
ABSTRACT

Title of Thesis: SWARM INTELLIGENCE AND STIGMERGY:

 ROBOTIC IMPLEMENTATION OF FORAGING BEHAVIOR

Mark Russell Edelen, Master of Science, 2003

Thesis directed by: Professor Jaime F. Cárdenas-García
Professor Amr M. Baz
Department of Mechanical Engineering

Swarm intelligence in multi-robot systems has become an important area of

research within collective robotics. Researchers have gained inspiration from biological

systems and proposed a variety of industrial, commercial, and military robotics

applications. In order to bridge the gap between theory and application, a strong focus is

required on robotic implementation of swarm intelligence. To date, theoretical research

and computer simulations in the field have dominated, with few successful

demonstrations of swarm-intelligent robotic systems.

In this thesis, a study of intelligent foraging behavior via indirect communication

between simple individual agents is presented. Models of foraging are reviewed and

analyzed with respect to the system dynamics and dependence on important parameters.

Computer simulations are also conducted to gain an understanding of foraging behavior

in systems with large populations. Finally, a novel robotic implementation is presented.

The experiment successfully demonstrates cooperative group foraging behavior without

direct communication. Trail-laying and trail-following are employed to produce the

required stigmergic cooperation. Real robots are shown to achieve increased task

efficiency, as a group, resulting from indirect interactions. Experimental results also

confirm that trail-based group foraging systems can adapt to dynamic environments.

SWARM INTELLIGENCE AND STIGMERGY:

ROBOTIC IMPLEMENTATION OF FORAGING BEHAVIOR

by

Mark Russell Edelen

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2003

Advisory Committee:

Professor Jaime F. Cárdenas-García, Co-chair
Professor Amr M. Baz, Co-chair
Professor Balakumar Balachandran

©Copyright by

Mark Russell Edelen

2003

ii

Acknowledgements

First and foremost, I would like to thank my heavenly Father and the Lord Jesus

Christ, for making this possible. Without God’s supernatural intervention, I would never

have persevered. All credit and praise belong to my God.

I would like to thank Professors Amr Baz and Balakumar Balachandran for their

assistance and support. A special thanks goes to Professor Jaime Cárdenas-García for all

of his valuable advice and patience. I appreciate the freedom that he allowed me in

pursuing a topic of my interest. That is a rare luxury, but he made it a reality.

Lastly, thank you to everyone who played a role in proofreading this text,

donating supplies, or simply supporting me while I labored. I want to thank you all for

your understanding and selfless desire to help.

iii

Dedication

You are my God, and I will give you thanks;

You are my God, and I will exalt you.

- Psalms 118:28

Whatever you do, work at it with all your heart, as working for the Lord, not for men,

since you know that you will receive an inheritance from the Lord as a reward. It is the

Lord Christ you are serving.

- Colossians 3:23-24

Go to the ant, you sluggard!

Consider her ways and be wise.

- Proverbs 6:6

iv

TABLE OF CONTENTS

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

Chapter 1: Introduction ... 1

Chapter 2: Background – Swarm Robotics... 5

Section 2.1: Cooperative Mobile Robotics ... 5

Section 2.2: Origins of Swarm-Based Robotics ... 6

Section 2.3: Swarm Control Architectures ... 8

Section 2.4: Communication... 14

Section 2.5: Learning .. 16

Section 2.6: Morphologies .. 17

Section 2.7: Cooperative Tasks in Mobile Robotics... 23

Section 2.8: Conclusion .. 34

Chapter 3: Biological Inspirations .. 36

Section 3.1: Self-Organization in Biological Systems.. 36

Section 3.2: Microscopic Organisms .. 43

Section 3.3: Social Insects .. 44

Section 3.4: Birds, Fish, Mammals... 65

Section 3.5: Misconceptions of Self-Organization ... 67

Chapter 4: Foraging Theory and System Modelling... 69

Section 4.1: Individual Agent Dynamics .. 69

Section 4.2: Foraging Theory and Task Efficiency .. 71

v

Section 4.3: Modeling Self-Organization ... 74

Section 4.4: Foraging Models ... 78

Section 4.5: Model-Based Predictions.. 100

Chapter 5: Simulation ... 102

Section 5.1: Why Simulate?.. 102

Section 5.2: Introduction to StarLogo... 103

Section 5.3: Program Description ... 104

Section 5.4: Simulated Scenarios.. 107

Section 5.5: Results... 110

Chapter 6: Experimental Design... 150

Section 6.1: Experimental Motivations and Goals ... 150

Section 6.2: LEGO® Mindstorms™ ... 153

Section 6.3: Disappearing Ink... 158

Section 6.4: Mechanical Design ... 161

Section 6.5: Behavior-based Programming .. 182

Section 6.6: Experimental Setup... 190

Section 6.7: Experimental Cases... 195

Section 6.8: Results... 197

Chapter 7: Analysis and Discussion ... 211

Section 7.1: Discussion of Simulation Results ... 211

Section 7.2: Discussion of Experimental Results ... 218

Section 7.3: Comparison of Results to Theoretical Predictions 224

Chapter 8: Conclusions ... 228

vi

APPENDIX A – StarLogo Documentation .. 231

APPENDIX B – StarLogo Simulation Code .. 235

APPENDIX C – Bricx Command Center Documentation ... 238

APPENDIX D – Not Quite C (NQC) Documentation.. 239

APPENDIX E – NQC Program Code... 247

APPENDIX F – LEGO Robot Assembly Instructions ... 252

REFERENCES ... 271

vii

LIST OF TABLES

Table 1. Robotic Locomotion Configurations ... 20

Table 2. Commercial Robot Platforms ... 22

Table 3. Foraging Methods Used by Ants (adapted from [93], pp. 248-251) 45

Table 4. Examples of self-organization in nature (adapted from [69], pp. 170-171) 66

Table 5. StarLogo Observer Procedures ... 106

Table 6. Technical Specifications for LEGO RCX [110]... 155

Table 7. Generation of Functional Requirements for a Foraging Robot 163

Table 8. Preliminary Functional Requirements .. 163

Table 9. Functional Requirements .. 165

Table 10. Allocation of Motors and Sensors .. 166

Table 11. Properties of LEGO Motors (taken from [29], p. 44)..................................... 167

Table 12. Summary of Experimental Scenarios ... 195

Table 13. Power Laws Fit to Simulation Data.. 213

Table 14. Power Laws Fit to Simulation Data.. 214

Table 15. Power Laws Fit to Experimental Data.. 219

viii

LIST OF FIGURES

Figure 1. (a) Beni's definition of swarm intelligence (b) the generalized definition 7

Figure 2. Layered competence levels (taken from [9], p. 7)... 11

Figure 3. LEGO Dual Differential Drive [26] .. 19

Figure 4. Stigmergy in termite digging (taken from [8], p. 125) 60

Figure 5. Potential building sites on a wasp nest62

Figure 6. Flash expansion in a school of fish (taken from [63], p. 172)........................... 67

Figure 7. Vector and coordinate system definitions (taken from [34], p. 2987)............... 70

Figure 8. Research cycle for self-organized systems (taken from [63], p. 71) 76

Figure 9. Simplified block diagram of foraging system 80

Figure 10. Bifurcation diagram for s = 4 (taken from [77], p. 582).................................. 87

Figure 11. State diagram with exploitation modes (taken from [77], p. 582)................... 88

Figure 12. Diagram of theoretical pursuit problem (taken from [99], p. 60).................... 90

Figure 13. Theoretical model compared 94

Figure 14. Results of CA simulation of swarm raids (taken from [63], p. 275) 95

Figure 15. Early, disordered phase of CA simulation (taken from [101], p. 122)............ 99

Figure 16. Formation of a dominant trail (taken from [101], p. 123) 99

Figure 17. StarLogo simulation of trail straightening... 111

Figure 18. Six steps in the sequence of trail straightening ... 111

Figure 19. Trail straightening with short departure interval ... 112

Figure 20. Trail straightening with long departure interval .. 112

Figure 21. StarLogo simulation (100 distributed food patches, 70 ants, time = 0) 113

ix

Figure 22. StarLogo simulation (70 ants, time = 20).. 114

Figure 23. Time evolution of food remaining (N=10).. 115

Figure 24. Completion time versus N (average of 3 trials)... 116

Figure 25. Collisions frequency versus N (average of 3 trials) 117

Figure 26. StarLogo simulation (N=40, time=30) .. 119

Figure 27. StarLogo simulation (N=40, time=50) .. 119

Figure 28. Time evolution of food remaining (N=70, d=10).. 120

Figure 29. Time evolution of food remaining (N=25, d=35).. 121

Figure 30. Time evolution of food remaining (N=10, d=35).. 122

Figure 31. Completion time versus number of ants (d=decay rate)................................ 123

Figure 32. Collision frequency versus N .. 123

Figure 33. StarLogo simulation (N=30, d=25, t=407).. 125

Figure 34. StarLogo simulation (N=30, d=15, t=206).. 125

Figure 35. Time evolution of food remaining (N=30, d=25).. 126

Figure 36. Time evolution of food remaining (N=30, d=15).. 126

Figure 37. Completion time versus number of ants.. 127

Figure 38. StarLogo simulation (N=30, d=15, t=106).. 129

Figure 39. StarLogo simulation (N=30, d=15, t=203).. 129

Figure 40. StarLogo simulation (N=30, d=15, t=302).. 130

Figure 41. Time evolution of food remaining (N=30, d=35).. 131

Figure 42. Time evolution of food remaining (N=50, d=15).. 131

Figure 43. Completion time versus number of ants.. 132

Figure 44. StarLogo simulation (N=50, d=35, t=157).. 134

x

Figure 45. StarLogo simulation (N=50, d=35, t=250).. 134

Figure 46. Time evolution of food remaining (N=50, d=35).. 136

Figure 47. Time evolution of food remaining (N=70, d=15).. 136

Figure 48. Time evolution of food remaining (N=70, d=35).. 136

Figure 49. Completion time versus number of ants.. 137

Figure 50. StarLogo simulation (N=100, d=20, t=132).. 139

Figure 51. StarLogo simulation (N=100, d=20, t=185).. 139

Figure 52. StarLogo simulation (N=100, d=20, t=213).. 140

Figure 53. StarLogo simulation (N=100, d=15, t=140).. 141

Figure 54. StarLogo simulation (N=100, d=25, t=74).. 141

Figure 55. Time evolution of food remaining (N=100, d=50).. 142

Figure 56. Time evolution of food remaining (N=100, d=40).. 142

Figure 57. Time evolution of food remaining (N=100, d=25).. 143

Figure 58. Completion time steps versus decay rate (N=100).. 143

Figure 59. StarLogo simulation (N=50, d=20, t=50).. 145

Figure 60. StarLogo simulation (N=50, d=20, t=127).. 145

Figure 61. StarLogo simulation (N=50, d=20, t=230).. 146

Figure 62. StarLogo simulation (N=50, d=20, t=302).. 146

Figure 63. Time evolution of food remaining (N=70, d=15).. 147

Figure 64. Time evolution of food remaining (N=70, d=20).. 148

Figure 65. Time evolution of food remaining (N=50, d=15).. 148

Figure 66. Time evolution of food remaining (N=30, d=15).. 149

Figure 67. Time evolution of food remaining (N=30, d=20).. 149

xi

Figure 68. LEGO Robotics Invention System (RIS) 2.0 .. 154

Figure 69. LEGO RCX 2.0 ... 156

Figure 70. LEGO 9V geared motor (taken from [111]).. 167

Figure 71. LEGO touch sensor (left) and light sensor (right); (taken from [111])......... 168

Figure 72. Side and front views of final robot design... 169

Figure 73. Robot chassis (with rear wheels attached)... 170

Figure 74. Caster wheel (left) and drive system (right) .. 171

Figure 75. Front bumber subassembly.. 172

Figure 76. Pen holder and drive assembly.. 173

Figure 77. Magnet apparatus... 174

Figure 78. View of robot undercarriage (note the red cover plate) 174

Figure 79. RCX Subassembly... 175

Figure 80. Chassis, caster, rear wheels, and drive motors .. 176

Figure 81. RCX subsystem added to assembly... 177

Figure 82. Steps for adding magnet apparatus and cover plate 177

Figure 83. Competence Level 0 .. 184

Figure 84. Competence Level 1 .. 184

Figure 85. Competence Level 2 .. 185

Figure 86. Actions taken in each basis behavior... 187

Figure 87. Robot line following, approaching trail from left or right............................. 189

Figure 88. Washers used in experimentation.. 193

Figure 89. Experimental foraging field... 194

Figure 90. Two light bulbs are home beacon.. 195

xii

Figure 91. Experimental setup (random distribution, N=3).. 198

Figure 92. Time evolution of target collection (random dist.).. 199

Figure 93. Collection time versus number of robots (random dist., avg. of 2 trials)...... 199

Figure 94. Collision frequency versus number of robots (random dist., avg. of 2 trials)200

Figure 95. Time evolution of target collection (1 cluster, no trails) 201

Figure 96. Collection time versus number of robots (1 cluster, no trails) 202

Figure 97. Collision frequency versus number of robots (1 cluster, no trails) 202

Figure 98. Experimental setup (1 cluster, N=4).. 203

Figure 99. Series of testing photographs... 204

Figure 100. Time evolution of target collection (1 cluster) .. 205

Figure 101. Collection time versus number of robots (1 cluster) 206

Figure 102. Collision frequency versus number of robots (1 cluster) 207

Figure 103. Experimental setup (2 clusters, N=5) .. 208

Figure 104. Collection time versus number of robots (2 clusters).................................. 209

Figure 105. Collision frequency versus number of robots (2 clusters)........................... 209

Figure 106. Time evolution of target collection from source B (2 clusters)................... 210

Figure 107. Time evolution of target collection (2 clusters, N=7) ... 210

Figure 108. Power law approximation of simulation results (rand. dist.)....................... 212

Figure 109. Power law approximation of simulation results (rand. dist.)....................... 212

Figure 110. Task efficiency versus number of ants (1 food source)............................... 216

Figure 111. Power law approximation to experimental data .. 219

Figure 112. Percentage of Time Avoiding Obstacles (1 cluster, with trails).................. 220

Figure 113. Task efficiency versus number of robots (1 cluster) 221

1

Chapter 1: Introduction

Children spend hours closely studying the wanderings of ants in their backyards.

How do the ants know how to follow the path to a source of food? How do they know

how to return to the nest? From inquisitive children to the researchers of academia,

insect swarms tend to generate a unique sense of wonder. There is a certain mysterious

synergism present in the swarms of ants, bees, and other social insects. An external

human observer, simultaneously viewing individual simplicity and group complexity,

fails to comprehend the nature of the cooperation. This is the essence and the appeal of

swarm intelligence. It is also the difficulty in studying such systems.

This research is motivated by the segment of swarm intelligence research that

joins two otherwise unrelated fields: entomology and robotics. Within the past fifteen

years, a movement has begun to move beyond the theoretical understanding of biological

swarms. Instead, engineering and artificial intelligence researchers are seeking to

replicate the efficacy of biological swarms to solve real-world problems. While the

applications of swarm intelligence have propagated beyond the fields of engineering and

computer science into business, telecommunications, finance, social psychology, etc.,

robotics-based applications are the focus of this research. A number of researchers have

undertaken the task of demonstrating complex, intelligent system behavior in groups of

cooperative, mobile robots. This has been accomplished with some success, albeit

limited to highly constrained experimental situations. The tendency of most researchers

is to discuss the potential benefits of swarm-based robotics without developing an

operational robotic swarm.

2

The primary goal of this thesis is to employ current theoretical knowledge to

achieve a physical swarm-intelligent system composed of real robots. Implicit in this

statement of purpose is the necessity of establishing metrics for swarm intelligence in a

multi-agent system. In order to do so, the benchmark example of foraging will be

examined in detail. The task of collective foraging is highly appropriate for such an

investigation, due to direct biological inspirations and generally accepted metrics for task

completion efficiency. In addition, since group foraging is often used to demonstrate

swarm intelligence in multi-robot systems, this task provides a basis for comparison to

past research efforts.

The primary goal of implementing a functional robotic swarm requires a detailed

working knowledge of swarm-intelligent systems. First of all, a theoretical

understanding of group foraging is required as a foundation of system design. Therefore,

mathematical models of foraging are reviewed and analyzed in order to thoroughly

understand foraging system dynamics. Computer simulations of swarms then function to

bridge the gap between theory and experimentation. The simulations foster deeper

understanding of system behavior dependence on several important variables. These

simulations are particularly valuable for investigating system behavior as a function of

swarm size.

Insights gained via theoretical modeling and computer simulations direct the

experimental design of a robotic swarm. In an idealized situation, the robotic system

should precisely duplicate the system behavior predicted theoretically. However, the

constraints and uncertainties of real-world implementation make such an expectation

3

unreasonable. Therefore, it is necessary to limit the scope of the experimental system and

focus on several key elements of foraging behavior. In this case, the experimental multi-

robot system was designed to demonstrate swarm-intelligent foraging behavior under

specific design constraints in order to investigate a limited subset of system

characteristics. The design constraints are as follows:

• no direct communication

• decentralized control

• behavior-based control

The key system attributes under investigation are the following:

• task efficiency

• system dynamics

• food source exploitation modes

These attributes depend on a number of system parameters; the following three are

investigated here:

o number of robots

o pheromone decay rate

o item distribution

Having provided the motivations and goals of the research, an overview is

presented to provide the reader with a broad perspective of each chapter in relation to the

complete work. In the following two chapters (2 and 3), the literature relevant to the field

of swarm intelligence is reviewed. Chapter 2 provides a thorough review of collective

robotics research, from the historical foundations of the field to the current state of the

art. Special attention is given to successful demonstrations of swarm intelligence through

4

physical robotic implementation. Chapter 3 covers, in a similar manner, the biological

inspirations of this research. The foraging behavior of insect societies is discussed. In

Chapter 4, mathematical models of foraging are reviewed and employed to predict and

explain specific characteristics of swarm-based systems. Computer simulations in

Chapter 5 demonstrate many of the theoretical propositions presented in Chapter 4. The

software simulations also allow for the study of large-scale swarms that involve as many

as 100 individual agents. The chief aims of this research are addressed in Chapters 6 and

7, which focus on foraging experiments with physical robotic agents and a synthesis of

the results from simulation and experimentation. In Chapter 6, the details of robot

design, experimental setup, and results are provided. In Chapter 7, the results of

simulations and experimentation are analyzed and the results from these two types of

investigation are compared and related to the predictions of theoretical models. Chapter

9 contains general conclusions, lessons, and directions for future research.

5

Chapter 2: Background – Swarm Robotics

Swarm intelligence claims historical underpinnings from both biology and

engineering. Reviewing the genesis and subsequent development of swarm intelligence

research therefore requires approaching the subject from both entomology and robotics.

First, the subject will be discussed from the perspective of historical robotics research.

Section 2.1: Cooperative Mobile Robotics

Swarm-based robotics falls within the broader classification of cooperative,

autonomous, mobile robotics. This popular area of robotics research focuses on the study

of multi-robot systems designed to cooperatively achieve a task. Multi-robot cooperation

has become increasingly important for a number of reasons. Among these are the

following [1]:

• Tasks are often inherently too complex for a single robot to accomplish.

• Several simple robots can be a cheaper and easier solution than one

powerful robot.

• Multi-robot systems are generally more flexible and fault-tolerant than

single robots acting alone.

The broad field of cooperative mobile robotics has flourished for decades, while swarm-

based robotic systems have emerged fairly recently. The historical origins of swarm

robotics are presented in the next section. The remainder of the chapter examines key

aspects of a swarm-based robotic system--control architecture, communication, physical

morphology—and concludes with an explanation of important robotic tasks related to

swarm intelligence.

6

Section 2.2: Origins of Swarm-Based Robotics

In order to fully trace the intellectual heritage of swarm-based robotics, one must

begin in the early 1970s. At that time, coordination and interaction of multiple agents

were being studied in the field of distributed artificial intelligence (DAI) [1], but

investigations were limited to problems involving software agents. This tendency

persisted until the late 1980s, when the robotics research community began to explore

cooperative robotic systems [2]. The earliest forays into cooperative robotics related to

cellular (or reconfigurable) robotic systems, cyclic swarms, multi-robot motion planning,

and primitive architectures for multi-robot cooperation. The first two of these topics

eventually merged into the current field of swarm intelligence. Cellular robotic systems,

such as CEBOT (CEllular roBOTs), were initially explored by Fukuda et al. [3]. CEBOT

drew direct inspiration from biological organisms to generate an architecture based on

decentralized hierarchies of robotic cells [1]. Gerardo Beni started working on the same

topic from a more theoretical perspective in 1988 [4]. Within a year, Beni had coined and

popularized the term “swarm intelligence” in relation to robotics [5]. He later identified a

vague definition of the term swarm intelligence: “a property of systems of non-intelligent

robots exhibiting collectively intelligent behavior” [6]. The most precise definition

provided by Beni was not a written verbal definition, but a mathematical construct is

presented graphically in Figure 1. Note that the generalized definition (on the right) is

less strict than the original, as it allows for systems to be termed swarm-intelligent by

completing effective work, W, more efficiently than a non-cooperative group. Beni’s

7

definition requires that the useful work in a given task can only be performed by N

interacting agents, and only for N greater than a critical number, Nc.

Figure 1. (a) Beni's definition of swarm intelligence (b) the generalized
definition. W(N) denotes the amount of work achieved by N
interacting agents, and W0(N) denotes the work achieved by N

independent agents (taken from [7], p. 344)

Deneubourg, Theraulaz, and Beckers, who study swarm intelligence from an ethological

perspective, define a swarm as “…a set of (mobile) agents which are liable to

communicate directly or indirectly (by acting on their local environment) with each other,

and which collectively carry out a distributed problem solving” [8], p. 123. These

definitions conveniently avoid the problem of defining intelligence, although Deneubourg

et al. imply that intelligence is somehow related to problem solving. The reader is

referred to [9] for a thorough discussion of robotic intelligence, the definition of which is

debated philosophically as much as technically.

Around the same time that cellular robotics research was taking shape, Rodney

Brooks, from MIT’s Artificial Intelligence Laboratory, published a groundbreaking paper

in the still undeveloped field of cooperative robotics [10]. In what has clearly become the

8

most widely cited source in the swarm intelligence community, Brooks outlines a “robust

layered control system for a mobile robot” known as subsumption architecture. Brooks’

paper initiated the rapid progression of the behavior-based control movement [11].

Combined with the inertia of cellular robotics and identified by Beni’s terminology,

swarm intelligence emerged in the early 1990s as a major component of mobile robotics

research. Brooks and Beni provided the impetus for the emergence and rapid expansion

of swarm intelligence as a research field. This is evidenced by the nearly omnipresent

references to behavior-based control in the robotics literature [11]. However, despite the

rapid advance of swarm intelligence, a number of robot control architectures were

developing simultaneously. These control strategies are described in the following

section.

Section 2.3: Swarm Control Architectures

Regardless of the intended application, each robot in a multi-robot system

requires some preprogrammed processes by which it can assimilate sensory input and

respond with appropriate actuation. A small group of popular design architectures have

emerged that control the “brains” of these robots. The techniques of each architecture are

applicable to a range of programming and hardware domains, but the central design

framework remains consistent. Currently, these architectures exist amidst the opposing

viewpoints of two philosophical approaches to robotic intelligence. The classical AI

approach, which dominated the mobile robotics community for years, gives rise to

architectures focusing on intensive central processing and high-level reasoning. On the

other hand, swarm intelligence adherents advocate a far simpler approach based on the

9

nature of interactions between individual robots. This behavior-based approach is

presented first, followed by an assortment of specific architectures spanning the spectrum

from classical AI to swarm intelligence.

Subsection 2.3.1: Behavior-based Control

As mentioned previously in Section 2.2, behavior-based approaches to controlling

agents in a multi-robot system have had a great impact on the course of cooperative

robotics. Many of the current leaders in robotic swarm intelligence research cite Brooks’

landmark subsumption architecture as an important influence (e.g., [1, 12-17]).

Brooks’ 1985 paper presented a novel control strategy that is both flexible and

robust. It differed fundamentally from any of the prevailing control schemes of the day

by decomposing the control system based on task achieving behavior. This stood in stark

contrast to the traditional functional decomposition of contemporary strategies. In

developing this new decomposition, Brooks considered certain requirements for

controlling intelligent autonomous mobile robots. He postulated that an effective control

system must meet four basic requirements:

1. Multiple Goals

2. Multiple Sensors

3. Robustness

4. Additivity

In addition to these four requirements, Brooks made certain largely philosophical

assumptions. Three of these assumptions have become central tenets in swarm-based

robotics, and are reproduced below (quoted from [10], pp. 3-4) :

10

� “Complex (and useful) behavior need not necessarily be a product of an

extremely complex control system. Rather, complex behavior may simply be

the reflection of a complex environment. It may be an observer who ascribes

complexity to an organism—not necessarily its designer.”

� “Things should be simple….When building a system of many parts one must

pay attention to the interfaces. If you notice that a particular interface is

starting to rival in complexity the components it connects, then either the

interface needs to be rethought or the decomposition of the system needs

redoing.”

� “The worlds where mobile robots will do useful work are not constructed of

exact simple polyhedra. While polyhedra may be useful models of a realistic

world, it is a mistake to build a special world such that the models can be

exact. For this reason we will build no artificial environment for our robot.”

Brooks proceeds from these points to explain a system of layered levels of

competence for a robot aiming to explore the MIT robotics laboratory. Each level above

the default is constructed in sequence to form a cascade of competence levels. Each

higher level subsumes, or includes, the roles of lower-level layers when they request

control of actuators. Conversely, the lower levels are in subsumption to the higher

behavioral levels; thus, this arrangement is termed subsumption architecture. Partitioning

at any level in the structure leaves behind a complete operational control system.

In order to implement such a control system, Brooks suggests that one should first

build and fully debug the simplest level of competence. When this is achieved, the next

layer is built on top of the “zeroth” layer, and the process is repeated (see Figure 2). The

11

method of architectural development has come be known as the “constructivist

approach,” which is an important accompaniment to behavior-based control. Higher

levels are permitted to sample the input of and suppress the output of lower levels.

Figure 2. Layered competence levels (taken from [10], p. 7)

In 1991, Brooks published two companion papers to further develop his novel

conception of artificial intelligence in distributed robotics. “Intelligence without

Representation” [18] and “Intelligence without Reason” [9] combine to argue a strong

case against traditional AI models. Brooks’ essential argument is that tradition artificial

intelligence has an unrealistic goal of replicating “human level intelligence in a machine”

[9], p. 5. The complexity of such an undertaking, he posits, is beyond the grasp of

research efforts in the foreseeable future. Rather than focusing on a fantastic and distant

dream of Turing equivalence, Brooks proposes that researchers first focus on highly

simplified intelligent systems. Once simple and complete intelligent systems are created,

incremental improvements automatically ensure the validity of subsystems and interfaces.

Traditional AI robots generate abstract representations of the world around them in order

to plan future actions. In the opinion of Brooks and other advocates of behavior-based

12

robotics, representations of the world are an unnecessary abstraction in many cases.

Rather, they contend that it is better to “use the world as its own model.”

Finally, in [9], Brooks cements his case with an extremely thorough defense of

behavior-based robotic control. He argues quite convincingly that traditional AI ignores

the intelligence evident in the natural world, while behavior-based approaches more

closely resemble efficient biological systems. Four canonical statements of behavior-

based control are provided from [9] to conclude and summarize his important work:

1. The world is its own best model.

2. The world grounds regress.

3. Intelligence is determined by the dynamics of interaction with the world.

4. Intelligence is in the eye of the observer.

Subsection 2.3.2: Other Control Architectures

The behavior-based, or subsumption, architecture described above is more general

than some of the well-defined architectures employed in multi-robot systems. The work

of Brooks and Mataric has developed into an overriding control philosophy more than a

specific architecture. Many of these other architectures were influenced by both

traditional AI and behavior-based approaches to robotic problem solving. As a rule, the

following architectures are quite explicit and precise, making them less important in the

overarching philosophical control debate. More than anything, the following

architectures are reflections of broader philosophical approaches to multi-robot systems

research.

13

• CEBOT (Cellular Robotics System) is a decentralized, hierarchical control

system inspired by cellular organization in biology. A dynamically

configurable system is created using autonomous “cells” that are capable of

reconfiguration in response to changing environments [2].

• SWARM, as the name suggests, is the closest architecture to a strictly

behavior-based approach. It is a distributed system of many (usually)

homogeneous robots (refer to [1] for a more detailed description).

• ALLIANCE/L-ALLIANCE were developed to study cooperation in a

heterogeneous, small group of loosely coupled robots [1]. Each robot senses

the effects of their own actions and those of other agents through perception

and explicit communication. L-ALLIANCE incorporates reinforcement-

learning into the architecture.

• ACTRESS consists of a group of “robotors,” including 3 robots and 3

workstations working together to perform specified tasks [2]. Issues such as

communication efficiency between robots and environment managers are

studied.

• GOFER has been used to study distributed problem solving by a group of

mobile robots using traditional AI techniques. A central task planning and

scheduling system communicates with all robots based on a global view of the

environment [1].

• Neural networks are similar to behavior-based architectures, with some

important distinctions. Both strategies employ mainly reactive control

schemes, but in neural networks the response is based on a weighted

14

combination of all input signals [19]. Neural networks are also always state-

free.

Section 2.4: Communication

Cao, Fukunaga, and Kahng [1], Arai, Pagello, and Parker et al [20], and Dudek et

al [21], in their seminal reviews of advances in cooperative mobile robotics, all focus on

the importance of communication in swarm-based robotic systems. The very essence of

cooperative robotics requires some type of communication, however indirect, in order to

produce meaningful, beneficial interactions. Of the five taxonomic axes for swarm

robots proposed in [21], three are based on inter-robot communication: communication

range, topology, and bandwidth. Clearly, the nature and extent of communication within

a robotic swarm is vital to successful demonstrations of swarm intelligence. Arai,

Pagello, and Parker identify the important distinction between implicit and explicit

communication, stating that “implicit communication occurs as a side effect of other

actions, or ‘through the world’, whereas explicit communication is a specific act designed

solely to convey information to other robots on the team” [2], p. 656. Further discussion

of communication divides the continuum into these same two halves: explicit and implicit

communication.

Subsection 2.4.1: Explicit Communication

Cao, Fukunaga, and Kahng provide a through review of explicit communication

techniques used in cooperative robotics [1]. Explicit communication consists of sending

and receiving of messages that are intended to convey information. In some cases, each

15

message is intended for an individual robot. Each robot may have some kind of

identification signal, for example, allowing other robots to receive its position, heading,

velocity, etc. Messages can be sent from one individual to many recipients, as in “sign-

board” type communication. In [22], explicit communication takes the form of a “hello-

call” protocol. This signaling protocol allows the robots to form communication chains,

effectively extending the communication range of a single robot. Explicit

communications become increasingly complex as the number of robots increases. For

very large groups of robots, these schemes may become impractical.

Subsection 2.4.2: Implicit Communication

Implicit communication, also known as stigmergy, occurs through the

environment. This type of communication scales well for potential future applications

requiring hundreds or thousands of robots [23]. It is most often implemented in

cooperative foraging, clustering, or sorting tasks [12, 16]. Messages are “sent” only by

altering some aspect of the environment which is then sensed by another individual robot.

The environmental alteration can be intentional, as in the case of trail-laying [24], or

unintentional, as in clustering or sorting tasks [25, 26]. Information gained through

implicit communication tends to be extremely limited. Messages cannot be designated

for particular individuals, as the environment is available to all agents. Information

acquisition and processing is often much faster than the case of explicit communication.

16

Section 2.5: Learning

Learning tends to be much more difficult to implement in cooperative mobile

robotics as compared to traditional robots acting alone. Cooperative tasks, due to the

nonlinear interaction between individuals, make it necessary to use specialized learning

algorithms. Despite the complexity of such algorithms, it is highly desirable to develop

multi-robot systems capable of learning to cooperate. This could augment or replace the

difficult task of “finding the correct values for control parameters that lead to a desired

cooperative behavior” [1], p.10. Current efforts to develop learning in multi-robot

systems are motivated by this reasoning.

Most of the learning algorithms used in cooperative robotics are based on

reinforcement [1, 27]. This traditional formulation is posed in terms of states and actions.

The robot executes an action from within a particular state, at which time it may change

states. The action may or may not be reinforced, depending on the desired behavior. In

time, the robot learns to correlate states and actions to produce meaningful behavior.

This type of paradigm is used in the L-ALLIANCE control architecture to help robots

learn to estimate the performance of neighboring robots. It has also been used to teach a

group of robots a simple, artificial robot language [1]. Some researchers have even

designed tasks with the sole purpose of “teaching” a group of robots how to cooperatively

perform a separate task [28]. One example of this is the work of Gaussier and Zrehen,

who employ a neural network technique designed to allow each individual in a group of

Khepera robots to learn its body geometry through repetitive obstacle avoidance [14].

Mataric proposes a reformulation of the reinforcement paradigm that uses basis

behaviors, rather than actions, as the focus of reinforcement [27]. In this manner, the

17

learning search space is reduced considerably. A space of a few basis behaviors replaces

more common spaces involving dozens of actions. The result is a more rapid learning

process. While work continues in the area of learning, it remains one of the least

developed aspects of cooperative robotics research.

Section 2.6: Morphologies

The physical morphology of each individual in a swarm-based robotic system is

an important consideration in any swarm design. Mechanical design is also highly

interdependent with the control architecture, making it a critical element of robotic

design. In most cases of swarm intelligence demonstrations with real robots, the swarm

is at least physically homogeneous (if not behaviorally as well). There are rare cases

where this is not the case, but this discussion focuses on morphologies common for

individuals within a homogeneous swarm. Methods of locomotion and environmental

manipulation will be discussed, followed by a review of commonly used commercial

platforms of autonomous mobile robots.

Subsection 2.6.1: Locomotion

Two main classes of locomotion are present for autonomous mobile robots:

wheeled or legged. While both approaches are valuable for specific purposes, swarm-

based systems nearly always employ wheeled locomotion. Walking, legged robots

involve a higher degree of mechanical complexity [19], especially in loosely constrained

or dynamic environments common to swarm applications. Legged robots also tend to be

more expensive and incapable of high maneuverability or rapid movement. For these

18

reasons, legged robots are generally unsuitable for swarm investigations and will not be

discussed further. Rather, the discussion will focus on the broad class of wheeled

locomotion.

[29],[30], and [31] provide excellent summaries of the most common types of

wheeled locomotion in autonomous robots, which are described briefly below:

1. Differential Drive – Composed of two parallel, independently-powered drive

wheels on opposite sides of the robot and one or more casters for stability, this

drive is very simple and quite common. Note that differential refers to the

fact that the velocity vector of the center of mass is the resultant of two

independent components. A differential gear system is not involved.

2. Dual Differential Drive – Designed to mechanically solve the problem of

following a straight path, this drive includes two differentials in a more

complex gear system than the simple differential drive. Two motors are used:

one for driving both wheels the same direction to go straight, and one to turn

by driving them in opposite directions. This drive configuration is simple

enough to be built easily with LEGO components (see Figure 3).

19

Figure 3. LEGO Dual Differential Drive [30]

3. Skid-Steer Drive – This variation of the differential drive is often used with

tracked vehicles, but sometimes with four or six wheel platforms as well. As

the name implies, this configuration relies on tire or track skidding in order to

turn.

4. Steering Drive – This is the standard locomotion setup in modern cars and

most other vehicles, but is somewhat rare in the robotics community. It

features one or two front steering wheels and two fixed rear wheels. As in

cars, the front, rear, or all four wheels can be powered. Steering drives suffer

from large turning radii and the inability to rotate without translation.

5. Tricycle Drive – In what is actually a subset of the steering drives, the tricycle

drive uses a single, powered front wheel and two passive rear wheels to

achieve certain mobility advantages. The powered front wheel maintains

driving force at any turning angle.

6. Synchro Drive – The synchro drive uses three or more wheels, all of which

are driven and steered. All of the wheels turn and rotate in sync, remaining

20

parallel at all times. Through complex gearing, a synchro drive employs only

two motors to produce changes in direction without altering robot orientation.

7. Articulated Drive – Commonly seen in wheeled excavators, articulated drives

consist of front and rear chasses joined at a central pivot point. Steering is

accomplished by rotating the front chassis with respect to the rear chassis

about the pivot point. This is essentially a variation of the steering drive.

8. Pivot Drive – This drive system is composed of a four-wheeled chassis with

non-pivoting wheels and a central rotating platform capable of vertical

motion. While in motion, the pivot drive travels in a straight line. To turn,

the robot stops, lowers the pivot platform until the wheels are suspended,

rotates through the desired angle, and finally raises the platform.

These are the most fundamental types of wheeled locomotion for autonomous robots.

The advantages and disadvantages of each are summarized below in Table 1.

Table 1. Robotic Locomotion Configurations

Drive Configuration Advantage(s) Disadvantage(s) Example(s)

Differential simplicity control (straight line) Pioneer3 [32]

Dual Differential control (straight line)
efficiency

(frictional losses)
LEGO robots [29]

Skid-Steer simplicity
control

odometry (skidding)
Pioneer3-AT [33]

Steering simplicity path planning various, see [34]

Tricycle
maneuverability

(compared to regular
steering drive)

handling uneven
terrain

Fiat [35]

Synchro control complexity B21r [36]

Articulated simplicity path planning M96 Rover [37]

21

Pivot control complexity Ritorno [29]

A few other highly specialized types exist, including the “Killough Drive” or

Omnidirectional Holonomic Platform (OHP) developed by Pin and Killough. This

special case introduces the issue of holonomy. A non-mathematical definition of

holonomy is given by Ferrari, Ferrari, and Hempel [29]: “the capability of a system to

move toward any given direction while simultaneously rotating” p. 151. In practice,

holonomic systems are more difficult to design in terms of mechanical complexity.

However, they are desirable due to increased maneuverability [29] and simplified control

theory. Yamaguchi, [38], discusses some of the theoretical difficulties in developing a

distributed control law for multiple nonholonomic robots. In particular, he cites the lack

of established methodologies for asymptotically/exponentially stabilizing nonholonomic

systems. Despite the increased complexity in control theory, most researchers employ

nonholonomic locomotion schemes (e.g., [23, 24, 26, 38-43]).

Subsection 2.6.2: Manipulation of the Environment

The requirements for environmental manipulation vary greatly between swarm-

based applications. In some instances, the group of multiple robots has no need to alter

the environment in any manner. However, in tasks such as cooperative foraging or

sorting, it is of course necessary to manipulate objects in the environment. Indirect

communication also takes place via changes to the environment, some of which are

intentional communication markers. In most cases, physical manipulation of the

environment is limited to simple end effectors such as grippers. These types of tools are

22

easily augmented to a preexisting robot, which explains the popularity of building upon

one of the available commercial platforms.

