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INTRODUCTION

Various methods have been employed in the study of molecular structure:
dipole moments, Kerr effect, X-ray diffracticn, electron diffraction, in-
frared absorpticn, and Raman scattering. Each method has its advantages
and disadvantages, and the kinds of informaticn cobtained from these vari-
cus methods are complementary to each other., Due to the limitation cf the
magnitude of energy concerned, only vibrational and rotaticnal spectra are
covered by the infrared region of spectre, with the rotational spectra ap-
pearing as fine structure of the near infrared spectra. This research
deals with the vibrational spectra only.

When a molecule is excited by a beam of electromagnetic radiation,
the nuclei of atoms in the molecule absorb energy and change their ampli-
tudes of vibration about the equilibrium position. The absorption fre-
guencies corresponding to the energy changes are the frequencies of change
in electric moment of the molecule. 1In addition, the incidental radiation
applies an electric field at the mclecule, and thus polarizes the molecule.
This change in polarization gives rise to Raman frequencies. A study of
the symmetry prcperties of the normal vibrations will show that some of the
normael vibrations of the molecule involve a change in electric moment.
Others involve a change in polarization, while the rest of normal vibra-
tions do not alter these properties. Hence some of the normal frequencies
appear in the infrared spectrum, some in the Raman spectrum, and some are
inactive in both infrared and Raman spectra.

From the experimental date information about the arrangement of atoms
in the molecule and the electric fields between nuclei can be obtained by
mathematical analysis of the observed frequencies.

The investigation of force fields in a molecule consists of

(1) obtaining the infrared and Raman spectra of the purest compound



availablie;

(2) assigmment of freguenciles cbtained tc individuval ncrmal vibra-
tions;

(3) assuming a suitable force field, i.e., a potential energy func-
tion;

(4) with the assumed force field, setting up the secular egquation
for the vibrational frequencies of the compound; and

(5) calculating the force constants with part of the experimental
data and using the rest of the data as a check of the adequacy
cf the force field assumed.

In the case of the compounds investigated in this research the assign-

nent of frequencies has been extensively studied by other workers(l5) and

is not here considered.

THEORY CF SMALL VIBRATICNS
A mclecule consisting of n atoms will, in general, have 2n - & de-
grees of vibraticnal freedoml; hence 3n - & coordinates are required to
specify the vibraticnal state of the molecule. If the number 3n - 6 is
represented by s, then there may be chosen a set of coordinates, gy,
(i =1, 2, 3,.....58) which give the displacements of the atoms from their
equilibrium pesiticns es a result of vibration. The potential energy, V,

may be expanded in the form of a Taylor series in terms of these coordi-

netes; for swmall vibrations, all terms beyond the Qquadratic may be neg-

lected.
= ot e
v VO+>: fi qi + 13 fijqj ;
2
where
£5t - 2V and fij= (O
(L) (35
9’ © 3Q1BQJ o
1

In case of linear molecules, the number of the degrees of freedcm
is 2n - 5.
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The choice of standard energy level is arbitrary; thus V, may be assumed
to have the value zero. The symbol fi' represents the fcrce bpetween
nuclei at their equilibrium positions end is alsc assumed tc be zerc, i.e.,
the potential function, plotted against a displacement, has zero slcpe at
equilibrium, Hence, the potential energy functicn contains only the qua-
dratic terms and can be written as 2V = ¢'Fg, where g 1s the column matrix
of coordinates, g' the transposed matrix of g, a row matrix, and F the ma-
trix of force constants fij' Similarly the kinetic energy functicn is

-1

2T - g, where § is the column matrix of §i, the time rate of change

e
|62

of gy, @' the transpose of g, and g”l the matrix of masses of atoms in
the molecule.

The lLagrangian equation of motion is

dpby 2Lk -9
dt(BQJ °q;

where L is the Lagrangian function, equal to T - V. Applying this equa-
tion to the potential energy and kinetic energy functions we have

g-la + Eg = 0. (I)

If the nuclei are treated as simple harmonic oscillators, i.e.,

q; = @ sin VX t

where A_ - Mﬂ2¢2, in which V¥ stands for freguency, equation I beccomes

(F -G X)g = o.

Premultiplication by G gives

(GF -XE)g = ©
where E is the unit matrix, a matrix in which all diagonal members are
unity and all other members are zero. For the non-trivial solutions, i.e.,
those for which the gi's are not all equal to zero at the same time, the
determinant ||GF - A.E“ must be zero. This is the so-called secular deter-
minant.

It is clear that when the number of atoms in the molecule is large



L
the order of the determinant will be too high for convenient handling. A
transformation of the matrices G and F with a suitable set of symmetry co-
ordinates will change the determinant into several diagonal blocks. The
value of the determinant is equal to the product of these blocks. Since
the value of the determinant is zero, each block can be taken as a deter-
minant having the value zero. Hence the original determinant of high or-
der is resolved into several determinants of lower order, and the treatment
is simplified.

The method of the calculation of symmetry coordinates has been fully
treated by Nielsen and Berryman (2). Although a discussion of these meth-
ods is beyond the scope of this research, the operation of transformation (8)
is a simple one. Suppose the symmeiry coordinates have been obtained as
S = Cg, S being the column matrix of symmetry coordinates, and C the trans~
formation matrix. The G and F matrices in symmetry coordinates are CGC'
and CFC', respectively, in which C' is the transposed matrix of C.

A method for setting up the G matrix in symmetry coordinates, or any
coordinates, is given by Wilson (30). James and Coolidge (16) give a for-
mula for calculating the value of the determinant. By this method, using
a trial-and-error procedure, the value is set equal to zero and the fre-
quencies are found. Wilson (29) gives a method of developing the determin-
ant into an equation. The scheme of finding the value of the determinant
given by Frazer and Duncan (8) is preferred in this investigation for its

clarity and ease of handling with a calculator.

FORCE FIELDS

The potentlal energy function 1n its most general form is

V= ZZ( Y)aq; + iZZZ(M',q)Aq,Aq,

taking the arbltrary zero level at the equilibrium condltion, the g5 being
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the general coordinates. The simplest force fields assume that there are
no forces in the bonds at the equilibrium position and no interactions be-
tween changes of coordinates, i.e., all first derivatives and second de-
rivatives with i £ j vanish. Thus the simple valence force field assumes

the form "

2V =25 (Ehuan) + 2 L’

- . e between bonds. Another sim-
oy = zz(—-\g) ar;)’ +z2(apz) wpif ) ’

ple fOI‘Cc ERTEL NI W R~ ULJ.C \-CLL\IJ.GI'..I. 1LVl ve J..l.c.l.u., Of the fOI"m

2V = za—%mr) +z2( )(Ap)

where Ty

- ~ ——

where pilis the distance between the unbonded atomé. These two force
fields have been used by various investigators to calculate the vibra-
tional frequencies of simple polyatomic molecules. Concerning the limita-
tion of the application of these simple force fields, Linnett (18) con-
cluded that the simple valence force field accounts for the vibrations of
CH) fairly well, but not for CCl),, while the simple central force field
becomes more successful in going from hydride to halides, so far as the
tetrahedral model is concerned. This suggests that the forces between the
non-bonded halogen atoms are more important than those between the non-
bonded hydrogen atoms, as would be expected. A further objection to the
simple central force field is that it does not account for the bending
vibrations of linear molecules since no interatomic distances change in
such vibrations. Also it fails to account for the out-of-plane vibra-
tions of planar molecules, e.g., HpO. However, in the last case, the
simple valence force field only accounts for such vibrations if some rather
more complicated bending terms are included. The conclusion has been that
we should base any improvements or refinements on fields of simple valence

force field type rather than of those of the simple central force field type.
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Various attempts have been made by investigators tc improve these
simple force fields (1Q) by introducing mcre terms intc the potential
energy function. However, the number of parameters, i.e., force constants
which can be used is limited by the number of frequencies obtained experi-
mentally, or their values cannot be obtained experimentally. Furthermore,
the less the number of parameters used, the greater is the number of fre-
quencies left to serve as a check of the force field assumed. Although in
the case of some compounds, when isotopic molecules are available, addi-
tional experimental data can be obtained to allow the introduction of more
terms, there 1s always preseﬁt the question as to which cross-terms should
be included or neglected.

For the out-of-plane vibrations of benzene, Bell (3) has successfully
introduced torsion terms into the simple valence force field, and has sug-
gested the application of this improved force field to the molecule of tri-
borine triamine. The first part of this research carries out this sugges-
tion.

Urey and Bradley (27) suggest a combination of valence force field

and central force field

2V =235(3,an+ zz@f—)o(orﬁzﬂ:( )P
ZZ( Fz)(np.)+222( )A“*ZZ( )O(Aa)

with all symbols having the same meaning as before. It may be noted that
althocugh no cross-terms are introduced, all possible interaction terms are
included after the non-bonded distances p; are expressed in terms of the
independent variables r; and cii. It is assumed that, in contrast to the
concepts of the simple force fields, there are forces along the bonds and

the non-bonded distances between atoms in the equilibrium position but
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these forces balance each other and the resultant is zero around each atom
at the equilibrium position. Mathematically speaking, the assumptions are:
(1) In a plane section of the multi-dimensional space of coordinates, the
potential energy of the system may not be a minimum at the origin, but at
some point near the origin. For example, in the plane along the axis of
coordinate AIH) the potential energy is minimum when ——- ) k’arz
. . ay RV e e . . .
i.e., at the point Ar; = -R(TF?)O/('S"P,-’"’)tiAnd (2) The individual first deriva-
tives do not all vanish, though the coefficients of the first power terms
of independent variables vanish. For example, in XY) type molecules,
(%\.-{-;.)0390, (—g—%i)#o , while ( }+J—(av) 0, which is the equilibrium con-
dition around the corner atom Y.

