the decay 

rate, d, as a parameter.  For N > 40, the decay rate has minimal effect on the system 

behavior, as ant density is sufficient to establish and maintain a stable trail.  For N < 40, 

the curves begin to show a dependence on decay rate.  As the number of ants decreases, 

the curve corresponding to d = 35 transitions first into non-cooperative behavior, 

characterized by much longer task completion time.  For slower decay rates, this 

transition occurs at a smaller group size.  The intermediate behavior, in which trails are 

formed for short periods of time before fading out, corresponds to completion times 

between approximately t = 150 and t = 325.  
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Time Steps vs. Number of Ants

0

200

400

600

800

1000

1200

1400

1 10 100

Number of Ants

T
im

e 
S

te
p

s

d = 10

d = 20

d = 35

Figure 31. Completion time versus number of ants (d=decay rate)

The relationship between group size and collision frequency is shown in Figure 

32.  As expected, the collision frequency increases with group size for all decay rates.  

The curves lie in close proximity to one another, indicating that pheromone decay rate is 

not an important parameter with respect to collision frequency.  The trends closely 

resemble that seen in Figure 25, resembling a power law relationship.
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Subsection 5.5.4: Case 3

Case 3 features three variations of the two-cluster scenario.  The first situation is 

nominal, with two equidistant and identical food sources.  The second is a variation, with 

one food source moved closer to home.  Lastly, the third scenario involves presentation 

of the closer food source after partial exploitation of the first source.  Results for these 

three variations on the theme are presented in turn.

EQUIDISTANT FROM HOME, BOTH PRESENTED AT T = 0

In this scenario, the system generally operated in one of three states.  For some 

combinations of decay rate and group size, the group failed to perform cooperatively, 

representing one state.  The other two foraging modes represent two coexistent stable 

states: (1) preferential exploitation of one source and (2) simultaneous exploitation of 

both sources.  Examples of trials that exhibited the two modes are shown in Figure 33

and Figure 34, respectively.  Either of the two modes was possible for many 

combinations of parameter values.  Furthermore, the system sometimes switched between 

the two modes during a single trial.  
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Figure 33. StarLogo simulation (N=30, d=25, t=407)

Figure 34. StarLogo simulation (N=30, d=15, t=206)

The two plots below clearly illustrate the two cooperative system states.  In Figure 35, the 

colony initially discovers both sources and establishes weak trails to both.  However, due 

to insufficient ant density and/or rapid trail decay, the colony is only able to maintain a 

stable trail to one source (Food Source B).  The colony then focuses solely on this source 

until it is fully depleted.  It then switches focus to the remaining source (Food Source A).  
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Note that the choice of Source B over Source A is entirely dependent on random initial 

fluctuations of the system.  In cases where one source was collectively chosen by the 

colony, Source A and Source B were chosen with roughly equal probability.

Figure 35. Time evolution of food remaining (N=30, d=25)

Figure 36 illustrates mutual utilization of the two food sources.  The number of 

food items diminishes steadily at roughly the same rate for both Source A and B.  This 

type of behavior occurred for large group size and/or slow trail decay.  In these 

conditions, the colony is able to establish two stable pheromone trails.  

Figure 36. Time evolution of food remaining (N=30, d=15)

For each value of the parameter d, trials were run for N = 30, 50, and 70.  Figure 

37 illustrates the performance achieved in each test condition.  For N = 70, ant density 

was sufficient for concurrent exploitation of both sources, irrespective of decay rate, d.  

With smaller group size, the system performance decreases, indicating a transition to 
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exploitation of a single source.  For N = 30 and d = 35, the colony was unable to achieve 

cooperative behavior of any kind, resulting in a very high completion time (t = 1346).
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Figure 37. Completion time versus number of ants

UNEQUAL DISTANCE FROM HOME, BOTH PRESENTED AT T = 0

This scenario features two identical sources, but with the near one located at 2/3

of the distance to home of the farther source.  The same three possible system behaviors 

as in the equidistant scenario were observed.  The main difference in this case is that, for 

exploitation of a single source, the probability of collectively choosing the near source 

was far greater than 50%.  Of the 27 total simulation trials, only once was the far source 

exploited preferentially over the near source.  Typically, unless trails were established to 

both sources, the system evolved like the example of Figure 38, Figure 39, and Figure 40.  

These figures represent three moments in time for a single simulation.  In Figure 38, the 

colony has established a strong trail to the source closer to home.  A very weak trail 

exists to the farther source, to which only one ant is traveling via the trail.  Figure 39

shows the point in time when the closer source is fully depleted.  Note that the trail is 

very well defined.  In time, however, the strong trail evaporates without reinforcement.  
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This increases the number of ants available to establish a trail to the remaining food 

source.  Figure 40 shows that a trail is eventually established to the remaining source.  

The last remnant of the old trail is still visible to the lower right of home.
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Figure 38. StarLogo simulation (N=30, d=15, t=106)

Figure 39. StarLogo simulation (N=30, d=15, t=203)
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Figure 40. StarLogo simulation (N=30, d=15, t=302)

The two cooperative foraging modes are shown below by the time evolutions of 

food retrieval.  By comparing Figure 41 and Figure 42, the difference is clear between the 

two situations.  Figure 41 shows the behavior typical of a moderately-sized colony (N = 

30) foraging under the influence of a rapid decay rate (d = 35).  The colony is unable to 

establish two strong trails.  In this case, the colony chooses Food Source B (closer to 

home), an efficient choice compared to Food Source A.  Upon complete exploitation of 

Source B, the colony redirects its effort to Source A.  This transition is clear from 

dramatic increase in collection rate from Source A (at approx. t = 475) soon after Source 

B is completed (at approx. t = 325).  
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Figure 41. Time evolution of food remaining (N=30, d=35)

The collection trend in Figure 42 closely resembles that in Figure 36, when the 

sources were equidistant from home.  In both trials, high ant density combines with slow 

decay rate to facilitate simultaneous exploitation of the two sources.  Despite the unequal 

distance from home, both sources were visited at approximately the same rate throughout 

the test.

Figure 42. Time evolution of food remaining (N=50, d=15)

The task efficiency, measured by completion time, is shown as a function of 

group size and decay rate in Figure 43.  As expected, the task efficiency increases with 

group size and the inverse of decay rate.  Completion time less than approximately 300 

time steps corresponds to a trial in which concurrent exploitation of the two sources 

occurred.  For sequential exploitation of the two sources, more time steps were required.  
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At the upper extreme of completion time, for t > 800, cooperative behavior broke down 

due to rapid trail decay. 
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Figure 43. Completion time versus number of ants

UNEQUAL DISTANCE FROM HOME; ONE SOURCE PRESENT AT T = 0

In this variation of the two-cluster scenario, the source closer to home is presented 

at t > 0.  It was introduced to the foraging field after retrieval of 10 food items from the 

source present at t = 0.  This allows for initial discovery of the source and potential 

establishment of a trail prior to introduction of the new source.  This situation was 

designed to test system adaptability in response to a dynamic environment.  In 

approximately 90% of the trials, the new source was quickly discovered and utilized by 

the colony.  This type of adaptation occurred even when a stable trail had been 

established to the source present at t = 0.  The colony either abandoned the initial source 

or began simultaneous exploitation.  The progression observed in one trial is shown in 

Figure 44 and Figure 45.  The first shows the status of the colony immediately after 

introduction of the second food source (to the bottom right of home).  Note that, while 10 

food patches are missing from the initial food source, a stable trail has not been 
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established.  In addition, the new food source was discovered immediately after its 

placement into the field.  The trails resulting from the initial discovery of this new source 

are quickly reinforced, and positive feedback eventually creates a strong trail to the new 

source (Figure 45).  In this trial, the colony efficiently selected the new food source over 

the source initially present. 
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Figure 44. StarLogo simulation (N=50, d=35, t=157)

Figure 45. StarLogo simulation (N=50, d=35, t=250)

The following three plots represent three distinct responses to introduction of the 

new source.  In the first plot, Figure 46, the collection rate from Food Source B 

accelerates quickly soon after its introduction.  Interestingly, the collection rate of Source 

A is not noticeably affected by the new source.  However, throughout the trial, the 

collection dynamics for Source A are characteristic of non-cooperation.  In contrast, the 
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collection curve for Source B exhibits the downward concavity produced by cooperative 

foraging.  In Figure 47, the colony responds to the new food source by exploiting the two 

mutually.  Note that this occurs with a large group of virtual ants and with a slow decay 

rate.  These conditions allow the colony to discover and exploit the new source without 

abandoning the old source.  A decision between the sources is not required, as system 

resources are able to utilize both concurrently.  When the decay rate is increased to d = 35 

(N remains constant at N = 70), the system is unable to establish a stable trail to the new 

source.  It is discovered, but the colony eventually continues exploiting the original 

source before switching to new source (Figure 48).  In this case, the momentum of 

positive feedback forced the system into a suboptimal foraging strategy.
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Figure 46. Time evolution of food remaining (N=50, d=35)

Figure 47. Time evolution of food remaining (N=70, d=15)

Figure 48. Time evolution of food remaining (N=70, d=35)

Figure 49 illustrates the overall task performance for all combinations of group 

size and pheromone decay rate.  The trends are similar to those seen in Figure 43 and 

Figure 37.  System performance is generally impaired by a rapid decay rate and small 
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group size.  The shortest completion times (t ≈ 200) occur when the system is able to 

exploit the new source without abandoning the original.
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Figure 49. Completion time versus number of ants

Subsection 5.5.4: Case 4

Case 4 features three food sources, equidistant from home.  All three sources were 

present at the beginning of each trial, with 120° between each source.  All trials were run 

with N=100, with the decay rate varied from d = 20 to d = 55.  This case was designed to 

investigate the existence of multiple exploitation schemes and the importance of decay 

rate as a system parameter.  As discussed in the case of two food sources, more than one 

mode of foraging is possible for a given set of test conditions.  With three sources 

present, three major modes of cooperative foraging were observed.  The first mode 

consists of the establishment of one dominant trail, with minimal utilization of the other 

two sources (until the first is depleted).  This type of exploitation is quite rare with N = 

100, as the ant density is generally sufficient to support two or more stable trails.  The 

second and third foraging states are simultaneous exploitation of two or three sources, 

respectively.  These behaviors were much more common, again due to the large group 
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size.  The three images below from StarLogo display an example of the initial 

exploitation of two sources.  Figure 50 shows the existence of two strong trials, with only 

a weak and incomplete trail leading to the food source above home.  In Figure 51, both of 

the bottom food sources have been finished and only slight remnants remain of the trails.  

Notice that a numbers of ants are stranded on these weak trails.  These “lost” ants 

eventually abandon following and resume the default wandering behavior.  As a result, 

they become available for reinforcement of a trail to the one remaining food source.  In 

Figure 52, the colony has rediscovered the final source and established a strong trail.
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Figure 50. StarLogo simulation (N=100, d=20, t=132)

Figure 51. StarLogo simulation (N=100, d=20, t=185)
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Figure 52. StarLogo simulation (N=100, d=20, t=213)

The following figures demonstrate the two most common exploitation patterns in 

this set of trials.  Figure 53 shows concurrent exploitation of all three sources.  Notice 

that the decay rate is quite slow (d = 15) in this trial, which allows the virtual ants to 

divide their resources between all three sources.  When the decay rate is slow, trail 

lifetime is extended, decreasing the critical density of ants required for trail maintenance.  

For a higher decay rate (d = 25), the colony can only support two concurrent trails 

(Figure 54).
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Figure 53. StarLogo simulation (N=100, d=15, t=140)

Figure 54. StarLogo simulation (N=100, d=25, t=74)

The time evolutions of food collection for each of the cooperative behavioral 

modes are shown below.  The first plot, Figure 56, shows the effect of a high pheromone 

decay rate.  The colony focuses on each food source in a sequential foraging strategy.

Figure 55 is a clear example of utilizing two sources, while virtually ignoring the third.  

Note the time delay between completion of the first two source (t = 120) and the dramatic 
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increase in collection rate to the remaining source (t = 190).  During this intervening 

time, ants are still following the two dominant trails.  It takes a short time for those trails 

to decay and for the wayward ants to commence searching for new food sources.  Finally, 

in Figure 57, with a slow decay rate (d = 25), the colony forages from all three sources at 

the same time.

Figure 55. Time evolution of food remaining (N=100, d=50)

Figure 56. Time evolution of food remaining (N=100, d=40)
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Figure 57. Time evolution of food remaining (N=100, d=25)

The pheromone decay rate, as shown by the results above, plays an important role 

in the group foraging strategy.  Figure 58 summarizes these results, by showing the task 

completion time as a function of decay rate.  There is a strong negative correlation 

between task efficiency and decay rate.  As the decay rate increases, the group is forced 

to collectively choose to abandon one or two sources and focus on the other two or one 

sources, respectively.  Note that the graph in Figure 58 is divided into regions 

corresponding to the three exploitation schemes.
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Subsection 5.5.4: Case 5

Case 5 features four identical food sources, equidistant from home.  Each source 

is placed near a corner of the foraging field.  This group of simulation trials was run to 

demonstrate the existence of several stable foraging states.  The values of N (group size) 

and d (decay rate) were chosen to achieve a variety of exploitation schemes.  This case is 

similar to Case 4, which included three sources, but with added complexity in the 

possible exploitation behaviors.  A typical example is presented in the following 

successive images from one trial.  Figure 59 reveals the initial exploitation of the two 

sources on the left side, with the dominant trail leading to the top left source.  Notice that 

only incomplete trails lead to the other two sources.  After depletion of the top left 

source, the dominant trail shifts to the lower left source, but the other two sources remain 

weakly exploited (Figure 60).  In Figure 61, the lower left source has been completed and 

focus has shifted to the top right source.  Finally, in Figure 62, the colony moves on to 

the one remaining source.
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Figure 59. StarLogo simulation (N=50, d=20, t=50)

Figure 60. StarLogo simulation (N=50, d=20, t=127)
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Figure 61. StarLogo simulation (N=50, d=20, t=230)

Figure 62. StarLogo simulation (N=50, d=20, t=302)

The following plots each represent a distinct foraging strategy observed in the 

simulation.  These figures do not represent an exhaustive listing of the possible 

behaviors, as a great deal of complexity exists with four sources.  This complexity arises 

from the possibility of switching between exploitation schemes during the course of one 

trial.  The examples below only present some of the possible foraging patterns.  The 
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simplest cooperative behavior is shown in Figure 63, as all four sources are exploited at 

approximately the same rate.  

Figure 63. Time evolution of food remaining (N=70, d=15)

The following two figures demonstrate the concurrent exploitation of two (Figure 64) and 

three (Figure 65) food sources.  Notice that, in Figure 65, Food Source C was not even 

discovered until long after the other three sources were depleted.  With so many ants 

committed to foraging at Sources A, B, and D, very few remained to discover new 

sources.  Source C was only discovered after many ants were finished with trail-

following.  
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Figure 64. Time evolution of food remaining (N=70, d=20)

Figure 65. Time evolution of food remaining (N=50, d=15)

Figure 66 and Figure 67 reflect more complex examples of system behavior.  In Figure 

66, the colony discovers all four sources early in the trial, but soon abandons Food 

Source A.  Sources B and C are moderately used, but the colony focuses on Source D.  

After approximately 400 time steps, Source D is completed, but the trails to Sources B 

and C evaporated completely.  Meanwhile, positive reinforcement established a strong 

trail to Source A, for which the collection rate rapidly increased.  Upon completion of 

Source A, the remaining two sources (B and C) were exploited concurrently.
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Figure 66. Time evolution of food remaining (N=30, d=15)

In Figure 67, the colony first collectively chooses Sources A and D, but the trail to 

Source D evaporates before completion.  At approximately t = 700, a strong trail is 

established to Source B, which is quickly finished.  Eventually, Source D is rediscovered 

and a trail is established to Source C, the only remaining source.

Figure 67. Time evolution of food remaining (N=30, d=20)

Clearly, when four food sources are present, the colony has the potential to utilize 

a number of exploitation schemes.  While the system behavior shows some dependence 

on group size and decay rate, a number of states exist even for one set of system 

parameters.  Running several trials for fixed values of N and d resulted in a variety of 

foraging patterns.



150

Chapter 6: Experimental Design

Section 6.1: Experimental Motivations and Goals

Given the theoretical models and simulation tools available to a swarm 

intelligence researcher, one may question the utility of experimentation with real robots.  

After all, physical implementation is more expensive and less conceptually enlightening 

than simulation.  It is usually impractical, for a number of reasons, to assemble a robotic 

swarm for research purposes large than 10 to 20 robots.  From a theoretical perspective, 

one could argue, there is little to gain from physical implementation.  The motivations for 

physical implementation in this work arise in response to such notions.  The five major 

motivations for experimentation with real robots are discussed in the following 

paragraphs.

The first motivating factor for this experimentation is the current lack of 

experimental examples in swarm intelligence literature.  While theoretical modeling and 

simulations have generated a wealth of promising results and led to the imagination of 

productive real-world robotic applications, most researchers have stopped at this juncture.  

