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Children and adults are able to learn a motor sequence quickly, usually over a 

course of one learning session consisting of 4-8 learning blocks. This initial 

acquisition is referred to as fast learning. However, little is known about the learning 

processes underlying the fast acquisition of motor sequences. Therefore, the 

overarching objective of this dissertation was to examine the underlying processes 

that drive rapid motor sequence learning in children and adults. In a series of studies, 

children and adults performed a modified serial reaction time (SRT) task, a primary 

window into understanding implicit motor sequence learning. Study I demonstrated 

that fast learning of implicit motor sequences in six- and 10-year-old children was 

comparable to adults, while the performance (i.e., reaction time, RT) during learning 

was reflected by two age-related processes. Learning in six-year-old children 

dominantly relied on an offline process where RT improved after a short rest, while 



  

offline enhancement as well as online progressive improvement in RT reflected 

sequence learning in 10-year-old children and adults. In studies II, III, and IV, we 

demonstrated that the online and offline processes were neither by-products of task 

pacing constraints nor illusory effects of fatigue or reactive inhibition. Instead, these 

two age-related processes were more likely to be functional mechanisms underlying 

implicit motor sequence learning, which could be modulated by the involvement of 

procedural and declarative memory. In addition, study III characterized the 

developmental landscape of 5- to 14-year-old children and found that the 

developmental changes of online and offline learning were primarily present in early 

childhood. As fast learning is known to enable generalization (or transfer) of 

sequences learning, we expected, given the findings in studies I through IV, age-

related differences in the generalization of implicit motor sequence learning. The 

results in study V, interestingly, demonstrated that the generalization of implicit 

motor sequence learning was better in children than in adults. However, in study VI, 

when greater procedural memory was required in the SRT task, learning in adults 

largely depended on offline learning; and, the age-related differences in learning 

generalization vanished, suggesting that offline learning may facilitate the 

generalization of implicit motor sequence learning. Taken together, results from these 

studies found two age-related learning processes (i.e., online and offline learning) that 

drive the fast implicit sequence acquisition and demonstrated that the age-related 

online and offline learning may lead to children a superior ability in the 

generalization of motor sequence learning. These results extend our understanding of 



  

the age-related development of implicit motor sequence learning and provide 

potential insights into the question of why childhood is an optimal period for learning.    
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  Introduction Chapter 1:

Overall Purpose 

Childhood is a critical period for the development of motor skills. The 

experiences we have and the skills we learn during this period can greatly affect the 

motor skills of our later life. For example, the acquisition of fundamental motor 

patterns before the age of seven years affects the ability to perform the complex 

motor behaviors in the adolescent and adult years (Clark & Metcalfe, 2002; 

Watanabe, Savion-Lemieux, & Penhune, 2007). Learning that takes place at early 

ages also affects brain functions in our later life (Elbert, Pantev, Wienbruch, 

Rockstroh, & Taub, 1995; Schlaug, Jancke, Huang, Staiger, & Steinmetz, 1995). 

Given the importance of childhood in learning, therefore, there is a need for a clearer 

understanding of motor skill learning in childhood and how it might develop with 

age. 

One of the most important aspects of learning motor as well as cognitive skills 

involves sequence learning. Specifically, an imperative feature of playing musical 

instruments, spoken language, and motor skills is that they emerge from a sequence 

of movements produced in a specific order. For example, in speaking, words are 

pronounced in a specific order, reading requires the eyes to move sequentially from 

word to word, and playing the piano involves multiply ordered finger movements. 

Thus, learning motor sequences is a fundamental and crucial ability in our daily life. 

A growing literature demonstrates that motor sequence learning involves memory 

systems of procedural and declarative learning (Brown & Robertson, 2007a; Curran 
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& Keele, 1993; Destrebecqz & Cleeremans, 2001; Reber & Squire, 1994; Robertson, 

2007; Willingham & Goedert-Eschmann, 1999; Willingham, Nissen, & Bullemer, 

1989). However, unlike the clear developmental picture of declarative learning that 

becomes better as age increases until the twenties (Craik & Bialystok, 2006), the 

development of motor sequence learning that requires greater procedural memory is 

equivocal (Hodel, Markant, Van Den Heuvell, Cirilli-Raether, & Thomas, 2014; 

Janacsek, Fiser, & Nemeth, 2012b; Meulemans, Van der Linden, & Perruchet, 1998; 

Nemeth, Janacsek, & Fiser, 2013a; Thomas et al., 2004; Vinter & Perruchet, 2000). 

Research has shown that both adults and children as young as six years of age 

can learn motor sequences quickly, usually over a course of one learning session 

(Meulemans, Van der Linden, & Perruchet, 1998; Reber, 1996), and referred to as 

fast learning (Censor, Sagi, & Cohen, 2012; Dayan & Cohen, 2011; Honda et al., 

1998; Karni et al., 1998a; Walker, Brakefield, Morgan, Hobson, & Stickgold, 2002). 

Since the memory of sequences encoded during fast learning is usually fragile, slow 

learning, involving memory consolidation that follows fast learning, allows the newly 

acquired memory to stabilize and become resistant to interference (Brown & 

Robertson, 2007a; Nettersheim, Hallschmid, Born, & Diekelmann, 2015; Robertson, 

Pascual-Leone, & Press, 2004; Robertson, Press, & Pascual-Leone, 2005). 

Surprisingly, memory consolidation in children is superior (Wilhelm et al., 2013) and 

occurs earlier (Adi‐Japha, Badir, Dorfberger, & Karni, 2014) compared to that in 

adults, allowing the newly acquired memory to quickly become resistant to 

interference from a competing motor skill in children (Adi‐Japha, et al., 2014; 

Dorfberger, Adi-Japha, & Karni, 2007). To date, the mechanism underlying the 
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superiority of children’s motor sequence learning is unclear. Given that slow learning 

builds on the memory of sequences encoded during fast learning, a clear 

understanding of age-related differences in fast learning is essential. Therefore, the 

primary purpose of this dissertation is to programmatically investigate the underlying 

processes that drive fast motor sequence learning in children and adults. 

Most often, motor sequences are learned implicitly where performer is not 

aware of there is a sequence to the movements. In this dissertation, the serial reaction 

time (SRT) task (and its modified version) is employed as it has been used as the 

primary paradigm to study implicit motor sequence learning (Nissen & Bullemer, 

1987). In the SRT task, six (or four) visual stimuli appear one at a time following a 

specific order. Children and adults are required to respond to these stimuli as quickly 

and accurately as possible without being instructed about the presentation of the 

stimulus sequence. There are 6 to 8 learning blocks with mandatory rest of 3 minutes 

between each block. Reaction time (RT) is used to access learning and its underlying 

processes. Specifically, mean RT of each learning block is used as a marker of 

implicit sequence learning (Cleeremans, Destrebecqz, & Boyer, 1998; Clegg, 

DiGirolamo, & Keele, 1998; Cohen, Ivry, & Keele, 1990; Jimenez, Mendez, & 

Cleeremans, 1996; Robertson, 2007). The changes in RT within and between learning 

blocks are used to assess underlying learning processes. Specifically, the progressive 

improvement in RT within each block is an indicator of the online process and the RT 

enhancement after a short rest reflected the offline process. 
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Specific Aims (SA) and Backgrounds 

There are six specific aims (SA) by which we programmatically investigated 

the development of learning processes underlying motor sequence acquisition. SA1 

demonstrates whether the acquisition of an implicit motor sequence during fast 

learning is driven by different processes (i.e., online and offline processes) in children 

and adults. SAs 2 to 4 aim to investigate the mechanisms underlying these two 

different processes. Specifically, these SAs examine whether online and offline 

processes are active learning mechanisms, artifacts of fatigue or reactive inhibition, or 

by-products of task pacing. Given the common notion that fast learning facilitates the 

generalization of motor sequence learning (Censor, 2013; Perez et al., 2007), the 

distinct fast learning processes in children and adults raises the possibility that there 

are age-related differences in generalizing sequence learning. Therefore, SAs 5 and 6 

demonstrate whether the generalization of motor sequence learning is age-related and 

whether the age-related differences are, in part, explained by online and offline 

learning. 

SA1 (Study I; Chapter 3): To determine if the acquisition of implicit motor 

sequences during fast learning is driven by age-related learning processes. 

Many have suggested that sequence learning in adults is driven by trial-by-

trial online learning where an iterative mental computation is performed (Bornstein & 

Daw, 2012, 2013; Cleeremans & McClelland, 1991; Verstynen et al., 2012). 

Although online learning allows performance to improve quickly within a single 

learning session (Censor, et al., 2012; Dayan & Cohen, 2011), this iterative process 

may impose demanding mental computation requirements for children. In addition to 
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online learning, implicit acquisition of motor sequences may arise from offline 

learning that facilitates performance after rest without physical practice of the 

sequence (Censor, et al., 2012; Robertson, Pascual-Leone, & Miall, 2004).  

Hypothesis 1.1: Sequence learning in adults dominantly relies on an online 

process where RT progressively improves within each learning block. 

Hypothesis 1.2: Sequence learning in children primarily relies on an offline 

process where RT improves following short rest. 

Results in study I demonstrate that fast sequence learning in children and 

adults may be driven by different learning processes. In particular, learning in six-

year-old children dominantly relied on an offline process where RT improves after a 

short rest, while offline enhancement and online progressive improvement in RT 

concurrently resulted in sequence learning in 10-year-olds and adults. However, the 

mechanisms underlying the online and offline processes are unclear. A dominant 

explanation for these two processes is that they result from the emergence of fatigue 

or reactive inhibition (Brawn, Fenn, Nusbaum, & Margoliash, 2010; Rickard, Cai, 

Rieth, Jones, & Ard, 2008a; Rieth, Cai, McDevitt, & Mednick, 2010). For example, 

fatigue or reactive inhibition that is elicited by motivation and attentional factors 

accumulates while an individual is practicing the task and thus prevents progressive 

improvements in RT (Ammons, 1947; Bourne & Archer, 1956; Denny, Frisbey, & 

Weaver, 1955). The effect of fatigue or reactive inhibition dissipates following a rest, 

which results in the recovery of RT and consequently leads to offline RT 

improvements (Brawn, et al., 2010; Rickard, et al., 2008a; Rieth, et al., 2010). The 

fatigue or reactive inhibition explanation appears to be more critical in developmental 
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studies as fatigue or reactive inhibition is more likely to accumulate in children 

compared to adults when they perform the same task.  

In addition, the age-related differences in online and offline processes may 

also be by-products of the task pacing conditions. In study I, children and adults 

performed the task under the same inter-stimulus-interval (ISI). The same ISI was 

relatively shorter in children than adults. Thus, the ISI employed may have prevented 

children from learning the sequence online as online learning requires iterative mental 

computations that need an adequate amount of time between stimuli that the fixed ISI 

might not have provided. In addition, a shorter ISI in children made the task relatively 

faster, which may induce greater fatigue or reactive inhibition accumulation that 

slowed down the online RT. 

SAs 2 and 3 are built to investigate whether the age-related online and offline 

processes are by-products of task pacing or artifacts of fatigue or reactive inhibition. 

Since performing the SRT task under a fixed ISI condition could lead to the children 

performing under a relatively shorter ISI, we conducted study II (Chapter 4) in adults 

only to examine the effects of ISI on offline and online processes. In this study, adults 

performed the modified SRT task under different ISI conditions (i.e., short vs long 

ISI) and the online and offline processes were examined. In addition, study III 

(Chapter 5) was conducted where children and adults performed a self-paced SRT 

task. In the self-paced SRT task, the length of the ISI was determined by participants’ 

own response speeds, which, therefore, eliminated the confounding effect of task 

pacing in study I. Furthermore, in study III, two hypotheses of fatigue or reactive 

inhibition were tested. 
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SA2 (Study II; Chapter 4): To determine if task pacing influences online and 

offline processes in adults. 

Hypothesis 2.1: Despite the ISI, sequence learning in adults mainly arises 

from the online process where RT progressively improves within learning blocks. 

SA3 (Study III; Chapter 5): To characterize the age-related differences in online 

and offline processes when children and adults perform a self-paced SRT task 

and determine if these two processes are artifacts of fatigue or reactive 

inhibition. 

Hypothesis 3.1: Sequence learning in children and adults arise from age-

related online and offline processes in the self-paced SRT task. 

Hypothesis 3.2: The age-related online and offline processes are not illusory 

effects of fatigue or reactive inhibition. 

Results of studies II and III suggest that the age-related online and offline 

processes are neither by-products of task pacing nor artifacts of fatigue or reactive 

inhibition. An alternative to the effects of task pacing and fatigue or reactive 

inhibition is that the age-related online and offline processes are active learning 

mechanisms. Since children are less likely to acquire declarative knowledge of 

sequences compared to adults (Meulemans, et al., 1998) and the offline process 

dominates their learning, while learning in adults largely relies on the online process 

and yields greater declarative knowledge (study I), we proposed that procedural and 

declarative memory may serve as the substrates for online and offline processes that 

occur during fast learning in the SRT task. That is to say, modulating the involvement 

of procedural and declarative memory would bias the online and offline processes. To 
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test this hypothesis, we asked adults to perform the SRT task where they learned 

either a fixed or probabilistic sequence and with or without preliminary knowledge of 

the presence of a sequence. The sequence and preliminary knowledge were 

manipulated to emphasize either procedural (probabilistic sequence; no preliminary 

knowledge) or declarative (fixed sequence; with preliminary knowledge) memory. 

SA4 (Study IV; Chapter 6): To determine if online and offline processes during 

fast motor sequence learning are active learning mechanisms that are linked to 

procedural and declarative memory. 

Hypothesis 4.1: Sequence learning arises from greater offline improvement in 

RT when a probabilistic sequence, compared to a fixed sequence, is learned. 

Hypothesis 4.2: Sequence learning arises from greater online improvement in 

RT when the preliminary knowledge of the sequence is given before learning starts. 

Results in study IV demonstrate that probabilistic sequence learning arises 

from a greater offline process, while fixed sequence learning is reflected by a greater 

online process, suggesting that online and offline processes can be mediated by the 

declarative and procedural memory that are required to learn motor sequences. Taken 

together, studies I to IV demonstrate age-related online and offline processes that 

underlie the acquisition of motor sequences during fast learning. The online and 

offline processes were neither by-products of task pacing constraints nor illusory 

effects of fatigue or reactive inhibition. Instead, these two age-related processes were 

more likely to be functional mechanisms underlying implicit motor sequence 

learning, which appear to be tied to procedural and declarative memory. 
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The distinct fast learning processes in children and adults raises the possibility 

of the age-related differences in the generalization of motor sequence learning (i.e., 

generalizing the learning of a sequence in one context to another novel context), as 

generalization of sequence learning is facilitated by fast learning where an abstract 

representation of the task develops (Censor, 2013; Perez, et al., 2007). To date, little 

is known whether learning a sequence is generalizable to another novel sequence that 

shares the same underlying structure with the learned sequence. In addition, a paucity 

of studies has investigated age-related differences in the generalization of implicit 

motor sequence learning. Therefore, SA5 addresses these two questions. 

SA5 (Study V; Chapter 7, Experiment 1): To determine if the generalization of 

implicit motor sequence learning is age-related. 

In study V, children and adults performed the same SRT task as that employed 

in study I. A generalization block was added at the end of the SRT task to examine 

whether adult and children were able to generalize the learning of one sequence to a 

novel sequence that shared the same underlying structure with the learned sequence. 

The underlying structure was referred to as the first-order transitional probabilistic 

structure given that learning a sequence is indeed learning its probabilistic structure 

(Bornstein & Daw, 2013; Visser, Raijmakers, & Molenaar, 2007). To date, little is 

known whether the generalization of motor sequence learning is facilitated by online 

or offline learning, making it challenging to hypothesize whether children or adults 

would have greater generalization of sequence learning. Thus, we aimed to explore 

the age-related differences in the generalization of implicit motor sequence learning. 
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Hypothesis 5.1: Children and adults are able to generalize implicit learning of 

one motor sequence to another with the same probabilistic structure. However, there 

may be age-related differences to the extent of sequence learning generalization. 

Results in study V demonstrate that the generalization of implicit motor 

sequence learning was inferior in adults compared to children, raising the possibility 

that offline learning rather than online learning may facilitate sequence learning 

generalization. The question here is whether the generalization of motor sequence 

learning is age-related when learning in both children and adults largely relies on 

offline learning. To modulate the learning process toward offline learning in adults, in 

study VI (experiment 2 in Chapter 7), we asked children and adults to learn a 

probabilistic sequence that had been shown to strengthen offline learning in adults 

(Study IV, Chapter 6). 

SA6 (Study VI; Chapter 7, Experiment 2) To determine if age-related 

differences in the generalization of implicit motor sequence learning are, in part, 

explained by online and offline learning. 

Hypothesis 6.1: Generalization of probabilistic sequence learning is 

comparable between children and adults. That is to say, there are no age-related 

differences in generalizing probabilistic motor sequence learning. 

Organization of the Dissertation Proposal 

The dissertation consists of eight chapters. Following chapter 1, the second 

chapter is a review of the relevant literature. Chapters 3 through 7 describe study I to 

VI and are written in a journal manuscript format. Specifically, Chapter 3 reports 

study I (SA1) that investigates whether the acquisition of implicit motor sequences 
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during fast learning is driven by age-related learning processes. This chapter was 

submitted for publication and is currently under review. Chapter 4 details study II 

(SA2) that examines the effect of task pacing on online and offline processes 

underlying implicit motor sequence learning in adults. This chapter was submitted for 

publication and is currently under revision. For publication purpose, this chapter does 

not include results of online and offline learning processes. Results of online and 

offline learning processes are detailed in Appendix 1. Chapter 5 describes study III 

(SA3) that characterizes the age-related differences in online and offline processes 

when children and adults performed a self-paced SRT task and demonstrates whether 

these two processes are artifacts of fatigue or reactive inhibition. Chapter 6 reports 

study IV (SA4) that investigates whether online and offline processes during fast 

motor sequence learning are active learning mechanisms that are linked to procedural 

and declarative memory. This chapter was recently published in Frontier in Human 

Neuroscience. Chapter 7 details studies V and VI (SA5 and SA6) that explore age-

related differences in the generalization of implicit motor sequence learning and 

investigates whether the age-related differences in the generalization of implicit 

motor sequence learning are, in part, explained by online and offline learning. Last, 

chapter 8 provides a general discussion of the experimental findings, implications, 

and direction of future research.  
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Chapter 2: Review of Literature 

Overall Structure 

Sequence learning is a widely used term in learning a variety of tasks: 

artificial intelligence (i.e., planning and reasoning), machine learning, decision 

making, time series prediction in finance and economics, natural language processing, 

handwriting recognition, adaptive control, and motor/cognitive skill learning. While 

each of these task domains has a unique perspective on understanding sequence 

learning, the common concept in all areas is the acquisition of ordered sequences 

underlying the task being performed. In this dissertation, sequence learning and its 

development focus on those sequences rooted in the motor domain.  

This chapter reviews the extant literature about motor sequence learning in 

both adults and children. Six sections are included. Following this introductory 

section, the second section focuses on implicit and explicit memory/learning and their 

interactive relationship. Section 3 discusses paradigms that have been used to 

investigate motor sequence learning, including the serial reaction time (SRT) task 

whose modified version was employed in this proposed dissertation. Section 4 

provides an extensive discussion on existing findings for sequence learning with the 

SRT task. Based on the discussion of the adult literature through chapters 1 to 4, 

Section 5 describes the age-related differences in motor sequence learning, 

particularly between children and adults. Last, Section 6 highlights knowledge gaps 

in the extant literature and how this dissertation addresses these gaps. 
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Explicit and Implicit Memory and Learning 

Dissociable Forms of Memory 

The dissociable memory system has been well demonstrated by numerous 

studies of amnesic patients and animal models. Theoretical and experimental findings 

in the literature have been thoroughly reviewed in several papers (Milner, Squire, & 

Kandel, 1998; Squire, 1992, 2004; Squire, Knowlton, & Musen, 1993; Squire & 

Wixted, 2011; Squire & Zola, 1996). Here, we only summarize the major concepts 

associated with these different forms of memory. 

Learning depends on multiple forms of memory. One important form of 

memory refers to declarative memory which provides the basis for acquiring, 

retaining, and retrieving information of experienced events (episodic memory) and 

facts (semantic memory) (Tulving, 1985). Declarative memory presents the capacity 

to verbally articulate knowledge that is learned or memorized, thus it is often 

measured by recall and recognition tests in the laboratory (Purves et al., 2013). In 

contrast, non-declarative knowledge is typically acquired without intention and 

awareness and this type of memory is expressed through performance rather than 

recollection of facts and events. Non-declarative memory is responsible for 

conditioning, priming, and skill learning. Furthermore, skill learning, including 

perceptual-motor, perceptual, and cognitive learning, depends on one particular type 

of non-declarative memory, which is known as procedural memory. The declarative 

and non-declarative memory is interchangeably used with explicit and implicit 

memory in the literature. 
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Learning is closely related to memory since it involves three phases of the 

memory process: encoding, storing, and retrieving. Thus the dissociation between 

implicit and explicit memory leads to two different types of learning - implicit and 

explicit learning. In the following sub-section ‘Explicit and Implicit Learning’, we 

summarize findings from studies investigating skill learning that are related to the 

research purposes of this dissertation.  

Explicit and Implicit Learning 

The first evidence confirming that the learning system is not unitary but 

dissociable comes from a seminal study conducted by Brenda Milner and colleagues 

(as cited in Purves, et al., 2013; Squire, 1992, 2004; Squire & Wixted, 2011). In this 

study, amnesic patient H.M. (Squire, 2009) practiced a mirror-tracing task for three 

days. H.M. showed learning of this motor task, observed by persistent improvement 

with a comparable level as normal participants, even though he failed to report that he 

had extensive practice on this task, suggesting that learning to perform the mirror-

tracing task is intact in amnesia patients. Since the deficit of declarative/explicit 

memory system in amnesia patients did not affect the ability to learn such a motor 

skill, the learning relied on the procedural/implicit memory system and thus is 

considered to be implicit learning. The preserved implicit learning ability in amnesia 

patients has been further confirmed in cognitive (e.g., Knowlton, Mangels, & Squire, 

1996) , perceptual (e.g., Cohen & Squire, 1980), and motor skill learning (e.g., Nissen 

& Bullemer, 1987). 

Given the common finding that explicit and implicit learning are dissociable 

in amnesia, it is important to know whether implicit learning can occur when the 
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explicit/declarative learning system is intact. Many tasks have been designed to 

investigate implicit learning in typically developed participants, including dynamic 

system control (Berry & Broadbent, 1984), hidden covariation detection (Lewicki, 

1986; Lewicki, Czyzewska, & Hoffman, 1987), second language learning (Michas & 

Berry, 1994), weather prediction (Knowlton, et al., 1996), sequence learning (Nissen 

& Bullemer, 1987), and artificial grammar learning (Reber, 1967). In all these 

studies, participants are instructed to perform a task without knowing the specific rule 

underlying the task. For example, in the seminal study of artificial grammar learning 

(AGL), Reber (1967) instructed participants to memorize letter strings generated by 

an artificial grammar machine. After this learning phase, novel strings were presented 

and participants were asked to classify them as grammatical or non-grammatical. 

Although participants could not verbally describe the rule embedded in the artificial 

grammar machine, their performance to classify strings was better than chance. This 

result in AGL and similar results in other paradigms lead to the conclusion that 

typically developed participants can implicitly learn a task.  

However, implicit learning inevitably interacts with explicit learning in 

typically developed participants. For example, it was found that participants always 

exhibited at least partial declarative knowledge of the artificial grammar (see, Frensch 

& Rünger, 2003, for a review). Evidence of the co-existence of explicit and implicit 

learning also comes from an fMRI study (Poldrack et al., 2001). In this study, 

activities of the medial temporal lobe that are related to explicit learning and of the 

basal ganglia that are responsible for implicit learning depend on whether the task 

requires explicit or implicit memory. Furthermore, it was found that the activities in 
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these two brain areas are negatively correlated, suggesting that implicit and explicit 

memory compete with each other during learning.  

In sum, two types of learning, implicit and explicit learning, play a vital role 

in the acquisition of cognitive and cognitive-motor skills. Since motor skills normally 

emerge from a sequence of movements that follow a specific order, it is fundamental 

to learn the sequential order before a good performance can be achieved. Importantly, 

a motor sequence can also be learned explicitly and implicitly. In the next section, the 

extant literature of explicit and implicit motor sequence learning is discussed.   

Motor Sequence Learning: Paradigms, and Frameworks 

Explicit and Implicit Sequence Learning 

Explicit sequence learning is associated with awareness of what should be 

learned or what has been learned. In contrast, implicit learning takes place without 

such awareness (Berry, 1997; Cleeremans, et al., 1998; Frensch & Rünger, 2003). For 

example, children learn to pronounce sequential words both explicitly and implicitly. 

Specific instructions are sometimes received so that children learn to pronounce 

several syllables in an order to speak a word, while most times, they learn to speak by 

intuitively echoing sounds and repeating words that adults say with little 

understanding of the words.  

Paradigm: The Finger Tapping Task/Finger-to-thumb Tapping Task 

Explicit sequence learning has been widely studied through the finger-tapping 

task (also known as the finger-to-thumb tapping task) (Karni et al., 1995; Walker, 

Brakefield, Hobson, & Stickgold, 2003; Walker, et al., 2002). In the finger-tapping 
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task, a finger sequence is given to participants before they perform a task in which 

they follow the specific order to tap fingers as fast as they can. Thus, explicit learning 

plays a vital role in the early phase of learning this task (Doyon & Benali, 2005; Fitts 

& Posner, 1967), while procedural memory is involved in the later learning phase 

(Hikosaka et al., 1999; Nakahara, Doya, & Hikosaka, 2001; Walker, et al., 2003). 

Given the vital role of procedural learning in the later phase, this task, in addition to 

the motor adaptation paradigm, has been considered as the most common paradigm 

designed to study motor learning (Censor, et al., 2012). 

Paradigm: The Serial Reaction Time Task 

The serial reaction time (SRT) task was originally designed to assess implicit 

learning (Nissen & Bullemer, 1987), while recent studies considered this task as a 

motor task and used it to study motor sequence learning (e.g., Doyon, et al., 2001, 

2003; Penhune, et al., 2009; Willingham, 1998, 1999). In the SRT task, participants 

respond to stimuli by pressing corresponding keys as quickly and accurately as 

possible without being informed that the stimuli follow a specific order. Traditionally, 

the sequential stimuli are formed by 10 repetitions of an 8-12 element stimulus 

sequence (i.e. fixed-repeated sequence) (Nissen & Bullemer, 1987; Reed & Johnson, 

1994a; Stadler & Frensch, 1998). Learning can take place without any prior 

knowledge of the stimulus sequence as revealed by a faster mean reaction time 

(RT)/response time to this sequence compared to the mean RT/response time to a 

novel sequence (Cleeremans, et al., 1998; Clegg, et al., 1998; Cohen, et al., 1990; 

Jimenez, et al., 1996; Robertson, 2007). However, implicit learning in the SRT task 

inevitably accompanies the acquisition of explicit/declarative knowledge of 
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sequences, indicated by the capability of participants to verbally recall/recognize, at 

least, a part of the sequence after performing the SRT task (Cleeremans, et al., 1998; 

Clegg, et al., 1998; Destrebecqz & Cleeremans, 2001; Jimenez, et al., 1996; 

Remillard & Clark, 2001; Thomas & Nelson, 2001; Weiermann & Meier, 2012a). 

This result is not surprising. The co-existence and competition between explicit (or 

declarative) and implicit (or procedural) learning are natural hallmarks of the 

interactive learning mechanisms in our brain (Brown & Robertson, 2007a, 2007b; 

Keisler & Shadmehr, 2010b; Poldrack, et al., 2001; Sun, Slusarz, & Terry, 2005).  

This dissertation will employ the modified SRT task in which the feet take the 

place of fingers in moving to targets around the body (please see section ‘effectors to 

perform the SRT task’). 

Stages of Motor Sequence Learning 

Fitts and Posner (1967) proposed that there are three stages in the acquisition 

of motor skills. During the first stage, referred to as the cognitive stage, an individual 

understands what the task to perform is and develops the required movement patterns. 

Performance is refined with practice through the second stage, the associative stage. 

Finally during the autonomous stage, performing the task is automatic and requires 

minimum cognitive resources.  

Fitts and Posner’s framework of motor learning has been supported and 

further elaborated by recent studies in motor sequence learning. In a review paper, 

Doyon and Benali (2005) proposed a five-stage model of motor skill learning: 1) 

(Fast learning) Fast learning develops within a single session when an individual 

practices a new motor task, in which considerable improvements in the performance 
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take place and a short memory of this task is formed (Honda, et al., 1998; Karni et al., 

1998b; Karni & Sagi, 1993; Walker, et al., 2002); 2) (Slow learning) When practice 

continues, performance improves but at a slow rate; 3) (Consolidation) After practice 

stops, learning does not terminate. Rather, memory formed in the first stage is 

stabilized so that it is resistant to interference from a new task that needs to be 

acquired (Brashers-Krug, Shadmehr, & Bizzi, 1996; Cohen & Robertson, 2011; 

Shadmehr & Brashers-Krug, 1997), or performance is enhanced without additional 

practice through offline learning (Karni & Sagi, 1993; Robertson, Pascual-Leone, & 

Press, 2004; Robertson, et al., 2005; Walker, et al., 2003; Walker, et al., 2002); 4) 

(Automatic stage) performance in this stage requires few cognitive resources; and, 5) 

(Retention stage) The long-term memory is formed and thus the performance level is 

maintained after a long period in the absence of further practice (Abe et al., 2011; 

Karni & Sagi, 1993; Savion-Lemieux & Penhune, 2005). Besides these five stages, it 

has been found recently that memory can be degraded, refined, and modified during 

additional practice or sleep. This stage is known as the re-consolidation stage 

(Censor, Dimyan, & Cohen, 2010; Walker, et al., 2003).  

It is important to note that these learning stages are observed in the finger 

tapping task and other procedural learning tasks (see, Censor, et al., 2012; Doyon & 

Benali, 2005, for a review), while it is unknown if these stages are common in 

learning the SRT task. However, the extant studies have shown fast learning and 

offline learning when an individual performs the SRT task. This dissertation focuses 

on the fast learning stage (i.e., the first training session) and investigate if offline 

learning takes place in this early stage. 
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Research Issues in the Serial Reaction Time Task in Adults 

Since the seminal study using the SRT task in 1987 (Nissen & Bullemer), 

many variations of this task have been used, including variations in the effector used 

to perform the SRT task, the sequence structure, measurement to assess learning, and 

dual-task versus single-task design and so forth. Some of these variations were found 

to affect sequence learning, while others were not. In the following sub-sections, the 

extant literature pertaining to these variations is briefly reviewed. In addition, existing 

findings of learning models, consolidation, and interference of motor sequence 

learning is then discussed. 

Effectors to Perform the SRT Task 

While the classic SRT typically requires bi-manual finger tapping, sequence 

learning has been investigated using a variety of movements, including uni-manual 

finger tapping (Andresen & Marsolek, 2012), target tracing (Lang, Gapenne, Aubert, 

& Ferrel-Chapus, 2013; Panzer et al., 2009; Park & Shea, 2005), oculomotor task 

(Marcus, Karatekin, & Markiewicz, 2006), and arm reaching (Moisello et al., 2009). 