These assumptions reduce the number of parameters necessary and at
the same time eliminate the difficulty of predicting the importance of
individual cross-terms. It is advantageous that, as Simanouti (25) has
shown, the force constants can be transferred from molecule to molecule,
provided the electronic environment is the same in both molecules, i.e.,
they are of the same type, so far as the non-bonded distances are concerned.

As a further reduction of the number of force constants reguired,
Urey and Bradley (27) and Heath and Linnett (19) assume a relation V = a/p",
a being a constant and n a parameter. By differentiation of this equation
the relation between BV/api and 32V/ap12 can be found. The former workers
find that the value of n may vary from 5 to 9 without any appreciable in-
fluence on the calculated results. The latter group prefers L.5 as the
value of n,

From the chemical viewpoint, this force field has the advantage of
giving physical meaning to each force constant, and thus providing knowledge
of the electric fields between both bonded and unbonded atoms. The second

part of this research is devoted to applying this force field to the benzene
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molecule with the intention that the force constants obtained may be used
for the calculation of vibrational frequencies of other similar molecules,
since all the previous applications of this force field have been confined

to simpler molecules.

OUT-OF-PLANE HYDROGEN VIBRATIONS
IN TRIBORINE TRIAMINE.

Crawford and Edsall (5) have investigated the vibrational spectra of
triborine triamine. The large discrepancy between the calculated and ob-
served frequencies of the out-of-plane hydrogen vibrations was attributed
to the interactions between hydrogen bonds attached in the meta positions,
by analogy with a conclusion drawn by Lord and Andrews (17) in an investi-
gation of benzene.

Bell (3) has suggested the use of a simple force field for the out-
of -plane vibrations in triborine triamine. He had previously used a field
of the same type Tor benzene., This calculation has been carried out in
this research in the following way:

There are six out-of-plane normal vibrations in triborine triamine,
three of which belong to symmetry group A" and three to symmetry group E";

as shown in the following figure:

+ - +
+ + + + - i -
I i +
FY +* - -
+ + -
A"

A study of these figures will show that four coordinates will suf-

fice to describes the states of the system, when the two groups are treated
separately. However, in each symmetry group, -there are only three normal

modes, i.e., three degrees of freedom, neglecting rotation and translation.
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Hence, among these four coordinates, one is redundant, and is left in the
calculation with the expectation that one root of the determinant will be

Zero.

The potential function assumed has the following form:
2V = Zhy(rbF + Th fsp) + ZKC (Rp+ 81 (1)

where hB, hN, and k are force constants and r and s are the internuclear
distances of the B-H and the N-H bonds. The symbols, & and P represent
the bending angle of these bonds. The guantities ¢R and ¢H are the angles
of twist of the B-N bond due to ring distortion and hydrogen bending, re-
spectively, and the quantity c¢ is the distance from the center of the ring
to the B-N bond. The bending angle is defined as the angle that X-H bond
makes with the plane of the atom X and the neighboring two Y atoms, where
X and Y may be either B or N. In terms of the out-of-plane displacement,

the bending angle and the twist are expressed as follows: (&)

xX-wW . z+z~2w

@ Iu=r R

| c& = w-z +(R-r)x/r —(R~-3)y/s -Rq/r+Rq/s

X
r q

%

where w, X, ¥, 2, g' and g are the out-of-plane displacements of the cor-
responding atoms as indicated in the diagrams.
The calculation was carried out separately for the symmetry groups

A" and E". External coordinates were used to represent the displacements.



Yor symmatry sroup A,
0 = .‘1(.94?'2'_‘112 +_CL‘?9.A.
a, r@ = 2a4q, —(2«+1)q;+q,
where o= /R
q: M :g-(qrch) +(q2- 94 )55

.S!u =qz+2pq— (2B +1)qs
where g= S/R

& = 2(qu-9)- B (q- a0+ T (- an)
CO=~q,/x +92/p +( Y -2)qs+ (2~ Vp)qa
Substitute r"e,SH, and C® into (I);
2 2
2V = hy A -(2x+1)qs+20Quf + hfqz +2£qs-(2p+ 1) g,
2 (- It + afp +(16=219, +(2- Vo))
Collaect terms and put in matrix form;
2v=39'Fq

where g 19 %the coluan zatrix of tane coordinates, qj, Qs 45, and qy,
g'is ths rtransposed watrix of g, end

F=la, a; as a,

Qe Oz2 23 Gz

Ay

034- 044

a, = hg+2k/< Az = hy* 2k /6°

A =-K2/48 Q,; = 2phy+ 2k(Y-2)/p
Q3= ~(20+Dhg=2K(VX -2)ft  Clpy= ~(1+2B) -2k (Y -2)/p
O =2ahg +2k( Yp —2) /o

G =(1+20) hy+ A% hy+ 2k (V=2 )

Qyy= -2 (I+2)hg =2B(1+2B) hy ~2 (Y -2)( Y -2) Kk
Au=4oChg+(1+2B87 hy+2(2- )’k



The kinetic energzy, T, has the forms

.2 2 .2 .2
‘%T = My Qi +m Qz+mgqs+m gy

6_1 =1 Mn

My
Mg
My
[ne secular determinant is

I F - G Ih={{ au-maX (o I a;
a. aaz-—m,‘x Kas
% Az3 a,—my\
Qe ay, Qy,

il

4m?AV = 5.889x107% V"
velocity of light ,
)46 of the mass of 016 aton,

I

A
c
A

il

¥ = frequency of the vibration.

a,
Q.
Ay

a,—-m\

Tne nunerical values o constants used in this calculaetion are:

r-
S

i

, internuclear distances betwsen B and H atoms =

internuclesr distances bhetwesn N sand H atoms =

Fz' internuclesr distancee between N and B atoms =

o = /R =0.833
g =3/R=0709
mﬂ=/.ooa

mg= 10.820

my= 4,008

Put these into tne secular determinant;

Q, = hy+ 2880k

Qz2= hy*3987k

1‘40,3
1.22 X
1.4 &

az=—"3388k Ap3= 1416 hy -2 259 k¢
a.3 =-2-.666 hB + 1920 Kk aM=*2-4‘I6 “\N"" {.661 K

0.4‘—: ‘-666"\3“.4["(

a3;= Tl hg+2.%05hy+1280K
Oy = ~4 441 hg* 3421 hy—.941 K

O™ 2775 hg+5837hy+.691 K



For symeetry group &',

0 = +(q=9a) + £ (dqa-2qy)

I 76 = q-(+2x)qs+cqs o= /R
-% % SM = 9e+P9a-(1+2P)qs £=3/R
q-qd q“?z C&3-4 = Rq/r =RQe/s ~(R-r)qs/r +(R-5)qa/5
M2

= q/d =qa/p +(1- 1/)q,+ (18~ 1)qa
CR-4=RQqa/5-q3~q4—(R-5)qsts

=dz/p - 95~ Qu/p
CQy-3 =~ 9,/ +qQ3/X + s

2V = h Z(re) +h Z(Sfl) +kZ(CQ)
V = ha{q, (|+Zot)q3+uq4} +h {q2+pq,—(l+2p)q4}
+k{q/ok -2 + (i - I/O()qs"(l"l/P)qa}
+ie| Qeft= G5 = Galp) + ke (-qu/ck + s/t + A

Collect terus snd put into wmatrix form,

— /
V=29'Fq
whers g ie “n2 coluwn wstrix o7 coordinates, ' is ti

ceen e F=|by bz bs by

Do bz ba ba
by b,y bs b
Dy baa b by

by, = hB*'Ek/O(Z

be= -k/xp

b= = (1+2a) hg + (1~ /&) K/

bu= othg (2~ 1/8) K/

Da2= hN"'zK/P‘?

bas= phy+(1/t-2)k/p

Dos= — (|*Zp)hﬂ" (1 'Z/F) K/p

b= (1+2)% hg + g5 hy +2 (1- 1/ + 1/x*)

b=~ (1+20) hy~ B(1+2f)h, ~ (1= 2/t ~2/p * 1/ap) k&

bes= d2h5+(]+£Pfh~+2(f - '/P + l/fBZ)K




he kinenic encrgy has the foru:

2 .2 . . .

5T = m&l + mudf «madl e mug
-'—

G h mH

The geculer deternisant is

” E- Q—‘A | =| by-mnX Di2 b3 b4 ’ = 0.
' biz b,z — N %) Da4
Biy P23 bis—mpX by
Dia D24 by by-my\

Fut the values of o and p into it;
by = hg +2.880k
b|a= - 1694 k
by = -2667hg - 1.680k
by= 0833hg -0706K
b2z= h,+3.986k
b23= 0.708 hy—1.130k
b= -2.417hy —2.574k
b33= 7.1l hg+0.502 hy*2480kK
by = —2.222hg-).TI12h *2.530K
by = 0.694hp +5842h+3162K

Notet-~ If it is desired to remove the rsdundant coordinate, it
can be readily done by matrix trensformetion by use of the conditions
of conservation c¢f linear and angular apomentw: for A" and 2", res-
pectively. The new metrices are L' L and _Ii'g'l'ﬁ, vnere L' is the
transposed matrix of L and

L=| |

l | for A",

_my _my _mp

my my mMu

= I
| o
' for o'
_(|+d)m“/mN '(I+P)m,.‘/m~ "mg/mN
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A trial-and-error method was used to evaluate the values of the force
constants. The evaluation was started with a set of arbitrarily assumed
values., Using these values and one frequency of the vibrations belonging
to the determinant, the value of the determinant was found, which is at first
usually quite different from the correct value zero. Then two of the force
constants were assumed to be correct, and the value of the third one was ad-
Justed to make the determinant vanish.

In the next step this force constant was assumed to be correct, and
another force constant was adjusted in the same fashion to fit another
frequency. After three steps are completed, a new set of force constants
are obtalned. A second cycle of trials servesto readjust the force con-
stants a second time. This process was repeated until a set of force con-
stants was obtained which fit all three frequencies simultaneously, i.e.,
when any one of the frequencies is put into the determinant, the determin-
ant vanishes.