There are a few notable exceptions to this generalization, most of which are related to 

development for military application.  In such an immature field of study, it is reasonable 

to lay a strong foundation in theory before forging ahead into baseless attempts at 

implementation.  At this point, however, further theoretical study pales in importance 

without manifestation in experimentation.  The field has matured to the point were further 

advancement requires a combined focus in both theory and practice.  This experimental 

effort is an attempt to initiate just such a transition to greater balance in swarm 

intelligence research.
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Secondly, the only experimental attempts to design functional robotic foraging 

systems currently present in the literature employ communication schemes other than 

trail-based foraging.  A number of other methods have been used, with varying success.  

Most notably, beacons and tactile chains have enabled cooperative foraging.  Other 

examples have succeeded in foraging and/or clustering tasks via stigmergic cooperation.  

Conspicuously absent is the utilization of trail-laying and following as the mechanism of 

cooperation.  Given that the examples above draw direct inspiration from biological 

systems, including social insects, the absence of trails is a conspicuous void.  One would 

expect that the predominant method employed by ants would be one of the first choices 

for a mode of communication.  After all, the incredible efficiency of mass recruitment in 

ants is a testament to the efficacy of self-organization.

While this experimentation is motivated by the lack of trail-based experiments 

with real robots, as mentioned above, the third major motivation is the weaknesses of 

current trail-laying and following in tasks other than foraging.  With limited success, a 

small number of researchers have attempted to develop robots capable of laying and 

following trails.  None of these attempts have been motivated by robotic foraging, but 

they are the best examples of trails in robotics.  Unfortunately, each of the proposed 

systems has important weaknesses, especially if applied to a foraging task.  From high 

power consumption to slow chemical sensing to impractical trail material, each example 

has critical flaws.  In order to develop a functional foraging system, it will be necessary 

to significantly improve the properties of the trail itself, as well as the deposition and 

sensing capabilities of individual robots.
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Novel technological concepts often generate unrealistic expectations in terms of 

real-world application.  This could be true in the world of robotics and AI more than any 

other technological field.  Proclamations made in the media or even in respected 

published literature tend to overstate the extent, imminence, and value of potential real-

world applications.  This is certainly the case in the swarm intelligence literature.  Claims 

are often made on the basis of theory and simulation, but these claims sometimes ignore 

the difficulties of physical implementation.  The step from the simulated on-screen world 

to the real world is often a greater gap than expected.  While it is admitted that swarm 

intelligence implementation tends to be fairly simple in terms of the technological 

requirements for each robot, system development remains a significant hurdle.  At this 

point, the swarm intelligence community has largely avoided a thorough investigation of 

the difficulties of physical implementation.  These difficulties can only be addressed as 

they are encountered by groups attempting physical realization.

One of the central tenets of swarm intelligence is simplicity.  This is one of the 

main advantages proclaimed in the argument against traditional artificial intelligence.  

Swarm intelligence researchers contend that behavior-based robotic systems exhibit 

complex behavior, despite the simplicity of each individual.  Few would argue against the 

simplicity of a subsumption architecture, which greatly reduces the processing 

requirements of the robot and the programming complexity.  These claims of simplicity 

seem to indicate that a group of technologically rudimentary robots should be sufficient 

to exhibit swarm intelligence.  In part, this experimental effort is motivated by an attempt 

to test the limits of the doctrine of simplicity.
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The primary goals of experimentation follow directly from the five major 

motivations listed above.  While each goal does not necessarily correspond to a single

motivation, there is a general correspondence that should be obvious.  The following four 

goals determined many of the subsequent choices regarding experimental design:

Experimental Goals

(1) Develop a system of robots capable of utilizing trail-laying and following in 

completion of a central-place foraging task.

(2) Introduce a novel trail substance that is non-toxic, time-decaying, and easily 

deposited and sensed.

(3) Demonstrate characteristics of a swarm-intelligent system 3

a. Emergent pattern formation

b. Multistability

c. Increased task efficiency due to cooperation

(4) Compare experimental task efficiency to theoretical predictions and       

      simulation results.   

Section 6.2: LEGO® Mindstorms™

In 1998, LEGO introduced a revolutionary product in the arena of educational 

toys--Robotics Invention System (RIS).  This robotics kit was developed as the flagship 

product of a new Mindstorms brand name and released with the intended primary 

audience of children.  Within a few months of the release, however, it became apparent 

3 Note that there is not an attempt to demonstrate bifurcation phenomena, due to the difficulties of 
demonstrating this with few robots and on short time scales. 
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that the RIS appealed to a far broader audience than LEGO had anticipated.  Hobbyists, 

robotics enthusiasts, engineers, and researchers in academia became interested in the 

product on personal and professional levels.  Just over a year later, LEGO introduced 

RIS, version 1.5, which was quickly followed in 2001 by RIS 2.0.  Each kit, which retails 

for approximately $200, contains over 700 individual pieces, including a variety of 

standard LEGO bricks, TECHNICS parts, two motors, two touch sensors, a light sensor, 

and the RCX (see Figure 68 below).  These sensors are encased in fully functional LEGO 

bricks and designed to interface seamlessly with the RCX “programmable brick.”  The 

RCX brick functions as the on-board computer for custom robotic creations.  It is a 

programmable, micro-controller based brick capable of simultaneously operating three 

motors, three sensors, and one infrared (IR) serial communications interface.  When a 

consumer obtains this kit, all that is required is a personal computer to create (and 

program) an autonomous mobile robot.  LEGO provides software for installing a 

graphical, icon-based programming environment known as RCX Code.  This kit also 

includes an IR transmitter required to download programs from the PC to the RCX.

Figure 68. LEGO Robotics Invention System (RIS) 2.0

The system architecture developed by LEGO facilitates ease-of-use that even a 

child can master.  At the lowest level is the processor, a Hitachi H8300, which executes 
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machine code instructions.  The processor cooperates with additional components that 

convert signals from the ports into digital data, using chips providing memory for data 

and program storage.  Above the processor and circuit layer is the ROM code, which 

provides functionality to the basic input/output system (BIOS) of the RCX, allowing it to 

startup and interface with peripherals.  On top of the ROM code layer runs the firmware, 

which functions as the operating system of the RCX.  The firmware is downloaded and 

“installed” into the RAM of the RCX when the user purchases the product.  The topmost 

layer is the user-created RCX Code defining instructions for a particular program.  The 

software provided by LEGO translates the program into bytecode before sending it to the 

RCX, and finally the bytecode is interpreted by the firmware and converted to machine 

code.  The RCX processor executes the machine code to run the program.  Refer to Table 

6 for a summary of the RCX specifications.

Table 6. Technical Specifications for LEGO RCX [111]

Processor Hitachi H8

RAM 32 Kb

ROM 16 Kb

I/O 3 sensors / 3 actuators

Communication IR transceiver

The RCX represented an important innovation in the world of custom and 

amateur robotics.  By linking sensing and actuation so tightly with the mechanical 

architecture of a robot, the RCX completed an excellent platform for robotics education 

and investigation.  The RCX was inspired by the MIT Programmable Brick developed in 

MIT’s Media Lab in the mid-1990s [112], which received sponsorship from LEGO.  The 
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RCX was an independent creation, however, designed “from the ground up” and in no 

way based on the technical elements of MIT’s brick.  Through ingenious reverse 

engineering, the community of Mindstorms addicts came to fully understand the internals 

of the RCX [111] (see Figure 69 for an external view of the RCX).  This understanding 

quickly led to the introduction of custom sensors (see [29], and references therein), 

actuators, and, most importantly, alternatives for programming the RCX.  From 

alternative programming languages to firmware replacement, the full capabilities of the 

RCX were unlocked as a number of individuals created these alternatives to the 

restrictive RCX Code.  For a full description of these alternatives, see [29].

Figure 69. LEGO RCX 2.0

One of the most popular alternatives to the software provided by LEGO is Bricx 

Command Center, or BricxCC, an integrated development environment (IDE) that fully 

replaces the functionality of the software provided by LEGO while enhancing 

programming, debugging, and testing capabilities.  BricxCC was developed by John 

Hansen and Mark Overmars as a complete program development interface between a PC 

and the RCX [113].  Refer to Appendix C for BricxCC documentation.  BricxCC 

supports a variety of alternative programming languages to RCX Code.
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Despite the simplicity of LEGO’s RCX Code, it has several major drawbacks as a 

programming language:

• The set of instructions is very limited, and doesn’t disclose the full power 

of the RCX processor.

• The graphical interface is unsuitable for large programs and becomes

unmanageable.

• RCX Code severely limits the resolution of sensor readings (especially for 

the light sensor).

• Functions, subroutines, and arrays cannot be created.

• The use of variables, counters, and timers is limited.

Because of these important limitations, most advanced users turn to one of several 

alternative languages.  For this research, NQC (Not Quite C) was chosen as the best 

alternative.  Developed by Dave Baum, NQC is a streamlined version of C, augmented 

with a variety of macros and commands specific to programming the RCX [114].  The 

advantages of NQC include the following:

• It is based on the original LEGO firmware, ensuring reliability.

• It is multiplatform on the host side (PC, Mac, Linux) and target side 

(supports all LEGO programmable bricks: RCS, Scout, Cybermaster)

• It is supported by a number of IDEs, including BricxCC

• NQC is free software released under the Mozilla Public License.

While NQC closely resembles C in terms of syntax, there are some important differences.  

Refer to [114] or the NQC documentation in Appendix D for more detailed information.
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Section 6.3: Disappearing Ink

In evaluating candidate substances for a trail, there were several important 

considerations.  The most important factor was the property of time decaying trail 

“concentration,” similar to pheromone evaporation in ant foraging.  This property is 

necessary in a fully functional foraging system, as it provides negative feedback to the 

system.  Without a time-decaying substance, an established trail would remain constant 

even after depletion of a food source (or a cluster of targets).  While this robotic 

implementation is not intended for a specific real-world application, certain other trail 

attributes are desirable:

• Non-toxic

• Non-damaging to common indoor flooring materials

• Imperceptible after complete trail decay

• Inexpensive

• Chemically inert and nonflammable

Of course, two other major considerations are the ease with which the substance can be 

deposited and perceived by individual robots.

An original solution to the problem of choosing a trail substance is “disappearing 

ink.”  Commonly found as a toy or a novelty item, “disappearing ink” actually possesses 

many of the properties listed above.  Of course, “disappearing ink” is known for its 

characteristic ability to fade from a dark blue color to colorless in a matter of seconds or 

minutes.  In addition, the ink is non-toxic in terms of contact with human skin.  It does 

not damage or stain a variety of hard floor materials.  Carpet would not be a feasible 

substrate for a number of reasons, making the issue of carpet damage irrelevant.  It is 
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quite inexpensive, as it is composed of three very common chemicals [115].  The only 

drawback to this substance is the issue of flammability.  The chemicals in this ink are 

flammable, making it unsuitable for some applications.  However, for a wide range of 

applications, this would not be a problem.  Disappearing ink is not highly reactive, but it 

would react with a number of chemicals.  Again, this would likely not be a factor in a 

wide array of real-world applications.

The chemistry involved in disappearing ink is quite simple, which is another 

favorable attribute of this substance.  Only three elements are required to make the ink: a 

pH indicator, an alcohol, and a base.  These elements combine to create the disappearing 

behavior of the ink.  The most common formulations of disappearing ink utilize the 

following specific chemicals:

• thymolphthalein indicator, C28H30O4

• ethanol (ethyl alcohol), C2H6O

• sodium hydroxide, NaOH

This particular pH indicator is dark blue in a moderate to strong basic solution (pH > 10) 

and colorless in solutions with pH < 9.3 [115].  These three chemicals are combined to 

form a basic solution (due to the addition of NaOH).  When the ink is spread thin on a 

piece of paper or cloth, the increased surface area accelerates the following chemical 

reaction:

2 NaOH + CO2 → Na2CO3 + H2O

As sodium hydroxide is consumed by this reaction with carbon dioxide in the air, the pH 

of the solution decreases.  The pH indicator, thymolphthalein, reflects this change in pH 

by steadily changing from blue to colorless.  The color change can be accelerated by the 
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addition of an acid to the solution.  By varying the initial concentration of NaOH, the 

time required to transition from blue to colorless can also be tailored.

For the purposes of this experiment, the desired time interval between ink 

application and complete disappearance was on the order of several minutes.  Through 

trial and error, the following process achieved the appropriate initial NaOH concentration 

to produce a complete decay time in the range of 2-8 minutes:

Step 1: Add 20 ml indicator/ethanol solution (0.05% w/v) to small beaker.

Step 2: Add 12-25 drops NaOH aqueous solution (50% w/w) to produce the 

desired decay rate.

Step 3: Add approx. 0.75 grams solid granular thymolphthalein indicator to obtain 

darker shade of blue.

The last step in the process allows one to adjust the initial shade of blue without altering 

the time required for color change.  In order for the trail to be dark enough to sense using 

the LEGO light sensor, it was necessary to increase the concentration of indicator using 

this additional step.  In Step 2, note that the range of 12-25 drops of sodium hydroxide 

corresponds to a complete disappearance time of 2-6 minutes.

The ink solution was tested on a number of surfaces, with a final choice of poster-

board as the substrate.  The non-glossy paper surface provides enough ink absorption to 

prevent the robot wheels from tracking ink across the foraging field.  It also prevents the 

ink from drying prior to color change, which can occur with more absorbent materials.  

An unexpected benefit to the use of disappearing ink is trail reinforcement.  When a new 

trail is deposited across an older trail (even if already colorless), the overlapping region is 
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darker than the rest of the trail.  This region also takes slightly longer to disappear, 

creating the effect of increased "pheromone concentration" along high-traffic routes.   

Section 6.4: Mechanical Design

The mechanical design of LEGO Mindstorms robots is considered by some to be 

more of an art than a science [116], which could be said of mechanical design in general.  

A number of books have been written for the single purpose of aiding LEGO designers 

(e.g., see [29]).  The thriving online Mindstorms community provides a wealth of 

information for anyone intending to design a LEGO robot, which is of course 

considerably different from traditional robot design.  Fortunately, designing in LEGO has 

certain distinct advantages over the use of traditional mechanical components:

• LEGO is fast – From design concept to finished product, creation of a 

basic model takes only a matter of hours. 

• LEGO is cost-effective – The basic RIS 2.0 kit costs only $200, which 

enables one to create robots of moderate complexity.  Additional parts are 

readily available and fairly inexpensive compared to traditional robotics 

components.

• LEGO is flexible – Redesigns and modifications are relatively easy to 

perform, given the ease of disassembly.

The main mechanical disadvantage to using LEGO Mindstorms is reliability and 

structural integrity.  Without taking special care to reinforce each mechanical subsystem, 

LEGO parts can detach from one another due to vibration and reaction forces applied to 

motors.  The following subsections describe the design requirements, provide sensor and 
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motor information, and detail the final robot design.  Finally, a few design challenges 

encountered during the design process are addressed.

