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Genomic selection has emerged as an effective approach in dairy cattle breeding, in 

which the key is prediction of genetic merit using dense SNP genotypes, i.e., genomic 

prediction. To improve the accuracy of genomic prediction, we need better 

understanding of the genetic architecture of complex traits and more sophisticated 

statistical modeling. In this dissertation, I developed several computing tools and 

performed a series of studies to investigate the genetic architecture of complex traits in 

dairy cattle and to improve genomic prediction models. First, we dissected additive, 

dominance, and imprinting effects for production, reproduction and health traits in 

dairy cattle. We found that non-additive effects contributed a non-negligible amount 

(more for reproduction traits) to the total genetic variance of complex traits in cattle. 

We also identified a dominant quantitative trait locus (QTL) for milk yield, revealing 

that detection of QTLs with non-additive effect is possible in genome-wide association 

studies (GWAS) using a large dataset. Second, we developed a powerful Bayesian 



  

method and a fast software tool (BFMAP) for SNP-set association and fine-mapping. 

We demonstrated that BFMAP achieves a power similar to or higher than existing 

software tools but is at least a few times faster for association tests. We also showed 

that BFMAP performs well for fine-mapping and can efficiently integrate fine-mapping 

with functional enrichment analysis. Third, we performed large-scale GWAS and fine-

mapped 35 production, reproduction, and body conformation traits to single-gene 

resolution. We identified many novel association signals and many promising 

candidate genes. We also characterized causal effect enrichment patterns for a few 

functional annotations in dairy cattle genome and showed that our fine-mapping result 

can be readily used for future functional studies. Fourth, we developed an efficient 

Bayesian method and a fast computing tool (SSGP) for using functional annotations in 

genomic prediction. We demonstrated that the method and software have great 

potential to increase accuracy in genomic prediction and the capability to handle very 

large data. Collectively, these studies advance our understanding of the genetic 

architecture of complex traits in dairy cattle and provide fast computing tools for 

analyzing complex traits and improving genomic prediction. 
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Chapter 1: Literature Review 

In this chapter, I review recent advances in computational and statistical genetics, 

biological mechanisms linking a SNP to a trait, and recent advances of statistical 

methods for genomic prediction. At the end, I propose the questions to address in this 

dissertation. There are many interesting topics, but only those most relevant to this 

study are included in this review. 

Recent Advances in Computational and Statistical Genetics 

Genomic relationship matrix and GREML 

Genomic relationship matrix (GRM, often denoted as G) is a realized relationship 

matrix built by using genomic information (basically, whole-genome SNP genotypes). 

As a relationship matrix, it can be used in most of the scenarios where numerator 

relationship matrix (often denoted as A) is applied. Use of GRM is often 

straightforward, as there are many well-developed computing techniques involving A 

for genetics and breeding, e.g., variance component estimation and breeding value 

prediction (Henderson, 1984). 

 There are several considerations when building a GRM. The first one is the way 

of using minor allele frequency (MAF). In an early study on GRM, VanRaden (2008) 

proposed two forms:  

mG ZWZ                                           (1.1) 

and  

2 (1 )j j

j

p p G ZZ ,                                     (1.2) 
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where Z is a matrix of centered genotypes for additive effects, pj is the MAF of the 

jth marker, W is a diagonal matrix whose jth element is 2𝑝𝑗(1 − 𝑝𝑗), and m is the 

total number of markers. These two formulas, though slightly differing, are actually 

based on two different assumptions. By using the former one, we assume that all SNPs 

contribute equally to heritability. In contrast, the assumption for the latter one is that 

SNPs with a high MAF contribute more to heritability than those with a low MAF. 

The difference between the assumptions has an impact on estimation of SNP 

heritability in complex human traits (Speed et al, 2017). The second consideration is 

the way of using linkage disequilibrium (LD) pattern. A few markers can capture 

causal effects in a high-LD region, while many more markers are needed to do so in 

a low-LD region (Speed et al, 2012). Thus, we may downweight the contribution of 

SNPs in high-LD regions.  

 As discussed above, the key to optimizing GRM is weighting SNPs based on 

MAF and LD pattern. A more recent study generalized the ideas of using MAF and 

LD pattern and derived an GRM estimator with minimized estimation errors (Wang 

et al, 2017). Basically, the authors obtained the GRM estimation error function whose 

parameters are weights of markers, and used quadratic programming to obtain the 

optimal weighting. The method is promising; however, as far as I know, there have 

not been studies investigating the impacts of using such a GRM on heritability 

estimation or genomic prediction. 

 GREML is the use of GRM to estimate variance components via restricted 

maximum likelihood (REML) (Lee et al, 2011; Lee et al, 2012; Yang et al, 2010). It 

is a straightforward extension of use of A in similar scenarios (Hofer, 1998; Johnson 
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and Thompson, 1995). GREML has been heavily used to investigate the genetic 

architecture of complex traits. For example, GREML has been used for estimation of 

SNP heritability (defined as the proportion of phenotypic variation explained by 

whole-genome SNPs) for many hundreds of traits (Yang et al, 2017). GRM has a big 

effect on heritability estimation by GREML, and different GRM computations (with 

respect to MAF and LD) may result in a considerable difference in heritability 

estimates even if the same data set is used (Speed et al, 2017). Software tools to 

address this issue include LDAK (Speed et al, 2012) and GCTA (Yang et al, 2015; 

Yang et al, 2011a). In addition, GRM is built based on assumptions, so through 

GREML, we can find which assumption results in better model fitting or prediction. 

By testing various assumptions, we gain better understanding on the genetic 

architecture. 

 Another important use of GREML is heritability partitioning. Multiple GRMs 

are simultaneously fitted by GREML (namely multi-component GREML), and each 

GRM is built by a subset of whole-genome SNPs. Accordingly, we can investigate 

the contribution of each chromosome or each genomic segment to heritability (Yang 

et al, 2011b). SNP grouping by genomic segments also provides an approach for 

genome-wide association studies (GWAS), namely regional heritability mapping 

(Caballero et al, 2015; Shirali et al, 2016). In addition, the SNP grouping can be based 

on many other genomic features, e.g., MAF bins, LD bins, SnpEff-inferred variant 

impact (Cingolani et al, 2012), so that we let GREML automatically determine the 

relative importance of each category (Yang et al, 2015). Though multi-component 

GREML is useful for investigating heritability enrichment patterns, it has a limit 
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regarding the number of fitted GRMs. A more general heritability portioning approach 

has been developed, named stratified LD score regression (Finucane et al, 2015), 

which is also discussed below in this chapter. 

 GREML can also be used for studying non-additive effects, e.g., dominance, 

imprinting, and epistasis (Varona et al, 2018). Basically, we develop GRMs for these 

non-additive effects and fit them in multi-component GREML, by which we estimate 

their separate contributions to phenotypic variation. 

Mixed model association methods 

GWAS is one of the most commonly used approaches for discovering genetic factors 

underlying complex traits. It finds SNP-trait associations by tests for whole-genome 

markers. There have been tens of thousands of unique SNP-trait associations 

discovered in humans (MacArthur et al, 2017) and thousands in livestock species (Hu 

et al, 2016). Over past decade, mixed model association methods have become routine 

for GWAS, in that they well control population or relatedness structure and are 

statistically powerful (Yang et al, 2014).  

 Generally, one GRM is needed in GWAS to correct for population structure, so 

the mixed model used for GWAS can be considered to be a special case of those used 

in GREML. However, the routine algorithms used for GREML, like AI-REML 

(Johnson and Thompson, 1995), are infeasible for GWAS, because they may even take 

hours for only one marker. To make mixed models useful for GWAS, several 

computing methods have been developed to improve the speed. GRAMMAR is one of 

the earliest attempts (Aulchenko et al, 2007). This approach first fits a null mixed 

model and then uses the resulting residuals as response variable to perform linear 
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regression on each marker, namely a two-step method. Denote n and m to be the sample 

size and the number of markers, respectively. This method has a time complexity of 

𝑂(𝑛𝑚) (considering only the second step) and is very fast. However, it is usually too 

conservative. The authors further proposed a method to remedy GRAMMAR, named 

GRAMMAR-GC (Amin et al, 2007). It first computes a genomic deflation factor 

following the genomic control (GC) method (Devlin and Roeder, 1999), and then 

divides the GRAMMAR chi-square statistics by the factor. The resulting values are 

used as new statistics. However, the GC approach still has the same problem. 

 Routine GREML algorithms have a time complexity of 𝑂(𝑟𝑛3)  when one 

GRM is modeled, where r is the number of iterations required. Kang et al. (2008) 

reported an eigendecomposition method (named EMMA) to tackle the same problem 

with a time complexity of 𝑂(𝑛3 + 𝑟𝑛). It should be noted that this strategy used for 

REML had been comprehensively studied by VanRaden in his doctoral dissertation 

(VanRaden, 1986). The difficulty of evaluating log-likelihood or restricted log-

likelihood function is computing inverse and determinant of the variance term (denoted 

as V) and a term involving the inverse and covariate design matrix. Let 𝑯 = 𝑽 𝜎𝑒
2⁄ =

𝜆𝑮 + 𝑰 in which 𝜎𝑒
2 is the error variance, G is the GRM, and 𝜆 = 𝜎𝑔

2 𝜎𝑒
2⁄  (𝜎𝑔

2 is the 

genetic variance corresponding to G). Let 𝑷 = 𝑺𝑯𝑺, where 𝑺 = 𝑰 − 𝑿(𝑿′𝑿)−1𝑿′ and 

X is the covariate design matrix. By eigendecompositions of G and P, it turns out that 

log-likelihood or restricted log-likelihood can be formulated as a function of λ. 

Therefore, the problem is reduced to single-variable optimization. A Wald or likelihood 

ratio test can accordingly be performed after evaluating the function with respect to λ. 

Because each marker results in a distinctive matrix X (for covariates and the marker), 
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so EMMA requires an eigendecomposition for each marker in GWAS, leading to a time 

complexity of 𝑂(𝑚𝑛3). Therefore, EMMA is often impracticable for a medium-size 

GWAS. Several methods, also based on eigendecomposition, have been developed to 

address the problem, including GEMMA (Zhou and Stephens, 2012), FaST-LMM 

(Lippert et al, 2011), and MMAP (O'Connell, 2013). Basically, these methods require 

only one eigendecomposition of GRM (or singular value decomposition of genotype 

matrix) and have a time complexity of 𝑂(𝑚𝑛2) for association tests. 

 The aforementioned eigendecomposition methods produce exact test statistics, 

in the sense that the estimate of λ is unique for each marker. Assuming that the 

proportion of variance explained by a single SNP is small, the estimate of λ for a model 

including a SNP will be very similar to that for the null model. This leads us to an 

approximation method to gain speedup for GWAS. We estimate λ only for the null 

model, and use it for all association tests. Given λ, we can perform a generalized least 

squares F-test, resulting in a time complexity of 𝑂(𝑚𝑛2) for association tests. This 

approximation method has been used in several software tools, e.g., EMMAX (Kang 

et al, 2010), GCTA (Yang et al, 2014). 

 Assume that X is single tested SNP, we can formulate a score test as  

 
2

2 1 1

score    X V y X V X ,                                   (1.3) 

where y is phenotype, and V is the same as previously defined. The score test has a 

time complexity of 𝑂(𝑚𝑛2) for GWAS. GRAMMAR-Gamma further reduce the time 

complexity to 𝑂(𝑚𝑛) by the following approximation (Svishcheva et al, 2012): 

 
2

2 1

new

2 2

score new



  

 



X V y X X
,                                      (1.4) 
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where 1  X V X X X . The study suggests that γ is nearly constant across whole-

genome markers, and also provides an analytical expression so that γ can be computed 

before association tests. BOLT-LMM uses similar approximation, but enables a leave-

one-chromosome-out (LOCO) approach (Loh et al, 2015b). It has a time complexity of 

𝑂(𝑚𝑛1.5). A Bayesian mixture model is also implemented in BOLT-LMM. LOCO 

SNPs are first fitted in the mixture model, and the resulting residuals are further used 

as phenotypes in linear regression. This approach is similar to GRAMMAR, but uses 

LOCO and mixture model to improve statistical power.  

 In addition, avoiding proximal contamination may be considered (Listgarten et 

al, 2012). Theoretically, excluding markers correlated with the tested SNP in GRM will 

increase statistical power. The LOCO approach is a special case, which excludes 

markers on the same chromosome as the tested SNP in GRM. This approach may be 

especially useful for approximation methods like EMMAX and GCTA. 

 Though many methods do GWAS in 𝑂(𝑚𝑛2) time, software implementation 

may make a big difference in real running time. For example, we found MMAP is much 

faster than EMMAX and GEMMA. In reality, computational speed/convenience is 

often the most important consideration when deciding which software to use (Eu-

Ahsunthornwattana et al, 2014). 

SNP-set association 

SNP-set association test is basically a test for the association between a SNP set and a 

trait. Therefore, single-marker association test can be considered to be a special case of 

SNP-set tests. The aforementioned regional heritability mapping by GREML is a type 

of SNP-set association tests, in the sense that SNPs within each genomic segment form 
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a SNP set. By GREML, we can perform a likelihood ratio test for SNP-set association, 

which is generally ideal with respect to power. However, this approach is 

computationally demanding (Cebamanos et al, 2014). It has a time complexity of 

𝑂(𝑟𝑚𝑛3), where r is the number of required iterations, m is the number of SNP sets, 

and n is the sample size.  

 In contrast, score test results in much faster computation, in that it only fits the 

null model by GREML (or EMMA). Several previous studies have implemented the 

approach for common variants (Kwee et al, 2008; Wu et al, 2010) and for rare-variant 

association testing (namely, SKAT) (Wu et al, 2011). SKAT has become one of the 

most popular software tools for SNP-set association analysis.  It can also combine the 

SKAT score statistic and the weighted burden test statistic (Madsen and Browning, 

2009) for rare-variant tests. It should be noted that when the null model is a linear 

mixed model, it uses EMMA to fit the null. SKAT is fast and has a time complexity of 

𝑂(𝑚𝑛2). 

 It is critical to properly weight SNPs for a SNP-set test. Upweighting a causal 

variant can improve the power. SKAT authors suggest a weight based on beta 

probability distribution function,    
11Beta ; , 1j jw x MAF x x

 
    . As 

shown by the function, Beta(1, 1) gives equal weights to all variants, while Beta(1, 25) 

upweight rare variants and downweight common variants. When a SNP set contains 

both rare and common variants, we can set weights for rare and common variants 

separately (Ionita-Laza et al, 2013). 
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Bayesian fine-mapping 

As large-scale sequence data are becoming available, it is now feasible to fine-map a 

trait to single-variant resolution. Fine-mapping is basically a model selection problem. 

Many statistical methods have been used to solve the problem, e.g., stepwise selection 

(Huang et al, 2017), exhaustive search limiting maximum model size (Chen et al, 2015; 

Hormozdiari et al, 2014; Kichaev et al, 2014; Servin and Stephens, 2007), shotgun 

stochastic search (Benner et al, 2016). 

Generally, stepwise selection first uses stepwise regression to find independent 

signals, and then generates a credible variant set for each signal. It is fast and works 

well for identifying independent causal variants. However, it may fail in some 

scenarios, e.g., when genotypes of causal variants are highly correlated. Exhaustive 

search is capable of handling all LD structures; however, it is often infeasible when we 

aim to find multiple causal effects in many variants (e.g. 1000). We have to limit the 

maximum model size (usually 3) to reduce the model search burden. Shotgun stochastic 

search (SSS) overcomes this problem by identifying models with high posterior 

probability and ignoring models with negligible probability (Hans et al, 2007). 

However, SSS may fail to find all important models for some LD structures, even with 

a long chain. Additionally, most of the existing fine-mapping tools use summary 

statistics. Though this is a great feature, direct use of genotypes and phenotypes results 

in exact computation and is more straightforward, especially in some species where 

summary statistics is not commonly used (e.g. dairy cattle). 

Use of functional annotation is an important topic for fine-mapping. Existing 

methods (CAVIARBF and PAINTOR) usually use a logistic model, in which a binary 
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variable indicating a variant is causal or not is modeled as response, and categorical 

functional annotations are used as covariates (Chen et al, 2016; Kichaev et al, 2014). 

Such a logistic model is incorporated into a model search scheme. Then, the log-

likelihood function is optimized with respect to unknown parameters. This approach 

often limits the maximum number of causal variants (like 3) and is often impractical 

for loci containing thousands of variants. In addition, the model search results for a 

function annotation cannot be re-used for other functional annotations, further 

increasing the computational burden. 

LD score regression 

LD score regression (LDSC) was proposed very recently, which addresses the use of 

GWAS summary statistics for estimating SNP heritability (Bulik-Sullivan et al, 

2015b), partitioning heritability (Finucane et al, 2015), and estimating genetic 

correlation between traits (Bulik-Sullivan et al, 2015a). Define the LD score of variant 

j as 

2:j jkk
l r ,                                                   (1.5) 

in which rjk is the genotype correlation between variants j and k. When there is no 

confounding (or inflation) in summary statistics, we can get  

2

2 1
g

j j

Nh
l

M
     ,                                           (1.6) 

in which N is the sample size, M is the number of markers, and ℎ𝑔
2  is the SNP 

heritability. This formula leads us to a linear regression of summary statistics on LD 

score, which produces a heritability estimate. Furthermore, LD score of variant j can 
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be partitioned into multiple parts based on functional annotations. For category c, the 

LD score is computed as follows 

  2, :j ck jkk
l j c a r ,                                          (1.7) 

in which ack (0 or 1) is a variable indicating whether variant k belongs to category c. 

Similar to equation (1.6), it turns out that  

2 ( , ) 1j cc
N l j c       ,                                   (1.8) 

where τc is a heritability-related term for category c. LD score regression is thus 

conceived, which is named stratified LD score regression (S-LDSC) (Finucane et al, 

2015). After obtaining the estimate of τc in S-LDSC, the heritability explained by 

variants in category c is readily computed. In addition, LDSC can also be used to 

estimate genetic correlation between traits (Bulik-Sullivan et al, 2015a). In the multi-

trait LD score regression, summary statistics from linear regression are sufficient; that 

is, mixed model is not necessarily needed. This feature makes it especially useful for 

large-scale GWAS data. 

 Note that LDSC is based on the infinitesimal model for complex traits. S-LDSC 

estimates enrichment of heritability for functional annotations. In contrast, 

incorporation of function annotation in fine-mapping is based on a sparse model, and 

the resulting estimate is actually an enrichment of causal variants. Despite the 

difference in definition, the two types of enrichments may have similar estimates 

(Sveinbjornsson et al, 2016).  
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Biological Mechanisms Linking a SNP to a Trait 

Various mechanisms 

Protein-coding genes contain many elements, e.g., enhancer/silencer, promoter, 5’ 

untranslated region (UTR), extron, intron and 3’ UTR (Lewin, 2008). A SNP can 

possibly be in any of these elements. Depending on position and function, SNPs can be 

grouped into more than 10 categories (e.g., stop gained, stop lost, splice acceptor, splice 

donor, missense, synonymous, etc.), which has been clearly defined by Sequence 

Ontology (Cunningham et al, 2015). As reported in previous studies, many of these 

types of SNPs can be causal variants for a trait. Here, we provide an incomplete review 

on various biological mechanisms linking a SNP to a trait. Actually, the effect of a SNP 

on a trait has to rely on its effect on corresponding protein. Thus, this review is centered 

on classifying how a SNP can change corresponding protein product in terms of 

structure, stability, activity or expression.  

Missense mutations cause protein sequence changes which further result in 

changes of protein stability and/or enzyme activity. One typical example is the DGAT1 

K232A quantitative trait nucleotide which affects milk yield and composition in dairy 

cattle (Grisart et al, 2004). The DGAT1 gene encodes an enzyme, diglyceride 

acyltransferase (DGAT). The enzyme encoded by the K allele has significantly higher 

activity than encoded by the A allele. As a result, the A to K substitution effect has been 

shown to correspond to ~0.35% of milk fat percentage, and to ~10 kg of milk fat in the 

Holstein dairy cattle (Grisart et al, 2004). 

Nonsense mutations can have higher impact on protein products than missense 

mutations, because it results in a premature stop codon in gene sequence and in 
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truncated, incomplete protein product which usually loses its function. Nonsense 

mutations may cause many diseases (Mendell and Dietz, 2001). For example, either 

G542X or W1282X mutation in the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene can cause cystic fibrosis, because either of the nonsense 

mutations results in nonfunctional CFTR protein product (O'Sullivan and Freedman, 

2009). 

Splice site mutations can result in non-functional or abnormal protein products, 

because they may induce remaining of introns or missing of exons in mature mRNA 

during transcript processing. Alavi et al (2007) reported a mouse model carrying a 

splice site mutation in the Opa1 gene encoding GTPase. The mutation induces a 

skipping of exon 10 and leads to an in-frame deletion of 27 amino acid residues in the 

GTPase domain. Their study showed homozygous mutant mice die in utero, and 

heterozygous mutants are viable and of normal habitus but exhibit clear symptoms of 

optic atrophy. 

SNPs in gene regulatory regions can also be causal mutation for a trait, as they 

may affect regulatory elements (e.g., promoter, enhancer/silencer) and thus gene 

expression. For example, De Gobbi et al (2006) found that a regulatory SNP (rSNP) 

can cause a human genetic disease, inherited blood disorder alpha thalassemia, by 

creating a new transcriptional promoter. The rSNP is in a noncoding region between 

the alpha-globin genes and their upstream regulatory elements, and it can create a new 

promoter-like element that interferes with normal activation of all downstream alpha-

like globin genes, which significantly down-regulated gene expression. 
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A SNP in regulatory element can even affect transcription of a gene that is 

distant from it. The underlying mechanism is that distant regulatory elements can 

physically interact with promoters of target genes by long range chromatin loops (Dean, 

2011). For example, Zhang et al (2012) found an enhancer formed a 1Mb chromatin 

loop to the SOX9 gene. They reported that two SNPs in the enhancer can affect 

enhancer activity and thus impose allele-specific expression of SOX9 which is further 

associated with prostate cancer.  

SNPs in microRNA (miRNA) binding sites in the 3’ UTRs of target genes can 

affect phenotype of a trait through modulating the regulatory loop between miRNAs 

and their target genes (Zhang et al, 2011). MiRNAs are single-stranded, noncoding 

RNA molecules, involving in many biological processes (Ambros, 2004). Most 

miRNAs bind to target sequences located within the 3’ UTR of mRNAs by base 

pairing, resulting in the cleavage of target mRNAs or repression of their translation 

(Meister and Tuschl, 2004). For instance, ryanodine receptor 3 gene (RYR3), which is 

important for the growth, morphology and migration of breast cancer cells, contains a 

putative binding site for microRNA-367 (miR-367) in its 3’ UTR. There is an A/G SNP 

(rs1044129) located in the miR-367 binding site. Zhang et al (2011) reported miR-367 

has a higher binding affinity for the A genotype than for the G genotype. Higher binding 

affinity results in lower gene expression. The expression of RYR3 is thus affected by 

the SNP genotype and rs1044129 is a unique SNP that resides in a miRNA-gene 

regulatory loop that affects breast cancer risk (Zhang et al, 2011). 
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Identifying associations 

Here, we focus on discussing complex traits or diseases rather than simple Mendelian 

traits. Human diseases and agricultural traits of interest are usually complex traits with 

a highly polygenic architecture. QTLs usually have very small effect, thus we need 

very large sample size to detect the effect. It is more difficult to detect the effects of 

QTLs with low MAF or rare QTLs, even though rare QTLs may probably have 

relatively large effects. In addition, single-SNP analysis must rely on substantial LD 

between markers and QTL. Some QTLs may not be well tagged by markers, making it 

harder to find the SNP-trait associations. Due to these challenges, single-SNP genome-

wide association study (GWAS) can usually find a very limited number of SNP-trait 

associations even with a sample of >100,000 individuals (Yang et al, 2012).  