Table I gives the results of this evaluation and explains the method
in detail.

4 knowledge of the force constants from various sources, e.g., Crawford
and Edsall's calculation (5), a taeble of force constants of various bonds (11),
etc., will give a good set of values to begin with, and thus save labor,
since the process of trial and error might give divergent results if the
assumed set is too far from the correct values.

With the knowledge of the nature of the vibration it is not difficult
to find which frequency should be chosen to adjust a particular force con-
stant. For example, the vibration of the frequency 1070 cm'.'l involves
mainly the N-H bending, and should be used to adjust the force constant hyy.
On the other hand, after several trials it will be plain which freguency is

sensitive to the value of one particular force constant. It Ffollows that



TABLE I.” EVALUATION OF FORCE CONSTANTS FOR TRIBCRINE TRIAMINE.

Symmetry Frequency hB_q hN_‘J+ ki n Value}of
group used x 10 % 10 x 10 determinant
E" 288 2.00 2.00 0.00 1227.
0.20 148.6
0.30 9.99
0.40 -102.5
1070 2.00 2.00 0.30 Lho88.
2.70 -1641.
798 2.00 3.70 0.30 -689.
288 2.00 3.70 0.28 1.93
1070 2.00 3.70 0.28 6L9,
3.72 -0.42
798 2.00 3.72 0.28 -690,
2.10 55.2
2.09 2.38
288 2.09 3.72 0.28 Holollt
1070 2.09 3.72 0.28 -553.
3.70 71.1
3.71 -176.7
798 2.09 3.70 0.28 16.4
2.20 815.
288 2.09 3.70 0.28 -5.33
A' his 2.09 3.70 0.28 -448.8
0.1k 62k,
0.22 T.43
622 2.09 3.70 0.22 1287.
2.30 1818.
1.54 -104.6
1.57 45,0
1098 1.56 3.70 0.22 1133.
3.30 20150.
3.72 173.9
622 1.56 3.72 0.22 -50.2
288 1.56 3.72 0.22 14,53
Final results:
k
hB BRL value hN BRL value BRL wvalue
A" 1.56 1.58037 3.72  3.71177 ©0.22  0.22285
-4 2.09 2.09651 3.70  3.70103 0.28 0.27975
Average 1.83 2.71 0.25

% All force constants are in dyne/cm.



this frequency should be used to adjust this particular force constant.

Theoretically the value of the determinant should be zeroc when the cor-
rect values of the force constants are used. But it seldom becomes zero in
actual calculation due to the limited number of significant figures used.
Therefore the set of force constants that gives the value of the determinant
closest to zero 1s the most suitable set.

The trial-and-error process was carried out to the second decimal place
of the largest force constant in this research, since the frequencies are ex-
perimentally determined to three significant figures. The author is indebted
to the Computing Division of the Ballistics Research Laboratory, Aberdeen
Proving Ground, Maryland, for checking the evaluation of the force constants.
Their results are included in Table I as a comparison.

Two different sets of force constants were obtained from the frequencies
of symmetry groups A" and E". The average values of the constants are listed
in Table III in comparison with those of benzene and ethylene., The frequen-

cies calculated from these average values are listed in Table II.

TABLE IT.
Calculated
Observed Calculated fre%uency % Deviation
frequincy frequency (5) cm™ (this this
cm” em™L % Deviation  research) research)

1098 1278 16,4 1117 1.7
622 756 21.6 661 6.3
415 403 2.9 437 5.3
1070 1086 1.5 1054 1.5
798 790 1.0 753 5.6
288 283 1.7 270 6.3
Mean 7.5 Mean 4.5

The satisfactory agreement obtained between the calculated frequencies
and the observed frequencies renders unnecessary Crawford and Edsall's
assumption of interactions between hydrogen bonds attached in the meta

positions. Their lack of success in predicting the frequencies of the
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-out-of-plane vibrations may be laid to neglect of the influence of the hydro-
gen atoms on the twisting of the carbon-carbon bonds. When this effect is
included, as has been done in thils research, the agreement between calcu-

lated and observed values is satisfactory.

TABLE IIT. FORCE CONSTANTS FOR TRIBCORINE TRIAMINE, BENZENE, AND ETHYLENE.

Type of constant Value
B - H bending, hy 1.83 x 10% dyne/cm
N - H bending, h 3.71 x 10% dyne/cm
B - N twisting, &' 0.39 x 10712 dyne-cm
benzene C - C twistinéB) O.77 x 10-12 dyne-cm
ethylene C - C twistind® 1.7 x 10712 dyne-cm

k' - kc?

The value of the twisting force constant obtained by Crawford and
Edsall (5) without introduction of ¢H in the potential function corres-
ponds to 1.6 x 10-12 dyne-cm for k'. The value given here of 0.39 x
lO'12 dyne-cm 1is more reasonable, since one would expect the ring bonds
in triborine triamine to have less resistance to twisting than those in
benzene and ethylene.

If it is assumed that k' varies linearly with double-bond character
for different bonds, the double-bond character of the B - N bond in triborine
triamine is 39/77 X 1/2 or 28 percent, taking that of benzene as 50 percent.
This assumption can be tested by calculating the double-bond character of
benzene by the use of the ethylene twisting constant. The value obtained
is 45 percent. Since the double-bond character in benzene is known to be
50 percent, the agreement is good. The double-bond character of a bond can
also be estimated by the empirical formula of Pauling (23). The B-N dis-
tance in triborine triamine has been measured in two investigations (2, 26)
by electron diffraction as 1.47 + 0.07A and 1.hk £ 0.024. These values in-

_serted in the formula give 27 percent and L0 percent, respectively, for the
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double-bond character of the B - N bond, and the first value is in agreement
with the value given above. It appears, therefore, that the B - N bond in

triborine triamine has a 28 percent double-bond character.

SYMMETRY PROPERTIES CF BENZENE
Considerations of the Raman and infrared spectra of benzene, deuteroc-

benzenes, and substituted benzenes indicate that the benzene molecule is
planar and hexagonal, with all atoms symmetrically placed. Considerable
work has been done on benzene spectra. Probably the most comprehensive work
is that of Ingold and coworkers (15). Other work involves flucrescence

the Raman effect, and the near infrared spectrum (24, 17, 1, 7). For previous
references see Herzberg (13). The point group of this model, i.e., the

set of symmetry operations of the benzene molecule, is Dg,. This group
consists of twelve classes (13, 30), namely, E or identity; C, rotation

by M about the six-fold axis; C_ rotation by + 247/3 ahout the six-fold

3
axis; Cg rotation by 4r/3 about the six-fold axis; Cé rotation by o about
axes P, Q, R, as shown in the following figure; CZ rotation by ar about asxes

2
T, U, V; i inversion through the center of symmetry; G, reflection through

the plane of symmetry in the plane of the molecule; 86 rotatory reflection
about the six-fold axis by #M/3, 83 rotatory-reflection about the six-fold
axis by + 2m73; qs_reflection through planes D, F, G;(Ié reflection through
planes A, B, C.
If a symmetry operation 1s denoted by R and a normal coordinate by
Qk’ there are three possibilities when a symmetry operation R is applied
50 St
f RQ — Qe (Qk is symmetric to R) (1)
RQy — -0 (Qk is entisymmetric to R) (2)
RQk — RnkQ

. (degenerate) (2)
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The summation is over all the Qn with the same freguency, i.e., over all
the degenerate normal vibrations in the same class. When translations and
rotations are eliminated, (1), (2), and (3) give the irreducible represen-
tations of the types of symmetry allowed in the molecule. The symmetry
operations allowed for benzene molecule and their characters, i.e., the sum
of the diagonal coefficients Ryjp of the irreducible representation matrices,

are given in Table IV.

TABLE IV. SYMMETRY CHARACTERS OF POINT GROUP l'4h

Symmetry "

. {
class R = E Co C3 Cs Cé g 1 ¢, 5 Sq oy a,
A, 101 1 11 1 1 1 1 1 1 1
A 1 1 1 1 -1 -1 1 1 1 1 -1 -1
Blg 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1
Ezg 2 2 -1 -1 0 0 2 2 -1 -1 0 0
E] 2 -2 -1 1 0 0 2 2 -1 1 0 0
Al§ 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
A 11 1 1 -1 -1 -1 -1 -1 -1 1 1
B%E 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1
B 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1
ES 2 2 -1 -1 0 0 -2 -2 1 1 0 0
E 2 2 -1 1 0 0 -2 2 1 -1 0 0

1lu

b 1 1 2 P 3 3 11 2 2 3 3
xj' 3% 0 o] 2 -4 0 0 12 © 0 o 4

The symbol hj is the number of operations in each class and the character

x.'

j is obtained from the operations on coordinates other than normal coor-

dinates in the same way as x5 is obtained from ncrmal coordinates. The
values for xj‘ shown in Table IV were obtained by Wilson (20) from 36 ex-
ternal coordinates.

The number of normal vibrations in the ith class may be calculated
from the following formula:

] L (D)
n; = (1/m) JZ b, ; ;
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where N is the total number of operations, xj(i) is the value of x. in the

J

ith class. Applied to the benzene molecule, the result is

%@*A%*E%g*%%*EM*A%+2%u+%w+2%u*Em
The same result can be obtained by the method of counting the number of sets
of equivalent atoms in each element of symmetry (14). This result shows
there are 20 different fundamental frequencies, of which 10 are degenerate.
Therefore the secular determinant may be factored by the use of symmetry
into four linear factors, of which two are equal (Agg, Asys Elg(E)), Bix
quadratic factors of which two are equal (Alg, Bpgs Biy Egu(z)), two equal
cubic factors (Ej,(2)), and two equal quartic factors (E2g(2))' The modes
of normal vibration determined from these considerations are shown in
Figure 1.