Subsection 6.4.1: Design Requirements

The first step in the engineering design of a mechanical system is to perform 

functional decomposition of the expected task and generate a set of functional 

requirements [117].  In this case, the task is collective foraging, which can be subdivided 

into seven subtasks:

(1) Searching for targets

(2) Obstacle avoidance

(3) Object retrieval

(4) Homing

(5) Object release

(6) Trail following

(7) Trail deposition

In order to complete each task, a number of functional requirements are needed from the 

final design.  Some of the functional requirements are necessary to complete more than 

one subtask, while others are coupled.  For example, the subtask of trail deposition must 

occur immediately after object retrieval.  To complicate the issue, the design is limited to 

three motors and three sensors due to the input/output capabilities of the RCX.  From this 

list of subtasks, a preliminary set of functional requirements is obtained, as shown in 

Table 7. 
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Table 7.  Generation of Functional Requirements for a Foraging Robot

Subtask Functional Requirement(s)

search for targets
� locomotion
� ability to sense target

obstacle 
avoidance

� ability to sense obstacle or collision
� locomotion
� turning

object retrieval � method of picking up target
homing � ability to know relative position of home
object release � method of dropping target

trail following
� locomotion
� ability to sense trail

trail deposition
� locomotion
� mechanism of depositing ink

The preliminary list of functional requirements (Table 8), after eliminating duplicates, is 

as below:

Table 8. Preliminary Functional Requirements

locomotion

turning

obstacle or collision 
sensing
target sensing

pick up target

release target

trail sensing

trail deposition

knowledge of home 
location
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 This list can be refined by consideration of certain design constraints.  As 

mentioned above, one of the major constraints is the limitation of three motors and three 

sensors.  Another self-imposed constraint relates to the turning requirement.  While none 

of the subtasks require rotating (turning in place without translation), the maneuverability 

afforded by this ability should be considered essential.  Performing obstacle avoidance in 

a system of autonomous robots would be extremely difficult without the ability to rotate 

in place.  Yet another self-imposed constraint applies to the functional requirement of 

knowing the location of home.  In reality, the robot is only required to know its position 

relative to home.  There are four main solutions to this problem of mobile robot 

positioning: (1) odometry and dead-reckoning, (2) beacon referencing, (3) landmark-

based navigation, and (4) map-based positioning.  Dead-reckoning is notoriously difficult 

due to accumulated odometry error.  Odometry would also require the use of rotation 

sensors, which would violate the constraint of using only three sensors.  Map-based 

positioning requires a priori knowledge of the foraging field and sophisticated on-board 

representations of the environment, which is impossible using LEGO robots and violates 

the philosophy of a swarm-based system.  Landmark-based navigation could be useful, 

except for the lack of physical landmarks in the experimental environment and the need 

for some type of robot vision.  Having eliminated all other options, beacon referencing 

becomes the obvious solution.  With these constraints in place, the final list of functional 

requirements takes shape (

Table 9): 
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Table 9. Functional Requirements

locomotion

rotation

pick up target

release target

Actuation

trail deposition

obstacle/collision sensing

target sensing

trail sensing
Sensing

home beacon sensing

Having separated the functional requirements into the categories of sensing and actuation, 

the input/output limitations of the RCX become problematic.  Four functional 

requirements require sensors, while only three input ports are available.  Similarly, five 

requirements require motor actuation, but only three outputs are present.  For this reason, 

the functional requirements become coupled, introducing added complexity to the 

mechanical design process.  In order to solve this design problem, it was necessary to 

utilize a single light sensor to satisfy two functional requirements (target sensing and trail 

sensing).  One motor was used to satisfy three functional requirements (pick up target, 

release target, trail deposition).  The details of the design are found in Subsections 6.4.3 

and 6.4.4, but Table 10 illustrates resource (sensors and motors) allocation according to 

functional requirement.
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Table 10. Allocation of Motors and Sensors

locomotion
two motors

rotation

pick up target

release target

Actuation

one motor

trail deposition

touch sensor obstacle/collision 
sensing
target sensing

light sensor
trail sensing

Sensing

light sensor home beacon 
sensing

Subsection 6.4.2: LEGO Sensors and Motors

In this section, a brief technical description is provided for the LEGO sensors and 

motors.  While a number of websites sell or provide instructions for building custom 

LEGO-compatible sensors, this design only utilizes Mindstorms brand motors and 

sensors.

LEGO currently produces three types of 9V DC electric motors that are 

compatible with the RCX: the ungeared motor, the geared motor (Figure 70), and the 

micromotor.  The geared motor is a newer product and has several advantages over the 

other two models (Table 11).  It features low current consumption, low RPM due to an 

internal multistage gear reduction, much higher efficiency than the ungeared motor, and 
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far more torque and higher reliability than the micromotor.  The 9V geared LEGO motor 

is extremely reliable and fairly resistant to damage under stall situations [29].

Table 11. Properties of LEGO Motors (taken from [29], p. 44)

Figure 70. LEGO 9V geared motor (taken from [118])

Two types of LEGO sensors are used in this design: light and touch (see Figure 

71).  The touch sensor is a very simple mechanical contact that opens or closes a circuit 

internal to the RCX.  It has a binary state, on or off, which is read by the RCX.  The 

LEGO light sensor is more complicated, but still a very basic sensor compared to 

conventional sensing hardware.  Individuals have succeeded in reverse engineering the 

light sensor and discovering the internal circuitry (refer to [119] for details).  The main 

elements of the sensor are a phototransistor for sensing light intensity and a red LED, 

which allows the sensor to measure reflected light as well.  The phototransistor is also 

sensitive to light in the IR spectrum.  The sensor can be employed to sense light intensity, 



168

color, or relative distance to an object [29].  The RCX reads a raw value between 0 and 

1023, depending on the intensity of light incident on the phototransistor.

Figure 71. LEGO touch sensor (left) and light sensor (right); (taken from 
[118])

Subsection 6.4.3: Physical Architecture

The system architecture of the completed design consists of several subsystems.  

These subsystems combine to form the final product, which is a robot satisfying all of the 

functional requirements listed in 

Table 9 (see Figure 72 for photographs of the completed robot).  Each subsystem 

is described below, along with its relationship to the entire system architecture.
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Figure 72. Side (left) and front (right) views of final robot design

Prior to designing the mechanical architecture of the robot, it was necessary to 

first decide on a system of locomotion.  As described in Chapter 2, there are a variety of 

available options for the drive system of an autonomous mobile robot.  Each option has 

distinct advantages and disadvantages.  One of the functional requirements is rotation 

(without translation), which immediately eliminates certain drive systems (steering, 

tricycle, articulated, and pivot drives).  Of the remaining four options (differential, dual 

differential, synchro, and skid-steer), the differential drive was selected due to simplicity 

of construction, the maintenance of an open undercarriage (not allowed by the synchro 

drive), and a consistent axis of rotation (unreliable in a skid-steer drive).  The selection of 

a differential drive to some extent dictated the basic form of the robot.  As with all 

differential drive arrangements, the driving wheels are arranged on opposite lateral sides 

of the robot and driven independently.  One or more caster wheels at the front or rear of 

the robot provide stability and free rotation.
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After choosing a differential drive, the robot system architecture begins to take 

shape.  The first subsystem provides the foundation upon which all others are built: the 

chassis (Figure 73).  The robot chassis is a generally rectangular framework of beams 

providing the structural integrity of the robot.  The chassis was designed to withstand the 

forces caused by collisions and those imposed as reaction forces on the motors.  It was 

also designed to resist internal detachment due to vibrations caused by ground contact 

and motor operation.  Redundant bracing and double-width longitudinal beams result in a 

firm foundation for additional subsystems.

Figure 73. Robot chassis (with rear wheels attached)

The chassis is followed by the drive subsystem, which includes three basic 

elements: (1) a caster wheel, (2) two rear drive wheels, and (3) two motors framed 

together (Figure 74).  The caster wheel, located at the front of the robot, connects 

modularly into the main front crossbeam of the chassis.  It is composed of two small 

wheels (without tires) coupled on one axle and oriented symmetrically with respect to a 

vertical axle.  The vertical axle serves as the axis of rotation for the caster during turns.  

Each rear drive wheel is covered with a rubber tire.  The axle for each wheel passes 
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through a double-beam of the chassis and ends at a 48-tooth drive gear.  The two drive 

motors are braced together, back-to-back, in a frame solidly containing both motors.  This 

frame is connected to the chassis at several locations.  Each motor has an 8-tooth gear on 

the output shaft that drives the 48-tooth gear on each rear-wheel axle.

Figure 74. Caster wheel (left) and drive system (right)

The next subsystem is the front bumper assembly (Figure 75), which attaches 

directly to two horizontal crossbeams on the front of the chassis.  The bumper assembly 

consists of one touch sensor that is closed upon contact with an obstacle.  Two long, 

angled lift-arms extend laterally from the center of the robot.  These lift-arms rotate about 

a horizontal axis in order to depress the touch sensor contact point.  A rubber band 

maintains the “open” state of the touch sensor by slightly rotating the lift-arms off the 

contact.
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Figure 75. Front bumper subassembly

At the rear of the robot is the pen holder and drive subsystem (Figure 76), which 

controls the ink deposition process.  A long drive axle is mounted laterally across the two 

main drive motors, with a large pulley on the end of the axle.  The axle is supported at 

two points and generates the rotation of the pen holder frame, which is connected to the 

axle via short lift-arms.  The square pen holder frame has an opening in the center for 

marker insertion and an elevated axle from which a rubber band connects to the RCX.  

This band ensures that the default position of the pen holder is up (not depositing a trail).  

The drive pulley connects by a rubber belt to a motor mounted on the right side (facing 

the front of the robot) and near the center (front-to-back) of the robot.  The motor is 

mounted and braced solidly to the chassis, preventing dislodgement.
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Figure 76. Pen holder and drive assembly

The mechanism responsible for capture and release of targets is least connected to 

the chassis.  A permanent magnet adhered to two LEGO racks (flat gears) is held in 

tension by opposing rubber bands anchored on opposite side of the chassis (Figure 77).  

The racks are driven by an 8-tooth gear on a laterally-oriented axle passing through the 

chassis.  This axle is driven by a rubber belt from the third (non-drive-system) motor 

mounted directly above the end of the axle.  The magnet assembly is guided in a vertical 

slot constructed using small LEGO bricks and short axles connected to the underside of 

the RCX.  A large plate, on which the targets lay flat during magnetic suspension, covers 

the magnet apparatus and is connected on four corners to the chassis (Figure 78).  A 

downward-facing light sensor connects to the chassis immediately in front of the flat 

plate.
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Figure 77. Magnet apparatus

Figure 78. View of robot undercarriage (note the red cover plate)

Finally, the last subsystem is the RCX, to which all motors and sensors are wired

(Figure 79).  A forward-looking light sensor is mounted on top of the RCX, along with an 

anchor point to which the pen-holder rubber band attaches.  The RCX provides support to 

the third (non-drive-system) motor, as well as the main pen-drive axle.
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Figure 79. RCX Subassembly

Subsection 6.4.4: Assembly

This section describes the assembly procedure followed to build each of the seven 

individual robots.  Refer to Appendix F for the specific steps required to assemble each 

subsystem described in the previous section.  The integration of the subsystems into a 

completed robot is the focus of this section.  Robot assembly can be divided into 6 major 

steps, as listed below: 

Step 1: Assemble each individual subsystem (see Appendix F), except for the 

target capture/release mechanism, which cannot be fully assembled ahead 

of time.

Step 2: Connect the drive subsystem (caster, drive wheels, drive motors) to the 

chassis (Figure 80). 
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Figure 80. Chassis, caster, rear wheels, and drive motors

Step 3: Attach the third motor to the chassis, followed by the pen holder and drive 

mechanism.  The rubber belt must be included between the motor output 

shaft and the pen drive pulley.  The second rubber belt (that connects to 

the magnet apparatus drive axle) should also be included on the motor 

shaft.

Step 4: Attach the front bumper assembly to the chassis.

Step 5: Attach the RCX subsystem to the chassis and connect all wires.  Connect 

the rubber band from the RCX anchor point to the suspended pen holder 

axle.
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Figure 81. Pen holder, bumber, and RCX subsystems added to assembly

Step 6: Construct the target capture/release mechanism onto the underside of the 

RCX, including the opposing rubber bands anchored at points on the chassis

(Figure 82).  Connect the rubber belt already on the third motor to the pulley 

on the magnet drive axle.  Attach the downward-facing light sensor to the 

chassis.  Then, attach the flat cover plate to the chassis.

Figure 82. Steps for adding magnet apparatus and cover plate
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Subsection 6.4.5: Operation

Mechanical operation of the robot can be described in the context of each of the 

“active” subsystems (excludes the chassis and RCX).  The remaining four subsystems 

contain at least one mechanism with moving parts.  The operation of these subsystems is

described below:

• Drive System – The differential drive consists of two large, driven rear 

wheels and one front caster wheel.  During movement in a straight line 

(forward or reverse), both drive motors operate in the same direction and 

at the same speed.  In this case the caster does not rotate about the vertical 

support axle, but simply provides stability.  Turning is accomplished by 

disparity in the power applied to the drive motors.  Varying this disparity 

alters the turning radius.  Rotation in place about the midpoint of the rear 

drive axles occurs when the rear wheels are driven with equal power in 

opposite directions.  The caster wheel freely rotates to one side or the 

other to allow for this rotation.  By braking one motor and powering the 

other, rotation can also occur about either rear drive wheel.

• Front Bumper – When the robot makes frontal contact with an obstacle of 

appropriate height, the lift-arms are caused to rotate about the pivot axle.  

After a small angular displacement, the touch sensor contact is depressed.  

When the robot moves away from the obstacle, the lift-arms are pulled to 

their original position by the rubber band in the bumper assembly.  The 

touch sensor button returns to its normal position.
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• Pen Holder/Drive – The third motor is connected to the pen drive via a 

belt and pulley system.  In order to deposit an ink trail, this motor drives 

the large pulley, causing the pen holder frame to rotate with the axle 

toward the ground.  Contact with the ground provides sufficient resistance 

to cause the belt to slip on the motor pulley.  The result is constant, even 

pressure between the marker tip and the floor.  The motor reverses 

direction to lift the marker tip from the ground.  It is held in this “up” 

position by the rubber band anchored to the RCX, allowing the motor to 

turn off.

• Object Capture/Release – In order to pick up a metal washer, the third 

motor mounted above the main drive axle turns a belt connected to the 

axle pulley.  The 8-tooth gears on this same axle interface with the racks 

on the magnet apparatus, generating linear vertical motion toward the 

floor.  The magnet apparatus is stopped by the cover plate, causing the 

belt to slip on the motor pulley.  A metal washer is suspended on the 

underside of the cover plate due to forces applied by the magnetic field.  

To release the washer, the motor turns in the opposite direction, moving 

the magnet upward and away from the cover plate.  This reduces the 

strength of the magnetic field and allows the washer to drop to the 

ground.  
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Subsection 6.4.6: Design Challenges and Solutions

A number of significant design challenges were encountered during the 

development of this robot.  These difficulties tested the limits of the imagination and the 

capabilities of LEGO Mindstorms robotics.  In some cases, the eventual solution was 

sub-optimal, but could not be improved upon with the available materials and financial 

limitations.  Each of these challenges, although presented individually, actually formed 

an interdependent set of design problems.  The solution to one problem often rendered 

another unsolvable, necessitating an iterative process to solve all of the problems in a 

cohesive and functional design.

The most pervasive design challenge was the issue of robot size.  Given a limited 

space in which to perform experimental testing, compactness became a design necessity.    

The length of the robot became the most important issue, as the width is largely 

determined by the width of the RCX and two motors.  A robot of great length encounters 

maneuverability problems and suffers from inefficient obstacle avoidance due to the large 

radius swept by the front end of the robot.  This problem was solved solely through 

design ingenuity and multiple design iterations.  The vertical nature of the target release 

mechanism also proved invaluable for conserving length.

The caster design also presented a number of challenges.  First of all, the most 

efficient caster designs contain two wheels capable of independent rotation [29].  This 

allows the caster to turn freely without wheel slippage.  However, designing a caster of 

this type forces the caster to sweep through a circle of greater diameter during turns.  This 

causes clearance issues and increases the overall length of the robot.  Casters also rotate 

more freely under lighter loads.  Unfortunately, creating a lighter burden for the caster by 
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moving it forward again corresponds to increased length of the robot.  The final design 

represents a compromise between robot length and weight distribution.  The suboptimal 

caster design, with two wheels coupled on one axle, was also chosen for the sake of 

compactness.

The constraint of having only three available motors created a significant design 

challenge.  As mentioned in reference to Table 10 in Subsection 6.4.1, one motor was 

allocated necessarily for three functional requirements.  A single motor needed to pick up 

an object, release an object, deposit an ink trail, and stop ink deposition.  Furthermore, 

each pair of these tasks is coupled, as they need to occur simultaneously.  Ink deposition 

must begin at the same time an object is picked up.  The solution to this problem involved 

the creative implementation of belt and pulley systems.  Allowing belts to slip acts as a 

torque-limiter, preventing motor damage in stall situations.  Rubber bands were also 

utilized to set default positions for the pen holder and magnet apparatus.

Releasing the metal washer (target) upon arrival at “home” presented yet another 

design challenge.  Using a magnet to pick up the washer proved to be a simple 

mechanism to design.  However, forcing the washer permanently out of the influence of 

the magnetic field is far more difficult.  Initial attempts to solve this problem were 

hindered by the strong forces required for initial separation between the magnet and the 

washer.  It later became apparent that direct contact between the washer and magnet was 

unnecessary.  By introducing a space between the magnet and washer, and by moving the 

magnet away from the washer rather than vice versa, this problem was eventually solved.

The last major challenge was the ink deposition mechanism.  In order for each 

robot to deposit a trail of ink capable of being followed, the line needed to be at least two 
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centimeters wide.  Furthermore, the trail needed to be fairly uniform in terms of width 

and ink concentration.  It was essential to develop a deposition mechanism that did not 

leave “pools” of ink on the surface, even if a robot was momentarily stationary during 

homing behavior.  This problem was solved by using a common, store-bought marker.  

The ink was removed from a large washable-ink marker, which was then modified 

slightly to fit into the LEGO pen holder.  The original marker tip served as an excellent 

ink repository.  The tip absorbed plenty of ink for an entire trial, and deposited the ink 

with excellent uniformity.  A belt drive was used to apply constant pressure between the 

marker tip and the floor.  The belt slips on the pulley at a set amount of torque, 

preventing the motor from stalling, but maintaining pressure on the marker.  

Section 6.5: Behavior-based Programming

Subsection 6.5.1: Control Architecture Overview 

A subsumption architecture was employed as the overarching control structure of 

the robot.  This is the signature architecture of behavior-based programming, as 

popularized by Brooks [9, 10, 18] and Mataric [27, 61] (see Subsection 2.3.1).  