Set tests can usually increase the power of finding SNP-trait associations by 

using a set of SNPs together for a test. For example, a recent study using regional 

heritability mapping method reported that ≥71% of 1-Mb genomic regions harbor ≥1 

variant influencing schizophrenia risk, that is, >2,000 causal variants (Loh et al, 2015a), 

which is much powerful than single-SNP tests. However, this approach often 

compromises on resolution.  

Ascertaining mechanistic links 

Ascertaining the mechanistic links for SNP-trait associations is often difficult, because 

this implies we need to find causal variants. A common, feasible approach is post-

GWAS prioritization; that is, we use available information (e.g., gene annotation, 

variant effect prediction, documented studies, eQTL data, etc.) to prioritize the GWAS 

results (Hou and Zhao, 2013). For a locus of interest, however, we may find a number 
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of candidate variants that have distinct mechanistic links. We have to analyze these 

SNPs one by one to determine which is causal and find the mechanistic link. For 

instance, when we find a region of interest which covers several genes, we may find a 

number of missense SNPs, miRNA binding site SNPs and promoter SNPs, separately. 

To determine which SNPs are causal, we need to use other information, e.g., variant 

effect prediction for missense SNPs and gene expressions, etc. Considering tissue-

specific gene expression, we have to investigate gene expressions in various tissues. 

Otherwise, we can only obtain a general profile for mechanisms (Nicolae et al, 2010; 

Pal et al, 2015) rather than accurately ascertain the mechanistic link for a causal SNP. 

A more promising direction is integrating GWAS results with other types of 

data (e.g., gene expression) to ascertain specific mechanistic links. (Zhu et al, 2016) 

propose a method (SMR) that integrates summary-level data from GWAS with data 

from eQTL studies to identify genes whose expression levels are associated with a 

complex trait. Their method can find links between SNPs, gene expression and trait, 

but only work on cis-regulatory SNPs. Such integrations have a few challenges. 

Compared to GWAS summary data or SNP genotype data, gene expression data are 

relatively lacking. In addition, both eQTL analysis and GWAS impose multiple 

comparisons problem, such that the information we gain from their integration may be 

limited. 
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Recent Advances of Statistical Methods for Genomic 

Prediction 

Nowadays, genomic prediction (GP) is widely used in plant and animal breeding 

programs and has been well proven to be effective (Garcia-Ruiz et al, 2016). Since the 

seminal work of Meuwissen et al (2001) for predicting genomic breeding values in 

animal and plant breeding, a number of genomic prediction methods have been 

developed and extensively investigated based on different algorithms, e.g., semi-

parametric methods (Gianola et al, 2006), nonlinear regression (VanRaden, 2008), 

Bayesian LASSO (Legarra et al, 2011), and the Bayesian alphabet (Gianola, 2013; 

Habier et al, 2011). Generally, these parametric methods assume that the effect of each 

marker is independently distributed with a specific prior distribution given by 

corresponding statistical methods. Clearly, such an assumption of independent 

distribution for each SNP effect is statistically inappropriate, especially when the 

adjacent markers are in high LD with the same causal gene. This unrealistic assumption 

potentially sacrifices the prediction accuracy to some extent. To address this issue, 

Yang and Tempelman (2011) proposed a first-order antedependence model to account 

for the nonstationary correlations between SNP markers through assuming a linear 

relationship between the effects of adjacent markers. As expected, the proposed 

antedependence-based GP models outperformed their conventional counterparts in the 

prediction accuracy of genomic merit in the context of single-trait analyses. 

 Many of the aforementioned methods have been extended to joint prediction of 

multiple traits, e.g., BayesA, BayesC (Calus and Veerkamp, 2011), BayesCπ (Jia and 

Jannink, 2012), antedependence-based BayesA (Jiang et al, 2015). These methods 
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assume that that a locus simultaneously affects all the traits or none of them in the 

analysis. To relax this assumption, Cheng et al. recently proposed more general multi-

trait BayesCπ and BayesB methods allowing a broader range of mixture priors (Cheng 

et al, 2018). 

 All the methods mentioned above generally assume that the reference 

population is genotyped and phenotyped. To make use of both genotypes and pedigree 

information, single-step genomic BLUP was proposed, in which a relationship matrix 

combining genomic relationships and pedigree relationships is constructed (Legarra et 

al, 2014). Much work has been done to improve the stability, efficiency and flexibility 

of the method (Lourenco et al, 2017; Masuda et al, 2016; Misztal et al, 2013a; Misztal 

et al, 2013b). Another promising way of enhancing genomic prediction is to 

incorporate existing biological information into GP models. A previous study shows 

that using gene annotation can produce higher prediction accuracy for some traits (Gao 

et al, 2017).  

 Computational efficiency is critical for GP methods, because the reference 

population in plant and animal breeding programs is quickly growing. For example, 

there have been more than 2.6 million genotyped animals in genomic evaluation at the 

Council on Dairy Cattle Breeding (CDCB) 

(https://queries.uscdcb.com/Genotype/counts.html). Many Bayesian methods are 

based on Markov chain Monte Carlo (MCMC), a time-demanding algorithm. Though 

they may be theoretically advantageous and perform well for small data, it is 

impractical to use them in real-world applications. This is why GBLUP and non-linear 

regression (VanRaden, 2008) are favored in practice. Nevertheless, there are several 

https://queries.uscdcb.com/Genotype/counts.html
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MCMC-based computing tools which are well optimized and capable of processing 

large data sets, e.g., BayesRv2 (Moser et al, 2015).  

Specific Aims 

The overall objective of this study is to gain knowledge on the genetic architecture of 

complex traits and to develop a method for using the knowledge to improve genomic 

prediction in dairy cattle. 

 

Aim 1: Dissect additive and non-additive genetic effects for production, reproduction 

and health traits in dairy cattle. 

Aim 2: Develop a powerful method and a fast software tool for SNP-set association 

and fine-mapping. 

Aim 3: Identify QTLs underlying the complex traits in Holstein cattle using imputed 

sequence data, and fine-map the traits to single-gene resolution.  

Aim 4: Develop an efficient method and a fast computing tool for using functional 

annotations in GS. 
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Chapter 2: Dissection of Additive, Dominance, and Imprinting 

Effects for Production and Reproduction Traits in Holstein 

Cattle 

Abstract 

Background: Although genome-wide association and genomic selection studies have 

primarily focused on additive effects, dominance and imprinting effects play an 

important role in mammalian biology and development. The degree to which these non-

additive genetic effects contribute to phenotypic variation and whether QTL acting in 

a non-additive manner can be detected in genetic association studies remain 

controversial. 

Results: To empirically answer these questions, we analyzed a large cattle dataset that 

consisted of 42,701 genotyped Holstein cows with genotyped parents and phenotypic 

records for eight production and reproduction traits. SNP genotypes were phased in 

pedigree to determine the parent-of-origin of alleles, and a three-component GREML 

was applied to obtain variance decomposition for additive, dominance, and imprinting 

effects. The results showed a significant non-zero contribution from dominance to 

production traits but not to reproduction traits. Imprinting effects significantly 

contributed to both production and reproduction traits. Interestingly, imprinting effects 

contributed more to reproduction traits than to production traits. Using GWAS and 

imputation-based fine-mapping analyses, we identified and validated a dominance 

association signal with milk yield near RUNX2, a candidate gene that has been 

associated with milk production in mice. When adding non-additive effects into the 
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prediction models, however, we observed little or no increase in prediction accuracy 

for the eight traits analyzed.  

Conclusions: Collectively, our results suggested that non-additive effects contributed 

a non-negligible amount (more for reproduction traits) to the total genetic variance of 

complex traits in cattle, and detection of QTLs with non-additive effect is possible in 

GWAS using a large dataset.  

 

Keywords: Variance Decomposition, Additive, Dominance, Imprinting, Cattle, Dairy 

Traits, QTL 
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Introduction 

Both dominance and imprinting play an important role in mammalian biology and 

development (Moore and Haig, 1991). Though one may naturally assume that 

dominance and imprinting effects affect economically important traits in plants and 

animals, it remains controversial how much phenotypic variation can be attributed to 

these non-additive effects, how many quantitative trait loci (QTL) follow non-additive 

inheritance, and whether incorporating non-additive genetic effects will benefit 

genomic prediction (Carlborg and Haley, 2004; Hill et al, 2008; Manolio et al, 2009). 

Generally, contribution of non-additive genetic effects varies for different types of 

traits. For example, genetic variation associated with fitness-related traits is due mostly 

to low frequency, deleterious variants, so these traits typically show relatively high 

non-additive variance out of the total genetic variation (Hill et al, 2008).  

Several studies have been conducted to decompose dominance genetic effects 

from the total genetic variance of complex traits, theoretically (Da et al, 2014; Su et al, 

2012; Vitezica et al, 2013; Wang et al, 2014) and empirically (Aliloo et al, 2016b; Sun 

et al, 2014; Wittenburg et al, 2015; Xiang et al, 2016). A few recent studies have tried 

to add imprinting effects into the decomposition of total genetic variation (Guo et al, 

2016; Hu et al, 2015; Lopes et al, 2015; Nishio and Satoh, 2015). These studies 

indicated that non-additive effects have a significant contribution to the total genetic 

variance, but it is still questionable whether or not this contribution can be robustly 

translated into more accurate genomic prediction in real populations. More recently, it 

was shown that mating programs increased rates of genetic gain when non-additive 

genetic effects were included (Aliloo et al, 2016a; Sun et al, 2013; VanRaden, 2016a). 
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Further understanding of the contribution of non-additive effects to the genomic 

prediction and mating allocation programs will benefit livestock production in the long 

term. 

Gene mapping studies have primarily focused on genetic variants with additive 

effects. Although many empirical studies have reported non-negligible contributions 

from non-additive effects to complex traits, QTLs with non-additive effects are still 

difficult to identify in animal and human gene mapping studies, largely due to the low 

statistical power in the testing for non-additive effects of individual loci (Ma et al, 

2012). The large dairy genomics database maintained by the Council on Dairy Cattle 

Breeding (CDCB) and the USDA Animal Genomics and Improvement Laboratory 

(AGIL; Beltsville, MD) represents a powerful dataset for mapping QTLs with non-

additive effects. 

To empirically address questions related to dominance and imprinting effects 

of complex traits, we analyzed a large cattle dataset that consisted of more than 40K 

Holstein cows with SNP genotypes, pedigree information, and eight yield deviation 

(YD) phenotypes (milk yield, fat yield, protein yield, daughter pregnancy rate, cow 

conception rate, heifer conception rate, somatic cell score, and productive life). Both 

parents of these cows were also genotyped to phase the parental inheritance of SNPs of 

the cows. The aims of this study were to estimate the relative contribution of additive, 

dominance, and imprinting effects to dairy production and reproduction traits, to 

identify QTLs with dominance or imprinting effects, and to investigate whether adding 

these non-additive genetic components improves the prediction accuracy of genomic 

selection in real data.  
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Results 

Variance decomposition of additive, dominance, and imprinting 

effects 

Using 42,701 Holstein cows with YD phenotypes, SNP genotypes, and two genotyped 

parents, we decomposed the total genetic value of eight dairy traits into additive, 

dominance, and imprinting effects, estimating corresponding variance components 

(Table 2.1). For the eight traits analyzed, the number of animals with YD phenotype 

ranged from 12,911 (productive life) to 29,811 (milk, fat, and protein yields). Overall, 

production traits (milk, fat, and protein yields) exhibited a different pattern from 

reproduction traits (daughter pregnancy, cow conception, and heifer conception rates). 

As shown in Table 2.1, the broad-sense heritability (H2 = proportion of total genetic 

variance in phenotypic variance) was 31.9-38.6% for production traits and 1.4-7.9% 

for reproduction traits, respectively. The narrow-sense heritability (h2 = proportion of 

additive genetic variance in phenotypic variance) was 27.2-33.8% for production traits 

and only 0.8-5.1% for reproduction traits, respectively. Proportions of dominance 

variance in phenotypic variance were significantly higher (P < 0.05) for production 

traits (2.5%-4.0%) than for reproduction traits (0.2%-1.1%), but the proportions in total 

genetic variance are higher for reproduction traits. The variance explained by 

imprinting effect was very low for all eight traits, <1% of the phenotypic variance for 

production traits and 1-2% for reproduction traits. However, these imprinting effects 

were significantly larger than zero for most production and reproduction traits (P < 

0.05). Moreover, for reproduction traits that have a low heritability, imprinting effects 

explained a relatively large portion of the total genetic variance (20.9% for daughter 
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pregnancy rate, 26.4% for cow conception rate, and 35.4% for heifer conception rate), 

which were significantly higher than those for production traits (P<0.05).  

For comparison purposes, the total genetic variance was decomposed into the 

genotypic imprinting value plus either breeding value and dominance deviation using 

a classical model that considered allele frequencies (Vitezica et al, 2013) or additive 

and dominance effects that did not consider allele frequencies (see Materials and 

Methods). As shown in Table 2.2, results from these two decomposition models were 

consistent. It is worth noting that estimated H2 from the two models was exactly the 

same for all eight traits. In addition, the proportion of variance explained by imprinting 

effects was the same for the two models. These results were consistent with theoretical 

expectations (Álvarez-Castro, 2015; Vitezica et al, 2013). In theory, the two variance 

decomposition models are equivalent to each other with the same predicted phenotypic 

values and residuals. First, the sum of additive and dominance genetic variances is 

equal to the sum of the variances of breeding value and dominance deviation, under a 

few common assumptions (see Materials and Methods). With a stronger condition, the 

sum of individual breeding value and dominance deviation will be equal to the sum of 

individual genotypic additive and dominance values. Second, individual genotypic 

imprinting values of the two models are the same, asserting an equivalence of 

imprinting variance components. We observed all of these results across all eight traits, 

as shown in Fig. 2.1 for milk (other traits have the same pattern). Additionally, we 

confirmed that individual residual estimates of the two models are the same (see the 

right panels in Fig 2.1).  
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Genomic relationship matrix (GRM) based variance decomposition is highly 

dependent on the assumption of polygenic genetic architecture, as genome-wide SNP 

genotypes are used with equal weights. Existing GWAS have provided evidence of a 

polygenic architecture of additive effects in most complex traits (Kemper and Goddard, 

2012). However, we have no such knowledge for dominance and imprinting effects. 

To investigate the influence of this polygenic assumption on variance components 

estimation, we performed simulations to determine if our models have biases when 

there are only a few dominance or imprinting QTLs. Simulation results showed that 

GREML could accurately estimate variances for genotypic dominance and imprinting 

values for a moderate-heritability trait like milk yield, even when only 10 dominance 

and imprinting QTLs were simulated for a trait with polygenic additive effects, 

respectively (Fig. 2.2A). For a low-heritability trait like daughter pregnancy rate, 

GREML also performed well for both lowly and highly polygenic architectures of 

dominance and imprinting effects (Fig. 2.2B). Using simulation, we demonstrated the 

robustness of our approach to the assumption of polygenic genetic architecture. 

Genome-wide association study of dominance and imprinting 

effects 

We performed a whole-genome single-marker scan for additive, dominance, and 

imprinting effects on all eight traits. To increase computational efficiency, we used a 

two-step approach to remove polygenic effects from the data: 1) a mixed model with 

genomic relationship matrices to generate residuals; followed by, 2) a GWAS scan 

using residuals from the mixed model as the phenotype. Although our two-step strategy 

has slightly lower power than a single-step mixed model, we identified a novel 
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dominance signal on chromosome 23 that was associated with milk yield (Fig. 2.3). 

We then used a single-step mixed model to re-analyze the SNPs near the dominance 

signal, generating appropriate results for the associated SNPs (Table 2.3). The top 2 

SNPs, Hapmap48809-BTA-55698 and BovineHD2300004730, showed a strong 

dominance association with milk yield with P = 9.54 × 10-8 and P = 6.33 × 10-8, 

respectively. BovineHD2300004730 is 71 kb upstream of the RUNX2 gene. The 

RUNX2 gene has been previously reported to be a novel regulator of mammary 

epithelial cell fate in development and breast cancer, and it has also been shown that 

exogenous transgenic expression of RUNX2 in mammary epithelial cells blocked milk 

production (Owens et al, 2014). 

We further used an independent validation data set consisting of ~5,500 

younger cows with both genotypes and milk yield phenotypes, which were collected 

after the initial analysis, to validate the dominance signal associated with milk yield. A 

mixed-model based method was used to test the association between milk yield and 50 

SNPs around the peak signal. This validation analysis provided clear statistical 

evidence for the dominance association at BovineHD2300004730 with milk yield (P = 

7.41 × 10-4; Fig. 2.4). Additionally, we found that the dominance effect was slightly 

larger than the additive effect at BovineHD2300004730 in both the discovery and 

validation data sets, suggesting complete dominance or even over-dominance 

inheritance of the underlying QTL. 

We found no other significant non-additive effects for any trait using a genome-

wide significance level of 1 × 10-6. Nevertheless, there were a few nominally significant 

peaks for dominance or imprinting effects shown in the Manhattan plots, such as the 
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peak for imprinting effect on chromosome 6 for somatic cell score the one at the end 

of chromosome 10 for cow conception rate. Since a one-step mixed model is more 

powerful than a two-step scan, we selected 10 nominally significant non-additive 

association signals and used a one-step mixed-model to test the associations for the top 

three SNPs within each peak. This one-step re-analysis found a genome-wide 

significant dominance association on chromosome 10 with both fat and protein yields. 

However, this dominance signal was not confirmed in the validation data set. 

Fine-mapping of the dominance GWAS peak near RUNX2 

From our GWAS and validation analyses, we selected BovineHD2300004730 

(Chr23:18,600,456) as our target region for fine-mapping using sequence-based 

imputation. Based on the LD decay pattern between BovineHD2300004730 and nearby 

variants derived from the sequences of 443 Holstein bulls from the 1000 Bull Genomes 

project (Run 5.0) (Daetwyler et al, 2014), we chose the region of ±500 kb from the 

targeted SNP for fine mapping to cover all the variants with a LD level of r2 > 0.2 with 

BovineHD2300004730 (Fig. 2.5A). Using the 443 Holstein sequences as reference, we 

then imputed sequence-level SNPs in the targeted region for 29,811 cows. After post-

imputation quality control, a total of 652 variants were included in a two-step 

association analysis for milk yield. 

The fine-mapping study identified 38 imputed variants with a stronger 

association than BovineHD2300004730 (Fig. 2.5B). The smallest P-value for 

dominance effect (8.64 × 10-9) was found at two variants, one in the first intron of 

RUNX2 (Chr23:18676057) and the other between SUPT3H and RUNX2 (Fig. 2.5B). 

Although the 38 variants were all modifiers, the fine mapping analysis provided more 
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evidence that the QTL is close to the RUNX2 gene. Additionally, most of the variants 

had a larger dominance effect than additive effect, which was consistent with our 

original results supporting a dominant or over-dominant mode of inheritance. To 

investigate whether or not the significant associations were resulted from a single signal, 

we conducted a conditional analysis by adding the top variant (Chr23:18676057) as a 

covariate into the association test of each of the remaining 651 variants. This analysis 

revealed that the significant additive associations disappeared while the dominance 

signals remained (Fig. 2.6A). Conditioning on both the additive and the dominance 

effects eliminated all of the significant additive and dominance associations, indicating 

a single underlying QTL responsible for the association (Fig. 2.6B). 

Since we imputed relatively low-density genotypes to sequence genotypes, 

imputation accuracy was a concern because poor imputation may result in smaller P-

values in our fine-mapping analysis. We examined the impact of imputation accuracy 

(measured by AR2) on association P-values and found that poorly imputed variants 

tended to have a larger association P-value (Fig. 2.5C). This trend reduced the chance 

of getting false positives from low-quality imputation and provided additional support 

for the dominance association signal at RUNX2 with milk yield. 

Genomic prediction incorporating dominance and imprinting 

effects 

We compared prediction performance of three models: 1) additive effect only (ADD), 

2) additive and dominance effects (ADD+DOM), and 3) additive, dominance, and 

imprinting effects (ADD+DOM+IMP). Overall, the three models showed similar 

prediction accuracy and unbiasedness for all the eight traits (Fig. 2.7), even though non-
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additive effects explained >30% of total genetic variance for the three reproduction 

traits (DPR, CCR, and HCR). A small increase of prediction accuracy for three 

production traits (<1%) was observed with the models ADD+DOM and 

ADD+DOM+IMP compared to the model ADD. Paired t-tests showed that the 

increases were significant (P<0.05). However, there was no significant difference in 

prediction accuracy between the models ADD+DOM and ADD+DOM+IMP for the 

three traits.  

Discussion 

This study provided a systematic view of dominance and imprinting effects through a 

comprehensive analysis of a large cattle data set, including variance decomposition, 

GWAS, and genomic prediction. The study of imprinting effects benefited from the 

large size of the cattle data which included complete pedigree, representing one of the 

largest pedigrees available in a mammalian species, to infer parent-of-origin of alleles. 

The current study provided another demonstration of the power of dairy industry-

oriented data to facilitate biological research (Decker, 2015; Ma et al, 2015). 

In general, our results are consistent with previous studies regarding the 

proportion of phenotypic variance explained by dominance effects for complex traits 

in cattle (Sun et al, 2014) and the low heritability of reproduction traits (Liu et al, 2008). 

The U.S. national evaluation includes a regression on inbreeding to account for the 

effect of dominance on the mean, not just the variance and covariance. Sun et al (2014) 

found a large advantage in predicting progeny performance by multiplying this 

regression on inbreeding by estimated genomic inbreeding of the calf, but found only 

small additional advantage by including dominance variance matrix. However, 
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imprinting effects have been rarely evaluated in livestock studies, and our analysis 

provided useful information on the contribution of imprinting effects to dairy traits. 

First, despite their small proportion relative to the total variance, imprinting effects had 

a significant, non-zero contribution to the phenotypic variation for most of the traits 

investigated, including all the three production traits and three reproduction traits. 

Second, imprinting effects explained a much larger proportion of the total genetic 

variance for reproduction traits than for production traits. These results raised two 

important questions: does imprinting universally contribute to complex traits, and why 

are reproduction traits more affected by imprinting? It is worth mentioning that the 

reproduction traits considered here model pregnancy as a trait of the dam, whereas 

pregnancy as a trait of the embryo might have a stronger connection to dominance and 

imprinting.  

In this study, we didn’t observe much improvement of prediction accuracy by 

including dominance and imprinting effects in genomic selection models. This 

observation can be attributable to a few things: 1) low heritability of non-additive 

effects; and 2) lacking of full-sib pairs between reference and prediction populations 

because full-sibs are the primary source of non-additive relationships but dairy data 

consist of mostly half-sibs. 

Using a GWAS approach, we found a dominance association signal and 

validated it in independent samples. The fine-mapping analysis further confirmed the 

dominance QTL to be near RUNX2, but it was difficult to distinguish causal variants 

from linked markers. Due to a very small effective population size and a limited number 
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of haplotypes in the dairy cattle population, our imputation works well, even from 50k 

or less SNP data to sequence-level variants, in our fine-mapping association analysis. 

Our study demonstrated the possibility of identifying non-additive effects in 

GWAS using a large dataset. Additionally, the power of the two-step GWAS approach 

was comparable to a full mixed-model based method (Table 2.1). The two-step method 

used in this study was an efficient alternative to identify non-additive effects when fast 

implementations of full mixed-models are not available. For genomic prediction, we 

observed a very small but significant increase of prediction accuracy for production 

traits, but no difference for reproduction traits, when non-additive effects were included. 