The symmetry coordinates required to factor the secular determinant
may be derived by the method given by Nielsen and Berryman (22). Differ-
ent sets of symmetry coordinates (13,30) may be calculated. The set which
was used in this research is taken from the work of Crawford and Miller and

is shown in Table VII.
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Calculation of F Matrices.
Of the 30 normal modes of vibration shown in Figure 1, 21 are planar,
in which all atoms move in the plane of the mclecule, and 9 are out-of-plane,
in which all atoms vibrate in the direction perpendicular to the plane of
the molecule. These two groups of vibrations are usually treated separately.
This research deals with planar vibrations.

The potential energy function was assumed as follows:

2V=2F ZRAR*EZER) +z,g rar; +fZ(Ar)
+2F ;R,Ao( +F ;(Roao()’-vzf,, r;2a6; be(rne)
| *2fmZ PobPis*api-) +f,,,>:1<ap.,.) +(ap, -f}
+2f,,}:d ad; +fpX(adf +2F, 2 R 4P, +F, Z@Py

| +F,,zoao +F, Z(AD)‘/z

The coordinates were defined as follows, the symbols in parantheses being
the corresponding force constants:

r; (£}, fs), distance Cy-H,;
R (F', F °), distance C}-
(fg, fb), angle Cs_ 1C
o (¥, Fp), angle Cy 1C; C
(fﬁ, f ), nonbonded dls%ance Ci+1-Hys
nonbonded distance H;H, e

i R FP i- .
Py (FY, ), nonbonded distance Cl 1-Ciw 1
D; (Fp, P nonbonded distance Cj_1-Ci4»

1vl’
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~The nonbonded distances p, d, P, and D were taken as dependent variables and

expressed in terms of the independent variables r, R, ©, and & :

pe4pi- =R (l+f/2)4R,_ +Ry(p+1/2)80; +_CR 46,
+ 25 {F @RS + FR@nf -2 R6 RO+~ FRe)a6)
%R,r;AR.-.Ar:-*F (o +$‘R°r;)AR._,AG|
+ G R,(R;+$R,15) a1 46}
P,aP. = %—9 3a4R; +:3ARi_,+J"R,,ao<‘}
R ($@RF +3 @R - ${Roactf ~F aRaR o S aR R
° *iaR-__'RoAN'}
[ar;var, +24R;+ 5 1 (46; me,.. —act;)
+%(A f"'a‘("}ﬂ -Fanarn,+g £ (dy+ R ) (7711064 ~AF., 48;4~450%)
+ 815 (ar;08i4(- 48T ,40; - Ar,,,aa-)q- (46, 46,4+ a8y £Y;)
—4 % (Ro+6/2)[126,) +(a0:)" +(ack; '+ 208, a0])
DyaD; = Ry{4Ris + 4R, *24R; +/3 Rylact; +act;, )}
%(AR.-,)zi--%(AR._H)Z -4 a4R;_, 4Ry,
+31—R (aR;. . ac; +aR. a,,)+ B(aR, A, +4R;, 406)
-%R, [(acti w(act;, ] - 4 RS ask; adkie

+
Nixp

doad; =

Mg
B

The calculation of these expressions iscarried out in Appendices I and II.
When these expressions are put in, the potential energy function in matrix
form is giveh on next page. The quantities R, r, 9, and o are the column
matrices of individual species of coordinates, e.g.,

R=| ARy
AR,
4RY
AR
art
AR5

E is the unit matrix and the leading rows of M;'s are given in Table V.



2V=2FR,eR*2fner +2fife@ +
s2frRf2p+ber +2+r1eR -Lre
+fpdf2er+2eR-Brex)
+3F.R{2eR+AR.ea)
+2FP' .{2eR+BR,€ &}
+fsr'.l-;r+FRER+FRd§d*fb gES
+0'fm{a.R ER+b,r' Er'+Cf; ;
+Ze.R[‘_’L[+2fRM +
+2K'ERS +2p,1; GEROE}

+Ufm(azR ER+b,r'Er +c,r? QEQ*JER:EES(
+2€,R'M,r +26,R'M,0 +29,R,REx
+2,R, rEo( +2p,R, rQEd}

+fp{b,r M.r+cn’8'M,8 +d,RX'E &t
+2hy; r'M8 +2k,R,r'M ot +2p,R; 6'M, }
+ fp{BRER + b F'M,F +€.5°61M,0 + deRI «'E ot
+2¢,R'M,r +2%r. B'_Pﬂ, +234R,R'Eo!
+2h,r'M, 8 +2K,R,r M o +2P4R°r:,9 M’ }
+6F {asRM R d5R (v § EO( *2_95ROR M d}
+€Fm{aR'M,R + dRILE ok +296RoR M, )
* Fp {aR MR + d;R oMot + 29,R,R'M, 4

+ Fp {@eR'M;R+ dR. M +29,RR'M, &} ()

2F, Ried
o

J

i

e=\|1,1,111 1|
g = 02//002 =(/ +f+/°2}—‘= 04200
eE=RYR= 13
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TABLE V. Leading rows of submatrices M.

Ml = (l: l/’2, T Ts Ty 1/2) M8 = (1: 1, =, =5 =5 - )

M2 = (l) ‘1/2: Ty T T ’1/2) M9 = (l: -1, - - -5 - )

M3 = (3: 1/2: T T 7o 1/2) MlO: (‘; 1, =5 =5 - "l)

M).;. = (3) l: Ty T T l) M]_]_: (3: 3) l: I s l)

M5 = (3) 2, 1/2; > 1/2: 2) M12: (2+f > Ty Ty To ":f)
M6 = (l) 4 ‘1/2: s 'l/2> ';) MJ_3= (2"’}’: Ty To To T ‘f’ )
M7 = <2+f > = f/2; Ty T Ty T f/?) Mll.;.: (2“’]: > f/g; Ty To T f/"2)

The rest of the matrices can be readily obtained by permuting the members
in the leading rows. For example, Mg is shown in Table V as M g=

(1, 1, -, -, -, -) which means My = 11

11
11
1 1
1

1

1 1
The geometrical coefficients a, b, ¢, ....s are given in Table VI. It may
be noted here that in the summation

Z(ARi‘F ARi—l+ARi+l) - ZBARi

3 €

2 2 2 2
Z(AR1)T+ (AR;.1)° + (AR11)%)= X 3(ARy)
ZARAR; ) = TAR AR # Hati-lAlis1,
By assumption of this force field the coefficients of the linear

terms, which represent the equilibriﬁm conditions, must vanish. There-

fore,

E‘*(“’*f)ﬁ; +(l+f)fl,; +.3F,,,: +ZFF; =0

Pfs +2Pel) fm +U+P) fp = 0O
fo=o f= "R

(111)
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Thus, Equation (II) has the following form, after ccllecting terms and
simplifying:

2V =R {[l—;+d(afm +ayfr)E + 22Fm M, + 2% F0M,
'”’7FP M6*°8FPMS} B
+£’{[)cs + a'b,f';m'bzfm]f_: + bjfémzq»b“fpml} r
+18'{[for 00 fn* O fu] E+Ssfp M+ b } 15 €
+ R,g'{(]:; 0d,funt T2 fm] E+[dfp+ ifo* _g; £+ ‘_;é Fm] E
* drFPlﬂa*dfiFPM.} R,
+2 B'{ae.f,;, +0€f o+ e4fP} Mg r
V2R ok frmt Thefm > e} Mg 0
+2R' 9 fm*092fm* Jafpl £ + +(95Fn* 9eFnI M,
"‘[97F;: .98Fp]M“}R .
*er [h3fP +h4fP} 10’ 8
*2L (O fm* Thafm E +hofpMia +kafp Mg )R

o2
o

*2"9{[0'P.fm+°szmJE+P3fp Mps*psfp M )R (V)

Crawford and Miller define the angle for C-H bending as the angle between

C-H bond and the bisector of the C-C-C angle, which is different from the

angle © as shown in F gure 2.

/
H ae||,w‘”‘ /2

Ae; :=AP; "Ad;/z
QAB;= GAF“‘E Rodd;
rn8=EpL-LREM
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In order to utilize their symmetry cocordinates, it is necessary to change

0 into F If the potential matrix is divided into submatrices, 4, B, C,

..P,
2v - |RITie) | |A M E G[|R
N'E H OK||E
FrEC PIT
G'K'B' D||
=R,z gl |E A M F GJ|E R
B B E K||T E T
E ||Ft B T P E -£E||p
-£E E||T K B' D E ||
2v=|R', r', g [A M E C*| IR
Mt B Kxiir
p' H' C P*¥lip
Gr Ex P*' D¥| |o
) B
G=g-£F
=[£9.f+ T9:fm+ 2947‘;*95': *%6&]&8*[915»*955}”,.
M
K=K-£H

=(ok fm"’akafm)E"'"JfP a4"’K4pra
E P-£C
'£'be "ngM:o"'é'P*fPMco
.D_" D+&C-£P-£P’
(F, ﬁff.,+1i Fras tdgFs Fodifon+ ks fum ] E
’g'mer FufpM, +diFo M, +deFu M,

]

Therefore, the final form of potential energy function in terms of F

is:



— PV = B'([E +¢a.f,;"’caafm*04fpjg +-é-a5ﬁ;mz+ja6ﬁ“t].