Subsumption architecture is based on a system of layered levels of competence, 

constructed in sequence from the simplest to most complex.  Each competence level 

forms a complete and fully-functional system of control.  These layers are stacked in 

parallel, with each higher level subsuming the lower levels.  The layers are composed of 

a small set of basis behaviors, a term introduced in [61].  While each basis behavior is 

mentioned briefly here, a more thorough description of each is provided below in 
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Subsection 6.5.2.  In order to accomplish the foraging task, four basis behaviors were 

identified:

(1) Avoid – Collision detection and response

(2) Wander – Searching randomly for targets

(3) Follow – Following an ink trail to the food source

(4) Homing – Picking up a target, moving to home, and dropping the 

target.

Appropriate implementation of these four behaviors makes it possible for each individual 

to complete the task object location and retrieval.  Notably, these basis behaviors are 

identical to those used in simulation (see Subsection 5.3.1), with the necessary addition of 

Avoid.  In both simulation and experimentation, as expected, the behaviors generate the 

interaction necessary for cooperation and resulting self-organization.  It is important to 

note that, while arbitration between the behaviors is based primarily on sensory input, 

this is not strictly a reactive control architecture.  Mataric makes a distinction between 

reactivity and behavior-based operation of a mobile robot, but notes that “behavior-based 

systems embody some of the properties of reactive systems, and usually contain reactive 

components” [27], p. 3.  The obstacle avoidance behavior is one example of a reactive 

component to the control system.  The motor commands are a direct reaction to a specific 

environmental stimulus (touch sensor depression).

Three levels of competence are designed within this control architecture, Levels 

0, 1, and 2.  During the program development, a sequential “layered approach” was 

employed to develop each competence level.  The zeroth competence level was first 

written, debugged, and tested to flawless operation before adding the first level.  This 
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process was repeated until the robot achieved “Level 2 competence.”  The basis 

behaviors are arranged below according their respective competence level:

Zeroth Level: Avoid

First Level: Wander

Second Level: Follow, Homing

In order to elucidate the concept of subsumption, each competence level is represented 

schematically below in Figure 83, Figure 84, and Figure 85.  

Figure 83. Competence Level 0

Figure 84. Competence Level 1
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Event Monitor

AvoidWander



185

Figure 85. Competence Level 2

Note, for example, the inclusion of Level 0 functionality in the Level 1 diagram.  Level 0, 

however, operates as normal with no knowledge of the existence of first level behaviors.  

One also observes that arbitration between behaviors occurs on the basis of sensory input.

While the notion of behavior priority, in terms of access to motor control, is not clearly 

defined in such an architecture, the basic order of priority, from highest to lowest, is (1) 

Avoid, (2) Homing, (3) Follow, and (4) Wander.  With the necessary exception of 

avoiding obstacles, behaviors directly related to object retrieval possess highest authority.  

This priority ordering is based on the biological example of foraging in ants.  Food 

retrieval to the nest takes the highest priority, as the colony seeks to maximize energy 

yield.

Subsection 6.5.2: Basis Behaviors

The basis behaviors identified above represent all of the necessary functionality 

required to complete a foraging task.  They were directly inspired by foraging behavior in 

social insects such as ants, especially those engaging in mass recruitment.  Choosing an 

appropriate set of basis behaviors is not a rigorously defined process, and the concept of 
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an optimal set of behaviors is rejected by Mataric [61].  Brooks notes that one important 

characteristic in selecting basis behaviors is simplicity: “Behaviors tend to be simple so 

that computational ‘depth’—the computational path from sensor to actuator—is 

minimized to maintain a high degree of interactivity with the environment” [9], p. 17.  

Mataric goes further, providing the following criteria for determination of suitable basis 

behaviors:

A basis behavior set should contain only behaviors that are necessary in the sense 

that each either achieves, or helps achieve, a relevant goal that cannot be 

achieved with other behaviors in the set and cannot be reduced to them.  

Furthermore, a basis behavior set should be sufficient for accomplishing the 

goals in a given domain so no other basis behaviors are necessary.  Finally, basis 

behaviors should be simple, local, stable, robust, and scalable. [61], p. 4

Directed by these criteria and inspired by the example of “basis behaviors” employed by 

individual worker ants, the final set of four basis behaviors was determined.  The 

specifics of each behavior are presented schematically in Figure 86.  The complete robot 

program was written in NQC (see Section 6.2) and is found in Appendix E. 
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Figure 86. Actions taken in each basis behavior

The simplest behavior, Avoid, is responsible for collision detection and 

avoidance. Obstacles in the foraging environment include the perimeter boundary and 

other robots, which are not distinguished from immobile obstacles.  Collision detection is 

achieved via the touch sensor.  In response to this stimulus, the robot moves directly 

backward for a short distance and rotates counter-clockwise through a random angle.  

During the evasive maneuvers, the touch sensor is monitored, allowing initiation of 

avoidance within execution of the avoid behavior.

Wandering fulfills the requirement of searching the foraging field for targets.  An 

extremely simple search method consists of following a straight path until a collision 

occurs.  The Avoid behavior then produces a new initial heading, at which point straight 

motion resumes.  All three sensors (both light sensors and the touch sensor) are 

monitored during Wander: the touch sensor senses collisions, the forward-looking light 
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sensor looks for home to prevent wandering close to home, and the downward-facing 

light sensor sees either a target or an ink trail.  Wandering can be interrupted at any time 

by any of the other three basis behaviors.

Follow instructs the robot to follow an ink trail sensed during Wander.  The 

process of following a trail is composed of two processes.  Initially, the robot decides 

which direction leads toward the food source.  This accomplished by orienting itself 

approximately parallel to the trail in opposite directions, in turn, and taking light intensity 

readings from the forward-looking light sensor.  Whichever direction produces a lower 

intensity (high intensity light emanates from home) is the direction of the target source.  

After choosing a direction, the robot engages in line-following along either the right or 

left edge of the trail, depending on the initial direction of approach (see Figure 87).  A 

thorough discussion of line-following techniques in LEGO robots is found in [29].  For 

following the left edge of a trail, the robot turns right until it sees the trail, turns right to 

move ahead and off the trail, and repeats the process.  The number of iterations is 

determined by the distance to home, which is based on the reading of the forward-looking 

light sensor taken during the decision on following direction.  Upon completion of these 

iterations, wandering behavior occurs.  Wandering starts in the immediately vicinity of a 

target source, causing Homing to occur with a high probability after completion of 

Follow.
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Figure 87. Robot line following, approaching trail from left or right 

Homing consists of three sub-behaviors, all of which are required to return the 

target to home.  Having sensed the target on the ground, the robot must pick it up 

magnetically.  This is done by moving forward a small amount and descending the 

magnet apparatus, which is coupled via the non-drive-system motor to rotation of the pen 

holder mechanism into the down position.  The next step is homing, which takes place by 

reading the forward-facing light sensor and setting a heading toward the highest intensity.  

Along the way, ink deposition continues through continuous driving of the pen holder 

mechanism.  The path to home is corrected periodically along the way, but the robot 

considers itself home when a certain maximum light intensity is reached.  At this point, 

the pen and magnet apparatus are elevated, releasing the target.  The robot then rotates 

approximately 180° (back toward the food source) and commences with Wander.

As a complete control scheme, these four basis behaviors produce the desired 

foraging behavior.  They also facilitate stigmergic communication via trail-laying and 

Targets

Home

Targets

Home
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following.  The result is an operational system of mass recruitment-based and self-

organizing foraging autonomous robots

Section 6.6: Experimental Setup

The experimental testing environment is described in this section.  Each 

experiment consisted of an initial spatial distribution of targets and 1-7 robots positioned 

at home and directed radially toward the perimeter of the foraging field.  For experiments 

with multiple robots, approximately even angular spacing was maintained between 

individuals at the start of the experiment.  In cases involving clusters of targets (Cases 2 

and 3), one robot was positioned facing each cluster to ensure rapid initial discovery of 

each cluster.  This practice avoids the possibility of an extended initial searching phase 

before discovery of a cluster.  Power limitations make it impractical to allow such an 

initial search phase.  Each test was initiated by starting a timer and quickly pressing 

“Run” on each RCX.  From that point forward, the robots operated autonomously except 

in the event of a correctable malfunction.  

Mechanical malfunction occurred in a number of tests, but over 90% of the trials 

occurred without error.  In rare cases, two robots would become entangled without the 

ability to separate.  Also, very specific angles of approach to corners sometimes caused 

stagnation, rendering an individual immobile.  Most of these cases were correctable 

during testing, with no residual influence on the test results.  In a handful of tests, 

mechanical failure of an individual robot rendered the test invalid.  Such tests were 

immediately stopped and the results discarded.
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Prior to each test, the battery level of each robot was checked to ensure equivalent 

operation across all individuals.  If the battery level at the beginning of a test was below 

8.7 V (max 9.5 V), all six AA alkaline batteries were replaced.

Two trials were conducted for each test scenario.  This provides some estimation 

of variance within a particular scenario and provides an improvement in data credibility 

over a single data point.  Unfortunately, financial constraints made more thorough testing 

impossible.  Detailed statistical analysis is unfounded with only two data points per test, 

but battery and ink consumption placed limitations on the number of tests.  During the 

course of experimentation, over 200 AA batteries were used.  Due to the sensitive 

dependence of robot operation on voltage supply and an approximate 20 minute battery 

lifetime (under continuous operation), battery replacement for a single robot occurred 

every two or three trials.

Data collection was performed by two primary means: robot data-logging and 

direct observation.  The RCX supports data logging, which was uploaded from each robot 

to a PC following each test.  Every robot logged a variety of data during each test, 

including the time spent in each behavior, the number of obstacles encountered, etc.  

Global data was collected by hand, including overall collisions, pick-up and drop-off 

times for each target, and the total task completion time.       

Subsection 6.6.1: Targets

In order to conduct robotic foraging experiments, it is necessary to select an 

object that corresponds to items of food in the world of social insects.  Depending on the 

ant species and the foraging environment, the nature of food items varies.  Some species 
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feed primarily on discrete food items carried one-at-a-time, such as seeds.  Workers from 

other species are able to carry multiple discrete food items in a single foraging trip.  Food 

sources can also be pools of liquid (e.g., nectar, sugar water), such as those commonly 

presented to ants in laboratory experiments [82].  Nearly all physical experiments of 

foraging with real robots employ discrete targets carried one-at-a-time back to home

(e.g., [12, 25, 58, 69]).  This approach is far simpler to implement than simulating other 

types of biological food sources.

A novel mechanism for target acquisition is used in this experimental design: 

magnetic attraction.  As described in Subsection 6.4.5, a vertically-adjustable permanent 

magnet attached to the underside of the robot causes metal objects to levitate onto the flat 

cover plate.  Such a mechanism requires that at least some component of the target is a 

ferrous metal.  In addition to containing ferrous metal(s), each target must be visible to 

the robot.  The downward-facing LEGO light sensor must be able to distinguish the target 

from the white floor.  The final requirement is that targets have a profile low enough such 

that they don't represent an obstacle to robotic locomotion.  Most importantly, the small 

caster wheel must roll smoothly over the targets.  The design requirements for the targets 

are summarized below:

• contain ferrous metal(s)

• visible to LEGO light sensor

• low-profile

A simple and inexpensive solution is provided by the use of thin, stainless-steel washers.  

Each washer was painted a dark-green color with a flat finish to provide contrast to the 

white substrate.  The washers are a standard hardware component, with one inch diameter 
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and a thickness of 1/16” (see Figure 88).  Each washer also has a small hole in the center, 

which provides no operational advantage or disadvantage.

Figure 88. Washers used in experimentation

Subsection 6.6.2: Foraging Area

Foraging experiments were conducted within an enclosed foraging field 

surrounded by an octagonal perimeter.  The perimeter was formed by eight straight 

sections of 4" diameter PVC pipe joined at the ends by eight 135° PVC angle-joints.  The 

octagonal side length was approximately 52 inches, providing a maximum distance from 

center to perimeter of 68 inches (minimum distance = 63”, see Figure 89).  A cylindrical 

metal column from floor to ceiling at the geometric center of the field is considered 

"home."  The cement floor was covered by ¼" thick foam-board, which was adhered 

directly to the floor.  Seams between sections of foam board were taped together.  The 

foam-board substrate was covered by standard white poster-board, with the glossy 
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surface facing down.  Poster-board was stapled to the foam board and replaced every few 

tests to prevent problems of trail reinforcement (see Section 6.3) occurring between trials.

Figure 89. Experimental foraging field

Since beacon-based navigation was required for the homing process, a source of 

light was located near the ground at home.  Two standard 60 W light bulbs were 

suspended approximately 6" above the floor, providing light intensity visible to the 

forward-facing light sensor (Figure 90).  General lighting was supplied by five 60 W 

flood lights approximately 7 feet above the surface.  Ambient light from external sources 

(windows, etc) was shielded in order to maintain consistent lighting across all trials.

52”
68”

HOME
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Figure 90. Two light bulbs are home beacon

Section 6.7: Experimental Cases

Three experimental scenarios were designed to meet the major goals of 

experimentation (see Table 12), listed in Section 6.1.  The three cases are distinguished 

only by the target distribution and the definition of task completion.  In Case 1, ink 

deposition and following were not used, due to their obvious irrelevance in a case without 

clustered targets.  Otherwise, robot operation and data collection were constant in all 

three cases. 

Table 12. Summary of Experimental Scenarios

Scenario No. of 
Robots

Target 
Distribution

No. of 
Targets

Task Completed 
When

Case 1 1-7 random 48 25% collected
Case 2 2-7 one cluster 16 75% collected

Case 3 2-7 two clusters 4, 12
75% of large cluster 

collected

Subsection 6.7.1: Case 1

This first case is designed for use as a basis of comparison for the subsequent two 

cases.  This case also corresponds to the first simulation case.  It demonstrates completion 



196

of the foraging task without cooperation. It is also designed to show that task efficiency 

improves in a non-cooperative task, but the improvement trend is unlike that 

characteristic of swarm intelligent systems.  Targets (48) were distributed randomly 

throughout the foraging field, but no targets were placed within two feet of home.  This 

case was conducted with one to seven robots, with task completion defined as collecting 

25% of the targets.  It is common to make such a definition of task completion, due to the 

fact that target retrieval slows considerably with decreasing target density.  When only a 

few targets remain in the foraging field, the probability is very low of each robot finding 

one.  Given a limited power supply (and consequent running time), the test was deemed 

complete after retrieval of 12 out of 48 targets.

Subsection 6.7.2: Case 2

Case 2 features a single cluster of 16 targets located approximately 3 inches from 

a corner of the octagonal perimeter. This case was designed to demonstrate the 

mechanisms of positive and negative feedback, the characteristic formation of emergent 

patterns, and increased task efficiency due to cooperation.  Positive feedback reinforces 

an initial trail and causes increasingly frequent target retrieval, while negative feedback is 

manifested in trail disappearance over time.  A well-established ink trail emerges as a 

result of stigmergy and positive feedback.  The case was conducted with 2-7 robots and 

each test ended with retrieval of 12 out of 16 targets.  In order to demonstrate foraging 

system performance with clustered target distribution but without cooperation, this case 

was also tested without trail-laying and following.  
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Subsection 6.7.3: Case 3

Case 3 features two clusters of unequal size: one of 4 targets and one of 12 

targets. The clusters were located on opposite sides of the foraging field, each 

approximately 3 inches from a corner of the octagonal perimeter. This case was designed 

to demonstrate the mechanism of negative feedback, as well as the system property of 

multistability.  Negative feedback allows the system to abandon the small target cluster 

upon complete depletion.  The potential to exploit either target cluster exclusively, or 

both simultaneously, represents the existence of three stable states (multistability).  The 

case was conducted with 2-7 robots and each test ended with retrieval of 12 out of 16 

targets.

Section 6.8: Results

Subsection 6.7.1: Case 1

The first experimental case tests the foraging capability of group of robots without 

cooperation.  All robots used in this case were incapable of laying or following trails.  

Clearly, for the case of random target distribution, trail-laying and following does not 

improve performance.  Each trail would simply lead to an empty space where a target 

was formerly located.  The experimental setup is shown in Figure 91, with a group of 

three robots prepared for the foraging task.  Notice the random distribution of 48 targets 

and the bright light emanating from home.  
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Figure 91. Experimental setup (random distribution, N=3)

As in the presentation of simulation results (see Section 5.5), the time evolution of 

object collection provides an understanding of the system behavior.  In Figure 92 below, 

the number of targets remaining until task completion is plotted against time.  Each curve 

corresponds to a different group size, ranging from one to seven robots.  As a group, the 

curves follow a roughly linear trend throughout the test.  For a given group size, the 

collection rate is nearly constant from the beginning of the task until the sixteenth target 

is retrieved.  Due to the fact that only 25% of the targets were collected before each trial 

was stopped, the change in target density barely influences collection rate.  If the trials 

were allowed to continue longer, these collection rates would diminish in response to 

decreased target density.  