Due to possible sparseness of dominance and imprinting effects, GREML may 

underperform for prediction and Bayesian models assuming a few large QTLs may 

perform better. Future studies are needed to develop more accurate prediction models 

for non-additive effects. 

Conclusions 

In this study, we comprehensively evaluated the contribution of dominance and 

imprinting effects to complex traits in dairy cattle. We reported significant, non-zero 

contributions from dominance and imprinting effects for both production and 

reproduction traits. The imprinting effects contribute a larger proportion to 

reproduction traits that production traits. Using GWAS, we identified and validated a 

dominance association signal with milk yield near RUNX2. However, we observed 

minor increases in prediction accuracy when including non-additive effects in the 

genomic selection models.  
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Methods 

Genotype and phenotype data 

The large dairy cattle database maintained by CDCB and USDA-AGIL includes more 

than one million genotyped animals with complete pedigree. The data were collected 

on a continuous basis, and this study included all the Holstein data available until 

September, 2015. From the database, we extracted 262,757 genotyped females whose 

sire and dam were also genotyped. The genotypes were generated from 16 different 

SNP arrays with SNP number ranging from 7K to 50K. The SNP genotypes of all 

262,757 females were phased to determine the parent-of-origin of each allele. We first 

used parent genotypes to phase a SNP genotype of a cow (Ma et al, 2015). If this step 

failed, we then applied a population-based phasing approach using FindHap version 

3.0 (VanRaden et al, 2013). After phasing, all individuals were imputed to 50K SNP 

data. When building genomic relationship matrices (GRMs), we further filled a small 

portion of genotypes that were still missing after imputation from FindHap by 

randomly sampling genotypes from a multinomial distribution with probabilities of the 

three genotypes derived under an assumption of Hardy–Weinberg equilibrium. 

Among the 262,757 Holstein cows, 42,701 of them had yield deviation (YD) 

phenotypic data. YD phenotypes were adjusted for appropriate covariates, including 

farm, year, and season effects. Eight traits were analyzed, including milk yield (MY), 

fat yield (FY), protein yield (PY), somatic cell score (SCS; a measure of mammary 

gland health), standardized productive life (STPL; a measure of longevity), daughter 

pregnancy rate (DPR; a measure of fertility), cow conception rate (CCR; a measure of 

fertility), and heifer conception rate (HCR; a measure of fertility). Since many cows 
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were not measured for all the phenotypes, the final sample size for the eight traits 

ranged from 12,911 (STPL) to 29,811 (MY, FY and PY), as shown in Table 2.1. 

Variance decomposition with additive, dominance, and imprinting 

components 

Genetic effects of SNPs can be decomposed into three components (i.e., genotypic 

additive, dominance, and imprinting values), following their evident biological 

meanings:  
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where G12 is the genetic value for the genotype 12 with a paternal allele 1 and a 

maternal allele 2 (similar for G11, G21 and G22), R is the overall mean, a is additive 

effect, d is dominance effect, i is imprinting effect, A is genotypic additive value arising 

from a, D is genotypic dominance value arising from d, and I is genotypic imprinting 

value arising from i. Under Hardy-Weinberg equilibrium, equation (2.1) can be further 

centralized regarding a and d into 
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where R* is the overall mean after centering, p is the frequency of allele 2 and q is the 

frequency of allele 1, and A* (D*) is genotypic additive (dominance) value after 

centralization. Note that in equation (2.2), genotypic additive value (A*) is not 
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independent of genotypic dominance value (D*), or * *( , ) 0Cov A D  . To address the 

issue, we can use the extended natural and orthogonal interactions (NOIA) model 

(Álvarez-Castro, 2015) under Hardy-Weinberg equilibrium,  
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where R** is the overall mean and β is allele substitution effect. Despite its similarity 

to equation (2.2), equation (2.3) results in different variance decomposition. The three 

components for β, d, and i correspond to breeding value (A**), dominance deviation 

(D**), and genotypic imprinting value (I), respectively. 

The differences and relationships between equations (2.2) and (2.3) have been 

thoroughly discussed in a previous study (Vitezica et al, 2013), although that study 

did not include imprinting effects. The equation still holds when imprinting effects 

are included because the genotypic imprinting value is independent of the other two 

components in both equations (2.2) and (2.3). In theory, the sum of individual 

breeding value and dominance deviation in equation (2.3) is equal to the sum of 

individual genotypic additive and dominance values in equation (2.2); and when 

ignoring the covariance between additive and dominance effects, the sum of additive 

and dominance genetic variances resulting from the decomposition by equation (2.3) 

is equal to the sum of the variances of genotypic additive and dominance values 

resulting from the decomposition by equation (2.2). Additionally, individual 

genotypic imprinting value in equation (2.2) is the same as in equation (2.3), thus 

asserting the equivalence of imprinting variance components in the two equations. 
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The theory holds for multiple loci when assuming linkage equilibrium and 

independent marker effects (Vitezica et al, 2013). 

Although it is possible to directly fit SNP effects in a model (Zhu et al, 2015b), 

fitting individual-level genetic components is more efficient, especially for a large 

dataset with many SNP markers. In this study, we used the following model 

2 2 2 2
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where the phenotypic value of individuals (y) was decomposed into fixed effects (b), 

genotypic additive value (a), genotypic dominance value (d), genotypic imprinting 

value (i), and residual (e). Equation (2.4) can be readily solved by a multi-component 

restricted maximum likelihood (REML) approach as implemented in GCTA (Yang et 

al, 2011a), as long as we know the covariance structures of the three components, A, 

D, and P. Different forms of additive genomic relationship matrix (GRM) have been 

proposed. We used a version with pooled variance across all markers (VanRaden, 

2008), 
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where Zik (Zjk) is the additive genotype code for marker k of individual i (j) as shown 

in the vector corresponding to a in equation (2.1) and pk is the population frequency of 

allele 2. Similarly, based on the equivalence of SNP-BLUP and GBLUP (Da et al, 2014; 

Stranden and Garrick, 2009), we can obtain corresponding GRMs for dominance (D) 

and imprinting (P), which are shown as following: 
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2 (1 )ij ik jk k kk k
P S S p p                                    (2.7) 

where H and S are the genotype codes for dominance and imprinting effects as shown 

in the corresponding vectors in equation (2.1), respectively. Equation (2.6) has been 

used in previous studies (Su et al, 2012; Sun et al, 2014). When building GRMs, we 

used whole-genome markers with minor allele frequency (MAF) ≥0.01. Finally, the 

software MMAP (O’Connell, 2015), which efficiently implements REML, was used to 

fit model (2.4). 

For comparison purposes, we also performed variance decomposition based on 

equation (2.3). In this case, we need to use a different dominance GRM (D*), 

 
2* * * 2 (1 )ij ik jk k kk k

D H H p p   ,                           (2.8) 

where H* is the dominance genotype code as shown in the vector corresponding to d 

in equation (2.3). Accordingly, the total genetic variance is decomposed to classical 

additive and dominance genetic variances and variance of genotypic imprinting effect. 

We further compared the two different kinds of variance decompositions regarding 

estimates of individual effects and variance components to verify the theory on their 

equivalence of explaining phenotypes.  

Simulation study for validating variance decomposition 

Note that when building the GRMs, we assumed that the traits are highly polygenic for 

the additive, dominance, and imprinting effects. Although the polygenic architecture 

of additive effects is commonly used for complex traits (Kemper and Goddard, 2012), 

we have less knowledge on whether dominance and imprinting effects are also 

polygenic. To address this issue, we simulated a number of datasets to investigate 
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whether model (2.4) can capture dominance and imprinting effects when there are a 

small number of corresponding QTLs. Specifically, we first obtained a random 

subsample of 10,000 from the 42,000 cows being analyzed, and then randomly selected 

markers from the 50k SNPs as additive, dominance, or imprinting QTLs. We simulated 

QTL effects using a normal distribution and added them up to obtain a, d, and i for 

each of the 10,000 cows. Thereafter we calculated 2 var( )a a  , 2 var( )d d  , and 

2 var( )p i   using corresponding simulated genetic values. Based on the heritability we 

set to simulate, we calculated 2

e  and simulated e by sampling it from 2(0, )eN  . The 

phenotype for each individual animal was simulated by adding up a, d, i, and e. 

To ensure realistic simulations, we picked variance of the normal distribution 

for simulating effect sizes so the variance decomposition was the same between 

simulated and real data. Our simulation scenarios included two representative traits, 

milk yield and DPR, separately. Three scenarios were simulated for either trait by 

varying QTL numbers, including 1000+10+10 (1000, 10 and 10 QTLs for additive, 

dominance, and imprinting effects, respectively), 1000+100+100, and 

1000+1000+1000. Simulation for each scenario was repeated 100 times. We fitted 

model (2.4) for each simulated data set and compared variance component estimation 

between the three scenarios.  

Genome-wide association study of non-additive effects 

To increase computational efficiency, we used a two-step strategy for genome-wide 

association study, similar to the GRAMMAR approach (Aulchenko et al, 2007). First, 

we fitted model (2.4), and obtained the residuals to adjust for polygenic effects. Second, 
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we used the residuals as response variable to fit a multiple linear regression model for 

each SNP, 

k k k k k ka d i  e = + Z H S +ε ,                                       (2.9) 

where Zk, Hk and Sk are the genotype codes of marker k for additive, dominance and 

imprinting effects, respectively, as described in equations (2.5, 2.6, 2.7), and ak, dk, and 

ik are corresponding SNP effects. SNPs were filtered by MAF ≥0.01 and P-value of 

Chi-square test for Hardy–Weinberg equilibrium ≥ 1 × 10-6. Association P-values were 

calculated from t-tests for the three types of SNP effects. 

For association signals with sufficient statistical evidence from the two-step 

analysis, we further used the full mixed model, 

 
2 2 2 2with ~ (0, ),  ~ (0, ),  ~ (0, ),  ~ (0, )

k k k k k k

a d p e

a d i

N N N N



   

  y = + Z H S + a d + i + e

a A d D i P e I
,    (2.10) 

or its reduced version, 

2 2  with ~ (0, ) and ~ (0, )k k k k k k a ea d i N N    y = + Z H S +a e a A e I ,   (2.11) 

to rerun the association analysis, depending on whether the additive effects can explain 

a majority of total genetic variance on the trait being analyzed. Here, the response 

variables in equation (2.10) and (2.11) are yield deviations. Again, we applied the 

software MMAP (O’Connell, 2015) to fit the mixed models. 

Validation of non-additive association signals using independent 

data 

Our discovery GWAS used the data available until September, 2015. From then to 

April, 2016, we assembled a new dataset to validate the signal found in the initial 

GWAS. The validation data consisted of 5,514 cows with both genotypes and milk 
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phenotypes. The genotypes in the validation data were phased with the same procedures 

as used for the discovery data set. With the validation data, model (2.11) was used to 

analyze associations between milk and 50 SNP markers around the RUNX2 signal. The 

GRM was built using all chip SNPs except those on chromosome 23, which resulted in 

a leave-one-chromosome-out analysis (LOCO) (Yang et al, 2014). We also built the 

GRM using all genome-wide SNPs and compared it with the LOCO analysis. The 

validation data were also used to analyze the significant dominance associations around 

Chr5:107,000,000 with both fat and protein. The three SNPs with the smallest 

discovery P-value were analyzed with model (2.11) for fat and protein, respectively.  

Fine mapping for the RUNX2 dominance signal  

First, we used the sequence data of 443 Holstein bulls from the 1000 Bull Genomes 

project (Daetwyler et al, 2014) (Run 5.0) to check LD levels between the targeted SNP 

(Chr23:18,600,456) and SNPs/ biallelic indels around it. Based on the LD decay pattern, 

we chose the region of ±500 kb from the targeted SNP for fine mapping. Then, we used 

the sequence genotypes of the 443 bulls as reference to impute the 50k genotypes of 

29,811 cows to sequence genotypes. Beagle version 4 (Browning and Browning, 2013) 

was used for the imputation with default parameters. To increase accuracy, our 

imputation covered a larger region of ±1 Mb from the targeted SNP. After imputation, 

we removed non-informative SNPs, i.e. SNPs with a MAF <0.01, SNPs with a P-value 

of Chi-square test for Hardy–Weinberg equilibrium < 1 × 10-6 and SNPs with an allelic 

R2 (AR2) <0.05. AR2, reported by Beagle software, is the estimated squared correlation 

between the most probable alternative allele dose and the true alternative allele dose 

and serves as a good metric for estimating imputation accuracy (Browning and 
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Browning, 2009). The analysis of associations between milk and the imputed sequence 

variants within the targeted region (Chr23:18,100,456-19,100,456) was performed with 

a two-step method as described in our GWAS section.  

Genomic Prediction 

We estimated the values of the three effects for individuals in the training population 

from fitting model (2.4) in MMAP. The genomic predictions for new individuals can 

be calculated by  

1 1 1ˆ ˆˆ ˆˆ ˆ ˆ
t t t t t tn n n n n t t n t t n t t  

  

       g α d i A A a D D d P P i ,                  (2.12) 

where the subscripts n and t indicate the sets of new individuals and training population, 

respectively. Besides model (2.4) (ADD+DOM+IMP), we also considered two reduced 

models, the additive model (ADD) and the additive-plus-dominance model 

(ADD+DOM), and compared the prediction performance between the three models. 

Ten-fold cross validation was used to assess 1) prediction accuracy, defined as the 

Person correlation between genomic estimated breeding value (GEBV) and phenotype, 

and 2) unbiasedness, defined as the regression coefficient of phenotype on GEBV in 

the validation population. 

 

  



 

51 

 

References 

Aliloo H, Pryce J, González-Recio O, Cocks B, Goddard M, Hayes B (2016a). 

Including nonadditive genetic effects in mating programs to maximize dairy farm 

profitability. Journal of Dairy Science. 

 

Aliloo H, Pryce JE, González-Recio O, Cocks BG, Hayes BJ (2016b). Accounting for 

dominance to improve genomic evaluations of dairy cows for fertility and milk 

production traits. Genetics Selection Evolution 48(1): 8. 

 

Álvarez-Castro JM (2015). Dissecting genetic effects with imprinting. Models and 

Estimation of Genetic Effects: 35. 

 

Aulchenko YS, de Koning DJ, Haley C (2007). Genomewide rapid association using 

mixed model and regression: a fast and simple method for genomewide pedigree-based 

quantitative trait loci association analysis. Genetics 177(1): 577-585. 

 

Browning BL, Browning SR (2009). A unified approach to genotype imputation and 

haplotype-phase inference for large data sets of trios and unrelated individuals. Am J 

Hum Genet 84(2): 210-223. 

 

Browning BL, Browning SR (2013). Improving the accuracy and efficiency of identity-

by-descent detection in population data. Genetics 194(2): 459-471. 

 

Carlborg Ö, Haley CS (2004). Epistasis: too often neglected in complex trait studies? 

Nature Reviews Genetics 5(8): 618-625. 

 

Da Y, Wang C, Wang S, Hu G (2014). Mixed model methods for genomic prediction 

and variance component estimation of additive and dominance effects using SNP 

markers. PLoS One 9(1): e87666. 

 

Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brondum RF et al 

(2014). Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and 

complex traits in cattle. Nat Genet 46(8): 858-865. 

 

Decker JE (2015). Agricultural Genomics: Commercial Applications Bring Increased 

Basic Research Power. PLoS Genet 11(11): e1005621. 

 



 

52 

 

Guo X, Christensen OF, Ostersen T, Wang Y, Lund MS, Su G (2016). Genomic 

prediction using models with dominance and imprinting effects for backfat thickness 

and average daily gain in Danish Duroc pigs. Genetics Selection Evolution 48(1): 67. 

 

Hill WG, Goddard ME, Visscher PM (2008). Data and theory point to mainly additive 

genetic variance for complex traits. PLoS Genet 4(2): e1000008. 

 

Hu Y, Rosa GJ, Gianola D (2015). A GWAS assessment of the contribution of genomic 

imprinting to the variation of body mass index in mice. BMC genomics 16(1): 576. 

 

Kemper KE, Goddard ME (2012). Understanding and predicting complex traits: 

knowledge from cattle. Hum Mol Genet 21(R1): R45-51. 

 

Liu Z, Jaitner J, Reinhardt F, Pasman E, Rensing S, Reents R (2008). Genetic 

evaluation of fertility traits of dairy cattle using a multiple-trait animal model. J Dairy 

Sci 91(11): 4333-4343. 

 

Lopes MS, Bastiaansen JW, Janss L, Knol EF, Bovenhuis H (2015). Estimation of 

additive, dominance, and imprinting genetic variance using genomic data. G3: Genes| 

Genomes| Genetics 5(12): 2629-2637. 

 

Ma L, Brautbar A, Boerwinkle E, Sing CF, Clark AG, Keinan A (2012). Knowledge-

Driven Analysis Identifies a Gene-Gene Interaction Affecting High-Density 

Lipoprotein Cholesterol Levels in Multi-Ethnic Populations. Plos Genet 8(5). 

 

Ma L, O'Connell JR, VanRaden PM, Shen B, Padhi A, Sun C et al (2015). Cattle sex-

specific recombination and genetic control from a large pedigree analysis. PLoS 

genetics 11(11): e1005387. 

 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al (2009). 

Finding the missing heritability of complex diseases. Nature 461(7265): 747-753. 

 

Moore T, Haig D (1991). Genomic imprinting in mammalian development: a parental 

tug-of-war. Trends in Genetics 7(2): 45-49. 

 

Nishio M, Satoh M (2015). Genomic best linear unbiased prediction method including 

imprinting effects for genomic evaluation. Genetics Selection Evolution 47(1): 32. 

 

O’Connell JR (2015). MMAP User Guide. Available: 

http://edn.som.umaryland.edu/mmap/index.php. Accessed 8 October 2015. 

http://edn.som.umaryland.edu/mmap/index.php


 

53 

 

 

Owens TW, Rogers RL, Best SA, Ledger A, Mooney AM, Ferguson A et al (2014). 

Runx2 is a novel regulator of mammary epithelial cell fate in development and breast 

cancer. Cancer research 74(18): 5277-5286. 

 

Stranden I, Garrick DJ (2009). Technical note: Derivation of equivalent computing 

algorithms for genomic predictions and reliabilities of animal merit. J Dairy Sci 92(6): 

2971-2975. 

 

Su G, Christensen OF, Ostersen T, Henryon M, Lund MS (2012). Estimating additive 

and non-additive genetic variances and predicting genetic merits using genome-wide 

dense single nucleotide polymorphism markers. PLoS One 7(9): e45293. 

 

Sun C, VanRaden P, O’Connell J, Weigel K, Gianola D (2013). Mating programs 

including genomic relationships and dominance effects. Journal of dairy science 

96(12): 8014-8023. 

 

Sun C, VanRaden PM, Cole JB, O'Connell JR (2014). Improvement of prediction 

ability for genomic selection of dairy cattle by including dominance effects. PLoS One 

9(8): e103934. 

 

VanRaden P (2016). Practical implications for genetic modeling in the genomics era. 

Journal of dairy science 99(3): 2405-2412. 

 

VanRaden PM (2008). Efficient methods to compute genomic predictions. J Dairy Sci 

91(11): 4414-4423. 

 

VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, Tooker ME, Cole JB et al (2013). 

Genomic imputation and evaluation using high-density Holstein genotypes. J Dairy Sci 

96(1): 668-678. 

 

Vitezica ZG, Varona L, Legarra A (2013). On the additive and dominant variance and 

covariance of individuals within the genomic selection scope. Genetics 195(4): 1223-

1230. 

 

Wang C, Prakapenka D, Wang S, Pulugurta S, Runesha HB, Da Y (2014). GVCBLUP: 

a computer package for genomic prediction and variance component estimation of 

additive and dominance effects. BMC bioinformatics 15(1): 270. 

 

Wittenburg D, Melzer N, Reinsch N (2015). Genomic additive and dominance variance 

of milk performance traits. Journal of Animal Breeding and Genetics 132(1): 3-8. 



 

54 

 

 

Xiang T, Christensen OF, Vitezica ZG, Legarra A (2016). Genomic evaluation by 

including dominance effects and inbreeding depression for purebred and crossbred 

performance with an application in pigs. Genetics Selection Evolution 48(1): 92. 

 

Yang J, Lee SH, Goddard ME, Visscher PM (2011). GCTA: a tool for genome-wide 

complex trait analysis. Am J Hum Genet 88(1): 76-82. 

 

Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014). Advantages and 

pitfalls in the application of mixed-model association methods. Nat Genet 46(2): 100-

106. 

 

Zhu Z, Bakshi A, Vinkhuyzen AA, Hemani G, Lee SH, Nolte IM et al (2015). 

Dominance genetic variation contributes little to the missing heritability for human 

complex traits. Am J Hum Genet 96(3): 377-385. 

 

 

  



 

 

 

Tables 

Table 2.1. Variance decomposition of genotypic additive, dominance, and imprinting values for eight dairy traits. 

Trait N 
Proportion in Phenotypic Variance (SE) 

Proportion in Total  

Genetic Variance 
P-value of test for σ2=0 

A D I H2 A D I A D I 

MY 29811 0.338 (0.009) 0.040 (0.005) 0.008 (0.002) 0.386 (0.009) 0.875  0.104 0.020 3.5×10-151 9.9×10-15 4.9×10-4 

FY 29811 0.312 (0.009) 0.025 (0.005) 0.004 (0.002) 0.340 (0.009) 0.917 0.073 0.010 3.9×10-145 1.1×10-7 0.04 

PY 29811 0.272 (0.009) 0.040 (0.005) 0.007 (0.002) 0.319 (0.009) 0.853 0.126 0.021 1.8×10-122 1.3×10-13 2.5×10-3 

SCS 29392 0.102 (0.007) 0.010 (0.006) 0.002 (0.002) 0.114 (0.007) 0.893 0.087 0.019 2.2×10-48 0.04 0.14 

STPL 12911 0.031 (0.007) 0.000 (0.011) 0.000 (0.004) 0.031 (0.010) 1.0 0.0 0.0 3.4×10-06 0.5 0.5 

DPR 22942 0.044 (0.006) 0.011 (0.007) 0.015 (0.004) 0.069 (0.008) 0.637 0.154 0.209 5.2×10-15 0.07 1.9×10-5 

CCR 14318 0.051 (0.008) 0.007 (0.011) 0.021 (0.005) 0.079 (0.011) 0.647 0.090 0.264 2.2×10-11 0.27 6.0×10-5 

HCR 28601 0.008 (0.003) 0.002 (0.005) 0.005 (0.002) 0.014 (0.005) 0.538 0.108 0.354 3.5×10-3 0.39 0.01 

 

MY: milk yield. FY: fat yield; PY: protein yield. SCS: somatic cell score. STPL: standardized productive life. DPR: daughter pregnancy 

rate. CCR: cow conception rate. HCR: heifer conception rate. N: sample size. A: additive effect. D: dominance effect. I: imprinting 

effect. SE: standard error. H2: broad-sense heritability.  