2V = B'[[Fs + «a,f,;‘urazf,,, *‘hfp]_E_ +‘§'05F.:nmz "é-aémea
*arr“:mé "‘aaFPMS} R

+£'{(fo+9bfm+obefum] E + byf M, *buf, M}

+FF'{[fb+o‘cf,:,+0szm]E+cjf,,' *°4fPUz} oy

+R d[(p+ﬁ-fb+adf,, $dfn3 sd,F,“]E
ﬁ-ff, S+ 2dfiM, + d,F M, daF;__)

{oefutoefaredp}M,r

{m‘fm ot furfefe}Mor g

[0'9. Szfm*294fp + 95k, ‘3L96F].’:.49

"'[97F +9s pJMll}Rog

£[ hyfe * hafp) My e 8

2r { (0K fm* Tk ] E +hafo Mis*kafu M) R,

{~£HLE-$frMo+EPsfeM|R A V)

2
+2
2

m IR 1

27
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The set of symmetry coordinates used tc factor the potential matrix is
listed in Table VII, which has the characteristic that each symmetry coordi-
nate involves only one internal coordinate. Hence, in each row of the trans-
formation matrix only six members are nonvanishing and the rest are null.
From the fundamental‘principal of matrix operation, in the operation F =

SV §l, Fij :%g %; Simymnsjn' Since part of row S;

and column gj are null,
one may ignore the corresponding part of matrix V. Thus, the operation of
premultiplication by a matrix 1x24 and postmultiplication by a matrix 24xl
of a matrix 24x2L is simplified to an operation of premultiplication by a
matrix 1x6 and postmultiplication by a matrix 6x1 of a matrix 6x6, For ex-
ample, the internal coordinate involved in the symmetry coordinate S84 is R.
Then, Fiy = 2, g-; 5, V. 8 =Z %SEVRRSJ_R. So in the calculation of
Fll’ the only part concerned is the first term of Equation V.

The factorization is further simplified by another principle of matrix

operation. Since §i(Mi-+ Mj) §j' = S;M.8."+ gigjgj', each component matrix

8]

in ipdividual term of Equation V can be treated separately. For gggmple, to
- t 1 t |

find Fll one may calculate 8§, E §l 5 §l Ml §1 5 §l MQ §l B §l MS §l , and

§l M6 §l' separately. The calculation was carried cut and the results are

listed in the columns SiM §j' under their corresponding force constant sym-

bols. Each of these products multiplied by its corresponding geometrical co-

efficient contributes oné term to the expression for Fij.

.

N }'—'m = [FS + o'a,f,; + Gaafm +a4f'J§'_[-_:§,'

{ I
+-_1,-05Fn')§- Maél + ‘_Is;% Fin §1M,§1
+a, FFI:SI M6§|' + Gan_S_'[‘_'I5§r'

The coefficients for individual force constants are listed along under
SCGC, symmetry coordinate geometrical coefficient, in Table VIII.
Among the 23 symmetry coordinates used there are two redundant coordi-

nates which represent rotation. These redundant cocrdinates were eliminated
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by ancther transformation operation. The transformation matrix L has the

form
]
e K=
and
LBl = |1 c F hopll |
e Xl a e g V& Vi
I h € b K |
%  Klp g k dl -E
= C f-piz h (f+p)AE
(f-pPYe  (a-2g+d)e  (e-K)ME (a-d)/E
h e-k)AZ b (e+K)/E
(F+pe (@-difE  (e+K)/E (a+2g+d)/
18,18 J oc, | 096G
18,19 offz | otfe
18,20 . . *
919, | Yo Vo iz A B
19,20 B at-p) |Foe )
20,20 | ob, ab,
Fig fo fo | Fm | Fu | F Fe
(8, 18 C3(2+)72) Cu/2
8,19 | Be/eE | B-fps
!8‘ 20 —5h3 ’Eh;
919 | ~BU+t4) | G+3pafe| - 7 -1 0
19,20 |- |3 (+3%)
20,20 by/2 3ba/sz

* A= £ ot ep-2)

B = iz (16+28p +13p%)
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Class

Alg

Elga

Ezup

wymmetry
coordinate

onvanishing mambers cf

Jymmetry Coordinates of Eenzene.

transformetion uetrix

-2

-2

-1

-1

-1

-1

-1

-2

-2

-1

-1

-1

-1

-1

-1

-1

torualizing
fector

¢-1/2
g=1/2
6-1/2
¢-1/2
¢=1/2

6—1/2

Internal
coordinzstes

31



TABLE VIll. Members of F Mdfrix.

s

52

: - g ’ ’ i /
Class| F; |coomim| Fs % B | % Im fo_ i fp__ | Fo Fo Fe Fe F; |Class
| U |Veled | SMS[SCGC [ SMS/[SCEC | 5MS/ [ SCGC | SMS [ SCBC | S:MS;| SCEC | SMS; | SCGC | SMS;'| S66C | sMS/ | SCeC | sMs) SCGC | SMS” | SCGC | sMS; | sceC | SMS/ | scec |
F. | RR Y, | R / oq, ! | oa: / as 0 = 2 |za/3| o - 8 | 8a3 | F,
Aig F 1.2 Rr 2 £oe, 2 2ce; 2 2€4 ‘1 ' F 1,2 Alg
F‘A‘,z rr / / / ab, / o'bz 0 -_ 2 2 b4 . : EE@
Agg Fss | pgp /1 1 / ac. / oCa 2 2C3 o - | . Fsa | Aag
Fape | od / / ! | r& 1 |odepa| ¢ ody/z | 20+p) | -Ba+p| o - [ ds/3 | | de/3 2 2d, 0 — Foz|
Bul Fas| @r / ok, | / ok | 2 2ks | © - Fos| B
Fan| ' / /- "y ob, / b, 2 2b; o - 3 Fis
Fuu| RR / / ki " da, / oa, | -/ Cle 2. l2a/f3| © — o - o — Fum
Bau Fl4,15 RP { 2 20f, [ 20‘{4':.‘ . 2 2(4- i F|4,|5 Bzu
Fisis| pp * 7/ / oc, | I oc: | 2p) |20+pig| 2 2C, | Fsss
Fes | oot / /! |t 23 / cdfp| | odfz | 2+43p |- Vo | do/a I ds/3 | de/3 | 52 | 5d,/2| Ye /2 | Fs
Fez | or o / ok, | 1 | ok, | 2+ |2BNg| Vo | ka2 | | Fon
Fsa | R 1 /I | eapl| 1 0Gz/2 / Su/e I | 93| | 96/3 | g, I 9s | Fegs
Feo) o | 9 - B3| BfB | -3 |-Bp2 | F 69
E Farz | rr / / Fopobl ook | % b | Ve | bz | Far | B
9| F.g| rR ' / oe, / oe; | ! €s | F.s g
.vF7‘9 r‘P JEY Bhs 3 5h4 f . _ F_,'g :
Fes| RR / / / oa, /| | oa, / Qs 3/% aslz | Ve | a4l6 | 3 |daz| Yo | 2| F,,
Fes| Rp B |Bof, | -B |-Bof, 5 |Bh | | F
Foo | pp !l / ac, / 0C, | 2+3f |(2+2pG| 32 | 3G | Fao
Flems| IPP S AN N A Y ogcC, /] | oc: | 2+& |vBic,| Vo | Gtz j Fios
9| PR | | of | | of, J fe ‘ Fieuw
18,20 Pr . o : ; -B ‘Eh, -3 —Eh‘ ‘ Faa,zo
For| po o | - 5 |-Bpr| B |Bps2 1 | Feor
[—:2Ul ivi9| RR / / o / ga, | |/ oa, ] a, '/% ale | 32 | %fz2 | 32 |3af| Yo | 9%/ Fes| E
19,20 Rr 3 ' Bﬂ@, 3 E‘ez 3 Bey . FIQ 20 204
For| Re B3 |Bogf| B |Bogl | B [Bavz| § @5 | B .| 9%f5| 3B |3Bg, | 35 |3B9s | F,,,
on,ao rr / / . / db: / ob, '/Z ) b’ﬁ 32 3bs /2 ! 4 FZO:N
Faor| ro - | b o ] ok | ok, | 243F 2308 32 | 3ket | | Faor
Frr| od X I for [ 1 feas] | | odf 2o |- ¥ | 3dm| 1 [ dB] o3 | Yo |Tdz | Yz | 3daf2| F,.r

SCGC = Symmetry coordinate geo_m‘e'h'icd" coeﬂ‘ic:en‘l’

F= %/R,= 07770
0= (1+p+p%)" = 0:4200

Exampiﬂ F‘gf-" 2oe, f,:,, +20€fm +Lesfp -
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The final form of the F matrix given is Table IX and Table X lists the
numerical values of the coefficients of the force constants which are in-

vclved in the members of the F matrix. Teble XI gives the reciprocal of the

dynamic matrix, G matrix, while the numerical valves of its members are given

in Table XII.



TALLE IX. F Matrix.

£= E(Alg)
E(ﬂgg}
F{g,)
£(By,
E(Elga) |
F(E) )
Ea) = [F1,1 P
F1,2 ¥2,2
E(Azg) = "33
I(B1y) = |F1z,12 F12,1%
Fi2,13 F13,13
B30 = [Fi4,14 Fia,15
F1a,15 F15,15

E(Elgb) - E(Elga) =

F(épua) = E(bpyp)

P¢,7 t6,8 Fg,
F1.1 F1,8

F6,5 F7,8 Fa,8 Fao
F6,9 T7,9 Fa,9 Fo,9

o]
NG

-J

O

F18,18 F1g,19 Fis,20
F18,19 F19,19 Fi13,20
Fia,20 F13,20 Fao,20

F(E

Qub)
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TABLE XI. G Matrix.
g = ﬁ(Alg)
E(AZ'.g)
.G.(Blu)
E(B2u)
Q(Elga)
Q(Elgb)
G(E2ya)
G(Ez,p)
3(ap) = Vv -1/u
-1/  1/M+ 1/m
Glapg) = (p# 1)2/M + 1/m
3(Byy) = | 12/M 121/2/14
12V/2/4 1M+ 1/m
3(Bay) = 5 =512/
Y200 1M e i/m
G(g, éa) = g_(Elgb)_.. 15/2M 27%‘/2M -27‘3/214 -5%‘(5)%2)/4:«1
: 278/2M  1/M + 1/um ~1/2i -3p/4M
-273/2u -1/2u 5/2u 3 (p+2) /M
-38(5pe2)/MM -3/BM B(pe2)hi (SF+ 4pe8)/Bii+1/n
M) = ) = | (FF *12p+8)/B1 1w -6 Cpe2)/in 3p/d
6% (3p+2) /i 3/ -6/
3p/4M -62/2i/ 1/M+1/m
M = mass of C atou
m = mass of H or D atom

ro/Ro



Teble XII.