The rate of target collection shows a strong dependence on group size.  When a 

single robot attempts the foraging task, it exhibits the slowest collection rate, as expected.  

This corresponds to the longest time required for task completion, as shown in Figure 93.  

The task completion time decreases with increasing group size, up until N = 5.  For larger 
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group size, the trend reverses, and the foraging time increases.  The task completion time 

for N = 7 is the second highest, behind only the case of one robot.  
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Figure 92. Time evolution of target collection (random dist.)
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Figure 93. Collection time versus number of robots (random dist., avg. of 2 trials4)

Figure 94 illustrates the collision frequency, in collisions per minute, versus the number 

of robots.  As expected, the collision frequency increases with group size, due to the 

increased spatial density of robots.  The high collision rates for larger group size explain 

4 All subsequent graphs of this type reflect the average of two trials.
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the decreasing task efficiency for N > 5.  For N = 7, each robot collided with another 

robot every 12 seconds, on average.  Robots experiencing frequent collisions waste time 

in collision avoidance; that time could otherwise be used in retrieving targets.  This lost 

time reduces the overall efficiency of the group.
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Figure 94. Collision frequency versus number of robots (random dist., avg. of 2 trials5)

Subsection 6.7.2: Case 2

Case 2 includes two variations of the same target distribution: a single cluster of 

16 targets.  Presented first is the non-cooperative foraging method.  This is similar to 

Case 1 (see Subsection 6.7.1), but with a spatially concentrated target distribution.  

Second, the results are presented for cooperative foraging robots capable of laying and 

following ink trails.  Testing this case with and without cooperation provides a method of 

determining the efficacy of the cooperative strategy (as compared to the nominal case of 

non-cooperation).

5 All subsequent graphs of this type reflect the average of two trials.



201

NO INK TRAILS

When ink trails were not used by the foraging robots, the rate of target retrieval 

was quite slow compared to results from the randomly distributed case, as shown in 

Figure 95 (cf. Figure 92).  Due to the high spatial concentration of targets in a small 

region of the foraging field, the probability of each robot finding a target was low.  The 

evolution of target collection was erratic in each case, due to the significant random 

component in searching for a small cluster.  Note that each curve below is characterized 

by long periods of searching in which no targets were collected.  In general, the 

collection rate increased with group size.   
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Figure 95. Time evolution of target collection (1 cluster, no trails)

The total task completion time improved between N = 4 and N = 6, due to 

increased robot density (see Figure 96).  However, for N = 7, the high frequency of 

interactions between robots caused the completion time to increase.  This trend is similar 

to that shown in Figure 93.  Figure 97 illustrates the expected increase in collision 

frequency with group size.  
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Time vs. Number of Robots
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Figure 96. Collection time versus number of robots (1 cluster, no trails)
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Figure 97. Collision frequency versus number of robots (1 cluster, no trails)

WITH INK TRAILS

For items distributed in clusters, the mass recruitment foraging strategy is shown 

in insects to be an effective mode of cooperation [101].  This is tested with real robots in 

this section.  The experimental setup is pictured in Figure 98, with four robots prepared to 

start the test.  Note the cluster of 16 targets in the top right corner of the photograph.  A 

series of photographs taken during one trial are presented in Figure 99 (on the next page).  

The pictures are viewed in sequence from top left to bottom right.  At t = 200, three 
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targets have been retrieved, as evidenced by the three ink trails leading to home.  Note 

that each target was removed from home upon retrieval in order to prevent it from being 

collected a second time by a robot wandering near home.  At t = 400, the initial three 

trails have weakened significantly, beyond the point of being followed.  However, notice 

that a robot is following a trail deposited since t = 200.  At t = 600, only six targets 

remain in the cluster, and a number of trials are present.  The oldest ink trails have 

disappeared completed, but recently deposited trails remain clearly visible.  One robot is 

depositing a trail on the way to home and another is following a trail to the target cluster.  

At t = 700, the final target is collected.  Only two strong trails remain visible.  

Figure 98. Experimental setup (1 cluster, N=4)
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Figure 99. Series of testing photographs (from top left to bottom rt., t=200, 400, 600, 700 sec)
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Figure 100 shows the time evolution of target collection for each group of robots 

tested.  In comparison to the results without ink trails (see Figure 95), these curves are 

less erratic.  The collection rates are more constant, but still exhibit a fair degree of 

variation in time.  For N = 5, one observes the downward concavity for 50 < t < 400 

seconds that is a signature of positive reinforcement and effective cooperation.  The same 

type of curve shape resulted from StarLogo simulations of foraging with a single food 

cluster (e.g., Figure 28).  
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Figure 100. Time evolution of target collection (1 cluster)

The total collection time decreases steadily from N = 2 to N = 6.  For N > 4, the 

collection time begins to level out, and it actually increases for N = 7.  In order to observe 

the benefit of cooperation, the results without trails are included in Figure 101.  Clearly, 

when trails were used as a foraging strategy, the foraging efficiency increased 

significantly.  The completion time decreased by at least 19% (N = 6) and at most 33% 

(N = 5).  In addition, the detriment of high collision frequency was mediated by 
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cooperation.  This is reflected in the fact that system performance was only 11% worse

(from N = 6 to N = 7) when trails were used, as compared to 21% without trials.
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Figure 101. Collection time versus number of robots (1 cluster)

As discussed previously, the collision frequency increases with robot density (Figure 

102).  A similar trend is observed when cooperation is introduced, but it appears that 

cooperation slows the rate at which the collision frequency rises.  This could be due to 

the fact that self-organized behavior is occurring when cooperation is introduced.  Robots 

engaged in following and target retrieval tasks are less likely to collide with other robots.  

These tasks involve slower motion and less area coverage within the foraging field when 

compared to the default wandering behavior.
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Collision Frequency vs. Number of Robots
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Figure 102. Collision frequency versus number of robots (1 cluster)

Subsection 6.7.3: Case 3

In this case, two target clusters were present in the foraging field.  With a 

maximum of seven foraging robots, a full investigation of this case is not possible.  

Preliminary tests revealed that seven robots are not sufficient to demonstrate cooperative 

foraging behavior in the presence of two sources.  Robot density is not high enough to 

establish a stable trail to either cluster.  For this reason, the test was designed to 

demonstrate only one specific system behavior: adaptability.  One of the two sources 

contains only four targets (see Figure 103), which ensures that it is completed before the 

other source (contains eight targets).  After the small source is depleted, the trails 

eventually disappear, allowing the system to focus only on the remaining cluster.  This 

behavior was observed in 9 out of the 10 trials.  
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Figure 103. Experimental setup (2 clusters, N=5)

The plot of task completion time versus group size (Figure 104) for this case 

follows the usual trend, except for the case of N = 7.  One would expect the completion 

time to be higher than for N = 6, due to higher collision frequency (see Figure 105).  The 

discrepancy was caused by one of the two trials in which seven robots operated.  In this 

trial, the seven robots briefly established trails to both food sources, which explains the 

improvement in performance compared to N = 6.  The relationship between collision 

frequency and group size also exhibits the expected trend.  For N = 5, the collision 

frequency is somewhat higher than expected, but this could simply be a function of 

random elements in each trial.  Since only two trials are averaged for each data point, the 

trends can only be examined in a general sense. 
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Time vs. Number of Robots
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Figure 104. Collection time versus number of robots (2 clusters)
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Figure 105. Collision frequency versus number of robots (2 clusters)

Figure 106 shows the time evolution of target collection from the cluster of eight 

targets.  The most interesting feature of these curves is the increase in collection rate after 

t ≈ 150 seconds.  This corresponds approximately to the time at which the cluster of four 

targets is fully depleted.  After a short delay, during which the unneeded ink trails 

disappear, more robots are able to contribute to cooperative foraging at the only 

remaining food source.  This system transition produces the increase in collection rate, 

seen most clearly for N = 4.   Figure 107 illustrates the progression of target collection 
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from both sources for N = 7.  As in most of the trials, the small cluster is depleted first, 

followed by the remainder of the large cluster.
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Figure 106. Time evolution of target collection from source B (2 clusters)
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Chapter 7: Analysis and Discussion

The following chapter is devoted to a discussion of the simulation and 

experimentation results from a broader perspective than the results sections of Chapter 5 

(Section 5.5) and Chapter 6 (Section 6.8).  For both simulation and experiments, the 

results are discussed below in terms of the most important general findings.  These key 

results are followed by a brief discussion of the weaknesses and possible improvements 

in the StarLogo simulation and in experimentation with real robots.  Finally, the 

simulation and experiments are evaluated based on the achievement of the goals stated in 

Chapter 5 (Section 5.1) and Chapter 6 (Section 6.1).  To conclude the chapter, the results 

of simulation and experimentation are taken as a whole and compared to the theoretical 

predictions from Chapter 4 (Section 4.6).

Section 7.1: Discussion of Simulation Results

Subsection 7.1.1: Important Results

The first key lesson derived from the results of simulation is the significance of 

power law relationships in the system behavior.  These types of trends were most visible 

in Case 1, which featured a random distribution of food items throughout the foraging 

field.  It was observed in Section 5.5 that the relationships between completion time and 

group size, as well as between collision frequency and group size, appeared to follow the 

rough trend of a power law.  The simulation results for this case are presented again 

below, but with power law equations fitted to the data (see Figure 108 and Figure 109).  

Note that the correlations are quite strong, especially in Figure 109.
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Time Steps vs. Number of Ants
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Figure 108. Power law approximation of simulation results (rand. dist.)

Collision Frequency vs. Number of Ants
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Figure 109. Power law approximation of simulation results (rand. dist.)

Based on these curve fits, it seems that a power law provides an accurate approximation 

of the system behavior, at least in the case of non-cooperative foraging with a random 

food distribution.  The question then arises, does the power law relationship hold for 

other simulated scenarios?  This question is answered below by the analysis presented in 

Table 13 and Table 14, which include the coefficient and exponent of the fitted power 

law for each set of data.  The correlation coefficient is also given for each data set, in 

order to evaluate the closeness of fit provided by a power law relationship.  In Table 13, 

the R2 values are very high for foraging without cooperation (first two rows of the table).  
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In these cases, it appears that a power law provides a close approximation of the data.  

However, for cooperative foraging from one source, the power law approximation 

becomes less accurate.  While the correlation coefficients remain above 0.91, these 

values reflect an important difference introduced by cooperation.  At least with respect to 

the task completion time, a power law relationship is only a moderately accurate 

description of the dependence on group size.  The table also includes the coefficient, c3, 

and exponent, c4, in each fitted equation.  By observing the values of c4 across all cases, it 

becomes apparent that they are clustered in the vicinity of c4 = -1.  As a result, one can 

conclude that the completion time is roughly inversely proportional to the number of 

virtual ants:

N
Tc

1α (7-1)

Table 13. Power Laws Fit to Simulation Data

Completion Time vs. Number of Ants

Tc = c3 * N
c4

Trial c3 c4 R2

random distribution 1317.7 -0.9885 0.9956

1 source, no trails 7568.1 -0.9787 0.9873

1 source (d=10) 1438.1 -0.8113 0.9541

1 source (d=20) 3740.6 -1.0161 0.9798

1 source (d=35) 40204 -1.5966 0.9179

For the relationship between collision frequency and group size, the correlation 

coefficients are again very high for both non-cooperative scenarios.  In general, the 

power law curve is less close-fitting to the data for the cooperative cases.  For all cases, 
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though, the R2 value is above 0.956, indicating that a power law relationship is a fairly 

accurate approximation to this relationship (with or without cooperation).  By examining 

the power law exponents, c2, one notices a larger variance than in Table 13.  The average 

of these values is c4, avg = 2.18.  If more data was collected, one could obtain a more 

accurate value for this exponent.  The collision frequency is roughly proportional to the 

square of group size:

2NC f α   (7-2)

Table 14. Power Laws Fit to Simulation Data

Collision Frequency vs. Number of Ants

Cf = c1 * N
c2

Trial c1 c2 R2

random distribution 0.0004 2.5191 0.983

1 source, no trails 0.0014 2.0973 0.9973

1 source (d=10) 0.0018 1.9217 0.966

1 source (d=20) 0.0022 1.8561 0.9903

1 source (d=35) 0.0001 2.5616 0.9568

The plots of the time evolution of food collection revealed another key result from 

simulation.  By comparing the plots from non-cooperative experiments to those cases in 

which trails were used, a significant difference in curve shape became apparent.  In cases 

without trails, the collection rate remained nearly constant, with only a slight, gradual 

decrease throughout.  When trails were employed, the collection rate increased, often 

dramatically, throughout the trial.  This created a noticeably difference in concavity of 
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the curves.  Positive feedback allowed the group of virtual ants to accelerate food 

collection, resulting in the signature downward concavity of the curves.

Decay rate was an important parameter in many of the simulation trials.  The 

dependence of system behavior on decay rate was the focus of Case 4, which included 

three food sources.  It was observed that slow trail decay facilitated the establishment of a 

higher number of concurrent stable trails.  On the other hand, a rapid rate of decay 

inhibited cooperative foraging.  With three sources present, for example, a high value for 

the decay rate could force the group to focus on one source at a time, completing the task 

in sequence rather than in parallel.  A rapid decay rate corresponds to a higher number of 

foragers necessary to efficiently exploit multiple food sources.

The group size was varied in each major simulation scenario, as it was the 

primary variable under investigation.  It was observed, as expected, that task completion 

time improved super-linearly with group size.  Below a certain density of virtual ants, the 

group was unable to establish even one stable pheromone trial.  As the group size 

increased, the number of possible concurrent trails increased as well.  Large groups were 

able to forage simultaneously from several sources.  

The final key result of simulation is the effect of cooperation on task efficiency.  

In general, it was observed in Chapter 5 that trail-laying and following resulted in faster 

task completion compared to no communication.  This result is confirmed below with a 

more clear illustration of the improvement in task efficiency as a result of cooperation

(see Figure 110).  The task efficiency is defined as the inverse of task completion time.  

As the group size increases in both curves, the one corresponding to cooperation climbs 

at a significantly faster rate than the non-cooperative case.  Notably, when the graph is 
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compared to the generalized definition of swarm intelligence (see Section 2.2, Figure 1), 

one must conclude that the group of foraging virtual ants exhibited swarm intelligence by 

utilizing a mass recruitment strategy.  

Task Efficiency vs. Number of Ants
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Figure 110. Task efficiency versus number of ants (1 food source)

Subsection 7.1.2: Simulation Weaknesses

As with any computer simulation, this implementation of StarLogo to simulate 

mass recruitment in an ant colony had certain weaknesses.  Of course, the simulation did 

not incorporate every detail of true foraging behavior in social insects.  One important 

factor missing from simulations was the effect of direct interactions between individuals.  

Collisions between virtual ants were not simulated.  This allows for analysis of the results 

without the complications introduced by collisions, which can be considered an 

advantage from a theoretical perspective.  It is also similar to the behavior of an ant 

colony, as the “collisions” between individuals are handled so efficiently that they are not 

of great significance.  However, in the realm of robotics applications, these interactions 

are important.  An accounting was made of collisions between virtual ants, but each 

interaction had no impact on the behavior of the individuals.
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The second important weakness of these simulations is the volume of data.  Many 

of the relationships between important variables and parameters could have been 

examined in more detail, and with more statistical backing, given a higher volume of data 

collection.  A wider range of decay rates and group sizes could have been explored, for 

example.  The level of detail was beyond the scope of this work, however, which 

attempted only to demonstrate the existence and qualitative nature of certain 

dependencies.  

Subsection 7.1.3: Achievement of Simulation Goals

To conclude the discussion of the simulation results, it is fitting to consider the 

degree to which stated goals were accomplished.  The goals of simulation, as stated in 

Section 5.1, are reproduced here for convenience:

• To investigate the predictions of theoretical modeling.

• To visualize system behavior to enhance understanding.

• To extend theoretical knowledge of scenarios for which mathematical 

modeling is intractable.

The first goal is discussed in detail below in Section 7.3.  In general, this goal was 

accomplished, due to the observation of many theoretical hypotheses.  For example, the 

simultaneous existence of a number of stable foraging states was observed, especially 

with three or four food sources.  The goal of visualizing system behavior was achieved, 

as represented by the figures in Section 5.5.  The use of StarLogo provided excellent 

visualization of system behavior, which enhanced understanding of foraging dynamics.  

Theoretical models of foraging fail to capture the complexity of system behavior 
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observed with four food sources.  Results from that case briefly introduced complexity 

for which mathematical models have not been developed.  

Section 7.2: Discussion of Experimental Results

Subsection 7.2.1: Important Results

In the previous section, which discussed the results of simulation, the importance 

of power laws was discussed.  It was shown through data analysis that a power law 

relationship existed between collision frequency and group size, as well as between task 

completion time and group size.  These relationships were also investigated in 

experiments with real robots.  The data was analyzed to determine the degree to which 

power laws approximate the data.  In Figure 111 below, the power law is fitted to the 

experimental relationship between collision frequency and number of robots.  The curve 

is fitted to the data corresponding to the cooperative case.  Notice that the approximation 

is less accurate than for the simulation data.  In Table 15, the power law coefficient, c1, 

exponent, c2, and correlation coefficient R2, are provided for three experimental cases.  