Subsection 2.6.3: Commercial Platforms for Multi-Robot Systems

One of advantages to behavior-based multi-robot systems is the inherent

simplicity in individual behavior. In terms of sensing, processing, and manipulation

abilities, individual robots can be extremely simple. As a result, the majority of swarm-

based robotics experiments take place with “off-the-shelf” commercial robots. In many

cases, very minor (if any) modifications are required before the robot(s) are properly

equipped for swarm-compatible tasks. Communication protocols are sometimes added or

modified, along with the addition of actuators for specific environmental manipulation.

The onboard processing unit and locomotion design rarely require modification, except in

highly unusual applications. A summary of the most widely-used commercially available

robotics platforms is provided below in Table 2.

Table 2. Commercial Robot Platforms

Processor RAM
(K)

ROM
(K)

Cost Size

Khepera II [35] Motorola 6833 512 Kb 512 Kb $2,300 70 mm D X 30 mm H

Moorebot [36] Intel 386SX 4 Mb 80 Mb ? 25 cm D X 28 cm H

Pioneer3 Hitachi H8S 32 Kb 1 Mb ? 44 cm X 38 cm X 22 cm H

Handy Board

(processor only)
Motorola 6811 32 Kb NA $300 varies

LEGO
Mindstorms

Hitachi H8 32 Kb 16 Kb $200 varies

23

Section 2.7: Cooperative Tasks in Mobile Robotics

Cooperative systems of autonomous, mobile robots exhibit an array of control

schemes, communication modes, and physical morphologies. The choice of each of these

elements is generally dictated by the desired task. Most multi-robot systems are designed

with a global task or goal. Cooperating to achieve this goal is what drives the system

architecture, morphology, etc. While a great many tasks have been proposed and studied,

swarm-based multi-robot systems generally focus on a handful of major task

classifications. These task categories are presented below.

Subsection 2.7.1: Formation Control

As is the case for each of the major tasks in swarm-based robotics, dynamic

formation control relates closely to a biological parallel. Formation control, however,

relates on the broadest scale to the natural realm. Many of the behaviors used to model

cooperative robotic formations arise from social insects such as bees, ants, wasps, and

termites. However, flocks of birds, schools of fish, and herds of land animals also exhibit

elements of swarm intelligence as they establish and maintain complex formations while

moving as a social unit. Such a richness of inspiration from ethology has resulted in

formation generation and control being one of the earliest and most rapidly developed

areas of swarm-based robotics research [2, 20]. While the early efforts at formation

generation and maintenance focused on very simple behaviors, recent work has moved

into the realm of sophisticated self-organized flocking [44], pursuit problems [38, 40] ,

dynamic formation shifting [45], etc. Hayes and Dormiani-Tabatabaei define flocking as

“the formation and maintenance of coherent group movement” [44], p. 3900. From the

24

perspective of swarm-based robotics, flocking tasks are accomplished using only local

sensing. Individual agents rely on information such as the position and velocity of their

nearest neighbors in order to plan movement [46]. Hayes developed robust flocking

algorithms resistant to agent failure. These algorithms were then demonstrated

successfully in simulation and with real robots. Their flocking experiments with real

robots feature Moorebots, one of the popular choices for swarm-based robotics. A

detailed description of Moorebots, which were developed and utilized extensively at

CalTech, is found in [47]. Fredslund and Mataric [45] use the Pioneer2 DX from

ActivMedia, Inc. as a robot platform to validate their simulation results predicting the

ability of a robotic swarm to shift formations dynamically. Their physical experiments

also highlight obstacle avoidance within the framework of a formation.

The above examples of flocking and formation control were developed

independent of a specific application. However, much of the work done in robotic

flocking relates to military applications [38, 40, 46]. Cooperative hunting has become of

great importance to the military, due to a number of factors presented in [48]:

• Physical

o Robots can access and maneuver in space too small for humans.

o Robots survive in contaminated environments.

o Robots can remain motionless indefinitely.

• Psychological

o Robots are not influenced by fear in carrying out military

operations.

o Robots complete tedious tasks without suffering mental fatigue.

25

• Risk

o Robots can perform kamikaze missions.

o Inexpensive robots can be chosen for high-payoff/high-risk

situations.

Balch and Arkin, [46], employ strictly behavior-based control to simulate

complex formation control in a group of five virtual robots. Simple behavioral rules were

used to generate formations such as line, column, diamond, and wedge. Formation

location and centering was accomplished using one of three referencing methods: (1)

unit-center-referencing, (2) leader-referencing, and (3) neighbor-referencing. Developed

for the United States Army, this system could soon be found in real-world combat

situations. Perhaps the most important researcher in the field of cooperative formation

control for military use is Yamaguchi, from the University of Tokyo. Yamaguchi has

studied combat-related behaviors such as surrounding a target [38, 40] and invasion

prevention [49]. Target location and enclosure is one of the most impressive

demonstrations to date of practical formation control in a group of mobile robots.

Yamaguchi recently developed the control algorithms for implementing this behavior in a

group of Hilare-type nonholonomic mobile robots [38], but experimental results with real

robots have yet to appear. The near future promises to provide realistic physical

demonstrations of flocking and cooperative hunting in the same vein as current

simulation results.

26

Subsection 2.7.2: Object Manipulation

The second major class of tasks within swarm-based cooperative mobile robotics

is object manipulation. This is a generic term that encompasses an array of subtasks.

The subtasks can be organized into two main classes: payload transportation and

strategic, competitive manipulation in a dynamic environment.

Payload transportation describes a subset of object manipulation tasks often used

to demonstrate multi-robot cooperation. Cooperative transport by a group of robotic

agents is often based on the behavior of ants and termites. Sudd’s studies of cooperative

transport in ants revealed that a group of ants will resort to cooperative lifting or dragging

in the event that an item of food or prey is too heavy to be moved by an individual [50].

In physical robotics experiments, the problem is often formulated as box-pushing or

cooperative lifting. Kube and Zhang [51] developed control algorithms for cooperative

lifting, with special attention to stagnation recovery. They also simulated a group of

robots in cooperative lifting situations. Bay, from Virginia Polytechnic Institute,

describes the development of “Army-Ant” cooperative lifting robots for implementation

as a flexible material handling system [52]. A slight variation from Bay’s homogeneous

group of robots is the leader/follow strategy employed in [53]. Both control schemes

accomplish the basic task of cooperatively lifting a box and transporting the item to a

specific location.

Competitive, strategic object manipulation within a dynamic environment is one

of the most complex tasks in cooperative robotics. A wide variety of approaches exist for

this class of tasks, ranging from artificial intelligence (AI) to swarm intelligence. AI

approaches depend largely on high-level processing and reasoning abilities of each

27

individual robot [11], while swarm intelligence techniques adhere to the tenets of Brooks’

reactive, behavior-based control. The exemplification of this set of tasks is RoboCup, an

international and educational research initiative in the form of an annual robotic soccer

competition [54]. Each participant designs a group of mobile robots with the task of

scoring as many goals as possible against a team of robot opponents. As in human

soccer, a goal is scored by cooperatively manipulating a ball through a field and into a

designated goal region. Papers abound describing various design and control schemes

used in RoboCup competitions (e.g., [11, 39, 54-57]. Two examples of behavior-based

approaches are found in [11] and [57]. In [11], Werger makes a convincing argument for

the superior performance of behavior-based approaches to this task as compared to the

classical AI methodology.

Subsection 2.7.3: Foraging

Cooperative foraging is one of the most important tasks in the study of multi-

robot cooperation. Of the three major areas of application (formation control, object

manipulation, and foraging), the latter has the closest ties to biological swarms.

Therefore, foraging is also the obvious task undertaken to demonstrate swarm

intelligence in a simulated or physical robotic system. Drogoul and Ferber [58] note that

foraging is “widely accepted as the best illustration of ‘swarm intelligence’…” (p. 1) and

Cao, Fukunaga, and Kahng, [1] describe foraging as “one of the canonical testbeds for

cooperative robotics” (pp. 3-4). As will be discussed in the following chapter, biological

swarms are highly efficient examples of swarm intelligence. Foraging in ants and bees

provides some of the clearest examples of swarm intelligence in nature. Further, these

28

examples from nature often motivate the models upon which foraging robot systems are

designed. This tight correlation between robotic and natural foraging provides the

impetus for a multitude of efforts to demonstrate swarm-like robotic cooperation in

foraging.

The fundamental definition of foraging is the location and collection of objects (or

targets) [58]. In biological systems, the targets are generally considered to be food or

prey. For robotic implementation, the objects to be collected are application dependent.

In the research and development of foraging swarms, the objects often chosen are small

“pucks” or discs capable of being grasped and released by a robotic end effector. Note

that the generalized definition of foraging makes no constraint on the location of object

aggregation. However, the most common type of foraging is central-place foraging. In

fact, the terms have become synonymous in the swarm intelligence literature. Central-

place foraging describes a system in which objects are returned to a “home,” which is

usually located at or near the center of the foraging environment [59]. The spatial and

temporal distribution of objects within the foraging environment is unspecified by this

definition. Researchers have studied a wide range of distribution schemes, including

uniform, random, and clustered spatial distributions, as well as the introduction of objects

at varied intervals in time. Object distribution and the number of foragers tend to be the

most important parameters studied with respect to system behavior.

Before discussing the historical and recent attempts to demonstrate cooperative

foraging, it is instructive to consider the methods of foraging used by traditional robotics.

These methods are generally employed in the case of a single robot, but are also used in

29

non-cooperative multi-robot systems. Werger and Mataric [41] identify the following

single-agent foraging methods:

• The Omniscient Planner: The use of a planner that is aware of the entire

foraging environment, including the position of the forager.

• Position/Orientation Sensing: The use of absolute global position

information, including GPS, compass, radio-sonar positioning, and/or

dead reckoning systems.

• Taxis: Following some sort of beacon.

• Unique Location Recognition: The use of local environmental features to

identify landmarks to which the agent orients itself.

While some of these methods are also useful in cooperative multi-robot foraging systems,

they tend to be utilized less than methods unique to swarm-based robotics.

The first main approach used in swarm-based foraging is an exception to the

above generalization: beacons. Beacon-following methodology characterized the earliest

efforts at cooperative robotic foraging (e.g., [16, 41, 60]), and persists in more recent

research efforts [7, 43]. Beacon and beacon chains emerged as an initial solution method

in the early 1990s. Goss and Deneubourg, [16], pioneered the field of cooperative

foraging, or “harvesting,” in 1992 with one of the first discussions of this topic. Drawing

upon their experience in social insect behavior, Goss and Deneubourg simulated a group

of mobile robots that form dynamic chains of beacons within the foraging field. Their

simulation results predicted that future attempts at physical implementation would

succeed in efficient cooperative foraging. The more common beacon-based approach is

for each forager to broadcast a signal upon location of a group of targets. Other robotic

30

agents are able to recognize the signal and engage in homing behavior to locate the

“food” source. Altenburg [60], one of the earliest researchers to conduct foraging

experiments with real robots, designed a group of robots utilizing beacons and homing to

achieve central-place foraging. Sugawara, Sano, and Watanabe [7, 43] have conducted

similar experiments with real robots to demonstrate swarm intelligence via successful

foraging. Beacon signals range from visible light [7, 43] to modulated infra-red (IR) [60]

to auditory communication [61]. Werger and Mataric [41] present a novel extension of

beacon-based foraging by eliminating the need for a traditional signal. Their approach

consists of constructing physical chains of robots to guide foragers to targets. Arranged

and maintained only through touch sensing, the robotic chain functions as a hybrid of a

beacon and a trail. This hybrid technique of creating chains of foragers, studied

theoretically in [58], represents a conceptual segue to trail-based approaches.

The fundamental problem in cooperative foraging is defining the nature of the

inter-robot cooperation. In general, some form of direct or indirect communication is

employed to produce cooperation and improved task performance. The method of trail-

based foraging moves further along the spectrum from direct to indirect communication.

Scientists have long understood the effectiveness of trail laying and following in the

foraging strategies of social insects, such as ants [62]. These biological swarms provide

inspiration for recent work in robotic foraging. Despite the large amount of theoretical

simulation of trail-based foraging in robotics (e.g., [39, 40, 43, 58, 63]), which is

discussed in more detail in Chapter 4, physical experimentation is much less developed.

In fact, robotics researchers have yet to successfully demonstrate trail-based foraging in a

physical system of robots. One of the early attempts to perform robotic trail-laying and

31

following actually used toilet paper as the trail [64]. The greatest progress toward trail-

based foraging comes from the work of Russell et al., from Monash University in

Australia, who studies trails with the general aim of improved mobile robot navigation.

In a series of papers [24, 65, 66], Russell presents successful development of robots

capable of laying and following two types of trails. In both cases, the trails are designed

for use as short-lived navigational markers in a variety of applications. Russell, [24],

describes the design and testing of robots capable of laying and following a heat trail.

The heat trail is generated by an on-board quartz-halogen lamp directed toward the floor

by a parabolic reflector. This trail is detected by a pyroelectric sensor sensitive to infra-

red energy emitted by the heat trail. These robots were demonstrated to successfully

follow the heat trail up to 10 minutes after application. Russell notes in conclusion that,

despite a successful demonstration, the halogen heat source “is a considerable power

drain for a mobile robot” [24], p. 431. Deveze et al., [65], and Russell, [66], suggest the

use of chemical markers as “virtual umbilical trails indicating the route back to their

starting position” [66], p. 5. The chemical marker or odorant, camphor, is chosen for

non-toxicity, invisibility, safe use on floor materials, and slow sublimation rate. Each

robot was also equipped with a piezoelectric quartz crystal gravimetric sensor, allowing

the robot to track the odor trail with considerable accuracy. The main drawback of this

approach, as acknowledged by the author(s), is the slow response time of the chemical

sensor (several seconds). While neither of these demonstrations attempted to display

group foraging using trail-laying and following, they represent the most advanced

examples of robotic trail-based navigation.

32

Along the continuum from direct to indirect communication, the far extreme of

indirect communication is represent by “stigmergy.” Stigmergy refers to indirect

communication through the environment, which is also termed “implicit communication"

[57] . A more precise definition, given in [12], identifies stigmergy as “the production of

a certain behaviour in agents as a consequence of the effects produced in the local

environment by previous behaviour” (p. 181). This term has been adopted from the

biological swarm intelligence community, where the term originated in 1959. A French

biologist, Grasse, gave this name to the emergent cooperation observed in nest building

of termites [67]. The most conservative view does not consider trail laying and following

as an example of stigmergy, due to the fact that the trails are deposited with the purpose

of communication. However, the concept has developed in time to include trail-based

foraging as well as traditional insect corpse-gathering and some forms of nest

construction. Pure stigmergy--interaction through the environment without the intent of

communication--is the inspiration for the third major method of swarm-based robotic

foraging. This method of foraging is actually adopted from observations of corpse-

gathering, not foraging, in insects. Beckers, Holland, and Deneubourg [12] designed a

robotic foraging system using pure stigmergy. In order to collect a random distribution

of pucks in an experimental foraging environment, the robots pick up or release each

puck based solely on the local puck density. In areas of low puck density, the robot has a

high probability of collecting one or more pucks. Where puck density is high, the robot

tends to release all of its pucks. In this manner, the pucks are eventually arranged in a

single cluster. Technically, this example does not fall under the heading of central-place

foraging, due to the fact that the pucks are not clustered in a predetermined location.

33

Despite this caveat, the multi-robot system forages successfully and achieves cooperative

behavior with completely indirect communication.

Subsection 2.7.4: Clustering and Sorting

The task of cooperative sorting in swarm-based robotics is closely related to

foraging. In fact, many sorting experiments emerge from robotic demonstrations of

foraging [12], or vice versa. Both tasks take direct inspiration from the behavior of social

insects. While foraging corresponds directly to biological food searching, sorting reflects

a variety of clustering behaviors. For example, the brood sorting or corpse gathering

behaviors of ants and termites are well-documented [8, 62, 68-72]. This body of

literature observes the efficiency of sorting with only stigmergic cooperation.

Deneubourg et al. [25] laid the theoretical groundwork for a swarm-based robotic sorting

system. Basing their analysis on biological data, these authors developed a simple

probabilistic model of collective sorting and generated simulations of robotic swarms

performing similar tasks. More recently, two groups of researchers have sought to

implement sorting with real robots [26, 73]. Martinoli, Ijspeert, and Mondada [73] use

the popular Khepera mobile robots to achieve cooperative sorting under the influence of

probabilistic behavioral control. The sorting takes place according to a probabilistic

model very similar to that of [25] and [12]. Clusters of items are incremented or

decremented on the basis of local item density and cluster geometry. These simple rules

are sufficient in [73] to generate a single cluster of 20 objects in approximately 3 hours

using 10 Khepera robots. The work of Melhuish, et el., [26] represents the first

successful demonstration to date of robotic sorting of two dissimilar types of targets.

34

Using red and yellow plastic discs as targets, Melhuish’s group of robots achieved

segregated clustering in the span of several hours. While the task efficiency (as measured

by completion time) is fairly low in this experiment, it is an important first step toward

more efficient swarm-based sorting. Cooperative sorting of dissimilar targets promises to

soon be an area of greater research focus. In fact, Bonabeau, [68], issues challenges to

the swarm intelligence community for future robotics research on the topic of swarm-

based sorting.

Subsection 2.7.5: Miscellaneous Applications

Although the majority of swarm-based robotic tasks lie within the bounds of one

of the above categories, a number of isolated special cases exist in the literature. These

outliers compose a group of other miscellaneous tasks related to swarm intelligence.

Some of the interesting tasks being studied are:

• Self-replication (started by [3]; see Ch. 6 of [68] and references therein)

• Reconfigurable robots ([74, 75])

• Odor localization ([76, 77])

• Geographical exploration and map-making ([1, 22])

• Military reconnaissance and surveillance ([48, 78])

Section 2.8: Conclusion

The conceptual and historical roots of swarm intelligence have been presented

from the perspective of cooperative mobile robotics. A number of popular control

architectures were described; the most significant of these is Brooks’ behavior-based,

35

subsumption, approach. Physical morphologies were described and compared, as well as

a brief discussion of learning in multi-robot systems. Finally, the canonical tasks for

robotic swarms were discussed, with particular focus on foraging.

36

Chapter 3: Biological Inspirations

At this point, the reader is reminded that two complementary disciplines converge

at the point of swarm intelligence. The engineering background of the field has been

discussed, leaving the important biological inspirations for swarm-based systems. The

term swarm naturally evokes thoughts of living systems such an angry beehive. This

biological association makes perfect sense when one remembers the influence of natural

systems on pioneering robotics researchers such as Beni [5], Brooks [10], et al. Within

the ethology community, swarm intelligence is part of a broader class of phenomena

know as self-organization (SO). Self-organization and swarm intelligence are sometimes

used synonymously, but the former term is less common outside of the biological

community. Swarm intelligence can be considered to be the application or engineering

branch of self-organization research. Due to the predominant usage of the term self-

organization in the ethology literature, this term will be preferred in the remainder of this

chapter.

Section 3.1: Self-Organization in Biological Systems

Subsection 3.1.1: What is Self-Organization?

In their authoritative book on self-organization, Camazine et al. present the

following definition of SO:

Self-organization is a process in which patterns at the global level of a system

emerge solely from numerous interactions among the lower-level components of

the system. Moreover, the rules specifying interactions among the system’s

37

components are executed using only local information, without reference to the

global pattern. [70], p. 8

This definition attempts to be as precise as possible while maintaining generality to

include the wide array of manifestations of self-organization. The multitude of examples

of SO is attested to by the origins of the term itself. A few examples are sand grains

forming rippled dunes, swirling spirals emerging from chemical reactants, cells

generating highly structured tissues, geese flying in a V-shaped formation, fish traveling

in schools, and, of course, a host of examples from bees, wasps, ants, and termites.

Biological scientists actually adopted the term after its introduction in the context of

physics and chemistry. It was introduced to describe the emergence of macroscopic

patterns and structures out of processes and interactions defined at the microscopic level

[68]. Ethologists later extended the term to apply to a wide range of collective

phenomena in animals, especially social insects [69]. Yet another definition from

Bonabeau and the Brussels group (Theraulaz, Deneubourg, and Camazine) focuses more

directly on ethological SO:

[SO] does not rely on individual complexity to account for complex

spatiotemporal features that emerge at the colony level, but rather assumes that

interactions among simple individuals can produce highly structured collective

behaviours. [69], p. 188

 Before moving on to discuss how self-organizations works, it is important to clarify the

definitions provided for SO. The terms “complexity” and “patterns” have been supplied

as descriptors of global system characteristics in a self-organized system. These terms

can be rather nebulous, requiring further elaboration and specification. First of all,

38

complexity is a relative term in these definitions [70]. Self-organization produces

complex behavior or complex patterns compared to the complexity of the individual

agents producing the global organization. In social insects, the complexity of an

individual is simply insufficient to explain the organization, flexibility, and robustness

exhibited in an insect colony. The concept of a pattern is another potentially ambiguous

term found in definitions of SO. Whether a pattern is composed of living units or

inanimate objects from the environment, it is always an organized arrangement of objects

in space or time. In SO, these patterns emerge without any direction or orchestration

from external influences. Examples of biological patterns include raiding columns of

army ants, synchronous flashing of fireflies, termite mounds, pigmentation patterns on

shells, etc. [70]. The next subsection moves from defining self-organization to

understanding the mechanisms that produce system complexity from local simplicity.

Subsection 3.1.2: Mechanisms of Self-Organization

It has been established while defining self-organization that system complexity is

produced through many interactions between individuals. Therefore, the first and most

important mechanism of SO is interactions. The nature of these interactions is the key to

investigating any self-organized system. Two general forces influence the frequency of

these interactions: positive and negative feedback. Finally, self-organized systems often

rely on the potential benefits of random fluctuations. Together, the following four

elements are the major mechanisms of SO:

1. Interactions

2. Positive Feedback

39

3. Negative Feedback

4. Random Fluctuations

These four mechanisms are discussed below in further detail.

Interaction is the only essential mechanism required for self-organization or

swarm intelligence. The nature and extent of interactions between individuals varies, but

their existence is a clear prerequisite for the complex system behavior evident in self-

organized systems. In biological systems, these interactions often allow an individual to

obtain the information used to determine a response. Gathering information from an

interaction is generally a result of some type of communication with nearest neighbors.

In the case of flocking (and many other examples), however, the local information

obtained in each interaction is simply the position (and possibly velocity) of a handful of

nearest neighbors. This information is sensed directly; there is no need for each neighbor

to communicate directly or indirectly. It is also unnecessary to leave some sort of

environmental marker to communicate via the environment. In cases such as these,

sensing information during an interaction is sufficient to produce complex system

behavior. In most other cases, the information is gained through communication intended

to convey information, or direct communication. A clear example of this type of

interaction is the well-known dancing performed by some species of bees. When a

foraging individual returns to the hive laden with nectar, it performs a “dance” that

conveys the approximate location of the food source [69, 70, 79, 80] Often, however, the

interaction and communication take place indirectly. This is the case in the trail-laying

and following behavior of many species of ants [62]. Trails are laid with the intention of

conveying directional information to other ants, but the communication is indirect in the

40

sense that a trail is neither individual-specific nor time-specific. It can be followed at any

time (until it evaporates) and by any individual forager. Another type of interaction

produces information transfer through the environment. This has also been referred to as

implicit communication, or, more commonly, stigmergy. Derived from the Greek stigma

(sting) and ergon (work), Grasse introduced the term in his studies of task coordination

and nest reconstruction of termites [67-69]. In termite-mound building, an individual

termite is more likely to release a grain of building material on a preexisting mound.

Each builder is also more likely to pick up a grain of dirt or sand in a flat area. In this

way, each termite responds to the actions of other termites through the environment, and

complex nest structures result [68].

Positive feedback, or amplification, is a common mechanism in self-organized

systems. Positive feedback promotes radical changes in the system by taking an initial

change and reinforcing it in the same direction. An important example of positive

feedback, or autocatalysis, is found in the trail-based foraging of ants [62, 70, 81]. When

a single forager discovers food, it leaves a pheromone trial while returning to the nest.

Other ants follow this trail from the nest to the food source and reinforce the initial trail

as they return home. In turn, more foragers leave the nest and so on. As a result of

positive feedback, the pheromone concentration of the trail increases rapidly, as does the

number of ants leaving the nest.

Negative feedback balances the effects of positive feedback and stabilizes

collective patterns. The catalytic nature of positive feedback requires an opposing force

in most cases. Otherwise, systems could commit unreasonable amounts of resources to a

particular activity. In fact, negative feedback often occurs due to depletion of limited

41

individual or system resources. Negative feedback takes forms such as saturation,

exhaustion, overcrowding and/or competition. Returning to the example of foraging ants,

negative feedback stems from a limited number of available foragers, colony-level

satiation, food source exhaustion, local crowding at the food source, competition between

food sources, and/or pheromone evaporation [68].

Random fluctuations are surprisingly common in biological systems that exhibit

self-organization. Many of these systems actually rely on certain stochastic elements for

behavioral flexibility. The amplification of these random fluctuations (random walks,

errors, etc.) allows for the discovery of new solutions as well as acting as seeds from

which new structures can nucleate and grow. An excellent example of this is caused by

stochastic trail-following in ants. It is well-known that ants follow trails imperfectly,

especially trails with low pheromone concentrations [71, 82]. When an individual loses

the trail and becomes “lost,” it has the potential to “stumble across” an undiscovered

source of food [83]. This could be a better (e.g., closer, richer, larger) food source than

that currently being exploited by the colony. Clearly, random fluctuations are vital to

efficient self-organization.

Subsection 3.1.3: Characteristics of Self-Organization

After discussing the internal mechanisms of self-organization, the perspective

now shifts to an external, global viewpoint. The mechanisms of interaction presented in

the previous section arise from the perspective of an observer focusing on individual

behavior. Identifying global characteristics of these systems requires a much broader

perspective—that of an external observer viewing the result of interactions, rather than

42

the interactions themselves. Three primary characteristics of any self-organized

biological system are presented below:

• Emergent Pattern Formation – As discussed above, the creation of

complex spatiotemporal structures in initially unstructured media is

omnipresent in self-organized systems. The term “emergent” refers to a

property that arises “…unexpectedly from nonlinear interactions among a

system’s components” and that “…cannot be understood as the simple

addition of their individual contributions” [70], p. 31.

• Multistability – The possible coexistence of multiple possible stable states,

or attractors, is known as multistability. Depending on the initial

conditions in a self-organized system, there can be a number of stable

states to which the system evolves. A range of initial conditions

corresponding to a particular stable state is a basin of attraction for that

state, or attractor. For example, in ant colonies utilizing mass recruitment

where two equal food sources are present, the colony tends to exploit one

of the two sources. There are two stable states; the one that is actually

chosen depends partly on randomness, but also on whichever source is

discovered first [84].

• Bifurcations – Dramatic changes in system behavior, or bifurcations,

occur in many self-organized systems. Camazine at al. define bifurcations

as “the appearance of a qualitative change in behavior when a parameter-

value changes quantitatively” [70], p. 33. In response to variations in

certain system or environmental parameters, a system can switch from one

43

state to another through bifurcation phenomena [85]. Bonabeau and

Cogne [86] contend that some biological systems ensure adaptability by

maintaining themselves in the vicinity of a point of instability (a

bifurcation point).

Section 3.2: Microscopic Organisms

Self-organization has been observed even on the simplest biological scale:

microscopic organisms. Much of the research in this area relates to the human immune

system. Since there are several main types of microorganisms within the immune

system, it can be considered a heterogeneous system of self-organization. The key

elements of the human immune system are lymphocytes (B-cells and T-cells), antibodies

and antigens [87]. In a very simplified explanation, the lymphocytes produce antibodies

and the antibodies recognize and eliminate antigens, which are unwanted infectious

agents. The human immune system of an adult male contains over a trillion lymphocytes,

which together utilize about 1020 antibody molecules [23]. Via countless interactions

between these cells, the human immune system is able to self-organize in response to the

dynamic environment that is the human body. Recognizing this efficiency, robotics

researchers have developed swarm-based robotic systems using the human immune

system as a model [23, 87-89].

Various species of unicellular organisms—bacteria, myxobacteria, myxomycetes,

and cellular (amoebic) slime molds—exhibit remarkably complex system behavior

despite the clear lack of individual intelligence or planning ability. Myxobacteria, for

example, are predators that feed on other microorganisms. They travel in large clusters,

44

or swarms, that demonstrate highly coordinated overall movement. In some species,

periodic waves of movement, or ripples, have been observed [70]. Many types of

bacteria create highly complex spatial patterns when grown on agar plates. Eschera coli,

Salmonella typhimurium, Bacillus subtilis, and other species produce patterns such a

spirals or concentric rings under specific environmental conditions [70]. The classic

example of unicellular self-organization is that of the slime mold. These amoebas exist

independently when food is plentiful, but during times of starvation, they aggregate into

one cluster that begins to act as a multicellular creature [70, 84]. This creature, known as

a “slug,” composed of 10,000 to 100,000 cells, sometimes develops a well-defined body

and even reproduces. Studies have shown that this process occurs in a completely

homogeneous group; that is, there are no specialized “leader” slime molds [90]. The

process of slime mold aggregation is one of the most complete examples of self-

organization in any biological system [84].

Section 3.3: Social Insects

Subsection 3.3.1: Foraging

Ant colonies have come to be viewed widely as a prototypical example of how

complex group behavior can arise from simple individuals [84]. For this reason, the

behaviors of ant colonies have been studied with far more intensity than those of any

other social insect. This trend is also due to the ease of observing and experimenting

with ants. They are readily visible and respond well to testing in laboratory situations.

Ants are robust in their behaviors, meaning that fundamental changes do not occur when

their environment is altered slightly for observation or testing.

45

OVERVIEW

Foraging behavior in ants occurs in a wide variety of strategies, with several of

these strategies exhibiting characteristics of self-organization. Some species utilize a

combination of these strategies, depending on environmental conditions such as food

availability and distribution [91-93]. This adaptability in ant foraging systems is

discussed later in this section. Other species exclusively employ a single foraging

method. A number of authors have attempted to classify the multitude of foraging

methods used by ants, with two classic works containing the most important

classifications [62, 94]. Oster and Wilson provide a fairly broad classification,

identifying five basic foraging methods. These methods are presented below in Table 3.

Table 3. Foraging Methods Used by Ants (adapted from [94], pp. 248-251)

Foraging Method Description

I
Workers leave the colony singly and retrieve prey and other food

items as solitary individuals.

II

Solitary foragers signal the location of the food to nest mates by

means of odor trials, ritualized “dances,” or some other mode of

directional communication.

III
Foragers move away from the nest along trunk trails, departing at

intervals to search unmarked terrain as individuals.

IV
Solitary foragers recruit fellow workers to a food source using

odor trails; the group then assaults or collects the food as a group.

V
Workers proceed from the nest in bands or entire armies of

individuals to engage in group hunting.

Holldobler’s The Ants [62], which has become the Bible of myrmecology (the study of

ants), provides a more thorough system of classification. Holldobler’s classification is

46

preferred in this work for its thorough treatment of all observed strategies. This system

of organizing the foraging methods breaks all phenomena into three categories: hunting,

retrieving, and defense. Three to four possibilities exist within each of these categories,

presenting the possibility of 48 possible three-state foraging strategies.

Hunting

(1) by solitary workers

(2) by solitary workers directed to search sectors by trunk trails

(3) by groups of workers searching together

Retrieving

(1) by solitary workers

(2) by individuals who return home along trunk trails

(3) by individuals recruited to a food source by scouts

(4) by groups of workers who carry items as a group

Defense

(1) by guard workers during hunting

(2) the absence of such defense

(3) by guard workers during harvesting/retrieval

(4) the absence of such defense

While a full accounting of ant foraging strategies has not been completed,

Holldobler suspects that virtually all of the 48 strategic combinations are employed in

some species of ants [62]. In the remainder of the discussion, attention will be focused

on the first two categories: hunting and retrieving. Combinations of techniques from

these categories represent fairly complete systems of behavior, with defensive strategies

47

coming into play only in the event of an attack of some sort to the foragers. Defensive

behavior is also less related to self-organization, so it will be overlooked in this

investigation. The following two subsections will look more closely at hunting and

retrieving strategies, respectively.

HUNTING

Hunting techniques range from solitary exploration to group raids. Where each

species falls on this continuum depends on factors such as the size of the colony, the

climate, and the nature of the food. It is important to note that, while “hunting” connotes

the active tracking and elimination of live prey, it is used in a more general sense in this

context. Hunting also refers to the more common situation of searching for inanimate

food items. Colonies most often employ solitary foragers in situations where the food

distribution is characterized by a large number of widely distributed small food items

[92]. This type of hunting is also referred to as diffuse foraging, due to the more or less

random “diffusion” of workers from the nest [94]. In many species, such as Cataglyphis

bicolor, solitary foragers set out from the nest in a generally straight line extending

radially from the nest in a specific direction [62]. Initially, this direction is selected at

random, but an individual worker tends to maintain a generally constant foraging

direction on successive forays, especially if food was located on a prior trip. A particular

direction will be abandoned if many unsuccessful trips fail to locate food, but an

individual tends to persist in one or a very few directions throughout their lifetime [62].

Random fluctuations in foraging direction have been proven to improve deployment

efficiency. Unpredictable deviations from the previous path “increase the chance that the

workers will strike food items missed in earlier efforts” [62], p. 245. This type of

48

hunting, combined with solitary retrieval, is thought to be the most primitive method in

evolutionary terms [94].

The next type of hunting, which relies on trunk trails, has been studied

extensively in the self-organization community [68, 70, 95-98]. Harvester ants are one

species that utilize trunk trails to direct solitary foragers [62]. This species tends to

exploit patchy food supplies with limited spatial distribution. Therefore, trunk trails

leading to regions of locally high food density represent an effective biological adaptation

of foraging behavior. Individual workers stray from the trunk trail to forage in the local

vicinity for items of food [94]. Their chances of finding food are increased greatly by

straying short distances from the trunk in short looping patterns.

African army ants are famous for their raids composed of millions of completely

blind workers [70, 94]. The raid system is composed of a dense swarm front, a large

delta-shaped region of intermediate trails, and finally one principal trail leading back to

the nest. The swarm front is linked by a series of looping trails back to reinforcements

arriving along the main trunk trail. Despite the rapid dynamic growth of such swarming

raids, the trail is surprisingly stable. In a single day, an E. burchelli raid can travel over

100 meters through the jungle with very high trail fidelity [70]. While the details are not

fully understood, scientists know that individuals periodically deposit pheromones along

the trail, creating a stable trunk of high pheromone concentration through the mechanism

of positive feedback. This is the clearest and most impressive example of ants hunting in

groups.

49

RETRIEVAL

Prey (or food) retrieval is the second major category of foraging techniques. As

presented above, there are four major retrieval techniques: (1) by solitary workers, (2) by

individuals who return home along trunk trails, (3) by individuals recruited to a food

source by scouts, and (4) by groups of workers who carry items as a group. The first of

these four cases is the simplest technique, as it requires absolutely no cooperation

between individual workers. A worker simply locates a food item and navigates toward

the nest without the aid of pheromone trails or any other assistance from the colony.

Navigation on the trip home is achieved in a number of ways [84]. Visual cues

sometimes play a role, as ants can reference the sun, moon, physical landmarks, or an

image of the forest canopy for orientation [62, 93]. In some other species, it is believed

that memory alone allows for navigation, although this hypothesis has not been solidly

established [62].

Trunk trails were described above in reference to hunting techniques. The

existence of trunk trails makes prey retrieval a trivial task. These well-defined ant

“highways” make the homing process very simple. Even in the case of the blind African

army ant, homing is accomplished with high accuracy and speed by following the main

trunk trail back to the nest.

The third retrieval category and, to some extent, the fourth, both assume that some

type of recruitment has taken place. Group transport of a food item can occur without

recruitment in the case of hunting in groups, as described above. This is the only

exception to the use of recruitment, which is the predominant foraging method.

Recruitment, in one form or another, is extremely common in ants and can be found in

50

nearly every species. Recruitment is also the basis for the majority of investigation into

self-organization in ant foraging. For this reason, recruitment is presented as a separate

topic below. In that context, the two remaining retrieval strategies are covered.

RECRUITMENT

Recruitment strategies represent the most highly-evolved prey and food retrieval

mechanisms in the insect world. Recruitment is defined as “…communication that brings

nestmates to some point in space where work is required” [62], p. 265. This definition

includes recruitment utilized for colony defense, nest construction and repair, emigration

to new nest sites, and a variety of other colony activities. However, this discussion of

recruitment will be limited to the context of foraging. Holldobler divides the various

types of foraging recruitment into four groups [62], which are outlined below:

(1) Tandem Running – First, an individual worker returns to the nest after finding

a food source. This worker employs tactile and/or visual stimulation to invite

one worker on the journey back to the food source. On the return trip, the two

run in tandem, maintaining close physical contact during the entire trip. As

positive feedback takes effect, the number of foragers doubles on each

successive trip (assuming that the food source does not become exhausted or

overcrowded, which introduces negative feedback).

(2) Group Recruitment – Similar to tandem running, a laden worker returns to the

nest and signals mainly via touch to invite a group of 2-10 nest mates to the

source [93]. The recruiter then leads this group to the food source, often while

depositing a pheromone trail. Other workers do not follow the trail without

51

tactile stimulation and an escort from a recruiter. This type of recruitment is

common in species employing cooperative group transport.

(3) Trail-based Group Recruitment – This process is closely related to the

previous technique, but with less dependence on leadership behavior. The

recruiter conducts similar invitation behavior to a group of recruits at the nest

after laying a pheromone trial from the source to the nest. In most cases, the

leader returns to the food source, but this is not necessary for other recruits to

follow the trail. Workers that did not witness the invitation behavior will

rarely follow the trial.

(4) Mass Recruitment – In the early 1960s, entomologists first discovered mass

chemical communication in ants, which is one of the most complex forms of

social behavior in the social insects [62]. A worker lays a pheromone trail

back to the nest and continues foraging (usually by following its own trail).

There is no ritualized display, tactile, or acoustical communication with other

workers at the nest. The pheromone trail alone provides sufficient impetus to

draw foragers from the nest to the food source [86]. Other workers foraging

in the field also follow the trail if they wander into its active space. Those

workers who begin following the trail at some intermediate point need some

way of knowing which way leads to the food source. This binary decision is

made either through a priori knowledge of the direction of home (based on

navigational cues, memory, etc.) or by encountering other workers along the

trail. If a worker is met head-on laden with food, the trail-follower interprets

this information to understand that it is headed in the correct direction. It has

52

been established that directional information is most likely not encoded in

pheromone trials [62].