-2 083%

Q(Agg) = 1.2550%

G(Byy) = | .9992

«2884

G(Boy) = .2498
Q(Elga) = Q(Elgb) =
G(Boyp) = G(Epyp) =

-e 0835
1.0755*

.2884
1.0753+

—e 1442
1.0755*

5245

«2163
—-e2163

-e2122

1.2289%
-22208
L0485

.2163
1.0755*
- 0416
~-.0485

~-e2208
2498
-.1020

517

Numerical Velues of Members of G Matrix.

-e2163 =,2122

-.0416 -.0485

.2082 1734

W 1734 1.1391%
0485
~¢1020
1.0755*

* For 06D6 the number 0.4960 is to be deducted from
the values of these members.
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EVALUATION OF FORCE CONSTANTS

From the calculations of the previous chapter, it may be seen that
there are 16 force constants in the potential energy function of planar
vibrations, but that only 12 appear in the symmetry coordinate F matrix.
In all there are 14 different force constants to be evaluated, namely, fé,
fqs Fé, FS, fé, fm, fﬁ, fp, Fé, Fm, Fé, Fp, fb, and Fp. The equilibrium
condition gives two equations relating some of the constants (Eq. III, p.
23). Therefore 12 frequencies are required to calculate the remaining
constants.

Of the 21 planar vibrations of benzene, classes Elg and E2u are
double degenerate and classes Blg’ By, and A2g are ilnactive in both infra-
red and Raman spectra. Various investigators have calculated the inactive
frequencies from the product rule or from the force constants obtained
from the active frequencies by the use of force fields different from the
one used in this investigation. It was felt preferable not toc use these
calculated values of inactive frequencies for the calculation of force
constants for a new force field. Thus, benzene spectra give only 9
frequencies. Additional data must be obtained before the determinants
can be solved for all force constants; these data are obtained from the
spectra of hexadeuterobenzene.

If the frequencies were put into the determinants and the determin-
ants were developed, there would be a set of equations containing 12 un-
known to the Uth pover, ﬁhich are too complicated for a rigorous algebraic
solution. The trial-and-error method which had been used conveniently in
the triborine triamine case is to be preferred.

Before starting the calculation, a literature survey was made to ob-

tain as much information as possible from previous work. Heath and

Linnett (19) assume that the Lennard-Jones relation for the repulsive
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force between molecules of an inert gas can be applied to the repulsive
force between nonbonded atoms. The relation is V = aq*l2 - bq'é. Fur-
thermore, they argue that the contribution of the second term to the values
of derivatives of V is small as compared to the first term and can be neg-

lected. If this assumption can be accepted, then

1 Wy - 1,99
G390 ~ T3 G
or
£ - £ /13
k k

It is interesting to note that, although this relation has not been used in
Simanouti's work (25), the force constants given by him fit fairly well into
the relation, as shown in Table XIII.

Table XIII**

K Fix - 1,/13 £l
H-H 0.1 -.008 -0.0
F-F 1.35 -.10k -0.3
el-cl 0.65.  -.05 -0.1
Br-Br 0.5 -.038 -0.1
C-H 0.k -.031 -0.05
C-F 1.3 -1 -0.1
c-Cl 0.6 -.0L6 -0.1
C-Br 0.5 -.038 -0.1
H-C1 0.8 -.062 -0.05
Cl-Br 0.55 -.0k2 -0.1

* taken from reference 1h.
*#* 211 quantities are in 10° dyne/cm.

Although one can not take the thirteen-fold relation in magnitude very ser-
iously, since Simanouti's data for fi give only one significant figure, it
would be safe to assume that fk is greater and fé is smaller than zero.

An inspection of Table X will reveal that, with a set of assumed non-
bonded force constants, frequencies of class Alg can be used to adjust the
values of fg and Iy, and that frequencies of class Es, Will then be suitable

and

for the adjustment of fy and Fy,. As a first approximation, Tms 05 Foo
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F; were assumed to be zero, fp, Fy, and Fy

0.07, and 0.06, respectively (all figures are in units cf 10° dyne/cm.), and

vere given the values cf 0.07,

the five frequencies were used to adjust fg, Fg, fy, Py, and £, since they
are the five largest.

After several cycles of trial and error, it was found that the fre-
quencies were conveniently fitted by the five force constants with the ex-
ception of v19, a hybrid of C-C stretching and C-C bending. A drastic change
in the value of F19,19 would not greatly improve the agrement. In order to
fit this frequency the value of F18519 would have to be greater than zero,
which contradicts to the predicted value of force constants based on the
above-mentioned assumption. This point was confirmed by another series of
calculations, shown in Table XVII, series 26-44.

In this series of calculations a somewhat different scheme was employed.
Benzene and hexadeuterobenzene give six experimentally observed fundamentals
in the symmetry class EEu‘ As Crawford and Miller point out, one of the six
equations obtained by inserting the frequencies into the determinants cannot
be used for the evaluaticn of force constants, because of dependency among
the six equations. However there are six members in the F matrix block of
class Ep,. 4 value for one of the six members will have to be assumed.

One can predict that the value of Fy8,p0 1s small, and with an assumed
value of Fj8,p09 One can use the five frequencies to adjust the other five
members.

The results given in series 26-U4 show that the value of Fl8,20 is
rather unimportant compared to the other five members, and that a positive
value for F18,19 fits the frequency better.

crawford and Miller (6) have given a positive value for F18,19, though

'they obtain this positive value by assuming F18.20 and ¥ to be zero.
2

19,20

The disagreements between their values for the members of the F matrix and
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and the signs of these members predicted by the above reasoning are listed

in Table XIV for comparison.

Table XIV
Member of C &M C&M Sign pre-
Class F matrix symbol value dicted
Alg Fl’2 gl -O.)-i-20 -
B F 1.30 -
2u L 2
14,15 K (or -0.203)
Byy F12,l3 A 0.106 - small
F18’ 20 fn‘. O* - Sm.all
19,20 Es o* -
E F ¥, o* -
1g Fg: 2 0.181 -
F6.9 s 0.241 - small
FT, 8 gs O* -
7,9 m O% - small
FB: 9 /"‘3 0 -

* assumed to be zero.
Since Crawford and Miller assume that some members are zero, it is not
surprising that there are some disagreements in classes Elg and E2u‘ How-
ever, there are four frequencies in class Alg’ two from benzene spectra and
two from hexadeuterobenzene spectra. Discounting one for the dependency,
there should be enough information .to solve for the values of all three mem-
bers in the block concerned. One would expect the solution to be unique,
and that no two valid setsof wvalues can be obtained. But in the actual numer-
ical approximation several points have to be considered.

First, in the normal coordinate treatment of molecular vibrations it is
usually assumed that the vibrators can be treated as harmonic oscillators,
and unless in the case where the anharmonicity data are complete, the correc-
tion for anharmonicity is ignored. Secondly, when the frequencies of iso-

topic molecule are used, the product rule is assumed to be exact. Thirdly,
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the errors in experimental data are uncertain. And lastly, since the pre-
cision of experimental data limits the number of significant figures in the
force constants calculated from them, one can not expect exact fit from the
force constants. For instance, three significant figures are usually given
for large force constants, such as C-H stretching and C-C stretching con-
stants, but for smaller force constants, only one significant figure is given.
Due to this limitation one would be satisfied when the agreement between the
calculated frequencies and the observed data turns out to be within 1%, even
in the case of the frequency which has been used to calculate the force con-
stants, In other words, one may always expect some disagreement between cal-
culated and observed freguencies.

There are, therefore, four factors which influence the value of
force constants; namely, the anharmonicity of molecular vibrations, the
agreement between product rule and the experimentally observed fregquencies
of isotopic molecules, the experimental error and the error in numerical
approximation. Since no distinction can be made between the last two fac-
tors, it seems to be proper to combine them together and call it combined
error. ;

The individual influence of these factors on the values of members
in P matrix block of class A2g had been studied by a rigorous algebraic
analysis, the results of which are shown in Taeble XV. For the anharmonicity,
the definition by Herzberg for diatomic molecules was used, i.e. V = W
(l-2xe) where W, 1s the corrected frequency, and x is the percentage of
anharmonicity and ¥ is the observed frequency. In coclumns I and II, com-
bined errors of 1 and 0.5% were introduced respectively, but the difference
between the predictions of the product rule and the actually observed fre-

guencies had not been removed. In order to show the effect the extreme case
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Where the error in the benzene frequencies is taken to be positive and that
in deuterobenzene frequencies negative was used. Column III shows the re-
sult of the calculation with no combined error in C-H or C-D stretching
vibration, but an assumed error of 0.4% in C-C stretching frequencies. In
column IV it was assumed there is no error in the frequencies, but the an-
harmonicity of C-H vibration was assumed to be 2.5% and the anharmonicity
in C-D vibration of hexadeuterobenzene was cbtained by the use of product
rule. In columns V and VI, a small error was assumed along with the anhar-
monicity which is treated in the same way as in the calculation in column IV,

It may be seen from the results of these calculations:

(1) 1In the extreme case where the combined error in benzene fre-
quencies is positive and that in hexadeuterobenzene is negative,
the value of Fl,2 can shift from -0.420 to 1.370k;

(2) The values of Fp,; and F2’2 remain almost constant; and

(3) The consideration of anharmonicity in C-H vibration and C-D

vibration increases the wvalue of Fl,2'
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Table XV.
C&M

I II IIT v Vv VI value
%o (CgHg) - - --- .025 .025  .025
z..c(CgHg) .01 .005 .00k ——- .005  .005
z;.5(CEHg) .01 .005 - ——- .005 0006
za.c(CeDg)  -.01 -.005  -.00L - -.005  -.005
zo_p(CeDg) -.01 -.005 ——- .- -.005  -.0006
Yo-c (CgHg)  1.0201 1.0100 1.0080 1.0000 1,0100 1.0100
yo-u (C6Hg)  1.0201 1.0100 1.0000 1.1080 1.1191  1.1093
Yo-c (CeDg) .9801  .9900  .9920 1.0000  .9900  .9900
yo-p (C6Dg)  .9801  .9900 1.0000 1.0933 1.082hk 1.0920
F1,1% 7.8212  7.6286 7.8031 7.6385F 7.6369 7.6320 7.83
F1,0% 1.370k 3765 -.3482  -.,0967 .8808  .1121  -.420
Fp,o% 5.3943  5,1980 5.0198 5.6218 5.8357 5.6667 5.00

z; = assumed combined factor in ith vibration.
v = (1 - 2)%/(1 - 2x)2

(re-c X c-HYc-cYc-H) - ( Ac-¢ )\c-DYc-cYc-D)
\ Gl CeHs fich CgDg

* A1l in 10° dyne/cm.