These SRT tasks are performed with participants seated. Much of our daily motor 

sequence skills, however, require us to perform actions while standing, which 

involves postural control. The postural control introduced in standing vs. sitting offers 

a challenge that may be a rate limiter to performance and perhaps to learning (Thelen, 

1989; Thelen, Ulrich, & Jensen, 1989). Therefore, this dissertation extends the SRT 

task to a whole body foot stepping task. 
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Sequence Structure in the SRT task 

In the seminar study of the SRT task (Nissen & Bullemer, 1987), the 10-item 

sequence, D-B-C-A-C-B-D-C-B-A, was used and each learning block comprised 10 

repetitions of this sequence. Nissen and Bullemer failed to observe learning when a 

secondary task (i.e., tone-counting task) was performed concurrently. It was later 

found that the impaired learning may not result from the secondary task. Instead, it 

was likely that the sequence structure affected the acquisition of the sequences 

(Cohen, et al., 1990). Cohen and colleagues referred to the sequence that Nissen and 

Bullemer used as an ambiguous sequence. In an ambiguous sequence, all locations 

are followed by more than one other location. In contrast, a hybrid sequence contains 

some trials that are followed by only one other location. Additionally, in a unique 

sequence (also known as the first-order-conditional sequence), all trials are followed 

by only one other location. Cohen, et al., (1990) observed learning of these three 

types of sequences when the SRT task was performed alone, while participants 

cannot learn an ambiguous sequence under the distraction of a secondary task.  

While learning was observed in the unique, hybrid, and ambiguous sequences, 

it was found that such learning may simply result from the acquisition of the relative 

frequencies of locations rather than the sequence itself (Perruchet, Gallego, & Savy, 

1990). In addition, Reed and Johnson (1994a) argued that other properties other than 

the sequence itself may be acquired, such as transition frequency and reversal 

frequency. To circumvent this issue, a second-order-conditional (SOC) sequence was 

proposed, in which each trial was exclusively determined by the preceding two trials. 

The SOC sequence perhaps is the most common sequence used in the literature and 
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most importantly, converging evidence demonstrates that the SOC sequence can be 

learned in the SRT task (Curran, 1997b; DeCoster & O'Mally, 2011; Reed & 

Johnson, 1994a).  

As put forth previously, an interactive relationship between implicit and 

explicit learning has been observed in many studies using the deterministic sequences 

introduced above (Cleeremans, et al., 1998; Clegg, et al., 1998; Destrebecqz & 

Cleeremans, 2001; Jimenez, et al., 1996; Thomas & Nelson, 2001; Weiermann & 

Meier, 2012a). Explicit learning emerges in the implicit sequence learning task (i.e., 

the SRT task) because the simple sequence is likely to be detected and therefore 

explicit to the learner. Many other types of sequences have been used to minimize the 

effect of explicit learning in the SRT task. These manipulations include an alternative 

serial reaction time (ASRT) task (Howard et al., 2004), intermixing two fixed 

sequences (Schvaneveldt & Gomez, 1998), incorporating a fixed sequence with some 

random trials (Savion-Lemieux, Bailey, & Penhune, 2009), fixed sequences with 

statistical transitions on some trials (Stadler, 1992), a sequence in which each position 

can be following by any other positions with an equal likelihood (Reber & Squire, 

1994), and probabilistic sequences produced by an artificial grammar or a Markov 

chain (Deroost & Soetens, 2006; Deroost, Zeeuws, & Soetens, 2006; Jimenez, et al., 

1996). 

However, no sequence can completely prevent explicit learning. In some 

studies that compared sequence learning between amnesic participants and their 

typically developed peers, it has been found that the control groups exhibited greater 

learning than amnesic patients (Nissen & Bullemer, 1987; Reber & Squire, 1994). 
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These results imply that explicit learning, at least partially, contributes to sequence 

learning in the SRT task. In addition, although complex probabilistic sequences can 

reduce the acquisition of explicit knowledge (Cleeremans & Jiménez, 1998), 

sequences even embedded with a third-order probabilistic transition can be explicitly 

acquired after extensive practice (Remillard & Clark, 2001). 

In this dissertation, the fixed and probabilistic sequences generated by a first-

order Markov process are used. It is infeasible to eliminate or isolate either of implicit 

or explicit learning from the SRT task. Nonetheless, manipulating the sequence 

structure can modulate the involvement of implicit and explicit memory required by 

the SRT task.  

Measurement Used to Assess Sequence Learning 

Reaction time (RT) has been used to measure performance in the SRT task 

since it reflects the amount of time spent processing information and indeed indicates 

the dynamics in the brain during cognitive learning (Donders, 1969; Laming, 1968; 

Luce, 1991; Sternberg, 1969a). Based on the performance change indicated by RT, 

sequence learning can be assessed in the SRT task. In the original SRT study (Nissen 

& Bullemer, 1987), some participants practiced a structured sequence while others 

were exposed to a random sequence. The mean RT difference between these two 

groups indicated learning of the structure sequence. Recently, a more common 

method has been used. Participants practiced the same structured sequence several 

times and without notice, a novel sequence is presented instead of the practiced 

sequence (Cohen, et al., 1990; Willingham, et al., 1989). Two measurements can be 

used to infer sequence learning: 1) the progressively improved mean RT of each 
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learning block when participants practice the same sequence; and, 2) a slower mean 

RT when the novel sequence is presented. However, the progressively improved RT 

could be caused by general motor improvements, such as increased familiarities with 

the task and improve stimulus-response mapping (Robertson, 2007).  

While the mean RT provides overall information in the performance of each 

block, little of the dynamic changes that take place within each block are revealed. 

Recent studies have suggested that the performance changes within each block play a 

crucial role in understanding sequence learning (Brawn, et al., 2010; Nemeth, 

Janacsek, Király, et al., 2013; Rickard, Cai, Rieth, Jones, & Ard, 2008b; Rieth, et al., 

2010), thus there is a need to examine the progressive changes that occur within each 

learning block.  

In addition to these three measurements, the difference of RT between the 

high and low frequency trials has been used in the SRT task with probabilistic 

sequences or in the ASRT task (Howard, Howard, Japikse, et al., 2004; Janacsek, 

Fiser, & Nemeth, 2012b). This method allows us to assess learning not only after 

several learning blocks, but also within each learning block where RT may 

progressively improve. 

In this dissertation, the RT difference between the novel and practiced 

sequences are used to assess sequence learning when the SOC sequence is used. The 

difference in RT between the high and low frequency trials will be used when a 

probabilistic sequence is used in the SRT task. In addition, the progressive change in 

RT within each learning block will be examined. 
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The Effect of Attentional Load on Motor Sequence Learning 

In addition to manipulating sequence structure, the presence of a secondary 

task appears to reduce the acquisition of explicit knowledge. While Nissen and 

Bullemer (1987) found that a secondary task completely impairs implicit learning, the 

results were not replicated by subsequence studies (Cleeremans & McClelland, 1991; 

Cohen, et al., 1990; Frensch, Buchner, & Lin, 1994; Frensch, Lin, & Buchner, 1998; 

Frensch, Wenke, & Runger, 1999; Keele & Jennings, 1992; Schmidtke & Heuer, 

1997; Schvaneveldt & Gomez, 1998; Shanks & Channon, 2002; Shanks, Rowland, & 

Ranger, 2005). In contrast, results from these studies suggest that a secondary task 

attenuates, but not completely impairs implicit learning. Although several hypotheses, 

including suppression of behavioral expression (Frensch, et al., 1998), disruption of 

short-term memory (Frensch & Miner, 1994), and disruption of temporal organization 

(Stadler, 1995) have been proposed as the mechanism underlying the detrimental 

effect of the secondary task on sequence learning, converging evidence demonstrates 

that sequence learning is reduced due to the attentional load imposed by the 

secondary task (Cohen, et al., 1990; Keele & Jennings, 1992; Nissen & Bullemer, 

1987; Shanks & Channon, 2002; Shanks, et al., 2005; Willingham, Greenberg, & 

Thomas, 1997). Furthermore, it has been reported that this attentional load does not 

affect the learning of a probabilistic sequence (Jimenez, et al., 1996) where explicit 

learning is reduced. Therefore, the attentional load caused by a secondary task 

appears to diminish the effects of explicit learning in the SRT task. 
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Response-Stimulus Interval and Inter-Stimulus Interval Effect 

As an alternative explanation for the detrimental effects of a dual task on 

sequence learning, the effect of response-stimulus interval (RSI) have been proposed. 

In the SRT task, the RSI is known as the delay from a response to the subsequence 

stimulus. Frensch and Miner (1994) suggested that a tone between stimuli lengthens 

the RSI and indeed prevents adjacent stimuli to be presented in short-term memory, 

which affects sequence learning under a secondary task. On the other hand, Stadler 

(1993) has found that inserting random pauses between adjacent stimuli impaired 

sequence learning and in a subsequent study (Stadler, 1995) suggested that a tone-

counting task, similar to a random pause, imposes variability into the RSI and thus 

disorganizes the temporal organization of the sequential stimuli. Interestingly, these 

two views were not supported by other researchers, leading to numerous subsequent 

studies that investigated the effect of RSI on motor sequence learning.  

After the studies of Frensch and Miner (1994) and Stadler (1993, 1995), the 

effect of the response-stimulus interval (RSI) has been widely investigated. To 

examine the RSI effect, three types of manipulation on RSI have been employed. 

The first type of RSI is the constant RSI. A constant RSI (e.g., 200-500ms) 

has been used in the first SRT task (Nissen & Bullemer, 1987) and most subsequent 

studies (Cohen, et al., 1990; Curran & Keele, 1993; Frensch, et al., 1999; Heuer & 

Schmidtke, 1996; Willingham, et al., 1989). In these studies, learning was observed 

by slower RT when random sequential stimuli were presented. The converging 

evidence from these studies suggests that sequence learning in adults appears to be 

robust to the variations of the RSI length. Willingham, Greenberg, and Thomas 
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(1997) extended this conclusion to longer RSI, such as 2000ms. It was found that 

manipulation of RSI influences the behavior expression but not learning. Other 

evidence comes from Destrebecqz and Cleeremans (2003). Their finding confirmed 

that sequence learning measured by RT does not rely on the RSI, even when the RSI 

is set to 0ms. In addition, Destrebecqz and Cleeremans have observed that long RSI 

promotes acquisition of explicit sequence knowledge, while this statement has been 

challenged by numerous recent studies (Norman, Price, & Duff, 2006; Norman, Price, 

Duff, & Mentzoni, 2007; Rünger, 2012; Shanks, et al., 2005; Shanks, Wilkinson, & 

Channon, 2003; Wilkinson & Shanks, 2004). 

The second type of manipulation on RSI is to mix RSIs with different lengths, 

which originates from the hypothesis that variations in RSI would impair the temporal 

organization of sequences (Stadler, 1993, 1995). Evidence supporting this hypothesis 

was provided by one study (Miyawaki, 2006), however, most other studies suggested 

that variations of RSI do not impair sequence learning although they could suppress 

the behavior expression of learning (Shin & Ivry, 2002; Willingham, et al., 1997). 

Furthermore, it has been found that learning was the same regardless of the type of 

RSI (random mixed RSI, constant RSI, and fixed mixed RSI) (Shin, 2008). 

The constant RSI and mixed RSI control the interval between each response 

and its subsequent stimulus. However, the total task duration for each sequence varied 

among individuals. Recent research, especially brain image studies, circumvented this 

issue by using the third type of manipulation - fixed interval stimulus interval (ISI) in 

which the interval between stimuli is fixed (Bischoff-Grethe, Goedert, Willingham, & 

Grafton, 2004; Hodel, Markant, Van Den Heuvell, Cirilli-Raether, & Thomas, 2014; 
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Savion-Lemieux, et al., 2009; Thomas et al., 2004). In these studies, learning was 

observed although the ISI, instead of RSI, was controlled. 

In this dissertation, to avoid the possibility that the expression of learning is 

influenced by the mixed RSI, only the fixed RSI and ISI will be used. 

Motor-based or Perceptual-based Sequence Learning 

Information processing comprises three different stages: stimulus 

identification, response selection, and response execution. Learning on each of these 

stages can contribute to the improvement in RT performance (Sternberg, 1969a, 

1969b). Given that reduced RT in the SRT task may result from one or more of these 

stages, stimulus-based, response-based, and stimulus-response-based hypotheses have 

been proposed as the mechanisms underlying sequence learning. Evidence of 

stimulus-based learning come from perceptual sequence learning that does not 

involve motor actions (Fiser & Aslin, 2002; Fiser, Berkes, Orban, & Lengyel, 2010) 

and observational sequence learning studies (Heyes & Foster, 2002; Song, Howard, & 

Howard, 2008; Vinter & Perruchet, 2002). The stimulus-based hypothesis is also 

supported by studies that investigated transfer of learning between response effectors 

(Cohen, et al., 1990; Deroost, et al., 2006; Verwey & Wright, 2004). 

On the other hand, there is also evidence suggesting that sequence learning is 

motor-based. It has been suggested that participants who did not acquire explicit 

knowledge of sequences failed to transfer learning between different response 

configurations (Willingham, 1999), suggesting that sequence learning is not effector-

independent for all participants. In a subsequence study, Willingham and colleagues 

(2000) manipulated the stimulus-response mapping. Specifically, participants were 
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asked to tap the one on the right of this stimulus when a stimulus was on. After 

training sessions, participant switched back to the normal stimulus-response mapping. 

Results showed that participants exhibited learning when the response sequence did 

not change, while the learning effect was not observed when the stimulus sequence 

was changed. Other evidences supporting motor-based sequence learning comes from 

brain image studies (Bischoff-Grethe, et al., 2004). 

It is most likely that sequence acquisition is not exclusively attributed to either 

stimulus- or response-based learning (Fendrich, Healy, & Bourne, 1991; Kirsch & 

Hoffmann, 2012; Verwey & Wright, 2004). In Verwey and Wright’s study (2004), 

half of participants performed the SRT task with three fingers on one hand, while 

other participants used three fingers on two hands. The hand configuration was 

switched after participants learned a sequence. RT to the practiced sequence was 

faster on the hand configuration used during learning than the switched hand 

configuration, while the RT to the practiced sequence using the non-trained hand 

configuration was faster than the RT to a new sequence using the same non-trained 

hand configuration. These results provide support that both stimulus- and motor-

based learning benefit the acquisition of motor sequences. Furthermore, it has been 

found recently that whether sequence learning is stimulus-based or response-based 

also depends on the sequence structure (Andresen & Marsolek, 2012) or the context 

of stimulus presentation (Kirsch & Hoffmann, 2012) . 

Information Acquired in the SRT Task and Its Generalization 

Learning a sequence has been considered to be the acquisition of the 

underlying structure or abstraction rule (Cleeremans & McClelland, 1991; Reber, 



30 
 

 

1967; Restle, 1976), while others have argued that acquiring segments or chunks is 

sufficient to learning a sequence (Perruchet & Pacton, 2006). In the literature, the 

notion of a chunking mechanism has been widely accepted (Gobet et al., 2001; 

Jimenez, 2008; Koch & Hoffmann, 2000; Sakai, Kitaguchi, & Hikosaka, 2003; 

Servanschreiber & Anderson, 1990). However, a chunking mechanism is contradicted 

by the consolidation of procedural memory discussed in previous sections. 

Particularly, there is no time available for consolidation since chunks are performed 

continuously in a sequence, so that each chunk would interfere with each other. In 

addition, a chunking mechanism fails to explain why a random sequence cannot be 

learned (DeCoster & O'Mally, 2011; Nissen & Bullemer, 1987). At last but not least, 

learning chunks makes it harder for the generalization of sequence learning. For 

example, a 10-trial sequence has 120 three-trial chunks and thus effective 

generalization to other 10-trial sequences requires learning of all 120 chunks.  

Like the learning of chunks, learning the fixed sequence itself is hard to be 

generalized to other sequences since each fixed sequence is unique. In contrast, 

statistical learning, rooted in language science (Saffran, 2003; Saffran, Aslin, & 

Newport, 1996; Saffran, Johnson, Aslin, & Newport, 1999), allows the probabilistic 

transitions between trials to be acquired (Hunt & Aslin, 2001). Indeed, acquisition of 

probabilistic transitions among all trials means the acquisition of the underlying 

structure of the sequence. Evidence has shown that adult participants are able to learn 

the probabilistic structure that is used to produce the sequences (Visser, et al., 2007) 

and the acquired probabilistic structure may have a positive effect on generalization 

(Tenenbaum, Kemp, Griffiths, & Goodman, 2011). In recent years, such structural 
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learning has been found to advance the learning of different tasks with the same 

structure in motor learning studies (Braun, Aertsen, Wolpert, & Mehring, 2009; 

Braun, Mehring, & Wolpert, 2010; Braun, Waldert, Aertsen, Wolpert, & Mehring, 

2010). In addition, structural learning has been extended to sequential decision 

making (Acuna & Schrater, 2010), while little is known if sequence learning in the 

SRT task can be generalized.  

The knowledge gap in sequence learning generalization is due to the 

sequences (i.e., the SOC sequence) used in previous studies. Each sequence is unique, 

making it impossible to create a different sequence with the same structure. In this 

dissertation, the generalization effect between adults and children is investigated. 

Like the probabilistic sequence, the underlying probabilistic structure of SOC 

sequences will be computed and used to produce generalization sequences. If 

sequence generalization is observed, it is predicted that the transitional probability 

underlying the sequence is more likely to be acquired. In contrast, if the unique fixed 

sequence is acquired instead, there will be no generalization effect.  

Error-based Learning: Model-based vs Model-Free 

Learning takes place when the actual outcome differs from the desired 

outcome, resulting in a prediction error. This is known as error-based learning 

(Schultz & Dickinson, 2000). There are two types of prediction errors, sensory- and 

reward-prediction errors, corresponding to two learning strategies, model-based and 

model-free learning (Haith & Krakauer, 2012). There is ample evidence for error-

based learning (i.e., model-based and model-free learning) in motor learning studies, 

including motor adaptation (Bhushan & Shadmehr, 1999; Burge, Ernst, & Banks, 
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2008; Donchin, Francis, & Shadmehr, 2003; Izawa, Rane, Donchin, & Shadmehr, 

2008; Izawa & Shadmehr, 2011; Shadmehr & Mussa-Ivaldi, 1994; Thoroughman & 

Shadmehr, 2000; van Beers, 2012), oculomotor learning (Wong & Shelhamer, 2011), 

and sequence learning (Cleeremans & Dienes, 2008; Cleeremans & McClelland, 

1991; Cleeremans, Servan-Schreiber, & McClelland, 1989; Verstynen, et al., 2012).  

In sequence learning, participants anticipate the next outcome (Schvaneveldt 

& Gomez, 1998; Willingham, et al., 1989), therefore the error is formed as the 

mismatch between the predicted and actual outcomes (Dale, Duran, & Morehead, 

2012; Marcus, et al., 2006), computed using reward or state information (Fermin, 

Yoshida, Ito, Yoshimoto, & Doya, 2010; Glascher, Daw, Dayan, & O'Doherty, 2010). 

Further evidence for the model-free and model-based learning in sequence acquisition 

comes from brain image studies. It has been suggested that model-based learning is 

related to the cerebellum (Miall, Weir, Wolpert, & Stein, 1993; Wolpert, Miall, & 

Kawato, 1998) and the prefrontal lobe (Daw, Niv, & Dayan, 2005) while model-free 

learning is related to the basal ganglia (Daw, et al., 2005; Doya, 1999, 2000; 

Nakahara, et al., 2001). Meanwhile, these brain areas, including the cerebellum, 

prefrontal cortex, and the basal ganglia, are responsive to motor sequence learning 

(Ashe, Lungu, Basford, & Lu, 2006; Doyon, Penhune, & Ungerleider, 2003; 

Willingham, Salidis, & Gabrieli, 2002), suggesting that both model-based and model-

free learning contribute to the acquisition of motor sequences. Furthermore, these two 

learning strategies do not only act simultaneously, but also optimally act together 

with their dominances shifting based upon the learning phase and available feedback 

information (Daw, et al., 2005; Fermin, et al., 2010; Glascher, et al., 2010). 
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It is important to note that error-based learning typically requires an iterative 

update of the parameters of the learning system (Elman, 1990; Thoroughman & 

Shadmehr, 2000). This trial-by-trial error-based process is also known as online 

learning, reflected by a continuous decrease in RT while the SRT task is performing 

(Verstynen, et al., 2012). 

Consolidation in the SRT Task 

As put forth previously in the section ‘stages of motor sequence learning,’ 

consolidation is a critical period in sequence learning, during which fragile memory 

of one newly learned skill can be stabilized to be resistant to interference from other 

memories of competing skills, or performance can be enhanced without additional 

practice after its first acquisition (i.e., offline learning) (Censor, et al., 2012; 

Robertson, Pascual-Leone, & Miall, 2004). Memory stabilization plays an important 

role in motor adaption, while offline learning is more common in motor sequence 

learning. There is considerable evidence supporting that conclusion that offline 

learning of explicit knowledge is sleep-dependent (Brawn, et al., 2010; Fischer, 

Hallschmid, Elsner, & Born, 2002; Robertson, Pascual-Leone, & Press, 2004; 

Walker, et al., 2002; Wilhelm, Metzkow-Meszaros, Knapp, & Born, 2012; Wilhelm, 

et al., 2013). Offline learning of implicit knowledge, however, does not rely on sleep 

and it takes place with a 4- or 12-hour delay after the initial learning in the SRT task 

(Press, Casement, Pascual-Leone, & Robertson, 2005; Robertson, Pascual-Leone, & 

Press, 2004). Thus, one can infer that offline gain that occurs without sleep indicates 

implicit learning. 
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Recent studies have begun to suggest that offline learning cannot be observed 

until after 12 hours elapsed because explicit memory may suppress implicit learning. 

As aforementioned in previous sections, explicit knowledge can be acquired in the 

SRT task (Cleeremans, et al., 1998; Clegg, et al., 1998; Destrebecqz & Cleeremans, 

2001; Jimenez, et al., 1996; Remillard & Clark, 2001; Thomas & Nelson, 2001; 

Weiermann & Meier, 2012a). In addition, Destrebecqz and colleagues (2005) found 

that the prefrontal cortex that supports explicit learning can inhibit the activities of the 

striatum that is related to implicit learning. When the explicit knowledge was 

disturbed by a secondary declarative memory task, offline learning took place with a 

delay of four hours after its initial acquisition (Brown & Robertson, 2007a). Such an 

interference of the declarative knowledge has been found to positively affect implicit 

learning in several studies (Keisler & Shadmehr, 2010b; Nemeth, Janacsek, Polner, & 

Kovacs, 2012). On the other hand, implicit learning can also inhibit the development 

of declarative knowledge (Brown & Robertson, 2007a, 2007b). This reciprocal 

relationship between implicit and explicit learning has been found to depend on the 

dorsal lateral prefrontal cortex (DLPFC) (Cohen & Robertson, 2011; Diekelmann, 

Buchel, Born, & Rasch, 2011) Thus, disruption of the DLPFC with transcranial 

magnetic stimulation (TMS) prevents the interference between two different memory 

tasks (i.e., the implicit and explicit memory task) (Cohen & Robertson, 2011).  

Recently, offline enhancement in performance has been observed after a 5-30-

minutes rest. (Albouy et al., 2006a; Hotermans, Peigneux, de Noordhout, Moonen, & 

Maquet, 2008; Hotermans, Peigneux, Maertens, Moonen, & Maquet, 2006). Such 

offline improvement is known as an offline boost. The relationship between an offline 



35 
 

 

boost and offline learning that occurs hours later remains unclear (Nettersheim, et al., 

2015). It is necessary to point out that the offline learning and offline boost observed 

in the extant literature has been widely considered to occur only after the initial 

acquisition of sequences (i.e., following fast learning). However, it is unclear whether 

offline learning drives the acquisition of sequences in the fast learning stage. This 

dissertation investigates whether offline learning drives the fast acquisition of 

sequences within the first learning session in the SRT task (see the sections ‘the 

development of motor sequence learning in the SRT task’ and ‘knowledge gaps’). 

Interference in the SRT Task 

Besides the interference between the implicit and explicit memory discussed 

in the preceding section, interference also exists between the learning of two different 

tasks that requires the same type of memory. Learning task B with a short delay after 

the acquisition of task A impairs the memory of task A (Brashers-Krug, et al., 1996) 

and surprisingly, limited practice trials on task B (e.g., 20 trials) are sufficient to 

cause this interference (Criscimagna-Hemminger & Shadmehr, 2008). Evidence of 

interference in sequence learning is lacking but one study has demonstrated that 

learning a new sequence interfered with the learning of a pre-learned sequence 

despite when the new sequence was learned (Goedert & Willingham, 2002), while 

sufficient practice on the pre-learned sequence can prevent the interference (Ghilardi, 

Moisello, Silvestri, Ghez, & Krakauer, 2009). However, in both studies, extensive 

practice on the new sequence is required to produce the interference effect, while it is 

unknown whether a short practice of the new sequence, such as one learning block 
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used in the SRT task, can result in the interference effect. This question will be 

addressed in this dissertation. 

The Development of Motor Sequence Learning in the SRT Task 

Sequence learning can occur at any age, for example, learning to ski during 

childhood, learning a musical instrument in middle age, and learning how to speak a 

second language at age 60. However, since this dissertation investigates the 

development of motor sequence learning between children and adults, the following 

discussion will focus on the extant literature of sequence learning in children, but not 

in the aging population. 

Compared to the adult literature (i.e., section 2 to section 4 in this chapter), 

there is a paucity of studies that investigated motor sequence learning in the SRT task 

in children. While the results from early studies on the age effect in sequence learning 

in the SRT task remain equivocal, converging evidence from recent research has 

demonstrated that the development of motor sequence learning is age-related (Adi‐

Japha, et al., 2014; Dorfberger, et al., 2007; Janacsek, Fiser, & Nemeth, 2012a; 

Meulemans, et al., 1998; Nemeth, Janacsek, & Fiser, 2013b; Savion-Lemieux, et al., 

2009; Thomas, et al., 2004; Thomas & Nelson, 2001; Weiermann & Meier, 2012b; 

Wilhelm, et al., 2013). 

An early hypothesis suggested that implicit learning was age-independent. 

Supporting evidence for this hypothesis came from an implicit drawing task (Vinter 

& Perruchet, 2000, 2002), an oculomotor task (Karatekin, Marcus, & White, 2007), 

and a hidden covariance detection task. The same age-independent result also were 

found in the SRT task (Meulemans, et al., 1998; Weiermann & Meier, 2012a), 
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suggesting that motor sequence learning in the SRT task does not depend on age. 

However, subsequent studies have shown that adults exhibited greater learning than 

children (Savion-Lemieux, et al., 2009; Thomas, et al., 2004; Thomas & Nelson, 

2001). Hodel, et al., (2014) suggesting that these differences may result from the 

variations in the SRT task used in previous studies. For example, Thomas and Nelson 

(2001), Thomas, et al., (2004) and Savion-Lemieus, et al., (2009) used fixed inter-

stimulus-intervals (ISI) that could lead to a relative shorter ISI in children compared 

to adults, while others (Meulemans, et al., 1998; Weiermann & Meier, 2012a) used 

fixed response-stimulus-intervals (RSI) in children and adults, which produced self-

paced ISIs in each individual participant. In their experiment, Hodel and colleagues 

(2014) found that children exhibited greater learning when they performed the self-

paced SRT task compared to the SRT task with fixed ISIs, a result that could explain 

the age effect on sequence learning in the study of Thomas, et al., (2004). 

Although age-independent motor sequence learning has been demonstrated in 

the literature, an increasing amount of evidence suggests that the ability to learn 

motor sequences develops with age. First, although children and adults exhibited a 

comparable level of learning as revealed by RT, children have been found to acquire 

less explicit knowledge of the sequences (Meulemans, et al., 1998; Weiermann & 

Meier, 2012a). Given that adults exhibited better explicit learning, superior implicit 

learning in children is required to achieve the same level of learning in adults. Recent 

studies have confirmed this hypothesis, demonstrating the superiority of children in 

acquiring probabilistic sequences that require greater implicit learning (Janacsek, et 

al., 2012b; Nemeth, Janacsek, & Fiser, 2013a). Second, given greater implicit 
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learning and an immature prefrontal cortex (Lenroot & Giedd, 2006) in children that 

may reduce the interference between implicit and declarative memory, memory 

consolidation (see the section ‘consolidation in the SRT task’) is likely to occur faster 

in children compared to adults. It has been found that an interval of 15 minutes is 

sufficient for children to stabilize (at least part of) the memory of a newly acquired 

skill, while it takes more than 2 hours for memory to be stable in adults (Adi‐Japha, 

et al., 2014). Indeed, the faster memory stabilization process allows the newly 

acquired memory become resistant to the interference from a competing motor skill in 

children (Adi ‐ Japha, et al., 2014; Dorfberger, et al., 2007). Last, children 

outperform the adults’ capacity in offline learning. It has been found that children 

exhibited greater performance in explicit sequence knowledge with sleep after they 

performed the SRT task, suggesting greater offline gains were produced during the 

sleep period (Wilhelm, et al., 2013).  

The literature discussed in this section provides evidence of the age-related 

development of motor sequence learning in the SRT task, however, there are several 

knowledge gaps that need to be investigated and answered to better understand the 

development of motor sequence learning. These knowledge gaps will be discussed in 

the next section and will be addressed in this dissertation. 

Knowledge Gaps 

Knowledge Gap 1:  Can sequence learning take place in the foot stepping SRT 

task? 

Learning a motor sequence in the SRT task has been observed in a finger 

tapping, eye moving, or arm reaching task, while it is unclear if such learning can be 
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extended to an SRT task that requires postural control, such as a foot stepping task 

that better approximates daily activities. The majority of studies in the dissertation 

(except study IV in chapter 6) extended the classic finger-pressing SRT task to a foot 

stepping SRT task. 

Knowledge Gap 2:  Is sequence learning in foot stepping SRT task age-

related?  

Children and adults exhibit a comparable level of learning in the classic SRT 

task that involves finger tapping. Since the postural control introduced in the foot 

stepping SRT task offers a challenge that may be a rate limiter to performance and 

perhaps to learning (Thelen, 1989; Thelen, et al., 1989) in children, it is unclear 

whether learning of the foot stepping sequence is age-related. The majority of studies 

in the dissertation (except study IV in chapter 6) extended the classic finger-pressing 

SRT task to a foot stepping SRT task. 

Knowledge Gap 3:  Is the learning process underlying fast sequence acquisition 

age-related? 

It is well documented that adults use the online trial-by-trial learning to 

acquire motor sequences, while it remains unclear if children use the same online 

learning strategy. In addition, limited acquisition of declarative sequence knowledge 

in children may induce faster offline learning, which has not been examined to date. 

Study I addressed this knowledge gap. 

Knowledge Gap 4:  Are the age-related processes are active learning 

mechanisms that connect with procedural and declarative memory, artifacts of 

fatigue/reactive inhibition, or by-products of task constraints?  
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A dominant explanation considers the online and offline changes in RT as 

performance-based. That is to say, rather than being a learning-based mechanism, the 

online and offline changes in RT may result from the emergence of fatigue or reactive 

inhibition (Brawn, et al., 2010; Rickard, et al., 2008a). Although previous studies that 

claimed the effect of fatigue or reactive inhibition focused on explicit sequence 

learning, this effect can also be postulated as a dominant source of online and offline 

processes in implicit sequence learning (Rieth, et al., 2010). In addition, the age-

related differences may also be a by-product of task constraints (i.e., task pacing 

conditions). Alternatively, the online and offline processes may connect with 

declarative and procedural memory systems as children are less likely to acquire 

declarative knowledge of sequences compared to adults (Meulemans, et al., 1998). 

However, to date, it remains unclear about the mechanisms underlying the online and 

offline processes. Studies II to IV addressed this knowledge gap. 

Knowledge Gap 5:  Are there age effects on the generalization of motor sequence 

learning? 