  



 

 

 

Table 2.2. Variance decomposition of breeding value, dominance deviation and genotypic imprinting value for eight dairy traits 

Trait N 
Proportion in Phenotypic Variance (SE) 

Proportion in Total  

Genetic Variance 
P-value of test for σ2=0 

A** D** I** H2 A** D** I** A** D** I** 

MY 29811 
0.348 

(0.009) 

0.030 

(0.004) 

0.008 

(0.002) 

0.386 

(0.009) 

0.902 

(0.011) 

0.078 

(0.010) 

0.021 

(0.006) 
3.2E-163 8.2E-15 4.4E-04 

FY 29811 
0.318 

(0.009) 

0.019 

(0.004) 

0.004 

(0.002) 

0.341 

(0.009) 

0.934 

(0.012) 

0.056 

(0.010) 

0.010 

(0.006) 
1.9E-153 3.5E-08 4.1E-02 

PY 29811 
0.281 

(0.009) 

0.031 

(0.004) 

0.007 

(0.002) 

0.320 

(0.009) 

0.880 

(0.014) 

0.098 

(0.012) 

0.022 

(0.008) 
1.0E-133 2.3E-14 2.2E-03 

SCS 29392 
0.105 

(0.006) 

0.006 

(0.004) 

0.002 

(0.002) 

0.113 

(0.008) 

0.928 

(0.038) 

0.053 

(0.035) 

0.019 

(0.018) 
2.3E-54 7.5E-02 1.4E-01 

STPL 12911 
0.031 

(0.006) 

0.004 

(0.009) 

0.000 

(0.004) 

0.034 

(0.011) 

0.887 

(0.261) 

0.113 

(0.240) 

0.000 

(0.116) 
2.4E-07 3.4E-01 5.0E-01 

DPR 22942 
0.047 

(0.005) 

0.006 

(0.006) 

0.015 

(0.004) 

0.068 

(0.008) 

0.695 

(0.073) 

0.092 

(0.076) 

0.213 

(0.049) 
2.6E-19 1.3E-01 1.8E-05 

CCR 14318 
0.053 

(0.007) 

0.006 

(0.009) 

0.021 

(0.005) 

0.079 

(0.012) 

0.668 

(0.096) 

0.070 

(0.108) 

0.262 

(0.067) 
3.4E-14 2.7E-01 6.1E-05 

HCR 28601 
0.008 

(0.002) 

0.001 

(0.004) 

0.005 

(0.002) 

0.014 

(0.005) 

0.584 

(0.223) 

0.048 

(0.306) 

0.368 

(0.176) 
5.2E-04 4.4E-01 1.1E-02 

 

MY: milk yield. FY: fat yield; PY: protein yield. SCS: somatic cell score. STPL: standardized productive life. DPR: daughter pregnancy 

rate. CCR: cow conception rate. HCR: heifer conception rate. N: sample size. A**: breeding value. D**: dominance deviation. I**: 

genotypic imprinting value. SE: standard error. H2: broad-sense heritability.  

 



 

 

 

Table 2.3. Top two SNPs associated with milk yield near the RUNX2 gene. 

SNP Chr Position MAF Model _A (SE) P-value _D (SE) P-value _I (SE) P-value 

Hapmap48809-BTA-

55698 
23 17275448 0.15 

Two-

step 

153.4 

(33.0) 
3.33×10-6 

197.1 

(37.6) 
1.56×10-7 

-3.64 

(18.0) 
0.84 

A 
223.6 

(51.8) 
1.57×10-5 

255.2 

(44.7) 
1.17×10-8 

-1.54 

(23.8) 
0.95 

A+D+I 
212.7 

(51.6) 
3.82×10-5 

241.7 

(45.3) 
9.54×10-8 

-0.52 

(25.5) 
0.98 

BovineHD2300004730 23 18600456 0.10 

Two-

step 

207.3 

(47.6) 
1.31×10-5 

273.5 

(52.1) 
1.54×10-7 

10.31 

(21.3) 
0.63 

A 
206.2 

(67.6) 
2.29×10-3 

353.6 

(62.3) 
1.43×10-8 

-3.43 

(28.8) 
0.91 

A+D+I 
200.6 

(67.5) 
2.96×10-3 

340.4 

(62.9) 
6.33×10-8 

7.52 

(30.8) 
0.81 

 

Chr: chromosome. MAF: minor allele frequency. : regression coefficient. SE: standard error.  



 

 

 

Figures 

 

Figure 2.1. Individual estimates of variance components with two decomposition models for milk. Each point indicates the component 

estimate for each individual. Blue line indicates y=x. The x-axis shows the components from the model decomposing genetic effect to 

breeding value, dominance deviation and genotypic imprinting value, while y-axis shows the components from the model decomposing 

genetic effect to genotypic additive, dominance and imprinting values. 



 

 

 

 

Figure 2.2. Variance decomposition using simulated datasets. The dash line indicates expected value of corresponding variance 

component. 
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Figure 2.3. Manhattan plots for associations of SNP effects with milk yield. 

  



 

 

 

 

Figure 2.4. Mixed-model based association analysis between milk yield and 50 SNPs around RUNX2 in the validation data set. The 

two vertical dash lines indicate SNPs Hapmap48809-BTA-55698 and BovineHD2300004730, respectively.  



 

 

 

 
Figure 2.5. Fine-mapping of the dominance association with milk yield near RUNX2. 

A) LD between BovineHD2300004730 and adjacent variants  



 

 

 

B) Association results of additive and dominance effects. The red dash line indicates the target SNP (BovineHD2300004730), 

while the two blue solid lines indicate the two variants with the smallest P-value. 

C) The influence of imputation reliability measured by AR2 on association P-values. The black lines indicate the regression line 

of –log10(P) on AR2, and at the right-upper corner are the P-values for model fitting of the regression. 

  



 

 

 

 
Figure 2.6. Association analysis conditional on the additive effect (A) and both the additive and dominance effects (B) of variant 

Chr23:18676057. The vertical blue line indicates the location of Chr23:18676057. 



 

 

 

 

Figure 2.7. Prediction performance of three models for eight dairy traits
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Chapter 3: Fast Bayesian Fine-Mapping and SNP-set 

Association for Population and Pedigree Data 

Abstract 

Motivation: Routine approaches for genome-wide association studies (GWAS) are 

generally based on Wald, likelihood ratio, or score tests. Use of Bayes factors is a 

promising alternative; however, there are currently few fast implementations of such 

methods for single-marker/SNP-set association analysis. Though Bayesian methods are 

extensively used in fine-mapping, existing software tools mostly have some drawback, 

e.g., infeasible model enumeration or insufficient model search.  

Results: We propose a unified Bayesian model for single-marker/SNP-set association 

and fine-mapping and develop a software tool, BFMAP, which can deal with both 

population and pedigree data. In association tests, it computes not only Bayes factor 

but also its null distribution, thus also providing p-value. In fine-mapping, we 

implement two fast model search algorithms (forward selection and shotgun stochastic 

search (SSS)) and introduce simulated annealing to make SSS do more sufficient model 

search. Furthermore, BFMAP can easily incorporate functional annotation into fine-

mapping. We demonstrate that BFMAP achieves a power similar to or higher than 

existing software tools but is at least a few times faster with respect to single-

marker/SNP-set association tests. We also show that BFMAP performs well for fine-

mapping even for complex linkage disequilibrium structures. 
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Introduction  

The past decade has witnessed a dramatic advance in our understanding on genetic 

architecture of complex traits. A variety of computational and statistical approaches 

have been developed and/or applied for unraveling the genetic cause of phenotypic 

variations, e.g., genomic-relatedness-based restricted maximum-likelihood (GREML) 

for estimating SNP heritability (Yang et al, 2015; Yang et al, 2010; Yang et al, 2011b), 

linear mixed models for genome-wide association studies (GWAS) (Kang et al, 2010; 

Kang et al, 2008; Lippert et al, 2011; Loh et al, 2015b; Svishcheva et al, 2012; Yang 

et al, 2014; Zhou and Stephens, 2012), SNP-set kernel association tests (Ionita-Laza et 

al, 2013; Wu et al, 2011), Bayesian fine-mapping (Benner et al, 2016; Chen et al, 2015; 

Hormozdiari et al, 2014; Kichaev et al, 2014; Servin and Stephens, 2007), linkage 

disequilibrium (LD) score regression for estimating SNP heritability and genetic 

correlation and partitioning heritability (Bulik-Sullivan et al, 2015a; Bulik-Sullivan et 

al, 2015b; Finucane et al, 2015).  

 The GWAS approaches, either for single-marker or for SNP-set, are generally 

based on Wald, likelihood ratio, or score tests. Though use of Bayes factors is a 

promising alternative (Wakefield, 2009), some problems hinder its application. First, 

Bayes factor depends on prior, and it is impractical to specify a fixed threshold in all 

scenarios (in contrast to universal use of p-value threshold, 5E-8). Second, it is not easy 

to specify a proper prior. A diffusive prior tends to favor, unintentionally, the null 

model, which is so-called Bartlett’s paradox (Bartlett, 1957). To solve the problems, 

Zhou and Guan (2017) recently derived the null distribution of Bayes factors in linear 



 

68 

 

regression and formulated a novel scaled Bayes factor. However, the linear regression 

model studies there can only deal with independent samples. 

 As large-scale sequence data are becoming available, it is now feasible to fine-

map a trait to single-variant resolution. Fine-mapping is basically a model selection 

problem. Many statistical methods have been used to solve the problem, e.g., stepwise 

selection (Huang et al, 2017), exhaustive search limiting maximum model size (Chen 

et al, 2015; Hormozdiari et al, 2014; Kichaev et al, 2014; Servin and Stephens, 2007), 

shotgun stochastic search (Benner et al, 2016). Stepwise selection is fast and works 

well for identifying independent causal variants. Exhaustive search is capable of 

handling all LD structures; however, it is often infeasible when we aim to find multiple 

causal effects in many variants (e.g. 1000). Shotgun stochastic search (SSS) overcomes 

this problem by identifying models with high posterior probability and ignoring models 

with negligible probability (Hans et al, 2007). However, SSS may fail to find all 

important models for some LD structures, even with a long chain. Additionally, most 

of the existing fine-mapping tools use summary statistics. Though this is a great feature, 

direct use of genotypes and phenotypes results in exact computation and is more 

straightforward, especially in some species where summary statistics is not commonly 

used (e.g. dairy cattle). 

 To address the aforementioned issues, we propose a unified Bayesian model for 

single-marker/SNP-set association and fine-mapping which can deal with both 

population and pedigree data. In this work, we extend the theory of Zhou and Guan 

(2017) to a Bayesian model which contains a polygenic term to control population 

structure, making use of Bayes factors in GWAS straightforward. In fine-mapping, we 
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implement forward selection and SSS and introduce simulated annealing to make SSS 

do more sufficient model search. Furthermore, we develop an approach to incorporate 

functional annotation into fine-mapping. The approach can be readily applied to many 

other existing fine-mapping tools. All these methods are implemented in the software 

tool, BFMAP. We demonstrate that BFMAP achieves a power similar to or higher than 

existing software tools but is at least a few times faster with respect to single-

marker/SNP-set association tests. We also show that BFMAP performs well for fine-

mapping even for complex linkage disequilibrium structures.  

Methods 

Bayesian model 

We use a unified Bayesian model for single-marker/SNP-set association and fine-

mapping:  

 
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~ (0, )
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





 

y = Xb + Za + g + e

b I

a A

g G

e R

,                                      (3.1) 

where y is a phenotype vector of size n for a complex trait, b is a vector of covariate 

(other than genomic variants) effect and X is corresponding design matrix, a is a vector 

of variant effect with diagonal variance structure A and Z is corresponding genotype 

coding matrix (e.g., genotype coding for additive, dominance or imprinting effects 

(Jiang et al, 2017)), g is a vector of polygenic effect for controlling population structure 

and G is corresponding variance structure matrix (e.g., genomic relationship matrix 
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(GRM)), and e is residual with diagonal variance structure R for modelling reliability 

or accuracy of phenotypic records. The common variance component (𝜎𝑒
2) is given a 

non-informative Jeffrey's prior. Other variance parameters (𝜑, 𝛾 and 𝜂) are treated as 

known. Generally, we can set 𝜑 to a large value (e.g., 1E8) to make b act like fixed 

effects. A genomic variant is usually considered to be of small but noticeable effect, so 

we can set 𝛾 to 0.01 or 0.04 (Chen et al, 2015; Zhou and Guan, 2017b). When Za only 

accounts for a tiny proportion of phenotypic variance (this is generally true when the 

variant set of interest is small), we can set 𝜂 based on heritability (ℎ2), 
2 21h h   . In 

practice, we can instead use heritability estimate (ℎ2̂) in the null model without variants 

to determine η. 

 In the context of GWAS and fine-mapping, we are only interested in variant 

effects (a). Single-marker association is considered as a special case of SNP-set 

association with set size equal to 1. SNP weighting via A in model (3.1) matters in 

SNP-set tests and fine-mapping where multiple variants are modeled. A key to 

improving statistical power of SNP-set tests is properly specifying differential weights 

for SNPs given their MAFs (Ionita-Laza et al, 2013; Wu et al, 2011) or functional 

annotations (Hao et al, 2018). Note that a SNP weighting scheme is generic and can be 

used in any association test methods, such as likelihood ratio test, score test, or use of 

Bayes factor as in this study. Additionally, weighting variants via A is equivalent to 

scaling genotypes by square root of corresponding weights (see Appendix A for the 

proof); for example, using standardized genotypes and setting 𝑨 = 𝑰 in model (3.1) is 

equivalent to using 0/1/2 (additive genotype coding) and setting 𝐴𝑖𝑖 =

1 (2 × MAF𝑖 × (1 − MAF𝑖))⁄ . 
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 Most existing GWAS approaches, like EMMAX (Kang et al, 2010), GEMMA 

(Zhou and Stephens, 2012), BOLT-LMM (Loh et al, 2015b), and SKAT (Wu et al, 

2011), assume that residuals are independently and identically distributed, that is, R=I 

as in model (3.1). This generally works well for human phenotypes. However, indirect 

phenotypes (such as breeding values) are often used in animal and plant GWAS, where 

modeling their reliability is sometimes critical (see Chapter 4 for our cattle GWAS). 

We can use 
21 1iiR r  , where r2 is reliability (VanRaden, 2008). Modeling R in 

eigendecomposition methods is straightforward. MMAP has this function 

(https://mmap.github.io/). 

 Next, we describe how to efficiently compute P(D|M) (data D, and model M 

regarding variant inclusion) by integrating out 𝜎𝑒
2 based on model (3.1).  

Computation of P(D|M) 

For any model M that defines a variant set to be included in model (3.1), let ZM (a subset 

of Z) represent the genotypes of the corresponding variant set. Given  , , , ,D  y X Z G R , 

we have    ( | ) | , , , , , , , |P D M P M P M y X Z G R X Z G R . Assuming that variant 

genotypes alone do not contain information about model M, 

 , , , | ( , , , )P M P C X Z G R X Z G R  remains constant for any model M. 
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where 
M M M      V XX Z A Z G R , 2n  , and 1 2  y V y . 

Thus,  

.           (3.2) 

Evaluating log ( | )P D M  involves computation of the determinant and inverse of 

matrix V. The computations of V  and 
1

V  can be eased by applications of 

Sylvester’s determinant identity and Woodbury matrix identity, respectively. We have 

1 V W I K W K  and  
1

1 1 1 1 1


       V W W K I K W K K W , where 

 W G R  and 
1 2 M M  

 
K X Z A . With the two equations, we only need 

to compute the determinant and inverse of W once and use them for all variants or 

variant-sets. Inverse of V involves a matrix inversion that has a dimension equal to total 

number of covariates and included variants (usually much smaller than sample size n). 

 Alternatively, we can use a linear transformation to ease the evaluation of 

log ( | )P D M . Let W LL  (Cholesky decomposition) and   1T v L v . With the 

linear transformation T(v), model (3.1) becomes  
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1 1 1 1
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e I

a e

b I

a
,                                (3.3) 

where 
* 1y L y , * 1X L X , and * 1Z L Z . Given  * * * *, ,D  y X Z , we get  

 
1

log ( | ) log log log 2 log log
2 2

n
P D M C        V
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 

 
 *

* 1
* * * * 22

*

( | , , ) 2
n

P M








y X Z V ,                          (3.4) 

and 

* * * * * * * * * *( | ) ( | , , ) ( , | ) ( | , , )P D M P M P M P M C y X Z X Z y X Z ,               (3.5) 

where * * * * *

M M M    V X X Z A Z I , 
* 2n  , 

* * * 1 * 2  y V y , and C* is a 

constant comparable to C. It is easy to show  

1* * *( | , , , , ) ( | , , )P M P M


y X Z G R y X Z L . 

Thus, 

* * *log ( | ) log ( | , , ) log logP D M P M C  y X Z L .                 (3.6) 

Evaluating *log ( | )P D M  requires the determinant and inverse of matrix V*. Let 

* * * *1 2 M M  
 

K X Z A . Based on Sylvester’s determinant identity and 

Woodbury matrix identity, we get 
* * * V I K K  and 

 
1

* 1 * * * *


    V I K I K K K , respectively.  

 In proper software implementation, use of equation (3.6) does not necessarily 

increase speed or reduce memory usage compared to direct use of equation (3.2). 

However, the linear transformation of model (3.1) to model (3.3) illustrates how we 

can calculate scaled Bayes factor with model (3.1) and get its null distribution (Zhou 

and Guan, 2017b). 



 

74 

 

Null distribution of Bayes factor 

Zhou and Guan (2017b) studied the null distribution of Bayes factor (H0: a=0) in a 

linear regression model identical to model (3.3). Their theory holds true as long as 𝜑 →

∞ in model (3.3). We here extend it to model (3.1). 

 In association tests, we compare a model of interest (M1) to the null model 

without variants (M0). Bayes factor can accordingly be computed for model (3.1) and 

D by 

 1 0 1 0log BF : log ( | ) log ( | )D M M P D M P D M  , 

and for model (3.3) and D* by 

 *

* *

1 0 1 0log BF : log ( | ) log ( | )
D

M M P D M P D M  , 

respectively. Based on equations (3.5) and (3.6), we can further get  

 

 *

1 0

1 0

* * * * * *

1 0

log BF :

log BF :

log ( | , , ) log ( | , , )

D

D

M M

M M

P M P M



 y X Z y X Z

.                       (3.7) 

That is, for any D corresponding to D*, 

*BF BFD D
 .                                                   (3.8) 

Because any D is uniquely mapped to D* and vice versa, BFD must have the same null 

distribution as BFD*. This can be illustrated by using permutation of Z (Z*) (switching 

individual labels) to create their null distributions. Any permuted D (Dp) is uniquely 

mapped to a permuted D* (𝐷p
*) and vice versa, and *

p p
D D

BF BF . Thus, BFD has the 

same null distribution as BFD*.  
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 Define  
1

* * * *


  P I X X X X , *T PZ , and  
1

1 1


   H T T T A T . 

Let  1, , p   be eigenvalues of H in descending order. According to Zhou and Guan 

(2017b),  

 
1 1

2log BF log 1
p p

i i i

i i

Q 
 

     with 2

1~iQ  .                  (3.9) 

Thus, p-value for log BF (H0: a=0) can be computed by evaluating a weighted sum of 

chi-squared random variables. We can also compute scaled Bayes factors (Zhou and 

Guan, 2017b): 

 

   

def

0

1 1 1

2logsBF

= 2log BF E 2log BF

2log BF log 1 1
p p p

i i i i

i i i

Q  
  



       

,           (3.10) 

where E0 is the expectation under the null. A large value of γ makes λi close to 1, thus 

resulting in loss of significance in computation of  log 1 i . To avoid the loss, we 

instead compute the eigenvalues of 1 2 1 2 A T TA  (
* *

1 , , p   in descending order) and use 

the relationship between 𝜆𝑖  and 𝜆𝑖
∗,  *1 1 1i i    . Furthermore, we use singular 

value decomposition of 1 2 A T  instead of the eigendecomposition of 1 2 1 2A T TA  to 

improve computation of very small eigenvalues. 

 When doing association tests or fine-mapping with pedigree data, model (3.1) 

is used to include a polygenic term to control population structure. The linear 

transformation T(v) is used to transform phenotypes, covariates, and genotypes. Bayes 

factor and its null distribution are then computed using the transformed data D* based 
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on model (3.3). The Bayes factor and null distribution are exactly the ones for model 

(1) with the original data D.  

 Note that 𝜑 → ∞ is required. A large value (e.g., 1E8) suffices, when using 

equations (3.7) and (3.4) to compute Bayes factors. Model M0 does not include any 

variants, so the terms for variants need to be removed when computing 

. Alternatively, we can use the following equation to compute Bayes 

factor (Zhou and Guan, 2017b), 

   

1 1

* * * * * *

1 1
log BF log log

2 2

log log
2 2

n n

      

    

A T T A

y Py y Py y Hy

,                   (3.11) 

where T, P and H are the same as defined previously. 

Single-marker/SNP-set association 

Based on our derivation above, we can readily compute Bayes factor for a variant 

set versus the null (equation (3.11)) and corresponding p-value (equation (3.9)). For 

single-marker association tests, the p-value associated with Bayes factor (pB) is 

asymptotically equal to that from likelihood ratio test (pF) for the corresponding 

linear regression, while for SNP-set tests, pB is generally not equal to pF as pB 

depends on γ. Zhou and Guan (2017b) also showed that pB is well-calibrated even 

when the sample size is as small as a few hundred, and the calibration is better than 

the pF at very small values. 

 Evaluating a weighted sum of chi-squared random variables is required to 

compute pB for SNP-set association tests, for which we implement saddlepoint 

* * *

0( | , , )P My X Z
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approximation (Kuonen, 1999). This method is fast and is accurate in the upper tail, 

which is sufficient for use in GWAS.  

 Besides p-value, one can use Bayes factor or scaled Bayes factor (sBF) to 

rank variants besides p-value in single-marker association. Scaled Bayes factor is 

proposed by (Zhou and Guan, 2017). Its definition, computation and null distribution 

are shown by equation (3.10). Compared to BF, sBF has a few desirable properties 

(Zhou and Guan, 2017b). For multiple single-marker tests, it has a propensity to 

assign a larger value to the test that carries more evidence or has a larger power. 

Simply speaking, among markers with equal p-values, the ones with a larger sBF are 

more appealing. Note that sBF for a SNP set depends on set size and correlations 

between the SNPs, so sBF is not suitable for ranking SNP-set tests. 

Fine-mapping 

Fine-mapping is basically model selection problem. We explore the vast model space 

to find models with highest probability.   

Forward selection 

We aim to identify independent association signals within a region by forward selection 

and to assign a posterior probability of causality (PPC) to each variant. Following the 

first method by Huang et al (2017), our fine-mapping approach includes three steps: 

forward selection (Foster and George, 1994) to add independent signals in the model, 

repositioning signals, and generating credible variant set for each signal. Though our 

approach uses the same framework as Huang et al (2017), there are a few notable 

differences (Table 3.1). Specifically, we provide a fast, general-purpose software tool 
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for fine-mapping complex traits, while they only provided R scripts fitting for disease 

data sets like theirs.  

We set 𝜑 = 𝛾 = 1𝐸8 in model (3.1) for fine-mapping by forward selection, 

which enables easy calculation of p-value for a newly added variant conditioning on 

variants already added. When existing covariates (including variants that have been 

added) have an infinite value for φ (φ=1E8 suffices) and design matrix X*, adding 

variant i with transformed genotypes 𝒁𝑖
∗ results in:  

 2log BF log 1i i iQ   T T , 

with *

i iT PZ ,  1i i i i i   T T T T , and 2

1~Q  , which is just a special case of 

equation (3.9). Note that the null model includes variants already added. We set 𝛾 =

1𝐸8 for all variants in fine-mapping, so we get 𝜆𝑖 = 1 for any variant i. Therefore, p-

value can be easily computed because we have   2

12logsBF 1 ~  . 

We use Bonferroni threshold (Foster and George, 1994) as stopping criterion in 

forward selection; that is, forward selection stops when   eff2logsBF 1 2log m  , where 

meff is efficient number of independent variants calculated using the method by Li and 

Ji (2005). Suppose that we select p independent signals in forward selection and 

determine a set of lead variants (Sl) for the p signals after repositioning. Then for signal 

i with lead variant (li), we have a variant set (Si) containing variants that have substantial 

LD with li but weak LD with lead variants in other signals { }\l iS l . Accordingly, we can 

compute PPC of variant j (vij) in Si conditioning on { }\l iS l : 
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y X Z
,        (3.12) 

where 
ii jM v  denotes that the causal variant in signal i is variant j in Si (i.e. vij). 