Since the results shown in Table XV prove that the combined error,
which can not be avoided in numerical approximation, has a large influence
on the value of Fi o5 it would be advisable not to use frequencies in class

>

A, to ascertain the value of force constant. Unfortunately the large num-

g
ber of members in other blocks makes a rigorous algebraic analysis impossible.
However, it is interesting to introduce the anharomonicity to the frequencies
in other classes to investigate the effect.

Little work has been done on the anharmonicity in benzene vibration.
Ellis (7) has recorded some absorption bands of benzene in near infrared

region. Based on his data the following calculation was made on the assump-

tion that these bands are all C-H stretching vibration.
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Table XVI.
n wavelength frequency 1st difference 2nd difference
cm:t emst cmy
0 ————
1 3080 3080
2 1.66 602k 2944 -136
3 1.1k5 873k 2710 -234
L 0.885 11300 2566 -1hh

average -171
Xe - 20 5)4'%

If the fundamental 3099 cm™! is taken as the first frequency of the series,
Xe, the anharmonicity would have a value of 2.649%. The assignment of the
bands as the C-H stretching vibrations is by no means certain. The intro-
duction of anharmonicity is only for the purpose of studying its effect on
the value of force constants. Hence, the actual value of X used in the
calculation is rather unimportant because cne would not intend to use the
calculated force constants for other purposes. In the following calcula-
tion the average value of 2.6% for Xe WaSs usedl for the C-H vibration in
class Eoye The anharmonicity in all other types of vibration was assumed
to be negligible. The results obtained from the calculation of classes
Epy and Ep, are listed in Table XVII, serial No. L,6=T, The effect of
anharmonicity in these two classes is not so prominent as that in class
Aeg: possibly because the anharmonicity of other vibrations than the C-H
stretching vibration cannot be ignored in these classes. But, roughly
speaking, the general trend is the consideration of anharmonicity increases

the calculated values of the off-diagonal members of the F matrix.

1g11is (7) and Barnes and Fulweilergive the corresponding value of
Xe as 1.9 and 1.8% respectively, on the basis of the same assumption
that had been made for the calculation of Table XVI. Although the
numerical value is somewhat different from that used in this research,
it has no effect on the conclusion reached in this research.
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Since the complete anharmonicity date are not available, precise value
of force constants, especially those for the nonbonded distances, cannot be
obtained. A set of approximate force constants was therefore calculated by
the use of some of the inactive frequencies obtained by Wilson by consider-

ation of product rule. Table XVIII shows the value of force constants and

the calculated frequencies of benzene and hexadeutercbenzene.
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NO.

FEREBomwounrwom

TABLE XVITI, Evaluation of members of F matrix.

¢lass Ep,

Member of F matrix

F1g,18 F18,19 F1s,20

8667
6667
1667
+8667
7667
+6667

1.0667
<7667
<9667
<9167

1.0793

i

«9793
7793
8793
«9793
1

<9919
8793
«9793
1.0093
<9793
1,1793
1.3793
«8793
+8000

"
4]

« 7000

i

1.000

—-0557

n
n
1

-.0699
--0628

«211,0

it

2140
1

-.0230

1
n
n
i)
1
1
1]
"
u
H
n
n
[}
31
L
1
1"
"

0750

—.199h -00328

F19,19 Fi9,20 F20,20

441194
L o219L
1

L1694
h.Ol?h
t

Lo219)
1

39734
h.2224

L.,123,
1

n

L0734
£4,0823

L0734

1

3.573L
3.57%h

Lo5T3h
L. 0000
o

540000
u

543000

]
1

643000
6.0000
54300

544500
5,6000
544500
543000

it

50000
1

ho7000

i

4,9000

«1589 5.1358
n

f
i
1
"
1"
"
]
"

1022 5.1632

1
n
it
f
i

.2056 5,1106
.1822 5,02032
t

L]
"
n
]
n

~.6000 5,60000

i
1"
"
1

U]
"
"
i

-.3000

n

6577

5440000

5.00000
1

49500

G

6
h.9580

i

ha9580

11,9600
5,04,00
5.0200

Se O?SO

5.0500
"

1
CgDg
5.0500
CéDg

6,100

CPe

47

Value of determinant

D (¥18) D (Y19) D (7 20)

-.0845
-05579].
-06395
~,1180
—-.2581
= 5L75
-.0336
- 2489

0123
-.9531

.0119

1527

0211
'02633
- 1433
-.5322&3
-l 287
-.0367
“01571
-s0423

“02656
-.1581
-.0507

.0050

0380

0352

<2469

«CLT79

0723
-.0850

1737
-.0562
-o(y727
‘00683
-01569

0797
-.0130
-.0010
~-.009L
~-.0172
-01232
-.cx358
-01360
-.0301
-,0292
-.0969
-.038L

-.0976
1623
-anL57

-oh688

~e 5616
-+3070

1.0135
-.8297
~-1,0376
-.8537

-.8878

-08h79
-1.8799
~ 7755
L1946
4801
-,0063
«1769
.0068
-01182
«3023
4492
-.J£;87
-.0506
-.1657
-.0910
-.0922
-.2226
-.1321
-QCM+21
-.1768
-.2586
-.0811
-01629
-00358
-.1262
-.0701

-.1478
1,7718
.8287

-1.0741

~1.7787

14942
9.8368
1.0320
l.Olhs

.0533
»9181.
-QJ;L3O
-011+88
4398
“00766
1.0555

-1.9893

-1.4157
~42988
“.3726
-oLi1,65

3610
-03631-
21728
.1a.n8
0555
L6676
_02937

+3558
-1.4273
“'013j35
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TABLE XVII, (Contimued)

Serial

~No, Member of F matrix Velue of determinent

F18,18 F18,19 F18,20 F19,19 F19,20 F20,20 D (P18) D (V19) D (P=0)

L6 «9900 -.192& -.0328 4.,9000 .6577 6,1100 1347 1.7957 -1.1358
1"

L7 <9500 1 500 n o 6,5000 ~,1955 1.6330 10.8737
L8 «9700 =,1994 -,0328 3,500 n 6,200 =,7018 1.2554 1.0288

50 1.2000 —.21%2 -.0750 L.200 6169 5,8600 ,0319 -2,0657 L1150
" #

51 " 3.900 t -17L5 =2,0051 =,0660
52 " 0 u " u 5.3680 21897 ~1,3779 =-.,0950
53 " L1071 " H " 10095 -1,6620 -,0210
5L, " " n 1 0 "o, 006) -1.4715

55 n 1 1 /,2000 0 n -1.7586

56 no.,p1,2 t o 6,1000 ,6169 n -2,1952

57 no 2142 L0750 3,9000 -.6169 n -1.2028

58 v 4280 L1500 *o -1,2338 n -.30L1

59 n " * 3,0000 n o L73L -,2375 13.9757
60 .6000 " 1t u 13,0000 L0126 11,4585 -80.

61 1 u " u -.6169 5,0000 -,00ht, 2.0596 16,2422
62 1.2000 " i " o 5.8600 8.1,669
63 .6000 " " > 05000 w5 6000 JOOLS 2.4

61& .870 -.1995 "'00328 .11;.0 06577 5.86 .6282 -2.1682

65 1.,0000 -.1994 -.0328

" T 1.0709 -2.2257
66 870 =-.1994 "
1}

" 5,86 .0896 -1,7617
it

F XS RC RN AE, o We NN
[ 3

AN N OO

obSbog

67 " " "-0537 "'l- 5831
68 n " 1" . " " -.1253 —l§h87h
69 700 " " . " n _,5373 -1,3262 -8,612)
70 1.2000 n n . n5,8575 0670 -2.,0158 -8.6051

Serial Nos. 45-70 with 2.6% anharmonicity in C-H vibration.
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No.

Class Elg

71

88

90
91
92
93
9L
95

97

5310

5310
1838
«€595
.6600

ABIE XVII. (Contimued)

F6,7

"005
"

"
"00&81}
-.1041
-01087

Member of F matrix

Fos  Fo,9
e 05 - .0068

" (1]

n 1]

H "

" L]

n L]

1" (]

n 1]

" 1t

" "

" "

n "

1 [}

n f

u f

" "

-.0581 "
e 0797 i ] 0067
-.08755 -,01L5

Fg on

5,1682
5.,0682
5.0782
"
1

5.0782
"

i

5.1682

5.0962

5,1682

5.0782

5.0835
n

5,0782
6.2046
5.0802
5.0547

2.6% anharmonicity in C-H ¥ibrations
6400 -,1418 -,0311 -,0505
n 1t 11 "

]
n

+6400

-.1.18

1 L]
ft "
) ]
L "
n "

-.0311 -.0505

5 8600

5.7000

57500

5.7100
"

]
1

5.7100

F?,B

1169

"
"
"

1467
.2286
«1538

L4169
"

1169

Fr 9
.0230

"

+0750

FQ,S

7.€132

"
n

7.7132

70}132

7.0132

6.7067
1t

1"
1t

7.0963

fn

7.6132
1..9568
449516
7.8268
7.3808
75262

7.6800
"

"
t

647000
6.0000
7.6800
7.6800

F9,9
.6994

Value of determinant

D(Vg) D(Py)  D(Yg)
-.1321  -8.633
6725
1.9088
1.9748
-.20 1.7761
~.0949 1.5117
.1029 1.0057
.0194 -.4995
1.9521
1.4571
9.4535
-.5910
1.7540
-14.10
-+0553
-.0909
=1.6
«3106 =2.5163
.1907 -2.7136
~-.0111 -19.28
1.5419
~5.4240
«3021 4.1994
3,7266
3,38

D(¥g)

+3352
L0774



TABLE XVIII.