Fast learning seems to facilitate the generalization of sequence learning, 

which raises the possibility of age-related differences in the generalization. However, 

to our knowledge, the age-effect on the generalization of motor sequence learning has 

not been investigated. Studies V and VI addressed this knowledge gap.  
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Chapter 3: *(Study I) Children and adults both learn motor 
sequences quickly, but do so differently 

Abstract 

Both children and adults can learn motor sequences in one learning session, 

yet little is known about potential age-related processes that underlie this sequence 

acquisition. Here, we examined the learning processes of a foot-stepping serial 

reaction time task in 6- and 10-year-old children and adults. We observed that a 

motor sequence was acquired through online learning, as revealed by progressively 

improved reaction time (RT) while the task is performed in a continuous manner, and 

offline learning, as revealed by improved RT after 3-minute rests. Remarkably, 

offline and online learning occurred differently between children and adults: Learning 

in 6-year-olds relied primarily on offline learning while learning in 10-year-olds and 

adults relied on both processes equally. We subsequently found that offline learning 

after a rest was related to the performance variability before the rest, suggesting that 

the offline learning may originate from an exploration process as the sequence is 

learned. Our results suggest that motor sequence learning during a single learning 

session is driven by multiple age-related processes. 

Introduction 

Throughout our day, we effortlessly produce sequences of actions from 

getting out of bed in the morning, tying our shoes, to pouring a cup of coffee and 

drinking it. While these motor sequences comprise much of what we do in our 

activities of daily living, their acquisition is not altogether well understood. For 

                                                 
* This manuscript was submitted for publication and is currently under review. 
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example, using the serial reaction time (SRT) task (Nissen & Bullemer, 1987; 

Robertson, 2007) in the laboratory, adults (Cleeremans, et al., 1998; Seger, 1994; 

Stadler & Frensch, 1998) and children as young as six years of age (Meulemans, et 

al., 1998; Thomas & Nelson, 2001; Weiermann & Meier, 2012b) learn motor 

sequences to a comparable level (Meulemans, et al., 1998). This sequence acquisition 

develops quickly (within a single learning session), as revealed by considerable 

improvements within that session as well as a reversal of improvement if the 

sequence changes. However, little is known about the age-related processes 

underlying the sequence acquisition that takes place so quickly over the course of one 

learning session. The purpose of this study, therefore, was to examine whether the 

same or different processes drive motor sequence learning in children and adults.  

Many have suggested that learning motor sequences in adults is driven by an 

incremental so-called “online” process through iterative computations (Bornstein & 

Daw, 2012, 2013; Cleeremans & McClelland, 1991; Verstynen, et al., 2012). Online 

learning allows performance to improve quickly within a single learning session (i.e., 

over a short continuous bout of practice) (Censor, et al., 2012; Dayan & Cohen, 

2011). Yet, it is not clear whether children also learn a motor sequence in an ‘online’ 

fashion. Since online learning involves using the previous trial’s information to 

update performance on the next trial, this iterative process may impose demanding 

computational requirements for children. As children are able to learn motor 

sequences at a comparable level to adults (Karatekin, et al., 2007; Meulemans, et al., 

1998), we speculate that in addition to online learning, another process may 

contribute to the children’s acquisition of motor sequences.  
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We hypothesize that offline learning may be one possible process that 

children employ. Offline learning is usually referred to as a process that leads to the 

improvement in performance without practice (Robertson, Pascual-Leone, & Miall, 

2004). Specifically in a sequence learning task, performance is further strengthened, 

by an early offline boost (Hotermans, et al., 2006; Schmitz et al., 2009; Zhang et al., 

2011) 5-30 minutes after the acquisition of motor sequences or via a later occurring 

(hours later) memory consolidation (Albouy et al., 2006b; Brown & Robertson, 

2007a; Robertson, Pascual-Leone, & Press, 2004). Thus, offline learning is typically 

considered to appear only after the motor sequence is learned. To date, it is unknown 

whether offline learning may drive the acquisition of motor sequences over an initial 

single learning session.  

An additional aspect of learning that underlies sequence acquisition is the 

variability in performance. Recently, it has been reported that variability promotes the 

learning of motor sequences (Verstynen, et al., 2012). Specifically, variability reflects 

the exploration of the context in which the task is performed so as to discover 

unknown knowledge about the context (e.g., stimulus sequence). Given that children 

usually exhibit greater variability/exploration in performance compared to adults 

(Goldfield, Kay, & Warren, 1993; Piek, 2002b; Thelen, Ulrich, & Wolff, 1991), we 

examined whether variability of RT is correlated with motor sequence learning; either 

for online or offline learning.  

Here, we employed the SRT task to examine the concurrent effect of online 

and offline learning, as well as their relationship to exploration, to acquire motor 

sequences in adults and children. The SRT task consisted of 6 learning blocks, in 
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which 6- and 10-year-old children and adults responded to a 100-trial sequence of 

visual stimuli that followed either a fixed order A (sequence A in blocks 1-4 and 6) or 

a fixed order B (sequence B in block 5) (Robertson, 2007). We measured online 

learning as the change in performance (i.e., reaction time) within each learning block. 

After each block, participants took a three-minute break. The change in performance 

right before and after each rest was computed to infer offline learning. We found that 

the fixed motor sequence A was acquired through both online and offline learning. 

Indeed the offline learning we observed may be an exploration process as offline 

learning after a rest was positively correlated to the variability in reaction time 

preceding the rest. Significantly, our results reveal that offline and online learning 

processes differ with age. Adults and 10-year-olds acquired the sequence through 

online and offline learning equally, while 6-year-olds’ learning was dominated by 

offline learning. 

Materials and Methods 

Ethics statement 

This study was approved by the Institutional Review Board at the University 

of Maryland, College Park and it was performed in accordance with the approved 

guidelines. Signed written informed consent forms from the adult participants/parents 

and assent forms from child participants were received prior to their participation. 

Each participant received a $15 monetary compensation upon the completion of the 

experiment. Child participants also received a small toy prize for completing the 

Movement Assessment Battery for Children 2 (MABC2) (Henderson, Sugden, & 

Barnett, 2007). 
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Participants 

Ten 6-year-old children (6.65 ± 0.83 years, male = 6) and thirteen 10-year-old 

children (10.5 ± 0.68 years, male = 5) were recruited for this study. Prior to the 

experiment, children were screened by the MABC2 to determine if movement 

difficulties existed. One 10-year-old male child was excluded because he scored 

below the 5th percentile on the MABC2. The remaining 22 children scored above the 

25th percentile and so were included in this study. Ten young non-musician adults 

(20.47 ± 0.9 years, male = 5) were recruited from the University of Maryland, 

College Park. For one adult participant, data from the last block (i.e., block 6) were 

excluded from the data analysis due to unexpected equipment problems when he 

performed the task. Prior to participation, adults completed a neurological health 

questionnaire. No participants reported neurological health issues. In addition, 

participants were screened for their experience with the video game, Dance Dance 

Revolution (DDR) since the SRT task we employed was similar to the DDR video 

game. All participants had little DDR experience (i.e., equal or less than 2 hour 

experience) and no participants had played the DDR game more than twice in the past 

year. 

Experimental task 

Participants stood on a home position (two 18cm x 11cm felt mats) and 

performed a whack-a-mole type game with sequential foot stepping. Six stepping 

targets (six 12cm x 12cm felt mats) were positioned to the front, back, and side of the 

home position (see Figure 3.1). The distances between the targets and home position 

were marked at 60% of the largest step that the participants were able to accomplish 
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in each direction. This step length was chosen for comfortableness that required 

appropriate but not a maximum reach for each step. Six visual cues (i.e., six holes) 

were presented on the monitor positioned in front of the participants. These visual 

cues were spatially compatible with the targets on the floor. One mole successively 

popped up from one of the six holes to represent the sequence order (see Figure 3.1). 

A laptop computer with a customized Labview (National Instruments, Austin, TX, 

USA) program controlled the sequence. A Vicon motion capture system (Oxford 

Metrics, Oxford, UK) recorded the real-time three-dimensional positions of reflective 

markers attached to the participants’ toe, heel, and the 5th metatarsal on both feet with 

a sampling frequency of 200Hz.  

 

Figure 3.1: Experimental setup and protocol.  
Ten 6-year-old children, thirteen 10-year-old children (twelve were included for data analyses), and 10 
adults performed a foot stepping SRT task. Participants responded to each visual stimulus as quickly 
and accurately as possible by stepping to the spatially-matched target on the floor. The stepping 
performance was measured by reaction time, defined as the elapsed time from stimulus onset and foot 
movement onset. In blocks 1-4, the visual stimuli followed sequence A (10 repetitions of 
1423564215). In block 5, the stimulus followed sequence B (ten repetitions of 3615425214). Each 
number was associated with one spatially located square, but the numbers were not displayed to 
participants.  Both sequences consist of 100 trials and each stimulus appeared 1500ms after the 
preceding stimulus. After each learning block, participants had a 3-minute rest. Participants were not 
told that the stimuli followed a sequence until they completed all 6 blocks. This figure was drawn by 
Yue Du. 
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Procedures 

Participants stood on the home position before starting each experimental 

block (Figure 3.1). They were instructed to step to the appropriate target on the floor 

as quickly and accurately as possible when the mole appeared in the corresponding 

location on the screen. After each step, they were required to step back to the home 

position for the next stimulus, appearing 1500ms after the previous stimulus. An 

accurate hit on the target mat or home position was encouraged, but not strictly 

required because, during the continuous stepping movement, participants, especially 

children, would shift their positions slightly. However, stepping in the right direction 

was required. Before the experimental trial blocks began, participants practiced with a 

random sequence of 36 trials to become familiar with the task. Then, they performed 

six blocks of 100 foot stepping movements. For blocks 1-4, the stimuli followed 

sequence A (ten repetition of the sequence 1423564215). Each number was 

associated with one spatially located square, as shown in Fig 1, but the numbers were 

not displayed to participants nor described to them as such. A novel sequence 

(sequence B), ten repetitions of the sequence 3615425214, was provided for block 5 

followed by block 6 when participants again performed sequence A. After each block, 

participants took a short break lasting about three minutes. Until the completion of all 

6 blocks, participants were not informed that the visual stimuli followed any order. 

Upon completion of all six blocks, participants were asked whether they noticed there 

was a sequence to the presentation of the visual stimuli. Subsequently, participants 

were given 4 different 10-element long sequences and were asked to choose the one 

they thought had appeared in their task (i.e., recognition task I). Participants were 
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then asked to complete a recognition task II that consisted of 4 trials. In each trial, 

they were given four sequence segments and were asked to choose the ones they 

thought had appeared in the task. Finally, participants were asked to recall and write 

down the sequence. These were done to investigate whether participants had 

declarative knowledge of the sequence they had been practicing.  

Data analysis 

A customized MATLABTM (MathWorks, Naticks, MA, USA) script was used 

to derive the reaction time (RT), a measure of the temporal difference between the 

stimulus onset and the movement initiation. The time series of the three-dimension 

trajectory of markers on the toes, heels, and the fifth metatarsals were filtered by an 

eighth-order Butterworth filter with a cutoff frequency of 10Hz. We marked the 

movement onset as the first sample when the foot reached 10% of the maximum 

height of movement. Steps were considered an error and discarded if one of the 

following two conditions occurred: 1) stepping to a wrong target; or, 2) stepping to 

the correct target but from other targets and not from the home position as required. A 

trial’s RT also was excluded if its absolute magnitude was out of the range from (µ – 

2.5×δ) to (µ + 2.5×δ), where µ and δ are the mean and standard deviation of the raw 

RT for each block (Ratcliff, 1993). The exclusion criterion reduced the effect of 

extreme outliers on variability calculation (see below). We chose this specific range 

rather than other smaller ones to preserve as much of the raw RT data in our data 

analysis as possible. These criteria resulted in excluding 1.98% ± 0.42% (mean ± 

standard error) of the RTs in adults, 2.28% ± 0.29% in 10-year-olds, and 2.75% ± 

0.36% of the RTs in 6-year-olds in each block.  
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The mean RT for each block (BMRT) was employed to assess the summative 

performance throughout the entire task. The magnitude of learning was measured by 

the BMRT difference between blocks 4 and the novel block 5 (Robertson, 2007). We 

chose the mean rather than median of RT as: 1) the sample median may provide a 

biased estimation of RT (Miller, 1988); and 2) after excluding outliers, the mean RT 

represented the performance as effectively as the median of raw RT, which was 

revealed by a significantly high correlation (r = 0.98, p<0.00001 for all three age 

groups). 

Exploration during learning is usually equivalent to variability. To examine 

the RT variability, we used a linear regression to remove extraneous changes in RT 

caused by time and location effects from the original RT observations. The variability 

of these extraneous RT changes would result from the fluctuations with time and 

between stimulus locations. The residual of the linear regression, referred to as 

refined RT, was of interest and its variability was computed to reflect exploration in 

learning. Particularly in the regression, we included the first-, second-, and third-order 

effects of time, location, and their interactions as explanatory factors. 

To assess offline and online learning, RMRT – the mean magnitude of RT for 

each repetition of 10-trial responses (the sequence was 10-elements long) was used. 

According to the definition of offline learning, the magnitude of offline gain was 

computed as the discrepancy between the last RMRT in one block and the first 

RMRT in the succeeding block. The 10 RMRTs within each block were fitted using a 

linear regression whose slope characterized the online learning rate. The magnitude of 

online learning was then computed by multiplying the online learning rate by 10 (i.e., 
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10 RMRT used to fit the linear regression). We chose the linear regression on the 10 

RMRTs rather than the original 100 individual RT within each block, because our 

preliminary analysis suggested that the 100 individual RTs were substantially affected 

by stimulus locations and its interaction with time. This effect could greatly influence 

the slope estimation in the linear regression analysis. However, grouping sets of 10-

trial responses together eliminated the location effect and provided a robust 

estimation. 

To determine the RT changes during offline and online periods when 

participants were learning the motor sequence through blocks 1 to 4, we averaged 

offline and online RT changes before block 5 in which a novel sequence B was 

introduced. We used average rather than total RT change since there were four blocks 

(i.e., blocks 1 to 4) where online learning could take place and only three breaks (i.e., 

between blocks 1 and 2, blocks 2 and 3, and blocks 3 and 4) where offline learning 

could occur before a novel sequence B was given. When comparing the percentage of 

offline (i.e., offline/(offline + online)) and online learning (i.e., online/(offline + 

online)), negative magnitudes of offline or online learning were treated as zero as 

they did not contribute to the improvement in RT. 

A controversy regarding offline learning is whether it is a byproduct of the 

reactive inhibition or fatigue effect (Brawn, et al., 2010; Rickard, et al., 2008a) as 

fatigue may deteriorate performance before a rest, which leads to larger offline 

learning. In order to examine the likelihood of a fatigue effect, we computed the mean 

RT for the first 50 trials (i.e., the first half) and second 50 trials (i.e., the second half) 

in each block to examine whether learning was inferior in the second 50 trials 
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(Nemeth, Janacsek, Kiraly, et al., 2013). As well, we computed online learning for 

both the first and last trials in each block to examine whether there were greater RT 

declines at the end of each block. Finally, corrected offline learning was calculated by 

removing the RT decrement within the preceding block from the total offline gain. 

To determine the amount of declarative knowledge of sequence A, we counted 

the number of participants who chose the correct sequence in the recognition task I. 

We computed the recognition score in the recognition task II as the number of trials 

(normalized by 4) that participants correctly chose the sequence segments. To 

calculate the recall score, we counted the number of correct 2-, 3-, and 4-element 

chunks in the sequence participants wrote down. These numbers were normalized by 

the total correct 2-, 3-, and 4-element chunks in sequence A. 

Data analysis 

We employed a two-way mixed effect ANOVA to examine the effects of 

learning block and age on BMRT and variability. In these analyses, the age group was 

treated as a between-subject factor (6yrs, 10yrs, and adults) and block (blocks 1 to 6) 

was considered as a within-subject factor. Contrast analyses were used to assess the 

magnitude of learning as the performance changes from block 4 to 5. Separate one-

way ANOVAs were used to examine the age effect on the (corrected) offline/online 

changes in RT. For all ANOVA tests, post hoc tests employed a Tukey-Kramer 

correction. The correlation between the average offline/online learning and the 

average variability of RT ‘noise’ across the first 4 blocks (i.e., learning on sequence 

A) was examined using a partial correlation analysis with the age effect controlled. 
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Non-parametric ANOVAs (i.e., Kruskal-Wallis test) were used to examine the age 

effect on recognition and recall scores.   

A three-way mixed effect ANOVA was employed to examine the effects of 

learning block, age, and phase of block (i.e., the first and last 50 trials) on mean RT 

with block and phase of block as within-subject factors. A two-way mixed effect 

ANOVA was used to investigate the effect of block and block phase on online 

learning in six-year-olds because only six-year-olds exhibited increased RT within 

blocks (see results). In this analysis, both block and block phase were treated as 

within-block factors. For all mixed effect ANOVA, the co-variance matrix was 

determined by the Akaike’s Information Criterion (AIC). All effects were tested at a 

significance level p = 0.05. 

Results 

Children and adults learn the motor sequence at a comparable level 

Performance was measured by the mean reaction time of 100 steps in each 

block (BMRT) and the magnitude of learning was assessed by the BMRT difference 

between sequence A in block 4 and the novel sequence B in block 5(Robertson, 2007) 

(see Methods). Our analyses revealed (repeated measures 3 groups ×  6 blocks 

ANOVA) significant effects for learning blocks (F5,29 = 16.01, p<0.0001) and age 

(F2,29 = 22.18, p<0.0001) but no interaction on the BMRT (Figure 3.2A). Post hoc 

analyses with a Tukey-Kramer correction found that 10-year-olds had the same 

BMRT as adults (p=0.062). Both groups were faster than the 6-year-olds (p<0.0005), 

whereas all three groups decreased their BMRT (i.e., faster reaction time) from block 
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1 to 4 (p<0.0001) and the BMRT became longer when sequence B was introduced in 

block 5 (p<0.0001). These results indicate that all groups, regardless of age, learned 

sequence A. No differences were found between blocks 1 and 5, indicating that the 

improvement in RT from block 1 to 4 was due to sequence learning, and not motor 

improvements. The same BMRT before (block 4) and after (block 6) sequence B 

suggests that all age groups preserved the learning of sequence A even after 

practicing sequence B. Most importantly, contrast analyses found that the increase in 

BMRT from block 4 to 5 did not differ among the age groups (all p > 0.47), 

indicating that the magnitude of learning was consistent for 6-year-olds, 10-year-olds, 

and young adults (Figure 3.2B). 

 

Figure 3.2. No age effect on sequence learning as measured by the mean RT.  
(A) The mean reaction time for each block (BMRT). The gray area represents the block in which the 
stimuli follows a novel sequence. The BMRT depended on learning blocks and age. Adults and 10-
year-olds were faster than the 6-year-olds, while there was a trend that 10-year-olds had the same 
BMRT as adults. All three groups learned sequence A, as revealed by decreased BMRT from block 1 
to 4 and increased BMRT from block 4 to 5. Such learning did not result from motor improvements as 
the BMRTs in blocks 1 and 5 were the same; (B) The difference in BMRT between blocks 4 (primary 
sequence A) and 5 (novel sequence B), representing the absolute magnitude of learning. All three 
groups learned sequence A to a comparable level. Error bars represent standard errors of the mean 
performance within each block. RT = reaction time. 
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Online and offline learning: Two age-related processes drive motor 

sequence learning 

Visually, it is clear that the three groups demonstrated different RT patterns 

(Figure 3.3A). The adults’ RTs gradually decreased within each block, while there 

were offline boosts in RT in 6-year-olds. Ten-year-olds’ RTs exhibited a mixed 

pattern similar, in part, to the adults and the 6-year-olds.  

Figure 3.3B displayed the total amount of offline (between blocks) and online 

(within blocks) learning that took place when participants learned sequence A 

through blocks 1 to 4 (see Methods). Both offline (one-way ANOVA, F2, 29 = 20.07, p 

< 0.0001) and online (one-way ANOVA, F2, 29 = 7.97, p < 0.005) changes in RT were 

affected by age. Specifically, 6-year-olds produced greater offline RT changes than 

10-year-olds (p<0.0001) and adults (p < 0.0001). In contrast, 10-year-olds (p<0.01) 

and adults (p < 0.005) exhibited greater online RT changes than 6-year-olds whose 

RT deteriorated ‘online’ (less than zero; p < 0.0005).  

The deteriorated online learning in 6-year-olds is possibly due to the small 

online RT improvements in some blocks that were cancelled out by large online RT 

decrements in other blocks when we averaged the RT changes across blocks 1 to 4. 

Thus, we decomposed these changes in RT into improvements and declines that took 

place online or offline (Figure 3.3C). There was a significant effect of age on offline 

(one-way ANOVA, F2, 29 = 18.35, p < 0.0001) but not online (one-way ANOVA, F2, 

29 = 1.16, p = 0.33) improvements in RT. Specifically, 6-year-olds produced a greater 

offline improvement than 10-year-olds (p<0.0001) and adults (p < 0.0001). There was 

not a significant effect of age on offline declines in RT (but F2, 29 = 2.72, p = 0.08), 
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while the online declines in RT were affected by age (F2, 29 = 13.32, p < 0.0001). Six-

year-olds exhibited greater declines in RT compared to 10-year-olds (p < 0.005) and 

adults (p < 0.0001). 

 We further compared the percentage of offline and online learning as a 

proportion of the improvement of RT as shown in Fig 3C. The contribution 

percentage of offline learning was affected by age (one-way ANOVA, F2, 29 = 6.96, p 

< 0.005) (Figure 3.3D). Specifically, offline learning contributed more to sequence 

learning in 6-year-olds than 10-year-olds (p < 0.05) and adults (p < 0.005). Indeed, 

the offline learning contributed more than 50% (meanoffline = 87.64%) to motor 

sequence learning in 6-year-olds (one-tailed t-test, p<0.0005), while offline and 

online improvements contributed equally in 10-year-olds and (meanoffline = 55.44%) 

and in adults (meanoffline = 41.65%). The percentage of online learning equals one 

minus the percentage of offline learning, thus the result of online learning is identical 

to that of offline learning reported above. 

RT variability is correlated with offline learning 

To quantify the variability associated with learning, we removed extraneous 

changes in RT caused by time and location effects through a linear regression (see 

Methods). The refined RT exemplar (i.e., RT after removing extraneous time and 

location effects) for one individual in each age group is displayed in Fig 4. It was 

found that the variability of the refined RT depended on the interaction between age 

group and block (repeated measures 3 group × 6 blocks ANOVA, F10, 29 = 2.8, p < 

0.05, Figure 3.4). Tukey-Kramer corrected post hoc analyses revealed that six-year-

olds exhibited larger variability in block 2 than 10-year-olds (p < 0.05) and adults (p 
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< 0.005) and the difference between six-year-olds and adults in block 1 approached 

significance (p=0.059). There were no differences in variability among groups from 

block 3 to 6. Unlike the mean magnitude of RT, there were no differences in RT 

variability between blocks 4 and 5 in all age groups. 

 

Figure 3.3: Offline and online learning differed between children and adults.  
(A) Changes in RT within and between blocks. The solid line represents the trend as RT progressively 
changes, estimated by a local weighted regression. Shaded areas are the standard errors of the trend. 
Circles represent RMRTs (i.e. the mean RT of one repetition of stimulus sequence). The adults’ RTs 
progressively decreased within each block, while there were offline boosts in RT in 6-year-olds; (B) 
Average online and offline RT changes when learning sequence A from blocks 1 to 4. Note that 
positive values imply decreases in RT (i.e., RT becomes faster). Both offline and online changes in RT 
relied on age. Specifically, the offline change was greater in 6-year-olds than 10-year-olds and adults. 
The online change was greater in 10-year-olds  and adults than 6-year-olds whose RT deteriorated 
‘online’; (C) Offline but not online improvements in RT was affected by age. Six-year-olds produced a 
greater offline improvement than 10-year-olds and adults. Online but not offline declines in RT were 
affected by age. Six-year-olds exhibited greater declines in RT compared to 10-year-olds and adults; 
and, (D) The percentage of RT improvement arising from offline and online learning. Offline learning 
mediated sequence learning differently at different ages. Six-year-olds relied more on offline learning 
than 10-year-olds and adults. Specifically, 87.64% (for 6-year-olds), 55.44% (for 10-year-olds) and 
41.65% (for adults) of improved RT is driven by offline learning. The percentage of online learning 
equals 1 minus the percentage of offline learning. Error bars represent standard errors. 
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Figure 3.4: RT variability between age groups.  
(left) An individual example of the refined RT in each age group (i.e., RT after the time and location 
effects were removed). (right) Six-year-olds showed greater variability in RT ‘noise’ at early phase of 
the task, while the variability reduced to the same level as 10-year-olds and adults as learning 
progressed. Error bars represent standard errors. 
 

A partial correlation analysis between the mean online RT change and the 

mean variability across the first 4 blocks was performed, yielding a partial correlation 

coefficient of -0.28 (p = 0.12, power = 0.34, see discussion) (Figure 3.5B). After 

removing two data points with the largest variability (i.e., outliers identified by the 

studentized residual with a threshold of 3) that may affect this relationship, the partial 

correlation remains nonsignificant (coefficient = -0.02, p =0.91, power = 0.05). 

However, the offline learning was significantly correlated with RT variability 

(coefficient = 0.55, p < 0.005, power = 0.91) (Figure 3.5A). This significant positive 

correlation remains when those two data points were removed (coefficient = 0.53, p < 

0.005, power = 0.87). These results suggest that greater offline learning was 

associated with larger variability in RT. 
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Is offline learning caused by fatigue? 

A debate on offline learning is whether the offline improvement in RT results 

from fatigue (Brawn, et al., 2010; Rickard, et al., 2008a), as fatigue may deteriorate 

performance with practice, subsequently and misleadingly exaggerating the 

magnitude of offline learning. As shown in Figure 3.4A, six-year-olds’ RT became 

slower within each block. To exclude fatigue as a potential cause of offline learning 

observed in 6-year-olds, we further analyzed the RT changes within each individual 

block. Figure 3.6A illustrates 6-year-olds’ online RT changes in the first 50 and last 

50 trials of each block (i.e., two phases of block). A two-way (2 phases × 6 blocks) 

Figure 3.5: RT variability is correlated to offline learning.  
(A) The partial correlation between offline learning and RT variability with age effect controlled. 
Notably, offline learning was positively correlated to RT variability. After removing two data points 
with the largest variability that may exemplify such a correlation, the result remained (insert); (B) 
Online learning was not significantly correlated with RT variability. The same result remained after 
two data points that may drive the relationship were removed.1 s.d. CI = 1 standard deviation 
confidence interval. 
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repeated measures ANOVA revealed that there were significant effects for block 

(F5,45 = 3.72, p<0.01) and block phase (F1,9 = 10.93, p<0.01) where more RT was 

reduced in the first 50 trials than the last 50 trials. Notably, online RT reduction in the 

first 50 trials was significantly different from zero (mean = 0.111s, p <0.005), while 

there was no significant RT changes in the last 50 trials (mean = 0.007s, p = 0.8). 

This result is contrary to the hypothesis that fatigue induces deterioration in 

performance when more practice was performed within blocks. 

 

 

 

 

 

Given that the RT of the last 50 trials in each block did not deteriorate, it 

could be hypothesized that the RT plateaued due to a ceiling effect for fatigue. To test 

Figure 3.6: Offline learning in six-year-olds was unlikely to be caused by fatigue.  
(A) Online RT changes of the first and second halves in each block in 6-year-olds. RT deteriorated in 
only first halves. However, RT remained constant in the second halves; (B) Learning measured in both 
the first and second halves. Learning magnitudes were comparable between two halves across all three 
groups; and (C) Corrected offline learning after removing the RT decrement within the preceding 
block from the total offline gain. Learning in six-year-olds was dominantly driven by offline 
improvement in RT. Error bars represent standard errors. 
 



60 
 

 

this hypothesis, a three-way (3 groups × 6 blocks × 2 phases) repeated measures 

ANOVA was performed to examine whether mean RT of the last 50 trials improved 

across blocks. The analysis revealed a significant effect of group (F2, 29 = 35.96, 

p<0.0001) and the interaction effect between block and block phase (F5, 144 = 2.66, 

p<0.05). Tukey-Kramer corrected post hoc analyses found that adults had fastest RT, 

followed by 10-year-olds (p<0.05) and then 6-year-olds (p<0.0001) regardless of 

block and the phase of block. All groups decreased RT from block 1 to 4 (p < 0.005) 

and increased RT from block 4 to 5 (p < 0.0001) regardless of the whether it was the 

first or last 50 trials of the block. With regard to the amount of learning measured by 

changes in mean RT from block 4 to block 5, contrast analyses found no differences 

between groups in both the first and last 50 trials (all p > 0.29) and no differences 

were found between the first and last 50 trials in each group (all p > 0.26) (Figure 

3.6B). These results show that the magnitude of learning measured in the last 50 trials 

of the blocks were comparable to that in the first 50 trials of the blocks in all groups. 

Most importantly, 6-year-olds, showed the same magnitude of learning as 10-year-

olds and adults in both block phases. These results suggest that the non-deteriorated 

RT across the last 50 trials in each block did not result from the ceiling effect of 

fatigue. 

Finally, we computed corrected offline learning by removing the RT 

decrement within the preceding block from the total offline gain. The correction on 

offline learning did not change the age-related difference in offline learning. 

Specifically, the contribution percentage of corrected offline learning was 

significantly affected by age (F2, 29 = 5.04, p < 0.05) (Figure 3.6C). Offline learning 
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contributed more to sequence learning in 6-year-olds than adults (p < 0.05). Indeed, 

the offline learning contributed more than 50% (meanoffline = 77.46%) to motor 

sequence learning in 6-year-olds (p<0.01), while offline and online improvement 

contributed equally for 10-year-olds (meanoffline = 51.42%, p = 0.87) and adults 

(meanoffline = 34.74%, p = 0.12). Taken together with the fact that offline learning was 

correlated with learning exploration, these results provide compelling evidence that 

offline learning observed in this study did not result from fatigue (see discussion 

below). 

Six-year-olds demonstrated less declarative knowledge 

Upon completion of the six learning blocks, participants completed two 

recognition tasks and one recall task (see methods). The non-parametric ANOVA 

failed to find a significant effect of age on recall scores for all chunk lengths. 

Nevertheless, there appears a clear downward trend in recall scores with decreasing 

age (Figure 3.7A). The failure to observe a statistically significant effect may result 

from a large dispersion of recall performance in 6-year-olds (see S1_data). Unlike the 

recall test, we found a significant effect of age on scores (𝜒𝑑𝑑=22 = 11.6, p < 0.005) in 

the recognition task II where participants were asked to recognized chunks of 

sequence. Six-year-olds (Figure 3.7B) scored lower than the 10-year-olds and adults. 

In addition, in recognition task I where sequence A was given along with the other 

three irrelevant sequences, eight adults (out of 10), nine 10-year-olds (out of 12), but 

none of 6-year-olds were able to identify the correct sequence. 
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Discussion 

Our results demonstrate that both adults and children learn motor sequences 

quickly within one learning session not only through online learning (Bornstein & 

Daw, 2012, 2013; Cleeremans & McClelland, 1991; Verstynen, et al., 2012), but also 

offline learning. Importantly, the offline and online learning are age-related. Six-year-

olds utilize greater offline compared to online learning and greater offline learning 

than adults, while 10-year-olds and adults utilize the two learning processes equally. 

Figure 3.7: Six-year-olds demonstrated less declarative knowledge.  
(A) The generation score. There was a tendency that generation scores reduced with age 
decreasing; (B) Recognition score. Six-year-olds showed lower recognition score compared to 
adults and 10-year-olds. Error bars represent standard errors. 
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Such age-related differences in offline learning appear to be a function of 

performance variability rather than fatigue. 