Efficient computation of ( | , , )P My X Z  is given by equation (3.4). An equal prior for 

each variant can be used when little prior information is known; that is, 

( ) 1 i ij ij iP M Sv v    . We can easily get a credible variant set passing a given 

confidence level (e.g., 95%) for a signal, by sorting variants in a descending order of 

PPC and including them in the set from top. We can also calculate PPC of a gene by 

summing up PPCs of all variants within the gene. 

Shotgun stochastic search 

There are a total of 2m models for m variants in a region of interest. Enumeration of all 

models is often infeasible, as m is generally more than a few hundred. Let Γ represent 

the entire model space. We use a shotgun stochastic search (SSS) algorithm to get a 

subset of Γ, denoted by Γ*. SSS quickly identifies models with high posterior 

probability and ignores models with negligible probability (Hans et al, 2007), so we 

anticipate that Γ*, though much smaller than Γ, contains (almost) all relevant models. 

Γ* is accordingly sufficient for follow-up analyses, like prioritization of variants and 

incorporation of function annotations. As the algorithm has been well described for use 

in fine-mapping (Benner et al, 2016), we skip its details and instead address how to 

improve its performance. 

 For any model M defining a set of causal variants, its posterior probability is 

computed by 
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* *

0

0

BF( : ) ( )( | , , ) ( )
( | , , )

( | , , ) ( ) BF( : ) ( )
M M

M M P MP M P M
P M

P M P M M M P M
  

 
    

y X Z
y X Z

y X Z
,   (3.13) 

where M0 is the null model without variants. (Note ( , | ) ( , )P M PX Z X Z  to obtain 

equation (3.13), assuming that genotypes alone do not contain information about 

model.) Here we use a standard model prior,    ( ) 1
M m M

P M  


   (Hans et al, 

2007), to induce sparsity, where M  is model size, and π is a hyperparameter 

representing the probability that each variant is causal. As this actually induces a 

binomial prior on model size, the expected model size equals mπ. In fine-mapping, π is 

often set to 1/m so that we expect one causal variant a priori (Benner et al, 2016; Chen 

et al, 2015). We further compute posterior inclusion probability (PIP) for variant vk, 

   
*

PIP 1 ( | , , )k k

M

v v M P M


  y X Z .                          (3.14) 

The PIP is the marginal posterior probability of causality and measures the relative 

importance of each variant. PIP has a better performance than ρ-level confidence for 

prioritizing variants (Chen et al, 2015).  

 A naïve implementation of SSS may fail to discover causal variants even with 

a very long chain for some LD structures (see examples in Results). The reason may 

be that a few LD patterns cause the SSS iterations to miss some relevant models. To 

solve the problem, we introduce simulated annealing to make SSS do more sufficient 

search. We apply a linear cooling scheme, 

1k kT T T   ,                                             (3.15) 
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where T0 and ΔT can be set to 100 and 1 for fine-mapping, respectively, and the final 

temperature is set to 1. Each temperature is coupled with 10 SSS iterations (though 

other numbers may apply), except that 100 iterations are used for the final one. 

 Identical variants (that is, genotype correlation exactly equals 1 or -1) are 

specially treated in our implementation of SSS. We anticipate that identical variants 

have the same relevant models; however, SSS cannot guarantee this because it is 

basically based on random sampling. To solve this problem, after all SSS iterations, 

we find all models that contain a variant identical to others, and create new models 

for all possible combinations of identical variants (Fig. 3.1). As a result, identical 

variants have the same relevant models, which minimizes SSS-induced random errors 

in computation of PIPs and incorporation of functional annotations. Though being 

identical with respect to genotypes, their function annotations may be distinct and can 

be used to distinguish their relevance to phenotypic variation. 

Incorporation of functional annotations 

We propose an intuitive method to apply differential prior model probabilities to fine-

mapping by integrating functional annotation, drawing ideas from a previous study on 

adjusting significance threshold based on functional annotation in GWAS 

(Sveinbjornsson et al, 2016). This method is readily integrated with our forward 

selection and SSS approaches and applies to existing software tools (e.g., BIMBAM, 

CAVIARBF, FINEMAP).  

Here we only consider categorical functional annotations. Let c represent 

functional annotation categories of all variants in a locus. Assuming genotypes are 

independent of functional annotations, we can obtain: 
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( , , , , ) ( | , , ) ( , | ) ( | ) ( )P M P M P M P M P My X Z c y X Z X Z c .        (3.16) 

Equation (3.13) correspondingly becomes  

*

( | , , ) ( ) ( | )
( | , , , )

( | , , ) ( ) ( | )
M

P M P M P M
P M

P M P M P M



  

y X Z c
y X Z c

y X Z c
.               (3.17) 

The standard model prior,    ( ) 1
M m M

P M  


  , is used as in equation (3.13). 

Incorporation of functional annotation is done in 𝑃(𝐜|𝑀). For a functional annotation 

with several categories, we define two categorical distributions (one with parameter p 

and the other q) and denote the probability of a causal variant being of category c as pc 

and the probability of a non-causal variant being of category c as qc. Assuming that 

variants are independent of one another with respect to functional annotation, we can 

compute 𝑃(𝐜|𝑀) for any model M (a set of causal variants) in a locus by taking samples 

from the two categorical distributions: 

( | )
v v v vc c c c

v M v M v M

p qP M p q
  

   c ,                         (3.18) 

where v is a variant in the locus, and cv denotes its category. 

We estimate q with the genome-wide frequencies of the categories, as in 

(Sveinbjornsson et al, 2016). To estimate p, we can use all the available 

independent loci in fine-mapping (let Γ𝑖
∗ represent SSS model space for locus i):  

*

( | ) ( , , , ) ( | , , ) ( ) ( | )

i
i i M

L D P P M P M P M


   y X Z c y X Z cp .       (3.19) 

Taking equation (3.18) into equation (3.19), we obtain the maximum likelihood 

estimates (MLEs) of p using the Nelder–Mead method. By taking the estimates of p 

and q to equations (3.18) and (3.17), we get posterior model probabilities with 
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incorporation of function annotation. As shown above, our method is actually an 

empirical Bayes method. 

Note 𝑃(𝐲|𝐗, 𝐙, 𝑀)𝑃(𝑀) ∝ 𝑃(𝑀|𝐲, 𝐗, 𝐙) as shown by equation (3.13). Thus, 

taking equation (3.18), we rewrite equations (3.17) and (3.19) as 

*
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                (3.20) 

and 

*

( | ) ( | , , )
v v

i

c c

i v MM

L D P M p q


  y X Zp ,                 (3.21) 

respectively, where 𝑃(𝑀|𝐲, 𝐗, 𝐙) is the posterior model probabilities computed without 

functional annotation. These two new equations suggest an easy-to-use procedure to 

integrate functional annotation with fine-mapping, which includes three separate steps: 

i) computing posterior model probabilities 𝑃(𝑀|𝐲, 𝐗, 𝐙) without functional annotation 

based on equation (3.13), ii) estimating q with the genome-wide frequencies and taking 

𝑃(𝑀|𝐲, 𝐗, 𝐙)  to equation (3.21) to estimate p, and iii) taking 𝑃(𝑀|𝐲, 𝐗, 𝐙)  and the 

estimates of p and q to equation (3.20) to obtain posterior model probabilities 

𝑃(𝑀|𝐲, 𝐗, 𝐙, 𝐜)  with incorporation of functional annotation and subsequently 

computing PIPs. Note that we only need to compute the first step once, even when we 

try many different functional annotations in fine-mapping. This feature makes our 

approach easier to use compared with PAINTOR (Kichaev et al, 2014) and 

CAVIARBF (Chen et al, 2016). 

 In the derivation above, we address the use of SSS outputs. In fact, this method 

is also applicable to our forward selection approach. Forward selection identifies 

independent association signals, and it is usually safe to assume that there is only one 



 

84 

 

causal variant in each signal. Therefore, forward selection outputs can be considered as 

models of size 1, just a special case of SSS outputs. However, we must be aware that 

for a locus with multiple signals, the forward selection approach outputs posterior 

probabilities of variants in a signal conditional on lead variants of other signals. To 

integrate functional annotation with forward selection outputs, we use the following 

approximation:  

 ( | \, , ) ( | , , , )ij ij li iiP M P Mv v S l y X Z y X Z ,                  (3.22) 

in which all the denotations are the same as equation (3.12). To make the approximation 

effective, we may remove a signal when incorporating function annotation into forward 

selection outputs, if the variants in its credible set have high correlation with those in 

another signal.  

 Computing the MLEs of p is time-consuming. To gain speedup, we can 

disregard bottom models, which has little impact on the estimation. In practice, we use 

only the top models whose cumulative posterior probability passes a threshold (e.g., 

0.9). 

 Besides the use in fine-mapping, our method is also useful for functional 

enrichment analysis. The enrichment for category c is defined as Ec = pc/qc following 

(Sveinbjornsson et al, 2016), for which a value larger than one indicates that causal 

variants are more enriched in category c than across whole genome. Its estimate is 𝐸𝑐̂ =

𝑝𝑐̂ 𝑞𝑐̂⁄ , and the confidence interval of the estimate is derived by percentile bootstrap. 

Time complexity 

Table 3.2 lists time complexity of the computations in our method. Basically, BFMAP 

has a time complexity similar to EMMAX and SKAT for single-marker GWAS and 
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SNP-set association, respectively. Model size varies for computation of Bayes factors 

in fine-mapping. The time complexity of computing one model is approximately 

𝑂(𝑝2𝑛 + 𝑝3) where p represents the number of causal variants and is generally small 

(considering the causal effects that are detectable with sufficient statistical evidence). 

About pm and tpm models are computed in forward selection and SSS, respectively, 

where t is the effective number of SSS iterations (generally much smaller than the 

actual number specified). Thus, our fine-mapping approaches have a time complexity 

of 𝑂(𝑝3𝑚𝑛) or 𝑂(𝑡𝑝3𝑚𝑛) when polygenic term is not needed to control population 

structure. 

Software 

We develop BFMAP with the Eigen 3 C++ library, implementing our methods for 

single-marker/SNP-set association and fine-mapping. Incorporation of functional 

annotation into fine-mapping is implemented separately, with the optim() function in 

R (Team, 2013).  

Benchmarking and application 

Data sets 

We used two real data sets in our analysis. The first one is a dairy cattle data set, which 

consists of high-density (HD) genotypes of ~300K SNP markers for ~27,000 Holstein 

bulls. These bulls represent a complex population and have highly reliable breeding 

values (PTAs) for 35 production, reproduction, and body conformation traits, with 

average reliability of 0.71 across traits. Imputed sequence genotypes of ~3 million 

variants are also available for these bulls. This data set has been used and well described 
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in a previous study (VanRaden et al, 2017). SNPs with MAF<0.01 were excluded in 

further analysis. 

 The second data set is from the Atherosclerosis Risk in Communities (ARIC) 

study (Investigators, 1989) and consists of imputed genotypes of ~2.5 million SNPs 

and phenotypes of four lipid profile traits for 9,713 unrelated European Americans. We 

removed the SNPs (MAF<0.01 or HWE test p<1E-6) before further analysis. 

 In addition, we simulated 308 data sets using the ARIC genotypes on 

chromosome 22. There are 30,884 SNPs covering 14.4-49.6 Mb on Chr22. We divided 

the first 30,800 SNPs on Chr22 into 308 continuous groups, each having 100 SNPs. 

Within each group, we randomly sampled two variants as causal. Effect size was 

properly assigned to each causal variant so that we had a power range of (0.527, 0.992) 

to identify the association when using marginal test statistics with significance level 

5E-8 (Chen et al, 2015). For each of the 308 SNP groups, we summed the effects of 

two causal SNPs and a random error (sampled from 𝑁(0,1)) to obtain phenotypes. 

Consequently, we got 308 data sets, each consisting of genotypes of 100 SNPs and 

simulated phenotypes for 9713 individuals. The resulting 308 data sets, which 

represented a variety of LD structures, were used for validating the fine-mapping 

performance of our approaches.  

Single-marker association 

We compared BFMAP with several popular software tools for single-marker GWAS, 

including GEMMA (Zhou and Stephens, 2012), EMMAX (Kang et al, 2010), BOLT-

LMM (Loh et al, 2015b), and MMAP. The dairy cattle HD data were used for this 

comparison. Only milk was analyzed by all the software tools, while other traits were 
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analyzed by only BFMAP and MMAP. The heritability estimates needed by BFMAP 

were obtained by MMAP. We set 𝛾 = 1𝐸8 in BFMAP. 

 We computed the same type of GRMs in BFMAP, EMMAX, GEMMA and 

MMAP (so called Balding-Nichols matrix in EMMAX). Note that GEMMA uses 

sample variance of genotypes when building GRM, while BFMAP, EMMAX and 

MMAP use expected value (2 × MAF × (1 − MAF)). In addition, BOLT-LMM uses 

leave-one-chromosome-out (LOCO) approach. This may result in unexpected 

problems in some cases.  

SNP-set association 

We compared BFMAP with SKAT (Wu et al, 2011) for SNP-set association. Here we 

focus on the comparison between the score test in SKAT and the use of Bayes factor 

in BFMAP, so we use only a simple SNP weighting scheme 

(1 (2 × MAF × (1 − MAF))⁄ ) for additive genotype coding (0, 1, or 2). Both the dairy 

cattle HD data and the human lipid profile data were used for the comparison. We 

divided cattle and human genomes into non-overlapping 1-Mb and 100-kb segments, 

respectively, and SNPs in each segment form a SNP set. Accordingly, we obtained 

2,521 and 26,543 SNP sets on autosomes for the cattle and human data, respectively. 

The maximum set size is 245 for the cattle data and 481 for the human data.  

 While the human population consists of unrelated individuals, the dairy cattle 

population has a complex population structure. SKAT needs the null model for the 

latter case (basically, a linear mixed model) which is computed by EMMA (Kang et al, 

2008). In contrast, BFMAP needs the heritability whose estimate is computed by 

MMAP.   
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Fine-mapping 

We simulated 308 data sets (described above) and used them to demonstrate the fine-

mapping performance of BFMAP. Only CAVIARBF (Chen et al, 2015) was used as a 

benchmark, as this software can be considered ideal for our small data sets. We ran 

CAVIARBF with options -t 0 -a 0.1 -c 2 and -p 0 for computing Bayes factors and 

model search, respectively. Since use of summary statistics in CAVIARBF is 

equivalent to use of standardized additive genotypes in model (3.1), we used 𝛾 = 0.01 

and 𝐴𝑖𝑖 = 1 (2 × MAF𝑖 × (1 − MAF𝑖))⁄  for additive genotype input (0, 1, or 2) in 

BFMAP to make the two software tools compute equivalent models. Additionally, we 

set the maximum number of causal variants to five for SSS in BFMAP, as this setting 

is generally reasonable in real data analysis. However, setting -c 5 often results in 

infeasible computation in CAVIARBF. 

 Besides the benchmarking, we applied BFMAP to the imputed sequence data 

of 27K Holstein bulls to demonstrate incorporation of functional annotation. We fine-

mapped 13 loci associated with milk yield and incorporated SnpEff-inferred variant 

impacts (Cingolani et al, 2012) into the fine-mapping. There were two few high-impact 

variants in the 13 loci, so we merged them with moderate-impact ones. Consequently, 

the functional annotation has three categories, i.e., moderate, low, and modifier.   
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Results 

Single-marker association 

We compare BFMAP with MMAP, GEMMA, EMMAX, and BOLT-LMM in terms of 

p-value and computational efficiency.  

P-value 

 As shown in Fig. 3.2A, BFMAP generates the same p-values as EMMAX for milk 

GWAS, while both the software tools have slightly larger p-values than MMAP and 

GEMMA especially at the tail. A tiny difference was also observed between MMAP 

and GEMMA, which may result from the aforementioned difference in GRM. We 

further analyzed other 34 dairy cattle traits using BFMAP and MMAP. BFMAP has 

the same genomic control factor as MMAP for each of the 35 dairy cattle traits (Fig. 

3.2B). The two tools generate largely the same p-values in GWAS for all the 35 traits 

except that BFMAP has a slight deflation at the tail for milk, fat, fat percentage, and 

protein percentage (Fig. 3.3).  

 We further analyzed milk, fat, fat percentage and protein percentage with the 

LOCO approach for Chr14 using BFMAP and MMAP. Though BFMAP still has a little 

deflation at the tail compared to MMAP, the deflation is slightly reduced by LOCO 

compared to the use of GRM built with all markers (see Fig. 3.4 for the analysis on 

milk). Additionally, BOLT-LMM, which automatically uses LOCO, gives overall 

similar results to BFMAP, but has considerable deflation at the tail. However, LOCO 

is actually not applicable to the dairy cattle data. As shown by Fig. 3.4C, LOCO results 

in severe inflation across the whole chromosome, making the result hardly 

interpretable. 
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Computational efficiency 

Table 3.3 lists the time cost of the five software tools for the analysis of milk involving 

27,158 animals and ~286,000 markers. Among the four GRM-based tools, BFMAP 

was the fastest and took only 44.7 minutes, which was 3.2, 7.4 and 16.5 times as fast 

as MMAP, GEMMA and EMMAX, respectively. It is not straightforward to further 

compare the four tools with BOLT-LMM, in that BOLT-LMM uses LOCO and 

computes both infinitesimal model association and mixture model association. A 

simple observation is that it took 9.9 times as long as BFMAP to complete the GWAS. 

SNP-set association 

We compare BFMAP with SKAT in terms of p-value and computational efficiency 

using the dairy cattle data and the human lipid profile data. 

P-value 

As shown in Fig. 3.5, both SKAT and BFMAP obtained reasonable results for all the 

four lipid profile traits in the human data. Setting γ=1E-6 imposed a tiny-effect prior 

on variants in BFMAP, leading to largely the same results as SKAT for all the traits. 

When a moderate-effect prior was imposed on variants by setting γ=0.01 in BFMAP, 

positive association signals were generally inflated compared to those in SKAT (Fig. 

3.5). 

 As for five milk production traits in the dairy cattle data, we had similar 

observations. BFMAP with a tiny-effect prior (γ=1E-5) resulted in largely the same p-

values as SKAT for all SNP-set association tests for all the five traits (Figs. 3.6 and 

3.7). In contrast, BFMAP with a moderate-effect prior (γ=0.01) inflated positive 

association signals as compared to SKAT. Overall, the result implies that BFMAP can 
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achieve a higher power than SKAT with proper specification of hyper-parameter γ 

while being similar to SKAT for controlling false positives. 

Computational efficiency 

BFMAP is 6-9 times as fast as SKAT for analyzing the human lipid profile traits (Table 

3.4) and 3.0 times for analyzing the dairy cattle data (Table 3.5). Note that for the dairy 

cattle data, the null model is a mixed model. SKAT uses EMMA to compute the null, 

while BFMAP uses MMAP. Speedup in BFMAP partly results from MMAP which is 

2.6 times as fast as EMMA for computing the null. 

Fine-mapping 

We first compare BFMAP with CAVIARBF using simulated data, and then 

demonstrate the incorporation of functional annotation in fine-mapping by applying 

BFMAP to the dairy cattle imputed sequence data. 

Fine-mapping accuracy 

We compared PIPs (or PPCs for forward selection) of all causal variants computed by 

BFMAP to those by CAVIARBF. As shown in Figs. 3.8A and 3.8C, SSS had slightly 

better fine-mapping accuracy than forward selection when we used 1100 SSS iterations 

without simulated annealing, but both SSS and forward selection missed some causal 

variants. As we increased the number of SSS iterations to 50K, BFMAP performed 

much better (Fig. 3.8B), but there were still four causal variants (circled in Fig. 3.8B) 

with much lower PIPs than expected.  We further analyzed the two data sets involving 

the four causal variants with a longer SSS chain. Even with 500K iterations, SSS still 

failed to compute correct PIPs for two of the four. In contrast, when simulated 
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annealing was coupled with SSS, BFMAP SSS obtained largely the same PIPs of causal 

variants as CAVIARBF (Fig. 3.8D). 

Incorporation of functional annotation 

We fine-mapped milk with BFMAP SSS, and then used the resulting posterior model 

probabilities to estimate pc for the three categories of the SnpEff-inferred effect impact 

(moderate, low, and modifier). We tried three different cumulative posterior probability 

thresholds for keeping top models (0.8, 0.9, and 0.99) when estimating p, and obtained 

similar estimates (Table 3.6). This suggests that disregarding bottom models has little 

effect on the estimation of p.  

 We used the estimate of p computed with the threshold 0.9 for the following 

analysis. About 11.7x and 5.4x enrichment of causal variants were observed in 

moderate-impact variants and low-impact ones, respectively (Fig. 3.9A). Accordingly, 

incorporation of this functional annotation into fine-mapping increased PIPs of 

moderate- and low-impact variants to some extent while reducing PIPs of modifier 

variants (Fig. 3.9B).  

Computational efficiency 

Table 3.7 lists the time cost for fine-mapping milk by BFMAP. The SSS with simulated 

annealing evaluated ~1.8 million distinct models for analyzing 2297 variants in one 

locus, taking 32.7 minutes with 8 cores on Intel Xeon CPU E5-2680 v2. The forward 

selection was much faster for analyzing the same locus. Estimating p for the functional 

annotation involved all the 13 loci, taking 13.1 minutes with one core on Intel Core i7-

4790. Re-computing PIPs (based on functional annotation) for all variants in the 13 loci 
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took ~11 minutes. Overall, BFMAP has a reasonable computing speed for fine-

mapping. 
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Discussion 

In summary, we propose a unified Bayesian model for single-marker/SNP-set 

association and fine-mapping and develop an efficient software tool, BFMAP, to deal 

with both population and pedigree data. Extensive data analyses show that BFMAP 

achieves a power similar to or higher than existing software tools but is at least a few 

times faster with respect to single-marker/SNP-set association tests.  We also 

demonstrate that BFMAP performs well for fine-mapping and easily incorporates 

functional annotation. 

 In single-marker association tests, we compare BFMAP with MMAP, 

EMMAX, GEMMA, and BOLT-LMM. BFMAP and EMMAX generate the same p-

values, because 1) both use the heritability estimate from null model for all SNPs, and 

2) the p-value associated with Bayes factor for our Bayesian model is asymptotically 

equal to that from likelihood ratio test (or Wald test) for the corresponding linear 

regression. MMAP and GEMMA are similar to each other in that both computes exact 

test statistics, which may gain power for traits influenced by large-effect QTLs 

compared to EMMAX and BFMAP (Zhou and Stephens, 2012). In theory, the 

approximation used in BFMAP generally compromises tests for only large-effects 

QTLs. This is validated by the analyses of 35 dairy cattle traits with MMAP and 

BFMAP. Compared to MMAP, BFMAP results in a small deflation of p-values at the 

tail for milk, fat, fat percentage and protein percentage (Fig. 3.3). These four traits are 

well-known for their large-effect causal genes, DGAT1 (Grisart et al, 2004) and 

ABCG2 (Cohen-Zinder et al, 2005). For all the other 31 traits, BFMAP has largely the 

same results as MMAP (Fig. 3.3).  
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 The LOCO approach can well improve the power of GWAS (Listgarten et al, 

2012; Loh et al, 2015b; Yang et al, 2014) and partly reduce the deflation at the tail 

caused by the approximation used in BFMAP. Despite the benefits, LOCO may result 

in unexpected severe inflation, which is demonstrated by our LOCO analysis on Chr14 

for four dairy traits (see Fig 3.4 for milk as an example). There are significant SNPs 

(P<5E-8) everywhere on the chromosome. We suppose that the use of breeding values 

instead of direct phenotypes may account for the striking difference from human 

studies. In addition, BOLT-LMM produces considerably deflated p-values at the tail 

compared to BFMAP (Fig. 3.4A), which may be due to use of the fast approximation 

similar to GRAMMA-Gamma (Svishcheva et al, 2012).  