Recruitment is sometimes simply regarded as a method of assembling many workers in a

specific location. That is hardly the case; rather, sophisticated foraging recruitment, such

as mass recruitment, actually enables the colony to make decisions through the

mechanisms of self-organization [70]. Ant colonies are able to collectively choose the

most profitable food source from among a number of options, using only positive and

negative feedback, and amplification of random errors. Consider the example simulated

by Resnick in [84]:

So what happens when ants are released in an environment with three food

sources? In some ways, it is helpful to think about the food sources as

competitors, each trying to attract a stable trail of ants. In this competition the

food source closest to the nest has two advantages: it is the one most likely to be

discovered in a random walk from the nest, and it has the lowest critical density

(that is, it needs the smallest number of ants to form a stable pheromone trail). So

as the ants march out of the nest and explore the world, the…colony’s first stable

trail is likely to go to the closest food source. Once an ant joins a stable trail, it is

unlikely to leave…so ants on the stable trail are taken out of circulation.

Assuming a fixed supply of ants, there are fewer free ants remaining to explore

and form trails to the other food sources. …But once the closest food source is

fully depleted, the situation changes. The pheromone trail to that source

dissipates, freeing the ants that had been gathering food along that trail. After

that, there are again enough ants to form a new trail.… In this way the colony

53

exploits the food sources one by one, in a seemingly planned fashion, moving

outward from the closest food source to the most distant.[84], p. 67

In this example of three food sources at different distances from the nest, we see all of the

major mechanisms of self-organization (positive feedback, negative feedback, and

amplification of random errors) producing the characteristics of emergent pattern

formation, multistability, and bifurcation phenomena. Positive feedback initially

catalyzes the random discovery of a food source [81], creating the initial pheromone trail.

This trail is reinforced by positive feedback, generating the emergence of a pattern in the

form of the stable trail. This pattern formation could occur at any one of the three food

sources, with unequal probabilities. Each stable trail is possible, representing three

possible stable states—multistability. Negative reinforcement caused by pheromone

evaporation and food source exhaustion allows the system to pass through a bifurcation

point, observed as a rapid shift in behavior from focusing on one source to again

searching for a source to exploit [85]. Experimental and theoretical studies have

reproduced this type of collective decision-making, proving the self-organization allows a

colony to choose between sources on the bases of distance, quality, and/or inter-colonial

competition [70, 82, 85, 86, 99]. It becomes clear, even in such a simple example, why

mass recruitment is one of the purest examples of self-organization [70].

COMMUNICATION

All forms of recruitment inherently require some type of communication between

individuals. Ants have the ability to communicate via a number of modes, most of which

are employed in recruitment behavior. The above discussion of the types of recruitment

intentionally simplified the details of communication. The aim of this section is to

54

present the various ways in which ants perform the communication necessary for

recruitment. The major types of communication used by ants are chemical, tactile,

visual, and acoustical.

Chemical communication is by far the most common form of communication

used by ants for any purpose. Holldobler notes that an average ant colony possesses

between 10 and 20 kinds of signals, with most being chemical. He contends that

“…pheromones play the central role in the organization of ant societies” [62], p. 227. It

is extremely important for a number of colony functions, including worker recruitment in

foraging. Of course, in mass recruitment, workers rely solely on chemoreception to

obtain information regarding the location of a food source. The primary means of

chemical communication is pheromonal deposition and sensing. Mandibular

regurgitation and fecal odor sometimes convey information, but pheromones are far more

important. Pheromones are a type of semiochemical. A semiochemical is defined as

“…any substance used in communication, whether between species (as in symbioses) or

between member of the same species” [62], p. 227. A pheromone is somewhat narrower

in meaning: “A pheromone is a semiochemical, usually a glandular secretion, used within

a species” [62], p. 227. These chemicals can be classified as either olfactory or oral,

according to the site of their chemoreception. Individual workers follow the “vapor

tunnel” created by evaporation and diffusion of the deposited pheromone. A semi-

ellipsoidal-shaped active space exists surrounding the central liquid trail, within which

ants are able to detect the presence of a pheromone. The size of this active space depends

on trail evaporation, diffusion rate, and the threshold concentration at which an individual

responds. Workers have sensitive chemoreception systems, allowing them to move up

55

gradients of molecular concentration, a process of orientation known as osmotropotaxis

[62]. Intensive study of ant physiology has also uncovered the anatomical origins of

many of the chemical systems. Without going into unnecessary detail, it is sufficient to

identify the hindgut and midgut as the production sites for most recruitment-related

pheromones [100, 101]. The Dufour’s gland is particularly important in pheromone

production [93]. Trail-laying behavior in ants often consists of pheromone production in

the Dufour’s gland, followed by deposition via the anus. Myrmecologists suspect that

trail-laying behavior may have evolved as an adaptation from defecation [62]. Early ants

may have responded to the odor of fecal matter deposited by workers returning from a

source of food. This unintentional communication may have developed into the

production of highly-specialized pheromones as a recruitment strategy.

Tactile communication, while far less important than chemical, is commonly used

in recruitment strategies. In all recruitment types other than mass recruitment, tactile

communication plays a potential role. The invitation behavior commonly seen in tandem

running or group recruitment is commonly characterized by tactile communication [93].

When a worker ant returns to the nest laden with food, it signals to recruits by tapping

“the nestmate’s body very lightly and rapidly with her antennae, often raising one or both

forelegs to touch the nestmate with these appendages as well” [62], p. 258. The recruiter

then commences in leaving a trail and/or physically leading one or more followers to the

food source. Experimentation has shown that workers will not follow the recruiter in the

absence of this tactile communication (see [62, 101], and references therein). In the case

of tandem running, the leader and follower communicate continuously along their

56

journey back to the food source. If contact is broken between the two, the leader will

stop and wait for contact to be reestablished before continuing.

Visual communication at any range beyond one or two body lengths has not been

documented in any species of ants, despite the excellent vision and motion recognition in

some species [62]. In recruitment behavior, extremely short range visual signaling

sometimes accompanies the tactile signals described above. Invitation behaviors

sometimes include ritualized dances characterized by jerking movements intended to

resemble turning toward the food source [94, 101]. These behaviors are always

accompanied by tactile stimulation, however, making visual communication of only

minor importance.

Acoustical communication is much less developed that chemical or tactile

communication in ants, but some species do generate sound to accompany other forms of

recruitment communication. Acoustical communication takes two forms: drumming and

stridulation. Drumming describes the rhythmic beating of an ant’s body on the substrate

(soil, clay, tree branch, etc), while stridulation results from the rubbing together of

specialized body parts to produce a “chirp” like a cricket [93]. In both drumming and

stridulation, communication is far more effective on firm ground. This is because of the

heightened ability of ants to detect vibration via a solid substratum compared to their near

deafness to airborne vibration. In species such as Aphaenogaster, Leptogenys, and

Messor, acoustical signals enhance the effectiveness of pheromones during recruitment

[62].

57

ADAPTABILITY IN FORAGING

One of the defining characteristics of foraging behaviors in ants is adaptability.

Ant colonies are well-known for their ability to adapt to a variety of changes in the

environment. While some species of ants utilize only one method of foraging, most

species employ a number of variations, depending on a number of external factors [62].

Some types of ants, such as the African weaver ant, utilize more than five distinct

foraging strategies [101]. A number of researchers have explored the capability of ant

colonies to respond collectively to environmental conditions. Studies of the European

harvester ant, for example, show that solitary foraging is employed for initial discovery

of food sources and for collection of widely distributed seeds. However, upon discovery

of a large food source, or in the case of sparse seed distribution, a recruitment system is

used. This type of adaptation ensures that resources are not wasted in conditions of

meager food availability. Three species of desert ants demonstrate similar behavior in

response to variable food density. They also modulate the number of active foragers

according to altitude and season of the year [92]. Beckers, Deneubourg, and Goss, [99],

and Holldobler, [62], discuss modulation of pheromone trail intensity based on food

source quality. When returning from a rich food source, ants were shown to deposit more

pheromone than on a return trip from an average food source. Trail networks have even

been shown to transition from well-defined trunk trails to more traditional recruitment

networks [81, 97]. Bonabeau and Cogne suggest a possible mechanism behind such

adaptations, showing that ant colonies may maintain responsiveness to the environment

by allowing certain colony-level parameters (e.g., the number of active workers) to

58

oscillate in time [86]. Foraging adaptability is very common in ant species, as it provides

for increased foraging efficiency.

Subsection 3.3.2: Sorting

The efficiency with which insects perform the related tasks of clustering and

sorting has stimulated researchers to design new swarm-based algorithms for data

analysis and graph partitioning [68]. Both clustering and sorting are found

predominantly (and studied most thoroughly) in ants. Several species are known to

cluster corpses within the nest to form a “cemetery.” Others sort larvae into several piles

based on the age and size of each larva. While neither of these behaviors is fully

understood, simple models in the vein of self-organization have generated similar

patterns to those found in ant colonies [68]. These models hypothesize that clustering

and sorting occur when agents move randomly in space and pick up or deposit items on

the basis of local information. Observations of corpse clustering in Lasius niger, Messor

sancta, et al., suggest that positive feedback is the dominant mechanism behind clustering

[68]. Workers tend to deposit each corpse near another corpse or pile of corpses. In

another example of stigmergic coordination, hundreds or thousands of ants interact

through the environment in this manner to produce larger and larger piles or corpses until

one or a very small number of piles remains. A somewhat more complicated

phenomenon is brood sorting. Like cemetery formation, this behavior is widespread in

ants, but it has only been studied intensively in Leptothorax unifasciatus. Workers of this

species sort the larvae generally according to size and developmental progress. Eggs and

prelarvae are clustered in the center of the area, medium larvae in the middle, and large

59

larvae and prepupae around the perimeter. This clustering occurs by allocating different

amounts of space to each type of larva. Eggs, for instance, are deposited with the

minimal amount of individual space separating it from neighboring eggs, resulting in a

central, tightly-knit cluster. A possible advantage to this type of spatial sorting is that

items with similar needs are located together, facilitating efficient care of the developing

ants.

Subsection 3.3.3: Nest Building and Assembly

Bonabeau asserts that, among all of the activities of social insects, nest building is

the most “spectacular” [68]. He makes such a claim based on the great difference

between individual and collective ability. Clearly, the ability of a single termite is

dwarfed by the relative enormity and structural complexity of a termite mound. The

impressive ability of social insects to perform assembly is most clearly demonstrated in

termites, wasps, and bees. Each case is detailed further in the following paragraphs.

Mound-building behavior has long been studied, due in part to the awe-inspiring

architecture of a large termite mound. After all, it was the study of termite behavior that

inspired Grasse’s creation of the term stigmergy. Understandably, nest building in

termites and other insects is the clearest example of stigmergic behavior in all self-

organized systems [68]. Camazine et al. [70] describe the mound of African termites as

“air-conditioned skyscrapers immensely larger and arguably more sophisticated than the

vast majority of human buildings” (p. 377). Refer to [70] for a thorough description of

the intricate internal structure of a termite mound. If these termites and their mounds

were scaled up to human size, the biggest would be “about a mile high…and five miles in

60

diameter” [102]. While the complete group of processes by which termites build these

mounds is beyond the scope of this work, the building can be reduced to two fundamental

activities: digging and building. Combinations and variations in these activities result in

mounds as high as six meters. The basic script that enables coordinated digging and

building in termites is stigmergic. A simplified model of termite digging is described in

[8]. The model suggests that digging progresses through positive feedback and stigmergy

in the following manner. A termite moves randomly about the nest, with some

probability at each time step of extracting a soil particle. When the particle is extracted, a

pheromone is deposited that increases the probability of digging for future builders

(Figure 4).

Figure 4. Stigmergy in termite digging (taken from [8], p. 125)

Pillar construction follows a very similar pattern, as described in [69]. The main

difference in pillar construction is the existence of two behavioral phases. The first

phase, the non-coordinated phase, is characterized by a random deposition of soil pellets.

At some point, one of the deposits (piles) reaches a critical size, initiating the coordinated

phase, during which this particular pile grows rapidly in size. Again, one observes the

61

mechanisms of autocatalysis and amplification of random fluctuations. Michael Resnick

programmed a simple computer simulation of this building behavior that reproduced

some of the complexity in termite pillar construction. His observations of the non-

coordinated phase produced an interesting musing on the building behavior of termites:

As long as a pile exists, its size is a two-way street: it can either grow or shrink.

But the existence of a pile is a one-way street: once it is gone, it is gone forever.

Thus a pile is somewhat analogous to a species of creatures in the real world. As

long as the species exists, the number of individuals in the species can go up or

down. But once all of the individuals are gone, the species is extinct, gone

forever. In these cases, zero is a “trapped state”: once the number of creatures

in a species (or the number of wood chips in a pile) goes to zero, in can never

rebound. [84], pp. 79-80

This reasoning led Resnick to understand the process by which the number of pillar

nucleation sites steadily decreases in the non-coordinated phase.

Wasps, like termites, produce complex nests known as combs. Each nest is

composed of a large number of cells arranged in parallel vertical tubes. Cells are added

sequentially by individual wasps, who build a cell at one of a number of potential

building sites [70]. Certain building locations are preferred due to geometric factors that

tend to maintain symmetry and even weight distribution in the nest. Since the nests hang

vertically from a single stalk, weight distribution becomes an important consideration.

There are essentially three types of sites available for adding a cell, with each site

distinguished by the number of adjacent walls available for attachment. The probability

of building at a site with three adjacent open walls is far higher than the probabilities for

62

sites with one or two open walls [68]. These probabilities generate stigmergic

cooperation that maintains progress toward a stable nest.

Figure 5. Potential building sites on a wasp nest (S1 = one side, S2 =
two adjacent sides, S3 = three adjacent sides, taken from [70], p.423)

Comb construction and organization in honey bees is another excellent example

of self-organization in social insects. These spatial patterns are generated and maintained

over the course of several individual life-spans, making it likely that individuals act based

on local spatial and temporal information rather than memory [70]. A typical honey bee

colony comprises approximately 25,000 adult workers, a single queen, as well as brood

(eggs, larvae, and pupae) and accumulated food. The brood and food are stored in wax

combs that are subdivided into about 100,000 cells [79]. These cells are organized

according to a distinct pattern of three concentric rings—a central brood area, a

surrounding rim of pollen, and a large peripheral region of honey. The biological

significance of this structure in terms of its benefit to the colony arises from

thermoregulation of the brood and efficient locations of pollen and honey for feeding.

The conventional explanation of this global phenomenon is a blueprint hypothesis.

63

Proponents of this view suggest that individuals have an understanding that each cell or

region of cells is meant for brood, pollen, or honey. The blueprint could be based on a

temperature gradient from the center of the comb to the periphery, or it could be an innate

function of instinct. This hypothesis is not supported by experimental observations, such

as the frequent deposition of pollen and honey outside of their appropriate positions [79].

Camazine offers the main alternative view, which is based on self-organization theory.

The self-organization hypothesis, which accurately reproduced the brood organization in

simulation, describes the following process of pattern generation [79]:

(1) The central brood area develops from the queen’s attempts to lay eggs near

one another.

(2) The brood area is continually freed of honey and pollen to allow egg-laying,

which enhances the compactness of the center.

(3) Honey and pollen are initially both present on the periphery, but emptied

pollen cells near the outer edge are more likely to be filled with honey due to

the much higher collection rate of honey.

(4) The only place remaining for new pollen to be deposited is near the outer

fringe of the brood. In this narrow band, the removal of pollen and honey is

very rapid due to the proximity to the brood.

Again, one observes that positive and negative feedback and stochastic elements generate

complex spatial patterns. Also, note that this complexity occurs only through stigmergy,

the most elegant mechanism of self-organized systems.

64

Subsection 3.3.4: Cooperative Transport

Ants are well-known for their extremely high weight-to-carrying capacity ratio.

An adult ant of the species Pheidologeton diversus, for example, is able to carry prey as

heavy as 10 times its own body weight. At approximately the same velocity, a group of

100 of these ants carried an earthworm weighing 5000 times the weight of a single

worker [68]. Working together, each ant managed a burden 50 times its own weight,

representing a five-fold improvement in task efficiency. A wide variety of ant species

demonstrate similar cooperative transport behavior [62, 100, 103]. When an item of food

is too large for a single forager to carry back to the nest, ant colonies have two options.

In both cases, the solitary forager first returns to the nest to recruit nest mates.

Depending on a number of factors, the recruits either cut the prey into smaller pieces or

assist in cooperative transport. There are two interesting elements of this behavior. The

first relates to the ability of an ant colony to automatically switch from solitary to group

transport, which represents an example of a bifurcation in system behavior. The second

concerns the actual mechanisms of coordination employed by the ants cooperating in

transport. Studies in myrmecology have revealed that cooperative transport in ants is

produced solely through stigmergy (see [68] and references therein). In other words, the

ants “communicate” only through the object being carried. Each individual worker

senses the forces applied to itself by the object that result from the summed forces of the

other workers. This allows cooperative transport to occur without direct communication

between individuals. Stigmergic cooperation in this task results in a prolonged period of

organization early in the carrying process. Initially, each worker ant involved in the task

repositions itself several times around the item. At some point, which is unpredictable in

65

experimentation, cooperative behavior emerges and the ants are able to carry the object.

Presumably, the applied forces of the ants become balanced during this initial alignment

phase.

Section 3.4: Birds, Fish, and Mammals

Social insects are well known for their self-organized communities. However, the

rest of the animal kingdom possesses demonstrations no less convincing than those of

ants and bees. The primary difference in higher animals is cognitive ability; animals with

some reasoning ability sometimes intentionally create complex system behavior. These

systems can be mistaken for self-organized systems. Although this complication in

identifying self-organized systems in high animals does exist, a multitude of examples

remain clear. Camazine et al. [70] describe the array of examples outside of the insect

world:

Noisy flocks of a thousand starlings burst into flight at the approach of a barking

dog and maneuver gracefully around tall city buildings. At Carlsbad Cavern

millions of Mexican free-tailed bats stream from the cave each evening to begin

their nightly feeding foray. A herd of several hundred thousand wildebeest moves

fluidly along the Serengeti plains of Africa. In the sea schools of millions of

Atlantic cod swim together in tight formation as they migrate along the cold, deep

waters off the Newfoundland coast. (p. 167)

Mataric discusses the appearance of coordinated homing behavior in rats, pigeons, and

salmon [61]. Cooperative hunting has also been studied in packs of wolves, tuna, and

other predators [40, 45, 70, 104]. Trail-based foraging and recruitment behavior has been

66

observed in such esoteric species as naked mole-rats [104]. A number of examples are

provided below in Table 4.

Table 4. Examples of self-organization in nature (adapted from [70], pp. 170-171)

Organism Scientific Name Self-organized Process

Fish many species Coordinated movements in a school

Canada geese Branta Canadensis Chevron-shaped flight formation

Wildebeest Connochaetes taurinus Coordinated movements in a herd

Spiny lobster Panulirus argus Mass migration in single file

Locusts Schistocerca gregaria Coordinated movements in a swarm

Slime molds Dictyostelium discoideum Cohesive movements in aggregation

 Easily the most popular example of SO in animals is flocking. Whether in birds

or fish (schooling), flocking is a commonly studied behavior in biological systems [46,

61, 70]. Mataric identifies flocking as “…a ubiquitous form of structured group

movement that minimizes interference, protects individuals, and enables efficient

information exchange” [61], p. 19. Predator evasion is perhaps the most impressive

property of flocks or schools. The two major methods of evasion are known as the

Trafalgar Effect and flash expansion (see Figure 6). The Trafalgar Effect is “the rapid

transfer of information throughout the school that enables the entire group to execute

swift, evasive maneuvers at the approach of predators” [70], p. 172. Schools of fish, for

example, are known for their incredible ability to spontaneously change direction despite

an apparent lack of communication between individuals. Studies have shown that fish

operate mainly based on the movements of their nearest neighbors. In this way, the

67

reaction to a predator moves in a wave of propagation through the school at a rate much

faster than the approach of the predator [70].

Figure 6. Flash expansion in a school of fish (taken from [70], p. 172)

This is just one example of a plethora of impressive examples of SO outside of the insect

realm. Natural examples of swarm intelligence abound, and it remains to be seen what

can be gained by deeper understanding of these systems.

Section 3.5: Misconceptions of Self-Organization

Due to the novelty of the field of self-organization and swarm intelligence, certain

misconceptions are bound to arise. Fundamental misunderstandings generate these

askew conceptions of self-organization and related ideas.

Misconception #1: Self-organization fosters a falsely simplified view of nature.

The study of biological systems has proven the immense complexity of even the

smallest-scale systems. In the case of self-organized systems, however, it is often

possible to explain this manifested complexity in terms of a small set of

surprisingly simple mechanisms. In these cases, the complexity may be generated

by a simple response to a complex environment, rather than an inherently

68

complex system. It is also important to note that models of self-organization only

try to capture the essence of a system, not every minute detail of its operation.

Misconception #2: Emergence is a mystical notion without scientific basis.

Due to the abrupt and seemingly spontaneous appearance of emergent patterns or

behaviors, they are often considered beyond the scope of scientific inquiry. As

discussed above, the mechanisms behind many emergent properties have been

uncovered. In self-organization, as in many other fields of scientific study,

observations simply defy intuitive understanding. This tendency does nothing to

reduce their amenability to scientific investigation.

Misconception #3: Individual agents intend to produce complex global behavior.

While this idea is often mentioned with respect to higher animals, such as herding

mammals or flocking birds, it is often hypothesized about social insects. It is

clearly unreasonable when applied to microscopic organisms. In the case of

social insects, it is difficult to argue convincingly in favor of such a concept.

Insects such as ants and bees have such limited cognitive abilities that even the

simplest types of planning or processing are unlikely. Some higher animals with

significant cognitive abilities could have some notion of the overall system

behavior, but studies especially on flocking and schooling dispel such notions (see

[70] and references therein). The fact that mathematical models and simulations

closely reproduce self-organized biological behavior indicates that individuals

need little to no understanding of group strategy.

69

Chapter 4: Foraging Theory and System Modeling

Section 4.1: Individual Agent Dynamics

Modeling the dynamics of the individual robots is not stressed in this work, due to

the behavior-based control architecture. Such a control scheme places no emphasis on

the implementation of traditional control theory to achieve optimal path planning. As in

the world of social insects, the motion of an individual includes a significant stochastic

component, and path trajectories in time and space are rarely smooth. Therefore, for the

sake of completeness, only a brief development is provided of individual robot dynamics.

As described in Section 2.6, the choice of the drive system for a mobile robot

determines the overall kinematics of locomotion. From a modeling perspective, the ideal

case is a holonomic mobile robot, with rotation and translation uncoupled [38].

Unfortunately, such drive systems are highly complex and rarely implemented in robotics

research applications. Yamaguchi presents pioneering work in his development of “…a

distributed smooth time-varying feedback control law for coordinating motions of

multiple nonholonomic mobile robots…” [38], p. 2984. This type of advancement in

control theory reflects the infrequent use of holonomic mobile robots. The most common

type of robot used in foraging research applications is the differential drive [24, 25, 41,

57, 60, 65, 73, 105], for which kinematics are discussed.

A wheeled mobile robot with a differential drive is modeled as a planar rigid body

moving in a horizontal plane. The rigid body is connected via axles to the wheels on

which it rolls. Driven independently, the two drive wheels are capable of producing both

rotation and translation. The position of a robot, ri, is given by (xi, yi), and its orientation

by θi, in the static Cartesian coordinate system, Σ0. The rotation angles of the two drive

70

wheels are denoted φ1i and φ2i. The radius of each wheel, R, and the width between them,

W, complete the preliminary definitions. The velocity and angular velocity of orientation

of ri are given as:















+
+
+

=














)(

)(sin

)(cos

212

212

212

iiW
R

iii
R

iii
R

i

i

i

y

x

φφ
φφθ
φφθ

θ ��
��
��

�
�
�

(4-1)

A local coordinate system, Σi, is located at the midpoint of the two drive wheels. Refer to

Figure 7 for a diagram of the robot with dimensions, vectors, and coordinate systems.

Figure 7. Vector and coordinate system definitions (taken from [38], p. 2987)

The unit vector, ei, is defined on an axis of this local coordinate system. The axis

specifies the orientation of ri, i.e. θi, in the static coordinate system. Let vi be the velocity

vector of ri. Expressed in the static coordinate system, Σ0,

iiiiiiiii e
R

yxvande)(
2

),()sin,(cos 21 φφθθ ���� +=== (4-2) and (4-3)

It is useful to know the angular velocities of each wheel required to achieve a desired

translational or angular velocity. In order to rotate at a general time-varying angular

velocity, the difference in wheel velocities is given by:

71

)(
2

21 t
R

W
iii θφφ ��� =− (4-4)

For rotation about the midpoint of the rear axles (the origin of Σi), the required velocities

are:

)(21 t
R

W
iii θφφ ��� == (4-5)

Assuming translation in a straight path (either forward or reverse), the appropriate wheel

velocities for translation are:

R

tvi
ii

)(
21 == φφ �� (4-6)

These simple kinematic relationships determine the required actuation for controlling

each individual robot. The issue of traveling in a curved path was not addressed, due to

the fact that many robotic applications completely decouple rotation and translation. The

experimentation found in Chapter 6 also does not require the ability to travel along a

curved path. Instead, navigation is accomplished by alternating between straight forward

or reverse translation and rotation.

Section 4.2: Foraging Theory and Task Efficiency

Before discussing the process of modeling self-organized systems, it is necessary

to discuss the issue of task efficiency from the perspective of foraging theory. Task

efficiency is an important ethological system performance metric with obvious

importance to robotic systems as well. Maximization of task efficiency is, of course,

desired in the design of a self-organized robotic foraging system. This requires metrics

for measuring task efficiency. These metrics, if standardized, are also useful for

72

comparing task efficiency to that found in biological systems, as well as between

experiments conducted by different groups.

Foraging theorists identify two major methods of achieving efficient food source

exploitation: time minimization and energy maximization [62, 94]. These two methods

of optimizing foraging processes apply not only to social insects, but to the foraging

practices of most animal life. The vast majority of foraging species are time minimizers,

who tend to “…have a fixed quota of energy required for body maintenance and

reproduction” [62], p. 388. Examples of time minimizers include animals such as birds,

fish, and foraging mammals (e.g., deer). In these systems, the goal is to obtain the

necessary energy quota in a minimum time (with minimal energy expenditure). In most

microorganisms and insect societies, energy maximization is the goal. These

communities are capable of utilizing a continuous influx of energy from the environment.

In an ant colony, for example, excess energy corresponds to colony growth, which

increases the overall survival probability of the colony. As a result, ant foraging seeks

the maximum net yield of energy.

The most important methods of calculating and modeling theoretical task

efficiency in ant foraging are concerned with energy maximization. Oster and Wilson, in

their classic work on the ecology of social insects, describe several models of task

efficiency for recruitment-based foraging [94]. These models either focus on the

activities of individual workers or global parameters of the colony. In both cases, reward

and cost functions are calculated based on the time and energy gains and expenditures

associated with specific foraging activities. These functions are combined to calculate

73

the net energy profit rate for an individual or group. Efficiency is increased to optimality

by maximizing the net energy profit rate.

Robotic implementation of cooperative foraging also requires some consideration

of task efficiency. In most experimental setups, some type of foraging task is defined.

Completion of the task must be analyzed in some way with respect to efficiency.

Unfortunately, the models of task efficiency developed by ethological foraging theory

translate poorly into such scenarios. The main reason is that robotic foraging tasks are

short-term processes, as opposed to the continuous nature of foraging in the societies of

social insects. A colony of ants is never finished with the task of foraging. For this

reason, robotic foraging tasks are generally viewed in terms of time minimization. Like

most vertebrate animals, the foraging tasks of robots involve collection of a limited

energy quota. Of course, in robotic experimentation, the “energy” takes the form of

small targets collected in an enclosed foraging field. Robotics literature reflects this

notion of time minimization as a measure of task efficiency. The most common metrics

by which efficiency is calculated are the total time required for completion and the

number of targets collected per unit time [7, 12, 58, 60]. Currently, it is difficult to use

these measures of efficiency to compare the performance demonstrated in separate

experiments. The use of time as an efficiency measure also makes it difficult to

generalize results or compare to the efficiency of social insects. This disparity in

measures of task efficiency between ethological foraging theory and robotic

implementation highlights the need for standardized performance metrics in the swarm

intelligence community.

74

Section 4.3: Modeling Self-Organization

The development of mathematical modeling in the field of self-organization and

swarm intelligence has occurred almost exclusively from an ethological perspective.

Each of the major classes of self-organization models arose from attempts to model the

behavior of biological systems. Only rarely have researchers from the robotics

community sought to develop independent models. Most often, robotics research

borrows or adapts models with biological origins. This pattern seems appropriate--and

perhaps the development of independent models is misguided--given the efficiency of

biological systems such as groups of social insects. In any case, rigorous models of self-

organization are essential for continued progress toward real-world robotic applications

of swarm intelligence. Bonabeau, Dorigo, and Theraulaz convincingly argue in favor of

using biological models of SO:

…very few applications of swarm intelligence have been developed. One of the

main reasons for this relative lack of success resides in the fact that swarm-

intelligent systems are hard to “program,” because the paths to problem solving

are not predefined but emergent in these systems and result from interactions

among individuals…. Therefore, using a swarm-intelligent system to solve a

problem requires a thorough knowledge not only of what individual behaviors

must be implemented but also of what interactions are needed to produce such or

such global behavior. …[A] reasonable path consists of studying how social

insects collectively perform some specific tasks, modeling their behavior, and

using the model as a basis upon which artificial variations can be developed,

75

either by tuning the model parameters beyond the biologically relevant range or

by adding nonbiological features to the model. [68], p. 7

This is the type of reasoning that has led most robotic researchers to design swarm-

intelligent systems based on adapted biological models of self-organization.

The development of fairly simple mathematical models based on SO requires

certain philosophical presuppositions. First of all, one must accept that it is possible, at

some level of description, to explain complex collective behavior in terms of simple

interacting entities. From a certain perspective, a social insect is a complex creature

capable of processing many sensory inputs and making decisions on the basis of a large

amount of information. From a modeling perspective, however, one assumes that this

complexity can be reduced significantly while maintaining complex system behavior.

Behavior-based control architectures in mobile robotics make the same fundamental

assumption. In the development of SO models, researchers have therefore taken the

approach of using very simple models unless further complexity is found necessary to

reproduce the observed biological behavior on which the model was based [59]. This

process is illustrated in Figure 8.

76

Figure 8. Research cycle for self-organized systems (taken from [70], p. 71)

Simplifying assumptions are only removed from the model if necessary. This process has

proven successful in generating a number of surprisingly simple models of self-organized

systems. Some of these models are presented below in Section 4.4.

Models of SO can be divided into three main classes: differential equation,

probabilistic (or stochastic), and cellular automaton models. While not every model fits

neatly into one of these categories, the classification accounts for the vast majority. Each

class of models is described below.

The most common type of model for self-organized systems is differential

equation models. This approach is most amenable to thorough analysis, as a set of

differential equations allows one to investigate equilibrium conditions, bifurcation

phenomena, etc. It is desirable to obtain a precise quantitative description of the behavior

of a system over time by solving the system of equations. Although many such systems

do not have closed-form solutions, numerical techniques are used to produce the system

77

trajectories. This type of model requires that certain assumptions be made in models of

discrete processes. Differential equation models assume that individual agents are

infinitely divisible individuals behaving deterministically, which is valid for systems with

large populations. However, it can be very difficult--due to continuity assumptions and

other factors--to formulate a set of differential equations describing the behavior of

certain biological systems.

Probabilistic models are commonly employed when differential equations are

inappropriate. As opposed to the previous class, these models tend to use a discrete

approach that models the behavior of each individual in the group. Simple behavioral

rules based on probability are used to generate a few governing equations. Monte Carlo

simulations are often conducted to produce similar results as those obtained from an

actual experiment. The stochastic nature of these models yields qualitatively different

results than those obtained from differential equations. Rigorous analysis is more

difficult, but the model development process is generally simpler. Probabilistic modeling

also tends to be very computationally intensive, sometimes requiring considerable

computer processing resources.

The final class of models, cellular automaton (CA) models, was probably the first

modeling technique used to investigate self-organization [4]. This type of modeling

“…simulates groups of biological components by arranging components as points in a

lattice or grid and allowing the components to interact according to simple rules” [70], p.

76. Usually performed within a two-dimensional lattice, CA simulations involve many

cells characterized by a location and state. At discrete time steps, each cell updates its

state based on its current state and the state of neighboring cells. While CA models

78

exhibit highly complex behavior, the cell interactions are governed by only a few simple

rules. For this reason, CA models are excellent for modeling and simulating SO.

Conway’s Game of Life is one famous example of such a CA model. Cellular automaton

models have the advantage of providing impressive visual results, but, like Monte Carlo

simulation, can be computationally intensive. Depending on the software

implementation, CA can also require considerable programming expertise.

Section 4.4: Foraging Models

In the following three subsections, models are reviewed from the literature for

foraging systems. The models are divided into the three main classes mentioned above:

differential equations, probabilistic, and CA models. Each section presents the models

most relevant to the computer simulation and experimental work in Chapters 5 and 6.

Although several may be discussed, one primary model is featured and developed in each

section. It is important to note that each of the models presented differs significantly

from the simulation and experimental work described in later chapters. Unfortunately,

current foraging models make significant simplifying assumptions, making it

inappropriate to apply them directly to complete foraging systems based on mas

recruitment. Therefore, the models are used to generate only qualitative predictions

regarding system performance. The predictions are presented in Section 4.5.

79

Subsection 4.4.1: Differential Equations

SYSTEM MODEL

Foraging models consisting of one or more differential equations provide the most

complete mathematical descriptions currently available for recruitment-based foraging.

The systems of equations used in these models are sometimes linear and often simple

enough to investigate analytically. Stability analysis, bifurcation phenomena, and

analysis of steady-state solutions are common procedures performed while studying these

models.

One particular subset of differential equation models merits special mention

before focusing on the mainstream techniques. A handful of researchers have

incorporated pseudo-stochastic elements into their differential equations models (e.g.,

[43, 83]). These models can be termed state transition models, owing to the formulation

of the set of differential equations. A number of system states are defined, along with

relationships governing transitions between states. The stochastic state transitions, if any,

are cleverly included into the model by creating customized probability parameters.

Pasteels, Deneubourg, and Goss present the clearest example of a state transition model

[83]. Their model describes trail recruitment by N ants to two identical sources. The

model includes three system states:

• Number of ants at food source 1, X1

• Number of ants at food source 2, X2

• Number of lost ants, E

The lost ants are those that strayed from a pheromone trail in the following process. All

remaining ants, numbering N - (X1 + X2 + E), exist at the nest as potential recruits. A

80

simple block diagram (see Figure 9) representing the system dynamics leads to a system

of three differential equations.

Figure 9. Simplified block diagram of foraging system and resulting
system of differential equations (taken from [83], p. 166)

The authors present both steady-state analysis and solution trajectories. Results

demonstrate bifurcation phenomena and multistability between two food sources. As the

number of total foragers, N, is increased, the system passes through a bifurcation point

and switches from symmetrical to asymmetrical exploitation of the two sources.

81

Sugaware and Watanabe develop a similar model for a single-source robotic

foraging system [43]. Notably, the robots employ beacon-based communication rather

than laying trials. The model contains a system of five differential equations, each

corresponding to the number of robots in each of five possible behavioral states. As a

result, this model meshes well with behavior-based control. The model is used to

validate simulation results and show the dependence of task efficiency on group size and

interaction duration.

A number of more typical models appear in the literature. These other models

focus on state variables such as trail length [81, 97], number of feeding workers [71], or

outgoing ant flux from the nest [70, 85]. Edelstein-Keshet et al. present two models

based on trail length, but both models feature continuous trail-laying rather than mass

recruitment [81, 97]. The authors analyze the models with respect to global adaptability

in response to external conditions. Deneubourg, Pasteels, and Verhaeghe, develop

another model of similar structure and purpose to illustrate “…that the degree of

randomness [can] be optimally ‘tuned’ to particular ecological conditions, such as food

quantity and distribution” [71], pp. 259.

A fairly recent (1999) foraging model based on differential equations is, by far,

the most rigorous theoretical representation of a recruitment system. Nicolis and

Deneubourg present “a model of food recruitment by social insects accounting for the

competition between trails in the presence of an arbitrary number of sources…” [85], p.

575. This publication represents a significant advancement in foraging modeling, as it

tackles the problem of inter-source competition between more than three sources. Prior

to this model, such problems remained unsolved. The model is rigorous in an analytical

82

sense, yielding the full bifurcation diagram of steady-state solutions. It is also relatively

simple in formulation, which is not surprising in a self-organized system.

The model takes a macroscopic approach to the mass recruitment system, using

pheromone concentration as the principal variable. It is mainly devoted to the choice of

orientation among more than one trail upon leaving the nest. Nicolis and Deneubourg

make important initial assumptions regarding the recruitment system, as listed below:

• Pheromone trails are always followed error-free from nest to food source.

• Ants are either within the nest or following a trail; wandering does not occur.

• Direct interactions between individuals are ignored; only stigmergy is possible.

• The outgoing flux of ants from the nest is a constant.

These simplifying assumptions render the model unable to manifest certain

characteristics of self-organization. For example, error-free line following makes the

accidental discovery of a new food source impossible. In fact, the assumptions listed

above constrain the scenario to one in which all sources have already been discovered.

Another limitation of the model is the inability to investigate behavioral dependence on

the number of foragers. Despite these limitations, as will become apparent, the model

illuminates a number of significant system characteristics.

The development that follows closely resembles that presented originally in

[85], with only minor variations and/or simplifications. Refer to [85] for the full model

derivation. Let ci be the pheromone concentration on trail i = 1,2,…,s. The time

derivative of pheromone concentration consists of two parts: (1) a positive term from trail

deposition and (2) a negative term from trail evaporation. The resulting equation for the

time rate of change of pheromone concentration on trail i is:

83

{ }() sicvcF
dt

dc
iijii

i ,,1, …=−= σφ (4-7)

where σi is the quantity of pheromone on trail i, vi is the corresponding evaporation rate,

and Fi({ci}) is a function describing the relative attractiveness of trail i compared to all

other trails. The form of Fi is a choice function commonly used in probabilistic models

(e.g., [96]):

∑ =
+

+
=

s

j

n
j

n
i

i
ck

ck
F

1
)(

)(
, (4-8)

where s is the total number of sources; k, a concentration threshold beyond which

pheromone begins to be effective; and l, the sensitivity of the process to ci. Equation 4-8

accounts for three types of dynamic feedback:

1. Positive, nonlinear feedback of trail i onto itself through Fi.

2. Negative, linear feedback of trail i onto itself through pheromone evaporation.

3. Negative, nonlinear feedback of trail j ≠ i onto trail i from competition.

It is convenient to introduce the following non-dimensionalization of the key parameters:

vk
q

k

c
C i

i
i

i

φσ
=Φ== ,, (4-9)

Assuming that evaporation is constant on all trails, all v i can be set to a common v. Then,

scaling time allows v to be set to unity. Introducing the non-dimensionalization results in

the reduced system:

is

j

l
j

l
i

i
i C

C

C
q

dt

dC −
+

+Φ= ∑ =1
)1(

)1(
(4-10)

The parameter l is set at l = 2 to reflect experimental data with several ant species,

including Lasius niger [99]. With these simplifications, the solutions of Equation 4-10

84

depend entirely on Φq and s. For the trivial case of one food source, j = 1, there exists

one, stable steady-state solution given by

vk
qC

φσ=Φ= (4-11)

The trail concentration reaches a steady value proportional to the output flux and

deposition rate, and inversely proportional to the evaporation rate and concentration

threshold. These relationships, for the trivial case, make intuitive sense. The steady-state

solutions of Equation 4-10 for multiples sources are of particular interest, obtained by

setting the time derivative equal to zero. Dividing the equations applied to trails i and j,

one obtains:

j

i

jj

ii

C

C

Cq

Cq
=

+
+

2

2

)1(

)1(
and (4-12)

∑
=

+Φ=+
s

j i

i
ij C

C
qC

1

2
2)1(

)1((4-13)

The set of steady-state solutions to Equations 4-12 and 4-13 are denoted Ci, st. Stability

analysis of the different solutions determines the state actually chosen by the system.