Our results reflect similar findings to previous literature on SRT experiments 

in that both children and adults learn the sequences (Meulemans, et al., 1998; 

Weiermann & Meier, 2012b). What is new here is the differentiation of two learning 

processes during one session and their age-related use. It has been reported that 

learning a motor sequence normally starts with an initial stage known as fast learning 

(Doyon & Benali, 2005). With a short period of practice (i.e., a single learning 

session) of a new sequence, fast learning produces considerable improvements in the 

performance (Honda, et al., 1998; Karni, et al., 1998a; Walker, et al., 2002). After the 

initial acquisition and short-term memory formation through this fast learning, an 

early offline “booster” enhances the performance after a 5-30 minutes interval 

without practice (Albouy, et al., 2006b; Hotermans, et al., 2006; Nettersheim, et al., 

2015; Schmitz, et al., 2009). The performance is further strengthened after hours-long 

rest or sleep through long-term offline learning (Nettersheim, et al., 2015; Robertson, 

Pascual-Leone, & Press, 2004; Robertson, et al., 2005; Song & Cohen, 2014b; 

Walker, et al., 2003; Walker, et al., 2002). In contrast, the offline learning we 

observed here takes place within the fast learning stage and concurrently with online 

learning, it drives the initial acquisition of motor sequences despite the age of the 

participants.  

Though offline learning is observed in all age groups, it dominantly drives the 

initial acquisition of motor sequences for six-year-old children in particular. Unlike 

adults whose RT progressively improves within blocks (i.e., online learning), six-
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year-olds’ RT worsens within blocks and improves offline between blocks. Such age-

related differences imply that the offline learning may be an intrinsic strategy in 

younger children. Specifically, our results link the offline learning to the exploration 

mechanism. Exploration is often involved in learning to optimize performance in the 

long run but may jeopardize current performance (Sutton & Barto, 1998). As in other 

motor tasks where children and infants show greater exploration at the early phase of 

learning (Goldfield, et al., 1993; Piek, 2002a; Thelen, et al., 1991), in our task, six-

year-old children’s RT  (i.e., the refined RT after removing time and location effects, 

see Methods) was more variable than the older children and adults’ when they started 

to learn the sequencing task. This observation suggests that sequence learning in six-

year-olds may necessitate greater exploration that negatively impacts their RT 

performance within blocks (as shown in Fig. 3A). That is, variability may be 

negatively associated with online learning. Unfortunately, with our limited sample 

size we cannot provide enough statistical power (lower than 0.4, see results) to detect 

a negative correlation between online learning and exploration.  

Unlike online learning, we found that offline learning was positively 

correlated to exploration (with statistical power of 0.9, see results). Although the 

underlying mechanisms bridging offline learning and exploration are unclear, it is 

possible that offline learning integrates the newly explored knowledge about the 

sequence. The more information/knowledge explored when the task is performed 

(i.e., within block), the greater offline learning is required between blocks. In our 

study, RT variability was naturally produced by children and adults. It is therefore 

unclear if manipulating the performance variability in a learning task could further 



65 
 

 

strengthen the offline learning. To understand the relationship between offline 

learning and exploration, future studies are needed that control the RT variability in 

both the children and adults.  

Besides the correlation between exploration and offline learning, we speculate 

that offline and online learning that drive the acquisition of a motor sequence over a 

single learning session may be consonant with procedural and declarative memory. 

For example, we observed that six-year-old children who showed greater offline 

learning acquired less declarative knowledge of the sequence as evident by their poor 

performance in the tasks of recalling and recognizing the sequence. In contrast, 10-

year-olds and adults demonstrated greater online learning and also demonstrated more 

declarative knowledge of the learned sequence. In future studies, modulations of 

procedural and declarative memory, such as learning a fixed sequence compared to 

learning a probabilistic sequence, could examine the relationship we propose here. 

Furthermore, procedural memory was found to be associated with the long-term 

offline learning that develops hours after a sequence is learned (Brown & Robertson, 

2007a). Although it is unclear whether the offline learning that allows initial 

acquisition of motor sequences is related to offline learning that consolidates the 

memory of a newly acquired sequence, the association between both types of offline 

learning and procedural memory leads to an assumption that links the offline learning 

observed in this study and the long-term offline learning widely found in the 

literature.  

Alternatively, rather than an intrinsic exploration strategy, it could be that 

specific task constraints cause the offline strategy in young children. For example, 
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six-year-olds may attempt to learn a sequence online, but the iterative mental 

computation after each step may interfere with the preparation of the succeeding step 

due to a limited amount of time available between stimuli. With this line of thinking, 

offline learning that drives the quick acquisition of a motor sequence may be a 

strategy forced to emerge by task constraints. Thus, future studies should examine 

whether the offline learning vanishes in six-year-olds or emerges in adults under 

certain task constraints such as time between learning trials.  

Given that fatigue could result in the large RTs at the end of each block and 

thus misleadingly exaggerate the magnitude of offline improvement, offline learning 

may be a byproduct of fatigue. However, analysis of our data precludes fatigue as the 

prominent factor underlying offline learning in six-year-olds. First, our data show that 

RT increased as soon as children started to perform the task (i.e., the first 50 steps in 

the first block). It is not very likely that fatigue caused the worsened RT at the 

beginning of the first block. Additionally, consistent with previous studies 

(Meulemans, et al., 1998; Thomas & Nelson, 2001; Weiermann & Meier, 2012b), we 

observed that like adults, 6-year-olds successfully learned the sequence. If fatigue 

appeared as soon as children started to perform the task, how could their learning 

arise quickly and to a comparable level as the adults who did not exhibit fatigue? 

Second, RT in 6-year-olds increased only in the first 50 trials, while RT remained the 

same in the last 50 trials, which is contrary to the hypothesis that fatigue causes the 

decline in performance with extensive practice. The RT in the last 50 trials does not 

result from the ceiling effect for fatigue, because the RT in the last 50 trials improved 

as much as the RT in the first 50 trials across blocks. Moreover, the magnitude of 
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learning as measured by the last 50 trials was comparable between six-year-olds and 

the other two groups. Third, offline learning, when corrected by removing the RT 

decrement within the preceding block, displayed the same age-related differences. 

Taken together, these observations, along with the phenomenon that the magnitude of 

offline learning was positively correlated to exploration, offers strong evidence that 

the offline learning observed in this study may be a mechanism underlying motor 

sequence learning, rather than a by-product of fatigue. 

In summary, we found that learning a foot stepping sequences is not only 

driven by online learning, but also by offline learning that has not previously been 

reported for sequence learning within a single learning session.  These two processes 

are age-related. The adults and 10-year-olds utilize the online and offline learning 

strategies equally, whereas the 6-year-olds greatly relied on the latter to acquire the 

motor sequences. Our results further demonstrated that exploration while performing 

the sequences, as represented by the variability of RT, may be the mechanism that 

underlies the offline learning. This result suggests that variability in RT is a principal 

variable that may provide important insights into motor sequence learning in future 

studies. 
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Chapter 4: †(Study II) Task pacing has no effects on online and 
offline processes underlying rapid motor sequence learning 

Abstract 

Implicit sequence learning is ubiquitous in our daily life. However, it is 

unclear whether the acquisition of sequences results from learning to chunk items 

(i.e., chunk learning) or learning the first-order transition between elements (i.e., 

statistical transition learning). By grouping responses with or without a distinct chunk 

or statistical structure into segments and comparing these responses, previous studies 

have demonstrated both chunk and statistical transition learning. However, few 

studies have considered the response sequence as a whole and examined the temporal 

dependency of the entire sequence, where the order and strength of temporal 

dependencies could disclose the use of chunk and transition learning. Here, 

participants performed a serial reaction time (SRT) task under different stimulus 

interval conditions. We decomposed the response time into reaction time (RT) that 

reflects mental processing and movement time (MT) that characterizes the movement 

itself. We found that the improved response time was due to RT and not MT, 

suggesting sequence learning rather than motor improvements. After examining the 

temporal dependency of RT and MT, we found notable first-order auto-regressions of 

RT regardless of stimulus intervals, indicating that the sequence was acquired through 

learning first-order transitions instead of sequence chunks. Additionally, both RT and 

MT displayed recursive patterns caused by response locations and sequence 

                                                 
† This manuscript was submitted for publication with the title “New insights into statistical transition 
learning and chunk learning in implicit sequence acquisition” and it is currently under review. For 
publication purpose, this submitted manuscript does not include results of online and offline learning. 
Please see Appendix 1 for the corresponding results. 
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repetitions, implying that chunk learning found in previous studies may result from 

biomechanically constrained response tendencies to various response locations. 

Taken together, our results suggest that implicit sequence learning arises from first-

order statistical transition learning rather than chunk learning. 

Introduction 

The ability to acquire motor sequences is crucial to our daily activities such as 

riding a bicycle, dressing, and driving a car. These sequences are thought to be 

learned implicitly where an individual does not have the explicit knowledge of the 

sequence prior to learning. However, it remains unclear what mechanism underlies 

the implicit learning of sequences. On one hand, there is evidence that implicit 

sequence learning results from chunk learning (Koch & Hoffmann, 2000; Stadler, 

1993) where a sequence is partitioned into short segments to be learned and the 

concatenations of segments leads to the acquisition of the sequence. These short 

segments are grouped by a particular response pattern where a slower response is 

typically followed by a few quicker responses (Bo & Seidler, 2009; Koch & 

Hoffmann, 2000). On the other hand, statistical transition learning has been suggested 

to account for implicit sequence learning (Hunt & Aslin, 2001). Statistical transition 

learning refers to the process where probabilistic regularities between sequence 

elements (normally first-order transitions) are learned (Saffran, et al., 1996). 

To date, chunk and statistical transition learning have been supported by 

studies that used the serial reaction time (SRT) task (Nissen & Bullemer, 1987). For 

example, studies that attempted to demonstrate chunk learning designed a sequence 

with a certain chunk (Kirsch, Sebald, & Hoffmann, 2010; Koch & Hoffmann, 2000). 
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Similarly, statistical learning has been demonstrated in studies where sequences had 

definite statistical structures (Bornstein & Daw, 2012; Hunt & Aslin, 2001). 

However, there are no studies that compare chunk and statistical transition learning in 

the same sequence. Therefore, it remains unknown whether chunk or statistical 

transition learning or both are used to acquire a sequence. 

To answer this question, we employed the SRT task and addressed limitations 

in previous studies that may confound the findings of chunk and statistical transition 

learning. First, in previous studies, chunk or statistical learning was studied based on 

response time. Here, we decompose response time into reaction time (RT) that 

reflects mental processing (Sternberg, 1969b) and movement time (MT) that 

characterizes the movement itself. Since sequence learning in the SRT task is 

reflected in RT, but not MT (Moisello, et al., 2009), it is essential to understand 

whether chunk or statistical learning found in previous studies was contaminated by 

MT patterns. 

Second, in earlier studies, sequence elements with a chunk or statistical 

structure were separated from the entire sequence. Response improvements in these 

segmented elements were used to infer chunk or statistical transition learning. 

However, this is artificial since the sequence is performed as a whole. Segregating the 

sequence ruins the temporal dependency of the sequence and thus may mislead our 

understandings of chunk and statistical learning. To circumvent this problem, we 

examined the time series of RT and MT by fitting them with autoregressive models. 

The auto-regressions of RT and MT reflected the order and strength of self-

dependencies within responses. Given the thesis of chunk learning, higher-order (i.e., 
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at least second-order, namely chunks of 3) auto-regressions would be observed. In 

contrast, first-order auto-regressions would be observed if statistical transition 

learning is used.  

In addition, we asked participants to perform the SRT task under different 

stimulus interval conditions. The stimulus interval is an important factor in chunk 

learning (Stadler, 1993). For example, the performer’s short-term memory that links 

successive sequence elements could be impaired when these elements are separated 

by a long time interval (Frensch & Miner, 1994). Along with this idea, chunk learning 

would be more noticeable when sequence elements are separated from each other 

with a short stimulus interval. In contrast, statistical transition learning involves 

iterative mental computation (Bornstein & Daw, 2012) and thus requires a sufficient 

amount of time between sequence elements. It is speculated that as long as the 

stimulus interval is long enough, the stimulus interval would not influence statistical 

transition learning.  

Materials and Methods 

Participants 

After providing the signed consent form, thirty non-musician adults (age: 

20.4 ± 0.29 years, 18 females) without neurological disorders participated in this 

study. The study was performed in accordance with the guideline approved by the 

Institutional Review Board at University of Maryland, College Park. 
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Methods and Procedure 

Participants performed a modified serial reaction time (SRT) task. During the 

task, they were instructed to step to a spatially-matched target as quickly as they 

could when one of six visual stimuli appeared on the computer screen and then step 

back to the home position (Figure 4.1A). The distance from the home position to each 

target was marked at the most comfortable stepping length that was determined prior 

to the experiment for each individual. A customized program written in Labview 

(National Instruments, Austin, TX, USA) was used to control the visual stimuli. A 

Vicon motion capture system (Oxford Metrics, Oxford, UK) recorded the real-time 

positions of reflective markers attached to the participants’ big toes, heels 

(calcaneus), and the 5th metatarsal on both feet. The sampling frequency was 200Hz. 

These trajectories were filtered (eighth-order Butterworth filter with a cutoff 

frequency of 10Hz) before being used in data analyses. 

The SRT task was performed under one of three stimulus interval conditions 

(10 participants were randomly assigned to each condition). In condition I, each 

stimulus was presented for 700ms prior to its disappearance and the next stimulus 

appeared after an interval of 600ms (700 + 600ms), yielding a 1300ms-long inter-

stimulus-interval (ISI). The time intervals were set as 700 + 200ms for condition II 

and 300 + 600ms for condition III, both generating a 900ms-long ISI. We chose these 

three time combinations to control the effect of stimulus appearance or disappearance 

time that may contaminate the effect of total ISI. 

After participants completed a practice block in which the stimuli appeared in 

a random order, they performed eight learning blocks for their assigned ISI condition. 
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Specifically, in blocks 1-4, 6, and 8, visual stimuli followed 10 repetitions of 

sequence A (142315246536). There were no distinct statistical structures in this 

sequence as each element appeared equal times and each was followed by two other 

elements with equal likelihoods. In addition, there was no inversion (i.e., 123321) or 

repetition (i.e., 123123) of any segments that could force the chunking of sequence 

elements (Jimenez, 2008). Sequence B (146252341356) was repeated 10 times in 

block 5. In block 7, we used sequence A while replacing two 12-item trials at the 

middle and end of this block with sequence B as catch trials. Throughout the task, 

participants were not instructed about the sequence presentation. A three-minute rest 

was provided after each block.  

Data analysis 

A customized MATLABTM (MathWorks, Naticks, MA, USA) script was used 

to identify the onset and end point of each stepping response. Onset of each stepping 

response was defined as the first sample when the foot reached 10% maximum 

movement height. The end point of each stepping response was defined at the time 

when the foot dropped to the same height as the onset. RT was computed as the time 

elapsed from the onset of visual stimulus to the onset of foot movement. MT was 

quantified as the time discrepancy between the onset and the end point of foot 

movement. The summation of RT and MT formed response time. Response times, 

RTs, and MTs that corresponded to error steps (i.e., stepping to a wrong target) were 

discarded (The overall error rate was below 5% despite of ISI conditions). In 

addition, within each learning block, RTs, MTs, or response times that deviated 
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beyond or below 2.5 standard deviations from the individual’s mean RT, MT, or 

response time in that block were excluded from further analyses. 

To measure performance in the task, the mean response time, RT, and MT 

was computed for each block. Mean performance differences between blocks 1 and 4, 

as well as blocks 4 and 5, were used to quantify the learning of sequence A 

(Robertson, 2007). Mean performance differences between blocks 1 and 8 were 

computed to represent the learning through the entire task. In addition to the learning 

quantified by performance differences between blocks, we compared performance 

between sequence A and catch trials within learning block 7. Specifically, the mean 

performance on sequence A was computed on 12-step learning trials that preceded the 

catch trials. To measure the temporal self-dependency of RT/MT, each time series 

was fitted with autoregressive models (see results for details). Fitted coefficients were 

subsequently used for statistical analysis.  

Statistical analysis 

Two-way (8 blocks × 3 groups) mixed effect ANOVAs were used to examine 

the effects of learning block, ISI group, and their interaction on mean response 

time/RT/MT and autoregressive coefficients. Tukey-Kramer corrected post hoc tests 

were conducted following any significant effect. Pre-planned contrast analyses were 

used to compare mean response time/RT/MT or autoregressive coefficients between 

blocks 1 and 4, blocks 4 and 5, and blocks 1 and 8. In addition, a two-way (2 types × 

3 groups) mixed effect ANOVA was performed to examine the response time/RT/MT 

difference between learning and catch trials within block 7. The covariance matrix 
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structure of mixed effect ANOVAs was determined by the Akaike information 

criterion (AIC). The significance level for statistical analyses was set at 𝛼 = 0.05. 

Results 

We found a significant effect of block (F(7,27) = 15.47, p < 0.0001), but no 

effects for ISI and its interaction with block on response times (Figure 4.1B). 

Specifically, response times were slower in block 1 compared to blocks 2 to 4 and 6 

to 8 (all p <0.005), while response times remained the same between blocks 1 and 5 

(p=0.38). Response times were faster in block 4 compared to block 5 (p<0.0001). 

Contrast analyses revealed that all groups decreased response time by an equivalent 

amount from block 1 to 4 (all p>0.29) and from block 1 to 8 (all p>0.74). However, 

the response time difference between blocks 4 and 5 was larger when ISI was 

300+600ms than 700+600ms (p<0.05). It appears that learning is greater under the 

300+600ms ISI. However, since the response time change from block 4 to 5 exceeded 

the improvement from block 1 to 4 under the 300+600 ISI, at least part of the 

deterioration in response time from block 4 to 5 was not due to a learning effect, but 

perhaps proactive interference from sequence A to sequence B.  

Learning was also demonstrated by the response time difference between 

learning and catch trials within block 7 (Figure 4.1B). Notably, response time was 

affected by trial type (F(1, 27) = 52.51, p<0.0001) but not ISI and its interaction with 

trial type. Response times were slower in catch trials than learning trials. The 

response time differences between catch and learning trials were comparable in three 

groups (all p > 0.17). These results together suggest that ISI does not impact sequence 

learning. 
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Figure 4.1: Experimental setup and mean performance across blocks. 
(A) Experiment procedure. (B) Mean response time across learning blocks. (C) Mean RT across 
learning blocks. (D) Mean MT across learning blocks. (E) RT difference between blocks 1 and 4. (F) 
RT difference between blocks 1 and 8. (G) RT difference between blocks 4 and 5. (H) RT difference 
between learning and catch trials within block 7. Error bars represent standard errors. 
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When the response time was decomposed into RT and MT, we found that RT 

exhibited the same pattern as response time (Figure 4.1C). RTs were significantly 

affected only by block (F(7,27) = 14.00, p < 0.0001). RTs improved from block 1 to 

other blocks when sequence A was performed (all p <0.005) and remained the same 

between blocks 1 and 5 (p=0.69). Contrast analyses revealed an equivalent amount of 

RT improvements from block 1 to 4 (all p>0.3) (Figure 4.1E) and from block 1 to 8 

(all p>0.4) (Figure 4.1F) regardless of ISI groups. Comparable RT changes from 

block 4 to 5 were found across groups except that between 300+600ms and 

700+600ms groups (p<0.05) (Figure 4.1G). Like response time, at least part of the RT 

deterioration from block 4 to 5 was caused by proactive interference from sequence A 

to sequence B, given that the RT change from block 4 to 5 was larger than that from 

block 1 to 4. Within block 7, RT was significantly affected by trial type (F(1, 27) = 

41.51, p<0.0001). Learning trials had faster RTs than catch trials, but RT differences 

between learning and catch trials did not differ across ISI groups (all p > 0.17) 

(Figure 4.1H).  

Unlike RT and response time, MT demonstrated a different pattern (Figure 

4.1D). There was a significant interaction between ISI group and block (F(14,27) = 

3.08, p < 0.01). It was found that MT became slower as learning progressed. 

Specifically, MT was faster in block 2 than blocks 7 and 8 under the 700+200ms ISI 

(both p < 0.05).  MT was faster in blocks 2 (p<0.05) and 3 (p<0.01) compared to 

block 7 under the 700+600ms ISI. Under the 300+600ms ISI, there was a trend that 

MT was faster in block 2 than blocks 6 and 8 (p = 0.089 and p = 0.096). Contrast 

analyses failed to find MT differences between blocks 1 and 4, blocks 1 and 8, and 
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blocks 4 and 5 among three ISI groups. These results together demonstrate sequence 

learning rather than motor improvements and suggest that the sequence learning is 

comparable among all ISI groups.  

Given that the response time consisted of RT and MT which behaved 

differently, we modelled the RT and MT within each block using autoregressive 

moving average models (i.e., ARIMA(p, 0, q) , where p and q are the orders of 

autoregressive (AR) and moving average (MA) models, respectively). Since MA can 

be expressed by AR and it is our primary interest to examine the association between 

successive RTs (i.e., AR) rather than the connection between an RT and its preceding 

noise (i.e., MA), we set q = 0. Subsequently, the sample autocorrelation (ACF) and 

partial autocorrelation functions (PACF) of RT and MT time series show that the 

ACF tailed off in the periodic lags at 12, 24, 36 and so on (Figure 4.2A and 4.2B) 

while the PACF cut off after lag 12 (Figure 2C and 2D), demonstrating that the same 

RT or MT pattern recurred every 12 steps that was identical to the length of 

sequences A and B. Moreover, within each 12 steps, RTs or MTs varied depending 

on the positions of responses (i.e., from the 1st step to 12th step; Figure 4.3A and 

4.3B), suggesting that the periodic RT and MT patterns were caused by repetitions of 

the sequence. Importantly, the periodic RT and MT exhibited similar chunk patterns 

demonstrated in previous studies where a slower response was followed by faster 

responses (Koch & Hoffmann, 2000). These results indicate that chunk learning 

identified in previous studies is likely to result from biomechanically constrained 

response tendencies to various response locations (Jimenez, 2008). 
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In addition to the periodic pattern, the PACF of RT displayed a significant 

auto-correlation at lag 1 (Figure 4.2C). This auto-correlation together with the 

periodic component suggests that a seasonal ARIMA(p, 0,0) × (1,0,0)12 model with p 

= 1 is appropriate to describe the RT data. However, examinations of individuals’ RT 

revealed that there were individual differences in order p. In addition, the literature 

has normally demonstrated chunks of 3 in the SRT task (Kirsch, et al., 2010; Koch & 

Hoffmann, 2000). Thus, we set order p to 1 and 2. Given that each RT time series was 

fitted by models with a p of order 1 or 2, the AIC was used to select the best model 

for each RT time series. Because only autoregressive processes were used, we 

Figure 4.2: Mean sample autocorrelation and sample partial autocorrelation of RT. 
(A) Mean sample autocorrelation of RT. (B) Mean sample autocorrelation of MT. (C) Mean sample 
partial autocorrelation of RT. and (D) Mean sample partial autocorrelation of MT. 
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referred to the models as AR(1) or AR(2) model. Unlike RT, MT did not show 

significant auto-correlations at lags that were less than order 12 (Figure 4.2D), 

implying no self-dependencies among MTs. Thus, we did not model MT for further 

analyses.  

 

Figure 4.4A shows the coefficients of the first-order auto-regressions that 

were averaged across individuals’ coefficients estimated by their favored model. The 

coefficient magnitude was significantly affected by block (F(7, 27) = 6.96, p 

<0.0001) and ISI (F(2, 27) = 9.03, p <0.001). The coefficient was smaller when the 

ISI was 700+600ms than 700+200ms (p = 0.05) and 300+600ms (p < 0.001). 

Additionally, all groups increased the coefficient magnitudes from block 1 to 8 (p < 

0.05). Student’s t-tests revealed that the coefficients were significantly larger than 0 

Figure 4.3: Examples of periodic components of RT.  
(A) Examples of the periodic components of RT in each group. (B) Examples of the periodic 
components of MT in each group. As the sequence repeats, the same pattern of RT or MT reoccurs. 
For display, only first 60 steps in block 1 were illustrated. 
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in both blocks 1 and 8 (all p < 0.0001 except for the 1300ms ISI, p = 0.0075 in block 

1 and p = 0.0003 in block 8; The significance level was adjusted to 𝛼
6

= 0.0083 to 

control the familywise error rate given the six simultaneous Student’s t-tests), 

suggesting that the first-order auto-regression strengthened as learning progressed. 

However, the coefficient changes between blocks 1 and 4, blocks 1 and 8, and blocks 

4 and 5 were comparable among three groups (all p > 0.2). 

 

Given that a few participants favored AR(2) model (Figure 4.4B), it was 

impossible to compare the second-order coefficients using individuals’ favored 

models. Thus, we further fitted all RT time series using AR (2) models. The results of 

first-order coefficients from the AR(2) model did not qualitatively change from 

coefficients estimated by individuals’ favored models that were shown in Figure 4A. 

However, there were no effects of ISI, block, and their interaction on the second-

order coefficients (Figure 4.4B). Unlike the first-order coefficients, the second-order 

coefficients were not significantly different from zero in blocks 1 and 8 for three 

Figure 4.4: Autoregressive Coefficients. First-order autoregressive coefficients were greater than 
zero. 
(A) Mean coefficient of the first-order autoregressive term. (B) Mean coefficient of the second-order 
autoregressive term and the coefficient of eight individuals whose RT performance prefers AR (2) 
model. Error bars represent standard errors. 
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groups (all p > 0.15, the significant level was adjusted to 𝛼
6

= 0.0083). These results 

suggest that implicit sequence learning arises through first-order statistical transition 

learning and it is not affected by stimulus intervals. 

Discussion 

We demonstrate that in the SRT task, the sequential order rather than the 

movement itself is learned. The sequence is acquired through learning the first-order 

transition between sequence elements despite the nature of the stimulus intervals. It is 

also demonstrated that chunk patterns in both RT and MT appear to result from 

physical properties of the sequence (i.e., biomechanically constrained response 

tendencies to various response locations). These results together suggest that the 

acquisition of sequences results from statistical transition learning rather than chunk 

learning. 

Chunking is suggested as a core mechanism underlying sequence learning 

(Gobet, et al., 2001). Chunking benefits sequence learning as it attenuates memory 

loads during learning by segmenting a long sequence into shorter segments (Bo & 

Seidler, 2009; Wymbs, Bassett, Mucha, Porter, & Grafton, 2012). These shorter 

segments are normally indicated by a slower response followed by a few quicker 

responses (Bo & Seidler, 2009; Koch & Hoffmann, 2000). In these studies, slower 

responses were identified at certain positions in a sequence. However, our data imply 

that chunks identified in such a way may result from physical properties of sequences 

such as periodic and spatial effects of response keys. An individual may react and 

move slower to keys at some locations (e.g. right front vs right back) or keys 

corresponding to certain effectors (e.g., left vs right foot) due to biomechanical 
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constraints of the body. The same slow vs fast RT and MT patterns repeat when the 

sequence recurs. Thus, the resulting RT and MT patterns are likely due to 

biomechanically constrained response tendencies rather than chunk learning. In 

sequence learning that involves finger tapping movement, the same conclusion may 

be true for the various response effectors – index vs middle finger, or right vs left 

hand (Jimenez, 2008).  

Moreover, the observation of the first-order autoregressive pattern in RT does 

not support chunk learning. Chunk formations often involve at least three sequence 

elements. However, second-order auto-regressions among RTs were not observed in 

the majority of participants. Although 8 out of 30 participants demonstrated second-

order auto-regressions in RT at the end of learning, more than half of the participants 

showed positive AR (2) coefficients (Figure 4B). That is, fast (or slow) responses 

were followed by two other fast (or slow) responses, which is not consistent with the 

chunking principle. Furthermore, among these 8 participants, five of them were from 

the longer ISI group. This observation is incompatible with the chunking hypothesis 

that longer stimulus intervals prevent adjacent stimuli to be present in short-term 

memory (Frensch & Miner, 1994). 

Hence, our results challenge the chunking hypothesis for learning implicit 

sequences; results that are consistent with recently reported findings. For example, it 

has been demonstrated that chunks began to form as soon as an individual starts the 

SRT task, but learning took place without improvements in these chunks (Jimenez, 

2008; Song & Cohen, 2014a). In addition, the chunking principle is contradicted with 

memory consolidation during sequence learning (Robertson, Pascual-Leone, & Miall, 
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2004). Specifically, there is no time allowed for memory of each chunk to stabilize 

since chunks are performed continuously. Consequently, chunks would interfere with 

each other and thus prevent learning of the whole sequence. This converging 

evidence indicates that chunking appears not to be the mechanism underlying implicit 

motor sequence learning. 

An alternative to chunk learning could arise from the learning of first-order 

statistical transitions between sequence elements (Bornstein & Daw, 2012; Hunt & 

Aslin, 2001). Our results favor the statistical learning interpretation given that each 

RT was found to depend only on the preceding RT. Importantly, given that the 

magnitudes of first-order auto-regressions increased as practice progressed, the first-

order auto-regressions are most likely to result from learning rather than preexisting 

patterns in the RT. At the end of learning, second-order auto-regressions were found 

in the RTs of a few participants, especially those who performed the SRT task under a 

long ISI condition. Although future studies are necessary, this result suggests that as 

learning progresses, the higher-order statistical structure (i.e., statistical transitions 

between non-adjacent elements) may also be acquired.  

Although our results were observed in a foot stepping SRT task, we surmise 

that the results and interpretations from the foot stepping task can be generalized to 

the classic finger-pressing SRT task. The response time observed in this study 

changed in the same pattern and comparable magnitudes with previous studies using 

the classic finger-pressing SRT task (Curran & Keele, 1993; Willingham, et al., 

1989). In addition, the ISI did not affect sequence learning in the foot stepping SRT 

task, which is consistent with findings in the finger-pressing SRT task (Destrebecqz 
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& Cleeremans, 2003; Willingham, et al., 1997). These consistent findings suggest that 

similar mechanisms may underlie sequence learning in the foot-stepping and finger-

pressing SRT tasks, but future studies are necessary for further elucidations.  

Conclusion 

We found that sequence learning takes place under different stimulus interval 

conditions. Importantly, using autoregressive models to analyze the reaction time in 

the SRT task, we found that implicit sequence learning arises from the acquisition of 

first-order statistical transitions between sequence elements. It is likely that chunk 

learning observed in previous studies is a byproduct of the physical properties of the 

sequence. These results suggest that statistical transition learning, rather than chunk 

learning, is the mechanism that underlies the acquisition of implicit motor sequences. 
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Chapter 5: (Study III) Acquisition of implicit motor sequences in 
a self-paced SRT task arises from offline learning in children but 

online learning in adults 

Abstract 

Implicit sequence learning, as a fundamental ability in our daily life, has been 

widely studied in adults. However, our understanding of implicit sequence learning in 

children is rather limited. In particular, little is known about the age-related 

differences in learning processes that underlie the acquisition of implicit sequences. 