 Besides the four software tools compared to BFMAP, there are other software 

tools based on similar computational and statistical approaches, such as FaST-LMM 

(Lippert et al, 2011) and GCTA (Yang et al, 2014). These tools have been well 

compared with EMMAX, GEMMA or BOLT-LMM in terms of running speed. Among 

the tools computing exact statistics, MMAP is recommended, because it is clearly the 

winner with respect to speed. If exact statistic is not required (which is often true in 

practice), BFMAP is a better choice. When LOCO is preferred, BOLT-LMM is the 

best choice. Additionally, BFMAP and MMAP can model reliability or accuracy of 

phenotypic records, which is beneficial or even necessary for analyzing breeding values 

arising from plant and animal breeding. 

 In SNP-set tests, BFMAP attains a smaller p-value than SKAT for positive loci, 

when a moderate value (e.g. 0.01) is set to the hyper-parameter (γ). This larger power 

may be because the prior by setting γ =0.01 is more consistent with the true effect size 
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of the loci. In contrast, setting γ =1E-6 is similar to assuming an infinitesimal genetic 

architecture. In practice, we can run BFMAP two times (one with small γ value, and 

the other with moderate γ value) to better model the genetic architecture for a trait of 

interest and to maximize the power.  

 We have implemented saddlepoint approximation to evaluate a weighted sum 

of chi-squared random variables for SNP-set association tests, which produces accurate 

p-values. If a more accurate p-value is needed, one can use BFMAP outputs (basically, 

weights and Bayes factor) to re-compute it by external software tools, e.g., BACH 

(Zhou and Guan, 2017b).  

 We demonstrate that some LD structures may hinder sufficient model search of 

SSS, but that can be overcome by introducing simulated annealing. We notice that 

FINEMAP produced accurate PIPs with only 100 SSS iterations in a previous study 

(Benner et al, 2016). The difference from our result may result from different 

simulation procedures: 1) our simulation covers most of chromosome 22, 2) two causal 

variants in each data set are always within ~100 kb region, and 3) LD pruning is not 

used in our data. Additionally, we have used standard SNP weighting in BFMAP to 

make our model equivalent to CAVIARBF. In practice, we can use a different SNP 

weighting scheme; e.g., using non-standardized SNP genotypes (which assumes that 

high-MAF SNPs have larger per-SNP heritability than low-MAF ones) may better 

account for the genetic architecture of some complex traits (like the milk production 

traits in dairy cattle).  

 We develop an empirical Bayes method to incorporate functional annotation 

into fine-mapping. It is actually not only a method for fine-mapping, but also an 
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approach for functional enrichment analysis based on GWAS signals (Fig. 3.9A). 

Initial BFMAP fine-mapping outputs can be used repeatedly to analyze enrichment 

patterns of causal variants for many functional annotations. Such enrichment, by 

definition, is different from enrichment of heritability computed by stratified LD score 

regression (Finucane et al, 2015). The latter one is based on all available markers, while 

the former one is based on a limited number of QTLs. In addition, our current 

implementation fits one functional annotation at a time. Enhancing it to model multiple 

annotations simultaneously seems interesting for further study. 
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Tables 

Table 3.1. Differences between BFMAP and the fine-mapping approach by Huang et al. 

 BFMAP Huang et al. (Nature 2017) 

Trait type Single quantitative trait Multiple disease traits 

Calculation of log(D|M) Exact  BIC approximation 

Calculation of effective number of independent 

variants 
Li & Ji (Heredity 2005) 

Recursive method based on correlations between 

variants 

Stopping criterion in forward selection Bonferroni threshold Minimum BIC 

P-value calculation Null distribution of log(sBF) Likelihood ratio test 

Software implementation 
Fast, general-purpose C++ 

program 
R scripts fitting for their own data 

Incorporation with functional annotation Implemented in R scripts N.A. 

 

  



 

 

 

Table 3.2. Time complexity of BFMAP algorithms  

Input data 
Data 

transformation 
Bayes factor1 

Null 

distribution of 

Bayes factor1 

GWAS with equal 

SNP-set size 

Forward 

Selection 
SSS 

polygenic term is 

included 

𝑂(𝑛3 + 𝑐𝑛2

+ 𝑚𝑛2) 
𝑂(𝑠2𝑛 + 𝑠3) 𝑂(𝑠2𝑛) 

𝑂(𝑛3 + 𝑐𝑛2 + 𝑚𝑛2

+ 𝑚𝑛𝑠 + 𝑚𝑠2) 

𝑂(𝑛3 + 𝑐𝑛2

+ 𝑚𝑛2 + 𝑝3𝑚𝑛) 

𝑂(𝑛3 + 𝑐𝑛2

+ 𝑚𝑛2 + 𝑡𝑝3𝑚𝑛) 

polygenic term is 

not included 
𝑂(𝑐𝑛 + 𝑚𝑛) 𝑂(𝑐𝑛 + 𝑚𝑛𝑠 + 𝑚𝑠2) 𝑂(𝑐𝑛 + 𝑝3𝑚𝑛) 𝑂(𝑐𝑛 + 𝑡𝑝3𝑚𝑛) 

n: sample size. c: number of covariates. m: number of markers. s: SNP-set size. p: number of putative causal variants. 

1This is the time for one SNP-set with transformed data. Time for computing covariate-related terms is not included, because the 

computation is done only once and used for all variants. 
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Table 3.3. Time costs of five software tools for the analysis of milk involving 27,158 

animals and ~286,000 markers  

Software¹ Version GRM (minutes)² GWAS (minutes)3 

BFMAP  48.9 44.7 

MMAP 2017_08_18 (binary) 57.0 142.0 

GEMMA 0.97 Guix generic 128.7 330.8 

EMMAX 20120210 (Intel binary) 62.8 735.8 

BOLT-LMM v2.3.2 (binary) N.A. 442.2 

 

¹All tools were tested using 8 cores of Intel Xeon E5-2680 v2 in the Deepthought2 

HPC cluster at the University of Maryland. 

²MMAP was run with --group_size 10000. EMMAX was run with -M 20.0. 

3The running time of BFMAP includes 16.2 minutes taken by MMAP to fit the null 

model. The time of BOLT-LMM includes computation of both infinitesimal-model 

association statistics and mixture-model association statistics. 
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Table 3.4. R Time cost for analyzing human lipid profile traits with BFMAP and 

SKAT 

Trait N_samples N_markers N_sets 
Time (minutes) 

BFMAP SKAT1 

TC 9,156 2,415,449 26,543 31.63 271.94 

LDL 9,071 2,415,449 26,543 33.7 205.99 

HDL 9,131 2,415,449 26,543 32.18 206.37 

TG 9,156 2,415,449 26,543 33.63 204.78 

TC: total cholesterol. LDL: low-density lipoprotein. HDL: high-density lipoprotein. 

TG: triglycerides. 

1Time cost for TC includes that for getting SNP set data with Generate_SSD_SetID(). 

The SNP set data were reused for LDL, HDL and TG. 

 

Table 3.5. Time cost for analyzing dairy milk with BFMAP and SKAT 

Software1 Computing null 

model2 
Scanning SNP sets 

Total 

time 

BFMAP 88.3 190.6 278.9 

SKAT 228.3 608.1 836.4 

1All tools were tested using 1 core of Intel Xeon E5-2680 v2. 

2MMAP is used to compute null model for BFMAP. SKAT invokes EMMA to 

compute null model. 
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Table 3.6. Number of used models and probability estimates of causal variants being 

of each category given different cumulative probability thresholds 

Cumulative 

probability 

threshold 

# loci 
# 

models 

Pc 

LOW MODERATE MODIFIER 

0.8 13 15721 0.111 0.158 0.731 

0.9 13 69823 0.114 0.163 0.723 

0.99 13 494280 0.119 0.161 0.720 

 

Table 3.7. Running time of BFMAP for fine-mapping dairy milk 

Computation 
# 

animals 

# 

loci 

# 

variants 
# models 

Time cost 

(minutes) 

SSS1 27158 1 2297 1832046 32.7 

Forward selection1 27158 1 2297 N.A. 1.5 

Estimating p2 N.A. 13 N.A. 69823 13.1 

Computing PIP with  p and 

q2 
N.A. 13 28728 1335656 11 

1One locus was analyzed. 

2All 13 loci were analyzed for incorporating functional annotation into fine-mapping. 
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Figures 

 

Figure 3.1. Processing of models containing identical variants in BFMAP 

 

 

Figure 3.2. Comparison between BFMAP and other software tools in terms of p-

values and genomic inflation factors. The solid black lines are y=x. 
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Figure 3.3. Comparison between BFMAP and MMAP in terms of p-values for 35 

dairy cattle traits. 
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Figure 3.4. The LOCO analysis results of BFMAP, MMAP, and BOLT-LMM for 

dairy milk. Chromosome 14 is shown here. The black lines in panels A and B are y=x. 

The black lines in C and D represent the p-value threshold, 5E-8. 

  



 

 

 

 

Figure 3.5. SNP-set tests for four human lipid profile traits with BFMAP and SKAT. Variance-ratio means γ in model (3.1). 
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Figure 3.6. SNP-set tests for dairy milk, fat, and protein with BFMAP and SKAT. 

Variance-ratio means γ in model (3.1). 
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Figure 3.7. SNP-set tests for milk fat percentage (Fat_Percent), and milk protein 

percentage (Pro_Percent) with BFMAP and SKAT. Variance-ratio means γ in model 

(3.1). 
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Figure 3.8. Comparisons between BFMAP and CAVIARBF in terms of PIPs of true 

causal variants using 308 simulated data sets. BFMAP was run with a few different 

settings. A) BFMAP ran 1100 SSS iterations and simulated annealing was not used. 

B) BFMAP ran 50 thousand iterations and simulated annealing was not used. C) 

BFMAP used forward selection procedure. D) BFMAP ran 1090 SSS iterations and 

default simulated annealing scheme was used (as described in Methods). 
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Figure 3.9. Incorporation of SnpEff-inferred variant impact into fine-mapping by 

BFMAP. A) Estimates of enrichment of causal variants for each category. The blue 

line is y=1. B) PIP changes of variants of each category after incorporation of the 

functional annotation. The black line is y=x. 
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Chapter 4: Incorporating Functional Annotation into Fine-

Mapping of 35 Production, Reproduction and Conformation 

Traits with Imputed Sequences of 27K Holstein Bulls 

Abstract 

Imputation has been routinely applied to ascertain sequence variants in large genotyped 

populations based on reference populations of sequenced animals. With the 

implementation of the 1000 Bull Genomes Project and increasing numbers of animals 

sequenced, fine-mapping of causal variants is becoming feasible for complex traits in 

cattle. Using the 1000 Bull Genomes data, we imputed 3 million selected sequence 

variants to 27,000 Holstein bulls after quality control edits and LD pruning. These bulls 

were selected to have highly reliable breeding values (PTAs) for 35 production, 

reproduction, and body conformation traits. We first performed whole-genome single-

marker scan for the 35 traits using the mixed-model based association tests. The single-

trait association statistics were then merged in multi-trait analyses of 3 groups of traits, 

production, reproduction, and body conformation, separately. Candidate genomic 

regions 2 Mb long, were selected based on the multi-trait analyses and used in fine-

mapping studies. We used BFMAP to fine-map the dairy cattle traits to single-gene 

resolution and to integrate fine-mapping with functional enrichment analysis. Our fine-

mapping identified many promising candidate genes, including some previously 

reported ones, e.g., ABCG2 for production traits and ARRDC3 for reproduction and 

body conformation traits. We also show causal effect enrichment patterns for a few 

functional annotations available in dairy cattle genome and demonstrate that our fine-



 

115 

 

mapping result can be readily used for future functional studies. Our study may 

facilitate follow-up functional validation and expand our understanding of complex 

traits in dairy cattle. Additionally, our method can be readily applied to other species 

where large-scale sequence genotypes are available. 
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Introduction 

Phenotypic records have been routinely collected in dairy cattle for over a hundred 

years. The phenotype of a bull is highly accurately calculated from thousands of 

phenotypic records from his daughters and other relatives. A comprehensive spectrum 

of phenotypes has been measured in the cattle population, including production, 

reproduction, health, and body type traits. GWAS on these traits simultaneously can 

provide a better understanding of the effects of underlying QTLs. Because of the 

intensive use of artificial insemination and strong selection in dairy bulls, there are a 

much smaller number of males than females in the cattle population (Brotherstone and 

Goddard, 2005), so a chromosome segments can be quickly traced back to an ancestral 

bull. This uniquely high relatedness in the cattle population can provide accurate 

imputation (van Binsbergen et al, 2014), especially with the reference genomes of 

important ancestor bulls sequenced by the 1000 Bull Genomes project (VanRaden et 

al, 2017).  

Fine-mapping has been commonly performed in human GWAS studies, e.g., 

(Farh et al, 2015; Huang et al, 2017). Because of the high linkage disequilibrium levels 

in the cattle population (Kim and Kirkpatrick, 2009), fine-mapping of GWAS signals 

has been difficult. In our study, the large sample size can provide enough power to fine-

map the major GWAS signals at least to the candidate gene level. The fine-mapped 

candidate genes will be useful for future functional studies, including the FAANG and 

related projects in cattle (Andersson et al, 2015).  

Biologically meaningful enrichment of functional annotation data has been 

reported in human GWAS (Finucane et al, 2015; Sveinbjornsson et al, 2016). The high 
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LD in cattle makes such enrichment difficult to show up in cattle GWAS. With the 

large sample size and superior power of our study, we hope to identify biologically 

informative enrichment of variants in our GWAS and fine-mapping results, which can 

provide useful prior information for future cattle GWAS and genomic 

selection/prediction. 
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Results 

We imputed three million selected sequence variants to 27,214 Holstein bulls after 

quality control edits, using the 1000 Bull Genomes data as reference. These bulls were 

selected to have highly reliable breeding values (PTA) for 35 production, reproduction, 

and body conformation traits, with an average reliability of 0.71 across traits (Table 

4.1). The numbers of bulls available for individual traits ranged from 11,713 to 27,161, 

with >20,000 animals for 32 traits (Table 4.1). This large, high-quality data set enables 

our following GWAS and fine-mapping studies with great power and precision.  

Single-trait GWAS 

We used the mixed model approach implemented in MMAP for single-trait GWAS that 

can incorporate reliability variation across individual bulls. The mixed model used in 

our GWAS was robust against potential confounding factors. As shown in Table 4.2, 

27 out of the 35 traits had a genomic control factor between 0.95 and 1.05. 

We found many clear association signals for the 35 dairy traits. There were in 

total 286 associations identified for the 35 traits, and the number of associations for 

individual traits ranged from <3 for leg and foot traits to 23 for protein percentage 

(Table 4.2). As compared to the Cattle QTLdb release 35, we found that 123 

associations (43.0%) had been previously reported while 163 associations (57.0%) 

were newly discovered in this study. We identified 15 new association signals (out of 

68) even for five production traits that had been well studied, while 92 new associations 

(out of 125) for type traits that drew less attention than other traits in previous studies 

(Fig. 4.1). The result demonstrated an unprecedented power of our single-trait GWAS 

in dairy cattle.  
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Multi-trait association analysis 

Hierarchical clustering based on absolute correlation coefficients was largely 

consistent with the trait definitions: the 35 dairy traits were grouped into three clusters, 

including production, reproduction, and body type (Fig. 4.2). Interestingly, rump angle 

and teat length were clustered into reproduction traits, although they are type traits by 

definition, indicating a close genetic correlation between these two traits and dairy 

reproduction.  

In the multi-trait association analyses for the three trait clusters, we identified 

33, 21 and 39 associations for production, reproduction, and type traits using P < 5E-

8, respectively (Fig. 4.3). Though a majority of the multi-trait associations were 

consistent with single-trait ones, we identified ten associations that were missed by 

single-trait analyses. Based on the multi-trait results, we found two features of multi-

trait association tests. First, multi-trait GWAS was more powerful than individual 

single-trait analyses for related traits. Second, the top variant in multi-trait analysis may 

be >1 Mb away from the top variants in single-trait GWAS.  

Fine-mapping 

Initially, we fine-mapped 434 association signals for 282 QTLs applying a significance 

threshold of 5E-7. The observed distribution of number of fine-mapped signals in a 

QTL is approximately exponential, which is consistent with our expectation of 

observing more causal mutations at a QTL with a lower probability (Fig. 4.4). After 

further quality control edits, we finally determined 308 association signals for 32 traits 

(Table 4.3). Specifically, there were ≥20 independent association signals identified on 
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chromosomes 5, 6, 14, 18, and 29, while only one or none identified on chromosomes 

12, 22, and 27.  

Our method enables easy incorporation of functional annotation in fine-

mapping. We investigated impacts of incorporation of SnpEff-inferred effect impact 

(one of the most commonly used functional annotations) on fine-mapping performance. 

First, we found that incorporating variant impact resulted in substantial change of 

posterior probability of being causal (PPC) for variants in the fine-mapped 308 

association signals. Variants with moderate impact had a considerable increase in PPC 

when integrating PPC calculation with variant impacts, while modifier variants 

generally had a decreased PPC (Fig. 4.5A). Second, fine-mapping by incorporating 

variant impact generated significantly smaller 95% credible variant sets than that using 

an equal prior for variants, as demonstrated by a Wilcoxon signed-rank test on the 308 

signals (P<0.01) and Fig. 4.5B. These two features make incorporation of functional 

annotation favored in practice of fine-mapping.  

Enrichment analysis 

We first categorized variants into five groups based on their locations regarding 

protein-coding genes, i.e., CDS, 5’ UTR + 2 kb upstream, intron, 3’ UTR + 2 kb 

downstream, and other (intergenic or non-protein-coding genic regions). Despite the 

strong linkage disequilibrium levels in the cattle genome (Bohmanova et al, 2010), we 

observed distinctive enrichment patterns across these five categories (Fig. 4.6A). Using 

bootstrapping, we calculated 95% confidence intervals for the enrichment levels (Fig. 

4.6A), showing significant enrichment of causal variants in CDS (4.52x) and 5’ UTR 

(2.39x), but not in intron (0.93x) or 3’ UTR (0.77x). We also analyzed a group of non-
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protein-coding genes and found a serious depletion in this category, 𝐸𝐶̂ = 3.23E-04, 

suggesting an insignificant effect on the dairy cattle traits. 

We further investigated the enrichment of causal variants regarding their 

genomic locations and protein coding effects (High, Moderate, Low or Modifier) 

predicted by SnpEff (Cingolani et al, 2012). When modeling these four categories, we 

found a severe depletion of variants with high impact, 𝐸𝐶̂ = 2.51E-05. This is strikingly 

different from a previous study on human complex traits and diseases that reported an 

enrichment of >100 for this category (Sveinbjornsson et al, 2016). As shown in Fig 5B, 

we observed a significant enrichment in moderate-impact variants (𝐸𝐶̂ = 8.7; P < 0.05). 

Low-impact variants also showed an enrichment ( 𝐸𝐶̂  = 2.0), though it was not 

statistically significant (Fig. 4.6B). As expected, a small depletion was seen in modifier 

variants (0.87x).  

We also used constrained elements on cattle genome to categorize variants into 

two groups (inside or outside constrained elements), as highly conserved DNA 

sequences may imply functional importance. As shown in Fig. 4.6C, causal variants 

were significantly enriched in constrained elements (3.72x; P < 0.05). When further 

categorizing variants into six groups based on both constrained elements and variant 

impacts (Moderate, Low or Modifier), we found the highest enrichment in moderate-

impact variants inside constrained elements (25.56x; P < 0.05). For other categories, 

we did not observe significant enrichment of causal variants (Fig. 4.6D). 

When comparing different trait groups, we observed little difference in the 

patterns of enrichment regarding SnpEff-inferred effect impact (Fig. 4.7). Moderate-

impact variants had a clearly higher enrichment of being causal for production traits 
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than for reproduction and type traits. We further used permutation to generate the null 

distribution of EC(Production)/EC(Reproduction+Type) and showed that the difference 

was statistically significant (P < 0.05). However, the enrichment for low-impact 

variants was similar between the three trait groups. 

Candidate genes 

Based on PPCs of variants after incorporation of SnpEff impact, we calculated PPC for 

each gene in each independent association signal. There were a total of 564 gene-trait 

association pairs with PPC >0.01. Most of the genes had either a big PPC (>0.95) or a 

small one (<0.05). We further obtained a short list of most promising candidates by 

applying the following conservative criteria: PPC >0.9 if a gene affects only one trait 

and PPC >0.5 for all traits if a gene affects multiple traits.  

This short list had 69 unique genes including some previously reported ones 

(Table 4.4). For example, ABCG2 and DGAT1 are well-known to affect milk 

production in dairy cattle (Cohen-Zinder et al, 2005; Grisart et al, 2004). The ARRDC3 

gene has been associated with body confirmation traits and calving traits in beef cattle 

(Bolormaa et al, 2014; Saatchi et al, 2014) and Holstein cattle (Abo-Ismail et al, 2017). 

Our fine-mapping study also revealed novel gene/association combinations for dairy 

traits. A previous study reported that the ABCC9 gene was associated with fat yield, 

protein yield and calving to first service interval in Holstein cattle (Nayeri et al, 2016). 

In our study, we discovered that it had a pleiotropic effect on type traits (fore udder 

attachment and udder depth), milk production (milk and protein yield) and daughter 

pregnancy rate, with a PPC of almost 1 for all the traits. In addition, we found that there 

were no common variants among the credible variant sets for these traits (Table 4.4), 
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suggesting that ABCC9 might have multiple causal mutations for the associated traits. 

TMTC2 has been associated with teat length (Abo-Ismail et al, 2017), while our fine-

mapping showed that it has an effect on six type traits including teat length, with PPC 

being ≥0.95 for all those traits. Abo-Ismail et al. reported CCND2 was associated with 

stature (Abo-Ismail et al, 2017). Our fine-mapping determined that it is a candidate 

gene for four type traits (PPC >0.95 for body depth, rump width and stature). It is worth 

noting that our fine-mapping study not only discovered association of a gene with a 

trait, but also provided posterior probability of being causal for a gene. 

Candidate variants 

Considering that our stringent QC during and after imputation removed many variants, 

fine-mapping the traits to single-variant resolution could not always be achieved. 

Nevertheless, we obtained 95% credible variant set for each independent signal and 

merged them into one table. This resulted in a total of 1,582 unique variants.  We 

generated a short list by keeping only variants with moderate impact and PPC >0.1 

(Table 4.5). Among the list, some variants have been well studied, e.g., Chr6:38027010 

in ABCG2 (Cohen-Zinder et al, 2005) and Chr26:21144708 in SCD (Pegolo et al, 2016). 

We also found other promising candidate variants, e.g., Chr8:83581466 in PTH1 with 

an average PPC of 0.68 on two genetically correlated type traits (body depth and 

strength), Chr1:69673871 in KALRN with an average PPC of 0.46 on two genetically 

correlated fertility traits (cow conception rate and daughter pregnancy rate), 

Chr17:70276788 in CHEK2 with an average PPC of 0.39 on two highly correlated 

calving traits (sire calving ease and daughter calving ease). 
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Discussion 

In this study, we performed GWAS for 35 production, reproduction, and type traits in 

dairy cattle with a unique large-scale data set, and further fine-mapped these traits to 

single-gene resolution. With the fast computing tool that we developed, we attempted 

to find causal effects in hundreds of loci each of which contains thousands of variants. 