Equation 4-10 is linearized with respect to perturbations by setting

istii CCC δ+= , (4-14)

and, using Equations 4-12 and 4-13, rewriting Equation 4-10 as

∑=
k

kik
i CA

dt

Cd δδ
(4-15)

kr
ik

i

i

ii

ki
ik C

C

Cq

CC
A δ

+
−

+
+Φ
+−=

1

1

)1(

)1(2
2

2

(4-16)

85

The “st” subscript has been dropped, as it is understood that Ci are steady-state. Stability

is determined by examining the roots of the characteristic equation,

0det =− kr
ijijA ωδ (4-17)

with the stability condition Re ωi < 0 for all i. While this model can be extended to

examine the case of non-identical sources (see [70, 85]), the assumption is made for this

analysis that each source is identical, or qi = q for all i. This assumption is valid

especially for application in robotic experimentation, which generally predetermines

source similarity. The homogeneous solution of equation (4-15) is given by

C
s

q
Ci =Φ= , (4-18)

representing equal exploitation of all sources. For example, in the case of equal

exploitation of two identical sources, the trail concentrations are

221

q
CC

Φ== (4-19)

In order to check the stability of this solution, we examine the elements of the Jacobian

matrix, which can only take two values:

)(

2

,
)(

2

sqs

q
bA

sq

sq

sqs

q
aA

ij

ii

+Φ
Φ−==

+Φ
−Φ+

+Φ
Φ−==

 (4-19)

The characteristic equation takes the form,

0))())()1(((1 =−−−+− −sbabsa ωω , (4-20)

yielding the following solutions:

01)1(1 <−=−+= bsaω and (4-21)

86

qs

sq
bas Φ+

−Φ=−=…2ω (4-22)

The first solution, ω1, is always stable, but the group of s-1 solutions loses stability for

Φq > s. This result shows that the homogeneous solution may lose stability, causing the

system to assume another stationary state. The only such solutions are semi-

inhomogeneous, in which j trails having concentration C1 are exploited in a different

manner than the other s-j trail with concentration C2. These concentrations are given by





 −−



 Φ±Φ=±

j

js

j

q

j

q
C 4

2

1

2

2

1 (4-23)

oddsforsorevensforsj
js

jCq

C
C 2/)1(2/,,1,

)(

1 1

1
2 +=−

−Φ
==

±

± …∓ (4-24)

where the + and – superscripts correspond to a trail more or less heavily marked,

respectively. These solutions exist as long as

jjsq)(2 −≥Φ . (4-25)

The stability is determined separately for the cases j = 1 and j > 1. The former case

corresponds to differential exploitation of one trail as compared to all others; the latter to

preferential exploitation of a group of trails compared to another group. For j = 1, the

characteristic equation takes the form

0))1()2())2((()(2112121
22

2 =−−−++−++−+− − bbsscaaacsaaca s ωωω . (4-26)

Numerical evaluation of the roots reveals that the high concentration, C1
+ (and the

corresponding C2
-), is always stable while the low concentration, C1

- (and C2
+), is always

unstable. This is expected, based on experimental observations of collective decision-

making in ants between trails [70, 71, 82, 99]. For j = 1 and s > 2, these solutions

87

correspond to a limit point bifurcation. For s even and j = s/2, there is a pitchfork

bifurcation of unstable branches emerging from Φq = s. Refer to the bifurcation diagram

below for s = 4 (Figure 10). The homogeneous state loses stability at Φq = 4, the locus of

a pitchfork bifurcation of two unstable branches (corresponding to j = 2). The limit

points are located at Φq = 3.5, generating four semi-inhomogeneous solutions, two of

which are stable. In the domain 3.5 < Φq < 4, three simultaneous stable solutions exist,

while two exist for Φq > 4. Note the multistability present in this system, one of the

characteristic properties of self-organization.

Figure 10. Bifurcation diagram for s = 4 (taken from [85], p. 582)

For the case of j > 1, manipulation of the characteristic determinant reveals the

following two j and s – j roots:

1

1
222

1

1
111

1

1

1

1

C

C
ca

C

C
ca

+
−

=−=

+
−=−=

ω

ω
(4-27)

88

Given that the stability conditions for these roots are incompatible, one concludes that at

least one root is positive. Hence, the semi-inhomogeneous solutions with j > 1 are

always unstable. The state diagram of the system is shown in Figure 11, with Φ = 10.

Note the three main regions of the graph, each corresponding to different stability

conditions of the homogeneous and semi-inhomogeneous solutions. Multistability is

represented in the middle region, in which a number of stable states are possible. Note

that bifurcation phenomena are possible as environment factors cause the system to move

from one region to another.

Figure 11. State diagram with exploitation modes (taken from [85], p. 582)

The critical values of s, denoted sc1 and sc2, correspond to the number of food sources

required to switch from one exploitation mode to another (for a given set of system

parameters).

1
2

,
2

21 +


==
vk

s
vk

s cc

φσφσ
 (4-28) and (4-29)

89

The first critical number represents the transition point from exploitation of a single

source to mixed exploitation. The second number, Equation 4-29, corresponds to

transition from mixed to homogeneous exploitation of multiple sources. Note that these

values depend on the colony size (related to φ), quality of sources (σ), and evaporation

rate (v). These critical values explain the ability of an ant colony to adapt foraging

behavior in response to global environment changes, such as addition of food sources.

Due to the system dynamics presented above, colony-level behavioral plasticity is

achieved without the need for individual awareness of the changes.

PURSUIT MODEL

While the other models in this section describe complete systems of central-place

foraging, this particular model focuses on one specific element. As described in

Subsection 3.3.1, some species of ants employ group recruitment. In this process, the

recruiter leaves a trail to the food source while being followed by a number of recruited

workers. The followers sometimes deposit trails of their own, reinforcing that of the

leader. Ethologists have observed that ant trails become more direct as more followers

reinforce the trail, eventually resulting in a straight line connecting the nest and food

source. Bruckstein presents a mathematical analysis of this pursuit problem in [106],

aiming to show “…that globally optimal solutions for navigation problems can be

obtained as a result of myopic cooperation between simple agents or processors” (p. 62).

Bruckstein’s analysis of the ant-inspired pursuit problem proceeds as follows.

The “pioneer” ant, denoted A0, follows an arbitrary path, P0, at unit speed from home

located at (0,0) to the food source, located at (L,0). The initial path is parametrized as:

90

[])(),()(000 tytxtP = , (4-30)

where the parameter, time (equivalent to arc length), runs from 0 to T0 = L0, the length of

P0. At time τ1 > 0, the first follower, A1, starts walking with its velocity vector always

pointing toward A0 (see Figure 12). The path of A1 is given by:

[])(),()(111 tytxtP = , (4-31)

where t runs from τ1 to T1 = τ1 + L1, with L1 being the length of P1. At time τ2 > τ1 + δ,

A2 begins following A1, and so on. If ant An+1 catches An, the two are joined on the path

of An.

Figure 12. Diagram of theoretical pursuit problem (taken from [106], p. 60)

The rule of pursuit says that the velocity vector of An+1 is always directed toward An,

with unity magnitude. Therefore, the path of ant An+1 is the solution of the differential

equation:

)()(

)()(
)(

1

1
1 tPtP

tPtP
tP

dt

d

nn

nn
n −

−
=

+

+
+ with initial condition)0,0()(11 =++ nnP τ (4-32)

Bruckstein proceeds to provide a rigorous proof for the following theorem:

91

THEOREM: The sequence of pursuit paths, Pn, converges to the straight line segment

connecting (0,0) to (L,0).

This proof of the limiting behavior of solutions to the governing differential equation,

Equation 4-32, is an important result in self-organization. While reproduction of the

proof is beyond the scope of this work, the result shows that a very simple rule of pursuit

on the individual level generates self-organization on the group level.

Subsection 4.4.2: Probabilistic Models

Probabilistic modeling of biological self-organization is quite common, although

it is less frequently employed for studies of complete foraging systems. The most

prevalent usage of probabilistic modeling and Monte Carlo simulation relates to trail-

following behavior. In particular, probabilistic models are traditionally used to examine

the choice of a worker ant at a trail bifurcation point. These models are incapable of

capturing the full behavioral complexity of a mass recruitment system, but they provide

valuable insight into the mechanisms of self-organization in such systems. One popular

example prevails in the swarm intelligence literature: the “binary bridge” or “binary

choice” model [68-70, 96, 99]. The model was initially developed by Deneubourg et al.

in 1990 in relation to a binary bridge experiment with the Argentine ant [96]. Subsequent

investigations have borrowed the same model for foraging analysis of different ant

species (e.g., [99]).

The binary bridge experiment was designed to study the transition in the

Argentine ant “…from the uncoordinated state (the diffuse front) to the coordinated state

(the exploratory trail)” [96], p. 159. The setup consists of a diamond-shaped bridge

92

placed between the nest and the food source. In this way, the researchers were able to

analyze the exploration traffic on two alternative routes. In [69], additional

experimentation is presented with unequal bridge length. These experiments demonstrate

collective decision-making in a swarm of foraging ants, as the ants regularly choose the

shorter path.

The model formulation is quite simple, but it accomplishes the goal of

reproducing the experimental results using a few simple probabilistic relationships. The

model makes the following initial assumptions:

• The amount of pheromone on each branch is proportional to the number of ants

that used the branch to cross.

• Pheromone evaporation does not occur.

• The probability of choosing either branch can be calculated using a simple

general choice function.

The assumption regarding pheromone evaporation applied to the Argentine ant, but the

assumption breaks down at large time scales. Therefore, the model is not valid steady-

state analysis of long-term trajectories. According to these assumptions, let Ai and Bi be

the numbers of ants that have used branches A and B, respectively, after i total ants have

used the bridge. The probability that the (i + 1)th ant chooses branch A is:

n
i

n
i

n
i

A
BkAk

Ak
P

)()(

)(

+++
+

= (4-33)

The complementary probability is given by PB = 1 – PA, due to the fact that one of the

two bridges must be chosen. This equation quantifies the way in which a higher

concentration on branch A corresponds to a greater probability of an ant choosing trail A.

93

The form of the equation was obtained from trail-following experiments in [83]. The

parameter n determines the degree of nonlinearity of the choice function. Large n

corresponds to sensitive dependence on differences in Ai and Bi. The parameter k

quantifies the degree of attraction to an unmarked branch. A high value of k necessitates

a greater amount of pheromone to make the choice nonrandom.

In addition to the choice function, Equation 4-33, it is necessary to define the

dynamics of trail reinforcement. The dynamics follow directly from the first assumption

of the model (see previous page):

A

A

i

i
i P

P

if

if

A

A
A

>
≤


 +

=+ δ
δ1

1 (4-34)

A

A

i

i
i P

P

if

if

B

B
B ≤

>


 +

=+ δ
δ1

1 (4-35)

where δ is a random variable uniformly distributed over [0,1]. These dynamics ensure

that Ai + Bi = i, the number of discretized time steps (and ant passages). A simple Monte

Carlo scheme can be used to analyze the model. Deneubourg et al. used a Monte Carlo

simulation to compare the model’s predictions to experimental results [96]. By tuning

the parameters n and k, the model agrees closely with experimental results (Figure 13).

The graph below shows the percentage of ants that followed the dominant trail as a

function of the total number of ant passages on either trail. For low values of total ant

passages, the percentage of preference is only slightly above 50%. But, as the total

number of passages increases, over 90% of the ants have chosen the dominant branch

during a given trial.

94

Figure 13. Theoretical model (solid curve) compared to experimental data
points (taken from [96], p. 163)

This model clearly demonstrates the mechanism of positive feedback. Positive feedback

amplifies initial fluctuations in the system, causing the colony to preferentially exploit

one of the two equal alternatives. Multistability is clearly present, as exclusive

exploitation of either source is a potential stable state. While [68] mentions the extension

of this model to include branches of unequal length, only experimental results are

reported.

Subsection 4.4.3: Cellular Automaton Models

Of the three main classes of foraging models, cellular automaton models are least

applicable to central-place foraging via mass recruitment. Due to the limitations of using

very simple rules to determine the state of each cell, it is difficult, if not impossible, to

use CA to model a complete foraging system. Instead, CA is often employed to simulate

trail networks (e.g., Figure 14). By far the most common application of CA to self-

organization in ant foraging is modeling of the exploratory swarm raids of army ants [68,

95

70, 81, 95, 107]. Figure 14 shows the results of three CA simulations of swarm raid

patterns of army ants. The trail patterns illustrate a central trunk trail trail leading away

from the nest, with a delta-shaped front at the leading edge of the swarm. The three

simulations, A, B, and C, correspond to various distributions of food within the

environment. In scenario A, no food was present in the virtual environment; in B, food

was distributed evenly in many clusters; in C, food was located in only a few large

clusters.

Figure 14. Results of CA simulation of swarm raids (taken from [70], p. 275)

This type of behavior is more amenable to CA modeling than mass recruitment-based

foraging. The effort that comes closest to modeling mass recruitment is found in two

related papers by Ermentrout, Watmough, and Edelstein-Keshet [108, 109]. The first of

these papers, published in 1993, represents the definitive publication on using CA to

96

model biological systems [108]. The paper presents a CA model of the formation of

persistent foraging trails, showing “…that the formation of a dominant trail depends on

the total ant density” [109], p. 357. The subsequent work uses the same model to

investigate the initial formation of a trail by ants emerging from a central nest location. It

is important to note from the outset that, in both investigations, the simulated “ants”

continually deposit pheromones. This represents a significant departure from mass

recruitment behavior, in which pheromones are only deposited on the trip home from a

food source. However, these two papers represent the best example of CA modeling for

a foraging system.

Ermentrout and Edelstein-Keshet identify two major classes of CA models—

deterministic and “lattice gas”—that are employed simultaneously for their simulation

[108]. The formation and decay of trails obey a deterministic model, while motion of the

ants follows the “lattice gas” approach. As the name implies, the deterministic model

changes the state of each cell based on deterministic rules incorporating the states of

neighboring cells. The “lattice gas” method allows for partially random motion of

particles within a spatial grid.

The basic CA model includes an algorithm for “ant” behavior within the two-

dimensional grid and simple deterministic rules for the formation and decay of trails on

the stationary cells. The “ant” behavior is given by the following rules:

1. The ants move at a fixed speed.

2. Each ant deposits pheromone at a constant rate. When following a trail, a

larger constant rate ensues.

97

3. There is a constant probability (nonzero) that an ant following a trail will lose

the trail.

4. There is a constant probability (nonzero) that an ant will cross a trail and not

follow the trail.

5. When an ant comes to a fork, it has a higher probability of choosing the path

with higher pheromone concentration.

6. While wandering, each ant has a probability per time step of turning a random

angle.

The rules governing the trail formation and pheromone decay are:

1. The state variable for pheromone concentration increases when an ant passes.

2. The pheromone decays at a steady rate.

Given these simple rules, the automaton requires the following parameters for operation:

• grid size, m

• number of ants, N

• maximum and minimum pheromone concentrations, φmax and φmin

• amount of pheromone deposited while off trail, τoff

• amount of pheromone deposited while on trail, τon

• probability of a wandering ant turning an angle of 45n°, Bn

• probability of losing a trail, P (fidelity α P-1)

All of the probabilities are per ant per time step. In [108], the grid has periodic (toroidal)

boundary conditions, with m = 50. The continuous boundaries allow uninterrupted

simulation for analysis of steady-states. In [109], a grid with “absorbing” boundary

conditions was used to simulate an infinite domain, and m = 256.

98

The results of these complementary CA models are three-fold. First, [108]

establishes that a critical ant density is required to establish a dominant trail. Second, the

same investigation also identified an initial disordered phase prior to trail establishment.

Figure 15 illustrates this early phase of the simulation, with each ant leaving a continuous

trail but failing as a colony to establish any stable trails. Figure 16 shows the eventual

formation of a dominant trail. Note that only two virtual ants are wandering and not

following the one stable trail. Third, results from [109] indicate that the ability of a group

to form strong trails is inversely related with individual fidelity to the trails.

99

Figure 15. Early, disordered phase of CA simulation (taken from [108], p.
122)

Figure 16. Formation of a dominant trail (taken from [108], p. 123)

100

Section 4.5: Model-Based Predictions

The models presented above effectively reproduce much of the complex system

behavior seen in the recruitment-based foraging of social insects. Each model has a

different perspective and level of mathematical rigor, making their contributions

complementary to a full theoretical understanding of mass recruitment and self-

organization. Taken as a whole, the results of these models provide several key

qualitative predictions pertaining to the results of simulation and experimentation with

real robots. The predictions are listed below and arranged according to their

correspondence to one of the three characteristic properties of self-organization (see

Subsection 3.1.3).

• Emergent Pattern Formation

o A critical density of foragers is required to generate some trail patterns.

o Formation of an established trail (or trails) may follow an initial

“disordered phase” of unpredictable duration.

o The nature of the trail pattern depends on parameters such as the number

of foragers, food distribution, pheromone decay, etc.

o Trail formation relies on autocatalysis of random fluctuations in the paths

of searching foragers.

• Multistability

o When multiple food sources are present, a number of stable states may

exist, ranging from exclusive exploitation of one source to uniform

exploitation of all available sources.

101

o When multiple food sources are present, under certain conditions, only

one stable state exists.

o The foraging group may collectively choose a suboptimal stable state.

• Bifurcation Phenomena

o Variations in key system parameters may correspond to dramatically

different food source exploitation schemes.

o Oscillations in certain parameters (especially in the number of active

foragers) may allow a system near a bifurcation point to switch from a

suboptimal to an optimal solution.

102

Chapter 5: Simulation

Section 5.1: Why Simulate?

Computer simulation is extremely common in the research of swarm intelligence.

In fact, simulations are the most common method of researching such systems. They

tend to be far simpler to implement than experimentation with real robots, especially for a

large number of agents. Simulations are popular due to the ability to test the behavior of

hundreds or thousands of individual agents, which is still unprecedented in physical

experiments. Simulated swarms often generate results to confirm the predictions of

theoretical models. They are also commonly used to predict the behavior of real robots.

Due to these different aims, there are two major classes of computer simulations: those

attempting to closely simulate and/or forecast real-world operation of physical robots,

and those seeking to verify or augment theoretical understanding of self-organization.

The computer simulations in this work fall into the second category. The aim is

not to accurately represent physical robots in a simulated computer environment. For

example, two or more individual agents in this simulation were permitted to momentarily

occupy the same space. In a simulation used to directly predict robot performance,

collisions avoidance behavior would be included in the simulation. The overall goal here

is to investigate the predictions of theoretical modeling from the literature (see Chapter

4), visualize system behavior to enhance understanding, and extend theoretical

knowledge of scenarios for which mathematical modeling is intractable. It is important

to emphasize the last point regarding cases in which theoretical work is either incomplete

or absent altogether. In these cases, simulations are extremely important, as they advance

103

the understanding of swarm-intelligent systems where mathematical models are as yet

undeveloped.

A number of simulation tools exist for the purpose of investigating swarm

intelligence and self-organization. These tools range in complexity and platform

compatibility, as well as availability to an independent researcher. For this work,

StarLogo was chosen as the simulation utility. This software is widely available, free,

PC-compatible, and user-friendly. An introduction is provided in the next section.

Section 5.2: Introduction to StarLogo

The StarLogo programming and simulation environment was born out of a

collaborative research effort in the late 1980s between Mitchel Resnick and Seymour

Papert of MIT’s Media Laboratory. As an aside, Papert’s book entitled Mindstorms

inspired LEGO’s Mindstorms brand name (see Section 6.2). They developed an

educational programmable robotics system known as LEGO/Logo. The system

employed the Logo programming language to operate robots built from LEGO

components. The Logo programming language had previously (late 1960s) been

developed as an educational tool for children. It allowed a programming novice to

manipulate one or a few on-screen “turtles” using a series of commands. Inspired by

decentralized systems, cellular automata, and Brooks’ subsumption architecture, Resnick

sought to create a versatile simulation tool with Logo as a foundation. The result is

StarLogo, which Resnick describes as:

…a massively parallel programming language that lets people control the actions

of (and interactions among) thousands of computational objects. Whereas

104

traditional versions of Logo allows users to control a single graphic "turtle" (or

maybe a few graphic turtles), StarLogo give users control over thousands of

graphic turtles. With StarLogo, people can create and explore a wide variety of

decentralized systems.[84], p. 33

Like the original Logo, StarLogo is an object-oriented programming language with two

main types of objects: “turtles” and “patches.” Unlike in more advanced programs such

as C or C++, the user cannot create new classes of objects. The user can create several

“breeds” of turtles, however. In many situations, such as simulation of an ant colony,

only one breed of turtle is required. Both turtles and patches possess a small number of

state variables, and both are able to execute StarLogo commands. Instructions are

provided to the turtles and patches by writing procedures. Several of these procedures

constitute a StarLogo program. The turtles and patches are capable of parallel operation,

facilitating study of massively-parallel decentralized systems. Refer to [84] or [110] for

more information, or Appendix A for StarLogo documentation.

Section 5.3: Program Description

StarLogo programs contain two accompanying sections: turtle procedures and

observer procedures. Turtle procedures define the set of instructions carried out by each

turtle, in parallel. From within a turtle procedure, an individual turtle can also ask a patch

to execute a patch command. Observer procedures serve a variety of functions, from

program initialization to data collection. The observer can ask patches or turtles to

execute commands, create or destroy turtles, and/or monitor the status of patches and

turtles.

105

Subsection 5.3.1: Turtle Procedures

There are three turtle procedures, which can be cast in terms of behavior-based

control. Each procedure represents a particular behavior necessary to complete the task

of foraging. The behaviors are based closely on the mass recruitment behavior of an

individual worker ant, as described in Subsection 3.3.1. Each ant operates completely in

parallel, acting as an autonomous agent with a homogeneous group. Refer to Appendix B

for the complete StarLogo code for each procedure.

The default behavior is wander, in which each virtual ant moves forward along a

partly random path. Each forward step of one unit is followed by a random heading

perturbation of at most 25°. The result is a meandering path with fairly smooth and wide

turns, and devoid of abrupt changes in direction.

If, during wander, an ant lands on a patch with pheromone greater than zero, the

follow procedure begins. The ant rotates in place while checking the status of the patch

one unit ahead of its current location. If the patch ahead is part of the trail and farther

from home than the current location, the turtle moves to that patch and begins the process

again. If the patch ahead is a food patch, the turtle moves onto it and starts go-home. In

this manner, the turtles follow the trail of virtual pheromone to a food source. A timeout

setting causes a turtle to abandon following and resume wander when the trail disappears

or dead-ends.

The third procedure, go-home, involves “picking up” the food item (coloring the

patch black) and returning to home. The ant sets a heading for the Cartesian origin, the

106

center of the foraging field, and moves toward home. Setting a heading toward home

contains a slight random element, producing minor deviations from the straight-line path

to home. As it moves toward home, the virtual ant increments the value of pheromone on

each patch by five.

Subsection 5.3.2: Observer Procedures

There are four observer procedures in this program, but one of the procedures is

essentially a sub-procedure called by another procedure (see Appendix B). This leaves

three main procedures, listed below along with the function(s) of each.

Table 5. StarLogo Observer Procedures

Procedure Function(s)

setup

* draws foraging field boundary and home

* generates distribution of food patches

* creates turtles (virtual ants)

decay decreases pheromone concentration (periodically)

color-patches updates color of patches based on pheromone concentration

Most of the functions of the observer procedures are trivial, but the pheromone decay

merits elaboration. Each patch is assigned a state variable, called pheromone, which

represents the virtual pheromone concentration. This variable has a maximum of 100 and

a minimum of zero. The maximum corresponds to a light shade of green (almost white),

zero to black, and five to a very dark shade of green. Each time a trail-laying ant passes

over a patch, pheromone is increased by ten. At periodic time intervals, which vary in

length depending on the selected decay rate, pheromone is decremented by five for all

107

patches. The decay procedure also ensures that pheromone does not fall below zero or

rise above 100 for any patch. While this simplistic decay mechanism does not attempt to

mimic biological pheromone evaporation, it is sufficient to produce swarm-intelligent

system behavior very similar to that found in real ant colonies. Through these computer

simulations, it became evident that biologically precise decay trends were unnecessary.

As a result, the decay mechanism required no further sophistication for this application.

Section 5.4: Simulated Scenarios

Computer simulations were conducted of six separate scenarios, five of which

involve variations of group foraging via mass recruitment. The first scenario is the

exception, as it investigates a related but separate facet of self-organization in foraging.

The process of group recruitment in ants generates pheromone trails in straight lines

extending from the nest to the food source. This tendency is explored theoretically in

Section 4.4 and simulated using StarLogo as the first scenario.

The remaining scenarios simulate full-scale foraging tasks. The first, Case 1, is

the only non-cooperative foraging situation. All others include trail deposition and

following, as well as trail decay in time. The trails are represented by varying shades of

the color green. Brighter shades correspond to higher pheromone concentrations. Data

collection in each trial occurred internally, using StarLogo constructions designed for

monitoring simulations.

108

Subsection 5.4.1: Straight Trail Simulation

Trail-straightening behavior has been discussed from a theoretical perspective in

Subsection 4.4.1. A simple simulation provides confirmation of the theoretical result and

allows one to easily visualize the self-organizing process. The simulation includes one

virtual “leader” ant that starts at home and wanders along a random path while leaving a

trail. After some time interval, the first follower ant begins walking, maintaining a

heading directed toward the leader. The follower also leaves a trail, but of a different

color. This process is repeated several times, with each follower treating its immediate

predecessor as the leader. The time interval between each follower is varied to

demonstrate the effect on convergence to a straight path.

Subsection 5.4.2: Case 1

The first case is an example of non-cooperative group foraging. A number of

virtual ants depart from home and retrieve single items of virtual food without leaving

trails. The food distribution is generated randomly before each trial within the StarLogo

program. 100 food patches are distributed randomly within the foraging area to start the

test. When only 25 remain, the simulation is stopped. The simulation was run using a

range of 2-90 virtual ants.

Subsection 5.4.3: Case 2

The second case is the first to involve cooperative group foraging. Mass

recruitment is the mechanism of cooperation that produces useful and complex group

behavior. The food distribution is a single cluster of 60 food items, located near the edge

109

of the foraging field. Positive reinforcement allows the virtual ants to generate persistent

pheromone trails to the cluster of virtual food. When 12 food patches remain, the

simulation is stopped. The simulation was run using a range of 5-90 virtual ants and the

pheromone decay rate was varied as a parameter.

Subsection 5.4.4: Case 3

This case is similar to Case 2, but with two virtual food clusters. The ant behavior

is identical, as are the mechanisms by which self-organization occurs. In order to study

more complex group behavior, a number of variations were introduced in this case. The

simplest case is two clusters of equal size (41), equidistant from home, and located on

opposite sides of home. One simulated variation of this was making one of the two

clusters closer to home (ratio of distances = 2/3), while maintaining equal size and

angular position. A second variation was to introduce the closer food source at some

time later than the farther source. The source close to home was introduced after 10 out

of the 41 food items were retrieved from the original source. These variations allow

observation of system behavior such as multistability, bifurcation phenomena,

adaptability, and collective decision-making. The simulation was stopped after all food

items were retrieved. The simulation was run using a range of 30-100 virtual ants. Trail

decay rate was also varied as an experimental parameter.

Subsection 5.4.5: Cases 4 and 5

Cases 4 and 5 differ only in the number of food sources present. In Case 4, 3 food

sources of equal size (22) were presented, equidistant from home. The same applies to

110

Case 5, except four sources were used (of size 25). These two cases allow observation of

multistability and bifurcation phenomena, due to a number of potential exploitation

patterns in each situation. Current theoretical modeling fails to explain all of the

phenomena present in competition between multiple sources, especially more than three.

The simulations were stopped after all clusters were fully depleted. The simulation was

run using a range of 30-90 virtual ants; pheromone decay rate was also varied.

Section 5.5: Results

Subsection 5.5.1: Straight Trail Simulation

This simulation was performed to confirm and provide visualization of the

theoretical result presented in Subsection 4.4.1. In the following figures, the path of the

initial ant is shown in black. The first follower ant sets out from home and heads directly

toward the leader ant. The second follower operates according to the same rules, but

following the first follower ant, rather than the original leader. As expected, for any

random initial path taken by the “leader” virtual ant, the paths of subsequent followers

converged to a straight line. One example of this is shown in Figure 17, with the initial

path shown in black. Note that the path of the final ant begins to approximate a straight

line. Using higher numbers of followers results in a perfectly straight line. Figure 18

illustrates the progression from the initial to final path, using six total virtual ants. Six

snapshots in time are provided (from top left to bottom right), with each figure showing

the trail pattern shortly after each ant departs from home.

111

Figure 17. StarLogo simulation of trail straightening

Figure 18. Six steps in the sequence of trail straightening (top left to bottom
right)

Note that a similar process of convergence to a straight path occurred in multiple tests

with random initial paths. The convergence was accelerated by using shorter intervals of

time between departures from the nest.

112

Figure 19. Trail straightening with short departure interval

Figure 20. Trail straightening with long departure interval

The simulation shown in Figure 19 featured a short departure interval between ants. As a

result, each ant followed the preceding path more closely, resulting in slower

convergence to a straight line. By comparison, the longer interval illustrated in Figure 20

produced accelerated convergence to a straight line. The path of the fifth follower ant is

nearly a direct path from home to the endpoint.

Subsection 5.5.2: Case 1

In the first simulated case of non-cooperative foraging, the initial food distribution

is generated automatically through StarLogo. As shown in Figure 21, the initial test setup

includes 100 randomly distributed food items represented on-screen by 100 yellow

113

“patches,” or pixels. The outer boundary of the simulation is colored red, which cannot

be crossed by a simulated ant. Home is shown at the center of the foraging field in

brown. Initially, as in experimentation with real robots (see Chapter 6), the foragers are

arranged facing directly away from home with uniform angular distribution. When the

simulation is started, each forager begins to search, with a significant random element to

the search path. The initial direction of each ant, therefore, does not determine which

sector of the field it will visit first. Figure 22 shows the status of the simulation after 20

time steps. With such a large number of ants (N=70), most of the initial 100 food patches

have been retrieved. Note the absence of pheromone trails, which are useless in such a

food distribution.

Figure 21. StarLogo simulation (100 distributed food patches, 70 ants, time = 0)

114

Figure 22. StarLogo simulation (70 ants, time = 20)

The rate at which food is retrieved by the colony provides a useful global description of

the foraging dynamics. Results (both simulation and experimental) will be presented, in

part, by showing the time evolution of food collection. Figure 23 is one example of such

a graphical representation of the foraging system. Notice that the task was considered

complete after 75 out of 100 food items were retrieved. An interesting observation from

the case of random food distribution is that the general curve shape remains the same for

different numbers of ants in a given trial. The example shown in Figure 23 is very

similar to the progression seen for 5 < N < 90. In each case, the collection rate

diminishes gradually as the system approaches task completion. This reduction in

retrieval rate reflects the decreasing food density in the foraging field. At the beginning

of a trial, the probability of each individual ant finding a food patch is higher than near

the end of the test. As this applies to each individual, the global result is a steadily

decreasing collection rate. This trend is seen for the entire range of N, but in every case

115

the trend is weak. From beginning to end, the collection rate varies only slightly, but

according to a reliable and gradual decay.

Figure 23. Time evolution of food remaining (N=10)

In order to investigate the dependence of performance on the number of foragers, N, the

total time required to complete the task was chosen as a performance parameter. As

discussed in Section 4.2, robotic (simulated and physical) foraging systems are often

analyzed in this manner. Essentially, the system efficiency is defined according to time

minimization. Figure 24 illustrates the relationship between the number of ants and the

task completion time. As expected, the completion time rises asymptotically as N

approaches zero. The trend closely resembles a power law relationship between the two

variables. As N is increased, the performance improvement continues, but at a

decreasing rate. In this simulation, the completion time begins to level off completely

around N=100, at which point the task requires very few time steps. Saturating the

foraging field with simulated ants does not correspond to a realistic biological system, as

energy would be wasted by many of the foragers.

116

Time Steps vs. Number of Ants

0
100
200
300
400
500
600
700
800

1 10 100

Number of Ants

T
im

e
S

te
p

s

Figure 24. Completion time versus N (average of 3 trials1)

Especially in the case of robotic foraging systems, unintended interaction between robots

is an important issue. Many systems are not scalable to large numbers of robots, due to

the detrimental effect of collisions between robots. In the simulation, two or more

simulated ants were allowed to occupy the same space, thereby ignoring collisions.

However, an accounting was kept of these “interactions.” The data is shown below in

Figure 25, in terms of collision frequency. The frequency of collisions allows

comparison across trials of different duration. In what resembles another power law

relationship, the collision frequency increases dramatically with the density of ants in the

environment. Refer to Chapter 7 for a more detailed discussion of power laws and their

appearance in foraging systems.

1 All subsequent graphs of this type reflect averages over three trials, unless otherwise noted.

117

Collision Frequency vs. Number of Ants

0

5

10

15

20

25

30

35

1 10 100

Number of Ants
C

o
ll

is
io

n
s

p
er

 t
im

e
st

ep

Figure 25. Collisions frequency versus N (average of 3 trials2)

It is evident from this test that a trivial foraging task can be accomplished without

cooperation, as one would expect. The group performance increases with group size, but

solely due to increased spatial density, resulting in faster coverage of the finite area of the

foraging field.

Subsection 5.5.3: Case 2

In the second scenario simulated using StarLogo, cooperation is introduced. The

food is clustered together in one corner of the foraging field, a short distance from the red

boundary. In this scenario and those to follow, the virtual ants are equipped with trail-

laying and following behavior. Mass recruitment is used to exploit the single source.

However, negative feedback is also present in the form of simulated pheromone

evaporation. The rate of pheromone evaporation, or decay, is a parameter varied in these

simulations. A typical foraging process is shown in Figure 26 and Figure 27. These

figures show the initial formation and subsequent reinforcement, respectively, of a

2 All subsequent graphs of this type reflect averages over three trials, unless otherwise noted.

118

pheromone trail to the single source in the top left corner of the field. Note the increased

intensity (brighter shades of green) and width of the trail in the second figure. For

sufficiently slow pheromone decay rates, d, the colony of virtual ants builds a stable trail

to the food source. In Figure 26 and all subsequent StarLogo screens, ants following a

trail are colored red.

119

Figure 26. StarLogo simulation (N=40, time=30)

Figure 27. StarLogo simulation (N=40, time=50)

The rate of pheromone decay, d, is an important parameter in these simulations.

Three values of d were used in the case (d = 10, 20, and 35). The first corresponds to a

decay rate slow enough for a single ant to follow its own trail back to the food source.

For d = 20 or d = 35, this is not possible. In the case of d = 35, the pheromone trail

decays so rapidly that the end of the trail nearest to the food source (deposited first)

120

disappears before the ant arrives at home. As the parameters d and N are varied, the

system exhibits three main types of behaviors. From small d and/or large N, the colony

reliably establishes a strong trail to the food source. The resulting time evolution of food

collection is shown in Figure 28.

Figure 28. Time evolution of food remaining (N=70, d=10)

By comparing this curve to the one from the non-cooperative case (see Figure 23), a

fundamental difference becomes evident between the two cases. While non-cooperative

foraging produces a gradually decreasing collection rate, simulated mass recruitment

generates a steadily increasing rate of collection. Due to positive feedback via the

pheromone trail, the rate at which items of food are retrieved increases throughout the

test. This represents a clear advantage of cooperation, as the performance of the group

improves over time. The difference in concavity between the two types of curves shown

in Figure 23 and Figure 28 illustrates the clear benefit of cooperation. The downward

concavity of Figure 28 is a signature of cooperation in foraging.

The second type of system behavior (higher d and/or lower N, compared to

behavior described in previous paragraph) represents a transition from effective

cooperation to the failure of stigmergic cooperation caused by rapid trail decay. This

transition behavior is characterized by short intervals of time in which the collection rate

121

begins to increase. These periods occur when a trail is briefly established and utilized by

a few followers. However, as shown in Figure 29, negative feedback due to rapid trail

decay, combined with insufficient ant density, periodically interrupts the momentum of

the system. In terms of the food vs. time curve, this type of behavior is characterized by

intervals with the signature downward concavity interspersed with flat sections of the

curve.

Figure 29. Time evolution of food remaining (N=25, d=35)

The third type of system behavior (high d and/or small N) resembles that seen in

the non-cooperative case, Case 1. The number of food items remaining in the field tends

to follow a nearly linear trend in time, with a slight leveling-off near the end of the trial.

The concavity is slightly positive, as shown in Figure 30, which is quite similar to

behavior of the system foraging without trails for randomly distributed food items. The

main difference is that food discovery is much less probable, due to the spatial

concentration of food items in one corner of the field. This low probability of discovery

results in extended periods during which no items are collected. The curve in Figure 30

remains flat from t = 425 to t = 600, indicating a period of fruitless searching by the

colony. For rapid trail decay (d = 35) and small group size (N < 30), the system exhibits

this non-cooperative type of behavior, despite the ability to deposit and follow trails.

122

Figure 30. Time evolution of food remaining (N=10, d=35)

The task completion time for each test reflects the three modes of system behavior

described above. Figure 31 shows the completion time versus group size with the decay

rate, d, as a parameter. For N > 40, the decay rate has minimal effect on the system

behavior, as ant density is sufficient to establish and maintain a stable trail. For N < 40,

the curves begin to show a dependence on decay rate. As the number of ants decreases,

the curve corresponding to d = 35 transitions first into non-cooperative behavior,

characterized by much longer task completion time. For slower decay rates, this

transition occurs at a smaller group size. The intermediate behavior, in which trails are

formed for short periods of time before fading out, corresponds to completion times

between approximately t = 150 and t = 325.