Here, we asked young adults and children from 5 to 14 years of age to perform a self-

paced serial reaction time (SRT) task and compared their sequence learning that 

developed during the first learning session. We found that implicit sequence learning, 

as reflected by reaction time (RT), was comparable across age. Such similar extent of 

fast sequence learning was expressed by two behavioral processes; progressive 

changes in RT as the task was performed (i.e., online changes in RT) and offline 

changes in RT that emerged following short rest. We demonstrated that these two 

processes were not artifacts of fatigue or reactive inhibition. Rather, they were active 

learning mechanisms that may result from competitive memory systems of procedural 

and declarative learning. Importantly, the age-related differences in these two 

learning processes were divergent. Offline learning attenuated while online learning 

became stronger as age increased until age 11. After the 11 years of age, online and 

offline learning remained unchanged. Collectively, our results suggest that offline and 

online learning driving the initial acquisition of implicit sequences are age-related, 

where the developmental change is primarily presented before age 11. 
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Introduction 

In the SRT task, a primary window into understanding implicit motor 

sequence learning (Nissen & Bullemer, 1987), children as young as six years of age 

demonstrate a comparable capability to learn fixed sequences like adults (Meulemans, 

et al., 1998), whereas the learning in children and adults may be driven by different 

learning processes (study I; Chapter 3). In particular, learning in 6-year-old children 

dominantly relies on an offline process where RT improves after short rest, while 

offline enhancement and online progressive improvement in RT concurrently drive 

sequence learning in adults. To date, a unifying mechanisms underlying the age-

related online and offline processes remains unclear. A common hypothesis considers 

the online and offline processes as artifacts of fatigue or reactive inhibition. Although 

this hypothesis originates from explicit sequence learning, this effect can also be 

postulated as a dominant source of online and offline processes in implicit sequence 

learning (Rieth, et al., 2010). This study, therefore, aims to investigate whether the 

age-related online and offline processes underlying implicit motor sequence learning 

are artifacts of fatigue or reactive inhibition. 

According to the fatigue or reactive inhibition hypothesis, online and offline 

changes in RT are performance-based. That is to say, rather than being learning-based 

mechanisms, the online and offline changes in RT may result from the emergence of 

fatigue or reactive inhibition (Brawn, et al., 2010; Rickard, et al., 2008a). The fatigue 

or reactive inhibition explanation appears to be more critical in developmental studies 

as fatigue or reactive inhibition is more likely to accumulate in children than adults 

when they perform the same task. For example, children’s RT worsened within 
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learning blocks when they performed the SRT task (Study I; Chapter 3). This RT 

deterioration may be caused by fatigue or reactive inhibition. The effect of fatigue or 

reactive inhibition dissipated following rest, which resulted in the recovery of RT and 

consequently led to offline improvements in RT as an artifact of fatigue or reactive 

inhibition (Brawn, et al., 2010; Rickard, et al., 2008a; Rieth, et al., 2010). Thus, the 

question raised here is whether offline and online changes in RT observed in children 

and adults result from fatigue or reactive inhibition. 

In addition, the age-related differences in online and offline processes may 

also be by-products of task constraints (i.e., the task pacing conditions). In study I, 

children and adults performed the task under the same inter-stimulus-interval (ISI). 

The same ISI appeared to be relatively shorter in children than adults. Thus, the ISI 

may prevent children from learning the sequence online as online learning requires 

iterative mental computations that need an adequate amount of time between stimuli. 

In this study, we asked children and adults to perform a self-paced SRT task 

where the ISI interval was determined by their own response speeds. Such self-

determined ISI eliminated the confounding effect of task pacing in study I. According 

to the fatigue or reactive inhibition hypotheses, fatigue or reactive inhibition 

accumulates when an individual is practicing the task and thus deteriorate the 

performance (i.e., reaction time). Previous studies have suggested that fatigue or 

reactive inhibition could have a detrimental effect on learning (Ammons, 1947; 

Bourne & Archer, 1956; Denny, et al., 1955) or it could suppress the performance 

expression without having an effect of learning (Brawn, et al., 2010; Rickard, et al., 

2008a). That is to say, the RT deterioration within a block, which is under the 
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influence of fatigue or reactive inhibition, would yield no effect or negative impact on 

sequence learning. To determine whether online and offline processes are primarily 

attributed to learning or the artifacts of fatigue/reactive inhibition, we examined 

whether the deterioration in performance (i.e., reaction time or RT) that is under the 

influence of fatigue or reactive inhibition affects sequence learning. 

Materials and Methods 

This study was performed in accordance with the approval of the Institutional 

Review Board at the University of Maryland, College Park. Consent forms from adult 

participants and parents, as well as assent forms from child participants, were 

received prior to the experiment. Each participant received $15 after the completion 

of the experiment. In addition, a small toy prize was provided to child participants 

upon the completion of the Movement Assessment Battery for Children 2 (MABC2) 

(Henderson, et al., 2007). 

Participants 

Twenty-seven children (8.78 ± 2.26 years, between 5.39 and 14.37 years, 10 

females) were recruited for this study. Prior to the experiment, children completed the 

MABC2 to exclude those scored below the 15th percentile on the MABC2. One male 

child was excluded from this study. In addition to child participants, twelve young 

non-musician adults (20.66 ± 0.5 years, between 18.64 and 25.2 years, 9 females) 

from the University of Maryland, College Park participated in this study. A 

neurological health questionnaire was given to each participant to ensure that no 

participants had neurological impairments or medical conditions that may affect 



90 
 

 

motor performance. 

Experimental task and Procedure 

Participants performed a modified SRT task, namely a whack-a-mole game 

with sequential foot stepping (Figure 5.1A). Participants stood on the home position 

before starting the task. The home position was surrounded by six stepping targets 

with two located at the front, two at the side, and the other two at the back of the 

home position. The distance from the home position to each target was marked at the 

most comfortable stepping length that was determined prior to the experiment for 

each individual. Six spatially-matched visual stimuli (i.e., six holes) were presented 

on a monitor in front of the participants. After the task began, one mouse appeared 

from one of the six holes. Participants stepped to the corresponding target on the floor 

as quickly and accurately as they could and then returned to the home position. The 

mouse did not disappear until participants’ feet returned to the home position, as 

detected by analog signals sent from two electric rubber sensors under the home 

position. Once participants returned to the home position, the mouse appeared in 

another hole after an interval of 700ms. Thus, the inter-stimulus-interval (ISI) was 

self-paced, as determined by the total amount of time spent on stepping to the target 

and returning to the home position in addition to a 700ms interval. A customized 

program written in the Labview (National Instruments, Austin, TX, USA) was used to 

collect the signals from the home position sensors and control the appearance of 

visual stimuli. Three reflective markers were attached to the participants’ big toes, 

heels, and the 5th metatarsal on both feet. The three-dimensional movement 

trajectories of these markers were record by a Vicon motion capture system (Oxford 
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Metrics, Oxford, UK) with a sampling frequency of 200Hz. 

Participants first completed a practice block where the stimuli appeared in a 

random order to understand the task before starting the learning blocks. There were 

six learning blocks and each consisted of 100 steps. In blocks 1-4 and 6, the visual 

stimuli followed 10 repetitions of sequence A (i.e., 1423564215; 1 – right side, 2 – 

right front, 3 – left front, 4 – left side, 5 – left back, and 6 – right back). The order of 

visual stimuli followed 10 repetitions of sequence B (i.e., 3615425214) in block 5. 

There was a mandatory three-minute break after each block (Figure 5.1B). During 

this SRT task, participants were not provided any information about the sequences. 

Upon completion of the SRT task, participants were asked to complete a posttest to 

examine whether declarative knowledge of sequence A was acquired. They were first 

asked to recall the sequence in the SRT task and to write down 10 steps of the 

sequence (i.e., recall task). They were then given 16 sequence chunks where eight 

chunks were correct and were asked to choose the ones they thought resembled the 

sequence they learned in the SRT task (i.e., recognition task). 

Data analysis 

Response time was used to measure performance in the SRT task (Nissen & 

Bullemer, 1987). Since changes of response time in the SRT task may be attributed to 

reaction time (RT) that represents mental processing and/or movement time (MT) that 

reflects the movement itself (Moisello, et al., 2009), we decomposed response time 

into RT and MT. RT was computed as the time discrepancy between the onset of 

visual stimulus and the onset of foot movement. MT was calculated as the time 

elapsed from the onset of foot movement to the end point of foot movement when 
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reaching the target. The summation of RT and MT forms response time. To derive 

these variables, the starting and end points of foot movement were identified from the 

three-dimension trajectory (filtered by an eighth-order Butterworth filter with a cutoff 

frequency of 10Hz) of the foot markers using a customized MATLABTM 

(MathWorks, Naticks, MA, USA) script. The onset of stepping was defined as the 

first sample when the foot reached 10% maximum movement height. The end point 

of stepping was defined at the time when the foot dropped to the same height as the 

onset. Within each learning block, RTs, MTs, or response times that deviated beyond 

or below 2.575 standard deviations (i.e., resembles the 99% confidence interval) from 

the individual’s mean RT, MT, or response time in that block were considered as 

outliers and were excluded from further analyses. 

 

 

Figure 5.1: Experiment setup and procedure. 
(A) The SRT task. (B) Experimental procedure. 
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Mean response time, RT, and MT were computed for each block. Learning 

was quantified through the difference in performance (i.e., response time, RT, and 

MT) between blocks 1 and 4, as well as between blocks 4 and 5. The indicator of 

sequence learning was whether performance improves from block 1 (sequence A) to 

block 4 (sequence A) and/or whether performance deteriorates from block 4 

(sequence A) to block 5 (sequence B) (Robertson, 2007). Given that RT rather than 

MT reflected sequence learning (see results below), analyses on online and offline 

changes in performance were performed only on RT. Online change in RT was 

defined as the RT change that takes place within block and was computed as the 

difference between the mean RTs of the first and last 10 steps. Offline change was 

defined as the RT change after short rest without performing the task. In particular, 

this change was computed as the difference between the mean RT of last 10 taps in 

one block and mean RT of first 10 taps in the succeeding block. A positive value of 

online or offline change indicates RT improvement while a negative value means that 

RT became slower. 

To determine whether online and offline changes in RT are learning-based or 

due to fatigue/reactive inhibition, we computed the amount of RT deterioration within 

each block and the magnitude of learning gained through the practice of each block. 

Specifically, the amount of RT deterioration had the same magnitude as the online 

change in RT but with opposite sign. For example, a -20ms online change in RT (i.e., 

RT became slower) was equivalent to 20ms RT deterioration. The magnitude of 

learning of each block was calculated as the difference in the mean RT of first 10 taps 

from one block to the succeeding block. Since fatigue/reactive inhibition may occur 
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within the block, this difference between the RT at the beginning of the block (i.e., 

mean RT of first 10 taps in the block) and the post-rest RT (i.e., mean RT of first 10 

taps in the succeeding block) serves as a better indicator of learning over that block as 

the effect of fatigue or reactive inhibition is substantially reduced after rest (Brawn, et 

al., 2010; Rickard, et al., 2008a). 

We then conducted a correlation analysis between RT deterioration and the 

magnitude of learning to examine three hypotheses regarding learning-based or 

fatigue/reactive inhibition-based online and offline changes in RT. First, previous 

studies (primarily in explicit sequence learning) that advocated the fatigue/reactive 

inhibition hypothesis claimed that fatigue/reactive inhibition suppresses performance 

expression but does not impair learning (Brawn, et al., 2010; Rickard, et al., 2008a). 

That is to say, the RT deterioration within a block, which is under the influence of 

fatigue or reactive inhibition, does not impact the magnitude of learning. Therefore, 

the RT deterioration and magnitude of learning would not be correlated. Second, 

numerous earlier studies have found the detrimental effect of fatigue/reactive 

inhibition on procedural skill learning (Ammons, 1947; Bourne & Archer, 1956; 

Denny, et al., 1955). Notably, learning would be impaired more if a stronger effect of 

fatigue/reactive inhibition builds, indicating a negative impact of the RT deterioration 

on the magnitude of learning. Finally, in opposition to the fatigue/reactive inhibition 

hypothesis, online and offline changes in RT may arise from certain underlying 

learning mechanisms (Eysenck & Frith, 1977). Under this hypothesis, the online RT 

deterioration within blocks may take place due to learning itself and may serve as a 

prerequisite for the offline change in RT following rest. Thus, the amount of RT 
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deterioration would be positively correlated to the magnitude of learning. In other 

words, the greater the RT deteriorates before rest, the greater the magnitude of 

learning would be. 

To measure the score in the recall test, we counted the number of correct 2-, 

3-, and 4-element chunks in the sequence that participants recalled. The chance levels 

of recalling 2-, 3-, and 4-element chunks were different. Take the 3-element chunk for 

an example, given the first element, there were four chunks (i.e., chunks starts from 1, 

2, 4, or 5) that could be guessed with a chance level of 0.125 and two chunks (i.e., 

chunks starts from 3 or 6) that could be guessed with a chance level of 0.0625. Thus, 

the weighted probability among these six chunks was 0.1042. Given that participants 

recalled a 10-element long sequence that has eight 3-element chunks, the chance level 

for recall 3-element chunks in a 10-element long sequence written by an individual 

was 0.83 (i.e., 8 × 0.1042). Similarly, the chance levels of recalling 2- and 4-element 

chunks were 3.38 and 0.29. To assess the recognition performance, we counted the 

number of correct chunks (i.e., chunks included in sequence A) that participants 

chose as well as the number of incorrect chunks (i.e., chunks not included in sequence 

A) that participants did not choose in the recognition task. The sum of these two 

numbers was used as the recognition score. For example, if a participant chose two 

correct chunks and did not choose incorrect chunks, the recognition score is 10. The 

recognition score would be eight if participant chooses all 16 chunks. The chance 

level is eight for the recognition test. 
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Statistical analysis 

For statistical analyses, we considered age as a continuous variable as well as 

a categorical variable by clustering participants into three age groups: children 

younger than eight, children older than eight, and adults. This age cutoff was chosen 

prior to data collection because the age-related differences in implicit sequence 

learning have commonly been examined between children younger than eight and 

adults (Meulemans, et al., 1998). The use of continuous age is because it is unclear 

whether sequence learning, especially its underlying online and offline processes, 

develops continuously with age. 

A two-way mixed effect ANOVA was used to examine the effects of block 

and age group (i.e., a categorical variable). Tukey-Kramer corrected post hoc tests 

were conducted following any significant effect. Pre-planned contrast analyses were 

used to examine the age effect on sequence learning as measured by the performance 

difference between blocks 1 and 4, as well as between blocks 4 and 5. The same 

analyses were performed on offline and online changes in RT that developed between 

blocks 1 and 4. To examine the progressive developmental change in implicit 

sequence learning, we further modeled sequence learning (as measured by RT 

differences between blocks 1 and 4 as well blocks 4 and 5), offline, and online RT 

changes based on the individual’s age (i.e., continuous variable). Specifically, we 

used either a linear model or piecewise linear latent model with unknown knots, 

which was determined by a likelihood ratio test. To examine whether online and 

offline changes in RT were artifacts of fatigue/reactive inhibition-based or active 

learning mechanisms, a partial correlation analysis was performed to confirm the 
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relationship between the RT deterioration and the magnitude of learning controlling 

the effect of age and block. Since recall and recognition score were measured by 

count data, Poisson models were used to examine the effect of age group or 

continuous age on the recall and recognition score. If over-dispersion was displayed 

in these two scores, a Poission mixture model (i.e., negative binomial regression) was 

used instead. The significance level for statistical analyses was set at α = 0.05. 

Results 

It was found that response time was significantly affected by block (F(5,35) = 

28.47, p <0.0001) and age group (F(2,35) = 50.35, p <0.0001), but not their 

interaction (Figure 5.2A). Specifically, response time was slower in children younger 

than eight compared to children older than eight (p < 0.0001) and adults (p < 0.0001), 

while the latter two groups had comparable response times (approached significance 

p = 0.07). Regardless of the age group, response time was slower in block 1 compared 

to blocks 2-4 and 6 where sequence A was performed (all p < 0.0001) while response 

time in block 5 in which sequence B was performed was comparable to the response 

time in block 1 (p = 0.86). Response time in blocks 4 was found to be faster than that 

in block 5 (p < 0.0001). Pre-planned contrast analyses found comparable 

improvements in response time from block 1 to block 4 and comparable 

deteriorations in response time from block 4 to block 5, indicating the same level of 

learning among age groups. These changes were further modeled with a linear 

function of an individual’s age (i.e., the likelihood ratio test revealed no difference 

between the linear model and piecewise latent model; 𝜒𝑑𝑑=22 = 0.8, p = 0.67 and 

𝜒𝑑𝑑=22 = 0.1, p = 0.95). It was found that there was no significant age effect on the 
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response time change from block 1 to block 4 (slope = 0.78, p = 0.68) as well as the 

RT change from block 4 to block 5 (slope = 0.2, p = 0.88). These results suggest that 

children and adults learned sequence A. Importantly, sequence learning, as measured 

by the response time, did not depend on age. 

After the response time was decomposed into RT and MT, remarkable 

differences were observed. RT exhibited the same pattern as response time. There 

were significant effects of block (F(5,35) = 30.82, p <0.0001) and age group (F(2,35) 

= 56.79, p <0.0001), but no effect of their interaction (Figure 5.2B). Like response 

time, RT improved from block 1 to blocks 2-4 and 6 (all p < 0.0001) while 

deteriorated from block 4 to block 5 (p < 0.0001). Children younger than eight had 

slower RT compared to older children (p < 0.0001) and adults (p < 0.0001). RT in 

older children was slower than RT in adults (p < 0.05). Contrast analyses revealed the 

same RT changes from block 1 to block 4 as well as that from block 4 to block 5. 

Linear function was found to appropriately model these RT changes (the likelihood 

ratio test: 𝜒𝑑𝑑=22 = 0.5, p = 0.78 and 𝜒𝑑𝑑=22 = 3, p = 0.22), which failed to find a 

significant age effect on the RT change from block 1 to block 4 (slope = 0.34, p = 

0.86)( Figure 5.2C) as well as the RT change from block 4 to block 5 (slope = -0.65, 

p = 0.68) (Figure 5.2D).  
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However, MT displayed a different pattern compared to response time and RT 

(Figure 5.E). There were significant effects of age group (F(2, 35) = 4.82, p < 0.05) 

and block (F(5, 175) = 4.77, p < 0.0005), but no interaction effect on MT. Slower MT 

was found in children younger than eight compared to children older than eight (p < 

0.05) and adults (approached significance, p = 0.07). MT was the same between the 

latter two groups. Interestingly, MT did not improve from block 1 to block 4 and 6 

when sequence A was performed. However, compared to blocks 1 (p < 0.005) and 4 

(p < 0.01), MT became faster in block 5 where sequence B was performed. Since 

there was no improvement in MT on sequence A and no perturbation on MT when 

Figure 5.2: Mean performance across learning blocks: No age effect on motor sequence learning. 
(A) Mean response time across learning blocks. (B) Mean reaction time (RT) across learning blocks. 
(C) Mean RT differences between blocks 1 and 4. (D) Mean RT differences between blocks 4 and 5. 
(E) Mean movement time (MT) across learning blocks. 
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sequence B was performed, sequence learning in the SRT task was primarily reflected 

in RT that represents mental processing rather than MT that characterizes the 

movement itself. 

Since sequence learning was attributed to RT and not MT, further analyses 

were performed only on RT. Specifically, the offline and online changes in RT from 

block 1 to block 4 where sequence A was learned were examined. It was found that 

the RT offline change was not significantly affected by block and its interaction with 

age. However, the offline change in RT after each rest between blocks 1 and 4 

significantly depended on age (F(2,35) = 7.63, p < 0.005). In particular, the offline 

change was greater in children younger than eight compared to older children (p < 

0.01) and adults (p < 0.005).  Since there was no block effect, the averaged offline 

change in RT after three rests from block 1 to block 4 was used to further investigate 

the age-related difference (Figure 5.3A). It was shown in Figure 5.3A that the offline 

change decreased presumably before a certain age Y and then remained the same 

after Y. A likelihood ratio test confirmed that fitting the data with a piecewise linear 

model with Y being a latent variable is superior to a linear model (𝜒𝑑𝑑=22 = 7.7, p < 

0.05). This piecewise linear latent model revealed that before age Y = 10.93 (SE = 

1.68), the offline change in RT decreased with age (slope = -20.8, p < 0.005) while 

remained constant after age Y = 10.93 (slope = 1.36, p = 0.7). In addition, the 

magnitude of offline change in RT was estimated to be larger than zero at age 5.39 

(114.91ms, p <0.0001) while it diminished to zero (-0.24ms, p =0.99) at age Y = 

10.93. 
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Figure 5.3: Age-related offline and online changes in RT. 
(A) Offline changes in RT across age. Empty circles represent individual data. Solid circles represent 
the estimated age jointing two phases of offline changes development. (B) Online changes in RT 
across age. Empty circles represent individual data. Solid circles represent the estimated age jointing 
two phases of online changes development. 

 

Similar to the offline change in RT, the amount of RT that changed online was 

found to depend only on age (F(2,35) = 7.82, p<0.005). There were no effects of 

block and its interaction with age. In particular, children younger than eight showed 

significantly less online change than children older than eight (p<0.05) and adults (p 

< 0.005). The mean online change in RT across block 1 to block 4 was then modeled 

to examine its dependence on an individual’s age. The likelihood ratio test between a 

linear model and a piecewise latent model approaches significance (𝜒𝑑𝑑=22 = 5.3, p = 
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0.07) and thus we used the latter to model the data. It was revealed that before age Y 

= 11.1 (SE = 2.09), the online change in RT increased with age (slope = 18.44, p < 

0.05) while remaining unchanged after age Y = 11.1 (slope = -0.4, p = 0.91). Notably, 

the offline change was negative at age 5.39 (-75.13ms, p <0.005), suggesting that RT 

in younger children became slower within blocks (Figure 5.B). Taken together, these 

results suggest the offline and online changes in RT were age-related. Offline change 

decreased while online change increased as age increased. More importantly, these 

age-related differences primarily took place before age 11. 

 

Figure 5.4: Age-related offline and online changes in RT are not caused by fatigue or reactive 
inhibition. 
The partial correlation between RT deterioration and magnitude of learning with controlling age and 
block effects. Dashed circle represents the 95% confidence interval. 

 

Although children demonstrated greater offline changes in RT, it remains 

unknown whether the offline enhancement resulted from inhibition/fatigue or arises 

from learning itself. We examined the partial correlation (controlling the age and 

block effect) between the RT deterioration within a block and the magnitude of 

learning that took place over this block (see Methods). It was found that the RT 
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deterioration was positively correlated to the magnitude of learning (ρ = 0.54, p 

<0.0001, Figure 5.4). This result was contrary to the reactive inhibition/fatigue 

hypothesis and consistent with the learning-based hypothesis, suggesting that online 

and offline changes in RT and their development with age are not artifacts of reactive 

inhibition or fatigue. 

In the posttest, we found a significant effect of age group on recalling 2- 

(𝜒𝑑𝑑=22 = 8.03 , p < 0.05), 3- (𝜒𝑑𝑑=22 = 10.16 , p < 0.01), and 4-element chunks 

(𝜒𝑑𝑑=22 = 9.7, p < 0.01). Despite the length of chunks, children younger than eight 

had lower recall scores than children older than eight (p < 0.05 for 2-element chunk 

and all p <0.01 for 3- and 4-element chunks) and adults (p < 0.05 for 2-element chunk 

and all p <0.01 for 3- and 4-element chunks). In addition, children older than eight (p 

< 0.05 for 2-element chunk and p <0.0001 for 3- and 4-element chunks) and adults (p 

< 0.05 for 2-element chunk and p <0.0001 for 3- and 4-element chunks) had higher 

than chance recall for all lengths of chunks, while recall in children younger than 

eight was at chance for all lengths of chunks (Figure 5.5A). We further examined 

whether the recall score changed progressively with age (i.e., continuous age). A 

negative binomial regression failed to find a significant effect of age. In the 

recognition test, there was a significant effect of age group (𝜒𝑑𝑑=22 = 9.53, p < 0.01). 

Specifically, the recognition score was lower in children younger than eight compared 

to adults (p < 0.0005). Additionally, the recognition score was found to be at chance 

in children younger than eight but higher than chance in children older than eight (p < 

0.05) and adults (p < 0.0005). It was further found that the recognition score 

progressively increased with age (𝜒𝑑𝑑=12 = 4.46, p < 0.05) (Figure 5.5B). 



104 
 

 

 

Figure 5.5: Age-related declarative learning. 
(A) The recall scores. (B) The recognition score. 

Discussion 

Our results support the findings in Study I (Chapter 3) that implicit sequence 

learning over the first learning session in the SRT task was reflected by two age-

related processes in reaction time (RT); offline learning that developed after rest and 

online learning that occurred when the task was performed. Importantly, compelling 

evidence enables us to conclude that such online and offline processes are not illusory 

effects of fatigue or reactive inhibition. Furthermore, we found that the age-related 

development of online and offline learning took place prior to age 11. In particular, 

offline learning dominated the implicit acquisition of sequences in children and the 
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strength of offline learning reduced as age increased to 11. In contrast, online learning 

was deficient in younger children, but it gradually strengthened until age 11 and 

remained the same after that. 

The similar results that RT worsened online and improved offline in younger 

children (i.e., age of six) were observed in study I (Chapter 3). But it remains 

unknown whether the online RT deterioration and offline RT enhancement are 

learning effects (Du, Prashad, Schoenbrun, & Clark, 2016; Eysenck & Frith, 1977) or 

illusory phenomenon pertaining to fatigue or reactive inhibition (Brawn, et al., 2010; 

Rickard, et al., 2008a). In addition, the age-related differences may also be by-

products of task constraints. By using a self-paced SRT task to greatly reduce the 

confounding effect of task pacing and examining the fatigue or reactive inhibition 

hypotheses, our study demonstrated that the age-related differences in online and 

offline RT changes were more likely to originate from active learning mechanisms 

rather than to be artifacts of task constraints or fatigue/reactive inhibition. 

One difference between the current study and study I (Chapter 3) is the task 

pacing condition. In study I (Chapter 3), children and adults performed the task under 

the same inter-stimulus-interval (ISI). The same ISI appeared to be relatively shorter 

in children than adults. Thus, the ISI may prevent children from learning the sequence 

online as online learning requires iterative mental computations that need an adequate 

amount of time between stimuli. In addition, a shorter ISI in children made the task 

relatively faster, which may induce greater fatigue or reactive inhibition that slowed 

down the online RT. To reduce the possible task constraint effect, we used a self-

paced SRT task where the ISI was determined by an individual’s own response speed. 
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However, the online RT deterioration and remarkable offline RT enhancement 

persisted in children in the self-paced SRT task. Although our study did not allow us 

to statistically compare the magnitudes of RT deterioration under the fixed ISI and 

self-paced SRT task, the magnitudes were very similar (i.e., about 100ms at the age of 

six) between the current study and study I (Chapter 3). These results collectively 

suggest that the pacing condition in the SRT task is not responsible for the differences 

in online and offline RT changes between children and adults. 

Another confounding factor underlying the online RT deterioration and offline 

RT improvement is the emergence of fatigue or reactive inhibition (Ammons, 1947; 

Bourne & Archer, 1956; Brawn, et al., 2010; Denny, et al., 1955; Rickard, et al., 

2008a; Rieth, et al., 2010). According to this hypothesis, reactive inhibition, elicited 

by fatigue, motivation, or attentional factors, accumulates when an individual is 

practicing the task. This effect inhibits the expression of performance and masks the 

actual learning effect. The reactive inhibition effect dissipated after a rest, yielding 

artificial offline enhancement effect. Previous studies have suggested that fatigue or 

reactive inhibition could have a detrimental effect on learning (Ammons, 1947; 

Bourne & Archer, 1956; Denny, et al., 1955) or it could suppress the performance 

expression without having an effect of learning. In opposition to the reactive 

inhibition hypothesis, our data revealed a positive correlation between the RT 

deterioration and the magnitude of learning. Namely, the larger the RT deteriorated 

online, the greater the magnitude of learning achieved. This observation is clearly 

incompatible with the fatigue/reactive inhibition hypothesis and thus suggests that the 

online RT deterioration did not result from fatigue or reactive inhibition. That is to 
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say, the offline enhancement in RT was not an illusory effect caused by fatigue or 

reactive inhibition. 

An alternative to being artifacts of task constraints and fatigue/reactive 

inhibition is that the age-related differences in online and offline learning may arise 

from certain underlying learning mechanisms. Observation from our data let us 

propose that the age-related differences originate from the competition between 

procedural and declarative learning systems (Foerde, Knowlton, & Poldrack, 2006; 

Poldrack, et al., 2001). In our study, procedural learning dominated in children 

(especially those younger than eight), as revealed by their chance-level recognition 

and recall scores. In contrast, adults produced higher than chance scores, suggesting 

that they acquired declarative knowledge of the sequence in the SRT task; results that 

are consistent with the literature (Meulemans, et al., 1998; Weiermann & Meier, 

2012b). On one hand, the bias to declarative learning in adults may inhibit their 

offline learning. This inhibition effect was reduced in children as greater procedural 

learning was involved, yielding a stronger offline learning effect. On the other hand, 

the greater use of procedural learning may discourage online learning in children, 

which causes substantial online RT deterioration. Although our data favor the 

explanation that procedural and declarative learning are responsible for the age-

related differences in offline and online learning, it is also plausible that online and 

offline learning are led by other age-related factors, such as working memory 

capacity and attentional capacity. Future studies are certainly awaited to examine the 

effects of these factors on online and offline learning. 
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In addition to precluding the effects of task pacing and reactive inhibition on 

online and offline learning, this study extended our understanding of the age-related 

implicit sequence learning in two other ways. First, in addition to RT, we examined 

MT. Our results demonstrated that the age-related difference in implicit sequence 

learning was attributed to the differences in RT, but not MT. Interestingly, unlike RT 

that was faster to the practiced sequence (sequence A) compared to the novel 

sequence (sequence B), MT became faster to sequence B than sequence A. Although 

further evidence is necessary, it is very likely that when an individual responded to 

sequence B, the feet were moved faster to compensate for the slower RT. Second, 

study I (Chapter 3) found age-related online and offline processes compared adults to 

children in certain age groups (10- and 6-year-olds). Here, we further found that 

offline and online learning developed prior to the age of 11 years. Between age 11 

and 20 to 25, offline and online learning remained comparable. This age cutoff is very 

similar to that found in two previous studies. Implicit sequence learning has been 

found to be optimal before the age of 12 (Janacsek, et al., 2012a). Before this age, the 

acquisition of sequence learning was primarily relied on habitual learning, while 

learning after 12 years of age seemed to be model-based (Nemeth, Janacsek, et al., 

2013b). More importantly, the habitual and model-based learning respectively are tied 

to procedural and declarative memory (Doll, Shohamy, & Daw, 2015), which is 

consistent with our finding on the age-related differences in the declarative 

knowledge of sequences acquired through the SRT task. One caveat in our study is 

that we did not include ages from 14 to 17. Although it is rather unlikely that online 

and offline learning would differ between this age range and 12 years of age or adults, 
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the developmental trajectory within this age range needs to be characterized in future 

studies. 

  Finally, it is important to emphasize that offline learning in this study 

occurred within the first learning session where the initial acquisition of the 

sequences developed. After the initial acquisition stage, learning does not stop. 

Instead, it continuous to develop at a slow rate and the memory of sequences is 

consolidated (Doyon & Benali, 2005). In the literature, offline learning has been 

found as a salient feature underlying sequence learning and observed during the slow 

learning and consolidation stages (Albouy, et al., 2006b; Brown & Robertson, 2007a; 

Hotermans, et al., 2006). It is unknown whether the offline learning during the initial 

acquisition observed in this study is related to offline learning that develops 

afterwards. One notable parallel between these two types of offline learning is that 

both of them are related to procedural and declarative memory (Brown & Robertson, 

2007a, 2007b; Du, et al., 2016). To further elucidate their relationship, further studies 

are definitely needed. 