The correlation coefficients reveal that a power law relationship does not describe the 

system behavior with a high degree of accuracy.  The fit is only moderately accurate for 

each of the cases.  The power law exponent, c2, is consistent among the two non-

cooperative cases, but is significantly lower for the cooperative case.  When cooperation 

is present, the exponent is approximately c2 = 2, agreeing with the results from simulation 

(see Table 13).
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Collision Frequency vs. Number of Robots
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Figure 111. Power law approximation to experimental data

Table 15. Power Laws Fit to Experimental Data

Collision Frequency vs. Number of Robots

Cf = c1 * N
c2

Trial c1 c2 R2

no clusters 0.0149 3.2859 0.968

1 cluster, no ink 0.0082 3.2649 0.9433

1 cluster  0.064 2.0735 0.9889

The second important result from experimentation is the influence of direct 

interactions between robots on system performance.  As discussed in Section 6.8, the task 

completion time decreased above a certain critical group size.  At some point, the 

detrimental effect of collisions between robots negated the beneficial effect of 

cooperation.  This effect is due to the amount of time wasted by each robot in obstacle 

avoidance behavior.  Figure 112 illustrates the point by providing the percentage of total 

run-time spent in the avoid behavior.  This data was logged by each individual robot and 

the graph below represents the average values from all robots in a given trial. As 
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expected, the percentage of time spent avoiding obstacles increased with group size.  The 

robots were unable to distinguish collisions with robots from collisions with the perimeter 

boundary.  Therefore, these percentages are biased by the amount of time spent 

responding to collisions with the perimeter.
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Figure 112. Percentage of time avoiding obstacles (1 cluster, with trails)

As in the simulations, the system dependence on group size is another important 

lesson from analysis of the experimental results.  The robotic system was also unable to 

establish strong trails to a food source below a certain critical density.  Generally, with 

less than three robots, the group was unable to effectively communicate via trail-laying 

and following.  The task completion time in all experimental cases improved with group 

size, but showed a reversal of the trend for N ≥ 6.  As mentioned above, the increased 

frequency of collisions between robots caused this reduction in foraging performance.

The last key result from experimentation is the efficacy of cooperation.  It is 

necessary to answer the question of whether or not stigmergic cooperation between 

robots effectively increased completion efficiency.  As shown in Figure 113, the group of 

robots performed the completion task significantly faster when using trails.  While the 
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benefit of cooperation is not as drastic as in simulation (see Figure 110), the improvement 

in performance remains clear. 

Task Completion Efficiency vs. Number of Robots
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Figure 113. Task efficiency versus number of robots (1 cluster)

Subsection 7.2.2: Experimental Weaknesses

A number of weaknesses were present in the operation of the experiments.  

Despite the general success of the experiments, there will always be possible 

improvements in a system of real robots.  Perfection cannot be obtained while working in 

the real world and dealing with the uncertainty and unpredictability of reality.

Due to spatial and financial limitations, the scale of the experiments was limited 

to seven robots.  This number is adequate for demonstrating a limited set of behaviors.  

However, it is insufficient for thorough investigation of behaviors requiring large group 

size.  Swarm intelligence in biological system relies on multiple communicative 

interactions between individuals, making it difficult to produce swarm intelligence with 

such a small swarm population.
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Experimental errors invariably have some effect on the results of an experiment.  

Due to unpredictability in the operation of each robot, the system behavior demonstrated 

a significant degree of variance between trials.  For example, robots did not follow trails 

with an extremely high degree of accuracy.  Targets were sometimes passed over without 

being collected.  Robots occasionally became deadlocked at a corner of the foraging field 

or interlocked with another robot.  These types of errors resulted in inconsistent data 

exhibiting a moderately high degree of variability between tests.

The volume of data collected is another element of experimentation that could be 

improved by future research.  Financial limitations made it impossible to run more than 

two tests for each data point.  With only two trials per data point, it is difficult to perform 

meaningful statistical analysis.  Furthermore, the means obtained from two trials are 

obviously less valid than those consisting of a high number of tests.  Despite limited 

volume of data, a number of trends were identified and significant goals were met.  

Subsection 7.2.3: Achievement of Experimentation Goals

In conclusion, the degree to which stated goals were accomplished will be 

discussed.  The goals of experimentation, as outlined in Section 6.1, are reproduced here 

for reference:

• To develop a system of robots capable of utilizing trail-laying and following in 

completion of a central-place foraging task.

• To introduce a novel trail substance that is non-toxic, time-decaying, and easily 

deposited and sensed.

• To demonstrate characteristics of a swarm-intelligent system 
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o Emergent pattern formation

o Multistability

o Increased task efficiency due to cooperation

• To compare experimental task efficiency to theoretical predictions and      

simulation results

The first two goals amount to successful proof of concept by means of designing a 

functional system of foraging robots.  These goals were accomplished, as the robots 

performed cooperatively using mass recruitment via disappearing ink trails.  A novel trail 

substance was utilized that is non-toxic and time-decaying.  The main drawback to this 

trail substance is flammability and reactivity.  The results of experimentation successfully 

demonstrated some elements of self-organization and swarm intelligence.  Emergent 

pattern formation occurred on a limited scale, taking the form of well-defined ink trials to 

a cluster of targets.  Because of the small number of robots, demonstration of 

multistability was inconclusive.  It was not possible for seven robots to concurrently 

exploit two or more clusters.  The only sense in which multiple stable states were 

observed is in the case of one cluster with three or four robots.  In those trials, the robots 

were sometimes unable to establish and maintain trails; instead, the system operated in an 

essentially uncooperative state.  The same trials sometimes demonstrated successful 

utilization of trail-laying and following.  The two states—cooperative and non-

cooperative foraging—existed simultaneously, a possible example of multistability.  Task 

efficiency clearly improved as a function of cooperation, as shown in Figure 113.  

Overall, the experimental goals were accomplished, with the exception of demonstrating 

multistability.
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Section 7.3: Comparison of Results to Theoretical Predictions

Chapter 4 summarized the most substantial contributions to central-place foraging 

theory related to mass recruitment.  In Section 4.6, a number of theoretical predictions 

were listed.  These predictions follow directly from the discussion of mathematical 

foraging models.  The results of simulation and experimentation have been presented and 

analyzed from a narrow perspective, but it is essential to relate the results to the current 

body of theoretical work in the field of swarm intelligence.  This section describes the 

extent to which theoretical predictions were borne out by simulation and experimentation.

The hypotheses presented in Section 4.6 were classified according to the three main 

characteristics of self-organized behavior.  They are reproduced below, with a brief 

discussion of the veracity of each prediction with respect to experimental and simulated 

results.

• Emergent Pattern Formation

o A critical density of foragers is required to generate some trail patterns.

This attribute of pattern formation occurred in StarLogo simulations.  Below a 

certain critical density, which depends on the trail decay rate and number of 

food sources, the virtual ants were unable to maintain pheromone trails.  A 

similar result occurred in the experiments with real robots.  For N < 3, the 

robots were unable to establish a stable trail.

o Formation of an established trail (or trails) may follow an initial 

“disordered phase” of unpredictable duration.
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A “disordered phase” was observed in some of the time evolution plots of 

food collection from simulation (e.g., Figure 35).  In some trials, the colony 

exploited multiple sources before collectively choosing to focus on a subset of 

the total number of sources.  In experiments, this characteristic was difficult to 

observe, due to small population size and short time scales.

o The nature of the trail pattern depends on parameters such as the number 

of foragers, food distribution, pheromone decay, etc.

A number of foraging exploitation patterns were observed in simulation.  

These patterns demonstrate dependency on group size, food distribution, and 

pheromone decay, as discussed in Section 5.5 and above in Section 7.1.  The 

foraging robots were only able to establish one stable trail at a time.  The 

existence of the one stable trail was dependent on group size.  Pheromone 

decay rate was not varied as a parameter.

o Trail formation relies on autocatalysis of random fluctuations in the paths 

of searching foragers.

Simulation results confirmed this hypothesis.  For example, in trials where the 

colony chose to forage preferentially from two equidistant food sources, each 

source was chosen with equal probability.  The preferred source was 

eventually chosen in each case from reinforcement of random fluctuations.  A 

similar situation occurred in the formation of a single trail with real robots.  A 

single trail formed either more slowly or not at all due to the stochastic 

component of robot searching.

• Multistability
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o When multiple food sources are present, a number of stable states may 

exist, ranging from exclusive exploitation of one source to uniform 

exploitation of all available sources.

This prediction was clearly demonstrated to be accurate in simulation, 

especially in cases with three or four food sources.  It could not be 

investigated with real robots, due to a limited population.  The robots were 

unable to exploit two sources simultaneously.

o When multiple food sources are present, under certain conditions, only 

one stable state exists.

This hypothesis was confirmed in both simulation and experimentation.  In 

simulation, the virtual ant colony could only exploit one source at a time for 

small group size and/or rapid pheromone decay.  With two sources present, 

the foraging robots always exploited only a single source.

o The foraging group may collectively choose a suboptimal stable state.

This type of behavior occurred exclusively in simulation.  When a second 

food source was presented closer to home during a simulation trial, the colony 

sometimes continued exploiting the more distant source (see Figure 48).

• Bifurcation Phenomena

o Variations in key system parameters may correspond to dramatically 

different food source exploitation schemes.

The results of StarLogo simulations show conclusively that system behavior 

exhibits sensitive dependence on pheromone decay rate and group size.  Slight 



227

variations in either parameter correspond to significant alterations in foraging 

exploitation strategy.

o Oscillations in certain parameters (especially in the number of active 

foragers) may allow a system near a bifurcation point to switch from a 

suboptimal to an optimal solution.

Figure 46 and Figure 47 are two examples of a simulated system switching to 

an optimal foraging strategy.  While parameters were not intentionally caused 

to oscillate during these trials, the system dynamics may have caused the 

number of “active” foragers to oscillate in the vicinity of a bifurcation point 

(refer to [86] for a detailed discussion of active/inactive foragers in biological 

systems).  Active foragers are those searching the foraging field for a new 

food source (not following a trail or carrying food to home).  
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Chapter 8: Summary and Conclusions

The topic of swarm-intelligent robotics has been investigated from an 

experimental perspective in this thesis.  This field of research emerged from the broader 

field of cooperative mobile robotics, as discussed in Chapter 2.  Swarm intelligence was 

discussed in a conceptual framework of cooperative robotics and the historical 

foundations of the field were reviewed.  In Chapter 3, the biological inspirations of 

swarm intelligence were presented by discussing self-organization in a variety of 

biological systems.  Next, foraging theory was discussed in detail in Chapter 4.  Three 

important types of mathematical models were introduced, including a detailed

development of at least one model from each category.  Chapters 5 and 6 describe 

investigations of swarm-intelligent foraging via computer simulations and 

experimentation with real robots, respectively. Finally, in Chapter 7, a synthesis of the 

results is provided, along with a discussion of their relationship to the predictions of 

theoretical foraging models.

In Chapter 1, the chief aims of the thesis were presented.  In conclusion, it is 

essential to evaluate the degree to which the goals were achieved.  The primary objective 

was to apply swarm intelligence theory to the development of a robotic foraging system.  

The conjecture was made that such a system could be developed with the following 

constraints: (1) no direct communication between robots, (2) decentralized control, and 

(3) behavior-based control.  It has been demonstrated that the system described in 

Chapter 6 successfully obeys these constraints and accomplishes the task of cooperative 

foraging through mass recruitment.  While conclusive demonstration of swarm 

intelligence in the robotic system was not achieved, cooperative foraging represents an 
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important step along the path toward a conclusively swarm-intelligent robotic system.  

The secondary goal was to utilize computer simulations to enhance conceptual 

understanding of swarm intelligence and investigate system dependence on group size.  

Visualization produced by computer simulations contributed significantly to a deeper 

understanding of the mechanisms of swarm intelligence.  Importantly, the simulated 

swarms exhibited conclusively swarm-intelligent improvement in task efficiency when 

compared to non-cooperative groups.  In summary, the research provided herein fully 

defends the primary conjectures put forth in Chapter 1. 

This work offers three primary novel and substantial contributions to the swarm 

intelligence research community.  First, this is the first experimental demonstration of a 

multi-robot system capable of cooperative foraging by means of trail-laying and 

following.  The group of robots complete the foraging task more efficiently with mass 

recruitment than without cooperation.  The second contribution closely follows from the 

first one.  A novel trail-laying and following system featured “disappearing ink,” a simple 

chemical solution sensed optically.  This type of trail performed well in experimentation, 

and exists as a promising substance for future utilization in robotic systems.  Finally, the 

StarLogo computer simulations represent the third substantial and novel contribution.  

While computer simulations of ant colonies have been performed, this work includes a 

broad analysis of performance dependent on group size and pheromone decay rate.  In 

addition, the behavioral complexity exhibited with three, and especially four, food 

sources is an original result.  Combined, these three original contributions form the core 

of this research effort.
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In closing, a number of suggestions are provided for future research.  As in many 

scientific investigations, this effort raises as many new questions as it answers.  A 

number of theoretical issues remain to be explored.  A comprehensive mathematical 

model of foraging via mass recruitment does not exist.  Development of a new model or 

extension of current models is an important area requiring further study.  In particular, 

future modeling work could focus on the importance of pheromone decay rate.  Also, a 

comprehensive model would necessarily describe the behavioral complexity possible in 

the presence of multiple food sources.  Theoretical models should also be developed from 

within the robotics community, making theoretical results more pertinent to robotic 

implementation of swarm intelligence.  As experimental work with real robots is still an 

emerging field, numerous research possibilities exist for the future.  Systems must be 

developed with large numbers of robots in wide spatial foraging fields in order to study a 

wider range of foraging phenomena.  Considerable work remains in developing effective 

trail substances for a variety of indoor or outdoor applications.  Furthermore, a number of 

other communication modes exist, and not all rely solely on stigmergy.  Investigating 

other forms of indirect or direct communication would be a valuable contribution to the 

research community.  Finally, it is vital that researchers begin testing robotic swarms in 

real-world, dynamic environments.  A great deal of work remains in that direction before 

the bold claims regarding real-world applications of swarm intelligence are realized.   
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APPENDIX A – StarLogo Documentation

The following material is excerpted from [110]  See that reference for more complete 
documentation on StarLogo v. 2.0, which was used in this research.  

INTRODUCTION

StarLogo is a programmable modeling environment for exploring the behaviors of decentralized systems, 
such as bird flocks, traffic jams, and ant colonies. It is designed especially for use by students. 

In decentralized systems, orderly patterns can arise without centralized control. Increasingly, researchers 
are choosing decentralized models for the organizations and technologies that they construct in the world, 
and for the theories that they construct about the world. But many people continue to resist these ideas, 
assuming centralized control where none exists--for example, assuming (incorrectly) that bird flocks have 
leaders. StarLogo is designed to help students (as well as researchers) develop new ways of thinking about 
and understanding decentralized systems. 

StarLogo is an extension of the Logo programming language. With traditional versions of Logo, you can 
create drawings and animations by giving commands to a graphic "turtle" on the computer screen. StarLogo 
extends this idea by allowing you to control thousands of graphic turtles in parallel. In addition, StarLogo 
makes the turtles' world computationally active: you can write programs for thousands of "patches" that 
make up the turtles' environment. Turtles and patches can interact with one another. For example, you can 
program the turtles to "sniff" around the world, and change their behaviors based on what they sense in the 
patches below. StarLogo is particularly well-suited for modeling complex decentralized systems--systems 
which traditionally have not been available to people without advanced mathematical or programming 
skills. 

This document provides a short introduction to the Java version of StarLogo. It describes the basic features 
of StarLogo, and it suggests initial activities for using and learning StarLogo. At the end are pointers to 
other documents that provide a more complete description of the StarLogo language.

CAST OF CHARACTERS

StarLogo includes three main types of "characters": 

Turtles. The main inhabitants of the StarLogo world are graphic creatures known as "turtles." You can use 
a turtle to represent almost any type of object: an ant in a colony, a car in a traffic jam, an antibody in an 
immune system, a molecule in a gas. Each turtle has a position, a heading, a color, and a "pen" for drawing. 
You can add more specialized traits and properties. In StarLogo (unlike traditional versions of Logo), you 
can control the actions and interactions of thousands of turtles in parallel. 

Patches. Patches are pieces of the world in which the turtles live. Patches are not merely passive objects 
upon which the turtles act. Like turtles, patches can execute StarLogo commands, and they can act on 
turtles and patches. Patches are arranged in a grid, with each patch corresponding to a square in the 
Graphics area. 