We also investigated the functional enrichment patterns of several functional 

annotations available in dairy cattle, and incorporated the information into fine-

mapping. By the study, we provide not only a credible candidate gene list for follow-

up functional validation, but also a unique resource that can be easily used by future 

functional studies. 

Single-trait GWAS 

In the single-trait GWAS, we find many association signals that have not been 

discovered (Fig. 4.1), clearly demonstrating the benefits of using the unique large-scale 

dairy cattle data. Reliabilities of de-regressed PTAs were modeled for most of the traits 

(Table 4.2). For the traits with small variation of reliability, we observed similar results 

for the models with and without reliability; e.g., QTLs found when not modeling 

reliability were largely the same as those by incorporating reliability for fat percentage 

and daughter pregnancy rate. Interestingly, we observed some deflations in GWAS of 

production traits, which could be due to the large QTL effects on these traits including 

the DGAT1 gene. Minor inflations were observed in GWAS for calving traits (i.e., 

calving ease and stillbirth) and final score. Although there were sporadic variants 

passing the threshold of genome-wide significance (P < 5E-8), we could locate a few 

GWAS peaks where there were a cluster of significant variants.  
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Multiple testing in fine-mapping 

Initially, our fine-mapping discovered as many as 19 signals in a candidate region for 

a trait, as it applied a variant inclusion threshold accounting for only the effective 

number of independent variants (meff) at locus-by-trait level. We also noticed that there 

were more locus-by-trait association pairs with multiple signals than with one signal. 

By examining those with multiple signals, we found the models often contained a 

strong signal and much weaker one(s). Those weak signals might result from imperfect 

model fitting of lead variants in other signals, instead of being true positive. 

Nevertheless, they did little harm to the discovery of true signals. 

Enrichment of causal variants  

The enrichment estimates for SnpEff-inferred variant impact in our study are very 

different from those in a previous human study (Sveinbjornsson et al, 2016). The 

differences among the four categories in the human study are much more distinctive 

than ours. This is consistent with our anticipation that the high LD in cattle makes such 

enrichment difficult to show up. Nevertheless, we find a considerable enrichment of 

causal effects in moderate-impact variants. Incorporation of the enrichment into fine-

mapping facilitates the discovery of causal variants (Fig. 4.5). The discovery of the 

enrichment patterns is also valuable for development of functional annotation-driven 

methods for better genomic prediction. 

Fine-mapping  

By fine-mapping, we pinpoint some promising candidate genes for economically 

important traits in dairy cattle. It is promising to validate those genes with high 
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posterior probability of causality. In addition, with our method of functional enrichment 

analysis, our fine-mapping result of hundreds of QTLs (basically, variant PPCs) can be 

readily used for functional annotations other than those analyzed here. Thus, we 

provide an easy-to-use enrichment analysis procedure to analyze the functional 

annotations that the FAANG and related projects will produce on cattle genome. 

Materials and Methods 

Genotype and phenotype data 

Genotype data have been described in detail in our previous study (VanRaden et al, 

2017). Here we give a summary. SNP and insertion-deletion (InDel) calls (sequence 

variants) from run 5 of the 1000 Bull Genomes Project (Daetwyler et al, 2014) were 

released in July 2015. After stringent quality control edits (without LD pruning), 

3,148,506 sequence variants remained for 444 Holstein animals. The sequence variant 

data and high-density (HD) genotypes of 312K markers for 26,949 progeny-tested 

Holstein bulls (and 21 Holstein cows) were combined by imputation using findhap 

software (version 3) (VanRaden, 2016b). Finally, we had (imputed) genotypes of 

3,148,506 sequence variants for 27,214 Holstein bulls (179 bulls had both sequence 

and HD genotypes) and 21 cows.  

Imputation quality from findhap software was assessed with 404 of the 

sequenced animals in the reference population and 40 randomly chosen animals for 

validation. Their sequence genotypes were reduced to the subset of genotypes that were 

in common with HD genotypes and then imputed back to sequence. Imputation 

accuracy was equal to 96.7% for the 3,148,506 variants (VanRaden et al, 2017). If HD 
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SNPs were not counted, we found an accuracy of 96.4% for just the new variants. 

Chromosome-specific imputation accuracy was >95% for all autosomes except 

chromosome 12. 

All the 27,214 Holstein bulls were selected to have highly reliable predicted 

transmitting abilities (PTAs) for 35 production, reproduction, and type traits, although 

not all bulls had PTAs for all the traits. Transmitting ability is basically additive genetic 

value accounting for additive genetic variance. Reliability quantifies the amount of 

information available in a PTA and measures its accuracy (VanRaden and Wiggans, 

1991).  De-regressed PTAs were used as phenotypes in all our analyses, which excludes 

parent information and reduces dependence in PTAs among animals (Garrick et al, 

2009). Because each of the bulls usually had many phenotyped daughters that were 

used for breeding value estimation, their PTAs were generally of high reliability, even 

for low-heritability reproduction traits (Table 4.1). We can largely categorize the traits 

into three groups, i.e. production, reproduction and type. 

Single-trait GWAS 

The software MMAP (O'Connell, 2013) was used for all single-trait GWAS analyses. 

Basically, MMAP efficiently implements a mixed-model approach for association tests 

which is similar to GEMMA (Zhou and Stephens, 2012) but different from EMMAX 

(Kang et al, 2010); that is, variance component is estimated uniquely for each marker. 

We used the following model 

 2 2 with ~ 0,  and ~ ( )g eb N N     y X g e g G e R ,                (4.1) 

where y is de-regressed PTAs, μ is global mean, X is genotype of a variant (coded as 0, 

1 or 2) and b is its effect, g is polygenic effect accounting for population structure, and 
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e is residual. The genomic relationship matrix (G) (VanRaden, 2008) was built using 

312K HD markers (filtered by MAF>1%). R is a diagonal matrix ( 21 1iiR r  ), 

which is used to model differential reliability among animals.   

We disregarded variants on the X chromosome. We also filtered out variants 

with an MAF of <1% or failing Hardy-Weinberg equilibrium (HWE) test (p < 1E-6). 

After the QC, there were ~2.7 million variants left. QTLs were located by finding 

GWAS peaks where there were a cluster of significant variants. We used a custom Perl 

script to find all GWAS peaks and further examined each of the peaks based on 

Manhattan plots to keep only clear ones. Subsequently, we determined a total of 286 

QTLs which were further analyzed in fine-mapping studies. 

To find which ones are novel among the 286 QTLs, we compared our result 

with Cattle QTLdb (release 35 published on April 29, 2018) which contains 113,256 

QTLs/associations from 848 publications (Hu et al, 2016). To ensure correct physical 

position of QTLs/associations on UMD 3.1, we first extracted rs identifiers (rs#) of 

flanking markers for each term from the Cattle QTLdb data, and then used the 

identifiers to find flanking markers’ positions on UMD 3.1 in the Ensembl genome 

variation database. These marker positions were used as QTL/association positions. 

This procedure can rule out QTL terms whose physical positions are inaccurately 

converted from genetic map. The Cattle QTLdb release 35 covers 599 different traits, 

in which we found the ones with the (almost) same definition as our 35 traits. For each 

of the QTLs that we detected, we determined that it had been previously reported if it 

is within ±500 kb of any QTL/association for the (almost) same trait(s) in Cattle QTLdb 

and that it was newly discovered otherwise. 
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Multi-trait association analysis 

Following a previous study (Bolormaa et al, 2014), our multi-trait association tests 

were based on a chi-square statistic with multiple degrees of freedom. For each variant, 

the chi-square statistic for the multi-trait association test was calculated by the formula: 

 2 1Multi-trait . . i id f n   t V t , 

where ti is a 𝑛 × 1 vector of the signed t-values of variant i for n traits, and V is an 𝑛 ×

𝑛  correlation matrix for the n traits which is calculated using signed t-values of 

genome-wide variants. In our analysis, the signed t-values were obtained from single-

trait GWAS for 2,619,418 variants passing QC, and the correlations between traits were 

calculated using all the variants. 

To test the robustness of the estimated correlation using all sequence variants 

(Zhu et al, 2015a), we also computed the correlation matrix using two variant subsets 

obtained by selecting every 10th and every 100th variant. The three variant sets 

produced similar correlation estimations.   

We performed hierarchical clustering based on absolute correlation coefficients, 

and then did multi-trait association analysis for each of the three resulting clusters of 

traits as shown in Fig. 4.2. Specifically, we excluded net merit and DFB in production 

and reproduction, respectively, since both the traits are basically linear combinations 

of other traits (and the number of bulls for DFB was much smaller than those for other 

traits). We also excluded the four calving traits to avoid the contamination by sporadic 

significant variants. Additionally, all the traits except for the six traits aforementioned 

were analyzed as a whole in multi-trait association tests.  
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We identified ten associations in multi-trait analyses that were missed in single-

trait analyses. Some individual traits showed suggestive association (P < 5E-6) in these 

ten loci, which were added to the following fine-mapping studies. 

Bayesian fine-mapping approach 

Our Bayesian approach for fine-mapping has been well described in Chapter 3. In this 

chapter, we focus on the use of forward selection approach in BFMAP, especially how 

to integrate forward selection results with functional annotation. To make this chapter 

easier to read, the model is described again. Note that the model used here is a 

simplified version of model (3.1), in that the diagonal matrix for variant weights is 

replaced by an identity matrix, shown as follow: 

 

2

2

2

2

2 2

~ (0, )

~ (0, )

~ (0, )

~ (0, )

1

e

e

e

e

e e

N

N

N

N

P









 

y = Xb + Za + g + e

b I

a I

g G

e R

,                                             (4.2) 

where y is a phenotype vector of size n for a complex trait, b is a vector of covariate 

(other than genomic variants) effect and X is corresponding design matrix, a is a vector 

of variant effect and Z is corresponding genotype coding matrix (e.g., genotype coding 

for additive, dominance or imprinting effects (Jiang et al, 2017)), g is a vector of 

polygenic effect for controlling population structure and G is corresponding variance 

structure matrix (e.g., genomic relationship matrix), and e is residual with variance 

structure R for modelling reliability or accuracy of phenotypic records as in model (4.1). 

The common variance component (𝜎𝑒
2) is given a non-informative Jeffrey's prior. Other 
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variance parameters (𝜑, 𝛾 and 𝜂) are treated as known. Generally, we can set 𝜑 to a 

large value (e.g., 1E8) to make a act like fixed effects. A genomic variant is usually 

considered to be of small but noticeable effect, so we can set 𝛾 to 0.01 or 0.04 (Chen 

et al, 2015; Zhou and Guan, 2017a). When Za only accounts for a tiny proportion of 

phenotypic variance (this is true when modeling variants from a small genomic region), 

we can set 𝜂 based on heritability (ℎ2), 𝜂 = ℎ2 (1 − ℎ2)⁄ . In practice, we can instead 

use heritability estimate (ℎ2̂) in the null model without variants to determine 𝜂. In the 

context of GWAS, we are only interested in variant effects (a). 

We aim to identify independent association signals within a region and to assign 

a posterior probability of causality (PPC) to each variant with fine-mapping. Following 

the first method of (Huang et al, 2017), our fine-mapping approach includes three steps: 

forward selection (Foster and George, 1994) to add independent signals in the model, 

repositioning signals, and generating credible variant set for each signal.  

We set 𝜑 = 𝛾 = 1𝐸8  in model (4.2) for fine-mapping, which enables easy 

calculation of p-value for a newly added variant conditioning on variants being already 

in model. We use Bonferroni threshold (Foster and George, 1994) as stopping criterion 

in forward selection; that is, forward selection stops when   eff2logsBF 1 2log m  , 

where meff is efficient number of independent variants calculated using the method by 

Li and Ji (2005). Suppose that we select p independent signals in forward selection and 

determine a set of lead variants (Sl) for the p signals after repositioning. Then for signal 

i with lead variant (li), we have a variant set (Si) containing variants that have substantial 

LD with li but weak LD with lead variants in other signals { }\l iS l . Accordingly, we 

can compute PPC of variant j (vij) in Si conditioning on { }\l iS l : 
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where 
ii jM v  denotes that the causal variant in signal i is variant j in Si (i.e. vij). 

Efficient computation of ( | , , )P y X Z M  has been described in Chapter 3. We can 

easily get a credible variant set passing a given confidence level (e.g., 95%) for a signal, 

by sorting variants in a descending order of PPC and including them in the set from top. 

We can also calculate PPC of a gene by summing up PPCs of all variants within the 

gene. 

In the study by Huang et al (2017), an equal prior for each variant was used; 

that is, ( ) 1 i ij ij iP M Sv v    . Here we propose a method to apply differential 

prior probabilities by integrating functional annotation, drawing ideas from a previous 

study on adjusting significance threshold based on functional annotation in GWAS 

(Sveinbjornsson et al, 2016). With our fine-mapping procedure, it is usually safe to 

assume that there is only one causal variant in each independent signal. For a function 

annotation with several categories, we denote the probability of a causal variant being 

of category C as pC and the probability of a non-causal variant being of category C as 

qC. We can accordingly obtain: 

( ) ( | ) ( | )
ij iji ii j i ij i c cj j

j

i

j j

ij

j

P M P c M P c Mv v qv p


  

      ,           (4.4) 

where 
ijc  denotes the category of variant j in Si (i.e. vij). 

We estimate qC with the genome-wide frequencies of the categories, as in 

(Sveinbjornsson et al, 2016). To estimate pC, we can use all the available 

independent signals (Mi):  
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.                  (4.5) 

When the signals identified in fine-mapping are independent of each other, which is 

generally true with our approach, we can get:  

 ( | , , ) ( | , , , )\ij ij li iiP y X Z M P y Xv vZ SM l  .                    (4.6) 

Taking equations (4.4) and (4.6) into equation (4.5), we obtain a likelihood function 

regarding { }Cp  and then get their maximum likelihood estimates (MLEs), ˆ{ }Cp . By 

taking the estimates of { , }C Cp q  and equation (4.4) to equation (4.3), we get updated 

PPCs with incorporation of function annotation, which is actually an empirical Bayes 

approach. 

When setting an equal prior for each variant, we find:  

   ( | , , , ) ( | , , , )\ \ij l i ij l ii iP M y X Z P yv S vXl M S lZ   .             (4.7) 

Thus, to estimate { }Cp  by equation (4.5), we can use PPCs from the computation 

assuming an equal prior for each variant. Accordingly, incorporation of functional 

annotation includes three separate steps: computing PPCs given an equal prior for 

each variant, estimating { }Cq  with the genome-wide frequencies of the categories 

and estimating { }Cp  with these PPCs, and updating PPCs with ˆ ˆ{ , }C Cp q . This 

feature makes our approach easier to use compared with PAINTOR (Kichaev et 

al, 2014) and CAVIARBF (Chen et al, 2016). 
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Fine-mapping dairy cattle traits 

Genomic regions for find-mapping were determined by lead variants in single-trait and 

multi-trait QTLs. Lead variants in a candidate genomic region may be different 

between multi-trait QTL and single-trait QTLs. Accordingly, we first determined a 

minimal region that covered all the lead variants (either in multi-trait or in single-trait 

QTLs), and then extended it 1 Mb upstream and downstream, which resulted in a ≥2 

Mb genomic region used for fine-mapping. The 1-Mb extensions allowed the region to 

cover almost all variants that have an LD r2 of >0.3 with lead variants (Bohmanova et 

al, 2010).  

Subsequently, we obtained a total of 125 loci. Three loci without plentiful HD 

SNP markers were removed to ensure imputation quality, thus leaving 122 loci in fine-

mapping. Fifty-seven loci were associated with more than one trait. The fine-mapping 

was performed for individual traits, and these 122 loci represented 282 locus-by-trait 

association pairs for 32 traits (three leg type traits were excluded for lack of 

significance). When fine-mapping identified multiple signals in a candidate locus for a 

trait, we kept the strongest one and filtered the rest. The effective number of 

independent tests was 54,403 for the 282 locus-by-trait pairs. Considering that our 

effective number estimates were conservative (Hendricks et al, 2014), we used 5E-7 

(<0.05/54,403) as the significance threshold to filter signals. Subsequently, we found 

434 association signals. 

We found that the locus-by-trait association pairs with more than three signals 

identified were mostly from still birth and final score. We also noticed slight inflation 

of the test statistics in the GWAS of these traits. Therefore, we removed the 16 QTLs 
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with >3 fine-mapped signals in our following analyses. We further removed 15 signals 

whose variant set had ≤10 variants of distinct genotypes, as a small cluster of highly 

linked variants could be due to inaccurate imputation. Additionally, if there were 

multiple QTL on a chromosome for a trait, all lead variants in these loci were modeled 

jointly in fine-mapping. Accordingly, 13 association signals whose lead variant had a 

p-value of >5e-7 were removed. After all the edits, we determined a total of 308 

association signals (Table 4.3).  

Besides assuming an equal prior for each variant, we further applied differential 

prior probabilities based on SnpEff-inferred effect impacts (Cingolani et al, 2012). 

Since using equation (4.5) requires independent association signals, we removed all 

association signals for protein, cow conception rate, rear teat placement, udder depth 

and strength, because they have high correlation (r2>0.5) with other traits. We also 

removed another six association signals, since these signals have a substantial LD with 

another signal (measured by LD r2 between lead variants >0.25). These edits reduced 

the number of association signals from 308 to 249. We estimated { , }C Cp q  for variant 

impact categories based on the 249 association signals, and updated PPCs for all 308 

signals by integrating the estimates. 

Effect impact-incorporated PPCs were used for determining candidate 

mutations or genes. When computing PPC of a gene, variants within its two-kb 

upstream/downstream were included besides those within the gene. 

Enrichment analysis 

Our enrichment analysis was based on our fine-mapped 249 association signals (as 

described above) to estimate pC (the probability of a causal variant being in category 
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C) and qC (the probability of a non-causal variant being in category C). The enrichment 

for category C is defined as EC = pC/qC (Sveinbjornsson et al, 2016), for which a value 

larger than one indicates that causal variants are more enriched in category C than 

across whole genome. Functional annotations investigated included locations of 

variants regarding protein-coding genes, effect impact inferred by SnpEff (Cingolani 

et al, 2012), and constrained elements predicted by GERP (Cooper et al, 2005). 

Confidence intervals of the enrichment estimates was derived by percentile bootstrap 

as in (Sveinbjornsson et al, 2016). The association signals were sampled 1,000 times 

to calculate each confidence interval. We removed very small categories (like HIGH in 

SnpEff-inferred effect impacts) in bootstrapping, since including them often resulted 

in bad convergence of maximum likelihood estimation. 

  



 

137 

 

URLs 

BFMAP: http://terpconnect.umd.edu/~jiang18/bfmap/  

MMAP: https://mmap.github.io/  

Cattle constrained elements: ftp://ftp.ensembl.org/pub/release-90/bed/ensembl-

compara/68_eutherian_mammals_gerp_constrained_elements/gerp_constrained_elem

ents.bos_taurus.bed.gz 

Cattle genome annotation: 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000003055.6_Bos_taurus_UMD_3.1.1/

GCF_000003055.6_Bos_taurus_UMD_3.1.1_genomic.gff.gz 

Cattle QTLdb: https://www.animalgenome.org/cgi-bin/QTLdb/BT/index 

Cattle genome variation: ftp://ftp.ensembl.org/pub/release-

89/variation/gvf/bos_taurus/ 
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Tables 

Table 4.1. Number of Holstein bulls, and mean and standard deviation (SD) of PTAs/reliabilities for each trait 

Trait abbreviation 

Direction 

of 

selection 

No. 

of 

bulls 

Deregressed PTAs Reliability of deregressed PTAs 

Trait name Trait group 
Mean SD Mean SD Min Max 

Milk1 + 27156 -245.86 850.58 0.860 0.082 0.325 0.999 Milk yield Production 

Fat1 + 27156 -5.92 30.52 0.860 0.082 0.325 0.999 Fat yield Production 

Protein1 + 27156 -5.31 23.84 0.863 0.083 0.325 0.999 Protein yield Production 

Fat_Percent1 + 27156 0.0136 0.107 0.860 0.082 0.325 0.999 Fat percentage Production 

Pro_Percent1 + 27156 0.0086 0.0464 0.863 0.083 0.325 0.999 Protein percentage Production 

Net_Merit + 27161 -106.91 278.63 0.763 0.110 0.067 0.990 Net merit  

Prod_Life + 26727 -1.367 3.461 0.682 0.145 0.147 0.999 Productive life Reproduction 

SCS - 27143 3.027 0.235 0.786 0.110 0.040 0.999 Somatic cell score  

AFC - 16314 -0.446 11.855 0.439 0.258 0.010 0.990 Age at first calving Reproduction 

DFB2 - 11713 0.534 2.825     Days to first breeding Reproduction 

Dtr_Preg_Rate + 25699 -0.593 3.025 0.618 0.185 0.061 0.999 Daughter pregnancy rate Reproduction 

Heifer_Conc_Rate + 19334 -0.660 9.610 0.377 0.210 0.002 0.990 Heifer conception rate Reproduction 

Cow_Conc_Rate + 20380 -1.053 6.879 0.597 0.202 0.002 0.990 Cow conception rate Reproduction 

Sire_Calv_Ease - 26345 7.959 2.461 0.671 0.224 0.082 0.990 Sire calving ease Reproduction 

Dtr_Calv_Ease - 23263 9.141 3.182 0.594 0.176 0.160 0.990 Daughter calving ease Reproduction 

Sire_Still_Birth - 21543 8.190 1.831 0.495 0.249 0.019 0.990 Sire stillbirth Reproduction 

Dtr_Still_Birth - 20424 8.085 2.958 0.508 0.222 0.040 0.990 Daughter stillbirth Reproduction 

Final_score + 25638 -0.817 1.484 0.702 0.140 0.144 0.990 Final score Type 



 

 

 

Stature + 25641 -0.482 1.532 0.844 0.079 0.404 0.990 Stature Type 

Strength + 25633 -0.278 1.513 0.743 0.147 0.017 0.990 Strength Type 

Dairy_form null 25615 -0.492 1.745 0.752 0.132 0.149 0.990 Dairy form Type 

Foot_angle + 25626 -0.742 2.263 0.664 0.198 0.029 0.990 Foot angle Type 

Rear_legs(side) + 25641 -0.009 1.734 0.754 0.137 0.121 0.990 Rear legs (side view) Type 

Body_depth + 25636 -0.413 1.622 0.720 0.180 0.060 0.990 Body depth Type 

Rump_angle null 25641 0.038 1.482 0.828 0.089 0.338 0.990 Rump angle Type 

Rump_width + 25641 -0.504 1.543 0.766 0.114 0.229 0.990 Rump width Type 

Fore_udder_att + 25640 -0.908 1.852 0.781 0.112 0.176 0.990 Fore udder attachment Type 

Rear_ud_height + 25640 -0.885 2.095 0.737 0.136 0.229 0.990 Rear udder height Type 

Udder_depth + 25631 -0.653 1.665 0.836 0.082 0.355 0.990 Udder depth Type 

Udder_cleft + 25641 -0.720 1.980 0.718 0.156 0.089 0.990 Udder cleft Type 

Front_teat_pla + 25641 -0.562 1.663 0.781 0.106 0.324 0.990 Front teat placement Type 

Teat_length + 25631 0.104 1.482 0.815 0.087 0.355 0.990 Teat length Type 

Rear_legs(rear) + 24763 -0.759 2.709 0.605 0.178 0.028 0.990 Rear legs (rear view) Type 

Feet_and_legs + 25608 -0.928 2.501 0.600 0.208 0.027 0.990 Feet and legs composite Type 

Rear_teat_pla + 25492 -0.436 1.900 0.762 0.103 0.062 0.990 Rear teat placement Type 

1Besides bulls, we included in single-trait GWAS two Holstein cows with high reliability (~0.40). 