123

Time Steps vs. Number of Ants

0

200

400

600

800

1000

1200

1400

1 10 100

Number of Ants

T
im

e
S

te
p

s

d = 10

d = 20

d = 35

Figure 31. Completion time versus number of ants (d=decay rate)

The relationship between group size and collision frequency is shown in Figure

32. As expected, the collision frequency increases with group size for all decay rates.

The curves lie in close proximity to one another, indicating that pheromone decay rate is

not an important parameter with respect to collision frequency. The trends closely

resemble that seen in Figure 25, resembling a power law relationship.

Collision Frequency vs. Number of Ants

0

2

4

6

8

10

12

14

1 10 100

Number of Ants

C
o

ll
is

io
n

s
p

er
 t

im
e

st
ep

d=10

d=20

d=35

Figure 32. Collision frequency versus N

124

Subsection 5.5.4: Case 3

Case 3 features three variations of the two-cluster scenario. The first situation is

nominal, with two equidistant and identical food sources. The second is a variation, with

one food source moved closer to home. Lastly, the third scenario involves presentation

of the closer food source after partial exploitation of the first source. Results for these

three variations on the theme are presented in turn.

EQUIDISTANT FROM HOME, BOTH PRESENTED AT T = 0

In this scenario, the system generally operated in one of three states. For some

combinations of decay rate and group size, the group failed to perform cooperatively,

representing one state. The other two foraging modes represent two coexistent stable

states: (1) preferential exploitation of one source and (2) simultaneous exploitation of

both sources. Examples of trials that exhibited the two modes are shown in Figure 33

and Figure 34, respectively. Either of the two modes was possible for many

combinations of parameter values. Furthermore, the system sometimes switched between

the two modes during a single trial.

125

Figure 33. StarLogo simulation (N=30, d=25, t=407)

Figure 34. StarLogo simulation (N=30, d=15, t=206)

The two plots below clearly illustrate the two cooperative system states. In Figure 35, the

colony initially discovers both sources and establishes weak trails to both. However, due

to insufficient ant density and/or rapid trail decay, the colony is only able to maintain a

stable trail to one source (Food Source B). The colony then focuses solely on this source

until it is fully depleted. It then switches focus to the remaining source (Food Source A).

126

Note that the choice of Source B over Source A is entirely dependent on random initial

fluctuations of the system. In cases where one source was collectively chosen by the

colony, Source A and Source B were chosen with roughly equal probability.

Figure 35. Time evolution of food remaining (N=30, d=25)

Figure 36 illustrates mutual utilization of the two food sources. The number of

food items diminishes steadily at roughly the same rate for both Source A and B. This

type of behavior occurred for large group size and/or slow trail decay. In these

conditions, the colony is able to establish two stable pheromone trails.

Figure 36. Time evolution of food remaining (N=30, d=15)

For each value of the parameter d, trials were run for N = 30, 50, and 70. Figure

37 illustrates the performance achieved in each test condition. For N = 70, ant density

was sufficient for concurrent exploitation of both sources, irrespective of decay rate, d.

With smaller group size, the system performance decreases, indicating a transition to

127

exploitation of a single source. For N = 30 and d = 35, the colony was unable to achieve

cooperative behavior of any kind, resulting in a very high completion time (t = 1346).

Time Steps vs. Number of Ants

0
200
400
600
800

1000
1200
1400
1600

10 100

Number of Ants

T
im

e
S

te
p

s

d=15

d=25

d=35

Figure 37. Completion time versus number of ants

UNEQUAL DISTANCE FROM HOME, BOTH PRESENTED AT T = 0

This scenario features two identical sources, but with the near one located at 2/3

of the distance to home of the farther source. The same three possible system behaviors

as in the equidistant scenario were observed. The main difference in this case is that, for

exploitation of a single source, the probability of collectively choosing the near source

was far greater than 50%. Of the 27 total simulation trials, only once was the far source

exploited preferentially over the near source. Typically, unless trails were established to

both sources, the system evolved like the example of Figure 38, Figure 39, and Figure 40.

These figures represent three moments in time for a single simulation. In Figure 38, the

colony has established a strong trail to the source closer to home. A very weak trail

exists to the farther source, to which only one ant is traveling via the trail. Figure 39

shows the point in time when the closer source is fully depleted. Note that the trail is

very well defined. In time, however, the strong trail evaporates without reinforcement.

128

This increases the number of ants available to establish a trail to the remaining food

source. Figure 40 shows that a trail is eventually established to the remaining source.

The last remnant of the old trail is still visible to the lower right of home.

129

Figure 38. StarLogo simulation (N=30, d=15, t=106)

Figure 39. StarLogo simulation (N=30, d=15, t=203)

130

Figure 40. StarLogo simulation (N=30, d=15, t=302)

The two cooperative foraging modes are shown below by the time evolutions of

food retrieval. By comparing Figure 41 and Figure 42, the difference is clear between the

two situations. Figure 41 shows the behavior typical of a moderately-sized colony (N =

30) foraging under the influence of a rapid decay rate (d = 35). The colony is unable to

establish two strong trails. In this case, the colony chooses Food Source B (closer to

home), an efficient choice compared to Food Source A. Upon complete exploitation of

Source B, the colony redirects its effort to Source A. This transition is clear from

dramatic increase in collection rate from Source A (at approx. t = 475) soon after Source

B is completed (at approx. t = 325).

131

Figure 41. Time evolution of food remaining (N=30, d=35)

The collection trend in Figure 42 closely resembles that in Figure 36, when the

sources were equidistant from home. In both trials, high ant density combines with slow

decay rate to facilitate simultaneous exploitation of the two sources. Despite the unequal

distance from home, both sources were visited at approximately the same rate throughout

the test.

Figure 42. Time evolution of food remaining (N=50, d=15)

The task efficiency, measured by completion time, is shown as a function of

group size and decay rate in Figure 43. As expected, the task efficiency increases with

group size and the inverse of decay rate. Completion time less than approximately 300

time steps corresponds to a trial in which concurrent exploitation of the two sources

occurred. For sequential exploitation of the two sources, more time steps were required.

132

At the upper extreme of completion time, for t > 800, cooperative behavior broke down

due to rapid trail decay.

Time Steps vs. Number of Ants

0

200

400

600

800

1000

10 100

Number of Ants

T
im

e
S

te
p

s

d=15

d=25

d=35

Figure 43. Completion time versus number of ants

UNEQUAL DISTANCE FROM HOME; ONE SOURCE PRESENT AT T = 0

In this variation of the two-cluster scenario, the source closer to home is presented

at t > 0. It was introduced to the foraging field after retrieval of 10 food items from the

source present at t = 0. This allows for initial discovery of the source and potential

establishment of a trail prior to introduction of the new source. This situation was

designed to test system adaptability in response to a dynamic environment. In

approximately 90% of the trials, the new source was quickly discovered and utilized by

the colony. This type of adaptation occurred even when a stable trail had been

established to the source present at t = 0. The colony either abandoned the initial source

or began simultaneous exploitation. The progression observed in one trial is shown in

Figure 44 and Figure 45. The first shows the status of the colony immediately after

introduction of the second food source (to the bottom right of home). Note that, while 10

food patches are missing from the initial food source, a stable trail has not been

133

established. In addition, the new food source was discovered immediately after its

placement into the field. The trails resulting from the initial discovery of this new source

are quickly reinforced, and positive feedback eventually creates a strong trail to the new

source (Figure 45). In this trial, the colony efficiently selected the new food source over

the source initially present.

134

Figure 44. StarLogo simulation (N=50, d=35, t=157)

Figure 45. StarLogo simulation (N=50, d=35, t=250)

The following three plots represent three distinct responses to introduction of the

new source. In the first plot, Figure 46, the collection rate from Food Source B

accelerates quickly soon after its introduction. Interestingly, the collection rate of Source

A is not noticeably affected by the new source. However, throughout the trial, the

collection dynamics for Source A are characteristic of non-cooperation. In contrast, the

135

collection curve for Source B exhibits the downward concavity produced by cooperative

foraging. In Figure 47, the colony responds to the new food source by exploiting the two

mutually. Note that this occurs with a large group of virtual ants and with a slow decay

rate. These conditions allow the colony to discover and exploit the new source without

abandoning the old source. A decision between the sources is not required, as system

resources are able to utilize both concurrently. When the decay rate is increased to d = 35

(N remains constant at N = 70), the system is unable to establish a stable trail to the new

source. It is discovered, but the colony eventually continues exploiting the original

source before switching to new source (Figure 48). In this case, the momentum of

positive feedback forced the system into a suboptimal foraging strategy.

136

Figure 46. Time evolution of food remaining (N=50, d=35)

Figure 47. Time evolution of food remaining (N=70, d=15)

Figure 48. Time evolution of food remaining (N=70, d=35)

Figure 49 illustrates the overall task performance for all combinations of group

size and pheromone decay rate. The trends are similar to those seen in Figure 43 and

Figure 37. System performance is generally impaired by a rapid decay rate and small

137

group size. The shortest completion times (t ≈ 200) occur when the system is able to

exploit the new source without abandoning the original.

Time Steps vs. Number of Ants

0
100
200
300
400
500
600
700
800

10 100

Number of Ants

T
im

e
S

te
p

s

d=15

d=25

d=35

Figure 49. Completion time versus number of ants

Subsection 5.5.4: Case 4

Case 4 features three food sources, equidistant from home. All three sources were

present at the beginning of each trial, with 120° between each source. All trials were run

with N=100, with the decay rate varied from d = 20 to d = 55. This case was designed to

investigate the existence of multiple exploitation schemes and the importance of decay

rate as a system parameter. As discussed in the case of two food sources, more than one

mode of foraging is possible for a given set of test conditions. With three sources

present, three major modes of cooperative foraging were observed. The first mode

consists of the establishment of one dominant trail, with minimal utilization of the other

two sources (until the first is depleted). This type of exploitation is quite rare with N =

100, as the ant density is generally sufficient to support two or more stable trails. The

second and third foraging states are simultaneous exploitation of two or three sources,

respectively. These behaviors were much more common, again due to the large group

138

size. The three images below from StarLogo display an example of the initial

exploitation of two sources. Figure 50 shows the existence of two strong trials, with only

a weak and incomplete trail leading to the food source above home. In Figure 51, both of

the bottom food sources have been finished and only slight remnants remain of the trails.

Notice that a numbers of ants are stranded on these weak trails. These “lost” ants

eventually abandon following and resume the default wandering behavior. As a result,

they become available for reinforcement of a trail to the one remaining food source. In

Figure 52, the colony has rediscovered the final source and established a strong trail.

139

Figure 50. StarLogo simulation (N=100, d=20, t=132)

Figure 51. StarLogo simulation (N=100, d=20, t=185)

140

Figure 52. StarLogo simulation (N=100, d=20, t=213)

The following figures demonstrate the two most common exploitation patterns in

this set of trials. Figure 53 shows concurrent exploitation of all three sources. Notice

that the decay rate is quite slow (d = 15) in this trial, which allows the virtual ants to

divide their resources between all three sources. When the decay rate is slow, trail

lifetime is extended, decreasing the critical density of ants required for trail maintenance.

For a higher decay rate (d = 25), the colony can only support two concurrent trails

(Figure 54).

141

Figure 53. StarLogo simulation (N=100, d=15, t=140)

Figure 54. StarLogo simulation (N=100, d=25, t=74)

The time evolutions of food collection for each of the cooperative behavioral

modes are shown below. The first plot, Figure 56, shows the effect of a high pheromone

decay rate. The colony focuses on each food source in a sequential foraging strategy.

Figure 55 is a clear example of utilizing two sources, while virtually ignoring the third.

Note the time delay between completion of the first two source (t = 120) and the dramatic

142

increase in collection rate to the remaining source (t = 190). During this intervening

time, ants are still following the two dominant trails. It takes a short time for those trails

to decay and for the wayward ants to commence searching for new food sources. Finally,

in Figure 57, with a slow decay rate (d = 25), the colony forages from all three sources at

the same time.

Figure 55. Time evolution of food remaining (N=100, d=50)

Figure 56. Time evolution of food remaining (N=100, d=40)

143

Figure 57. Time evolution of food remaining (N=100, d=25)

The pheromone decay rate, as shown by the results above, plays an important role

in the group foraging strategy. Figure 58 summarizes these results, by showing the task

completion time as a function of decay rate. There is a strong negative correlation

between task efficiency and decay rate. As the decay rate increases, the group is forced

to collectively choose to abandon one or two sources and focus on the other two or one

sources, respectively. Note that the graph in Figure 58 is divided into regions

corresponding to the three exploitation schemes.

Time Steps vs. Decay Rate

0
50

100
150
200
250
300
350
400

15 25 35 45 55

Decay Rate

T
im

e
S

te
p

s

Figure 58. Completion time steps versus decay rate (N=100)

1 source at a time

2 concurrent, then 1

Concurrent exploitation of 3 sources

144

Subsection 5.5.4: Case 5

Case 5 features four identical food sources, equidistant from home. Each source

is placed near a corner of the foraging field. This group of simulation trials was run to

demonstrate the existence of several stable foraging states. The values of N (group size)

and d (decay rate) were chosen to achieve a variety of exploitation schemes. This case is

similar to Case 4, which included three sources, but with added complexity in the

possible exploitation behaviors. A typical example is presented in the following

successive images from one trial. Figure 59 reveals the initial exploitation of the two

sources on the left side, with the dominant trail leading to the top left source. Notice that

only incomplete trails lead to the other two sources. After depletion of the top left

source, the dominant trail shifts to the lower left source, but the other two sources remain

weakly exploited (Figure 60). In Figure 61, the lower left source has been completed and

focus has shifted to the top right source. Finally, in Figure 62, the colony moves on to

the one remaining source.

145

Figure 59. StarLogo simulation (N=50, d=20, t=50)

Figure 60. StarLogo simulation (N=50, d=20, t=127)

146

Figure 61. StarLogo simulation (N=50, d=20, t=230)

Figure 62. StarLogo simulation (N=50, d=20, t=302)

The following plots each represent a distinct foraging strategy observed in the

simulation. These figures do not represent an exhaustive listing of the possible

behaviors, as a great deal of complexity exists with four sources. This complexity arises

from the possibility of switching between exploitation schemes during the course of one

trial. The examples below only present some of the possible foraging patterns. The

147

simplest cooperative behavior is shown in Figure 63, as all four sources are exploited at

approximately the same rate.

Figure 63. Time evolution of food remaining (N=70, d=15)

The following two figures demonstrate the concurrent exploitation of two (Figure 64) and

three (Figure 65) food sources. Notice that, in Figure 65, Food Source C was not even

discovered until long after the other three sources were depleted. With so many ants

committed to foraging at Sources A, B, and D, very few remained to discover new

sources. Source C was only discovered after many ants were finished with trail-

following.

148

Figure 64. Time evolution of food remaining (N=70, d=20)

Figure 65. Time evolution of food remaining (N=50, d=15)

Figure 66 and Figure 67 reflect more complex examples of system behavior. In Figure

66, the colony discovers all four sources early in the trial, but soon abandons Food

Source A. Sources B and C are moderately used, but the colony focuses on Source D.

After approximately 400 time steps, Source D is completed, but the trails to Sources B

and C evaporated completely. Meanwhile, positive reinforcement established a strong

trail to Source A, for which the collection rate rapidly increased. Upon completion of

Source A, the remaining two sources (B and C) were exploited concurrently.

149

Figure 66. Time evolution of food remaining (N=30, d=15)

In Figure 67, the colony first collectively chooses Sources A and D, but the trail to

Source D evaporates before completion. At approximately t = 700, a strong trail is

established to Source B, which is quickly finished. Eventually, Source D is rediscovered

and a trail is established to Source C, the only remaining source.

Figure 67. Time evolution of food remaining (N=30, d=20)

Clearly, when four food sources are present, the colony has the potential to utilize

a number of exploitation schemes. While the system behavior shows some dependence

on group size and decay rate, a number of states exist even for one set of system

parameters. Running several trials for fixed values of N and d resulted in a variety of

foraging patterns.

150

Chapter 6: Experimental Design

Section 6.1: Experimental Motivations and Goals

Given the theoretical models and simulation tools available to a swarm

intelligence researcher, one may question the utility of experimentation with real robots.

After all, physical implementation is more expensive and less conceptually enlightening

than simulation. It is usually impractical, for a number of reasons, to assemble a robotic

swarm for research purposes large than 10 to 20 robots. From a theoretical perspective,

one could argue, there is little to gain from physical implementation. The motivations for

physical implementation in this work arise in response to such notions. The five major

motivations for experimentation with real robots are discussed in the following

paragraphs.

The first motivating factor for this experimentation is the current lack of

experimental examples in swarm intelligence literature. While theoretical modeling and

simulations have generated a wealth of promising results and led to the imagination of

productive real-world robotic applications, most researchers have stopped at this juncture.

There are a few notable exceptions to this generalization, most of which are related to

development for military application. In such an immature field of study, it is reasonable

to lay a strong foundation in theory before forging ahead into baseless attempts at

implementation. At this point, however, further theoretical study pales in importance

without manifestation in experimentation. The field has matured to the point were further

advancement requires a combined focus in both theory and practice. This experimental

effort is an attempt to initiate just such a transition to greater balance in swarm

intelligence research.

151

Secondly, the only experimental attempts to design functional robotic foraging

systems currently present in the literature employ communication schemes other than

trail-based foraging. A number of other methods have been used, with varying success.

Most notably, beacons and tactile chains have enabled cooperative foraging. Other

examples have succeeded in foraging and/or clustering tasks via stigmergic cooperation.

Conspicuously absent is the utilization of trail-laying and following as the mechanism of

cooperation. Given that the examples above draw direct inspiration from biological

systems, including social insects, the absence of trails is a conspicuous void. One would

expect that the predominant method employed by ants would be one of the first choices

for a mode of communication. After all, the incredible efficiency of mass recruitment in

ants is a testament to the efficacy of self-organization.

While this experimentation is motivated by the lack of trail-based experiments

with real robots, as mentioned above, the third major motivation is the weaknesses of

current trail-laying and following in tasks other than foraging. With limited success, a

small number of researchers have attempted to develop robots capable of laying and

following trails. None of these attempts have been motivated by robotic foraging, but

they are the best examples of trails in robotics. Unfortunately, each of the proposed

systems has important weaknesses, especially if applied to a foraging task. From high

power consumption to slow chemical sensing to impractical trail material, each example

has critical flaws. In order to develop a functional foraging system, it will be necessary

to significantly improve the properties of the trail itself, as well as the deposition and

sensing capabilities of individual robots.

152

Novel technological concepts often generate unrealistic expectations in terms of

real-world application. This could be true in the world of robotics and AI more than any

other technological field. Proclamations made in the media or even in respected

published literature tend to overstate the extent, imminence, and value of potential real-

world applications. This is certainly the case in the swarm intelligence literature. Claims

are often made on the basis of theory and simulation, but these claims sometimes ignore

the difficulties of physical implementation. The step from the simulated on-screen world

to the real world is often a greater gap than expected. While it is admitted that swarm

intelligence implementation tends to be fairly simple in terms of the technological

requirements for each robot, system development remains a significant hurdle. At this

point, the swarm intelligence community has largely avoided a thorough investigation of

the difficulties of physical implementation. These difficulties can only be addressed as

they are encountered by groups attempting physical realization.

One of the central tenets of swarm intelligence is simplicity. This is one of the

main advantages proclaimed in the argument against traditional artificial intelligence.

Swarm intelligence researchers contend that behavior-based robotic systems exhibit

complex behavior, despite the simplicity of each individual. Few would argue against the

simplicity of a subsumption architecture, which greatly reduces the processing

requirements of the robot and the programming complexity. These claims of simplicity

seem to indicate that a group of technologically rudimentary robots should be sufficient

to exhibit swarm intelligence. In part, this experimental effort is motivated by an attempt

to test the limits of the doctrine of simplicity.

153

The primary goals of experimentation follow directly from the five major

motivations listed above. While each goal does not necessarily correspond to a single

motivation, there is a general correspondence that should be obvious. The following four

goals determined many of the subsequent choices regarding experimental design:

Experimental Goals

(1) Develop a system of robots capable of utilizing trail-laying and following in

completion of a central-place foraging task.

(2) Introduce a novel trail substance that is non-toxic, time-decaying, and easily

deposited and sensed.

(3) Demonstrate characteristics of a swarm-intelligent system 3

a. Emergent pattern formation

b. Multistability

c. Increased task efficiency due to cooperation

(4) Compare experimental task efficiency to theoretical predictions and

 simulation results.

Section 6.2: LEGO® Mindstorms™

In 1998, LEGO introduced a revolutionary product in the arena of educational

toys--Robotics Invention System (RIS). This robotics kit was developed as the flagship

product of a new Mindstorms brand name and released with the intended primary

audience of children. Within a few months of the release, however, it became apparent

3 Note that there is not an attempt to demonstrate bifurcation phenomena, due to the difficulties of
demonstrating this with few robots and on short time scales.

154

that the RIS appealed to a far broader audience than LEGO had anticipated. Hobbyists,

robotics enthusiasts, engineers, and researchers in academia became interested in the

product on personal and professional levels. Just over a year later, LEGO introduced

RIS, version 1.5, which was quickly followed in 2001 by RIS 2.0. Each kit, which retails

for approximately $200, contains over 700 individual pieces, including a variety of

standard LEGO bricks, TECHNICS parts, two motors, two touch sensors, a light sensor,

and the RCX (see Figure 68 below). These sensors are encased in fully functional LEGO

bricks and designed to interface seamlessly with the RCX “programmable brick.” The

RCX brick functions as the on-board computer for custom robotic creations. It is a

programmable, micro-controller based brick capable of simultaneously operating three

motors, three sensors, and one infrared (IR) serial communications interface. When a

consumer obtains this kit, all that is required is a personal computer to create (and

program) an autonomous mobile robot. LEGO provides software for installing a

graphical, icon-based programming environment known as RCX Code. This kit also

includes an IR transmitter required to download programs from the PC to the RCX.

Figure 68. LEGO Robotics Invention System (RIS) 2.0

The system architecture developed by LEGO facilitates ease-of-use that even a

child can master. At the lowest level is the processor, a Hitachi H8300, which executes

155

machine code instructions. The processor cooperates with additional components that

convert signals from the ports into digital data, using chips providing memory for data

and program storage. Above the processor and circuit layer is the ROM code, which

provides functionality to the basic input/output system (BIOS) of the RCX, allowing it to

startup and interface with peripherals. On top of the ROM code layer runs the firmware,

which functions as the operating system of the RCX. The firmware is downloaded and

“installed” into the RAM of the RCX when the user purchases the product. The topmost

layer is the user-created RCX Code defining instructions for a particular program. The

software provided by LEGO translates the program into bytecode before sending it to the

RCX, and finally the bytecode is interpreted by the firmware and converted to machine

code. The RCX processor executes the machine code to run the program. Refer to Table

6 for a summary of the RCX specifications.

Table 6. Technical Specifications for LEGO RCX [111]

Processor Hitachi H8

RAM 32 Kb

ROM 16 Kb

I/O 3 sensors / 3 actuators

Communication IR transceiver

The RCX represented an important innovation in the world of custom and

amateur robotics. By linking sensing and actuation so tightly with the mechanical

architecture of a robot, the RCX completed an excellent platform for robotics education

and investigation. The RCX was inspired by the MIT Programmable Brick developed in

MIT’s Media Lab in the mid-1990s [112], which received sponsorship from LEGO. The

156

RCX was an independent creation, however, designed “from the ground up” and in no

way based on the technical elements of MIT’s brick. Through ingenious reverse

engineering, the community of Mindstorms addicts came to fully understand the internals

of the RCX [111] (see Figure 69 for an external view of the RCX). This understanding

quickly led to the introduction of custom sensors (see [29], and references therein),

actuators, and, most importantly, alternatives for programming the RCX. From

alternative programming languages to firmware replacement, the full capabilities of the

RCX were unlocked as a number of individuals created these alternatives to the

restrictive RCX Code. For a full description of these alternatives, see [29].

Figure 69. LEGO RCX 2.0

One of the most popular alternatives to the software provided by LEGO is Bricx

Command Center, or BricxCC, an integrated development environment (IDE) that fully

replaces the functionality of the software provided by LEGO while enhancing

programming, debugging, and testing capabilities. BricxCC was developed by John

Hansen and Mark Overmars as a complete program development interface between a PC

and the RCX [113]. Refer to Appendix C for BricxCC documentation. BricxCC

supports a variety of alternative programming languages to RCX Code.

157

Despite the simplicity of LEGO’s RCX Code, it has several major drawbacks as a

programming language:

• The set of instructions is very limited, and doesn’t disclose the full power

of the RCX processor.

• The graphical interface is unsuitable for large programs and becomes

unmanageable.

• RCX Code severely limits the resolution of sensor readings (especially for

the light sensor).

• Functions, subroutines, and arrays cannot be created.

• The use of variables, counters, and timers is limited.

Because of these important limitations, most advanced users turn to one of several

alternative languages. For this research, NQC (Not Quite C) was chosen as the best

alternative. Developed by Dave Baum, NQC is a streamlined version of C, augmented

with a variety of macros and commands specific to programming the RCX [114]. The

advantages of NQC include the following:

• It is based on the original LEGO firmware, ensuring reliability.

• It is multiplatform on the host side (PC, Mac, Linux) and target side

(supports all LEGO programmable bricks: RCS, Scout, Cybermaster)

• It is supported by a number of IDEs, including BricxCC

• NQC is free software released under the Mozilla Public License.

While NQC closely resembles C in terms of syntax, there are some important differences.

Refer to [114] or the NQC documentation in Appendix D for more detailed information.

158

Section 6.3: Disappearing Ink

In evaluating candidate substances for a trail, there were several important

considerations. The most important factor was the property of time decaying trail

“concentration,” similar to pheromone evaporation in ant foraging. This property is

necessary in a fully functional foraging system, as it provides negative feedback to the

system. Without a time-decaying substance, an established trail would remain constant

even after depletion of a food source (or a cluster of targets). While this robotic

implementation is not intended for a specific real-world application, certain other trail

attributes are desirable:

• Non-toxic

• Non-damaging to common indoor flooring materials

• Imperceptible after complete trail decay

• Inexpensive

• Chemically inert and nonflammable

Of course, two other major considerations are the ease with which the substance can be

deposited and perceived by individual robots.

An original solution to the problem of choosing a trail substance is “disappearing

ink.” Commonly found as a toy or a novelty item, “disappearing ink” actually possesses

many of the properties listed above. Of course, “disappearing ink” is known for its

characteristic ability to fade from a dark blue color to colorless in a matter of seconds or

minutes. In addition, the ink is non-toxic in terms of contact with human skin. It does

not damage or stain a variety of hard floor materials. Carpet would not be a feasible

substrate for a number of reasons, making the issue of carpet damage irrelevant. It is

159

quite inexpensive, as it is composed of three very common chemicals [115]. The only

drawback to this substance is the issue of flammability. The chemicals in this ink are

flammable, making it unsuitable for some applications. However, for a wide range of

applications, this would not be a problem. Disappearing ink is not highly reactive, but it

would react with a number of chemicals. Again, this would likely not be a factor in a

wide array of real-world applications.

The chemistry involved in disappearing ink is quite simple, which is another

favorable attribute of this substance. Only three elements are required to make the ink: a

pH indicator, an alcohol, and a base. These elements combine to create the disappearing

behavior of the ink. The most common formulations of disappearing ink utilize the

following specific chemicals:

• thymolphthalein indicator, C28H30O4

• ethanol (ethyl alcohol), C2H6O

• sodium hydroxide, NaOH

This particular pH indicator is dark blue in a moderate to strong basic solution (pH > 10)

and colorless in solutions with pH < 9.3 [115]. These three chemicals are combined to

form a basic solution (due to the addition of NaOH). When the ink is spread thin on a

piece of paper or cloth, the increased surface area accelerates the following chemical

reaction:

2 NaOH + CO2 → Na2CO3 + H2O

As sodium hydroxide is consumed by this reaction with carbon dioxide in the air, the pH

of the solution decreases. The pH indicator, thymolphthalein, reflects this change in pH

by steadily changing from blue to colorless. The color change can be accelerated by the

160

addition of an acid to the solution. By varying the initial concentration of NaOH, the

time required to transition from blue to colorless can also be tailored.

For the purposes of this experiment, the desired time interval between ink

application and complete disappearance was on the order of several minutes. Through

trial and error, the following process achieved the appropriate initial NaOH concentration

to produce a complete decay time in the range of 2-8 minutes:

Step 1: Add 20 ml indicator/ethanol solution (0.05% w/v) to small beaker.

Step 2: Add 12-25 drops NaOH aqueous solution (50% w/w) to produce the

desired decay rate.

Step 3: Add approx. 0.75 grams solid granular thymolphthalein indicator to obtain

darker shade of blue.

The last step in the process allows one to adjust the initial shade of blue without altering

the time required for color change. In order for the trail to be dark enough to sense using

the LEGO light sensor, it was necessary to increase the concentration of indicator using

this additional step. In Step 2, note that the range of 12-25 drops of sodium hydroxide

corresponds to a complete disappearance time of 2-6 minutes.

The ink solution was tested on a number of surfaces, with a final choice of poster-

board as the substrate. The non-glossy paper surface provides enough ink absorption to

prevent the robot wheels from tracking ink across the foraging field. It also prevents the

ink from drying prior to color change, which can occur with more absorbent materials.

An unexpected benefit to the use of disappearing ink is trail reinforcement. When a new

trail is deposited across an older trail (even if already colorless), the overlapping region is

161

darker than the rest of the trail. This region also takes slightly longer to disappear,

creating the effect of increased "pheromone concentration" along high-traffic routes.

Section 6.4: Mechanical Design

The mechanical design of LEGO Mindstorms robots is considered by some to be

more of an art than a science [116], which could be said of mechanical design in general.

A number of books have been written for the single purpose of aiding LEGO designers

(e.g., see [29]). The thriving online Mindstorms community provides a wealth of

information for anyone intending to design a LEGO robot, which is of course

considerably different from traditional robot design. Fortunately, designing in LEGO has

certain distinct advantages over the use of traditional mechanical components:

• LEGO is fast – From design concept to finished product, creation of a

basic model takes only a matter of hours.

• LEGO is cost-effective – The basic RIS 2.0 kit costs only $200, which

enables one to create robots of moderate complexity. Additional parts are

readily available and fairly inexpensive compared to traditional robotics

components.

• LEGO is flexible – Redesigns and modifications are relatively easy to

perform, given the ease of disassembly.

The main mechanical disadvantage to using LEGO Mindstorms is reliability and

structural integrity. Without taking special care to reinforce each mechanical subsystem,

LEGO parts can detach from one another due to vibration and reaction forces applied to

motors. The following subsections describe the design requirements, provide sensor and

162

motor information, and detail the final robot design. Finally, a few design challenges

encountered during the design process are addressed.

Subsection 6.4.1: Design Requirements

The first step in the engineering design of a mechanical system is to perform

functional decomposition of the expected task and generate a set of functional

requirements [117]. In this case, the task is collective foraging, which can be subdivided

into seven subtasks:

(1) Searching for targets

(2) Obstacle avoidance

(3) Object retrieval

(4) Homing

(5) Object release

(6) Trail following

(7) Trail deposition

In order to complete each task, a number of functional requirements are needed from the

final design. Some of the functional requirements are necessary to complete more than

one subtask, while others are coupled. For example, the subtask of trail deposition must

occur immediately after object retrieval. To complicate the issue, the design is limited to

three motors and three sensors due to the input/output capabilities of the RCX. From this

list of subtasks, a preliminary set of functional requirements is obtained, as shown in

Table 7.

163

Table 7. Generation of Functional Requirements for a Foraging Robot

Subtask Functional Requirement(s)

search for targets
� locomotion
� ability to sense target

obstacle
avoidance

� ability to sense obstacle or collision
� locomotion
� turning

object retrieval � method of picking up target
homing � ability to know relative position of home
object release � method of dropping target

trail following
� locomotion
� ability to sense trail

trail deposition
� locomotion
� mechanism of depositing ink

The preliminary list of functional requirements (Table 8), after eliminating duplicates, is

as below:

Table 8. Preliminary Functional Requirements

locomotion

turning

obstacle or collision
sensing
target sensing

pick up target

release target

trail sensing

trail deposition

knowledge of home
location

164

 This list can be refined by consideration of certain design constraints. As

mentioned above, one of the major constraints is the limitation of three motors and three

sensors. Another self-imposed constraint relates to the turning requirement. While none

of the subtasks require rotating (turning in place without translation), the maneuverability

afforded by this ability should be considered essential. Performing obstacle avoidance in

a system of autonomous robots would be extremely difficult without the ability to rotate

in place. Yet another self-imposed constraint applies to the functional requirement of

knowing the location of home. In reality, the robot is only required to know its position

relative to home. There are four main solutions to this problem of mobile robot

positioning: (1) odometry and dead-reckoning, (2) beacon referencing, (3) landmark-

based navigation, and (4) map-based positioning. Dead-reckoning is notoriously difficult

due to accumulated odometry error. Odometry would also require the use of rotation

sensors, which would violate the constraint of using only three sensors. Map-based

positioning requires a priori knowledge of the foraging field and sophisticated on-board

representations of the environment, which is impossible using LEGO robots and violates

the philosophy of a swarm-based system. Landmark-based navigation could be useful,

except for the lack of physical landmarks in the experimental environment and the need

for some type of robot vision. Having eliminated all other options, beacon referencing

becomes the obvious solution. With these constraints in place, the final list of functional

requirements takes shape (

Table 9):

165

Table 9. Functional Requirements

locomotion

rotation

pick up target

release target

Actuation

trail deposition

obstacle/collision sensing

target sensing

trail sensing
Sensing

home beacon sensing

Having separated the functional requirements into the categories of sensing and actuation,

the input/output limitations of the RCX become problematic. Four functional

requirements require sensors, while only three input ports are available. Similarly, five

requirements require motor actuation, but only three outputs are present. For this reason,

the functional requirements become coupled, introducing added complexity to the

mechanical design process. In order to solve this design problem, it was necessary to

utilize a single light sensor to satisfy two functional requirements (target sensing and trail

sensing). One motor was used to satisfy three functional requirements (pick up target,

release target, trail deposition). The details of the design are found in Subsections 6.4.3

and 6.4.4, but Table 10 illustrates resource (sensors and motors) allocation according to

functional requirement.

166

Table 10. Allocation of Motors and Sensors

locomotion
two motors

rotation

pick up target

release target

Actuation

one motor

trail deposition

touch sensor obstacle/collision
sensing
target sensing

light sensor
trail sensing

Sensing

light sensor home beacon
sensing

Subsection 6.4.2: LEGO Sensors and Motors

In this section, a brief technical description is provided for the LEGO sensors and

motors. While a number of websites sell or provide instructions for building custom

LEGO-compatible sensors, this design only utilizes Mindstorms brand motors and

sensors.

LEGO currently produces three types of 9V DC electric motors that are

compatible with the RCX: the ungeared motor, the geared motor (Figure 70), and the

micromotor. The geared motor is a newer product and has several advantages over the

other two models (Table 11). It features low current consumption, low RPM due to an

internal multistage gear reduction, much higher efficiency than the ungeared motor, and

167

far more torque and higher reliability than the micromotor. The 9V geared LEGO motor

is extremely reliable and fairly resistant to damage under stall situations [29].

Table 11. Properties of LEGO Motors (taken from [29], p. 44)

Figure 70. LEGO 9V geared motor (taken from [118])

Two types of LEGO sensors are used in this design: light and touch (see Figure

71). The touch sensor is a very simple mechanical contact that opens or closes a circuit

internal to the RCX. It has a binary state, on or off, which is read by the RCX. The

LEGO light sensor is more complicated, but still a very basic sensor compared to

conventional sensing hardware. Individuals have succeeded in reverse engineering the

light sensor and discovering the internal circuitry (refer to [119] for details). The main

elements of the sensor are a phototransistor for sensing light intensity and a red LED,

which allows the sensor to measure reflected light as well. The phototransistor is also

sensitive to light in the IR spectrum. The sensor can be employed to sense light intensity,

168

color, or relative distance to an object [29]. The RCX reads a raw value between 0 and

1023, depending on the intensity of light incident on the phototransistor.

Figure 71. LEGO touch sensor (left) and light sensor (right); (taken from
[118])

Subsection 6.4.3: Physical Architecture

The system architecture of the completed design consists of several subsystems.

These subsystems combine to form the final product, which is a robot satisfying all of the

functional requirements listed in

Table 9 (see Figure 72 for photographs of the completed robot). Each subsystem

is described below, along with its relationship to the entire system architecture.

169

Figure 72. Side (left) and front (right) views of final robot design

Prior to designing the mechanical architecture of the robot, it was necessary to

first decide on a system of locomotion. As described in Chapter 2, there are a variety of

available options for the drive system of an autonomous mobile robot. Each option has

distinct advantages and disadvantages. One of the functional requirements is rotation

(without translation), which immediately eliminates certain drive systems (steering,

tricycle, articulated, and pivot drives). Of the remaining four options (differential, dual

differential, synchro, and skid-steer), the differential drive was selected due to simplicity

of construction, the maintenance of an open undercarriage (not allowed by the synchro

drive), and a consistent axis of rotation (unreliable in a skid-steer drive). The selection of

a differential drive to some extent dictated the basic form of the robot. As with all

differential drive arrangements, the driving wheels are arranged on opposite lateral sides

of the robot and driven independently. One or more caster wheels at the front or rear of

the robot provide stability and free rotation.

170

After choosing a differential drive, the robot system architecture begins to take

shape. The first subsystem provides the foundation upon which all others are built: the

chassis (Figure 73). The robot chassis is a generally rectangular framework of beams

providing the structural integrity of the robot. The chassis was designed to withstand the

forces caused by collisions and those imposed as reaction forces on the motors. It was

also designed to resist internal detachment due to vibrations caused by ground contact

and motor operation. Redundant bracing and double-width longitudinal beams result in a

firm foundation for additional subsystems.

Figure 73. Robot chassis (with rear wheels attached)

The chassis is followed by the drive subsystem, which includes three basic

elements: (1) a caster wheel, (2) two rear drive wheels, and (3) two motors framed

together (Figure 74). The caster wheel, located at the front of the robot, connects

modularly into the main front crossbeam of the chassis. It is composed of two small

wheels (without tires) coupled on one axle and oriented symmetrically with respect to a

vertical axle. The vertical axle serves as the axis of rotation for the caster during turns.

Each rear drive wheel is covered with a rubber tire. The axle for each wheel passes

171

through a double-beam of the chassis and ends at a 48-tooth drive gear. The two drive

motors are braced together, back-to-back, in a frame solidly containing both motors. This

frame is connected to the chassis at several locations. Each motor has an 8-tooth gear on

the output shaft that drives the 48-tooth gear on each rear-wheel axle.