Observer. The observer "looks down" on the turtles and patches from a birdâs eye perspective. The 
observer can create new turtles, and it can monitor the activity of the existing turtles and patches.
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STARLOGO USER INTERFACE

The StarLogo interface consists of several main windows: 

StarLogo window: This window is divided into several sections. The initially black Graphics area is where 
the StarLogo turtles move and draw. The turtles move on top of a grid of patches. When a turtle moves off 
the screen, it "wraps" around to the other side. You can move a turtle directly by dragging it with the 
mouse. The white area on the left of the Graphics area is the Interface area. This area is where you will 
create buttons, sliders, and monitors that allow you to interact directly with StarLogo programs. To create 
and inspect interface objects (that is, buttons, sliders, and monitors), use the Main Toolbar, located in the 
gray bar across the top of the StarLogo window. To create a new interface object, choose the appropriate 
tool from the Toolbar and drag out a rectangle in the Interface area. To inspect the underlying behavior of 
an existing interface object, choose the appropriate tool from the Toolbar and then click on the object. (You 
can also inspect an object by holding down control and double-clicking on the object with the standard 
arrow tool.) The Paint and Color Toolbar appears above the Graphics area when you click the paintbrush 
icon from the Main Toolbar. From here, you can select which color you want to draw with. In addition, you 
can select different types of drawing tools.

Control Center window: The Command Center area of the Control Center window is where you type 
commands for StarLogo. You may run a command again by moving the cursor to that line and pressing 
return. The Procedures area is where you write your own StarLogo procedures. By clicking back and forth 
between "Turtle" and "Observer" you can distinguish between those commands which are specific to turtles 
and those which can only be executed by the observer. Refer to the Reference Manual for a more complete 
description of the different command types available to each StarLogo character.
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Other windows: The menu bar at the top of the Control Center window allows you to access several other 
windows. The Information window is intended for explanatory notes, commentary, and instructions. The 
Output window is used for printing and recording data generated by a StarLogo project. The print 
command prints to this window. The Plot window is where you can create real-time graphs as your 
StarLogo project is running. 

Turtle Monitors: If you double-click on a turtle in the Graphics area, a Turtle Monitor will appear, showing 
the turtle's variables, both standard and user-defined, and their values. The values update in real-time as 
your StarLogo project is running. You can also use the Turtle Monitor to directly change the value (state) 
of the variable.

HOW TO RUN STARLOGO

To use StarLogo, you will need to have a version of Java 1.1 (with Swing) or higher installed on your 
computer. 

Our installer for Windows includes a Java 1.4 runtime from Sun Microsystems. This version will not 
interfere with any other versions of Java installed on your machine, and you won't have to worry about 
compatability. We do not use or require any other version of Java to be installed on your computer.

The Mac OS 9 version requires MRJ 2.2.5 or higher. If you don't yet have MRJ 2.2.5 (or are not sure) and 
have Mac OS 9, use the Software Update control panel to install any updates from Apple. One of these will 
be MRJ 2.2.5 or higher. If you use Mac OS 8.1 or higher, you can download MRJ from Apple's Java web 
site at http://developer.apple.com/java/download.html.
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We support MacOS X 10.1 and higher. If you get the Java Update 1.3.1 for OS X 10.1, be advised that 
multi-monitor support is broken. There are still quite a few problems with MacOS X Java, even on 10.2, so 
feel free to email at bug-starlogo@media.mit.edu when bad things happen. 

On Unix, we recommend using your vendor's Java, as long as it is compatible with Java 1.2 or higher. We 
include a shell script to run StarLogo, and include a special shell script for Solaris. On Linux, we 
recommend Sun's JDK over Blackdown because of far fewer bugs in the AWT implementation. If you can 
get Sun's JDK 1.4, that'll be even less buggy. A note: there are interactions between some window 
managers and Java which cause new windows to open in a really small size. You might try a different 
window manager first, to see if it is the problem, but if not, tell your window manager to allow you to place 
the window manually when it pops up, rather than automatically. This will give you the opportunity to 
resize it.

After you have successfully installed StarLogo, follow these instructions to run StarLogo on your 
computer: 

On a Windows PC 

• In the Start Menu, look for the StarLogo 2.0 program group. Click on the StarLogo application file 
to run StarLogo. 

• StarLogo should start up and pop two windows up on the screen. If you don't see them, they might 
be hidden behind other windows. Check your taskbar for them. 

On a Mac 

• Make sure that you have MRJ 2.2.5 or higher (from 
http://developer.apple.com/java/download.html) installed on your Macintosh before trying to run 
StarLogo. 

• Double-click on the StarLogo application. 
• StarLogo should start up and pop two windows up on the screen. 

On Unix 

• Install your favorite Java 1.2.x, or Java 1.3.x, Java 1.4.x. 
• Go to the StarLogo distribution directory. 
• Execute the unix-run-starlogo shell script. (Note: If you use Solaris, execute the solaris-run-

starlogo shell script instead). 
• Note: We've seen that StarLogo requires that you set Java to use a larger stack size. This is 

necessary with Sun's Java; we're not sure whether this is necessary on other Unixes.
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APPENDIX B – StarLogo Simulation Code

The StarLogo simulation code (with trails, two food sources) is presented below.  Minor 
changes were made to the program for other simulation scenarios (e.g., three or four 
food sources).  Comments are set off with semicolons along with right-hand column.

Observer Procedures

;Declare variables
turtles-own [follow-time]
patches-own [pheromone]
globals [collide]
setcollide 0

;Defines simulation setup
to setup
clear-all ;Clear screen
setup-field ;Starts setup-field procedure
crt turtles ;Creates turtles
ask-turtles [setc green fd 5] ;Sets color green, forward
ask-patches [setpheromone 0] ;Sets pheromone = 0 for patches
end

;Sets up boundary and home
to setup-field
create-and-do 1 [setc red ;Create one turtle 
fd screen-half-height rt 90 pd ;Draw red boundary
fd screen-half-width rt 90
fd screen-height - 1 rt 90
fd screen-width - 1 rt 90
fd screen-height - 1 rt 90
fd screen-half-width]
ct ;Clear turtle
create-and-do 30 [setc brown pd fd 2] ;Create 30, draw home
ct ;Clear turtles
create-and-do 50 [setc yellow ;Create 50, draw food

setxcor -38 setycor 30 pd fd 3 bk 4 pu
setxcor 25 setycor -20 pd fd 3]

ct ;Clear turtles
end

;Causes pheromone decay
to decay
ask-patches [setpheromone pheromone - 5] ;Decrements pheromone
wait 100 / decay-rate ;Wait
decay ;Decay again
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end

;Updates color of patches
to color-patches
ask-patches[
if pheromone < 0 [setpheromone 0] ;Reset pheromone to min
if pheromone > 95 [setpheromone 95] ;Reset pheromone to max
if pheromone = 0 and pc > 59 and pc < 62 [setpc 0] ;Update to black
if pc > 59 and pc < 72 ;Update to shade of green
[setpc (pheromone / 10) + 59.5]]
wait 1 ;Wait
color-patches ;Color again
end

Turtle Procedures

; Defines search behavior for each ant
to search
setc green ;Set color to green
seth heading + 30 - random 60 ;Set random heading
step ;Move forward one unit
wait 1 / srch-spd ;Wait
if pc = red ;If patch is red... 
[rt 180 step] ;turn 180 degrees and step
if pc = yellow ;If patch is yellow...
[go-home] ;start go-home procedure
if pc > 59 and pc < 70 ;If patch is green...
[setfollow-time 0 setc orange follow] ;follow trail
if count-turtles-here > 1 [setcollide collide + 1] ;Keep track of collision
search ;Search again
end

; Defines behavior to go home
to go-home
seth towards 0 0 ;Set heading toward home
ifelse pc-ahead = yellow ;If yellow patch is ahead
[stamp black] ;color it black
[setpheromone-at 0 0 pheromone + 10 ;increment pheromone
if pheromone > 95 [setpheromone 95] ;reset if over max value
stamp (pheromone / 10) + 59.5] ;color shade of green
step ;Move forward one unit
if count-turtles-here > 1 [setcollide collide + 1] ;Keep track of collisions
wait 1 / srch-spd ;Wait
repeat 100 ;Repeat following commands 100 times
[if pc = black ;If patch is black
[setpheromone-at 0 0 pheromone + 10 ;increment pheromone
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stamp (pheromone / 10) + 59.5] ;color patch green
if pc > 59 and pc < 72 ;If patch is green
[setpheromone-at 0 0 pheromone + 10 ;increment pheromone
stamp (pheromone / 10) + 59.5] ;color patch green
if pc = brown ;If patch is brown
[seth heading + 200 - random 40 ;Set heading approx. 180 degrees
search] ;Resume search
seth towards 0 0 ;Set heading toward home
seth heading + 25 - random 50 ;Set random heading
wait 1 / srch-spd ;Wait
step] ;Move forward one step
search ;Resume search
end

; Define path following behavior
to follow
setfollow-time follow-time + 1 ;Increment follow-time
if follow-time > 6 [step search] ;Resume search if lost
setc orange ;Set color orange
repeat 36 ;Repeat commands 36 times
[rt 10 - random 2 ;Turn random angle
if pc-ahead = yellow ;If yellow patch ahead...
[step setc green go-home] ;Start go-home
if pc-ahead > 59 and pc-ahead < 70 and ;If patch ahead is green and farther 
fromhome
xcor ^ 2 + ycor ^ 2 < 
(xcor + sin (heading)) ^ 2 + (ycor + cos (heading)) ^ 2 
[step ;Move forward one unit
if count-turtles-here > 1 [setcollide collide + 1]]] ;Keep track of collisions
follow ;Follow again
end
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APPENDIX C – Bricx Command Center Documentation

The following material is excerpted from [113] and is written by John Hansen.  BricxCC, 

version 3.3, was used in this research.

Bricx Command Center was written to more easily work with the Lego 

MindStorms and CyberMaster robot system.  It is built around NQC (Not Quite C 

Compiler), written by Dave Baum, that makes it possible to program the RCX, the Scout, 

and the Cybermaster programmable bricks in a language that is close to C. For more 

information on NQC, see the tutorial and NQC reference guide provided. 

The basis of Bricx Command Center consists of an editor in which you can write 

your NQC programs with the integrated ability to compile the programs and download 

them to the brick. In case of errors they are reported at the bottom of the editor window 

such that they can be corrected easily. Besides the editor, Bricx Command Center 

contains tools to control your robot directly, to watch what is happening in the brick, to 

download (new) firmware, etc.

To run Bricx Command Center it is not necessary to have spirit.ocx (the ActiveX 

control used with the RIS 1.0 and 1.5 sets) registered on your system.

Bricx Command Center can be used free of charge. Please note that NQC and it 

documentation are copyrighted by Dave Baum.  Bricx Command Center supports version 

2.3r1 or later of NQC. (This version is NOT compatible with version 1.x. You can though 

set the program in compatibility mode in the Preference menu. There is also an option on 

the Edit menu to translate an old style program into a new style program.)
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APPENDIX D – Not Quite C (NQC) Documentation

The following information is excerpted from Dave Baum’s “NQC Programmer’s Guide.”  

The complete version of this guide can be found in [114].  Some sections have been 

omitted for the sake of brevity.  This is meant to be a basic introduction to the 

programming language.

Introduction

NQC stands for Not Quite C, and is a simple language for programming several 

LEGO MINDSTORMS products.  Some of the NQC features depend on which 

MINDSTORMS product you are using.  This product is referred to as the target for 

NQC.  Presently, NQC supports five different targets: RCX, RCX2 (an RCX running 2.0 

firmware), CyberMaster, Scout, and Spybotics.  

All of the targets have a bytecode interpreter (provided by LEGO) which can be 

used to execute programs.  The NQC compiler translates a source program into LEGO 

bytecodes, which can then be executed on the target itself.  Although the preprocessor 

and control structures of NQC are very similar to C, NQC is not a general purpose 

language - there are many restrictions that stem from limitations of the LEGO bytecode 

interpreter.

Logically, NQC is defined as two separate pieces.  The NQC language describes 

the syntax to be used in writing programs.  The NQC API describes the system functions, 

constants, and macros that can be used by programs.  This API is defined in a special file 

built in to the compiler.  By default, this file is always processed before compiling a 

program.

This document describes both the NQC language and the NQC API.  In short, it 

provides the information needed to write NQC programs.  Since there are several 

different interfaces for NQC, this document does not describe how to use any specific 

NQC implementation.  Refer to the documentation provided with the NQC tool, such as 

the NQC User Manual for information specific to that implementation.

For up-to-date information and documentation for NQC, visit the NQC Web Site 

at http://www.baumfamily.org/nqc
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Program Structure

An NQC program is composed of code blocks and global variables.  There are 

three distinct types of code blocks: tasks, inline functions, and subroutines.  Each type of 

code block has its own unique features and restrictions, but they all share a common 

structure.

Tasks

The RCX implicitly supports multi-tasking, thus an NQC task directly 

corresponds to an RCX task.  Tasks are defined using the task keyword using the 

following syntax:

task name()

{

// the task's code is placed here

}

The name of the task may be any legal identifier.  A program must always have at 

least one task - named "main" - which is started whenever the program is run.  The 

maximum number of tasks depends on the target - the RCX supports 10 tasks, 

CyberMaster supports 4, and Scout supports 6.

The body of a task consists of a list of statements.  Tasks may be started and 

stopped using the start and stop statements (described in the section titled 

Statements).  There is also a NQC API command, StopAllTasks, which stops all 

currently running tasks.

Functions

It is often helpful to group a set of statements together into a single function, 

which can then be called as needed.  NQC supports functions with arguments, but not 

return values.  Functions are defined using the following syntax:

void name(argument_list)

{

// body of the function

}

The keyword void is an artifact of NQC's heritage - in C functions are specified 

with the type of data they return.  Functions that do not return data are specified to return 
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void.  Returning data is not supported in NQC, thus all functions are declared using the 

void keyword.

The argument list may be empty, or may contain one or more argument 

definitions.  An argument is defined by its type followed by its name.  Multiple 

arguments are separated by commas.  All values are represented as 16 bit signed integers.  

However NQC supports four different argument types which correspond to different 

argument passing semantics and restrictions:

Type Meaning Restriction

int pass by value none

const int pass by value only constants may be used

int& pass by reference only variables may be used

const int & pass by reference function cannot modify argument

Arguments of type int are passed by value from the calling function to the 

callee.  This usually means that the compiler must allocate a temporary variable to hold 

the argument.  There are no restrictions on the type of value that may be used.  However, 

since the function is working with a copy of the actual argument, any changes it makes to 

the value will not be seen by the caller.  In the example below, the function foo attempts 

to set the value of its argument to 2.  

The second type of argument, const int, is also passed by value, but with the 

restriction that only constant values (e.g. numbers) may be used.  This is rather important 

since there are a number of RCX functions that only work with constant arguments.

The third type, int &, passes arguments by reference rather than by value.  This 

allows the callee to modify the value and have those changes visible in the caller.  

However, only variables may be used when calling a function using int & arguments:

The last type, const int &, is rather unusual.  It is also passed by reference, but 

with the restriction that the callee is not allowed to modify the value.  Because of this 

restriction, the compiler is able to pass anything (not just variables) to functions using 

this type of argument.  In general this is the most efficient way to pass arguments in 

NQC.
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NQC functions are always expanded as inline functions.  This means that each 

call to a function results in another copy of the function's code being included in the 

program.  Unless used judiciously, inline functions can lead to excessive code size.

Subroutines

Unlike inline functions, subroutines allow a single copy of some code to be shared 

between several different callers.  This makes subroutines much more space efficient than 

inline functions, but due to some limitations in LEGO bytecode interpreter, subroutines 

have some significant restrictions.  First of all, subroutines cannot use any arguments.  

Second, a subroutine cannot call another subroutine.  Last, the maximum number of 

subroutines is limited to 8 for the RCX, 4 for CyberMaster, 3 for Scout, and 32 for 

Spybotics.  In addition, when using RCX 1.0 or CyberMaster, if the subroutine is called 

from multiple tasks then it cannot have any local variables or perform calculations that 

require temporary variables.  These significant restrictions make subroutines less 

desirable than functions, therefore their use should be minimized to those situations 

where the resultant savings in code size is absolutely necessary.  The syntax for a 

subroutine appears below:

sub name()

{

// body of subroutine

}

Variables

All variables in NQC are of the same type - specifically 16 bit signed integers. 

Variables are declared using the int keyword followed by a comma separated list of 

variable names and terminated by a semicolon (';').  Optionally, an initial value for each 

variable may be specified using an equals sign ('=') after the variable name.  

Global variables are declared at the program scope (outside any code block).  

Once declared, they may be used within all tasks, functions, and subroutines.  Their scope 

begins at declaration and ends at the end of the program.

Local variables may be declared within tasks, functions, and sometimes within 

subroutines.  Such variables are only accessible within the code block in which they are 

defined.  Specifically, their scope begins with their declaration and ends at the end of 
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their code block.  In the case of local variables, a compound statement (a group of 

statements bracketed by { and }) is considered a block.