In summary, we demonstrated age-related differences in implicit sequence 

learning that takes place during the first learning session in a SRT task. The age-

related differences are reflected by two learning processes; offline learning where 

reaction time improves following rest and online learning where reaction time 

progressively improves during practice. The strength of offline learning declines 

while the strength of online learning increases with age. This development of online 

and offline learning is present prior to around 11 years of age. After age 11, the online 

and offline learning remained unchanged between children and adults. Importantly, 
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we excluded fatigue or reactive inhibition as primary factors underlying these two 

processes. Instead, we propose that memory systems of procedural and declarative 

learning are substrates for offline and online learning.  
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Chapter 6: ‡(Studies IV) Probabilistic motor sequence yields 
greater offline and less online learning than fixed sequence 

Abstract 

It is well acknowledged that motor sequences can be learned quickly through 

online learning. Subsequently, the initial acquisition of a motor sequence is boosted 

or consolidated by offline learning. However, little is known whether offline learning 

can drive the fast learning of motor sequences (i.e., initial sequence learning in the 

first training session). To examine offline learning in the fast learning stage, we asked 

four groups of young adults to perform the serial reaction time (SRT) task with either 

a fixed or probabilistic sequence and with or without preliminary knowledge of the 

presence of a sequence. The sequence and preliminary knowledge were manipulated 

to emphasize either procedural (probabilistic sequence; no preliminary knowledge) or 

declarative (fixed sequence; with preliminary knowledge) memory that were found to 

either facilitate or inhibit offline learning. In the SRT task, there were six learning 

blocks with a two-minute break between each consecutive block. Throughout the 

session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in 

which stimuli appeared in a random order. We found that preliminary knowledge 

facilitated the learning of a fixed sequence, but not a probabilistic sequence. In 

addition to overall learning measured by the mean reaction time (RT), we examined 

the progressive changes in RT within and between blocks (i.e., online and offline 

learning, respectively). It was found that the two groups who performed the fixed 

sequence, regardless of preliminary knowledge, showed greater online learning than 

                                                 
‡ This chapter was published in Frontiers in Human Neuroscience. Du, Y., Prashad, S., Schoenbrun, I., 
& Clark, J. E. (2016). Probabilistic motor sequence yields greater offline and less online learning than 
fixed sequence. Frontiers in Human Neuroscience, 10. 
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the other two groups who performed the probabilistic sequence. The groups who 

performed the probabilistic sequence, regardless of preliminary knowledge, did not 

display online learning, as indicated by a decline in performance within the learning 

blocks. However, they did demonstrate remarkably greater offline improvement in 

RT, which suggests that they are learning the probabilistic sequence offline. These 

results suggest that in the SRT task, the fast acquisition of a motor sequence is driven 

by concurrent online and offline learning. In addition, as the acquisition of a 

probabilistic sequence requires greater procedural memory compared to the 

acquisition of a fixed sequence, our results suggest that offline learning is more likely 

to take place in a procedural sequence learning task. 

Introduction 

In the laboratory, studies employing the serial reaction time (SRT) task 

(Nissen & Bullemer, 1987) have demonstrated that adults can learn a motor sequence 

quickly within a single training session (i.e., in 4 to 8 practice blocks) (Nissen & 

Bullemer, 1987; Robertson, 2007; Willingham, et al., 1989). This initial stage of 

motor sequence learning is referred to as fast learning that leads to the initial 

acquisition of sequences (Censor, et al., 2012; Dayan & Cohen, 2011; Honda, et al., 

1998; Karni, et al., 1998a; Walker, et al., 2002). Fast learning develops over the 

course of a single training session, where an individual practices a new motor 

sequence and demonstrates considerable performance improvement. It has been 

suggested that such improvement in the performance of motor sequences are driven 

by online learning (Bornstein & Daw, 2012, 2013; Verstynen, et al., 2012), where 

performance progressively improves as the task is practiced. After the fast learning 
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stage, performance is strengthened without further practice (i.e., offline learning) by 

an early offline boost (Hotermans, et al., 2006; Schmitz, et al., 2009) or memory 

consolidation (Brown & Robertson, 2007a; Nettersheim, et al., 2015; Robertson, 

Pascual-Leone, & Press, 2004; Robertson, et al., 2005). To date, it is unclear whether 

offline learning drives the acquisition of motor sequence in the fast learning stage. 

The purpose of this study, therefore, is to examine whether fast learning of a motor 

sequence arises from offline learning. Furthermore, given that offline learning in the 

SRT task has been found to be associated with procedural memory (Brown & 

Robertson, 2007a, 2007b; Robertson, Pascual-Leone, & Miall, 2004), we further 

investigate whether a bias towards procedural or declarative memory in the SRT task 

modulates offline and online sequence learning. 

Learning motor sequences in the SRT tasks typically involves both procedural 

and declarative memory (Brown & Robertson, 2007a; Curran & Keele, 1993; 

Destrebecqz & Cleeremans, 2001; Reber & Squire, 1994; Robertson, 2007; 

Willingham & Goedert-Eschmann, 1999; Willingham, et al., 1989). In this task, 

participants press keys on the keyboard to respond to sequential visual stimuli that are 

presented in a pattern (e.g., a fixed order). Since participants are not informed of the 

presence of the sequence, learning in the SRT task requires procedural memory. 

However, participants may recognize the presence of the sequence after they perform 

the task and thus form a declarative memory of the sequence (Perruchet, Bigand, & 

BenoitGouin, 1997; Willingham & Goedert-Eschmann, 1999). This entanglement of 

procedural and declarative learning suggests the infeasibility of eliminating or 

isolating either of them from the SRT task. Nonetheless, manipulating the sequence 
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type and the preliminary knowledge of the sequence can modulate procedural or 

declarative learning. Particularly, it has been shown that learning a probabilistic 

sequence favors more procedural memory compared to learning a fixed sequence 

(Jimenez, et al., 1996; Song, Howard, & Howard, 2007a). In contrast, preliminary 

knowledge of the sequence facilitates declarative learning (Curran, 1997a; Curran & 

Keele, 1993; Destrebecqz, 2004). 

In this study, we bias the involvement of procedural/declarative memory by 

manipulating the sequence type and preliminary knowledge of the sequence in the 

SRT task to examine whether offline or online learning mediate the acquisition of 

motor sequences in the fast learning stage. Before the experiment, we informed half 

of the participants that the visual stimuli followed a specific pattern, but no further 

information was provided about the sequence. No information about the presence of a 

sequence was provided to the other participants. The participants were further divided 

into two groups. In one group, the visual stimuli followed a fixed sequence (i.e., ten 

repetitions of a 12-trial sequence) while in the other group; the visual stimuli 

followed a probabilistic sequence that was generated by a first-order Markov process. 

We found that a motor sequence is learned quickly through concurrent online and 

offline learning. However, the involvement of procedural or declarative memory 

mediated the use of online and offline learning. Particularly, learning of a fixed 

sequence arose from greater online learning. In contrast, acquisition of a probabilistic 

sequence resulted from significant offline learning, regardless of preliminary 

knowledge. These results suggest that the involvement of procedural and declarative 

memory modulates how a motor sequence is learned in the fast learning stage. 
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Materials and Methods 

This study was carried out in accordance with the recommendations and 

approval of the Institutional Review Board at the University of Maryland, College 

Park. All participants signed consent forms prior to their participation. Each 

participant received $10 after the completion of the experiment. 

Participants 

Forty-eight right-handed adults (24 males, see Table 1) were randomly 

assigned to one of four groups: fixed sequence with preliminary knowledge of the 

sequence (PK_Fixed; mean age: 21.8 ± 1.91), fixed sequence without preliminary 

knowledge of the sequence (NPK_Fixed; mean age: 21.5 ± 1.41), probabilistic 

sequence with preliminary knowledge of the sequence (PK_Prob; mean age: 21.2 ± 

0.893), and probabilistic sequence without preliminary knowledge of the sequence 

(NPK_Prob; mean age; 21.3 ± 0.830). All participants completed a health 

questionnaire to exclude those with any neurological and motor impairments ,the 

Edinburgh Handedness Inventory (Oldfield, 1971) to assess that participants were 

right-handed, and the Global Physical Activity Questionnaire (Armstrong & Bull, 

2006) to insure that groups did not differ in their level of  physical activity. 

Serial reaction time task 

Participants were seated in front of a computer monitor (19”) and keyboard. 

Participants placed the middle finger of their left hand on the keyboard’s  ‘D’ key, the 

index finger of their left hand on the ‘F’ key, the index finger of their right hand on 

the ‘J’ key, and the middle finger of their right hand on the ‘K’ key (see Figure 1A). 
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At the beginning of each trial, a mouse appeared in one of four squares on the screen 

and the participant pressed the key that corresponded to the location of the stimulus. 

After the participant pressed a key, the next stimulus appeared after an interval of 

300ms. No visual feedback was provided to participants and a wooden board blocked 

vision of their finger position. Participants were first randomly assigned to either the 

preliminary knowledge group or no preliminary knowledge group and were further 

randomly assigned to either the fixed or probabilistic sequence. The probabilistic 

sequence was created based on a Markov chain transitional matrix with probabilities 

associated with each stimulus (Figure 6.1C & 6.1D). The probabilistic sequence was 

constrained such that the same stimuli were not repeated one after the other and that 

each stimulus appeared an equal number of times in each block. 

There were a total of six blocks for all groups (see Figure 6.1B), each 

consisting of 120 trials. Prior to the first block, participants practiced a random 

sequence. These initial trials were included to ensure that participants were able to 

accurately associate each finger with a corresponding key before the experimental 

practice blocks commenced. That is, we observed that participants did not produce 

reaction times (RT: amount of time taken to press the corresponding button after the 

stimulus was presented) that were slower than 2000m because of incorrect key 

pressing. After the practice block, participants in the preliminary knowledge groups 

were informed that a sequence would be present in the subsequent blocks and that 

they should look for the sequence. No other information about the nature of the 

sequence was provided. The first four blocks (Blocks 1-4) were the learning blocks 

consisting of the 120-trial probabilistic sequence or the fixed sequence in which the 
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sequence was repeated 10 times in each block. Block 5 consisted of 120 trials of 

stimuli occurring in a random order and block 6 consisted of the assigned 

probabilistic or fixed sequence (Figure 6.1C & 6.1D). Participants were given a two-

minute mandatory break between each block. The participants’ RT was recorded for 

each trial.  

All participants completed a posttest after the completion of the six blocks to 

determine the amount of declarative knowledge of the sequence. Participants were 

first asked to recall the sequence and attempted to write down the 12 items of the 

sequence and rated how confident they were that the sequence they wrote was correct. 

Participants were then asked to complete a recognition task. They were given eight 

chunks (i.e., four three-element and four four-element chunks where two of each were 

correct) and were asked to choose the chunks they thought were included in the 

sequence. 

Table 1: Participant demographic information 
 

Group Age# (years) Sex 
PK_Fixed 21.8 ± 1.91 6 female; 

6 male 
NPK_Fixed 21.5 ± 1.41 6 female; 

6 male 
PK_Prob 21.2 ± 

0.893 
6 female; 
6 male 

NPK_Prob 21.3 ± 
0.830 

6 female; 
6 male 

# There were no significant differences between the groups in age, F(3,47) = 0.564, p = 0.642. 
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Figure 6.1: Experimental setup and procedure. 
A) Experimental setup. At the beginning of each trial, a stimulus appeared in one of four squares on 
the screen and the participant pressed the key that corresponded to the location of the stimulus. 
Participants placed the middle finger of their left hand on the keyboard’s ‘D’ key, the index finger of 
their left hand on the ‘F’ key, the index finger of their right hand on the ‘J’ key, and the middle finger 
of their right hand on the ‘K’ key. B) Experimental paradigm. Participants performed the learning 
blocks (blocks 1-4) with either the fixed or probabilistic sequence, followed by randomly ordered 
stimuli in block 5, and ended with the same sequence in block 6. All blocks consisted of 120 trials. 
Participants were given a mandatory 2 minute break between each block. C) Sequence Types. 
Participants were randomly assigned to the fixed sequence group or the probabilistic sequence group. 
The probabilistic sequence was created using the probabilities defined in the transitional matrix, T. D) 
Example of how the probabilistic sequence was created using matrix T. If the current stimulus is 2, 
there is a probability of 0.6 that the next stimulus will be 1, a 0.3 probability that the next stimulus will 
be 3, and a 0.1 probability that the next stimulus will be 4. 

Data analysis 

The RTs were trimmed according to the individual participant’s mean and 

standard deviation. Within each block for an individual participant, any RT greater or 
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less than 2.5 standard deviations was excluded from the analysis (Ratcliff, 1993; 

Whelan, 2008). Mean RTs were calculated for each block and were averaged across 

participants in each group. Learning was measured through a decrease in RT from 

block 1 to block 4 (stimuli in assigned sequence) and an increase in RT from block 4 

(stimuli in assigned sequence) to block 5 (stimuli in random order). Online learning 

was defined as the amount of learning within a block and was determined by 

performing a linear regression on the 120 RTs within a block. Offline learning was 

computed as the RT change after a short break without performing the task. Given 

that the fixed sequence consisted of 10 repetitions of a 12-item long sequence, the 

difference between mean RT of the last 12 taps in one block and that of the first 12 

taps in the succeeding block was used to quantify offline learning. In addition, since 

participants typically acquire the sequence transitions of higher probabilities in 

probabilistic sequence learning (Bornstein & Daw, 2012; Howard, Howard, Dennis, 

Yankovich, & Vaidya, 2004; Hunt & Aslin, 2001), we expect that participants in the 

two probabilistic sequence groups would only learn sequential stimuli that were 

associated with transitional probabilities of 0.3 and 0.6 and fail to learn those 

associated with transitional probability of 0.1. Thus, we computed mean RT, offline- 

and online-learning of stimuli with transitional probabilities of 0.3 and 0.6 in the two 

probabilistic sequence groups. 

A controversy regarding offline improvement in RT is whether the 

improvement results from reactive inhibition/fatigue (Brawn, et al., 2010; Rickard, et 

al., 2008a) or it is driven by active learning mechanisms (i.e., offline learning) 

(Eysenck & Frith, 1977; Robertson, Pascual-Leone, & Miall, 2004). According to 
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Eysenck and Frith (1977), in the case of reactive inhibition/fatigue-induced offline 

improvement, post-rest performance should return to the starting performance level 

before the rest or so called pre-rest performance, but without improvement over that 

level. In contrast, post-rest performance is superior to the pre-rest performance if 

offline improvement arises from offline learning. Given that RT increased (i.e., 

became slower) within blocks in some participants so that the mean RT of the last 12 

taps did reflect the pre-rest performance, we calculated corrected offline learning. 

Specifically, if RT increased (i.e., became slower) within the previous block, 

corrected offline learning was calculated by subtracting the amount of RT 

deterioration (i.e., negative online learning) within the previous block from the 

amount of offline learning so that the corrected offline learning reflects the difference 

between the pre-rest and post-rest performance. If RT improved (i.e., became faster) 

within the previous block, indicating no RT deterioration, corrected offline learning 

was the same as offline learning, computed as the difference between mean RT of the 

last 12 taps in the block and that of the first 12 taps in the succeeding block. We 

expect that all groups should exhibit the same amount of corrected offline learning 

(none), if offline improvement in RT observed in this study were caused by reactive 

inhibition or fatigue. 

To measure the amount of declarative knowledge of the sequence, we 

calculated the recognition score as the number of correct chunks that participants 

chose in the recognition task. The recognition score was normalized by four as there 

were four correct chunks. To compare the recall score among participants, we 

calculated the number of three-element chunks that participants could recall. Given 
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there were 12 three-element chunks in the fixed sequence, the number that a 

participant recalled was normalized by 12 to compute a percentage. To make the 

amount of declarative knowledge between probabilistic and fixed sequences 

comparable, the number of three-element chunks that participants could recall was 

also used in the two groups who performed the probabilistic sequence. Since 

participants only learned the stimulus transition with transitional probabilities of 0.3 

and 0.6 (see results for details), there were 16 three-element chunks in the 

probabilistic sequence. Thus, the percent of recalled chunks was normalized by 16 in 

the two probabilistic sequence groups. Importantly, the chance level for guessing 

differed between the fixed and probabilistic sequence. Specifically, the chance level 

for a three-element chunk in the fixed sequence was 18.75% (i.e., given the first 

element, 75% chance for the second element and 25% chance for the third element) 

while it was 25% for a three-element chunk in the probabilistic sequence (i.e., given 

the first element, 50% chance for the second and third elements), we corrected the 

percentage of recalled chunks by the chance level specific to each sequence group. 

Statistical analysis 

A three-way (block × knowledge × sequence) repeated measures analysis of 

variance (ANOVA) was used to compare differences in RT between the blocks and 

groups. Separate pairwise comparisons were conducted on the priori contrasts of 

interest (block 1 vs. block 4 and block 4 vs. block 5) to determine any significant 

differences between the sequenced blocks and the random block. A three-way (block 

×  knowledge ×  probability) ANOVA was used to compare differences in RT of 

stimuli with different probabilities in the two probabilistic groups. All repeated 
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measures ANOVAs were performed in SAS with the MIXED procedure. Thus, the 

co-variance matrix structures were determined by the Akaike information criterion 

(AIC). A two-way (knowledge × sequence) ANOVA was employed to examine the 

effects of preliminary knowledge and sequence type on online, offline learning, and 

corrected offline learning. A two-way (knowledge ×  sequence) ANOVA was 

employed to examine the effects of preliminary knowledge and sequence type on the 

recall score. Given the violation of the normality assumption, the effects of 

preliminary knowledge and sequence type on the recognition score was examined by 

the Scheirer-Ray-Hare test. Tukey-Kramer post hoc tests were used to decompose any 

significant effects. Student’s t-tests/Wilcoxon tests were used to examine whether 

recall/recognition scores were different from the corresponding chance level for each 

group. The statistical significance level was set as 𝛼 = 0.05. 

Results  

Figure 6.2A shows the mean RT across the six blocks. The repeated measures 

ANOVA reveals a significant interaction between preliminary knowledge, sequence 

type, and block (F(5,44) = 2.79, p<0.05). Post hoc analyses with the Tukey-Kramer 

correction found that all four groups produced comparable RTs in all blocks (all 

p >0.2). However, RT in two groups who performed the fixed sequences (i.e., 

PK_Fixed and NPK_Fixed) improved from blocks 1 to 4 and 6 (all p <0.0001). In 

contrast, RT remained the same from block 1 to 4 in the other two probability 

sequence groups (i.e., PK_Prob and NPK_Prob, Figure 6.2B) (all p > 0.1). 

Nevertheless, RT was faster in block 6 compared to block 1 in the NPK_Prob group 

(p<0.01) and this improvement approached significance in the PK_Prob group 
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(p=0.09). In addition, when a random sequence was introduced in block 5, RT in the 

PK_Fixed and NPK_Fixed groups deteriorated (both p <0.0001) while it remained 

the same between blocks 4 and 5 in the PK_Prob and NPK_Prob groups (both p = 1) 

(Figure 6.2C).  

The inferior learning in the probabilistic sequence (as expressed in no change 

in RT from block 1 to 4 and between blocks 4 and 5) is consistent with the hypothesis 

that probabilistic sequences are harder to learn compared to fixed sequences 

(Schvaneveldt & Gomez, 1998). However, given our hypothesis that participants 

typically acquire the sequence transitions of higher probabilities (Bornstein & Daw, 

2012; Howard, Howard, Dennis, et al., 2004; Hunt & Aslin, 2001), the marginal 

learning effect on the probabilistic sequence likely resulted from the difference in RT 

among stimuli with different transitional probabilities (Figure 6.1C). Thus, we 

compared RTs between these stimuli (Figure 6.2D) in the probabilistic sequence. A 

three-way (block × knowledge × probability) repeated measures ANOVA found that 

preliminary knowledge does not significantly affect RT and there was a significant 

interaction between block and probability (F(10,220) = 17.07, p<0.0001). Post hoc 

analyses with the Tukey-Kramer correction revealed that RTs of stimuli with a 

transitional probability of 0.1 were comparable to that of stimuli with transitional 

probability of 0.3, while RTs of stimuli with transitional probability of 0.3 were 

slower than that of probability of 0.6 (p<0.01). However, as learning progressed, RTs 

of stimuli with a transitional probability of 0.1 remained the same. In contrast, RTs 

improved from blocks 1 to 4 in stimuli with higher transitional probabilities 0.3 

(p<0.01) and 0.6 (p<0.0001), suggesting learning of these higher transitional 
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probabilities (Figure 6.2E). Additionally, introduction of a random sequence in block 

5 did not impair RT of stimuli with transitional probabilities of 0.1 and 0.3, but RTs 

of stimuli with a transitional probability of 0.6 deteriorated in block 5 (p<0.0001) 

(Figure 6.2F). These results confirm that the participants learned stimulus transitions 

with higher probabilities, specifically 0.6 and perhaps 0.3.  

 

 
Figure 6.2: Sequence learning of the probabilistic sequence depended on the transitional 
probability of stimuli.  
A) Mean RT and SE bars across the six blocks for all four groups. B) Difference between the RT in 
block 1 and block 4 to assess whether sequence learning occurred. C) Difference between block 5 and 
block 4 to assess whether RT increases in block 5 when a random sequence is presented. D) Mean RT 
and SE bars across the six blocks for only the probabilistic sequence in which the three transitional 
probabilities (Pro 0.1, Pro 0.3, and Pro 0.6) have been extracted and plotted separately. E) Difference 
between RT in block 1 and block 4.  F) in block 5 and block 4 separated for the 3 transitional 
probabilities in the probabilistic sequence. PK = preliminary knowledge, NPK = no preliminary 
knowledge, RT = reaction time, SE = standard error. 
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Since participants only learned higher transitional probabilities when stimuli 

followed a probabilistic pattern, we re-compared the learning effects among groups 

by using RT for stimuli with transitional probabilities 0.3 and 0.6 in PK_Prob and 

NPK_Prob groups. A repeated measures ANOVA revealed a significant interaction 

among the effects of block, preliminary knowledge, and sequence (F(5,44)=3.1, p 

<0.05). Tukey-Kramer-corrected post hoc analyses suggest that all groups had 

comparable mean RTs across all blocks (Figure 6.3A). In addition, all groups 

demonstrated improved mean RT from block 1 to 4 (all p<0.0001) and deteriorated 

mean RT from block 4 to 5 (all p<0.005). However, contrast analyses showed that the 

PK_Fixed group had the greatest change in RT from block 1 to 4 compared to the 

NPK_Fixed (p<0.05), PK_Prob (p<0.0005), and NPK_Prob groups (p<0.0005) 

(Figure 6.3B), while the latter three groups exhibited the same change in RT. 

Similarly, the RT change from block 4 to 5 was greater in the PK_Fixed group 

compared to the other three groups (all p<0.01) who had the same RT change (Figure 

6.3C). These results suggest that the PK_Fixed group learned better than the other 

three groups. 

Although participants learned either fixed or probabilistic sequences with or 

without preliminary knowledge of the sequence, learning across trials exhibited 

different patterns (Figure 6.4A). Specifically, learning of a fixed sequence exhibits 

decreased RT within blocks while learning of a probabilistic sequence exhibits 

reduced RT after rest without practice. A two-way (knowledge × sequence) ANOVA 

found a significant effect of sequence on offline learning (F(1,44) = 8.84, p<0.005). 

Particularly, the acquisition of the probabilistic sequence arises from greater offline 
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learning compared to the acquisition of the fixed sequence (Figure 6.4B).  Although 

sequence type was also found to significantly affect online learning (F(1,44) = 18.72, 

p<0.0001), it was shown that greater online learning was produced when a fixed 

sequence was learned (Figure 6.4B). Interestingly, when learning a probabilistic 

sequence, participants did not exhibit online learning. Instead, RT became slower 

within blocks. We further compared whether online or offline learning contributed 

more to the acquisition of a motor sequence. A two-way (knowledge × sequence) 

ANOVA on the RT difference between offline and online learning revealed a 

significant effect of sequence type (F(1,44)=15.27,  p<0.0005). Student’s t-tests found 

equal online and offline learning when a fixed sequence is performed (p=0.59), while 

greater offline compared to online learning was found when a probabilistic sequence 

was performed (p<0.0001). 

 
Figure 6.3: Sequence learning is comparable despite the sequence structure and preliminary 
knowledge. 
Mean RT and SE bars to assess learning. Only the RT of stimuli with transitional probabilities of 0.3 
and 0.6 were extracted and are shown for the probabilistic sequences. A) Mean RT across the six 
blocks. B) Difference between the RT in block 1 and block 4 to assess whether sequence learning 
occurred. C) Difference between block 5 and block 4 to assess whether RT increases in block 5 when a 
random sequence is presented. PK = preliminary knowledge, NPK = no preliminary knowledge, RT = 
reaction time, SE = standard error. 
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Figure 6.4: Greater offline learning to acquire the probabilistic sequence. 
A) Mean RT of each 12 taps to reflect online and offline learning. B) Comparison of online and offline 
learning between the groups. C) Comparison of online and corrected offline learning between the 
groups. Error bars represent standard errors. PK = preliminary knowledge, NPK = no preliminary 
knowledge, RT = reaction time. 

 

We also analyzed the corrected offline learning. The same results were found 

compared to the original offline learning data (Figure 6.4C). A two-way (knowledge 

× sequence) ANOVA found a significant effect of sequence (F(1,44) = 4.99, p < 

0.05). Specifically, there was greater corrected offline learning in PK_Prob and 

NPK_Prob groups compared to PK_Fixed and NPK_Fixed groups. These results 

suggest that offline learning rather than reactive inhibition/fatigue underlies the 

offline improvement in RT. 

In the posttest, we found that the recognition score did not differ from chance 

(i.e., 50%) in all four groups and there were no effects of sequence type and 

preliminary knowledge on the scores. Figure 6.5A shows the percentage of recalled 

three-element chunks. It is clear that participants in the fixed sequence groups had 

higher than chance recall, while recall was at chance in the two probabilistic sequence 

groups. The corrected percentage according to the chance level was shown in Figure 
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6.5B. A two-way ANOVA found a significant effect of sequence type (F(1,44)=6.75, 

p<0.01). Specifically, recall of the fixed sequence was superior compared to that of 

probabilistic sequence. In addition, using Student’s t-tests with an adjusted p level of  

𝛼
4

= 0.0125 to control the familywise error rate for the four simultaneous t-tests, the 

recall in the PK_Fixed was significantly higher than chance level (p<0.0001) The 

recall in the NPK_Fixed did not differ from chance (but approached significance, 

p=0.0146),  In contrast, recall in the two groups that performed the probabilistic 

sequence (i.e., PK_Prob and NPK_Prob) was not significantly different from the 

chance level (both p>0.2)  

 
Figure 6.5: Less declarative knowledge of the probabilistic sequence was acquired. 
A) Percentage of three-element chunks recalled in the posttest. B) Corrected percentage according to 
chance level. Error bars represent standard errors. PK = preliminary knowledge, NPK = no preliminary 
knowledge. 

Discussion 

In this study, we demonstrated that both fixed and probabilistic motor 

sequences can be learned quickly (i.e., in one training session). Further, this initial 

acquisition of a fixed sequence in the fast learning stage arises from both online and 

offline learning, while acquisition of a probabilistic sequence is driven predominantly 

by offline learning. Given that learning a probabilistic or fixed sequence requires 
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greater procedural or declarative memory, respectively, our results suggest that a bias 

toward procedural or declarative memory modulates how a motor sequence is learned 

in the fast learning stage. 

Offline learning, as a salient feature underlying motor sequence learning 

(Robertson, Pascual-Leone, & Miall, 2004), can boost the memory of a newly 

acquired sequence 5 – 30 minutes after the initial acquisition (Albouy, et al., 2006b; 

Hotermans, et al., 2008; Hotermans, et al., 2006; Nettersheim, et al., 2015; Schmitz, 

et al., 2009) or consolidate the memory a few hours later without sleep (Brown & 

Robertson, 2007a, 2007b; Robertson, Pascual-Leone, & Miall, 2004) or after sleep 

(Censor, et al., 2012; Nettersheim, et al., 2015; Robertson, Pascual-Leone, & Press, 

2004; Walker, et al., 2002). Thus, offline learning has been widely considered to 

occur only after the initial acquisition of sequences that develops over the course of a 

single training session, referred to as fast learning (Censor, et al., 2012; Dayan & 

Cohen, 2011; Honda, et al., 1998; Karni, et al., 1998a; Walker, et al., 2002). Unlike 

the widely-found offline learning that occurs following the fast learning stage, we 

observed offline learning that drives the fast acquisition of sequences within a first 

single training session. This result suggests that in addition to online learning 

(Bornstein & Daw, 2012; Cleeremans & McClelland, 1991), offline learning also 

contributes to rapid improvements in performance that allow sequences to be learned 

quickly in a single training session.  

The concurrent effect of online and offline learning could be modulated by the 

involvement of declarative and procedural memory. It is widely accepted that both 

memory systems cooperate and compete during motor sequence learning (Brown & 
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Robertson, 2007b; Meulemans, et al., 1998). Remarkably, the presence of declarative 

memory inhibits offline learning of procedural memory and thus disruption of 

declarative memory induces offline improvement in procedural skills four hours after 

the initial acquisition (Brown & Robertson, 2007a). In our study, similar effects of 

declarative and procedural memory were observed on offline learning in the fast 

learning stage. The recognition and recall tests were used to measure the engagement 

of declarative and procedural memory in the SRT task. Although the recognition test 

shows no differences in the amount of declarative knowledge acquired by participants 

regardless of the sequence type and preliminary knowledge (see details below), the 

recall scores reveal that, participants acquired less declarative knowledge of the 

probabilistic sequence. Notably, participants exhibited greater offline learning when 

performing probabilistic sequences, suggesting that the offline learning in the fast 

learning stage was strengthened when greater procedural memory and less declarative 

memory were required to learn the motor sequences. On the other hand, when greater 

declarative memory was involved in learning fixed sequences, as indicated by higher 

recall scores, reduced offline and greater online learning were observed. This inverse 

relationship between online and offline learning confirms the inhibition effect of 

declarative memory on offline learning. More importantly, our finding extends our 

understanding of the competition between multiple memory systems. That is, unlike 

previous studies that demonstrated this competition after skills are acquired (Brown 

& Robertson, 2007b; Foerde, et al., 2006; Poldrack, et al., 2001), we demonstrated 

that the competition begins as soon as learning starts and that declarative and 

procedural memory may be identified by their distinct behavioral expressions. 
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The offline learning observed within a single training session (i.e., the fast 

learning stage) is associated with procedural memory as is offline learning that takes 

place hours after the initial acquisition and is responsible for memory consolidation. 

However, it remains unclear whether this offline learning that allows fast initial 

acquisition of a motor sequence is related to offline learning that consolidates the 

memory of a newly acquired sequence. It is possible that offline learning that drives 

the fast acquisition is a precursor of the later occurring memory consolidation, or they 

may be the same process. To elucidate their relationship, further systematic 

investigations are needed. 

A debate within the offline learning literature is whether offline improvement 

in performance after rest, referred to as reminiscence (Eysenck & Frith, 1977), results 

from fatigue or reactive inhibition (Brawn, et al., 2010; Rickard, et al., 2008a) or an 

active learning mechanism (Eysenck & Frith, 1977; Robertson, Pascual-Leone, & 

Miall, 2004). It has been suggested that offline learning and reactive 

inhibition/fatigue are usually combined to lead to reminiscence (Eysenck, 1965), thus 

making it difficult to determine if reactive inhibition/fatigue is a potential cause of 

reminiscence. However, observations from our data favor offline learning to reactive 

inhibition/fatigue as the primary mechanism underlying offline improvement in 

reaction time or reminiscence observed in the SRT task. Specifically, with the same 

amount of practice, only participants who performed the probabilistic sequence 

slowed down their reaction time, while such “fatigue” was not observed when 

participants performed a fixed sequence. In addition, if fatigue appeared as soon as 

participants in the probabilistic sequence groups started to perform the task, it would 
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be unlikely that their learning would arise quickly (i.e., over four learning blocks) and 

to a comparable level as the participants in the fixed sequence groups who did not 

exhibit fatigue. Moreover, according to Eysenck and Frith (1977), reminiscence is 

task-specific. For example, reminiscence that results from reactive inhibition or 

fatigue usually occurs in a task that does not involve learning, where performance on 

the task is already perfect when an individual starts to perform the task. In contrast, 

reminiscence that arises from offline learning usually takes place in a learning task. 