Figure 74. Caster wheel (left) and drive system (right)

The next subsystem is the front bumper assembly (Figure 75), which attaches

directly to two horizontal crossbeams on the front of the chassis. The bumper assembly

consists of one touch sensor that is closed upon contact with an obstacle. Two long,

angled lift-arms extend laterally from the center of the robot. These lift-arms rotate about

a horizontal axis in order to depress the touch sensor contact point. A rubber band

maintains the “open” state of the touch sensor by slightly rotating the lift-arms off the

contact.

172

Figure 75. Front bumper subassembly

At the rear of the robot is the pen holder and drive subsystem (Figure 76), which

controls the ink deposition process. A long drive axle is mounted laterally across the two

main drive motors, with a large pulley on the end of the axle. The axle is supported at

two points and generates the rotation of the pen holder frame, which is connected to the

axle via short lift-arms. The square pen holder frame has an opening in the center for

marker insertion and an elevated axle from which a rubber band connects to the RCX.

This band ensures that the default position of the pen holder is up (not depositing a trail).

The drive pulley connects by a rubber belt to a motor mounted on the right side (facing

the front of the robot) and near the center (front-to-back) of the robot. The motor is

mounted and braced solidly to the chassis, preventing dislodgement.

173

Figure 76. Pen holder and drive assembly

The mechanism responsible for capture and release of targets is least connected to

the chassis. A permanent magnet adhered to two LEGO racks (flat gears) is held in

tension by opposing rubber bands anchored on opposite side of the chassis (Figure 77).

The racks are driven by an 8-tooth gear on a laterally-oriented axle passing through the

chassis. This axle is driven by a rubber belt from the third (non-drive-system) motor

mounted directly above the end of the axle. The magnet assembly is guided in a vertical

slot constructed using small LEGO bricks and short axles connected to the underside of

the RCX. A large plate, on which the targets lay flat during magnetic suspension, covers

the magnet apparatus and is connected on four corners to the chassis (Figure 78). A

downward-facing light sensor connects to the chassis immediately in front of the flat

plate.

174

Figure 77. Magnet apparatus

Figure 78. View of robot undercarriage (note the red cover plate)

Finally, the last subsystem is the RCX, to which all motors and sensors are wired

(Figure 79). A forward-looking light sensor is mounted on top of the RCX, along with an

anchor point to which the pen-holder rubber band attaches. The RCX provides support to

the third (non-drive-system) motor, as well as the main pen-drive axle.

175

Figure 79. RCX Subassembly

Subsection 6.4.4: Assembly

This section describes the assembly procedure followed to build each of the seven

individual robots. Refer to Appendix F for the specific steps required to assemble each

subsystem described in the previous section. The integration of the subsystems into a

completed robot is the focus of this section. Robot assembly can be divided into 6 major

steps, as listed below:

Step 1: Assemble each individual subsystem (see Appendix F), except for the

target capture/release mechanism, which cannot be fully assembled ahead

of time.

Step 2: Connect the drive subsystem (caster, drive wheels, drive motors) to the

chassis (Figure 80).

176

Figure 80. Chassis, caster, rear wheels, and drive motors

Step 3: Attach the third motor to the chassis, followed by the pen holder and drive

mechanism. The rubber belt must be included between the motor output

shaft and the pen drive pulley. The second rubber belt (that connects to

the magnet apparatus drive axle) should also be included on the motor

shaft.

Step 4: Attach the front bumper assembly to the chassis.

Step 5: Attach the RCX subsystem to the chassis and connect all wires. Connect

the rubber band from the RCX anchor point to the suspended pen holder

axle.

177

Figure 81. Pen holder, bumber, and RCX subsystems added to assembly

Step 6: Construct the target capture/release mechanism onto the underside of the

RCX, including the opposing rubber bands anchored at points on the chassis

(Figure 82). Connect the rubber belt already on the third motor to the pulley

on the magnet drive axle. Attach the downward-facing light sensor to the

chassis. Then, attach the flat cover plate to the chassis.

Figure 82. Steps for adding magnet apparatus and cover plate

178

Subsection 6.4.5: Operation

Mechanical operation of the robot can be described in the context of each of the

“active” subsystems (excludes the chassis and RCX). The remaining four subsystems

contain at least one mechanism with moving parts. The operation of these subsystems is

described below:

• Drive System – The differential drive consists of two large, driven rear

wheels and one front caster wheel. During movement in a straight line

(forward or reverse), both drive motors operate in the same direction and

at the same speed. In this case the caster does not rotate about the vertical

support axle, but simply provides stability. Turning is accomplished by

disparity in the power applied to the drive motors. Varying this disparity

alters the turning radius. Rotation in place about the midpoint of the rear

drive axles occurs when the rear wheels are driven with equal power in

opposite directions. The caster wheel freely rotates to one side or the

other to allow for this rotation. By braking one motor and powering the

other, rotation can also occur about either rear drive wheel.

• Front Bumper – When the robot makes frontal contact with an obstacle of

appropriate height, the lift-arms are caused to rotate about the pivot axle.

After a small angular displacement, the touch sensor contact is depressed.

When the robot moves away from the obstacle, the lift-arms are pulled to

their original position by the rubber band in the bumper assembly. The

touch sensor button returns to its normal position.

179

• Pen Holder/Drive – The third motor is connected to the pen drive via a

belt and pulley system. In order to deposit an ink trail, this motor drives

the large pulley, causing the pen holder frame to rotate with the axle

toward the ground. Contact with the ground provides sufficient resistance

to cause the belt to slip on the motor pulley. The result is constant, even

pressure between the marker tip and the floor. The motor reverses

direction to lift the marker tip from the ground. It is held in this “up”

position by the rubber band anchored to the RCX, allowing the motor to

turn off.

• Object Capture/Release – In order to pick up a metal washer, the third

motor mounted above the main drive axle turns a belt connected to the

axle pulley. The 8-tooth gears on this same axle interface with the racks

on the magnet apparatus, generating linear vertical motion toward the

floor. The magnet apparatus is stopped by the cover plate, causing the

belt to slip on the motor pulley. A metal washer is suspended on the

underside of the cover plate due to forces applied by the magnetic field.

To release the washer, the motor turns in the opposite direction, moving

the magnet upward and away from the cover plate. This reduces the

strength of the magnetic field and allows the washer to drop to the

ground.

180

Subsection 6.4.6: Design Challenges and Solutions

A number of significant design challenges were encountered during the

development of this robot. These difficulties tested the limits of the imagination and the

capabilities of LEGO Mindstorms robotics. In some cases, the eventual solution was

sub-optimal, but could not be improved upon with the available materials and financial

limitations. Each of these challenges, although presented individually, actually formed

an interdependent set of design problems. The solution to one problem often rendered

another unsolvable, necessitating an iterative process to solve all of the problems in a

cohesive and functional design.

The most pervasive design challenge was the issue of robot size. Given a limited

space in which to perform experimental testing, compactness became a design necessity.

The length of the robot became the most important issue, as the width is largely

determined by the width of the RCX and two motors. A robot of great length encounters

maneuverability problems and suffers from inefficient obstacle avoidance due to the large

radius swept by the front end of the robot. This problem was solved solely through

design ingenuity and multiple design iterations. The vertical nature of the target release

mechanism also proved invaluable for conserving length.

The caster design also presented a number of challenges. First of all, the most

efficient caster designs contain two wheels capable of independent rotation [29]. This

allows the caster to turn freely without wheel slippage. However, designing a caster of

this type forces the caster to sweep through a circle of greater diameter during turns. This

causes clearance issues and increases the overall length of the robot. Casters also rotate

more freely under lighter loads. Unfortunately, creating a lighter burden for the caster by

181

moving it forward again corresponds to increased length of the robot. The final design

represents a compromise between robot length and weight distribution. The suboptimal

caster design, with two wheels coupled on one axle, was also chosen for the sake of

compactness.

The constraint of having only three available motors created a significant design

challenge. As mentioned in reference to Table 10 in Subsection 6.4.1, one motor was

allocated necessarily for three functional requirements. A single motor needed to pick up

an object, release an object, deposit an ink trail, and stop ink deposition. Furthermore,

each pair of these tasks is coupled, as they need to occur simultaneously. Ink deposition

must begin at the same time an object is picked up. The solution to this problem involved

the creative implementation of belt and pulley systems. Allowing belts to slip acts as a

torque-limiter, preventing motor damage in stall situations. Rubber bands were also

utilized to set default positions for the pen holder and magnet apparatus.

Releasing the metal washer (target) upon arrival at “home” presented yet another

design challenge. Using a magnet to pick up the washer proved to be a simple

mechanism to design. However, forcing the washer permanently out of the influence of

the magnetic field is far more difficult. Initial attempts to solve this problem were

hindered by the strong forces required for initial separation between the magnet and the

washer. It later became apparent that direct contact between the washer and magnet was

unnecessary. By introducing a space between the magnet and washer, and by moving the

magnet away from the washer rather than vice versa, this problem was eventually solved.

The last major challenge was the ink deposition mechanism. In order for each

robot to deposit a trail of ink capable of being followed, the line needed to be at least two

182

centimeters wide. Furthermore, the trail needed to be fairly uniform in terms of width

and ink concentration. It was essential to develop a deposition mechanism that did not

leave “pools” of ink on the surface, even if a robot was momentarily stationary during

homing behavior. This problem was solved by using a common, store-bought marker.

The ink was removed from a large washable-ink marker, which was then modified

slightly to fit into the LEGO pen holder. The original marker tip served as an excellent

ink repository. The tip absorbed plenty of ink for an entire trial, and deposited the ink

with excellent uniformity. A belt drive was used to apply constant pressure between the

marker tip and the floor. The belt slips on the pulley at a set amount of torque,

preventing the motor from stalling, but maintaining pressure on the marker.

Section 6.5: Behavior-based Programming

Subsection 6.5.1: Control Architecture Overview

A subsumption architecture was employed as the overarching control structure of

the robot. This is the signature architecture of behavior-based programming, as

popularized by Brooks [9, 10, 18] and Mataric [27, 61] (see Subsection 2.3.1).

Subsumption architecture is based on a system of layered levels of competence,

constructed in sequence from the simplest to most complex. Each competence level

forms a complete and fully-functional system of control. These layers are stacked in

parallel, with each higher level subsuming the lower levels. The layers are composed of

a small set of basis behaviors, a term introduced in [61]. While each basis behavior is

mentioned briefly here, a more thorough description of each is provided below in

183

Subsection 6.5.2. In order to accomplish the foraging task, four basis behaviors were

identified:

(1) Avoid – Collision detection and response

(2) Wander – Searching randomly for targets

(3) Follow – Following an ink trail to the food source

(4) Homing – Picking up a target, moving to home, and dropping the

target.

Appropriate implementation of these four behaviors makes it possible for each individual

to complete the task object location and retrieval. Notably, these basis behaviors are

identical to those used in simulation (see Subsection 5.3.1), with the necessary addition of

Avoid. In both simulation and experimentation, as expected, the behaviors generate the

interaction necessary for cooperation and resulting self-organization. It is important to

note that, while arbitration between the behaviors is based primarily on sensory input,

this is not strictly a reactive control architecture. Mataric makes a distinction between

reactivity and behavior-based operation of a mobile robot, but notes that “behavior-based

systems embody some of the properties of reactive systems, and usually contain reactive

components” [27], p. 3. The obstacle avoidance behavior is one example of a reactive

component to the control system. The motor commands are a direct reaction to a specific

environmental stimulus (touch sensor depression).

Three levels of competence are designed within this control architecture, Levels

0, 1, and 2. During the program development, a sequential “layered approach” was

employed to develop each competence level. The zeroth competence level was first

written, debugged, and tested to flawless operation before adding the first level. This

184

process was repeated until the robot achieved “Level 2 competence.” The basis

behaviors are arranged below according their respective competence level:

Zeroth Level: Avoid

First Level: Wander

Second Level: Follow, Homing

In order to elucidate the concept of subsumption, each competence level is represented

schematically below in Figure 83, Figure 84, and Figure 85.

Figure 83. Competence Level 0

Figure 84. Competence Level 1

START

If touch
sensor
pressed

Event Monitor

Avoid

START

If touch
sensor
pressed

Event Monitor

AvoidWander

185

Figure 85. Competence Level 2

Note, for example, the inclusion of Level 0 functionality in the Level 1 diagram. Level 0,

however, operates as normal with no knowledge of the existence of first level behaviors.

One also observes that arbitration between behaviors occurs on the basis of sensory input.

While the notion of behavior priority, in terms of access to motor control, is not clearly

defined in such an architecture, the basic order of priority, from highest to lowest, is (1)

Avoid, (2) Homing, (3) Follow, and (4) Wander. With the necessary exception of

avoiding obstacles, behaviors directly related to object retrieval possess highest authority.

This priority ordering is based on the biological example of foraging in ants. Food

retrieval to the nest takes the highest priority, as the colony seeks to maximize energy

yield.

Subsection 6.5.2: Basis Behaviors

The basis behaviors identified above represent all of the necessary functionality

required to complete a foraging task. They were directly inspired by foraging behavior in

social insects such as ants, especially those engaging in mass recruitment. Choosing an

appropriate set of basis behaviors is not a rigorously defined process, and the concept of

START

If touch
sensor
pressed

Event Monitor

AvoidWander
If light

sees
green

Event Monitor

If light
sensor

sees ink

Event Monitor

Homing
Follow

186

an optimal set of behaviors is rejected by Mataric [61]. Brooks notes that one important

characteristic in selecting basis behaviors is simplicity: “Behaviors tend to be simple so

that computational ‘depth’—the computational path from sensor to actuator—is

minimized to maintain a high degree of interactivity with the environment” [9], p. 17.

Mataric goes further, providing the following criteria for determination of suitable basis

behaviors:

A basis behavior set should contain only behaviors that are necessary in the sense

that each either achieves, or helps achieve, a relevant goal that cannot be

achieved with other behaviors in the set and cannot be reduced to them.

Furthermore, a basis behavior set should be sufficient for accomplishing the

goals in a given domain so no other basis behaviors are necessary. Finally, basis

behaviors should be simple, local, stable, robust, and scalable. [61], p. 4

Directed by these criteria and inspired by the example of “basis behaviors” employed by

individual worker ants, the final set of four basis behaviors was determined. The

specifics of each behavior are presented schematically in Figure 86. The complete robot

program was written in NQC (see Section 6.2) and is found in Appendix E.

187

Figure 86. Actions taken in each basis behavior

The simplest behavior, Avoid, is responsible for collision detection and

avoidance. Obstacles in the foraging environment include the perimeter boundary and

other robots, which are not distinguished from immobile obstacles. Collision detection is

achieved via the touch sensor. In response to this stimulus, the robot moves directly

backward for a short distance and rotates counter-clockwise through a random angle.

During the evasive maneuvers, the touch sensor is monitored, allowing initiation of

avoidance within execution of the avoid behavior.

Wandering fulfills the requirement of searching the foraging field for targets. An

extremely simple search method consists of following a straight path until a collision

occurs. The Avoid behavior then produces a new initial heading, at which point straight

motion resumes. All three sensors (both light sensors and the touch sensor) are

monitored during Wander: the touch sensor senses collisions, the forward-looking light

Avoid HomingFollowWander

Rotate random
angle

Turn away
from ink

trail

Move forward

Turn toward
ink trail

Rotate right;
read lt. sensor

Rotate left;
read lt. sensor

Cross over
ink trail

Move
forward

Rotate to
find home

beacon

Pick up target

Move reverse

R
E
P
E
A
T

R
E
P
E
A
T

Drop target

188

sensor looks for home to prevent wandering close to home, and the downward-facing

light sensor sees either a target or an ink trail. Wandering can be interrupted at any time

by any of the other three basis behaviors.

Follow instructs the robot to follow an ink trail sensed during Wander. The

process of following a trail is composed of two processes. Initially, the robot decides

which direction leads toward the food source. This accomplished by orienting itself

approximately parallel to the trail in opposite directions, in turn, and taking light intensity

readings from the forward-looking light sensor. Whichever direction produces a lower

intensity (high intensity light emanates from home) is the direction of the target source.

After choosing a direction, the robot engages in line-following along either the right or

left edge of the trail, depending on the initial direction of approach (see Figure 87). A

thorough discussion of line-following techniques in LEGO robots is found in [29]. For

following the left edge of a trail, the robot turns right until it sees the trail, turns right to

move ahead and off the trail, and repeats the process. The number of iterations is

determined by the distance to home, which is based on the reading of the forward-looking

light sensor taken during the decision on following direction. Upon completion of these

iterations, wandering behavior occurs. Wandering starts in the immediately vicinity of a

target source, causing Homing to occur with a high probability after completion of

Follow.

189

Figure 87. Robot line following, approaching trail from left or right

Homing consists of three sub-behaviors, all of which are required to return the

target to home. Having sensed the target on the ground, the robot must pick it up

magnetically. This is done by moving forward a small amount and descending the

magnet apparatus, which is coupled via the non-drive-system motor to rotation of the pen

holder mechanism into the down position. The next step is homing, which takes place by

reading the forward-facing light sensor and setting a heading toward the highest intensity.

Along the way, ink deposition continues through continuous driving of the pen holder

mechanism. The path to home is corrected periodically along the way, but the robot

considers itself home when a certain maximum light intensity is reached. At this point,

the pen and magnet apparatus are elevated, releasing the target. The robot then rotates

approximately 180° (back toward the food source) and commences with Wander.

As a complete control scheme, these four basis behaviors produce the desired

foraging behavior. They also facilitate stigmergic communication via trail-laying and

Targets

Home

Targets

Home

190

following. The result is an operational system of mass recruitment-based and self-

organizing foraging autonomous robots

Section 6.6: Experimental Setup

The experimental testing environment is described in this section. Each

experiment consisted of an initial spatial distribution of targets and 1-7 robots positioned

at home and directed radially toward the perimeter of the foraging field. For experiments

with multiple robots, approximately even angular spacing was maintained between

individuals at the start of the experiment. In cases involving clusters of targets (Cases 2

and 3), one robot was positioned facing each cluster to ensure rapid initial discovery of

each cluster. This practice avoids the possibility of an extended initial searching phase

before discovery of a cluster. Power limitations make it impractical to allow such an

initial search phase. Each test was initiated by starting a timer and quickly pressing

“Run” on each RCX. From that point forward, the robots operated autonomously except

in the event of a correctable malfunction.

Mechanical malfunction occurred in a number of tests, but over 90% of the trials

occurred without error. In rare cases, two robots would become entangled without the

ability to separate. Also, very specific angles of approach to corners sometimes caused

stagnation, rendering an individual immobile. Most of these cases were correctable

during testing, with no residual influence on the test results. In a handful of tests,

mechanical failure of an individual robot rendered the test invalid. Such tests were

immediately stopped and the results discarded.

191

Prior to each test, the battery level of each robot was checked to ensure equivalent

operation across all individuals. If the battery level at the beginning of a test was below

8.7 V (max 9.5 V), all six AA alkaline batteries were replaced.

Two trials were conducted for each test scenario. This provides some estimation

of variance within a particular scenario and provides an improvement in data credibility

over a single data point. Unfortunately, financial constraints made more thorough testing

impossible. Detailed statistical analysis is unfounded with only two data points per test,

but battery and ink consumption placed limitations on the number of tests. During the

course of experimentation, over 200 AA batteries were used. Due to the sensitive

dependence of robot operation on voltage supply and an approximate 20 minute battery

lifetime (under continuous operation), battery replacement for a single robot occurred

every two or three trials.

Data collection was performed by two primary means: robot data-logging and

direct observation. The RCX supports data logging, which was uploaded from each robot

to a PC following each test. Every robot logged a variety of data during each test,

including the time spent in each behavior, the number of obstacles encountered, etc.

Global data was collected by hand, including overall collisions, pick-up and drop-off

times for each target, and the total task completion time.

Subsection 6.6.1: Targets

In order to conduct robotic foraging experiments, it is necessary to select an

object that corresponds to items of food in the world of social insects. Depending on the

ant species and the foraging environment, the nature of food items varies. Some species

192

feed primarily on discrete food items carried one-at-a-time, such as seeds. Workers from

other species are able to carry multiple discrete food items in a single foraging trip. Food

sources can also be pools of liquid (e.g., nectar, sugar water), such as those commonly

presented to ants in laboratory experiments [82]. Nearly all physical experiments of

foraging with real robots employ discrete targets carried one-at-a-time back to home

(e.g., [12, 25, 58, 69]). This approach is far simpler to implement than simulating other

types of biological food sources.

A novel mechanism for target acquisition is used in this experimental design:

magnetic attraction. As described in Subsection 6.4.5, a vertically-adjustable permanent

magnet attached to the underside of the robot causes metal objects to levitate onto the flat

cover plate. Such a mechanism requires that at least some component of the target is a

ferrous metal. In addition to containing ferrous metal(s), each target must be visible to

the robot. The downward-facing LEGO light sensor must be able to distinguish the target

from the white floor. The final requirement is that targets have a profile low enough such

that they don't represent an obstacle to robotic locomotion. Most importantly, the small

caster wheel must roll smoothly over the targets. The design requirements for the targets

are summarized below:

• contain ferrous metal(s)

• visible to LEGO light sensor

• low-profile

A simple and inexpensive solution is provided by the use of thin, stainless-steel washers.

Each washer was painted a dark-green color with a flat finish to provide contrast to the

white substrate. The washers are a standard hardware component, with one inch diameter

193

and a thickness of 1/16” (see Figure 88). Each washer also has a small hole in the center,

which provides no operational advantage or disadvantage.

Figure 88. Washers used in experimentation

Subsection 6.6.2: Foraging Area

Foraging experiments were conducted within an enclosed foraging field

surrounded by an octagonal perimeter. The perimeter was formed by eight straight

sections of 4" diameter PVC pipe joined at the ends by eight 135° PVC angle-joints. The

octagonal side length was approximately 52 inches, providing a maximum distance from

center to perimeter of 68 inches (minimum distance = 63”, see Figure 89). A cylindrical

metal column from floor to ceiling at the geometric center of the field is considered

"home." The cement floor was covered by ¼" thick foam-board, which was adhered

directly to the floor. Seams between sections of foam board were taped together. The

foam-board substrate was covered by standard white poster-board, with the glossy

194

surface facing down. Poster-board was stapled to the foam board and replaced every few

tests to prevent problems of trail reinforcement (see Section 6.3) occurring between trials.

Figure 89. Experimental foraging field

Since beacon-based navigation was required for the homing process, a source of

light was located near the ground at home. Two standard 60 W light bulbs were

suspended approximately 6" above the floor, providing light intensity visible to the

forward-facing light sensor (Figure 90). General lighting was supplied by five 60 W

flood lights approximately 7 feet above the surface. Ambient light from external sources

(windows, etc) was shielded in order to maintain consistent lighting across all trials.

52”
68”

HOME

195

Figure 90. Two light bulbs are home beacon

Section 6.7: Experimental Cases

Three experimental scenarios were designed to meet the major goals of

experimentation (see Table 12), listed in Section 6.1. The three cases are distinguished

only by the target distribution and the definition of task completion. In Case 1, ink

deposition and following were not used, due to their obvious irrelevance in a case without

clustered targets. Otherwise, robot operation and data collection were constant in all

three cases.

Table 12. Summary of Experimental Scenarios

Scenario No. of
Robots

Target
Distribution

No. of
Targets

Task Completed
When

Case 1 1-7 random 48 25% collected
Case 2 2-7 one cluster 16 75% collected

Case 3 2-7 two clusters 4, 12
75% of large cluster

collected

Subsection 6.7.1: Case 1

This first case is designed for use as a basis of comparison for the subsequent two

cases. This case also corresponds to the first simulation case. It demonstrates completion

196

of the foraging task without cooperation. It is also designed to show that task efficiency

improves in a non-cooperative task, but the improvement trend is unlike that

characteristic of swarm intelligent systems. Targets (48) were distributed randomly

throughout the foraging field, but no targets were placed within two feet of home. This

case was conducted with one to seven robots, with task completion defined as collecting

25% of the targets. It is common to make such a definition of task completion, due to the

fact that target retrieval slows considerably with decreasing target density. When only a

few targets remain in the foraging field, the probability is very low of each robot finding

one. Given a limited power supply (and consequent running time), the test was deemed

complete after retrieval of 12 out of 48 targets.

Subsection 6.7.2: Case 2

Case 2 features a single cluster of 16 targets located approximately 3 inches from

a corner of the octagonal perimeter. This case was designed to demonstrate the

mechanisms of positive and negative feedback, the characteristic formation of emergent

patterns, and increased task efficiency due to cooperation. Positive feedback reinforces

an initial trail and causes increasingly frequent target retrieval, while negative feedback is

manifested in trail disappearance over time. A well-established ink trail emerges as a

result of stigmergy and positive feedback. The case was conducted with 2-7 robots and

each test ended with retrieval of 12 out of 16 targets. In order to demonstrate foraging

system performance with clustered target distribution but without cooperation, this case

was also tested without trail-laying and following.

197

Subsection 6.7.3: Case 3

Case 3 features two clusters of unequal size: one of 4 targets and one of 12

targets. The clusters were located on opposite sides of the foraging field, each

approximately 3 inches from a corner of the octagonal perimeter. This case was designed

to demonstrate the mechanism of negative feedback, as well as the system property of

multistability. Negative feedback allows the system to abandon the small target cluster

upon complete depletion. The potential to exploit either target cluster exclusively, or

both simultaneously, represents the existence of three stable states (multistability). The

case was conducted with 2-7 robots and each test ended with retrieval of 12 out of 16

targets.

Section 6.8: Results

Subsection 6.7.1: Case 1

The first experimental case tests the foraging capability of group of robots without

cooperation. All robots used in this case were incapable of laying or following trails.

Clearly, for the case of random target distribution, trail-laying and following does not

improve performance. Each trail would simply lead to an empty space where a target

was formerly located. The experimental setup is shown in Figure 91, with a group of

three robots prepared for the foraging task. Notice the random distribution of 48 targets

and the bright light emanating from home.

198

Figure 91. Experimental setup (random distribution, N=3)

As in the presentation of simulation results (see Section 5.5), the time evolution of

object collection provides an understanding of the system behavior. In Figure 92 below,

the number of targets remaining until task completion is plotted against time. Each curve

corresponds to a different group size, ranging from one to seven robots. As a group, the

curves follow a roughly linear trend throughout the test. For a given group size, the

collection rate is nearly constant from the beginning of the task until the sixteenth target

is retrieved. Due to the fact that only 25% of the targets were collected before each trial

was stopped, the change in target density barely influences collection rate. If the trials

were allowed to continue longer, these collection rates would diminish in response to

decreased target density.

The rate of target collection shows a strong dependence on group size. When a

single robot attempts the foraging task, it exhibits the slowest collection rate, as expected.

This corresponds to the longest time required for task completion, as shown in Figure 93.

The task completion time decreases with increasing group size, up until N = 5. For larger

199

group size, the trend reverses, and the foraging time increases. The task completion time

for N = 7 is the second highest, behind only the case of one robot.

Remaining Targets vs. Time

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900

Time (sec)

T
ar

g
et

s
1 robot

2 robots

3 robots

4 robots

5 robots

6 robots

7 robots

Figure 92. Time evolution of target collection (random dist.)

Time vs. Number of Robots

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8

Number of Robots

T
im

e
to

 c
o

m
p

le
ti

o
n

 (
se

c)

Figure 93. Collection time versus number of robots (random dist., avg. of 2 trials4)

Figure 94 illustrates the collision frequency, in collisions per minute, versus the number

of robots. As expected, the collision frequency increases with group size, due to the

increased spatial density of robots. The high collision rates for larger group size explain

4 All subsequent graphs of this type reflect the average of two trials.

200

the decreasing task efficiency for N > 5. For N = 7, each robot collided with another

robot every 12 seconds, on average. Robots experiencing frequent collisions waste time

in collision avoidance; that time could otherwise be used in retrieving targets. This lost

time reduces the overall efficiency of the group.

Collision Frequency vs. Number of Robots

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5 6 7 8

Number of Robots

C
o

ll
is

io
n

s
p

er
 m

in
u

te

Figure 94. Collision frequency versus number of robots (random dist., avg. of 2 trials5)

Subsection 6.7.2: Case 2

Case 2 includes two variations of the same target distribution: a single cluster of

16 targets. Presented first is the non-cooperative foraging method. This is similar to

Case 1 (see Subsection 6.7.1), but with a spatially concentrated target distribution.

Second, the results are presented for cooperative foraging robots capable of laying and

following ink trails. Testing this case with and without cooperation provides a method of

determining the efficacy of the cooperative strategy (as compared to the nominal case of

non-cooperation).

5 All subsequent graphs of this type reflect the average of two trials.

201

NO INK TRAILS

When ink trails were not used by the foraging robots, the rate of target retrieval

was quite slow compared to results from the randomly distributed case, as shown in

Figure 95 (cf. Figure 92). Due to the high spatial concentration of targets in a small

region of the foraging field, the probability of each robot finding a target was low. The

evolution of target collection was erratic in each case, due to the significant random

component in searching for a small cluster. Note that each curve below is characterized

by long periods of searching in which no targets were collected. In general, the

collection rate increased with group size.

Remaining Targets vs. Time

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

Time (sec)

T
ar

g
et

s

4 robots

5 robots

6 robots

7 robots

Figure 95. Time evolution of target collection (1 cluster, no trails)

The total task completion time improved between N = 4 and N = 6, due to

increased robot density (see Figure 96). However, for N = 7, the high frequency of

interactions between robots caused the completion time to increase. This trend is similar

to that shown in Figure 93. Figure 97 illustrates the expected increase in collision

frequency with group size.

202

Time vs. Number of Robots

400

500

600

700

800

900

1000

1100

3 4 5 6 7 8

Number of Robots

T
im

e
to

 c
o

m
p

le
ti

o
n

 (
se

c)

Figure 96. Collection time versus number of robots (1 cluster, no trails)

Collision Frequency vs. Number of Robots

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3 4 5 6 7 8

Number of Robots

C
o

ll
is

io
n

s
p

er
 m

in
u

te

Figure 97. Collision frequency versus number of robots (1 cluster, no trails)

WITH INK TRAILS

For items distributed in clusters, the mass recruitment foraging strategy is shown

in insects to be an effective mode of cooperation [101]. This is tested with real robots in

this section. The experimental setup is pictured in Figure 98, with four robots prepared to

start the test. Note the cluster of 16 targets in the top right corner of the photograph. A

series of photographs taken during one trial are presented in Figure 99 (on the next page).

The pictures are viewed in sequence from top left to bottom right. At t = 200, three

203

targets have been retrieved, as evidenced by the three ink trails leading to home. Note

that each target was removed from home upon retrieval in order to prevent it from being

collected a second time by a robot wandering near home. At t = 400, the initial three

trails have weakened significantly, beyond the point of being followed. However, notice

that a robot is following a trail deposited since t = 200. At t = 600, only six targets

remain in the cluster, and a number of trials are present. The oldest ink trails have

disappeared completed, but recently deposited trails remain clearly visible. One robot is

depositing a trail on the way to home and another is following a trail to the target cluster.

At t = 700, the final target is collected. Only two strong trails remain visible.

Figure 98. Experimental setup (1 cluster, N=4)

204

Figure 99. Series of testing photographs (from top left to bottom rt., t=200, 400, 600, 700 sec)

205

Figure 100 shows the time evolution of target collection for each group of robots

tested. In comparison to the results without ink trails (see Figure 95), these curves are

less erratic. The collection rates are more constant, but still exhibit a fair degree of

variation in time. For N = 5, one observes the downward concavity for 50 < t < 400

seconds that is a signature of positive reinforcement and effective cooperation. The same

type of curve shape resulted from StarLogo simulations of foraging with a single food

cluster (e.g., Figure 28).

Remaining Targets vs.Time

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Time (sec)

T
ar

g
et

s

2 robots

3 robots

4 robots

5 robots

6 robots

7 robots

Figure 100. Time evolution of target collection (1 cluster)

The total collection time decreases steadily from N = 2 to N = 6. For N > 4, the

collection time begins to level out, and it actually increases for N = 7. In order to observe

the benefit of cooperation, the results without trails are included in Figure 101. Clearly,

when trails were used as a foraging strategy, the foraging efficiency increased

significantly. The completion time decreased by at least 19% (N = 6) and at most 33%

(N = 5). In addition, the detriment of high collision frequency was mediated by

206

cooperation. This is reflected in the fact that system performance was only 11% worse

(from N = 6 to N = 7) when trails were used, as compared to 21% without trials.

Time vs. Number of Robots

400

600

800

1000

1200

1 2 3 4 5 6 7 8

Number of Robots

T
im

e
to

 c
o

m
p

le
ti

o
n

 (
se

c) Trails

No Trails

Figure 101. Collection time versus number of robots (1 cluster)

As discussed previously, the collision frequency increases with robot density (Figure

102). A similar trend is observed when cooperation is introduced, but it appears that

cooperation slows the rate at which the collision frequency rises. This could be due to

the fact that self-organized behavior is occurring when cooperation is introduced. Robots

engaged in following and target retrieval tasks are less likely to collide with other robots.

These tasks involve slower motion and less area coverage within the foraging field when

compared to the default wandering behavior.

207

Collision Frequency vs. Number of Robots

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8

Number of Robots

C
o

ll
is

io
n

s
p

er
 m

in
u

te
Trails

No Trails

Figure 102. Collision frequency versus number of robots (1 cluster)

Subsection 6.7.3: Case 3

In this case, two target clusters were present in the foraging field. With a

maximum of seven foraging robots, a full investigation of this case is not possible.

Preliminary tests revealed that seven robots are not sufficient to demonstrate cooperative

foraging behavior in the presence of two sources. Robot density is not high enough to

establish a stable trail to either cluster. For this reason, the test was designed to

demonstrate only one specific system behavior: adaptability. One of the two sources

contains only four targets (see Figure 103), which ensures that it is completed before the

other source (contains eight targets). After the small source is depleted, the trails

eventually disappear, allowing the system to focus only on the remaining cluster. This

behavior was observed in 9 out of the 10 trials.

208

Figure 103. Experimental setup (2 clusters, N=5)

The plot of task completion time versus group size (Figure 104) for this case

follows the usual trend, except for the case of N = 7. One would expect the completion

time to be higher than for N = 6, due to higher collision frequency (see Figure 105). The

discrepancy was caused by one of the two trials in which seven robots operated. In this

trial, the seven robots briefly established trails to both food sources, which explains the

improvement in performance compared to N = 6. The relationship between collision

frequency and group size also exhibits the expected trend. For N = 5, the collision

frequency is somewhat higher than expected, but this could simply be a function of

random elements in each trial. Since only two trials are averaged for each data point, the

trends can only be examined in a general sense.

209

Time vs. Number of Robots

0

100

200

300

400

500

600

700

800

900

2 3 4 5 6 7 8

Number of Robots

T
im

e
to

 c
o

m
p

le
ti

o
n

 (
se

c)

Figure 104. Collection time versus number of robots (2 clusters)

Collision Frequency vs. Number of Robots

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8

Number of Robots

C
o

ll
is

io
n

s
p

er
 m

in
u

te

Figure 105. Collision frequency versus number of robots (2 clusters)

Figure 106 shows the time evolution of target collection from the cluster of eight

targets. The most interesting feature of these curves is the increase in collection rate after

t ≈ 150 seconds. This corresponds approximately to the time at which the cluster of four

targets is fully depleted. After a short delay, during which the unneeded ink trails

disappear, more robots are able to contribute to cooperative foraging at the only

remaining food source. This system transition produces the increase in collection rate,

seen most clearly for N = 4. Figure 107 illustrates the progression of target collection

210

from both sources for N = 7. As in most of the trials, the small cluster is depleted first,

followed by the remainder of the large cluster.

Remaining Targets vs. Time

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900

Time (sec)

T
ar

g
et

s

3 robots; cluster B

4 robots; cluster B

5 robots; cluster B

6 robots; cluster B

7 robots; cluster B

Figure 106. Time evolution of target collection from source B (2 clusters)

Remaining Targets vs. Time

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

Time (sec)

T
ar

g
et

s

Figure 107. Time evolution of target collection (2 clusters, N=7; square markers
indicate targets from source A)

211

Chapter 7: Analysis and Discussion

The following chapter is devoted to a discussion of the simulation and

experimentation results from a broader perspective than the results sections of Chapter 5

(Section 5.5) and Chapter 6 (Section 6.8). For both simulation and experiments, the

results are discussed below in terms of the most important general findings. These key

results are followed by a brief discussion of the weaknesses and possible improvements

in the StarLogo simulation and in experimentation with real robots. Finally, the

simulation and experiments are evaluated based on the achievement of the goals stated in

Chapter 5 (Section 5.1) and Chapter 6 (Section 6.1). To conclude the chapter, the results

of simulation and experimentation are taken as a whole and compared to the theoretical

predictions from Chapter 4 (Section 4.6).

Section 7.1: Discussion of Simulation Results

Subsection 7.1.1: Important Results

The first key lesson derived from the results of simulation is the significance of

power law relationships in the system behavior. These types of trends were most visible

in Case 1, which featured a random distribution of food items throughout the foraging

field. It was observed in Section 5.5 that the relationships between completion time and

group size, as well as between collision frequency and group size, appeared to follow the

rough trend of a power law. The simulation results for this case are presented again

below, but with power law equations fitted to the data (see Figure 108 and Figure 109).

Note that the correlations are quite strong, especially in Figure 109.

212

Time Steps vs. Number of Ants

R2 = 0.9798

0

100

200

300

400

500

600

700

1 10 100

Number of Ants

T
im

e
S

te
p

s
Simulation Data

Power Law Fit

Figure 108. Power law approximation of simulation results (rand. dist.)

Collision Frequency vs. Number of Ants

R2 = 0.9903

0

2

4

6

8

10

12

1 10 100

Number of Ants

C
o

ll
is

io
n

s
p

er
 t

im
e

st
ep

Simulation Data

Power Law Fit

Figure 109. Power law approximation of simulation results (rand. dist.)

Based on these curve fits, it seems that a power law provides an accurate approximation

of the system behavior, at least in the case of non-cooperative foraging with a random

food distribution. The question then arises, does the power law relationship hold for

other simulated scenarios? This question is answered below by the analysis presented in

Table 13 and Table 14, which include the coefficient and exponent of the fitted power

law for each set of data. The correlation coefficient is also given for each data set, in

order to evaluate the closeness of fit provided by a power law relationship. In Table 13,

the R2 values are very high for foraging without cooperation (first two rows of the table).

213

In these cases, it appears that a power law provides a close approximation of the data.