In many cases NQC must allocate one or more temporary variables for its own 

use.  In some cases a temporary variable is used to hold an intermediate value during a 

calculation.  In other cases it is used to hold a value as it is passed to a function.  These 

temporary variables deplete the pool of variables available to the rest of the program.  

NQC attempts to be as efficient as possible with temporary variables (including reusing 

them when possible). 

The RCX (and other targets) provide a number of storage locations which can be 

used to hold variables in an NQC program.  There are two kinds of storage locations -

global and local.  When compiling a program, NQC assigns each variable to a specific 

storage location.  Programmers for the most part can ignore the details of this assignment 

by following two basic rules:

• If a variable needs to be in a global location, declare it as a global variable.

• If a variable does not need to be a global variable, make it as local as possible.  

This gives the compiler the most flexibility in assigning an actual storage 

location.

Statements

The body of a code block (task, function, or subroutine) is composed of 

statements.  Statements are terminated with a semi-colon (';').

Variable Declaration

Variable declaration, as described in the previous section, is one type of 

statement.  It declares a local variable (with optional initialization) for use within the 

code block.  The syntax for a variable declaration is:

int variables;

where variables is a comma separated list of names with optional initial values:

name[=expression]

Arrays of variables may also be declared (for the RCX2 only):

int array[size];

Assignment



244

Once declared, variables may be assigned the value of an expression:

variable assign_operator expression;

There are nine different assignment operators.  The most basic operator, '=', 

simply assigns the value of the expression to the variable.  The other operators modify the 

variable's value in some other way as shown in the table below

Operator Action

= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

*= Multiple variable by expression

/= Divide variable by expression

%= Set variable to remainder after dividing by expression

&= Bitwise AND expression into variable

|= Bitwise OR expression into variable

^= Bitwise exclusive OR into variable

||= Set variable to absolute value of expression

+-= Set variable to sign (-1,+1,0) of expression

>>= Right shift variable by a constant amount

<<= Left shift variable by a constant amount

Control Structures

The simplest control structure is a compound statement.  This is a list of 

statements enclosed within curly braces ('{' and '}'):

{

x = 1;

y = 2;

}

Although this may not seem very significant, it plays a crucial role in building 

more complicated control structures.  Many control structures expect a single statement 

as their body.  By using a compound statement, the same control structure can be used to 

control multiple statements.
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The if statement evaluates a condition.  If the condition is true it executes one 

statement (the consequence).  An optional second statement (the alternative) is executed 

if the condition is false.  The two syntaxes for an if  statement is shown below.

if (condition) consequence

if (condition) consequence else alternative

Note that the condition is enclosed in parentheses.  

The while statement is used to construct a conditional loop.  The condition is 

evaluated, and if true the body of the loop is executed, then the condition is tested again.  

This process continues until the condition becomes false (or a break statement is 

executed).  The syntax for a while loop appears below:

while (condition) body

A variant of the while loop is the do-while loop.  Its syntax is:

do body while (condition)

The difference between a while loop and a do-while loop is that the do-while

loop always executes the body at least once, whereas the while loop may not execute it 

at all.

Another kind of loop is the for loop:

for(stmt1 ; condition ; stmt2) body

A for loop always executes stmt1, then it repeatedly checks the condition and 

while it remains true executes the body followed by stmt2.  The for loop is equivalent to:

stmt1;

while(condition)

{

body

stmt2;

}

The repeat statement executes a loop a specified number of times:

repeat (expression) body

The expression determines how many times the body will be executed.  Note that 

it is only evaluated a single time, then the body is repeated that number of times.  This is 

different from both the while and do-while loops which evaluate their condition each 

time through the loop.
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A switch statement can be used to execute one of several different blocks of 

code depending on the value of an expression.  Each block of code is preceded by one or 

more case labels.  Each case must be a constant and unique within the switch statement.  

The switch statement evaluates the expression then looks for a matching case label.  It 

will then execute any statements following the matching case until either a break 

statement or the end of the switch is reaches.  A single default label may also be used -

it will match any value not already appearing in a case label.  Technically, a switch 

statement has the following syntax:

switch (expression) body

The case and default labels are not statements in themselves - they are labels that 

precede statements.  Multiple labels can precede the same statement.  

The goto statement forces a program to jump to the specified location.  

Statements in a program can be labeled by preceding them with an identifier and a colon.  

A goto statement then specifies the label which the program should jump to.  For 

example, this is how an infinite loop that increments a variable could be implemented 

using goto:  

my_loop:

x++;

goto my_loop;

The goto statement should be used sparingly and cautiously.  In almost every 

case, control structures such as if, while, and switch make a program much more 

readable and maintainable than using goto.  Care should be taken to never use a goto to 

jump into or out of a monitor or acquire statement.  This is because monitor and 

acquire have special code that normally gets executed upon entry and exit, and a goto

will bypass that code – probably resulting in undesirable behavior.
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APPENDIX E – NQC Program Code

The following NQC Code was used to control each robot.  In the non-cooperative 

experiments, the”follow” behavior was removed from the program.  Comments are set 

off by double forward slashes.  The program is displayed in two columns, read from the 

bottom of the left column to the top of the right column.

// Mark Edelen
// Foraging Robots Thesis Research
// Main Foraging Program
//      Four main behaviors:
//           (1) wander
//           (2) avoid
//           (3) pick up / go home
//           (4) follow

task main ()
{
  // Initialize sensors
  SetSensor (SENSOR_1, 
SENSOR_TOUCH);
  SetSensor (SENSOR_3, 
SENSOR_LIGHT);
  SetSensorType (SENSOR_2, 
SENSOR_TYPE_LIGHT);
  SetSensorMode (SENSOR_2, 
SENSOR_MODE_RAW);

  // Initialize counters
  #pragma reserve 0     // Counter for avoid 
behavior
  #pragma reserve 1     // Counter for pick-up 
behavior
 #pragma reserve 2     // Counter for follow 

behavior

  // Clear counters
  ClearCounter (0);
  ClearCounter (1);
  ClearCounter (2);

  // Check battery level
  if (BatteryLevel() < 8850)
  {
    PlaySound (SOUND_LOW_BEEP);
    Wait (100);

    }

  // Create datalog
  CreateDatalog (100);

  // Play Start Note
  PlaySound (SOUND_CLICK);

  // Make sure pen & magnet are up
  SetPower (OUT_B,4);
  OnFor (OUT_B, 30);

  // Start basic behavior
  start wander;
}

task wander ()
{
   // Stop follow task
  stop follow;

  // Define events to monitor while 
wandering
  SetEvent (1, SENSOR_1, 
EVENT_TYPE_PRESSED);   // touch 
sensor
  SetEvent (2, SENSOR_2, 
EVENT_TYPE_NORMAL);    // light2 
reads washer or line
  SetLowerLimit (2,SENSOR_2 + 10);
  SetUpperLimit (2,720);
  SetEvent (3, SENSOR_3, 
EVENT_TYPE_HIGH);      // light3 reads 
bright
  SetLowerLimit (3,50);
  SetUpperLimit (3,75);

  // Start wander timer
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  SetTimer (1, 0);

  // Display raw value of light2
  SelectDisplay (DISPLAY_SENSOR_2);

  // Start monitoring 3 events
  monitor( EVENT_MASK (1) | 
EVENT_MASK (2) | EVENT_MASK (3))
  {
    SetDirection (OUT_A+OUT_C, 
OUT_FWD);
    SetPower (OUT_A+OUT_C,2);
    while (true)
    {
      // Recalibrate lower limit every 4 ms
      SetLowerLimit (2,SENSOR_2 + 8);
      OnFor (OUT_A+OUT_C, 4);
    }
  }
  // If touch sensor is pressed, then...
  catch( EVENT_MASK (1) )
  {
    Off (OUT_A+OUT_C);
    // Beep
    PlaySound (SOUND_UP);

    AddToDatalog (Timer (1));
    start avoid;

  }
  // If robots reads non-white, then...
  catch( EVENT_MASK (2) )
  {
    Wait(4);
    Off (OUT_A+OUT_C);
    // Beep
    PlaySound (SOUND_DOUBLE_BEEP);
    Wait(100);
    if (SENSOR_2 > 700)           // over 700 is 
the washer
    {
      // Record wandering time
      AddToDatalog (Timer (1));
      // Pick up washer
      start pick_up;
    }
    else
    {
      // Increment counter for follow behavior
      IncCounter (2);

      // Add counter value to datalog
      AddToDatalog (20);
      AddToDatalog (Counter (2));
      // Record wandering time
      AddToDatalog (Timer (1));
      // Follow the trail
      start follow;
    }
  }
  // If light3 reads bright (robot is close to 
home), then...
  catch(EVENT_MASK(3))
  {
    Off (OUT_A+OUT_C);
    // ...avoid home
    start avoid;
  }
}

task avoid ()
{
  // Start avoid timer
  SetTimer (2, 0);

  // Increment avoid counter
  IncCounter (0);
  AddToDatalog (0);
  AddToDatalog (Counter (0));

  // Monitor for touch while avoiding
  monitor (EVENT_MASK (1))
  {
    // Back up
  SetDirection 

(OUT_A+OUT_C,OUT_REV);
    OnFor (OUT_A+OUT_C, 20);
    // Rotate random angle
    SetDirection (OUT_C, OUT_FWD);
    SetPower (OUT_A+OUT_C, 4);
    OnFor (OUT_A+OUT_C, 
40+Random(80));
    AddToDatalog (Timer (2));
    start wander;
  }
  catch
  {
    start avoid;
  }
}
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task pick_up ()
{
  // Go fwd to get over washer
  OnFor (OUT_A+OUT_C, 35);

  // Lower magnet to pick up washer
  SetPower (OUT_B,6);
  SetDirection (OUT_B, OUT_REV);
  OnFor (OUT_B, 75);
  Wait (50);

  // Increment counter1
  IncCounter (1);
  AddToDatalog (10);
  AddToDatalog (Counter (1));

  // Back up to clear other magnets
  SetPower (OUT_A+OUT_C, 2);
  SetDirection (OUT_A+OUT_C, 
OUT_REV);
  OnFor (OUT_A+OUT_C, 30);
  Wait (50);
  Off (OUT_A+OUT_C);

  // Start to go home
  start go_home;
}

task go_home ()
{

  //Display value of light3
  SelectDisplay (DISPLAY_SENSOR_3);

monitor (EVENT_MASK (1))
{

  // Rotate to find initial home direction
  SetDirection (OUT_C, OUT_FWD);
  SetDirection (OUT_A, OUT_REV);
  SetPower (OUT_A+OUT_C, 4);
  do
  {
    OnFor (OUT_A+OUT_C, 10);
    Wait (60);
  }
  while (SENSOR_3 < 54);

  // Lower pen
  SetPower (OUT_B, 8);
  OnRev (OUT_B);

  Off (OUT_A+OUT_C);
  SetDirection (OUT_A+OUT_C, 
OUT_FWD);
  SetPower (OUT_A+OUT_C, 2);
On (OUT_A+OUT_C);

  Wait(30);

  repeat(5)
    {
    // Search for home until light is bright
    SetPower (OUT_C, 1);
    On(OUT_C);
    Wait(100);
    Float(OUT_C);
    Wait(75);

    if (SENSOR_3 > 90) break;
    }

  // Go fwd, lift pen & magnet, go back
  PlaySound (SOUND_CLICK);
  //   Go fwd to get close to home
  SetPower(OUT_A+OUT_C,2);
  OnFor (OUT_A+OUT_C, 70);
  //   Lift magnet
  Off (OUT_B);
  SetDirection (OUT_B, OUT_FWD);
  On (OUT_B);
  Wait (15);
  //   Go back
  SetDirection(OUT_A+OUT_C, 
OUT_REV);
  OnFor (OUT_A+OUT_C,100);
  //   Turn
  SetDirection(OUT_C, OUT_FWD);
  SetPower(OUT_A+OUT_C,4);
  On(OUT_A+OUT_C);
  Wait (75 + Random(40));
  Off (OUT_A+OUT_B+OUT_C);

  // Resume wandering
  start wander;
}
catch
{
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  Off(OUT_A+OUT_B+OUT_C);
  Wait(300);
  start go_home;
}
}

task follow ()
{
  // Start follow timer
  SetTimer (3, 0);

  //Display raw value of light2
  SelectDisplay (DISPLAY_SENSOR_2);

  monitor (EVENT_MASK (1))
  {
  // Cross over line
  SetDirection (OUT_A+OUT_C, 
OUT_FWD);
  SetPower (OUT_A+OUT_C, 2);
  OnFor (OUT_A+OUT_C, 25);
  Wait(100);

  // Turn left small amount to turn caster
  SetDirection (OUT_A, OUT_REV);
  SetPower (OUT_A+OUT_C, 3);
  OnFor (OUT_A+OUT_C, 15);

  // Turn left until light2 sees line
  int floor1;
  int floor2;
  int j;
  j=0;
  do
  {
    floor1 = SENSOR_2;
    OnFor (OUT_A+OUT_C, 5);
    Wait (35);
    floor2 = SENSOR_2;
    j++;
    if (j>30) {PlaySound (SOUND_CLICK); 
start wander;}
  }
  while (floor2 <= floor1 + 5);
  Wait(100);

  // Take light reading
  int light_left;
  light_left = SENSOR_3;

  // Turn right small amount to get off line
  Toggle (OUT_A+OUT_C);
  SetPower (OUT_A+OUT_C, 4);
  OnFor (OUT_A+OUT_C, 50);
  SetPower (OUT_A+OUT_C, 3);
  Wait(100);

  // Turn right until light2 sees line
  j=0;
  do
  {
    floor1 = SENSOR_2;
    OnFor (OUT_A+OUT_C, 5);
    Wait (35);
    floor2 = SENSOR_2;
    j++;
    if (j>25) start wander;
  }
  while (floor2 <= floor1 + 5);
  Wait(100);

  // Take light reading
  int light_right;
  light_right = SENSOR_3;

  // Estimate distance from home and assign 
number of turns
  int light_home;
  if (light_right < light_left)
  {
  light_home = light_right;
  }
  else
  {
  light_home = light_left;
  }
  int dist_home;
  if (light_home > 77 && light_home <= 85) 
dist_home = 8;
  if (light_home > 70 && light_home <= 76) 
dist_home = 6;
  if (light_home > 65 && light_home <= 70) 
dist_home = 5;
  if (light_home > 52 && light_home <= 64) 
dist_home = 4;
  else dist_home = 3;

  // Compare light readings
 if (light_right < light_left)
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  // Follow line with line on right
  { repeat(dist_home + 1)
    {// Turn left to get off line
    SetPower (OUT_A+OUT_C, 4);
    SetDirection (OUT_A+OUT_C, 
OUT_FWD);
    Off (OUT_A);
    OnFor (OUT_C, 30);
    // Turn right until line
    Off (OUT_C);
    j=0;
    do
    {
      floor1 = SENSOR_2;
      OnFor (OUT_A, 4);
      Wait (20);
      floor2 = SENSOR_2;
      j++;
      if (j>30) start wander;
    }
    while (floor2 <= floor1 + 4);
    }
  }

  else
  {
  // Follow line with line on left
  PlaySound (SOUND_FAST_UP);

    // Turn left small amount
  Toggle (OUT_A+OUT_C);
  OnFor (OUT_A+OUT_C, 55);

  SetPower (OUT_A+OUT_C, 4);
  SetDirection (OUT_A+OUT_C, 
OUT_FWD);
  repeat(dist_home + 1)
    {
    // Turn left until line
    Off (OUT_A);
    j=0;
    do
    {
      floor1 = SENSOR_2;
      OnFor (OUT_C, 4);
      Wait (20);
      floor2 = SENSOR_2;
      j++;
      if (j>30) start wander;
    }
    while (floor2 <= floor1 + 4);
    // Turn right to get off line
    Off (OUT_C);
    OnFor (OUT_A, 30);
    }
   }
}
  catch
  {
    AddToDatalog (Timer (3));
    start avoid;
  }
AddToDatalog (Timer (3));
start wander;
}
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APPENDIX F – LEGO Robot Assembly Instructions

In the following pages, the assembly instructions are provided, pictorially, for 

each individual subsystem of the robot.  After the assembly of each subsystem, 

instructions are shown for combining the subsystems into a completed robot.  These 

figure were generated using MLCAD v.3.0 (© 2002 by Michael Lachmann), a computer-

aided design package specifically designed for use with LEGO constructions [120].  

CASTER WHEEL ASSEMBLY

FRONT FRAME ASSEMBLY
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FRONT BUMPER ASSEMBLY



254



255

LEFT SIDE ASSEMBLY
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RIGHT SIDE ASSEMBLY
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DRIVE MOTOR ASSEMBLY
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MOTOR 3 ASSEMBLY
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PEN HOLDER/DRIVE SYSTEM ASSEMBLY



261

RCX ASSEMBLY
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MAGNET APPARATUS ASSEMBLY
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WASHER PLATE ASSEMBLY
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ASSEMBLY OF SUBSYSTEMS
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