Obviously, the SRT task involves sequence learning and our data demonstrated that 

participants learned the sequence. Further evidence supporting offline learning rather 

than reactive inhibition or fatigue comes from the observation on corrected offline 

learning. In the probabilistic sequence groups, performance after the short break is 

superior to the best performance level before the break. Therefore, without fully 

excluding the effect of reactive inhibition/fatigue, our results favor the statement that 

the offline improvement in reaction time is driven by offline learning rather than 

reactive inhibition or fatigue. Meanwhile, we suggest that it is necessary to 

systematically examine the reactive inhibition or fatigue effects in future sequence 

learning studies. 

Although it appears that offline learning rather than reactive inhibition or 

fatigue is the primary mechanism underlying the offline improvement in reaction time, 

the cause of increased reaction time when learning a probabilistic sequence is unclear. 

One likely reason is the interference of stimuli transitions with a probability of 0.1. It 

has been found that adults learned a sequence by iteratively updating the internal 

model of the motor sequence (Bornstein & Daw, 2012, 2013; Cleeremans & 
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McClelland, 1991; Verstynen, et al., 2012) and our data provide consistent evidence 

that participants acquired the stimulus transitions with probabilities of 0.3 and 0.6. 

However, the introduction of stimulus transition governed by a probability of 0.1 may 

mislead the updating of the internal model (i.e., transitional probability matrix) and 

thus impair reaction time when the probabilistic sequence was performed.  

In addition to the primary findings on online and offline learning, our results 

provide insights into the learning of probabilistic sequences. Sequence structure plays 

a critical role in motor sequence learning (Bennett, Howard, & Howard, 2007; Curran 

& Keele, 1993; Jimenez, et al., 1996; Song, et al., 2007a). To date, a variety of 

probabilistic sequences have been used in the SRT task, but only a few studies have 

employed probabilistic sequences that represent the stochastically related events of 

daily life, such as sequences produced by a finite state grammar (Jimenez, et al., 1996) 

or a Markov chain. We found that participants acquired stimulus transitions with 

higher probabilities of 0.3 and 0.6 and the learning of these higher stimulus 

transitions was comparable to that of the fixed sequence. Moreover, the facilitating 

effect of preliminary knowledge of a sequence depends on the sequence structure, 

which is consistent with previous studies (Jimenez, et al., 1996; Stefaniak, Willems, 

Adam, & Meulemans, 2008). Specifically, preliminary knowledge only facilitates the 

learning of a simple sequence, such a fixed sequence (Curran, 1997a; Curran & Keele, 

1993; Destrebecqz, 2004; Frensch & Miner, 1994; Stefaniak, et al., 2008) and not a 

sequence with a complex structure. 

Finally, one caveat worthy of further study is the measurement of the amount 

of declarative knowledge. Both recognition and recall tests are most widely used to 
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examine procedural learning in the SRT task (Destrebecqz & Peigneux, 2005; Shanks 

& Johnstone, 1999; Wilkinson & Shanks, 2004). In particular, these tests examine 

whether participants can explicitly recollect the acquired sequence knowledge. 

However, results from the recognition tests are equivocal in the literature (Perruchet 

& Amorim, 1992; Reed & Johnson, 1994b; Shanks & Johnstone, 1999; Willingham, 

Greeley, & Bardone, 1993). Similarly in our study, unlike the recall tests 

demonstrating the common finding that probabilistic sequence learning favors more 

procedural memory (Jimenez, et al., 1996; Song, et al., 2007a), the recognition tests 

reveals no difference in the amount of acquired declarative knowledge despite the 

sequence type and preliminary knowledge. In addition, the recognition scores in all 

four groups were not greater than chance. Given that in the recognition test, 

participants were presented with sequence segments and were asked to determine 

whether these segments are from the sequence they learned or a new sequence they 

did not see in the SRT task, it is hard to know whether the chance-level score was due 

to the participant’s inability to explicitly recollect sequence knowledge or that the 

participant did not learn some segments of the sequence. These two possibilities that 

may simultaneously account for the chance-level recognition must be addressed by 

other tests in future studies. Moreover, in our study, only four correct sequence 

segments were given to participants, while there were more than 10 segments within 

the learned sequence, the chance-level recognition score was caused possibly because 

some participants may learn segments other than the four displayed in the recognition 

test.  
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In summary, we found that concurrent online and offline learning allows 

motor sequences to be acquired quickly in the fast learning stage and can be identified 

by their manifestations in the progressive changes in reaction time. Remarkably, 

online and offline learning can be mediated by the declarative and procedural 

memory that are required to learn motor sequences. In addition, the modulation of 

online and offline learning may reflect the competition between both memory 

systems during motor sequence learning that begins in the fast learning stage. How 

the offline learning that drives the initial acquisition of sequences is related to the 

offline learning that is responsible for memory consolidation occurring hours after the 

initial acquisition remains to be investigated.  
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Chapter 7: (Studies IV and V) Generalization of motor sequence 
learning between children and adults 

Abstract 

Generation of motor sequence learning is critical in daily life; it allows the 

flexibility to extend what has been learned in one context to a novel context, which 

considerably reduces the time to acquire a new motor sequence. It is well known that 

sequence learning can generalize between effectors and converging evidence has 

shown that such generalizations are facilitated by fast learning where the memory of 

sequences is encoded. Compared to the great attention given to the generalization of 

sequence learning between effectors, little is known about whether learning of one 

sequence can generalize to another. Here, we asked children and adults to learn 

sequences in the SRT task and examined whether they are able to generalize the 

learning of one sequence to a novel sequence that shares the same probabilistic 

structure with the learned sequence.  Given that fast learning in children and adults 

are driven by two different age-related processes (i.e., online and offline learning), we 

expect the age-related differences in the generalization of sequence learning. Our 

results confirmed the hypothesis. Learning in adults primarily relied on online 

learning and did not generalize to a novel sequence. In contrast, learning sequences in 

children was driven by offline learning and the learning generalized to a novel 

sequence. When the learning processes in adults were biased toward offline learning, 

we surprisingly found that the age-related differences in the learning generalization 

vanished. Sequence learning in both adults and children are able to generalize and at a 

comparable level. These results suggest that the generalization of implicit motor 

sequence learning is age-related and such differences may result from the 
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involvement of online and offline learning that drive the initial acquisition of 

sequences. 

Introduction 

Children and adults learn a sequence quickly, usually over a course of one 

learning session consisting over 4-8 learning blocks. However, the memory of the 

newly acquired sequence is fragile. Slow learning and consolidation subsequently 

occur between multiple learning sessions to stabilize and boost the newly acquired 

memory. Thus, learning a sequence takes a considerable amount of time. Given there 

is an enormous amount of sequential actions to perform in daily life, it is certainly 

beneficial to be able to generalize the learning of a sequence in one context to another 

novel context, typically referred to as generalization (or transfer) of learning. 

Generalization, as an indicator of flexibility of sequence learning, has been widely 

examined through inter-manual transfer (Censor, 2013; Grafton, Hazeltine, & Ivry, 

2002). Compared to the greater attention given to inter-manual transfer in the 

literature, two crucial aspects regarding sequence learning generalization have been 

neglected. First, little is known whether learning of a sequence is transferrable to 

another novel sequence that shares the same underlying structure with the learned 

sequence. Second, a paucity of studies has investigated age-related differences in 

generalization of sequence learning. The purpose of this study, therefore, is to address 

these two questions. 

 In this study, we employed a serial reaction time (SRT) task (Nissen & 

Bullemer, 1987) that has been a primary window into understanding implicit 

sequence learning. In the SRT task, stimuli are presented one at a time following a 
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specific probabilistic structure and participants respond to these stimuli by 

corresponding actions. An increasing number of studies (together with study II in 

Chapter 4 and study IV in Chapter 6) have shown that learning a sequence is indeed 

learning its probabilistic structure (Bornstein & Daw, 2013; Visser, et al., 2007), 

while little is known whether the acquisition of the probabilistic structure could 

facilitates the learning of different sequences that share the same structure. 

Considering the facilitation effect of structural learning on generalization in other 

motor learning tasks (Acuna & Schrater, 2010; Braun, Mehring, et al., 2010; Braun, 

Waldert, et al., 2010; Tenenbaum, et al., 2011), we expect to see the generalization of 

implicit sequence learning in the SRT task. Furthermore, a common notion regarding 

generalization is that it is facilitated by fast learning where an abstract representation 

of the task develops (Censor, 2013; Perez, et al., 2007). Evidence from studies I 

(Chapter 3) and III (Chapter 5) has shown that fast learning in children and adults 

arise from different processes. Given the distinct fast learning processes that may 

affect the way in which the memory is encoded, it is very likely that there are age-

related differences in the generalization of implicit motor sequence learning.  

To investigate our hypotheses, we asked children and adults to perform a 

modified SRT task. Unlike our previous studies reported earlier, the task in this 

experiment consisted of eight blocks. The learning sequence was presented in blocks 

1-4, 6, and 7. A novel sequence was given in block 5 to assess sequence learning. 

Generalization of learning was assessed by providing another novel sequence in block 

8. This novel sequence was generated by the same structure as the learning sequence.  
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Experiment 1 

Materials and Methods 

This study was performed in accordance with the approval of the Institutional 

Review Board at the University of Maryland, College Park. Consent forms from adult 

participants and parents of child participants received prior to the experiment. Child 

participants gave their assent forms before they started the experiment. Each 

participant received $15 after the completion of the experiment. In addition, a small 

toy prize was provided to child participants upon the completion of the Movement 

Assessment Battery for Children 2 (MABC2) (Henderson, et al., 2007). 

Participants 

Thirty children (8.78 ± 2.51 years, between 4.8 and 12.95 years, 13 females) 

were recruited for this study. Prior to the experiment, children completed the MABC2 

to exclude those scored below the 15th percentile on the MABC2. One male child was 

excluded from this study owing to his 1st percentile score. In addition to child 

participants, ten young non-musician adults (19.84 ± 1.08 years, between 18.35 and 

21.09 years, 7 females) from the University of Maryland, College Park participated in 

this study. No participants were excluded owing to neurological impairments or 

medical conditions that would affect motor performance determined by a neurological 

health questionnaire. 

Experimental task and Procedure 

Participants performed the same SRT task as that in study I (Figure 7.1A). 

Participants stood on the home position before starting the task. The home position 
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was surrounded by six stepping targets with two located at the front, two at the side, 

and the other two at the back of the home position. The distance from the home 

position to each target was marked at the most comfortable stepping length that was 

determined prior to the experiment for each individual. Six spatially-matched visual 

stimuli (i.e., six holes) were presented on a monitor in front of the participants. After 

the task began, one mouse appeared from one of the six holes. Participants stepped to 

the corresponding target on the floor as quickly and accurately as they could and then 

returned to the home position. There was a 1500ms inter-stimulus-interval before the 

next stimulus appeared. A customized program written in the Labview (National 

Instruments, Austin, TX, USA) was used to collect the signals from the home position 

sensors and control the appearance of visual stimuli. Three reflective markers were 

attached to the participants’ big toes, heels, and the 5th metatarsal on both feet. The 

three-dimensional movement trajectories of these markers were record by a Vicon 

motion capture system (Oxford Metrics, Oxford, UK) with a sampling frequency of 

200Hz. 

Participants first completed a practice block where the stimuli appeared in a 

random order to assure that participants understood the task before starting the 

learning blocks. There were eight blocks and each consisted of 100 steps. Participants 

were not informed that visual stimuli in these blocks followed specific patterns. In 

blocks 1-4, 6, and 6, the visual stimuli followed 10 repetitions of sequence A (i.e., 

1423564215; 1 – right side, 2 – right front, 3 – left front, 4 – left side, 5 – left back, 

and 6 – right back). The order of visual stimuli followed 10 repetitions of sequence B 

(i.e., 3615425214) in block 5. In block 8, transfer sequence A1 was presented. Given 
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that learning a sequence is typically learning its probabilistic structure (Bornstein & 

Daw, 2013; Visser, et al., 2007), sequence A1 was generated by the transitional 

probabilistic matrix T. It is important to note that T matches with first-order 

probabilistic structure of sequence A. 



























=

000010
00.005.05.0
05.005.000
000001
001000
63.047.00000

T  

During the SRT task, there was a mandatory three-minute break after each 

block (Figure 7.1B). Upon completion of the SRT task, participants were asked to 

complete a post-test to examine whether declarative knowledge of sequence A was 

acquired. They were first asked to recall the sequence in the SRT task and to write 

down 10 steps of the sequence (i.e., recall task). They were then given 16 sequence 

chunks where eight chunks were correct and were asked to choose the ones they 

thought resembled the sequence they learned in the SRT task (i.e., recognition task). 

Data analysis 

The data analysis was similar to that in previous chapters. Response time and 

its decompositions, reaction time (RT) that represents mental processing and 

movement time (MT) that reflects the movement itself (Moisello, et al., 2009) were 

computed. Specifically, RT was computed as the time discrepancy between the onset 

of visual stimulus and the onset of foot movement. MT was calculated as the time 

elapsed from the onset of foot movement to the end point of foot movement when 

reaching the target. The summation of RT and MT forms response time. To derive 
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these variables, the starting and end points of foot movement were identified from the 

three dimension trajectory (filtered by an eighth-order Butterworth filter with a cutoff 

frequency of 10Hz) of the foot markers using a customized MATLABTM (MathWorks, 

Naticks, MA, USA) script. The onset of stepping was defined as the first sample 

when the foot reached 10% maximum movement height. The end point of stepping 

was defined at the time when the foot dropped to the same height as the onset. Within 

each learning block, RTs, MTs, or response times that deviated beyond or below 

2.575 standard deviations (i.e., resembles the 99% confidence interval) from the 

individual’s mean RT, MT, or response time in that block were considered as outliers 

and were excluded from further analyses. 

 

Figure 7.1: Experiment setup and procedure. 
(A) The SRT task. (B) Experimental procedure. 
 

Mean response time, RT, and MT were computed for each block. The 

indicator of sequence learning was whether performance improves from block 1 
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(sequence A) to block 4 (sequence A) and/or whether performance deteriorates from 

block 4 (sequence A) to block 5 (sequence B) (Robertson, 2007).  

Given that RT rather than MT reflected sequence learning (see results below), 

analyses on generalization of learning, as well as online and offline changes in 

performance, was performed only on RT. The performance difference from block 7 

(sequence A) to block 8 (sequence A1) was considered as a marker of sequence 

learning generalization. Rather than statistical learning, implicit sequence learning 

may result from chunk learning (Koch & Hoffmann, 2000; Stadler, 1993) or learning 

the exact sequence. Therefore, we also measured the generalization of three-element 

chunks and 10-element sequence (i.e., the exact sequence A) that shared in blocks 7 

and 8. Online change in RT was defined as the RT change that takes place within 

block and was computed as the difference between the mean RTs of the first and last 

10 steps. Offline change was defined as the RT change after a short rest without 

performing the task. In particular, this change was computed as the difference 

between the mean RT of last 10 taps in one block and mean RT of first 10 taps in the 

succeeding block. A positive value of online or offline change indicates RT 

improvement while a negative value means that RT became slower. 

A dominant explanation for offline and online changes in RT is that they are 

illusory effects of reactive inhibition or fatigue. However, studies in previous chapters 

excluded reactive inhibition or fatigue as the underlying mechanism. Here, we 

replicated our analyses in study III (Chapter 5). We computed the RT deterioration 

within each block and the magnitude of learning gained through the practice of each 

block. Specifically, the amount of RT deterioration had the same magnitude as the 
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online change in RT but with the opposite sign. For example, a -20ms online change 

in RT (i.e., RT became slower) was equivalent to 20ms RT deterioration. The 

magnitude of learning of each block was calculated as the difference in the mean RT 

of first 10 taps from one block to the succeeding block. Since fatigue/reactive 

inhibition may occur within the block, this difference between the RT at the 

beginning of the block (i.e., mean RT of first 10 taps in the block) and the post-rest 

RT (i.e., mean RT of first 10 taps in the succeeding block) serves as a better indicator 

of learning over that block as the effect of fatigue or reactive inhibition is 

substantially reduced after rest (Brawn, et al., 2010; Rickard, et al., 2008a). 

We then conducted a correlation analysis between RT deterioration and the 

magnitude of learning to examine three hypotheses regarding learning-based or 

fatigue/reactive inhibition-based online and offline changes in RT. First, previous 

studies (primarily in explicit sequence learning) that advocated the fatigue/reactive 

inhibition hypothesis claimed that fatigue/reactive inhibition suppresses performance 

expression but does not impair learning (Brawn, et al., 2010; Rickard, et al., 2008a). 

That is to say, the RT deterioration within a block, which is under the influence of 

fatigue or reactive inhibition, does not impact the magnitude of learning. Therefore, 

the RT deterioration and magnitude of learning would not be correlated. Second, 

numerous earlier studies have found the detrimental effect of fatigue/reactive 

inhibition on procedural skill learning (Ammons, 1947; Bourne & Archer, 1956; 

Denny, et al., 1955). Notably, learning would be impaired more if a stronger effect of 

fatigue/reactive inhibition builds, indicating a negative impact of the RT deterioration 

on the magnitude of learning. Finally, in opposition to the fatigue/reactive inhibition 
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hypothesis, online and offline changes in RT may arise from certain underlying 

learning mechanisms (Eysenck & Frith, 1977). Under this hypothesis, the online RT 

deterioration within blocks may take place due to learning itself and may serve as a 

prerequisite for the offline change in RT following rest. Thus, the amount of RT 

deterioration would be positively correlated to the magnitude of learning. In other 

words, the greater the RT deteriorates before rest, the greater the magnitude of 

learning would be. 

To measure the score in the recall test, we counted the number of correct 2-, 

3-, and 4-element chunks in the sequence that participants recalled. The chance levels 

of recalling 2-, 3-, and 4-element chunks were different. Take the 3-element chunk for 

an example, given the first element, there were four chunks (i.e., chunks starts from 1, 

2, 4, or 5) that could be guessed with a chance level of 0.125 and two chunks (i.e., 

chunks starts from 3 or 6) that could be guessed with a chance level of 0.0625. Thus, 

the weighted probability among these six chunks was 0.1042. Given that participants 

recalled a 10-element long sequence that has eight 3-element chunks, the chance level 

for recall 3-element chunks in a 10-element long sequence written by an individual 

was 0.83 (i.e., 8 × 0.1042). Similarly, the chance levels of recalling 2- and 4-element 

chunks were 3.38 and 0.29. To assess the recognition performance, we counted the 

number of correct chunks (i.e., chunks included in sequence A) that participants 

chose as well as the number of incorrect chunks (i.e., chunks not included in sequence 

A) that participants did not choose in the recognition task. The sum of these two 

numbers was used as the recognition score. For example, if a participant chose two 

correct chunks and did not choose incorrect chunks, the recognition score is 10. The 



146 
 

 

recognition score would be eight if participant chooses all 16 chunks. The chance 

level is eight for the recognition test.  

Statistical analysis 

Like study III (Chapter 5), we considered age as a continuous variable as well 

as a categorical variable by clustering participants into three age groups: children 

younger than eight, children older than eight, and adults. A two-way mixed effect 

ANOVA was used to examine the effects of block and age group (i.e., a categorical 

variable). Tukey-Kramer corrected post hoc tests were conducted following any 

significant effect. To examine the generalization of learning first-order probabilistic 

transitions, one-way ANOVAs were performed to examine the age group effect on 

the mean RT differences between blocks 7 and 8. Similarly, the age effect on the 

generalization of learning three-element chunks or the sequence A itself was 

examined through the differences in RT of the same three-element chunks or the 

sequence A between blocks 7 and 8. A two-way mixed effect ANOVA was 

performed on offline and online changes in RT that developed between blocks 1 and 

4. To examine the progressive change in implicit sequence learning with age (i.e., a 

continuous variable), we further modeled sequence learning (as measured by RT 

differences between blocks 1 and 4 as well blocks 4 and 5), the generalization of 

learning (as measured by RT difference between blocks 7 and 8), offline, and online 

RT changes based on the individual’s age. Specifically, we used a linear model, 

piecewise linear latent model with unknown knots, or nonlinear model, which was 

determined by likelihood ratio tests and the Akaike information criteria (AIC). To 

examine whether online and offline changes in RT were fatigue/reactive inhibition-
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based or learning-based, a partial correlation analysis was performed to confirm the 

relationship between the RT deterioration and the magnitude of learning controlling 

the effect of age and block. Since recall and recognition score were measured by 

count data, Poisson models were used to examine the effect of age group or 

continuous age on the recall and recognition score. If over-dispersion was displayed 

in these two scores, a Poission mixture model (i.e., negative binomial regression) was 

used instead. The significance level for statistical analyses was set at α = 0.05. 

Results 

There were significant effects of block (F(7,37) = 33.92, p <0.0001), age 

group (F(2,37) = 28.83, p <0.0001), and their interaction (F(14,37) = 5.30, p <0.0001) 

on RT (Figure 7.2A). Overall, RT was slower in children younger than eight 

compared to the other two groups (all p <0.05) that had similar RT. RT improved 

from block 1 to 4 (all p < 0.01) while deteriorated from block 4 to block 5 (p < 0.01) 

regardless of age groups, suggesting that all groups learned sequence A at a 

comparable level. Importantly, RT deteriorated from block 7 to block 8 in adults (p < 

0.0001) while RTs in blocks 7 and 8 were not significantly different in two children’s 

groups, suggesting that children, but not adults, generalized the learning of sequence 

A to sequence A1. However, MT displayed a different pattern compared to RT 

(Figure 7.2B). There was only a significant effect of block (F(7, 37) = 14.52, p < 

0.0001) on MT. MT did not improve from block 1 to block 4, 6, and 7 where 

sequence A was performed. However, compared to blocks 4, 6, and 7 (all p <0.0001), 

MT became faster in block 5 where sequence B was performed. Since there was no 

improvement in MT on sequence A and no perturbation on MT when sequence B was 
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performed, sequence learning in the SRT task was primarily reflected in RT that 

represents mental processing rather than MT that characterizes the movement itself. 

 

Figure 7.2: Implicit motor sequence learning, as reflected by RT, was comparable between 
children and adults. 
(A) Mean reaction time (RT) across learning blocks. (B) Mean movement time (MT) across learning 
blocks. 
 

The RT change from block 1 to block 4 as well as from block 4 to block 5 was 

modeled by a linear function to examine the effect of an individual’s age (i.e., 

continuous variable). These models failed to find significant age effects (slope = -0.3, 

p = 0.9; slope = 2.55, p = 0.33)(Figure 7.3A & Figure 7.3B). 
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Figure 7.3: Implicit motor sequence learning was not age-related. 
 (A) Mean RT differences between blocks 1 and 4 across age. (B) Mean RT differences between 
blocks 4 and 5 across age. 
 
 

Since sequence learning was attributed to RT and not MT, the generalization 

of sequence learning was examined only on RT. Our results revealed the significant 

effect of age group on learning generalization (F(2, 37) = 4.34, p < 0.05). Specifically, 

the two children groups showed the comparable generalization of learning while 

generalization in adults was inferior to the children (p < 0.05 for children younger 

than eight; p = 0.06 for children older than eight; Figure 7.4A). When only the triplets 

(F(2, 37) = 4.79, p < 0.05; Figure 7.4B) or the 10-element sequence (F(2, 37) = 3.85, 

p < 0.05, Figure 7.4C) that shared by sequences A and A1 were compared, the effect 

of age group remained significant. The linear model on the generalization of learning 

found that learning generalization was reduced with age despite the length of the 

sequence (all p < 0.01). These results suggest the age-related differences in the 
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generalization of implicit sequence learning. Notably, the generalization of implicit 

motor sequence learning is superior in children compared to adults. 

 

Figure 7.4: Generalization of sequence learning was age-related. 
(A) Generalization of first-order probabilistic transitions. (B) Transfer of learned triplets. (C) Transfer 
of the 10-element sequence A. 

 

The offline and online changes in RT from block 1 to block 4 where sequence 

A was learned were examined. It was found that the RT offline change was not 

significantly affected by block and its interaction with age. However, the offline 

change in RT after each rest between blocks 1 and 4 depended on age (F(2,37) = 

17.92, p < 0.0001). In particular, the offline change was greater in children younger 

than eight compared to older children (p < 0.0005) and adults (p < 0.0001) and 

greater in children older than eight compared to adults (p < 0.05).  Since there was no 
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block effect, the averaged offline change in RT during three breaks from block 1 to 

block 4 was used to further investigate the age-related difference (Figure 7.5A). As 

shown in Figure 7.5A, the offline change decreased presumably before a certain age 

Y and then remained the same after Y. A likelihood ratio test confirmed that fitting 

the data with a piecewise linear model with Y being a latent variable is superior to a 

linear model (𝜒𝑑𝑑=22 = 15, p < 0.001). This piecewise linear latent model revealed 

that before age Y = 7.25 (SE = 0.61), the offline change in RT decreased with age 

(slope = -71.84, p < 0.005) while rate of change decreased after age Y = 7.25 (slope = 

-5.8, p < 0.05). In addition, the magnitude of the offline change in RT was estimated 

to be larger than zero at the age of 4.8 (247.03ms, p <0.0001) while it diminished to 

zero (-2.86ms, p =0.87) at age 20. 

 

Figure 7.5: Age-related offline and online changes in RT. 
(A) Offline changes in RT across age. Empty circles represent individual data. Solid circle represent 
the estimated age jointing two phases of offline changes development. (B) Online changes in RT 
across age. Empty circles represent individual data. Solid circle represent the estimated age jointing 
two phases of online changes development. 

 

Similar to the offline change in RT, the amount of RT that changed online was 

found to depend only on age (F(2,37) = 16.87, p<0.0001). There were no effects of 

block and its interaction with age. In particular, children younger than eight showed 

significantly less online change than children older than eight (p<0.01) and adults (p 
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< 0.0001). In addition, less online change was shown in children older than eight 

compared to adults (p<0.05). The mean online change in RT across block 1 to block 4 

was then modeled to examine its dependence on an individual’s age. The likelihood 

ratio test between a linear model and a piecewise latent model was not significant 

(𝜒𝑑𝑑=22 = 4, p = 0.13). We reported results of both the linear model and piecewise 

linear model. The linear model found that the online change in RT was negative at the 

age 4.8 (-97.63ms, p < 0.0001) and increased with age (slope = 10.04, p < 0.0001). 

The piece-wise latent model revealed that before age Y = 7.25 (SE = 1.29), the online 

change in RT enhanced with age (approached significance; slope = 36.17, p = 0.09) 

while keeping increasing with a slower rate after age Y = 7.25 (slope = 7.72, p < 

0.001). Notably, the online change was negative at age 4.8 (-141.64ms, p <0.0001) 

while it increased to be positive (45.45ms, p < 0.05) at age 20, suggesting that RT in 

younger children became slower within blocks (Figure 7.5B). Taken together, these 

results suggest the offline and online changes in RT were age-related. Offline change 

decreased while online change increased as age increased. 

 

Figure 7.6: Age-related offline and online changes in RT are not caused by fatigue or reactive 
inhibition. 
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The partial correlation between RT deterioration and magnitude of learning with controlling age and 
block effects. Dashed circle represents the 95% confidence interval. 

 

Although children demonstrated greater offline changes in RT, it remains 

unknown whether the offline enhancement resulted from inhibition/fatigue or arises 

from learning itself. We examined the partial correlation (controlling the age and 

block effect) between the RT deterioration within a block and the magnitude of 

learning that took place over this block (see Methods). It was found that the RT 

deterioration was positively correlated to the magnitude of learning (ρ = 0.59, p 

<0.0001, Figure 7.6). This result was contrary to the reactive inhibition/fatigue 

hypotheses and consistent with the learning-based hypothesis, suggesting that online 

and offline changes in RT and their development with age were not artifacts of 

reactive inhibition or fatigue. 

In the posttest, we found a significant effect of age group on recalling 2- 

(𝜒𝑑𝑓=22 = 15.31, p < 0.0001), 3- (𝜒𝑑𝑑=22 = 11.77, p < 0.01), and 4-element chunks 

(𝜒𝑑𝑑=22 = 10.23, p < 0.01). Despite the length of chunks, the two child groups had 

lower recall scores than adults (p < 0.0001 for 2-element chunk and all p <0.01 for 3- 

and 4-element chunks). In addition, adults (p < 0.05 for 2-element chunk and p 

<0.0001 for 3- and 4-element chunks) had higher than chance recall for all lengths of 

chunks, while recall in children younger than eight was at chance for all lengths of 

chunks (Figure 7.7A). A negative binomial regression confirmed the age effect (i.e., 

continuous age). Specifically, the recall score became higher as age increased (all p 

<0.001, not graphically shown here). In the recognition test, there was a significant 

effect of age group (𝜒𝑑𝑑=22 = 8.12, p < 0.05). Specifically, the recognition score was 
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lower in children compared to adults (both p < 0.001). Additionally, the recognition 

score was found to be at chance in children but higher than chance in adults (p < 

0.0005). It was further found that the recognition score progressively increased with 

age (𝜒𝑑𝑑=12 = 6.03, p < 0.05) (Figure 7.7B). 

 

Figure 7.7: Age-related declarative learning. 
(A) The recall scores. (B) The recognition score. 

Discussion 

This study replicated the results in previous chapters that implicit sequence 

learning over the first learning session in the SRT task was reflected by two age-

related processes in reaction time (RT); offline learning that developed after a rest 

and online learning that occurred when the task was performed. Such online and 

offline processes are not illusory effects of fatigue or reactive inhibition. Most 

importantly, we found the age-related differences in the generalization of implicit 
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sequence learning. In particular, the generalization of implicit sequence learning 

reduced with age. That is to say, learning generalization is better in children 

compared to adults. 

Given that generalization is affected by the way in which memory is encoded 

during fast learning (Censor, 2013; Clark & Ivry, 2010; Sagi, 2011), we propose that 

the age-related differences in generalizing implicit sequence learning may be related 

to the age-related online and offline learning. Since offline learning is very likely to 

correspond to procedural memory (Du, et al., 2016), the age-related differences in the 

generalization may vanish in sequence learning that demands greater procedural 

memory. To test this hypothesis, in experiment 2, we asked children and adults to 

learn a probabilistic sequence that favors more procedural memory compared to 

learning a fixed sequence (Du, et al., 2016; Jimenez, et al., 1996; Song, Howard, & 

Howard, 2007b). 

Experiment 2 

Materials and Methods 

This study was performed in accordance with the approval of the Institutional 

Review Board at the University of Maryland, College Park. Consent forms from adult 

participants and parents of child participants received prior to the experiment. Child 

participants gave their assent forms before they started the experiment. Each 

participant received $15 after the completion of the experiment. In addition, a small 

toy prize was provided to child participants upon the completion of the Movement 

Assessment Battery for Children 2 (MABC2) (Henderson, et al., 2007). 
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Participants 

Twenty six children (9.46 ± 2.07 years, between 6.03 and 13 years, 5 females) 

were recruited for this study. Prior to the experiment, children completed the MABC2 

to exclude those scored below the 15th percentile on the MABC2. Ten young non-

musician adults (20.17 ± 0.84 years, between 19.2 and 21.5 years, 5 females) from the 

University of Maryland, College Park participated in this study. No participants were 

excluded owing to neurological impairments or medical conditions that may affect 

motor performance determined by a neurological health questionnaire. 