However, for cooperative foraging from one source, the power law approximation

becomes less accurate. While the correlation coefficients remain above 0.91, these

values reflect an important difference introduced by cooperation. At least with respect to

the task completion time, a power law relationship is only a moderately accurate

description of the dependence on group size. The table also includes the coefficient, c3,

and exponent, c4, in each fitted equation. By observing the values of c4 across all cases, it

becomes apparent that they are clustered in the vicinity of c4 = -1. As a result, one can

conclude that the completion time is roughly inversely proportional to the number of

virtual ants:

N
Tc

1α (7-1)

Table 13. Power Laws Fit to Simulation Data

Completion Time vs. Number of Ants

Tc = c3 * N
c4

Trial c3 c4 R2

random distribution 1317.7 -0.9885 0.9956

1 source, no trails 7568.1 -0.9787 0.9873

1 source (d=10) 1438.1 -0.8113 0.9541

1 source (d=20) 3740.6 -1.0161 0.9798

1 source (d=35) 40204 -1.5966 0.9179

For the relationship between collision frequency and group size, the correlation

coefficients are again very high for both non-cooperative scenarios. In general, the

power law curve is less close-fitting to the data for the cooperative cases. For all cases,

214

though, the R2 value is above 0.956, indicating that a power law relationship is a fairly

accurate approximation to this relationship (with or without cooperation). By examining

the power law exponents, c2, one notices a larger variance than in Table 13. The average

of these values is c4, avg = 2.18. If more data was collected, one could obtain a more

accurate value for this exponent. The collision frequency is roughly proportional to the

square of group size:

2NC f α (7-2)

Table 14. Power Laws Fit to Simulation Data

Collision Frequency vs. Number of Ants

Cf = c1 * N
c2

Trial c1 c2 R2

random distribution 0.0004 2.5191 0.983

1 source, no trails 0.0014 2.0973 0.9973

1 source (d=10) 0.0018 1.9217 0.966

1 source (d=20) 0.0022 1.8561 0.9903

1 source (d=35) 0.0001 2.5616 0.9568

The plots of the time evolution of food collection revealed another key result from

simulation. By comparing the plots from non-cooperative experiments to those cases in

which trails were used, a significant difference in curve shape became apparent. In cases

without trails, the collection rate remained nearly constant, with only a slight, gradual

decrease throughout. When trails were employed, the collection rate increased, often

dramatically, throughout the trial. This created a noticeably difference in concavity of

215

the curves. Positive feedback allowed the group of virtual ants to accelerate food

collection, resulting in the signature downward concavity of the curves.

Decay rate was an important parameter in many of the simulation trials. The

dependence of system behavior on decay rate was the focus of Case 4, which included

three food sources. It was observed that slow trail decay facilitated the establishment of a

higher number of concurrent stable trails. On the other hand, a rapid rate of decay

inhibited cooperative foraging. With three sources present, for example, a high value for

the decay rate could force the group to focus on one source at a time, completing the task

in sequence rather than in parallel. A rapid decay rate corresponds to a higher number of

foragers necessary to efficiently exploit multiple food sources.

The group size was varied in each major simulation scenario, as it was the

primary variable under investigation. It was observed, as expected, that task completion

time improved super-linearly with group size. Below a certain density of virtual ants, the

group was unable to establish even one stable pheromone trial. As the group size

increased, the number of possible concurrent trails increased as well. Large groups were

able to forage simultaneously from several sources.

The final key result of simulation is the effect of cooperation on task efficiency.

In general, it was observed in Chapter 5 that trail-laying and following resulted in faster

task completion compared to no communication. This result is confirmed below with a

more clear illustration of the improvement in task efficiency as a result of cooperation

(see Figure 110). The task efficiency is defined as the inverse of task completion time.

As the group size increases in both curves, the one corresponding to cooperation climbs

at a significantly faster rate than the non-cooperative case. Notably, when the graph is

216

compared to the generalized definition of swarm intelligence (see Section 2.2, Figure 1),

one must conclude that the group of foraging virtual ants exhibited swarm intelligence by

utilizing a mass recruitment strategy.

Task Efficiency vs. Number of Ants

0

0.005

0.01

0.015

0.02

0.025

0.03

1 10 100

Number of Ants

1/
T

im
e

(s
ec

-1
) 1 cluster, trails

1 cluster, no trails

Figure 110. Task efficiency versus number of ants (1 food source)

Subsection 7.1.2: Simulation Weaknesses

As with any computer simulation, this implementation of StarLogo to simulate

mass recruitment in an ant colony had certain weaknesses. Of course, the simulation did

not incorporate every detail of true foraging behavior in social insects. One important

factor missing from simulations was the effect of direct interactions between individuals.

Collisions between virtual ants were not simulated. This allows for analysis of the results

without the complications introduced by collisions, which can be considered an

advantage from a theoretical perspective. It is also similar to the behavior of an ant

colony, as the “collisions” between individuals are handled so efficiently that they are not

of great significance. However, in the realm of robotics applications, these interactions

are important. An accounting was made of collisions between virtual ants, but each

interaction had no impact on the behavior of the individuals.

217

The second important weakness of these simulations is the volume of data. Many

of the relationships between important variables and parameters could have been

examined in more detail, and with more statistical backing, given a higher volume of data

collection. A wider range of decay rates and group sizes could have been explored, for

example. The level of detail was beyond the scope of this work, however, which

attempted only to demonstrate the existence and qualitative nature of certain

dependencies.

Subsection 7.1.3: Achievement of Simulation Goals

To conclude the discussion of the simulation results, it is fitting to consider the

degree to which stated goals were accomplished. The goals of simulation, as stated in

Section 5.1, are reproduced here for convenience:

• To investigate the predictions of theoretical modeling.

• To visualize system behavior to enhance understanding.

• To extend theoretical knowledge of scenarios for which mathematical

modeling is intractable.

The first goal is discussed in detail below in Section 7.3. In general, this goal was

accomplished, due to the observation of many theoretical hypotheses. For example, the

simultaneous existence of a number of stable foraging states was observed, especially

with three or four food sources. The goal of visualizing system behavior was achieved,

as represented by the figures in Section 5.5. The use of StarLogo provided excellent

visualization of system behavior, which enhanced understanding of foraging dynamics.

Theoretical models of foraging fail to capture the complexity of system behavior

218

observed with four food sources. Results from that case briefly introduced complexity

for which mathematical models have not been developed.

Section 7.2: Discussion of Experimental Results

Subsection 7.2.1: Important Results

In the previous section, which discussed the results of simulation, the importance

of power laws was discussed. It was shown through data analysis that a power law

relationship existed between collision frequency and group size, as well as between task

completion time and group size. These relationships were also investigated in

experiments with real robots. The data was analyzed to determine the degree to which

power laws approximate the data. In Figure 111 below, the power law is fitted to the

experimental relationship between collision frequency and number of robots. The curve

is fitted to the data corresponding to the cooperative case. Notice that the approximation

is less accurate than for the simulation data. In Table 15, the power law coefficient, c1,

exponent, c2, and correlation coefficient R2, are provided for three experimental cases.

The correlation coefficients reveal that a power law relationship does not describe the

system behavior with a high degree of accuracy. The fit is only moderately accurate for

each of the cases. The power law exponent, c2, is consistent among the two non-

cooperative cases, but is significantly lower for the cooperative case. When cooperation

is present, the exponent is approximately c2 = 2, agreeing with the results from simulation

(see Table 13).

219

Collision Frequency vs. Number of Robots

R2 = 0.9889
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8

Number of Robots

C
o

ll
is

io
n

s
p

er
 m

in
u

te
Trails

No Trails

Power Law Fit (Trails)

Figure 111. Power law approximation to experimental data

Table 15. Power Laws Fit to Experimental Data

Collision Frequency vs. Number of Robots

Cf = c1 * N
c2

Trial c1 c2 R2

no clusters 0.0149 3.2859 0.968

1 cluster, no ink 0.0082 3.2649 0.9433

1 cluster 0.064 2.0735 0.9889

The second important result from experimentation is the influence of direct

interactions between robots on system performance. As discussed in Section 6.8, the task

completion time decreased above a certain critical group size. At some point, the

detrimental effect of collisions between robots negated the beneficial effect of

cooperation. This effect is due to the amount of time wasted by each robot in obstacle

avoidance behavior. Figure 112 illustrates the point by providing the percentage of total

run-time spent in the avoid behavior. This data was logged by each individual robot and

the graph below represents the average values from all robots in a given trial. As

220

expected, the percentage of time spent avoiding obstacles increased with group size. The

robots were unable to distinguish collisions with robots from collisions with the perimeter

boundary. Therefore, these percentages are biased by the amount of time spent

responding to collisions with the perimeter.

Percentage of Time in "Avoid" Behavior

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

2 3 4 5 6 7

Number of Robots

%
 o

f
T

im
e

in
 A

vo
id

Figure 112. Percentage of time avoiding obstacles (1 cluster, with trails)

As in the simulations, the system dependence on group size is another important

lesson from analysis of the experimental results. The robotic system was also unable to

establish strong trails to a food source below a certain critical density. Generally, with

less than three robots, the group was unable to effectively communicate via trail-laying

and following. The task completion time in all experimental cases improved with group

size, but showed a reversal of the trend for N ≥ 6. As mentioned above, the increased

frequency of collisions between robots caused this reduction in foraging performance.

The last key result from experimentation is the efficacy of cooperation. It is

necessary to answer the question of whether or not stigmergic cooperation between

robots effectively increased completion efficiency. As shown in Figure 113, the group of

robots performed the completion task significantly faster when using trails. While the

221

benefit of cooperation is not as drastic as in simulation (see Figure 110), the improvement

in performance remains clear.

Task Completion Efficiency vs. Number of Robots

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

1 2 3 4 5 6 7 8

Number of Robots

1/
T

im
e

(s
ec

-1
)

Trails

No Trails

Figure 113. Task efficiency versus number of robots (1 cluster)

Subsection 7.2.2: Experimental Weaknesses

A number of weaknesses were present in the operation of the experiments.

Despite the general success of the experiments, there will always be possible

improvements in a system of real robots. Perfection cannot be obtained while working in

the real world and dealing with the uncertainty and unpredictability of reality.

Due to spatial and financial limitations, the scale of the experiments was limited

to seven robots. This number is adequate for demonstrating a limited set of behaviors.

However, it is insufficient for thorough investigation of behaviors requiring large group

size. Swarm intelligence in biological system relies on multiple communicative

interactions between individuals, making it difficult to produce swarm intelligence with

such a small swarm population.

222

Experimental errors invariably have some effect on the results of an experiment.

Due to unpredictability in the operation of each robot, the system behavior demonstrated

a significant degree of variance between trials. For example, robots did not follow trails

with an extremely high degree of accuracy. Targets were sometimes passed over without

being collected. Robots occasionally became deadlocked at a corner of the foraging field

or interlocked with another robot. These types of errors resulted in inconsistent data

exhibiting a moderately high degree of variability between tests.

The volume of data collected is another element of experimentation that could be

improved by future research. Financial limitations made it impossible to run more than

two tests for each data point. With only two trials per data point, it is difficult to perform

meaningful statistical analysis. Furthermore, the means obtained from two trials are

obviously less valid than those consisting of a high number of tests. Despite limited

volume of data, a number of trends were identified and significant goals were met.

Subsection 7.2.3: Achievement of Experimentation Goals

In conclusion, the degree to which stated goals were accomplished will be

discussed. The goals of experimentation, as outlined in Section 6.1, are reproduced here

for reference:

• To develop a system of robots capable of utilizing trail-laying and following in

completion of a central-place foraging task.

• To introduce a novel trail substance that is non-toxic, time-decaying, and easily

deposited and sensed.

• To demonstrate characteristics of a swarm-intelligent system

223

o Emergent pattern formation

o Multistability

o Increased task efficiency due to cooperation

• To compare experimental task efficiency to theoretical predictions and

simulation results

The first two goals amount to successful proof of concept by means of designing a

functional system of foraging robots. These goals were accomplished, as the robots

performed cooperatively using mass recruitment via disappearing ink trails. A novel trail

substance was utilized that is non-toxic and time-decaying. The main drawback to this

trail substance is flammability and reactivity. The results of experimentation successfully

demonstrated some elements of self-organization and swarm intelligence. Emergent

pattern formation occurred on a limited scale, taking the form of well-defined ink trials to

a cluster of targets. Because of the small number of robots, demonstration of

multistability was inconclusive. It was not possible for seven robots to concurrently

exploit two or more clusters. The only sense in which multiple stable states were

observed is in the case of one cluster with three or four robots. In those trials, the robots

were sometimes unable to establish and maintain trails; instead, the system operated in an

essentially uncooperative state. The same trials sometimes demonstrated successful

utilization of trail-laying and following. The two states—cooperative and non-

cooperative foraging—existed simultaneously, a possible example of multistability. Task

efficiency clearly improved as a function of cooperation, as shown in Figure 113.

Overall, the experimental goals were accomplished, with the exception of demonstrating

multistability.

224

Section 7.3: Comparison of Results to Theoretical Predictions

Chapter 4 summarized the most substantial contributions to central-place foraging

theory related to mass recruitment. In Section 4.6, a number of theoretical predictions

were listed. These predictions follow directly from the discussion of mathematical

foraging models. The results of simulation and experimentation have been presented and

analyzed from a narrow perspective, but it is essential to relate the results to the current

body of theoretical work in the field of swarm intelligence. This section describes the

extent to which theoretical predictions were borne out by simulation and experimentation.

The hypotheses presented in Section 4.6 were classified according to the three main

characteristics of self-organized behavior. They are reproduced below, with a brief

discussion of the veracity of each prediction with respect to experimental and simulated

results.

• Emergent Pattern Formation

o A critical density of foragers is required to generate some trail patterns.

This attribute of pattern formation occurred in StarLogo simulations. Below a

certain critical density, which depends on the trail decay rate and number of

food sources, the virtual ants were unable to maintain pheromone trails. A

similar result occurred in the experiments with real robots. For N < 3, the

robots were unable to establish a stable trail.

o Formation of an established trail (or trails) may follow an initial

“disordered phase” of unpredictable duration.

225

A “disordered phase” was observed in some of the time evolution plots of

food collection from simulation (e.g., Figure 35). In some trials, the colony

exploited multiple sources before collectively choosing to focus on a subset of

the total number of sources. In experiments, this characteristic was difficult to

observe, due to small population size and short time scales.

o The nature of the trail pattern depends on parameters such as the number

of foragers, food distribution, pheromone decay, etc.

A number of foraging exploitation patterns were observed in simulation.

These patterns demonstrate dependency on group size, food distribution, and

pheromone decay, as discussed in Section 5.5 and above in Section 7.1. The

foraging robots were only able to establish one stable trail at a time. The

existence of the one stable trail was dependent on group size. Pheromone

decay rate was not varied as a parameter.

o Trail formation relies on autocatalysis of random fluctuations in the paths

of searching foragers.

Simulation results confirmed this hypothesis. For example, in trials where the

colony chose to forage preferentially from two equidistant food sources, each

source was chosen with equal probability. The preferred source was

eventually chosen in each case from reinforcement of random fluctuations. A

similar situation occurred in the formation of a single trail with real robots. A

single trail formed either more slowly or not at all due to the stochastic

component of robot searching.

• Multistability

226

o When multiple food sources are present, a number of stable states may

exist, ranging from exclusive exploitation of one source to uniform

exploitation of all available sources.

This prediction was clearly demonstrated to be accurate in simulation,

especially in cases with three or four food sources. It could not be

investigated with real robots, due to a limited population. The robots were

unable to exploit two sources simultaneously.

o When multiple food sources are present, under certain conditions, only

one stable state exists.

This hypothesis was confirmed in both simulation and experimentation. In

simulation, the virtual ant colony could only exploit one source at a time for

small group size and/or rapid pheromone decay. With two sources present,

the foraging robots always exploited only a single source.

o The foraging group may collectively choose a suboptimal stable state.

This type of behavior occurred exclusively in simulation. When a second

food source was presented closer to home during a simulation trial, the colony

sometimes continued exploiting the more distant source (see Figure 48).

• Bifurcation Phenomena

o Variations in key system parameters may correspond to dramatically

different food source exploitation schemes.

The results of StarLogo simulations show conclusively that system behavior

exhibits sensitive dependence on pheromone decay rate and group size. Slight

227

variations in either parameter correspond to significant alterations in foraging

exploitation strategy.

o Oscillations in certain parameters (especially in the number of active

foragers) may allow a system near a bifurcation point to switch from a

suboptimal to an optimal solution.

Figure 46 and Figure 47 are two examples of a simulated system switching to

an optimal foraging strategy. While parameters were not intentionally caused

to oscillate during these trials, the system dynamics may have caused the

number of “active” foragers to oscillate in the vicinity of a bifurcation point

(refer to [86] for a detailed discussion of active/inactive foragers in biological

systems). Active foragers are those searching the foraging field for a new

food source (not following a trail or carrying food to home).

228

Chapter 8: Summary and Conclusions

The topic of swarm-intelligent robotics has been investigated from an

experimental perspective in this thesis. This field of research emerged from the broader

field of cooperative mobile robotics, as discussed in Chapter 2. Swarm intelligence was

discussed in a conceptual framework of cooperative robotics and the historical

foundations of the field were reviewed. In Chapter 3, the biological inspirations of

swarm intelligence were presented by discussing self-organization in a variety of

biological systems. Next, foraging theory was discussed in detail in Chapter 4. Three

important types of mathematical models were introduced, including a detailed

development of at least one model from each category. Chapters 5 and 6 describe

investigations of swarm-intelligent foraging via computer simulations and

experimentation with real robots, respectively. Finally, in Chapter 7, a synthesis of the

results is provided, along with a discussion of their relationship to the predictions of

theoretical foraging models.

In Chapter 1, the chief aims of the thesis were presented. In conclusion, it is

essential to evaluate the degree to which the goals were achieved. The primary objective

was to apply swarm intelligence theory to the development of a robotic foraging system.

The conjecture was made that such a system could be developed with the following

constraints: (1) no direct communication between robots, (2) decentralized control, and

(3) behavior-based control. It has been demonstrated that the system described in

Chapter 6 successfully obeys these constraints and accomplishes the task of cooperative

foraging through mass recruitment. While conclusive demonstration of swarm

intelligence in the robotic system was not achieved, cooperative foraging represents an

229

important step along the path toward a conclusively swarm-intelligent robotic system.

The secondary goal was to utilize computer simulations to enhance conceptual

understanding of swarm intelligence and investigate system dependence on group size.

Visualization produced by computer simulations contributed significantly to a deeper

understanding of the mechanisms of swarm intelligence. Importantly, the simulated

swarms exhibited conclusively swarm-intelligent improvement in task efficiency when

compared to non-cooperative groups. In summary, the research provided herein fully

defends the primary conjectures put forth in Chapter 1.

This work offers three primary novel and substantial contributions to the swarm

intelligence research community. First, this is the first experimental demonstration of a

multi-robot system capable of cooperative foraging by means of trail-laying and

following. The group of robots complete the foraging task more efficiently with mass

recruitment than without cooperation. The second contribution closely follows from the

first one. A novel trail-laying and following system featured “disappearing ink,” a simple

chemical solution sensed optically. This type of trail performed well in experimentation,

and exists as a promising substance for future utilization in robotic systems. Finally, the

StarLogo computer simulations represent the third substantial and novel contribution.

While computer simulations of ant colonies have been performed, this work includes a

broad analysis of performance dependent on group size and pheromone decay rate. In

addition, the behavioral complexity exhibited with three, and especially four, food

sources is an original result. Combined, these three original contributions form the core

of this research effort.

230

In closing, a number of suggestions are provided for future research. As in many

scientific investigations, this effort raises as many new questions as it answers. A

number of theoretical issues remain to be explored. A comprehensive mathematical

model of foraging via mass recruitment does not exist. Development of a new model or

extension of current models is an important area requiring further study. In particular,

future modeling work could focus on the importance of pheromone decay rate. Also, a

comprehensive model would necessarily describe the behavioral complexity possible in

the presence of multiple food sources. Theoretical models should also be developed from

within the robotics community, making theoretical results more pertinent to robotic

implementation of swarm intelligence. As experimental work with real robots is still an

emerging field, numerous research possibilities exist for the future. Systems must be

developed with large numbers of robots in wide spatial foraging fields in order to study a

wider range of foraging phenomena. Considerable work remains in developing effective

trail substances for a variety of indoor or outdoor applications. Furthermore, a number of

other communication modes exist, and not all rely solely on stigmergy. Investigating

other forms of indirect or direct communication would be a valuable contribution to the

research community. Finally, it is vital that researchers begin testing robotic swarms in

real-world, dynamic environments. A great deal of work remains in that direction before

the bold claims regarding real-world applications of swarm intelligence are realized.

231

APPENDIX A – StarLogo Documentation

The following material is excerpted from [110] See that reference for more complete
documentation on StarLogo v. 2.0, which was used in this research.

INTRODUCTION

StarLogo is a programmable modeling environment for exploring the behaviors of decentralized systems,
such as bird flocks, traffic jams, and ant colonies. It is designed especially for use by students.

In decentralized systems, orderly patterns can arise without centralized control. Increasingly, researchers
are choosing decentralized models for the organizations and technologies that they construct in the world,
and for the theories that they construct about the world. But many people continue to resist these ideas,
assuming centralized control where none exists--for example, assuming (incorrectly) that bird flocks have
leaders. StarLogo is designed to help students (as well as researchers) develop new ways of thinking about
and understanding decentralized systems.

StarLogo is an extension of the Logo programming language. With traditional versions of Logo, you can
create drawings and animations by giving commands to a graphic "turtle" on the computer screen. StarLogo
extends this idea by allowing you to control thousands of graphic turtles in parallel. In addition, StarLogo
makes the turtles' world computationally active: you can write programs for thousands of "patches" that
make up the turtles' environment. Turtles and patches can interact with one another. For example, you can
program the turtles to "sniff" around the world, and change their behaviors based on what they sense in the
patches below. StarLogo is particularly well-suited for modeling complex decentralized systems--systems
which traditionally have not been available to people without advanced mathematical or programming
skills.

This document provides a short introduction to the Java version of StarLogo. It describes the basic features
of StarLogo, and it suggests initial activities for using and learning StarLogo. At the end are pointers to
other documents that provide a more complete description of the StarLogo language.

CAST OF CHARACTERS

StarLogo includes three main types of "characters":

Turtles. The main inhabitants of the StarLogo world are graphic creatures known as "turtles." You can use
a turtle to represent almost any type of object: an ant in a colony, a car in a traffic jam, an antibody in an
immune system, a molecule in a gas. Each turtle has a position, a heading, a color, and a "pen" for drawing.
You can add more specialized traits and properties. In StarLogo (unlike traditional versions of Logo), you
can control the actions and interactions of thousands of turtles in parallel.

Patches. Patches are pieces of the world in which the turtles live. Patches are not merely passive objects
upon which the turtles act. Like turtles, patches can execute StarLogo commands, and they can act on
turtles and patches. Patches are arranged in a grid, with each patch corresponding to a square in the
Graphics area.

Observer. The observer "looks down" on the turtles and patches from a birdâs eye perspective. The
observer can create new turtles, and it can monitor the activity of the existing turtles and patches.

232

STARLOGO USER INTERFACE

The StarLogo interface consists of several main windows:

StarLogo window: This window is divided into several sections. The initially black Graphics area is where
the StarLogo turtles move and draw. The turtles move on top of a grid of patches. When a turtle moves off
the screen, it "wraps" around to the other side. You can move a turtle directly by dragging it with the
mouse. The white area on the left of the Graphics area is the Interface area. This area is where you will
create buttons, sliders, and monitors that allow you to interact directly with StarLogo programs. To create
and inspect interface objects (that is, buttons, sliders, and monitors), use the Main Toolbar, located in the
gray bar across the top of the StarLogo window. To create a new interface object, choose the appropriate
tool from the Toolbar and drag out a rectangle in the Interface area. To inspect the underlying behavior of
an existing interface object, choose the appropriate tool from the Toolbar and then click on the object. (You
can also inspect an object by holding down control and double-clicking on the object with the standard
arrow tool.) The Paint and Color Toolbar appears above the Graphics area when you click the paintbrush
icon from the Main Toolbar. From here, you can select which color you want to draw with. In addition, you
can select different types of drawing tools.

Control Center window: The Command Center area of the Control Center window is where you type
commands for StarLogo. You may run a command again by moving the cursor to that line and pressing
return. The Procedures area is where you write your own StarLogo procedures. By clicking back and forth
between "Turtle" and "Observer" you can distinguish between those commands which are specific to turtles
and those which can only be executed by the observer. Refer to the Reference Manual for a more complete
description of the different command types available to each StarLogo character.

233

Other windows: The menu bar at the top of the Control Center window allows you to access several other
windows. The Information window is intended for explanatory notes, commentary, and instructions. The
Output window is used for printing and recording data generated by a StarLogo project. The print
command prints to this window. The Plot window is where you can create real-time graphs as your
StarLogo project is running.

Turtle Monitors: If you double-click on a turtle in the Graphics area, a Turtle Monitor will appear, showing
the turtle's variables, both standard and user-defined, and their values. The values update in real-time as
your StarLogo project is running. You can also use the Turtle Monitor to directly change the value (state)
of the variable.

HOW TO RUN STARLOGO

To use StarLogo, you will need to have a version of Java 1.1 (with Swing) or higher installed on your
computer.

Our installer for Windows includes a Java 1.4 runtime from Sun Microsystems. This version will not
interfere with any other versions of Java installed on your machine, and you won't have to worry about
compatability. We do not use or require any other version of Java to be installed on your computer.

The Mac OS 9 version requires MRJ 2.2.5 or higher. If you don't yet have MRJ 2.2.5 (or are not sure) and
have Mac OS 9, use the Software Update control panel to install any updates from Apple. One of these will
be MRJ 2.2.5 or higher. If you use Mac OS 8.1 or higher, you can download MRJ from Apple's Java web
site at http://developer.apple.com/java/download.html.

234

We support MacOS X 10.1 and higher. If you get the Java Update 1.3.1 for OS X 10.1, be advised that
multi-monitor support is broken. There are still quite a few problems with MacOS X Java, even on 10.2, so
feel free to email at bug-starlogo@media.mit.edu when bad things happen.

On Unix, we recommend using your vendor's Java, as long as it is compatible with Java 1.2 or higher. We
include a shell script to run StarLogo, and include a special shell script for Solaris. On Linux, we
recommend Sun's JDK over Blackdown because of far fewer bugs in the AWT implementation. If you can
get Sun's JDK 1.4, that'll be even less buggy. A note: there are interactions between some window
managers and Java which cause new windows to open in a really small size. You might try a different
window manager first, to see if it is the problem, but if not, tell your window manager to allow you to place
the window manually when it pops up, rather than automatically. This will give you the opportunity to
resize it.

After you have successfully installed StarLogo, follow these instructions to run StarLogo on your
computer:

On a Windows PC

• In the Start Menu, look for the StarLogo 2.0 program group. Click on the StarLogo application file
to run StarLogo.

• StarLogo should start up and pop two windows up on the screen. If you don't see them, they might
be hidden behind other windows. Check your taskbar for them.

On a Mac

• Make sure that you have MRJ 2.2.5 or higher (from
http://developer.apple.com/java/download.html) installed on your Macintosh before trying to run
StarLogo.

• Double-click on the StarLogo application.
• StarLogo should start up and pop two windows up on the screen.

On Unix

• Install your favorite Java 1.2.x, or Java 1.3.x, Java 1.4.x.
• Go to the StarLogo distribution directory.
• Execute the unix-run-starlogo shell script. (Note: If you use Solaris, execute the solaris-run-

starlogo shell script instead).
• Note: We've seen that StarLogo requires that you set Java to use a larger stack size. This is

necessary with Sun's Java; we're not sure whether this is necessary on other Unixes.

235

APPENDIX B – StarLogo Simulation Code

The StarLogo simulation code (with trails, two food sources) is presented below. Minor
changes were made to the program for other simulation scenarios (e.g., three or four
food sources). Comments are set off with semicolons along with right-hand column.

Observer Procedures

;Declare variables
turtles-own [follow-time]
patches-own [pheromone]
globals [collide]
setcollide 0

;Defines simulation setup
to setup
clear-all ;Clear screen
setup-field ;Starts setup-field procedure
crt turtles ;Creates turtles
ask-turtles [setc green fd 5] ;Sets color green, forward
ask-patches [setpheromone 0] ;Sets pheromone = 0 for patches
end

;Sets up boundary and home
to setup-field
create-and-do 1 [setc red ;Create one turtle
fd screen-half-height rt 90 pd ;Draw red boundary
fd screen-half-width rt 90
fd screen-height - 1 rt 90
fd screen-width - 1 rt 90
fd screen-height - 1 rt 90
fd screen-half-width]
ct ;Clear turtle
create-and-do 30 [setc brown pd fd 2] ;Create 30, draw home
ct ;Clear turtles
create-and-do 50 [setc yellow ;Create 50, draw food

setxcor -38 setycor 30 pd fd 3 bk 4 pu
setxcor 25 setycor -20 pd fd 3]

ct ;Clear turtles
end

;Causes pheromone decay
to decay
ask-patches [setpheromone pheromone - 5] ;Decrements pheromone
wait 100 / decay-rate ;Wait
decay ;Decay again

236

end

;Updates color of patches
to color-patches
ask-patches[
if pheromone < 0 [setpheromone 0] ;Reset pheromone to min
if pheromone > 95 [setpheromone 95] ;Reset pheromone to max
if pheromone = 0 and pc > 59 and pc < 62 [setpc 0] ;Update to black
if pc > 59 and pc < 72 ;Update to shade of green
[setpc (pheromone / 10) + 59.5]]
wait 1 ;Wait
color-patches ;Color again
end

Turtle Procedures

; Defines search behavior for each ant
to search
setc green ;Set color to green
seth heading + 30 - random 60 ;Set random heading
step ;Move forward one unit
wait 1 / srch-spd ;Wait
if pc = red ;If patch is red...
[rt 180 step] ;turn 180 degrees and step
if pc = yellow ;If patch is yellow...
[go-home] ;start go-home procedure
if pc > 59 and pc < 70 ;If patch is green...
[setfollow-time 0 setc orange follow] ;follow trail
if count-turtles-here > 1 [setcollide collide + 1] ;Keep track of collision
search ;Search again
end

; Defines behavior to go home
to go-home
seth towards 0 0 ;Set heading toward home
ifelse pc-ahead = yellow ;If yellow patch is ahead
[stamp black] ;color it black
[setpheromone-at 0 0 pheromone + 10 ;increment pheromone
if pheromone > 95 [setpheromone 95] ;reset if over max value
stamp (pheromone / 10) + 59.5] ;color shade of green
step ;Move forward one unit
if count-turtles-here > 1 [setcollide collide + 1] ;Keep track of collisions
wait 1 / srch-spd ;Wait
repeat 100 ;Repeat following commands 100 times
[if pc = black ;If patch is black
[setpheromone-at 0 0 pheromone + 10 ;increment pheromone

237

stamp (pheromone / 10) + 59.5] ;color patch green
if pc > 59 and pc < 72 ;If patch is green
[setpheromone-at 0 0 pheromone + 10 ;increment pheromone
stamp (pheromone / 10) + 59.5] ;color patch green
if pc = brown ;If patch is brown
[seth heading + 200 - random 40 ;Set heading approx. 180 degrees
search] ;Resume search
seth towards 0 0 ;Set heading toward home
seth heading + 25 - random 50 ;Set random heading
wait 1 / srch-spd ;Wait
step] ;Move forward one step
search ;Resume search
end

; Define path following behavior
to follow
setfollow-time follow-time + 1 ;Increment follow-time
if follow-time > 6 [step search] ;Resume search if lost
setc orange ;Set color orange
repeat 36 ;Repeat commands 36 times
[rt 10 - random 2 ;Turn random angle
if pc-ahead = yellow ;If yellow patch ahead...
[step setc green go-home] ;Start go-home
if pc-ahead > 59 and pc-ahead < 70 and ;If patch ahead is green and farther
fromhome
xcor ^ 2 + ycor ^ 2 <
(xcor + sin (heading)) ^ 2 + (ycor + cos (heading)) ^ 2
[step ;Move forward one unit
if count-turtles-here > 1 [setcollide collide + 1]]] ;Keep track of collisions
follow ;Follow again
end

238

APPENDIX C – Bricx Command Center Documentation

The following material is excerpted from [113] and is written by John Hansen. BricxCC,

version 3.3, was used in this research.

Bricx Command Center was written to more easily work with the Lego

MindStorms and CyberMaster robot system. It is built around NQC (Not Quite C

Compiler), written by Dave Baum, that makes it possible to program the RCX, the Scout,

and the Cybermaster programmable bricks in a language that is close to C. For more

information on NQC, see the tutorial and NQC reference guide provided.

The basis of Bricx Command Center consists of an editor in which you can write

your NQC programs with the integrated ability to compile the programs and download

them to the brick. In case of errors they are reported at the bottom of the editor window

such that they can be corrected easily. Besides the editor, Bricx Command Center

contains tools to control your robot directly, to watch what is happening in the brick, to

download (new) firmware, etc.

To run Bricx Command Center it is not necessary to have spirit.ocx (the ActiveX

control used with the RIS 1.0 and 1.5 sets) registered on your system.

Bricx Command Center can be used free of charge. Please note that NQC and it

documentation are copyrighted by Dave Baum. Bricx Command Center supports version

2.3r1 or later of NQC. (This version is NOT compatible with version 1.x. You can though

set the program in compatibility mode in the Preference menu. There is also an option on

the Edit menu to translate an old style program into a new style program.)

239

APPENDIX D – Not Quite C (NQC) Documentation

The following information is excerpted from Dave Baum’s “NQC Programmer’s Guide.”

The complete version of this guide can be found in [114]. Some sections have been

omitted for the sake of brevity. This is meant to be a basic introduction to the

programming language.

Introduction

NQC stands for Not Quite C, and is a simple language for programming several

LEGO MINDSTORMS products. Some of the NQC features depend on which

MINDSTORMS product you are using. This product is referred to as the target for

NQC. Presently, NQC supports five different targets: RCX, RCX2 (an RCX running 2.0

firmware), CyberMaster, Scout, and Spybotics.

All of the targets have a bytecode interpreter (provided by LEGO) which can be

used to execute programs. The NQC compiler translates a source program into LEGO

bytecodes, which can then be executed on the target itself. Although the preprocessor

and control structures of NQC are very similar to C, NQC is not a general purpose

language - there are many restrictions that stem from limitations of the LEGO bytecode

interpreter.

Logically, NQC is defined as two separate pieces. The NQC language describes

the syntax to be used in writing programs. The NQC API describes the system functions,

constants, and macros that can be used by programs. This API is defined in a special file

built in to the compiler. By default, this file is always processed before compiling a

program.

This document describes both the NQC language and the NQC API. In short, it

provides the information needed to write NQC programs. Since there are several

different interfaces for NQC, this document does not describe how to use any specific

NQC implementation. Refer to the documentation provided with the NQC tool, such as

the NQC User Manual for information specific to that implementation.

For up-to-date information and documentation for NQC, visit the NQC Web Site

at http://www.baumfamily.org/nqc

240

Program Structure

An NQC program is composed of code blocks and global variables. There are

three distinct types of code blocks: tasks, inline functions, and subroutines. Each type of

code block has its own unique features and restrictions, but they all share a common

structure.

Tasks

The RCX implicitly supports multi-tasking, thus an NQC task directly

corresponds to an RCX task. Tasks are defined using the task keyword using the

following syntax:

task name()

{

// the task's code is placed here

}

The name of the task may be any legal identifier. A program must always have at

least one task - named "main" - which is started whenever the program is run. The

maximum number of tasks depends on the target - the RCX supports 10 tasks,

CyberMaster supports 4, and Scout supports 6.

The body of a task consists of a list of statements. Tasks may be started and

stopped using the start and stop statements (described in the section titled

Statements). There is also a NQC API command, StopAllTasks, which stops all

currently running tasks.

Functions

It is often helpful to group a set of statements together into a single function,

which can then be called as needed. NQC supports functions with arguments, but not

return values. Functions are defined using the following syntax:

void name(argument_list)

{

// body of the function

}

The keyword void is an artifact of NQC's heritage - in C functions are specified

with the type of data they return. Functions that do not return data are specified to return

241

void. Returning data is not supported in NQC, thus all functions are declared using the

void keyword.

The argument list may be empty, or may contain one or more argument

definitions. An argument is defined by its type followed by its name. Multiple

arguments are separated by commas. All values are represented as 16 bit signed integers.

However NQC supports four different argument types which correspond to different

argument passing semantics and restrictions:

Type Meaning Restriction

int pass by value none

const int pass by value only constants may be used

int& pass by reference only variables may be used

const int & pass by reference function cannot modify argument

Arguments of type int are passed by value from the calling function to the

callee. This usually means that the compiler must allocate a temporary variable to hold

the argument. There are no restrictions on the type of value that may be used. However,

since the function is working with a copy of the actual argument, any changes it makes to

the value will not be seen by the caller. In the example below, the function foo attempts

to set the value of its argument to 2.

The second type of argument, const int, is also passed by value, but with the

restriction that only constant values (e.g. numbers) may be used. This is rather important

since there are a number of RCX functions that only work with constant arguments.

The third type, int &, passes arguments by reference rather than by value. This

allows the callee to modify the value and have those changes visible in the caller.

However, only variables may be used when calling a function using int & arguments:

The last type, const int &, is rather unusual. It is also passed by reference, but

with the restriction that the callee is not allowed to modify the value. Because of this

restriction, the compiler is able to pass anything (not just variables) to functions using

this type of argument. In general this is the most efficient way to pass arguments in

NQC.

242

NQC functions are always expanded as inline functions. This means that each

call to a function results in another copy of the function's code being included in the

program. Unless used judiciously, inline functions can lead to excessive code size.

Subroutines

Unlike inline functions, subroutines allow a single copy of some code to be shared

between several different callers. This makes subroutines much more space efficient than

inline functions, but due to some limitations in LEGO bytecode interpreter, subroutines

have some significant restrictions. First of all, subroutines cannot use any arguments.

Second, a subroutine cannot call another subroutine. Last, the maximum number of

subroutines is limited to 8 for the RCX, 4 for CyberMaster, 3 for Scout, and 32 for

Spybotics. In addition, when using RCX 1.0 or CyberMaster, if the subroutine is called

from multiple tasks then it cannot have any local variables or perform calculations that

require temporary variables. These significant restrictions make subroutines less

desirable than functions, therefore their use should be minimized to those situations

where the resultant savings in code size is absolutely necessary. The syntax for a

subroutine appears below:

sub name()

{

// body of subroutine

}

Variables

All variables in NQC are of the same type - specifically 16 bit signed integers.

Variables are declared using the int keyword followed by a comma separated list of

variable names and terminated by a semicolon (';'). Optionally, an initial value for each

variable may be specified using an equals sign ('=') after the variable name.

Global variables are declared at the program scope (outside any code block).

Once declared, they may be used within all tasks, functions, and subroutines. Their scope

begins at declaration and ends at the end of the program.

Local variables may be declared within tasks, functions, and sometimes within

subroutines. Such variables are only accessible within the code block in which they are

defined. Specifically, their scope begins with their declaration and ends at the end of

243

their code block. In the case of local variables, a compound statement (a group of

statements bracketed by { and }) is considered a block.