Cleass

g

(

Force Constants

10° dyne/cm.

C-H stretching, fg' 0.07

fq 54T

C~C stretching, Fg! 0460

FB 7'94

C-C~C bending, Fy 0433

H-C-C bending, fy 0.37

C-H nonbonded distance, £y’ ~0.06

£ 0433

H-H nonbonded distance, fp' 0.0%

fp 0.04

C-C nonbonded distance, meta, Fj' .74

n 0.48

CO~C nonbonded distance, pars, Fp' ~1.37

F ~0.26

p
Calculated Frequenciee
CgHE CeD6
Frequency Calculated Assigned % Calculated Assigned
number frequency frequeney Diff. frequency frequency
em? cm’y cs cme
1 995 (992) 0.3 939 (943)
2 3066 3062 0.1 2298 2293
3 1232 1326 958 1037
12 1018 (1010) 0.8 961 (963)
13 3096 3060 l.2 2320 2290
14 1853 1648 1800 1571
15 1145 1110 810 825
6 622 (606) 2.6 573 (577)
7 3081 3047 1.1 2257 2265
8 1600 (1596) 0.3 1542 1552
9 1128 1178 ~4.3 843 867
18 1012 (1037)  =2.5 795 (813)
19 1499 (1485) 0.9 1316 (1333)
20 3072 (3080) -0.3 2279 (2294)
)=-~ Used to evaluate force constants.
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FORCE CONSTANTS OF BENZENE AND THE CALCULATLD FREQUENCIES.
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DISCUSSION
Anharmonicity and Force Constants.

The calculation of force constants serves for two purposes, namely,
the reproduction of the observed freguencies by calculation and the knowl-
edge of the forces among atoms in the molecule concerned. Chemists are
interested in the latter rather than the former in seeking an understand-
ing of the nature of bonds. From the calculation of force constants of
benzene in the previcus chapter it may be seen that the anharmonicity in
vibrations has a large influence on the values of the off-diagonal members
of the F matrix, so that the influence is prominent and cannot be ignored
on the value of those force constants representing the forces between non-
bonded atoms. A set of force constants calculated from the observed fre-
quencies without consideration of anharmonicity will not give a real pic-
ture of the forces among the atoms., Therefore, evaluation of the force
constants for the nonbonded distances would have to await complete anhar-

monicity data for benzene vibrations.

Urey-Bradley Force Field.

This force field is a combination of the valence force field and the
central force field, or rather a valence force field with further interpre-
tation of the valence force constants., It may be seen from a comparison of
Equations I and III that the coefficients of various terms in Equation IV~
are equivalent to ordinary valence force constants, though in this force
field they are interpreted as linear combinations of force constants, in-
stead of considering them individually as the force constants of any bond
or the interactions between coordinates. Treated in the manner, the force
constants are independent to surroundings if intermolecular forces are

neglected. Therefore one can expect to be able to transfer these force
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constants from molecule to molecule, and to use them as representative of
tﬁe forces among atoms. It seems proper to say that these force constants
should be used for the correlation of force constants with bond lengths and
the nature of chemical bonds, while the ordinary valence force constants
should be used in the comparison of bond energies of various bonds, since
the rupture of bonds are accompanied by changes in nonbonded distances.
Furthermore, it is assumed fhat the forces among atoms are not zero
in the equilibrium position. Since the nuclear charge and the electronic
cloud do not vanish when nucleus are at their equilibrium positions, it is

more reasonable to assume forces do exist there.

Physical Meaning of Negative Force Constant.

In the valence force field the first derivatives of potential energy
are assumed to be zero, while the second derivatives must be positive.
Otherwise the frequency would be imaginary and the compound would te un-
stable. In the calculations of this research some of the force constants
acquire negative values. The sign of the first derivative indicates whether
the force is a repulsive or an attractive force. The negative values of
second derivatives are puzzling at first sight. However these force con-
stants represent the forces in nonbonded distances and the nonbonded dis-
tances are dependent variables. None of these distances can be changed
without some variation in one of the independent coordinates. TFor instance,
one cannot change the distance between two C atoms occupying meta positions
without producing some change in one C-C bond or in the angle between these
two C-C bonds. Therefore a change in the nonbonded distance not only pro-
duces a force with respect to this distance change, but also with respect to
changes in other bonds or angles, and the sum of potential energy changes is

greater than zero. It would imply instability if the sum of potential energy



changes were negative, i.e., if the linear combination of force constants

in Equation III had a negative value.

CONCLUSIONS

1. The introduction of the influence of hydrogen displacements on the N-B
twisting in triborine triamine improves the agreement between the cal-
culated and observed frequencies of out-of-plane hydrogen vibrations,
and the twisting force constant thus obtained is more reasonable.

2. If the twisting force constant varies linearly with double-bond character,
the double-bond character of B-N bond in triborine triamine is 28 percent,
taking that of benzene as 50 percent. A double-bond character of 27 per-
cent is calculated from considerations of bond lengths.

3. The anharmonicity in benzene vibrations has a large influence on the
value of the force constants for the nonbonded distances. A precise
solution of the secular determinant would have to await complete anhar-
monicity data for benzene vibrations. A more thorough study of benzene
vibrations in the near infrared region is indicated.

k, Ordinary valence force constants may be used for the comparison of bond
energies of different bonds in different molecules, However, the force
constants cbtained by the use of the Urey-Bradley field, which are inde-
pendent of surroundings, are more suitable for the purpose of correlating
force constants with bond lengths and for studying the nature of bonds.

5. Negative values for second derivatives in the potential energy function

suggested by Urey and Bradley are explained.
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RAWFORD and Edsall! have investigated the infrared
and Raman spectra of triborine triamine. The discrepancy
between the calculated and observed frequencies of the out-of-
plane hydrogen vibrations was attributed to the interactions
between hydrogen bonds attached in the meta positions. Bell? has
suggested the use of a simple potential function for the out-of-
plane vibrations in triborine triamine, which he has applied
successfully to benzene. We have carried out the calculations and
have obtained satisfactory agreement with the observed fre-
quencies, as is shown in Table T
The potential function assumed has the following form:

2V =2hpr N+ Zhxstul+Zk (dr+én)?,

where /5 is the bending force constant for the B—H bond, # is the
internuclear distance, and A is the angle which the bond makes
with the plane of the ring. The symbols %y, s, and u denote the
corresponding quantities for the N—H bond. The constant %’
expresses a resistance to twisting of the B— N bond. The quantities
ér and ¢x represent the twist of the B—N bond due to ring
distortion and hydrogen bending, respectively.® This potential
function differs from that assumed by Crawford and Edsall! by
the introduction of ¢g. The fairly satisfactory agreement obtained
by this potential function renders unnecessary the assumption of
interactions between hydrogen bonds attached in the meta
positions.

The force constants were fitted to the three 4’/ frequencies and

TaBLe I.

Calculated

Observed Calculated frequency % Deviation

frequencyt frequency! cm-! (this (this
cm™t cm™1 %, Deviation research) research)

1098 1278 16,4 1117 1.7
622 756 21.6 661 6.3
415 403 2.9 437 5.3
1070 1086 1.5 1054 1.5
798 790 1.0 753 5.6
288 283 1.7 270 6.3
Mean 7.5 Mean 4.5

TABLE II. Force constants for triborine triamine, benzene, and ethylene,

Type of constant Value

B —H bending, hp 1.83 X104 dyne/cm

N —H bending, knx 3.71 X104 dyne /cm

B —N twisting, »/ 0.39 X10712 dyne-cm
2.77

benzene C —C twisting? X10712 dyne-cm
ethylene C —C twisting? 7 X10712 dyne-cm

also to the three E” frequencies. For the calculation of the fre-
quencies in Table I, average values of the constants were used.
These are given in Table II, together with the constants corre-
sponding to &’ for benzene and ethylene. The value of the twisting
force constant obtained by Crawford and Edsall! without intro-
duction of ¢x in the potential function corresponds to 1.6X10712
dyne-cm for %’. The value given here of 0.39X10712 dyne-cm is
more reasonable, since one would expect the ring bonds in triborine
triamine to have less resistance to twisting than those in benzene
and ethylene.

If it is assumed that %’ varies linearly with double-bond char-
acter for different bonds, the double-bond character of the B—N
bond in triborine triamine is 39/77X1/2 or 28 percent, taking
that of benzene as 50 percent. This assumption can be tested by
calculating the double-bond character of benzene by the use of
the ethylene twisting constant. The value obtained is 45 percent.
The double-bond character of a bond can also be estimated by
the empirical formula of Pauling.* The B—N distance in triborine
triamine has been measured in two investigations’® by electron
diffraction as 1.4740.07A and 1.444-0.02A. These values inserted
in the formula give 27 percent and 40 percent, respectively, for
the double-bond character of the B—N bond, in rough agreement
with the value given above.

Thanks are due to the Computing Division of the Ballistics
Research Laboratory, Aberdeen Proving Ground, Maryland, for
checking our calculations.
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