Experimental task and Procedure 

Participants performed the same SRT task as that in experiment 1. The only 

difference was the sequence that visual stimuli followed in each block. In blocks 1-4, 

6, and 7, the visual stimuli followed sequence A that was generated by the transitional 

matrix T. The order of visual stimuli followed a random sequence B in block 5. In 

block 8, generalization sequence A1 was presented. Sequence A1 was different from 

sequence A but it was also created by the transitional probabilistic matrix T. There 

were 102 stimuli in each block to constrain that each stimulus appeared an equal 

number of times in each block. 
















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05.001.05.005.009.03.0
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Data analysis 

Data analysis was identical to that in experiment 1 except one difference. It 

has been found that learning a probabilistic sequence involves the acquisition of 

sequence transitions of higher probabilities. Thus, instead of analyzing the mean RT 

of total 102 steps, we analyzed the mean RTs of steps to stimuli with higher and 

lower probabilities respectively. We considered the probabilities below 0.09 as low 

probabilities as in the entire sequence of 102 steps, they appeared less than 20 times. 

Statistical analysis 

The analyses were identical to that in experiment 1 with one difference. When 

the mean RT was analyzed, a three-way mixed effect ANOVA was used. That is, in 

addition to the effects of block and age group, the effect of probability was examined 

as well. 

Results 

There were significant effects of block (F(7,231) = 14.51, p <0.0001), age 

group (F(2,33) = 35.65, p <0.0001), and probability (F(1,33) = 9.65, p <0.005) 

(Figure 7.8). RT was slower in children younger than eight compared to the other two 

groups (p < 0.01 for children older than eight; p < 0.0001 for adults). Children older 

than eight had slower RT than adults (p < 0.0001). RT to lower transitional 

probability stimuli were slower compared to that to stimuli with higher transitional 

probability (p<0.005). RT in all groups improved from block 1 to 4 (all p < 0.005) 

while deteriorated from block 4 to block 5 (p < 0.005), suggesting that all groups 

learned sequence A to a comparable level. Importantly, RTs in blocks 7 and 8 were 
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not significantly different despite age groups, suggesting that both children adults 

generalized learning of sequence A to sequence A1. Linear functions that modeled 

the RT change from block 7 to block 8 (i.e., generalization) failed to find significant 

age effects (slope = 0.33, p = 0.66 for high probability stimuli; slope = -0.7, p = 0.64 

for low probability stimuli) (Figure 7.9). Similar to the results in previous chapters, 

MT was not found to reflect sequence learning as there was not effects of block, age 

group, and probability on MT.  

 

Figure 7.8: Mean RT across learning blocks when adults and children learned a probabilistic 
sequence, revealing no age effect on probabilistic sequence learning. 
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Figure 7.9: Generalization of probabilistic sequence learning is not age-related. 
 

The offline and online changes in RT from block 1 to block 4 where sequence 

A was learned were examined. It was found that the RT offline change was not 

significantly affected by block and its interaction with age. However, the offline 

change in RT after each rest between blocks 1 and 4 significantly depended on age 

(F(2,33) = 4.1, p < 0.05). In particular, the offline change was greater in children 

younger than eight compared to adults (p < 0.05).  Since there was no block effect, 

the averaged offline change in RT during three rests from block 1 to block 4 was used 

to further investigate the age-related difference (Figure 7.10A). According to AIC, we 

modeled the offline change in RT using an exponential function 𝑏1𝑒𝑏2(𝐴𝐴𝐴−6.03)(i.e., 

6.03 was the minimum age). This nonlinear regression revealed a significant effect of 

age (𝑏2 =  −0.06, p<0.01). In addition, the magnitude of offline change in RT was 

estimated to be larger than zero at age 6.03 (𝑏1 = 120.69ms, p <0.0001). Unlike 
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previous chapters where adults had no offline changes in RT, we found that offline 

change in RT was 37.08ms (p < 0.01) estimated at age 20. 

 

 
Figure 7.10: Age-related offline and online changes in RT. 
(A) Offline changes in RT across age. Empty circles represent individual data. (B) Online changes in 
RT across age. Empty circles represent individual data. 

 

Similar to the offline change in RT, the amount of RT that changed online was 

found to depend only on age (F(2,33) = 4.39, p<0.05). There were no effects of block 

and its interaction with age. In particular, children younger than eight showed 

significantly less online change than adults (p < 0.05).  The mean online change in 

RT across block 1 to block 4 was then modeled to examine its dependence on an 

individual’s age (Figure 7.10B). The exponential function 𝑏1𝑒𝑏2(𝐴𝐴𝐴−6.03) was chose 

according to AIC.  It was revealed that the age effect approached significance 

(𝑏2 =  −0.04, p=0.05). Notably, the online changes were estimated to be negative at 

age 6.03 (𝑏2 = -96.83ms, p <0.0001) and 20 (40.9ms, p < 0.01). Taken together, these 

results suggest that although there are age-related differences in online and offline 

learning changes in RT when adults and children learn a probabilistic sequence, 

probabilistic sequence learning in both children adults is primarily driven by offline 

learning.  
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Figure 7.11: Age-related offline and online changes in RT are not caused by fatigue or reactive 
inhibition. 
The partial correlation between RT deterioration and magnitude of learning with controlling age and 
block effects. Dashed circle represents the 95% confidence interval. 

 

Children demonstrated greater offline changes in RT, but it remains unknown 

whether the offline enhancement resulted from inhibition/fatigue or arises from 

learning itself. We examined the partial correlation (controlling the age and block 

effect) between the RT deterioration within a block and the magnitude of learning 

that took place over this block (see Methods). It was found that the RT deterioration 

was positively correlated to the magnitude of learning (ρ = 0.56, p <0.0001, Figure 

7.11). This result was contrary to the reactive inhibition/fatigue hypothesis and 

consistent with the learning-based hypothesis, suggesting that online and offline 

changes in RT and their development with age were not artifacts of reactive inhibition 

or fatigue. 

In the posttest, there was no age effect on the declarative knowledge of 

sequence A acquired during the SRT task (not graphically shown). 
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Discussion 

In this study, we found that the generalization of implicit motor sequence 

learning was superior in children compared to adults. However, when greater offline 

learning was involved in the SRT task, which was mediated by the involvement of 

procedural memory required by the learning sequence, the age-related differences in 

learning generalization disappeared. The age-related differences in offline and online 

learning can, at least partially, explain the age effect on the generalization of implicit 

sequence learning. 

Generalization has been suggested to be affected by the way in which the 

memory of sequence is encoded. Thus, what is generalized from one sequence to 

another depends on the sequence structure that is encoded into memory. An 

increasing amount of studies have suggested statistical transition learning to account 

for sequence learning (Bornstein & Daw, 2012, 2013; Hunt & Aslin, 2001). Statistical 

transition learning refers to the process where probabilistic regularities between 

sequence elements (normally first-order transitions) are learned (Saffran, et al., 1996). 

However, when the learning sequence (i.e., fixed sequence in experiment 1) and 

novel sequence shared the same statistical transitional structure, adults failed to 

generalize sequence learning to the novel sequence. In contrast, learning generalized 

to the novel sequence in children. These results demonstrate the age-related 

differences in the generalization of implicit sequence learning. 

The underlying mechanisms of the age-related differences remain unclear. 

One explanation is that implicit sequence learning in adults results from chunk 

learning (Koch & Hoffmann, 2000; Stadler, 1993) rather than statistical learning. In 
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chunk learning, a sequence is partitioned into short segments to be learned and the 

concatenations of segments leads to the acquisition of the sequence. Thus, learning in 

adults is likely to generalize to the same chunks shared between the learning and 

generalization sequences. However, our results preclude this possibility. When only 

three-element chunks were compared between the learning and generalization 

sequences, RT of chunks in the generalization sequence was slower compared to 

those in the learning sequence, indicating that adults failed to generalize sequence 

chunks learned in sequence A. An alternative to the chunk learning hypothesis is the 

concept of over-fitting. That is to say, if adults learned the entire sequence itself, a 

small variation in the sequence would result in reduced generalization (Censor, 2013; 

Clark & Ivry, 2010; Sagi, 2011). This explanation was incompatible with our results. 

In the generalization sequence, there were about 40 stimuli that followed sequence A. 

When RTs of these steps in the generalization sequence were compared to the 

learning sequence, we failed to observed learning generalization in adults. 

Surprisingly, the age-related differences in the generalization prevailed only 

when the learned sequence was fixed. Learning of a probabilistic sequence 

generalized to a novel sequence in both children and adults and at a comparable level. 

The chief difference between fixed and probabilistic sequence learning in adults is 

that greater offline learning contributed to acquire probabilistic sequences while fixed 

sequence learning was dominated by online learning. Learning a probabilistic 

sequence favors more procedural memory compared to learning a fixed sequence 

(Jimenez, et al., 1996; Song, et al., 2007b), which yields greater offline learning 

(study IV, Chapter 6). Considering the connection between procedural memory and 
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offline learning, as well as between declarative memory and online learning (study 

IV, Chapter 6), these results suggest that the generalization of sequence learning is 

possibly governed by procedural memory encoding, but not declarative memory 

encoding. We suggest that future studies systematically examine this hypothesis by 

comparing the generalization in adults with modulating the procedural and declarative 

memory that were required in sequence learning. 

Another explanation for the age-related generalization of fixed sequence 

learning is the memory stability. It has been found that the high-level representation 

of the learned sequence that enables generalization is only formed when the memory 

of sequence is unstable. It is possible that memory encoded by online learning is more 

stable compared to that encoded by offline learning, which results in inferior 

generalization of fixed sequence learning in adults. To provide a unifying 

explanation, further systematical research is needed. 

Conclusion 

We confirmed the common notion that the generalization of sequence learning 

depends on the way in which the memory is encoded. When offline learning 

dominated the fast acquisition of sequences, sequence learning generalized to a novel 

sequence. In contrast, sequence learning failed to generalize to a novel sequence 

when online learning dominated the acquisition of sequences. In addition, we 

demonstrated that the generalization of fixed but not probabilistic sequence learning 

was age-related. We propose that the age effect on the generalization of implicit 

sequence learning can be, at least partially, explained by the age-related differences in 

offline and online learning.  
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General Discussions 
 

The initial acquisition of motor sequences usually develops over a course of 

one learning session and is known as fast learning (Doyon & Benali, 2005; Nissen & 

Bullemer, 1987; Willingham, et al., 1989). Previous studies have consistently found 

the comparable ability in fast sequence learning between children as young as six-

year-old and adults (Meulemans, et al., 1998; Weiermann & Meier, 2012b). Given 

that distinct memory may be encoded during fast learning in children and adults 

(Meulemans, et al., 1998; Nemeth, Janacsek, et al., 2013b), age-related learning 

processes are likely to differentially contribute to the fast acquisition in children and 

adults. The dissertation programmatically examined the behavior expressions of 

learning processes underlying implicit motor sequence learning in the serial reaction 

time (SRT) task (or its modified version). The results of study I demonstrated the 

comparable ability between children as young as 6-year-old and adults to quickly 

learn motor sequences, as revealed by reaction time (RT) that represents mental 

processing. Interestingly, the comparable fast sequence learning was expressed by 

two age-related processes; an online process as reflected by progressive changes in 

RT as the sequence was practiced and offline process as indicated by enhanced RT 

following short rests without physical practice on the sequence. Studies II to IV 

demonstrated that these two processes were neither illusory effects of fatigue or 

reactive inhibition nor by-products of task pacing. Rather, they were likely to be 

active learning mechanisms that may mirror to memory systems of procedural and 

declarative learning. Given the age-related differences in procedural and declarative 

learning (Meulemans, et al., 1998; Nemeth, Janacsek, et al., 2013b), the development 
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of online and offline learning are divergent. Offline learning reduced as age increased 

and impaired around the age 20. In contrast, online learning strengthened with age 

and dominated sequence learning in adults. Furthermore, results of studies V and VI 

revealed that online and offline learning and their underpinning memory systems did 

not only affect the acquisition of sequence, but also had significant effects on the 

generalization of implicit motor sequence learning. Notably, the generalization of 

sequence learning appeared to be facilitated by offline learning rather than online 

learning. Taken together, this dissertation demonstrated that age-related learning 

processes, offline and online learning, drive the fast acquisition of motor sequences. 

These two learning processes are likely to be responsible for the age-related 

differences in the generalization of implicit motor sequence learning. 

The consistent observation in this dissertation was that RT in children, 

especially around the age of six, deteriorated as they were practicing the SRT task, 

which was subsequently followed by remarkable RT enhancements after a short rest. 

This deteriorated online RT makes it unclear whether the online and offline changes 

in RT are active learning mechanisms or illusory effects of fatigue or reactive 

inhibition. For example, children’s RT worsened within learning blocks when they 

performed the SRT task, presumably because of the accumulation of fatigue or 

reactive inhibition. The effect of fatigue or reactive inhibition dissipated following a 

rest, which resulted in the recovery of RT and consequently led to offline 

improvements in RT (Ammons, 1947; Bourne & Archer, 1956; Brawn, et al., 2010; 

Denny, et al., 1955; Rickard, et al., 2008a; Rieth, et al., 2010). It has been suggested 

that fatigue or reactive inhibition and offline learning itself are usually combined to 
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result in offline changes in RT, making it challenging to determine whether the 

offline enhancement in RT results from active learning or fatigue/reactive inhibition. 

Results from this dissertation provided insights into this problem and suggest 

that online and offline processes observe during fast learning of motor sequences are 

functional mechanisms of learning rather than illusory effects of fatigue or reactive 

inhibition. It has been suggested that whether offline enhancement in performance 

(i.e., RT) is caused by fatigue or reactive inhibition depends on the task (Eysenck & 

Frith, 1977). When a motor task does not require learning, indicating that 

performance on the task is already perfect as soon as the task starts, fatigue or 

reactive inhibition is likely to be primary cause of offline changes in performance. In 

addition, in the non-learning task, post-rest performance usually returns to the pre-rest 

performance level without improvement. In contrast, post-rest performance should be 

superior compared to pre-rest performance if offline changes in performance results 

from learning rather than fatigue or reactive inhibition. Results in study I provide 

supporting evidence for the learning-based offline process. However, the possibility 

of fatigue or reactive inhibition could not be fully excluded given that online RT did 

remarkably deteriorated when children were practicing the task.  

To further determine whether online RT deterioration and its subsequent 

offline RT enhancement arise from fatigue or reactive inhibition, the hypotheses 

related to fatigue or reactive inhibition were examined through studies III to VI. 

Reactive inhibition, elicited by fatigue, motivation, or attentional factors, accumulates 

when an individual is practicing the task. Previous studies have suggested that the 

fatigue or reactive inhibition could have a detrimental effect on learning (Ammons, 
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1947; Bourne & Archer, 1956; Denny, et al., 1955) or could suppress the 

performance expression without impairing learning (Brawn, et al., 2010; Rickard, et 

al., 2008a; Rieth, et al., 2010). Remarkably, the results in studies III to VI revealed a 

facilitation effect of RT deterioration on sequence learning. This observation is 

clearly incompatible with the fatigue or reactive inhibition hypotheses. It further 

suggests that the online RT deterioration and subsequent offline RT improvement are 

rather likely to be functional mechanisms of learning. 

Although the underlying mechanisms of online and offline learning remain 

unclear, we propose that they originate from the interactive memory systems of 

declarative and procedural learning. In this dissertation, procedural learning 

dominated in children, as revealed by their chance-level recognition and recall scores. 

In contrast, adults produced higher than chance scores, suggesting that they acquired 

declarative knowledge of the sequence in the SRT task; results that are consistent 

with the literature (Meulemans, et al., 1998; Weiermann & Meier, 2012b). On one 

hand, the greater use of procedural learning may discourage online learning in 

children, which causes substantial RT deterioration. On the other hand, the bias to 

declarative learning in adults may inhibit their offline learning. This inhibition effect 

is reduced in children as greater procedural learning is involved, yielding stronger 

offline learning effect. Supporting evidence comes from studies IV and VI in which 

online learning was inhibited and offline learning strengthened when the SRT 

required greater procedural learning (i.e., learning a probabilistic sequence). 

Generalization of sequence learning is facilitated by fast learning (Censor, 

2013; Clark & Ivry, 2010; Sagi, 2011). This dissertation suggests that the age-related 
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differences in online and offline learning that contribute to the initial acquisition of 

sequences may lead to children and adult different abilities in generalizing the 

learning of one sequence to a novel sequence. Indeed, results show that the ability in 

the generalization of fixed sequence learning reduced as age increased, perhaps 

because offline learning, rather than online learning, enabled to encode the memory 

of abstract sequence presentation (i.e., the probabilistic structure). When learning in 

adults was dominated by greater offline learning, the age-related differences in 

generalization vanished. Considering the connection between procedural memory and 

offline learning, as well as between declarative memory and online learning, these 

results suggest that the generalization of implicit motor sequence learning is possibly 

governed by procedural memory encoding, but not declarative memory encoding. In 

addition, a recent study has demonstrated that unstable rather than stable memory has 

a positive effect on learning generalization (Mosha & Robertson, 2016). It could also 

be posited that memory formed by offline learning is more fragile compared to that 

formed by online learning. To further elucidate this hypothesis, future studies are 

awaited.  

In the literature, developmental studies usually compared sequence learning 

among distinct age groups, for example 10- and 6-year old children and adults in 

study I. Studies III, V, and VI in this dissertation attempted to further characterize the 

developmental landscape of implicit motor sequence learning. It was found that 

offline and online learning developed in early age while the developmental rate 

reduced as age increased. This developmental trend is very similar with that found in 

two previous studies. Implicit sequence learning has been found to be optimal before 
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the age of 12 (Janacsek, et al., 2012a). Before this age, the acquisition of sequence 

learning was primarily relies on habitual learning, while learning after 12 years of age 

seems to be model-based (Nemeth, Janacsek, et al., 2013b). More importantly, the 

habitual and model-based learning are respectively mirrored to procedural and 

declarative memory (Doll, et al., 2015), which is consistent with our finding on the 

age-related differences in the declarative knowledge of sequences acquired through 

the SRT task.  

In addition to identifying two age-related learning processes, this dissertation 

extended our understanding of the age-related implicit sequence learning in another 

aspect. Traditionally, the SRT task is performed much like a typing or a keyboarding 

task with participants seated. But as Sherrington (1906) argued, “posture follows 

movement like a shadow”, and the vast majority of our daily life motor sequence 

learning involves whole body movement that is not required in typing or 

keyboarding. The postural control requirements of the whole body sequence task used 

here could be a “rate limiter” to performance and perhaps to learning (Thelen, 1989; 

Thelen, et al., 1989). This dissertation employed a modified SRT task where finger 

pressing was replaced by foot stepping to incorporate postural control into the task. 

Although this dissertation did not directly compare sequence learning in finger-

pressing and foot-stepping SRT tasks, it replicates the results for learning finger 

sequences by children and adults (Meulemans, et al., 1998; Thomas & Nelson, 2001; 

Weiermann & Meier, 2012a) despite the age-related nature of the required postural 

control for our whole body foot-stepping task (Bair, Kiemel, Jeka, & Clark, 2007). 
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These results suggest that postural control has little effect on motor sequence 

learning. 

This dissertation extends our understanding into the development of motor 

sequence learning and also raises several questions to be addressed in future research. 

First, the developmental landscape of motor sequence learning as well as its 

underlying learning processes should be further studied. This current research 

attempted to characterize the landscape, but one caveat is that this research did not 

include ages from 14 to 17. Although it is unlikely that online and offline learning 

would differ from the age of 12 and 20, the developmental trajectory within this age 

range needs to be explored in future studies. 

This current research suggests that the interactive memory systems of 

procedural and declarative learning are substrates for offline and online learning 

processes. Future studies are needed to systematically test this hypothesis. Numerous 

studies has demonstrated that the cooperative and competitive memory systems of 

procedural and declarative learning concurrently contribute to implicit learning 

(Borragán, Slama, Destrebecqz, & Peigneux, 2016; Brown & Robertson, 2007a, 

2007b; Foerde, et al., 2006; Poldrack, et al., 2001) and the interaction starts as soon as 

learning begins (study IV, Chapter 6). Previous studies have demonstrated that 

interrupting declarative memory positively affect procedural learning (Brown & 

Robertson, 2007a; Filoteo, Lauritzen, & Maddox, 2010; Keisler & Shadmehr, 2010a; 

Nemeth, et al., 2012),  however, little is known about the behavior expressions of the 

positive effect on procedural learning. According to this dissertation, greater offline 

learning is expected to be seen when the declarative memory is impaired. Given that 
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the interactive memory system is mediated by the dorsal lateral prefrontal cortex 

(Cohen & Robertson, 2011; Diekelmann, et al., 2011), the disruption of the dorsal 

lateral prefrontal cortex could allow to examine online and offline learning as well 

(Cohen & Robertson, 2011). 

It is important to emphasize that offline learning in this study occurred within 

the first learning session where the initial acquisition of sequences developed. After 

the initial acquisition stage, learning does not terminate. Instead, it continuous to 

develop with a slow rate and the memory of sequences is consolidated (Doyon & 

Benali, 2005). In the literature, offline learning has been found as a salient feature 

underlying sequence learning and observed during the slow learning and 

consolidation stages (Nettersheim, et al., 2015; Robertson, Pascual-Leone, & Miall, 

2004). Specifically, the memory of sequences can be boosted a few minutes after its 

acquisition (Eysenck & Frith, 1977; Hotermans, et al., 2008; Hotermans, et al., 2006). 

Later on, the memory is further strengthened following a few hours with (Brown & 

Robertson, 2007a, 2007b) or without sleep (Nettersheim, et al., 2015; Robertson, 

Pascual-Leone, & Press, 2004; Walker, et al., 2002; Wilhelm, Diekelmann, & Born, 

2008; Wilhelm et al., 2011; Wilhelm, et al., 2012). The relationship between the 

offline learning during the initial acquisition observed in this dissertation and the 

offline boost and learning that develop afterwards remains to be examined in future 

studies. One notable parallel between these two types of offline learning is that both 

of them are related to procedural and declarative memory (Brown & Robertson, 

2007a, 2007b; Du, et al., 2016). 
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Findings in this current research should be extended to the classic finger-

pressing SRT task (Curran & Keele, 1993; Nissen & Bullemer, 1987; Willingham, et 

al., 1989). It is expected that similar age-related differences in learning process and 

learning generalization will be identified. The major difference between these two 

paradigms is that foot stepping requires longer movement time (MT) while finger-

pressing does not. However, results of studies through II to VI demonstrated that 

sequence learning was reflected by RT as a marker of mental processing, but not MT 

that characterizes the movement itself. In addition, results of the task pacing effect on 

sequence learning found in the current dissertation replicated previous findings in the 

classic finger-pressing SRT task (Destrebecqz & Cleeremans, 2003; Meulemans, et 

al., 1998; Weiermann & Meier, 2012b; Willingham, et al., 1997). Most importantly, it 

is hypothesized that online and offline learning, as well as the generalization of 

implicit motor sequence learning, is attributed to the interactive procedural and 

declarative memory systems. It is, therefore, not surprising to see offline and online 

learning processes in all tasks that require both procedural and declarative learning 

(e.g., the classic finger-pressing SRT task). 

It has been widely found that postural control interacts with cognitive loads in 

both adults (Ramenzoni, Riley, Shockley, & Chiu, 2007; Riley, Baker, Schmit, & 

Weaver, 2005) and children (Olivier, Cuisinier, Vaugoyeau, Nougier, & Assaiante, 

2007; Schmid, Conforto, Lopez, & D'Alessio, 2007). Yet, little is known about the 

interaction of motor sequence learning and postural control. Compared to the finger-

pressing SRT task, the foot stepping task offers a window to study the interaction 

between postural sway and the cognitive process (i.e., RT). More importantly, 
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studying the temporal profile of the interaction could provide insights into the 

dynamics of the cognitive-motor coupling during sequence learning, which could 

help us better understand the learning of sequential motor actions in adults, children, 

and also children with movement or cognitive disabilities. 

In summary, studies in this dissertation are the first to identify two age-related 

learning processes, namely online and offline learning, underlying the initial rapid 

acquisition of motor sequences. The two learning processes are, at least partially, 

responsible for the age-related differences in the generalization of implicit motor 

sequence learning. In addition, these two processes are likely to be attributed to the 

competition between procedural and declarative memory. Overall, this dissertation 

extends our understanding into the development of implicit motor sequence learning. 

Future studies are needed to further probe the underlying memory mechanisms and 

characterize the developmental landscape of these two learning processes. 

Summary and Overall Significance 

The set of experiments in this dissertation programmatically investigated 

whether there are age-related differences in implicit motor sequence learning. 

Specific Aim 1 demonstrated the age-related differences in the processes underlying 

the fast learning of motor sequences. Specifically, learning in six-year-old children 

dominantly relied on an offline process where RT improves after a short rest, while 

offline enhancement and online progressive improvement in RT concurrently drove 

sequence learning in 10-year-old children and adults. This is the first study reporting 

online and offline processes during the fast learning stage of implicit motor sequence 

acquisition. These results serve as a foundation for the subsequent experiments. 
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Specific Aims 2 and 3 investigated whether online and offline processes are illusory 

effects of fatigue or reactive inhibition or by-products of task pacing. The results 

excluded fatigue, reactive inhibition, and task pacing as factors leading to online and 

offline processes. Rather, Specific Aim 4 examined the effect of procedural and 

declarative memory on these two processes and the results suggest that age-related 

online and offline processes are active learning mechanisms that may be tied to 

declarative and procedural memory systems. Specific Aims 5 and 6 build on aims 1 to 

4 by investigating if the generalization of implicit motor sequence learning is age-

related and whether generalizing sequence learning is related to online and offline 

processes. Results indicate that children outperformed adults in generalizing learning 

of one sequence to a novel sequence when offline learning was greater in children 

compared to adults. When learning in adults and children resulted from comparable 

offline learning, the age-related differences in generalization were no longer observed. 

Collectively, these studies characterized the age-related differences in two learning 

processes (i.e., online and offline learning) that drive the fast implicit sequence 

acquisition and demonstrated that the age-related online and offline learning may lead 

to a superior ability in generalizing motor sequence learning in children compared to 

adults. 

These experiments taken together are significant as they offer insights into the 

mechanisms underlying the development of implicit motor sequence learning from 

childhood to adulthood. Particularly, this line of research is unique in its ability to 

characterize the nature of the age effect in implicit motor sequence learning. 

Compared to previous studies that used aggregate outcomes (mean RT) to assess age-
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related learning, this dissertation focuses on the learning process underlying implicit 

motor sequence acquisition, the understanding of which is a crucial aspect of research 

in motor development (Clark & Whitall, 1989). A clear picture about how typically 

developing children and typically developed adults learn implicit motor sequences 

may serve as a theoretical foundation to develop interventions for children and adults 

with learning disabilities. In addition to better understanding sequence learning in the 

motor domain, the results of these studies may offer suggestions regarding learning in 

other domains such as cognition where the learning of sequences is also critical. Most 

importantly, it provides potential insights into the question of why childhood is an 

optimal period for learning. 
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Appendices I: Supplementary Results for Study II (Chapter 
4) Task pacing has no effects on online and offline processes 

underlying rapid motor sequence learning 

 

Results in study I (Chapter 3) demonstrate that fast sequence learning in 

children and adults are expressed by two different processes. In particular, learning in 

six-year-old children dominantly relies on an offline process where RT improves after 

short rests, while offline RT enhancement and online progressive improvement in RT 

concurrently drive the sequence learning in 10-year-olds and adults. The age-related 

differences in online and offline processes may also be by-products of task pacing 

conditions. In study I, children and adults performed the task under the same inter-

stimulus-interval (ISI). The same ISI was relatively shorter in children than adults. 

Thus, the ISI may prevent children from learning the sequence online as online 

learning demands iterative mental computation that needs an adequate amount of time 

between stimuli. In addition, a shorter ISI in children made the task relatively faster, 

which may induce greater fatigue or reactive inhibition that slow down the online RT. 

To examine the effects of task pacing on online and offline processes 

underlying the fast motor sequence learning, in study II, we asked adults to perform 

the SRT task under different ISI conditions. A one-way ANOVA failed to find a 

significant effect of ISI on offline changes in RT (F(2,27) = 0.95, p=0.4) and online 

changes in RT (F(2,27) = 2.31, p = 0.12) (Figure A.1A). We also analyzed the 

corrected offline learning as that in study I. The same results were found compared to 

the original offline learning data (Figure A.1B). The corrected offline changes in RT 
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were not affected by ISI (F(2,27) = 0.41, p=0.67). Interestingly, online changes in RT 

were negative under the 300 + 600ms ISI. This result indicates that offline RT 

changes observed under this ISI condition were likely to result from fatigue or 

reactive inhibition. Taken together, the results suggest that the task pacing has little 

effect on online and offline changes in RT. 

 
 
Figure A.1. ISI does not affect online and offline learning. 
(A) Online and offline learning. (B) Online and Corrected offline learning. 

To examine whether declarative knowledge of sequence A was acquired 

during the SRT task, we used the process dissociation procedure (Destrebecqz & 

Cleeremans, 2001; Destrebecqz & Cleeremans, 2003). Specifically, upon completion 

of the SRT task, participants were asked to generate two sequences under either the 
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inclusion or exclusion condition. Under the inclusion condition, participants were 

asked to recall the sequence in the SRT task and to write down 60 steps of the 

sequence (i.e., inclusion). Under the exclusion condition, they generated another 60-

step sequence in which they were instructed to avoid the sequence they experienced 

during the SRT task (i.e., exclusion). To measure the score in the recall test, we 

counted the number of correct 2-, 3-, and 4-element chunks in the sequences that 

participants generated. The chance levels of recalling 2-, 3-, and 4-element chunks 

were different. The chance level for a two-element chunk in the sequence was 50% 

(i.e., given the first element, 33.33% chance for the second element);  the chance 

level for a three-element chunk in the sequence was 5.56% (i.e., given the first 

element, 33.33% chance for the second element and 16.78% chance for the third 

element); and the chance level for a four-element chunk in the sequence was 0.94% 

(i.e., given the first element, 33.33% chance for the second element, 16.78% chance 

for the third element, and 16.78% chance for the fourth element).  Given that 

participants recalled a 60-element long sequence that has 59 2-element chunks, the 

chance level for recalling 2-element chunks in a 60-element long sequence written by 

an individual was 19.65 (i.e., 59 × 0.333). Similarly, the chance level was 3.25 (i.e., 

58 × 0.056) for recalling 3-element chunks and 0.54 (i.e., 57 × 0.009) for recalling 

4-element chunks in a 60-element long sequence written by an individual.  

Since recall score were measured by count data, Poisson models were used to 

examine the effect of ISI and recall conditions (inclusion vs exclusion). If over-

dispersion was displayed in the recall score, a Poission mixture model (i.e., negative 

binomial regression) was used instead. 
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In the recall test, we found a significant effect of recall condition on recalling 

2- (𝜒𝑑𝑑=12 = 10.06, p < 0.001), 3- (𝜒𝑑𝑑=12 = 9.05, p < 0.01), and 4-element chunks 

(𝜒𝑑𝑑=12 = 7.15, p < 0.01, Figure A.2). There was no effect of ISI and its interaction 

with the recall condition. Despite the ISI and length of chunks, participants recalled 

more chunks under the inclusion compared to the exclusion condition. In addition, 

recall was higher than chance under the inclusion condition despite the ISI (all p 

<0.001). Recall of all length of chunks under the exclusion condition was higher than 

chance when the ISI was 700+200ms and 300+600ms. For participants who 

performed the SRT task under the 700+600ms ISI, recall under the exclusion 

condition was higher than chance for recalling 2- and 3-element chunks but was at 

chance for recalling 4-element chunks. These results suggest that participants 

acquired declarative knowledge of sequence A but they had little control over the 

knowledge they acquired, especially if they learned the sequence under a shorter ISI. 

 

Figure A.2: ISI does not affect the declarative knowledge of the sequence acquired during the 
SRT task. 
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