In many cases NQC must allocate one or more temporary variables for its own

use. In some cases a temporary variable is used to hold an intermediate value during a

calculation. In other cases it is used to hold a value as it is passed to a function. These

temporary variables deplete the pool of variables available to the rest of the program.

NQC attempts to be as efficient as possible with temporary variables (including reusing

them when possible).

The RCX (and other targets) provide a number of storage locations which can be

used to hold variables in an NQC program. There are two kinds of storage locations -

global and local. When compiling a program, NQC assigns each variable to a specific

storage location. Programmers for the most part can ignore the details of this assignment

by following two basic rules:

• If a variable needs to be in a global location, declare it as a global variable.

• If a variable does not need to be a global variable, make it as local as possible.

This gives the compiler the most flexibility in assigning an actual storage

location.

Statements

The body of a code block (task, function, or subroutine) is composed of

statements. Statements are terminated with a semi-colon (';').

Variable Declaration

Variable declaration, as described in the previous section, is one type of

statement. It declares a local variable (with optional initialization) for use within the

code block. The syntax for a variable declaration is:

int variables;

where variables is a comma separated list of names with optional initial values:

name[=expression]

Arrays of variables may also be declared (for the RCX2 only):

int array[size];

Assignment

244

Once declared, variables may be assigned the value of an expression:

variable assign_operator expression;

There are nine different assignment operators. The most basic operator, '=',

simply assigns the value of the expression to the variable. The other operators modify the

variable's value in some other way as shown in the table below

Operator Action

= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

*= Multiple variable by expression

/= Divide variable by expression

%= Set variable to remainder after dividing by expression

&= Bitwise AND expression into variable

|= Bitwise OR expression into variable

^= Bitwise exclusive OR into variable

||= Set variable to absolute value of expression

+-= Set variable to sign (-1,+1,0) of expression

>>= Right shift variable by a constant amount

<<= Left shift variable by a constant amount

Control Structures

The simplest control structure is a compound statement. This is a list of

statements enclosed within curly braces ('{' and '}'):

{

x = 1;

y = 2;

}

Although this may not seem very significant, it plays a crucial role in building

more complicated control structures. Many control structures expect a single statement

as their body. By using a compound statement, the same control structure can be used to

control multiple statements.

245

The if statement evaluates a condition. If the condition is true it executes one

statement (the consequence). An optional second statement (the alternative) is executed

if the condition is false. The two syntaxes for an if statement is shown below.

if (condition) consequence

if (condition) consequence else alternative

Note that the condition is enclosed in parentheses.

The while statement is used to construct a conditional loop. The condition is

evaluated, and if true the body of the loop is executed, then the condition is tested again.

This process continues until the condition becomes false (or a break statement is

executed). The syntax for a while loop appears below:

while (condition) body

A variant of the while loop is the do-while loop. Its syntax is:

do body while (condition)

The difference between a while loop and a do-while loop is that the do-while

loop always executes the body at least once, whereas the while loop may not execute it

at all.

Another kind of loop is the for loop:

for(stmt1 ; condition ; stmt2) body

A for loop always executes stmt1, then it repeatedly checks the condition and

while it remains true executes the body followed by stmt2. The for loop is equivalent to:

stmt1;

while(condition)

{

body

stmt2;

}

The repeat statement executes a loop a specified number of times:

repeat (expression) body

The expression determines how many times the body will be executed. Note that

it is only evaluated a single time, then the body is repeated that number of times. This is

different from both the while and do-while loops which evaluate their condition each

time through the loop.

246

A switch statement can be used to execute one of several different blocks of

code depending on the value of an expression. Each block of code is preceded by one or

more case labels. Each case must be a constant and unique within the switch statement.

The switch statement evaluates the expression then looks for a matching case label. It

will then execute any statements following the matching case until either a break

statement or the end of the switch is reaches. A single default label may also be used -

it will match any value not already appearing in a case label. Technically, a switch

statement has the following syntax:

switch (expression) body

The case and default labels are not statements in themselves - they are labels that

precede statements. Multiple labels can precede the same statement.

The goto statement forces a program to jump to the specified location.

Statements in a program can be labeled by preceding them with an identifier and a colon.

A goto statement then specifies the label which the program should jump to. For

example, this is how an infinite loop that increments a variable could be implemented

using goto:

my_loop:

x++;

goto my_loop;

The goto statement should be used sparingly and cautiously. In almost every

case, control structures such as if, while, and switch make a program much more

readable and maintainable than using goto. Care should be taken to never use a goto to

jump into or out of a monitor or acquire statement. This is because monitor and

acquire have special code that normally gets executed upon entry and exit, and a goto

will bypass that code – probably resulting in undesirable behavior.

247

APPENDIX E – NQC Program Code

The following NQC Code was used to control each robot. In the non-cooperative

experiments, the”follow” behavior was removed from the program. Comments are set

off by double forward slashes. The program is displayed in two columns, read from the

bottom of the left column to the top of the right column.

// Mark Edelen
// Foraging Robots Thesis Research
// Main Foraging Program
// Four main behaviors:
// (1) wander
// (2) avoid
// (3) pick up / go home
// (4) follow

task main ()
{
 // Initialize sensors
 SetSensor (SENSOR_1,
SENSOR_TOUCH);
 SetSensor (SENSOR_3,
SENSOR_LIGHT);
 SetSensorType (SENSOR_2,
SENSOR_TYPE_LIGHT);
 SetSensorMode (SENSOR_2,
SENSOR_MODE_RAW);

 // Initialize counters
 #pragma reserve 0 // Counter for avoid
behavior
 #pragma reserve 1 // Counter for pick-up
behavior
 #pragma reserve 2 // Counter for follow

behavior

 // Clear counters
 ClearCounter (0);
 ClearCounter (1);
 ClearCounter (2);

 // Check battery level
 if (BatteryLevel() < 8850)
 {
 PlaySound (SOUND_LOW_BEEP);
 Wait (100);

 }

 // Create datalog
 CreateDatalog (100);

 // Play Start Note
 PlaySound (SOUND_CLICK);

 // Make sure pen & magnet are up
 SetPower (OUT_B,4);
 OnFor (OUT_B, 30);

 // Start basic behavior
 start wander;
}

task wander ()
{
 // Stop follow task
 stop follow;

 // Define events to monitor while
wandering
 SetEvent (1, SENSOR_1,
EVENT_TYPE_PRESSED); // touch
sensor
 SetEvent (2, SENSOR_2,
EVENT_TYPE_NORMAL); // light2
reads washer or line
 SetLowerLimit (2,SENSOR_2 + 10);
 SetUpperLimit (2,720);
 SetEvent (3, SENSOR_3,
EVENT_TYPE_HIGH); // light3 reads
bright
 SetLowerLimit (3,50);
 SetUpperLimit (3,75);

 // Start wander timer

248

 SetTimer (1, 0);

 // Display raw value of light2
 SelectDisplay (DISPLAY_SENSOR_2);

 // Start monitoring 3 events
 monitor(EVENT_MASK (1) |
EVENT_MASK (2) | EVENT_MASK (3))
 {
 SetDirection (OUT_A+OUT_C,
OUT_FWD);
 SetPower (OUT_A+OUT_C,2);
 while (true)
 {
 // Recalibrate lower limit every 4 ms
 SetLowerLimit (2,SENSOR_2 + 8);
 OnFor (OUT_A+OUT_C, 4);
 }
 }
 // If touch sensor is pressed, then...
 catch(EVENT_MASK (1))
 {
 Off (OUT_A+OUT_C);
 // Beep
 PlaySound (SOUND_UP);

 AddToDatalog (Timer (1));
 start avoid;

 }
 // If robots reads non-white, then...
 catch(EVENT_MASK (2))
 {
 Wait(4);
 Off (OUT_A+OUT_C);
 // Beep
 PlaySound (SOUND_DOUBLE_BEEP);
 Wait(100);
 if (SENSOR_2 > 700) // over 700 is
the washer
 {
 // Record wandering time
 AddToDatalog (Timer (1));
 // Pick up washer
 start pick_up;
 }
 else
 {
 // Increment counter for follow behavior
 IncCounter (2);

 // Add counter value to datalog
 AddToDatalog (20);
 AddToDatalog (Counter (2));
 // Record wandering time
 AddToDatalog (Timer (1));
 // Follow the trail
 start follow;
 }
 }
 // If light3 reads bright (robot is close to
home), then...
 catch(EVENT_MASK(3))
 {
 Off (OUT_A+OUT_C);
 // ...avoid home
 start avoid;
 }
}

task avoid ()
{
 // Start avoid timer
 SetTimer (2, 0);

 // Increment avoid counter
 IncCounter (0);
 AddToDatalog (0);
 AddToDatalog (Counter (0));

 // Monitor for touch while avoiding
 monitor (EVENT_MASK (1))
 {
 // Back up
 SetDirection

(OUT_A+OUT_C,OUT_REV);
 OnFor (OUT_A+OUT_C, 20);
 // Rotate random angle
 SetDirection (OUT_C, OUT_FWD);
 SetPower (OUT_A+OUT_C, 4);
 OnFor (OUT_A+OUT_C,
40+Random(80));
 AddToDatalog (Timer (2));
 start wander;
 }
 catch
 {
 start avoid;
 }
}

249

task pick_up ()
{
 // Go fwd to get over washer
 OnFor (OUT_A+OUT_C, 35);

 // Lower magnet to pick up washer
 SetPower (OUT_B,6);
 SetDirection (OUT_B, OUT_REV);
 OnFor (OUT_B, 75);
 Wait (50);

 // Increment counter1
 IncCounter (1);
 AddToDatalog (10);
 AddToDatalog (Counter (1));

 // Back up to clear other magnets
 SetPower (OUT_A+OUT_C, 2);
 SetDirection (OUT_A+OUT_C,
OUT_REV);
 OnFor (OUT_A+OUT_C, 30);
 Wait (50);
 Off (OUT_A+OUT_C);

 // Start to go home
 start go_home;
}

task go_home ()
{

 //Display value of light3
 SelectDisplay (DISPLAY_SENSOR_3);

monitor (EVENT_MASK (1))
{

 // Rotate to find initial home direction
 SetDirection (OUT_C, OUT_FWD);
 SetDirection (OUT_A, OUT_REV);
 SetPower (OUT_A+OUT_C, 4);
 do
 {
 OnFor (OUT_A+OUT_C, 10);
 Wait (60);
 }
 while (SENSOR_3 < 54);

 // Lower pen
 SetPower (OUT_B, 8);
 OnRev (OUT_B);

 Off (OUT_A+OUT_C);
 SetDirection (OUT_A+OUT_C,
OUT_FWD);
 SetPower (OUT_A+OUT_C, 2);
On (OUT_A+OUT_C);

 Wait(30);

 repeat(5)
 {
 // Search for home until light is bright
 SetPower (OUT_C, 1);
 On(OUT_C);
 Wait(100);
 Float(OUT_C);
 Wait(75);

 if (SENSOR_3 > 90) break;
 }

 // Go fwd, lift pen & magnet, go back
 PlaySound (SOUND_CLICK);
 // Go fwd to get close to home
 SetPower(OUT_A+OUT_C,2);
 OnFor (OUT_A+OUT_C, 70);
 // Lift magnet
 Off (OUT_B);
 SetDirection (OUT_B, OUT_FWD);
 On (OUT_B);
 Wait (15);
 // Go back
 SetDirection(OUT_A+OUT_C,
OUT_REV);
 OnFor (OUT_A+OUT_C,100);
 // Turn
 SetDirection(OUT_C, OUT_FWD);
 SetPower(OUT_A+OUT_C,4);
 On(OUT_A+OUT_C);
 Wait (75 + Random(40));
 Off (OUT_A+OUT_B+OUT_C);

 // Resume wandering
 start wander;
}
catch
{

250

 Off(OUT_A+OUT_B+OUT_C);
 Wait(300);
 start go_home;
}
}

task follow ()
{
 // Start follow timer
 SetTimer (3, 0);

 //Display raw value of light2
 SelectDisplay (DISPLAY_SENSOR_2);

 monitor (EVENT_MASK (1))
 {
 // Cross over line
 SetDirection (OUT_A+OUT_C,
OUT_FWD);
 SetPower (OUT_A+OUT_C, 2);
 OnFor (OUT_A+OUT_C, 25);
 Wait(100);

 // Turn left small amount to turn caster
 SetDirection (OUT_A, OUT_REV);
 SetPower (OUT_A+OUT_C, 3);
 OnFor (OUT_A+OUT_C, 15);

 // Turn left until light2 sees line
 int floor1;
 int floor2;
 int j;
 j=0;
 do
 {
 floor1 = SENSOR_2;
 OnFor (OUT_A+OUT_C, 5);
 Wait (35);
 floor2 = SENSOR_2;
 j++;
 if (j>30) {PlaySound (SOUND_CLICK);
start wander;}
 }
 while (floor2 <= floor1 + 5);
 Wait(100);

 // Take light reading
 int light_left;
 light_left = SENSOR_3;

 // Turn right small amount to get off line
 Toggle (OUT_A+OUT_C);
 SetPower (OUT_A+OUT_C, 4);
 OnFor (OUT_A+OUT_C, 50);
 SetPower (OUT_A+OUT_C, 3);
 Wait(100);

 // Turn right until light2 sees line
 j=0;
 do
 {
 floor1 = SENSOR_2;
 OnFor (OUT_A+OUT_C, 5);
 Wait (35);
 floor2 = SENSOR_2;
 j++;
 if (j>25) start wander;
 }
 while (floor2 <= floor1 + 5);
 Wait(100);

 // Take light reading
 int light_right;
 light_right = SENSOR_3;

 // Estimate distance from home and assign
number of turns
 int light_home;
 if (light_right < light_left)
 {
 light_home = light_right;
 }
 else
 {
 light_home = light_left;
 }
 int dist_home;
 if (light_home > 77 && light_home <= 85)
dist_home = 8;
 if (light_home > 70 && light_home <= 76)
dist_home = 6;
 if (light_home > 65 && light_home <= 70)
dist_home = 5;
 if (light_home > 52 && light_home <= 64)
dist_home = 4;
 else dist_home = 3;

 // Compare light readings
 if (light_right < light_left)

251

 // Follow line with line on right
 { repeat(dist_home + 1)
 {// Turn left to get off line
 SetPower (OUT_A+OUT_C, 4);
 SetDirection (OUT_A+OUT_C,
OUT_FWD);
 Off (OUT_A);
 OnFor (OUT_C, 30);
 // Turn right until line
 Off (OUT_C);
 j=0;
 do
 {
 floor1 = SENSOR_2;
 OnFor (OUT_A, 4);
 Wait (20);
 floor2 = SENSOR_2;
 j++;
 if (j>30) start wander;
 }
 while (floor2 <= floor1 + 4);
 }
 }

 else
 {
 // Follow line with line on left
 PlaySound (SOUND_FAST_UP);

 // Turn left small amount
 Toggle (OUT_A+OUT_C);
 OnFor (OUT_A+OUT_C, 55);

 SetPower (OUT_A+OUT_C, 4);
 SetDirection (OUT_A+OUT_C,
OUT_FWD);
 repeat(dist_home + 1)
 {
 // Turn left until line
 Off (OUT_A);
 j=0;
 do
 {
 floor1 = SENSOR_2;
 OnFor (OUT_C, 4);
 Wait (20);
 floor2 = SENSOR_2;
 j++;
 if (j>30) start wander;
 }
 while (floor2 <= floor1 + 4);
 // Turn right to get off line
 Off (OUT_C);
 OnFor (OUT_A, 30);
 }
 }
}
 catch
 {
 AddToDatalog (Timer (3));
 start avoid;
 }
AddToDatalog (Timer (3));
start wander;
}

252

APPENDIX F – LEGO Robot Assembly Instructions

In the following pages, the assembly instructions are provided, pictorially, for

each individual subsystem of the robot. After the assembly of each subsystem,

instructions are shown for combining the subsystems into a completed robot. These

figure were generated using MLCAD v.3.0 (© 2002 by Michael Lachmann), a computer-

aided design package specifically designed for use with LEGO constructions [120].

CASTER WHEEL ASSEMBLY

FRONT FRAME ASSEMBLY

253

FRONT BUMPER ASSEMBLY

254

255

LEFT SIDE ASSEMBLY

256

RIGHT SIDE ASSEMBLY

257

258

DRIVE MOTOR ASSEMBLY

259

MOTOR 3 ASSEMBLY

260

PEN HOLDER/DRIVE SYSTEM ASSEMBLY

261

RCX ASSEMBLY

262

263

MAGNET APPARATUS ASSEMBLY

264

WASHER PLATE ASSEMBLY

265

ASSEMBLY OF SUBSYSTEMS

266

267

268

269

270

271

REFERENCES

[1] Cao, Y., Fukunaga, A., and Kahng, A., "Cooperative mobile robotics: Antecedents and
directions," Autonomous Robots, vol. 4, pp. 1-23, 1997.

[2] Arai, T., Pagello, E., and Parker, L. E., "Guest Editorial: Advances in multirobot
systems," IEEE Transactions on Robotics and Automation, vol. 18, pp. 655-661, 2002.

[3] Fukada, T., Nakaggawa, S., Kawauchi, Y., and Buss, M., "Structure decision method for
self-organizing robots based on cell structure--CEBOT," presented at IEEE International
Conference on Robotics and Automation, Los Alamitos, CA, pp. 695-700, 1989.

[4] Beni, G., "The concept of cellular robot," presented at Third IEEE Symposium on
Intelligent Control, Arlington, VA, pp. 57-61, 1988.

[5] Beni, G., "Swarm Intelligence," presented at Seventh Annual Meeting of the Robotics
Society of Japan, Tokyo, pp. 425-428, 1989.

[6] Hackwood, S. and Beni, G., "Self-organizing sensors by deterministic annealing,"
presented at IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1177-1183, 1992.

[7] Sugawara, K. and Sano, M., "Cooperative acceleration of task performance: Foraging
behavior of interacting multi-robot systems," Physica D, vol. 100, pp. 343-354, 1997.

[8] Deneubourg, J.-L., Theraulaz, G., and Beckers, R., "Swarm-made architectures,"
presented at European Conference on Artificial Life, pp. 123-133, 1992.

[9] Brooks, R. A., "Intelligence without reason," presented at International Joint Conference
on Artificial Intelligence, pp. 569-595, 1991.

[10] Brooks, R. A., "A robust layered control system for a mobile robot," Journal of Robotics
and Automation, vol. 2, pp. 14-23, 1986.

[11] Werger, B., "Cooperation without deliberation: A minimal behavior-based approach to
multi-robot teams," Artificial Intelligence, vol. 110, pp. 293-320, 1999.

[12] Beckers, R., Holland, O. E., and Deneubourg, J.-L., "From local actions to global tasks:
Stigmergy and collective robotics," presented at 4th International Workshop on the
Synthesis and Simulation of Living Systems: Artificial Life IV, vol. 4, pp. 181-189,
1994.

[13] Cassinis, R., Bianco, G., Cavagnini, A., and Ransenigo, P., "Strategies for navigation of
robot swarms to be used in landmines detection," presented at Third European Workshop
on Advanced Mobile Robots, pp. 211-218, 1999.

[14] Gaussier, P. and Zrehen, S., "Avoiding the world model trap: An acting robot does not
need to be so smart!," Robotics and Computer-Integrated Manufacturing, vol. 11, pp.
279-286, 1994.

272

[15] Genovese, V., Odetti, L., Magni, R., and Dario, P., "Self organizing behavior and swarm
intelligence in a cellular robotic system," presented at IEEE International Symposium on
Intelligent Control, pp. 243-248, 1992.

[16] Goss, S. and Deneubourg, J.-L., "Harvesting by a group of robots," presented at First
European Conference on Artificial Life: Toward a Practice of Autonomous Systems, pp.
195-204, 1992.

[17] Mataric, M. J., "Minimizing complexity in controlling a mobile robot population,"
presented at IEEE International Conference on Robotics and Automation, Nice, France,
pp. 830-835, 1992.

[18] Brooks, R. A., "Intelligence without representation," Artificial Intelligence, vol. 47, pp.
139-159, 1991.

[19] Howe, J., "A flexible and innovative platform for autonomous mobile robots," MIT,
Masters Thesis Proposal January 2003.

[20] Arai, T., Ogata, H., and Suzuki, T., "Collision avoidance among multiple robots using
virtual impedance," presented at IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 479-485, 1989.

[21] Dudek, G., Jenkin, M., Milios, E., and Wilkes, D., "A taxonomy for swarm robots,"
presented at IEEE/RSJ International Conference on Intelligent Robots and Systems,
Yokohama, Japan, pp. 441-447, 1993.

[22] Ichikawa, S., Hara, F., and Hosokai, H., "Cooperative route-searching behavior of multi-
robot system using hello-call communication," presented at IEEE/RSJ International
Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 1149-1156, 1993.

[23] Singh, S. P. N., Thayer, S. M., and Thayer, W. P., "A foundation for kilorobotic
exploration," presented at 2002 Congress on Evolutionary Computation, vol. 2, pp. 1033-
1038, 2002.

[24] Russell, A., "Mobile robot guidance using a short-lived heat trail," Robotica, vol. 11, pp.
427-431, 1993.

[25] Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., and Chretien,
L., "The dynamics of collective sorting: robot-like ants and ant-like robots," presented at
First European Conference on Artificial Life: Toward a Practice of Autonomous Systems,
pp. 123-133, 1992.

[26] Melhuish, C., Holland, O. E., and Hoddell, S., "Collective sorting and segregation in
robots with minimal sensing," presented at Fifth International Conference on Simulation
of Adaptive Behavior: From Animals to Animats V, Zurich, Switzerland, 1998.

[27] Mataric, M. J., "Behavior-based control: Examples from navigation, learning, and group
behavior," Journal of Experimental and Theoretical Artificial Intelligence, vol. 9, pp.
323-336, 1997.

273

[28] Beni, G. and Wang, J., "Theoretical problems for the realization of distributed robotic
systems," presented at IEEE International Conference on Robotics and Automation,
Sacramento, CA, pp. 1914-1920, 1991.

[29] Ferrari, M., Ferrari, G., and Hempel, R., Building Robots with LEGO MINDSTORMS.
Rockland, MA: Syngress, 2002.

[30] Kotay, Keith, "Robo-Rats Locomotion Page," 2001,
http://www.cs.dartmouth.edu/~robotlab/robotlab/courses/cs54-2001s/locomotion.html

[31] Borenstein, J., Everett, H. R., and Feng, L., "Where am I? Sensors and Methods for
Mobile Robot Positioning," University of Michigan 1996.

[32] ActivMedia Robotics, "Pioneer 3 General Purpose Robot," 2003,
http://www.activrobots.com/ROBOTS/p2dx.html#descrip

[33] ActivMedia Robotics, "Pioneer 3 All-Terrain Robot," 2003,
http://www.activrobots.com/ROBOTS/p2at.html#descrip

[34] Nelson, W. L., "Continuous steering-function control of robot carts," IEEE Transactions
on Industrial Electronics, vol. 36, pp. 330-337, 1989.

[35] Mason, M., Pai, D., Rus, D., Howell, J., and Taylor, L. R., "Experiments with desktop
mobile manipulators," International Symposium on Experimental Robotics, 1999.

[36] iRobot Corporation, "B21r Mobile Robot," 2003, http://www.irobot.com/rwi/p06.asp

[37] R.A., J., "Autonomous Navigation of a Martian Rover in Very Rough Terrain," presented
at International Symposium on Experimental Robotics, Sydney, pp. 225-234, 1999.

[38] Yamaguchi, H., "A distributed motion coordination strategy for multiple nonholonomic
mobile robots in cooperative hunting operations," presented at IEEE Conference on
Decision and Control, Las Vegas, Nevada, vol. 41, pp. 2984-2991, 2002.

[39] Zhang, B., Chen, X., Liu, G., and Cai, Q., "Agent architecture: a survey on RoboCup-99
simulator teams," presented at Third World Congress on Intelligent Control and
Automation, pp. 194-198, 2000.

[40] Yamaguchi, H., "A cooperative hunting behavior by mobile-robot troops," International
Journal of Robotics Research, vol. 18, pp. 931-940, 1999.

[41] Werger, B. and Mataric, M. J., "Robotic "food" chains: Externalization of state and
program for minimal-agent foraging," presented at Fourth International Conference on
Simulation of Adaptive Behavior: From Animals to Animats, vol. 4, pp. 626-633, 1996.

[42] Wang, Z. D., Nakano, E., and Matsukawa, T., "Cooperating multiple behavior-based
robots for object manipulation," presented at IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1524-1531, 1994.

274

[43] Sugawara, K. and Watanabe, T., "Swarming robots - Foraging behavior of simple multi-
robot system," presented at IEEE/RSJ International Conference on Intelligent Robots and
Systems, Lausanne, Switzerland, pp. 2702-2707, 2002.

[44] Hayes, A. T. and Dormiani-Tabatabaei, P., "Self-organized flocking with agent failure:
Off-line optimization and demonstration with real robots," presented at IEEE
International Conference on Robotics and Automation, Washington, D.C., pp. 3900-
3905, 2002.

[45] Fredslund, J. and Mataric, M. J., "Robot formations using only local sensing and control,"
presented at IEEE International Symposium on Computational Intelligence in Robotics
and Automation, Alberta, Canada, pp. 308-313, 2001.

[46] Balch, T. and Arkin, R. C., "Behavior-based formation control for multirobot teams,"
IEEE Transactions on Robotics and Automation, vol. 14, pp. 926-939, 1998.

[47] Winfield, A. F. T. and Holland, O. E., "The application of wireless local area network
technology to the control of mobile robots," Microprocessors and Microsystems, vol. 23,
pp. 597-607, 2000.

[48] Krotkov, E. and Blitch, J., "The Defense Advanced Research Projects Agency (DARPA)
Tactical Mobile Robotics Program," International Journal of Robotics Research, vol. 18,
pp. 769-776, 1999.

[49] Yamaguchi, H., "Adaptive formation control for distributed autonomous mobile-robot
groups," presented at IEEE International Conference on Robotics and Automation,
Washington, D.C., pp. 2300-2305, 1997.

[50] Sudd, J. H., "The transport of prey by ants," Behaviour, vol. 25, pp. 234-271, 1965.

[51] Kube, R. C. and Zhang, H., "Stagnation recovery behaviours for collective robotics,"
presented at IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1893-1890, 1994.

[52] Bay, J. S., "Design of the "Army-Ant" cooperative lifting robot," in IEEE Robotics &
Automation Magazine, March 1995, pp. 36-43.

[53] Stilwell, D. J. and Bay, J. S., "Toward the development of a material transport system
using swarms of ant-like robots," presented at IEEE International Conference on
Robotics and Automation, Atlanta, GA, 1993.

[54] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E., "RoboCup: The Robot
World Cup Initiative," presented at First International Conference On Autonomous
Agents, Marina del Ray, 1997.

[55] Hugel, V., Bonnin, P., and Blazevic, P., "Reactive and adaptive control architecture
designed for the Sony legged robots league in RoboCup," presented at IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 2, pp. 1032-1037, 2000.

275

[56] Werger, B., "Principles of minimal control for comprehensive team behaviour," presented
at IEEE International Conference on Robotics and Automation, vol. 4, pp. 3504-3509,
1998.

[57] Pagello, E., D'Angelo, A., Montesello, F., Garelli, F., and Ferrari, C., "Cooperative
behaviors in multi-robot systems through implicit communication," Robotics and
Autonomous Systems, vol. 29, pp. 65-77, 1999.

[58] Drogoul, A. and Ferber, J., "From Tom Thumb to the Dockers: Some experiments with
foraging robots," presented at Second International Conference on Simulation of
Adaptive Behavior, Honolulu, HI, pp. 451-459, 1992.

[59] Stephens, D. W. and Krebs, J. R., Foraging Theory. Princeton, NJ: Princeton University
Press, 1986.

[60] Altenburg, K., "Adaptive resource allocation for a multiple mobile robot system using
communication," North Dakota State University, Technical Report NDSU-CSOR-TR-
9404, 1994.

[61] Mataric, M. J., "Designing and understanding adaptive group behavior," Adaptive
Behavior, vol. 4, pp. 51-80, 1995.

[62] Holldobler, B. and Wilson, E. O., The Ants. Cambridge, Mass.: Harvard University Press,
1990.

[63] Shen, W.-M., Chuong, C.-M., and Will, P., "Simulating self-organization for multi-robot
systems," presented at 2002 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Lausanne, Switzerland, pp. 2776-2781, 2002.

[64] Prescott, T. J. and Ibbotson, C., "A Robot Trace Maker: Modeling the Fossil Evidence of
Early Invertebrate Behavior," Artificial Life, vol. 3, pp. 289-306, 1997.

[65] Deveza, R., Thiel, D., Russell, A., and Mackay-Sim, A., "Odor sensing for robot
guidance," International Journal of Robotics Research, vol. 13, pp. 232-239, 1994.

[66] Russell, A., "Laying and sensing odor markings as a strategy for assisting mobile robot
navigation tasks," in IEEE Robotics & Automation Magazine, 1995, pp. 3-9.

[67] Grasse, P. P., "La reconstruction du nid et les coordinations inter-individuelle chez
bellicoitermes natalenis et cubitermes sp. la theorie de la stigmergie: Essai
d'interpretation des termites constructeurs," Insectes Sociaux, vol. 6, 1959.

[68] Bonabeau, E., Dorigo, M., and Theraulaz, G., Swarm Intelligence: From Natural to
Artificial Systems. New York: Oxford University Press, 1999.

[69] Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., and Camazine, S., "Self-
organization in social insects," Trends in Ecology and Evolution, vol. 12, pp. 188-193,
1997.

[70] Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., and Bonabeau,
E., Self-Organization in Biological Systems. Princeton: Princeton University Press, 2001.

276

[71] Deneubourg, J.-L., Pasteels, J. M., and Verhaeghe, J. C., "Probabilistic behaviour in ants:
A strategy of errors?," Journal of Theoretical Biology, vol. 105, pp. 259-271, 1983.

[72] Pasteels, J. M. and Deneubourg, J.-L., "From Individual to Collective Behavior in Social
Insects," in Experientia Supplementum, vol. 54. Boston: Birkhauser Verlag, 1987, pp.
433.

[73] Martinoli, A., Ijspeert, A. J., and Mondada, F., "Understanding collective aggregation
mechanisms: From probablistic modelling to experiments with real robots," Robotics and
Autonomous Systems, vol. 29, pp. 51-63, 1999.

[74] Pamecha, A., Chiang, C. J., Stein, D., and Chirikjian, G. S., "Design and implementation
of metamorphic robots," presented at ASME Design Engineering Technical Conference
and Computers and Engineering Conference, New York, NY, pp. 1-10, 1996.

[75] Chirikjian, G. S., "Kinematics of a metamorphic robotic system," presented at IEEE
International Conference on Robotics and Automation, Los Alamitos, CA, pp. 449-455,
1994.

[76] Hayes, A. T., Martinoli, A., and Goodman, R. M., "Swarm robotic odor localization,"
presented at IEEE/RSJ International Conference on Intelligent Robots and Systems,
Maui, Hawaii, pp. 1073-1078, 2001.

[77] Genovese, V., Dario, P., Magni, R., and Odetti, L., "Self organizing behavior and swarm
intelligence in a pack of mobile miniature robots in search of pollutants," presented at
IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, pp.
1575-1582, 1992.

[78] Rybski, P. E., Papanikolopoulos, N. P., Stoeter, S. A., Krantz, D. G., and Yesin, K. B.,
"Enlisting Rangers and Scouts for reconnaissance and surveillance," in IEEE Robotics &
Automation Magazine, December 2000, pp. 14-23.

[79] Camazine, S., "Self-organizing pattern formation on the combs of honey bee colonies,"
Behavioral Ecology and Sociobiology, vol. 28, pp. 61-76, 1991.

[80] Camazine, S. and Sneyd, J., "A model of collective nectar source selection by honey
bees: self-organization through simple rules," Journal of Theoretical Biology, vol. 149,
pp. 547-571, 1991.

[81] Edelstein-Keshet, L., Watmough, J., and Ermentrout, G., "Trail following in ants:
individual properties determine population behavior," Behavioral Ecology and
Sociobiology, vol. 36, pp. 119-133, 1995.

[82] Beckers, R., Deneubourg, J.-L., and Goss, S., "Trail laying behaviour during food
recruitment in the ant Lasius niger (L.)," Insectes Sociaux, vol. 39, pp. 59-72, 1992.

[83] Pasteels, J. M., Deneubourg, J.-L., and Goss, S., "Self-organization mechanisms in ant
societies (I): Trail recruitment to newly discovered food sources," Experientia
Supplementum, vol. 54, pp. 155-175, 1987.

277

[84] Resnick, M., Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel
Microworlds. London: MIT Press, 1994.

[85] Nicolis, S. C. and Deneubourg, J.-L., "Emerging patterns and food recruitment in ants: an
analytical study," Journal of Theoretical Biology, vol. 198, pp. 575-592, 1999.

[86] Bonabeau, E. and Cogne, F., "Oscillation-enhanced adaptability in the vicinity of a
bifurcation: the example of foraging in ants," presented at Fourth International
Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 537-542,
1996.

[87] Jun, J.-H., Lee, D.-W., and Sim, K.-B., "Realization of cooperative strategies and swarm
behavior in distributed autonomous robotic systems using artificial immune system,"
presented at IEEE International Conference on Systems, Man, and Cybernetics, vol. 6,
pp. 614-619, 1999.

[88] Taheri, S. A. and Calva, G., "Imitating the human immune system capabilities for multi-
agent federation formation," presented at 2001 IEEE International Symposium on
Intelligent Control, Mexico City, Mexico, pp. 25-30, 2001.

[89] Mitsumoto, N., Fukada, T., Shimojima, K., and Ogawa, A., "Micro autonomous robotic
system and biologically inspired immune system swarm strategy as a multi agent robotic
system," presented at IEEE International Conference on Robotics and Automation, pp.
2187-2192, 1995.

[90] Goldbeter, A., Biochemical Oscillations and Cellular Rhythms. Cambridge: Cambridge
University Press, 1996.

[91] Pratt, S. C., "Recruiment and other communication behavior in the Ponerine ant
Ectatomma ruidum," Ethology, vol. 81, pp. 313-331, 1989.

[92] Bernstein, R. A., "Foraging strategies of ants in response to variable food density,"
Ecology, vol. 56, pp. 213-219, 1975.

[93] Hahn, M. and Maschwitz, U., "Foraging strategies and recruitment behaviour in the
European harvester ant Messor rufitarsis (F.)," Oecologia, vol. 68, pp. 45-51, 1985.

[94] Oster, G. F. and Wilson, E. O., Caste and Ecology in the Social Insects. Princeton, New
Jersey: Princeton University Press, 1978.

[95] Deneubourg, J.-L., Goss, S., Franks, N., and Pasteels, J. M., "The blind leading the blind:
Modeling chemically mediated army ant raid patterns," Journal of Insect Behavior, vol.
2, pp. 719-725, 1989.

[96] Deneubourg, J.-L., Aron, S., Goss, S., and Pasteels, J. M., "The self-organizing
exploratory pattern of the Argentine ant," Journal of Insect Behavior, vol. 3, pp. 159-168,
1990.

[97] Edelstein-Keshet, L., "Simple models for trail-following behavior; Trunk trails versus
individual foragers," Journal of Mathematical Biology, vol. 32, pp. 303-328, 1994.

278

[98] Burton, J. L. and Franks, N., "The foraging ecology of the army ant Eciton rapax: an
ergonomic enigma?," Ecological Entomology, vol. 10, pp. 131-141, 1985.

[99] Beckers, R., Deneubourg, J.-L., and Goss, S., "Modulation of trail laying in the ant
Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food
source," Journal of Insect Behavior, vol. 6, pp. 751-759, 1993.

[100] Traniello, J. F. A., "Social organization and foraging success in Lasius neoniger
(Hymenoptera: Formicidae): behavioral and ecological aspects of recruitment
communication," Oecologia, vol. 59, pp. 94-100, 1983.

[101] Holldobler, B. and Wilson, E. O., "The multiple recruitment systems of the African
weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae)," Behavioral
Ecology and Sociobiology, vol. 3, 1978.

[102] Howse, P. E., Termites: a study in social behavior. London: Hutchinson and Co., 1970.

[103] Detrain, C. and Deneubourg, J.-L., "Scavenging by Pheidole pallidula: a key for
understanding decision-making systems in ants," Animal Behaviour, vol. 53, 1997.

[104] Judd, T. M. and Sherman, P. W., "Naked mole-rats recruit colony mates to food sources,"
Animal Behaviour, vol. 52, pp. 957-969, 1996.

[105] Donnett, J. and Smithers, T., "LEGO vehicles: A technology for studying intelligent
systems," presented at First International Conference on Simulation of Adaptive
Behavior: From Animals to Animats, pp. 540-549, 1991.

[106] Bruckstein, A. M., "Why the ant trails look so straight and nice," The Mathematical
Intelligencer, vol. 15, pp. 59-62, 1993.

[107] Edelen, M., "Commercial Robotics Platforms."

[108] Ermentrout, G. and Edelstein-Keshet, L., "Cellular automata approaches to biological
modeling," Journal of Theoretical Biology, vol. 160, pp. 97-133, 1993.

[109] Watmough, J. and Edelstein-Keshet, L., "Modelling the formation of trail networks by
foraging ants," Journal of Theoretical Biology, vol. 176, pp. 357-371, 1995.

[110] MIT Media Laboratory, "StarLogo on the Web," 2002,

[111] Proudfoot, Kekoa, "RCX Internals," 1999, http://graphics.stanford.edu/~kekoa/rcx/

[112] Resnick, M., Martin, F., Sargent, R., and Silverman, B., "Programmable Bricks: Toys to
think with," IBM Systems Journal, vol. 35, pp. 445-452, 1996.

[113] Binder, J., "Bricx Command Center 3.3," 2003,
http://hometown.aol.com/johnbinder/bricxcc.htm

[114] Baum, David, "Not Quite C," 2003, http://www.baumfamily.org/nqc/

279

[115] Katz, D.A., "Chemistry in the Toy Store, 6th Edition," 2002,
http://www.chymist.com/Toystore%20part3.pdf

[116] Martin, F. G., "The Art of LEGO Design," The Robotics Practitioner: The Journal for
Robot Builders, vol. 1, pp. 1-20, 1995.

[117] Cunniff, P. F., Dally, J. W., Herrmann, J. W., Schmidt, L. C., and Zhang, G., Product
Engineering and Manufacturing. Knoxville, TN: College House Enterprises, LLC, 1998.

[118] Pitsco LEGO Educational Division, "LEGO Replacement Parts," 2003,
http://www.pldstore.com/pld/catalog.cfm

[119] Gasperi, M., "LEGO Light Sensor," 2000,
http://www.plazaearth.com/usr/gasperi/light.htm

[120] Michael Lachmann, "Mike's Lego CAD," 2002, http://www.lm-software.com/mlcad/