2For DFB, we used PTAs instead of deregressed PTAs. 
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Table 4.2. Genomic control factor of single-trait GWAS for each trait 

Trait Modeling reliability GC lambda N.QTLs 

Milk N 0.939 14 

Fat N 0.907 9 

Protein N 1.008 10 

Fat_Percent N 0.753 12 

Pro_Percent N 0.828 23 

AFC Y 1.020 3 

DFB N 1.010 4 

Net_Merit N 1.004 6 

Prod_Life N 0.984 9 

SCS N 0.970 10 

Dtr_Preg_Rate Y 1.022 9 

Heifer_Conc_Rate Y 1.010 3 

Cow_Conc_Rate Y 1.020 7 

Sire_Calv_Ease Y 1.051 8 

Dtr_Calv_Ease Y 1.026 7 

Sire_Still_Birth Y 1.106 8 

Dtr_Still_Birth Y 1.061 7 

Final_score Y 1.054 12 

Stature Y 0.958 13 

Strength Y 0.971 7 

Dairy_form Y 1.022 7 

Foot_angle Y 1.008 2 

Rear_legs(side) Y 1.023 0 

Body_depth Y 0.978 9 

Rump_angle Y 1.016 8 

Rump_width Y 0.967 10 

Fore_udder_att Y 1.019 16 

Rear_ud_height Y 1.034 6 

Udder_depth Y 0.987 14 

Udder_cleft Y 1.020 3 

Front_teat_pla Y 0.980 6 

Teat_length Y 0.963 16 

Rear_legs(rear) Y 1.022 0 

Feet_and_legs Y 1.034 0 

Rear_teat_pla Y 0.974 8 

 

  



 

 

 

Table 4.3. Number of association signals on each chromosome for each trait 

Trait 

Chromosome 
Autoso

me 1 2 3 4 5 6 7 8 9 
1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

Milk 1 0 2 0 3 2 0 0 0 0 0 0 0 3 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 16 

Fat 0 2 0 0 2 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 9 

Protein 0 0 1 0 2 2 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 10 

Fat_Percent 0 0 2 0 2 1 0 0 0 0 1 0 0 1 1 1 0 0 1 3 0 0 0 0 0 1 1 0 0 15 

Pro_Percent 1 0 2 0 4 4 0 0 1 1 1 0 1 6 2 0 0 1 0 0 1 0 0 0 0 1 0 1 2 29 

Net_Merit 0 0 0 0 0 1 1 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 6 

Rump_angle 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 8 

Teat_length 0 0 0 1 5 0 1 0 0 0 2 0 0 0 0 1 0 1 1 1 1 1 0 0 0 2 0 0 1 18 

AFC_DYD 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 3 

Heifer_Conc

_Rate 
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 

Dtr_Calv_Ea

se 
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 6 

Dtr_Still_Bir

th 
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

Sire_Calv_E

ase 
0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 8 

Sire_Still_Bir

th 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 4 

DFB_PTA 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 4 

Dtr_Preg_Ra

te 
1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 1 8 

Cow_Conc_

Rate 
1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 1 7 



 

 

 

Dairy_form 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 1 0 8 

Prod_Life 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 8 

SCS 0 0 0 0 0 1 1 0 0 0 0 0 1 2 1 0 0 1 2 1 0 0 0 0 0 0 0 0 0 10 

Udder_cleft 2 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 7 

Front_teat_p

la 
0 0 0 0 2 0 0 2 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 2 0 0 0 9 

Rear_teat_pl

a 
1 0 0 0 1 0 2 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1 3 0 0 0 13 

Fore_udder_

att 
0 0 0 1 2 0 1 0 0 0 1 0 2 0 1 0 0 1 0 3 2 0 0 0 0 1 0 1 2 18 

Udder_depth 0 0 0 1 1 1 1 1 0 0 2 0 0 1 0 0 0 1 1 2 0 0 1 0 0 0 0 0 2 15 

Final_score 0 0 0 0 2 0 0 2 0 0 1 0 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 1 10 

Rear_ud_hei

ght 
0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 6 

Strength 0 0 0 0 2 1 1 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8 

Body_depth 0 0 0 0 3 0 2 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 10 

Stature 1 1 0 0 2 0 1 0 0 1 1 0 0 2 0 1 0 1 0 0 0 0 1 0 0 0 0 0 3 15 

Rump_width 0 0 0 0 3 0 0 2 1 0 0 0 2 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 13 

Foot_angle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2 

Total 9 3 9 3 
4

4 

2

3 

1

8 

1

5 
3 3 

1

1 
0 8 

2

9 
8 5 5 

3

0 
7 

1

4 

1

3 
1 2 2 2 

1

4 
1 6 

2

0 
308 

 

  



 

 

 

Table 4.4. A short list of candidate genes with high posterior probability of causality  

GeneID GeneName 
GeneChro

m 
GeneStart GeneEnd GeneType Associated Traits 

536203 ABCG2 6 37902882 38030585 protein_coding 
Fat|Fat_Percent|Milk| 

Net_Merit|Pro_Percent|Protein 

100337258 TMTC2 5 12290927 12714498 protein_coding 

Final_score|Fore_udder_att| 

Front_teat_pla|Rear_teat_pla| 

Rear_ud_height|Teat_length 

541123 ARRDC3 7 93240415 93253099 protein_coding 

Dtr_Calv_Ease|Rear_ud_height| 

Sire_Calv_Ease|Strength| 

Teat_length|Udder_depth 

100336551 ABCC9 5 88672047 88834491 protein_coding 

Dairy_form|Dtr_Preg_Rate| 

Fore_udder_att|Milk|Protein| 

Udder_depth 

282609 DGAT1 14 1795425 1804838 protein_coding 
Milk|Net_Merit|Pro_Percent| 

Protein|SCS 

512656 VPS13B 14 66648395 67461111 protein_coding 
Fat_Percent|Milk|Pro_Percent| 

Rear_ud_height|Udder_cleft 

100125304 ZNF613 18 58100688 58141930 protein_coding 
Body_depth|Net_Merit| 

Sire_Still_Birth|Stature|Strength 

615414 CCND2 5 
10625389

1 

10627681

9 
protein_coding 

Body_depth|Rump_width| 

Stature|Strength 

493719 MGST1 5 93925155 93950175 protein_coding Fat|Fat_Percent|Milk|Pro_Percent 

540317 FGF6 5 
10615790

9 

10616992

2 
protein_coding 

Body_depth|Rump_width| 

Stature|Strength 

515039|10713163

0 
CCDC88C 21 56629746 56773438 protein_coding DFB_PTA|Dairy_form|Rear_ud_height 

751788 LOC751788 5 
10253729

0 

10259858

0 
other Dairy_form|Final_score 

280924 SCD 26 21137945 21148317 protein_coding Fat|Fat_Percent 



 

 

 

509011 MKL1 5 
11226097

6 

11247246

3 
protein_coding Milk|Protein 

613562 SYT8 29 50287761 50294802 protein_coding Final_score|Foot_angle 

782261 LOC782261 14 1321274 1322712 protein_coding Milk|Net_Merit 

518897 CHEK2 17 70266805 70305258 protein_coding 
Dtr_Calv_Ease| 

Sire_Calv_Ease 

531757 C8H9orf3 8 82589563 83012157 protein_coding Final_score|Rump_width 

530076 GC 6 88687845 88739292 protein_coding Cow_Conc_Rate|Udder_depth 

540675 KALRN 1 69105208 69724961 protein_coding 
Cow_Conc_Rate| 

Dtr_Preg_Rate 

282208 CSN1S1 6 87141491 87159097 protein_coding Pro_Percent|Protein 

100140107 SCAPER 21 32118844 32548944 protein_coding Fore_udder_att|Front_teat_pla 

523297 TCP11 23 9018566 9067628 protein_coding Stature|Udder_depth 

280838 PAEP 11 
10330148

8 

10330638

1 
protein_coding Fat_Percent|Protein 

527335 ANKFN1 19 7215828 7522300 protein_coding Rump_width|SCS 

513400 NADSYN1 29 48955458 48983419 protein_coding Dtr_Preg_Rate|Stature 

100852273 LOC100852273 15 49734992 49735929 protein_coding Final_score|Fore_udder_att 

616537 RAB6A 15 53936922 54027857 protein_coding Milk|Pro_Percent 

107132925 LOC107132925 11 38406991 38624018 lncRNA Fore_udder_att|Udder_depth 

281990 POLD1 18 57008175 57056561 protein_coding Foot_angle|Protein 

540709 RAB11FIP2 26 38617113 38657253 protein_coding Front_teat_pla|Rear_teat_pla 

616091 MGMT 26 49167460 49443160 protein_coding Rump_angle 

100141209 BOSTAUV1R417 18 58464593 58530789 protein_coding Sire_Still_Birth 

520463 SLC50A1 3 15518076 15520528 protein_coding Pro_Percent 

541287 RNF217 9 26436907 26577497 protein_coding Pro_Percent 

104974054 LOC104974054 14 39891940 40114343 lncRNA Rump_angle 

789567 HSD17B12 15 74652043 74830690 protein_coding Fat_Percent 



 

 

 

104975270 LOC104975270 20 33738712 33756847 lncRNA Fore_udder_att 

104972568 LOC104972568 5 
10724410

8 

10725998

0 
lncRNA Sire_Calv_Ease 

537034 ADGRV1 7 92481179 92844786 protein_coding Sire_Calv_Ease 

508656 CD276 10 20323629 20355565 protein_coding Dtr_Preg_Rate 

537659 TTC28 17 69652292 70246650 protein_coding Dtr_Calv_Ease 

508832 LSP1 29 50238210 50277092 protein_coding Udder_depth 

100337421 VEPH1 1 
11093643

1 

11121354

5 
protein_coding Udder_cleft 

615392 TIGAR 5 
10622307

1 

10623804

0 
protein_coding Prod_Life 

518878 CCDC57 19 51271243 51381692 protein_coding Fat 

526125 GON4L 3 15004847 15093527 protein_coding Protein 

281152 FASN 19 51384892 51403614 protein_coding Fat_Percent 

504741 COLEC12 24 35630928 35816269 protein_coding Rump_angle 

507749 C6 20 33320064 33405582 protein_coding SCS 

317655 MYH10 19 28679649 28801223 protein_coding Udder_depth 

511614 GPAT4 27 36198042 36229006 protein_coding Fat_Percent 

616280 EXOC6B 11 11617983 12340418 protein_coding Teat_length 

515340 ABO 11 
10423151

7 

10427022

4 
protein_coding Pro_Percent 

619012 LOC619012 29 39388027 39397193 pseudogene Sire_Still_Birth 

618771 MRGPRG 29 48989735 49027304 protein_coding Sire_Calv_Ease 

534482 FSTL1 1 65742626 65802423 protein_coding Stature 

282072 SFTPD 28 35814587 35824601 protein_coding Pro_Percent 

525618 SLC24A2 8 24495771 24782333 protein_coding Rump_angle 

407238 ESR1 9 89989608 90256185 protein_coding Dtr_Calv_Ease 

281276 LDLR 7 16768592 16802349 protein_coding SCS 



 

 

 

618784 TBC1D22A 5 
11808639

6 

11834383

4 
protein_coding Pro_Percent 

520994 PTCH1 8 83518735 83581931 protein_coding Body_depth 

101903327 LOC101903327 14 7965390 8040409 lncRNA Prod_Life 

532711 FAM98B 10 34130152 34195283 protein_coding Stature 

530237 VWA2 26 34998522 35049697 protein_coding Teat_length 

786966 LOC786966 14 2054723 2089358 protein_coding Pro_Percent 

100140934 MROH9 16 39319532 39421012 protein_coding Rear_teat_pla 

 

  



 

 

 

Table 4.5. A short list of missense variants with posterior probability of causality of >0.1 

Variant Ref Alt Annotation Gene MAF Average_PPC Associated Traits 

7:93244933 T C missense_variant ARRDC3 0.10 0.608 

Body_depth|Dtr_Calv_Ease|Net_Merit| 

Prod_Life|Rear_ud_height|Sire_Calv_Ease| 

Strength|Teat_length|Udder_depth 

6:38027010 A C missense_variant ABCG2 0.02 0.87 
Fat|Fat_Percent|Milk|Net_Merit| 

Pro_Percent|Protein 

8:85149325 C A missense_variant LOC101906801 0.11 0.134 Body_depth|Final_score|Rump_width|Strength 

21:56809835 G A missense_variant PPP4R3A 0.01 0.191 Dairy_form|Prod_Life|Rear_ud_height 

8:83581466 G T missense_variant PTCH1 0.03 0.678 Body_depth|Strength 

26:21144708 G A 
missense_variant& 

splice_region_variant 
SCD 0.25 0.571 Fat|Fat_Percent 

1:69673871 C T missense_variant KALRN 0.11 0.462 Cow_Conc_Rate|Dtr_Preg_Rate 

19:7521843 G A missense_variant ANKFN1 0.22 0.446 Rump_width|SCS 

29:50290087 G A missense_variant SYT8 0.39 0.438 Final_score|Foot_angle 

29:50286107 G A missense_variant TNNI2 0.20 0.436 Rump_width|Stature 

29:50289940 A G missense_variant SYT8 0.39 0.399 Final_score|Foot_angle 

17:70276788 G A missense_variant CHEK2 0.09 0.388 Dtr_Calv_Ease|Sire_Calv_Ease 

18:57017616 G A missense_variant POLD1 0.10 0.291 Foot_angle|Protein 

8:83044210 A T missense_variant FANCC 0.12 0.252 Rear_teat_pla|Udder_depth 

14:1321450 A T missense_variant LOC782261 0.21 0.206 Milk|Net_Merit 

5:67644905 G A missense_variant STAB2 0.04 0.184 Body_depth|Teat_length 

5:67677946 G A missense_variant STAB2 0.04 0.184 Body_depth|Teat_length 

7:19876364 C T missense_variant SAFB 0.30 0.156 Body_depth|Stature 

14:1321721 G A missense_variant LOC782261 0.21 0.155 Milk|Net_Merit 

5:68052261 C G missense_variant HCFC2 0.04 0.145 Body_depth|Teat_length 

14:1321349 T G missense_variant LOC782261 0.21 0.143 Milk|Net_Merit 



 

 

 

18:57521276 G A missense_variant CTU1 0.06 0.099 DFB_PTA|Heifer_Conc_Rate 

14:2072259 C T 
missense_variant& 

splice_region_variant 
LOC786966 0.09 0.919 Pro_Percent 

18:44378414 G A missense_variant CHST8 0.12 0.889 DFB_PTA 

26:22874498 C T missense_variant  0.18 0.827 Pro_Percent 

5:118244695 C T missense_variant TBC1D22A 0.18 0.676 Pro_Percent 

5:30259026 G A missense_variant NCKAP5L 0.25 0.611 Teat_length 

3:15464749 G A missense_variant GBA 0.06 0.601 Milk 

3:20189903 G A missense_variant ADAMTSL4 0.08 0.571 Dairy_form 

11:104232298 C T 
missense_variant& 

splice_region_variant 
ABO 0.31 0.449 Pro_Percent 

19:51319797 A G missense_variant CCDC57 0.35 0.423 Fat 

18:61020273 C T missense_variant ZNF331 0.04 0.322 Dairy_form 

19:51319759 T C missense_variant CCDC57 0.35 0.304 Fat 

8:85147150 T C missense_variant LOC101906801 0.12 0.302 Strength 

13:58716308 G A missense_variant C13H20orf85 0.12 0.297 Fore_udder_att 

11:104232319 A T missense_variant ABO 0.31 0.223 Pro_Percent 

14:66328304 C T missense_variant SPAG1 0.12 0.222 SCS 

28:35824058 A T missense_variant SFTPD 0.35 0.186 Pro_Percent 

29:48976568 T C missense_variant NADSYN1 0.02 0.183 Stature 

29:48978814 G A missense_variant NADSYN1 0.02 0.183 Stature 

6:87181542 T G missense_variant CSN2 0.05 0.181 Pro_Percent 

29:50289452 C T missense_variant TNNI2 0.08 0.158 Stature 

11:103304757 T C missense_variant PAEP 0.48 0.149 Protein 

25:26381789 G A missense_variant SGF29 0.08 0.122 Milk 

25:26544685 T A missense_variant TAOK2 0.08 0.119 Milk 

25:26458669 G A missense_variant TBX6 0.08 0.114 Milk 



 

 

 

7:33638886 C T missense_variant LOC521901 0.34 0.114 Rear_teat_pla 

11:103303475 G A missense_variant PAEP 0.48 0.11 Protein 

28:18186635 A G missense_variant ARID5B 0.35 0.105 Dairy_form 
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Figures 

 

Figure 4.1. Number of association signals newly discovered in our single-trait 

GWAS versus previously reported. There are in total 30 traits listed. Three leg traits 

were not listed since we did not find associations passing whole-genome significance. 

Days to first breeding (DFB) and final score were not listed because there was no 

matched trait in the Cattle QTLdb release 35.  

  



 

 

 

 

Figure 4.2. Hierarchical clustering of 35 traits in Holstein cattle. A. Cluster dendrogram. B. PCA clusters. 

  



 

 

 

 

Figure 4.3. Manhattan plots for multi-trait association analyses. A. Production traits. B. Reproduction traits, excluding four calving 

traits (calving ease and stillbirth traits). C. Type traits. D. All 29 dairy traits, excluding days to first breeding (DFB), net merit and four 

calving traits. Red lines denote a significance of 5E-8. 
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Figure 4.4. Distribution of number of fine-mapped signals in a candidate locus 

for a trait. Signals were filtered by a significance threshold of 5E-7. 

  



 

 

 

 

Figure 4.5. Impact of incorporation of SnpEff-inferred effect impact on fine-mapping performance. A. Posterior probability of 

causality (PPC) with incorporation of effect impact versus PPC with an equal prior for each variant. B. Size of 95% credible variant 

set overall decreased by incorporation of SnpEff-inferred effect impact. 

  



 

 

 

 

Figure 4.6. Enrichment estimates for various functional annotations. A. Locations of variants regarding protein-coding genes. B. 

SnpEff effect impact. C. GERP constrained elements. D. Effect impact by GERP constrained elements. 



 

 

 

 

Figure 4.7. Enrichment estimates for SnpEff effect impact obtained with three groups of traits separately 
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Chapter 5: SNP-set based Genomic Prediction to Incorporate 

Functional Annotation 

Abstract 

Genomic prediction has emerged as an effective approach in plant and animal breeding. 

Including functional annotation into the genomic model can be of great advantage. Due 

to the statistical and computational challenges in large genomics studies, however, a 

fast and flexible method to incorporate such external information is still lacking. Here, 

we propose a Bayesian model that can incorporate functional annotation in a flexible 

way, implement two complementary algorithms to fit the model (namely, parameter 

expanded variational Bayes and Gibbs sampling), and develop a fast software package 

named SSGP. In our model, whole genome markers can be split into groups in a user-

defined manner, and each group of markers is given a common effect variance. Since 

previous functional genomics studies have accumulated much evidence on which genes, 

genomic regions or pathways are more/less important for a trait of interest, we can 

divide genome-wide SNPs into a number of groups based on their levels of importance 

and then use the predefined SNP sets in SSGP. Additionally, each marker has a pre-

specified weight for which the rule can be flexibly assigned, e.g. based on minor allele 

frequency or LD pattern. For testing purpose, we analyzed many data sets. Generally, 

SSGP could achieve similar prediction performance compared to the best approaches 

reported, though only proximity was used for grouping SNPs (markers were divided 

into continuous, non-overlapping chunks). It is also fast and capable of handling large 

data. Collectively, the method and software show great potential to increase accuracy 
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in genomic prediction, particularly in the future when more useful functional 

annotations are becoming available. 

 

Key words: genomic prediction, SNP set, functional annotation 
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Introduction 

Genomic prediction (GP) has emerged as an effective approach in plant and animal 

breeding (Garcia-Ruiz et al, 2016). Most existing methods are solely based on mining 

marker genotypes and phenotypes (Habier et al, 2011; VanRaden, 2008), disregarding 

relevant information on biological mechanisms linking mutations to traits. Including 

functional annotation into the genomic model can be of great advantage. A 

straightforward way to achieve this is to group or weight SNP markers. Actually, such 

a way has been extensively used for partitioning heritability with multi-component 

GREML (Loh et al, 2015a; Yang et al, 2015) and for improving GRM (Speed et al, 

2017). However, this method is computationally intractable when the number of groups 

is large. Additionally, it cannot directly generate SNP effect estimates, making it harder 

to predict phenotypes for new individuals.  

 To tackle the drawbacks of GREML for grouping and weighting markers, we 

here propose a Bayesian method, which can group variants in a manner similar to 

multiple-component GREML and weight variants in a user-defined manner. We 

implement two complementary algorithms to fit the model (namely, parameter 

expanded variational Bayes and Gibbs sampling), and develop a fast software package 

named SSGP. Extensive data analyses show that SSGP is fast and produces accurate 

predictions. 
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Methods 

Statistical model 

We use the following statistical model: 
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where the phenotype (y) is decomposed to three parts, namely the fixed effects (b), the 

random effects (uh, h=1,…,p), and the residual (e). The fixed effects are assumed to 

follow a normal distribution with an extremely large variance that is pre-specified (e.g., 

2 1 8b E  ). The residuals are assumed to follow a normal distribution, each having a 

pre-specified weight (i.e., element in the diagonal matrix R) for variance. There are p 

groups of random effects. The random effects within each group are assumed to follow 

normal distribution, and each group has its own variance component (
2

hu ) and pre-

specified variant-specific weights (diagonal matrix hΩ ).  Each variance component is 

further assumed to follow an inverse-gamma distribution with group-specific 

parameters (shape parameter ah and scale parameter bh) or a half-Cauchy distribution 

with scale Ah.  

 In the context of genomic prediction using SNP markers, the whole-genome 

markers are split into p groups, each group having a common variance of SNP effects 
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(Fig 5.1). In addition, one can specify weights for sequence variants based on previous 

functional enrichment analysis, like the result from S-LDSC (Finucane et al, 2015). 

Despite the difference in hyper-priors, model (5.1) is basically equivalent to the model 

of multiple-component GREML. 

Algorithms for model fitting 

We implement both variatonal Bayes (VB) (Beal, 2003) and Gibbs sampling to fit 

model (5.1). The two algorithms are complementary to each other. Variatonal Bayes is 

fast but produces irredeemably biased estimates, while Gibbs sampling is relatively 

slow but produces asymptotically unbiased estimates.  

 To speed up the convergence of VB, we applied the parameter expanded 

method to our VB iterations (Jaakkola and Qi, 2007). We expanded model (5.1) by 

introducing auxiliary variables (ch, h=1,…,p) to each group of SNPs: 

2 2 2,  and 
h hh h h u u hc c  u u .                                     (5.2) 

In each iteration, after all parameters are updated, the variational lower bound is 

maximized with respect to ch (h=1,…,p). hu  and 
2

hu  are then updated again using  

2 2 2, and 
h hh h h u h uc c  u u .                                     (5.3) 

Gibbs sampler for the model with the half-Cauchy prior is also based on the use of 

auxiliary variables (Makalic and Schmidt, 2015). 

 The time complexity of one VB iteration is 𝑂(𝑠2𝑚 + 𝑛𝑚 + 𝑛𝑐), where n is 

sample size, s is the group size (if all groups are of equal size), m is the total number 

of all SNPs, and c is the number of covariates. Gibbs sampling is faster than VB for 
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one iteration, but requires much more iterations than VB. In practice, VB is orders of 

magnitude faster than Gibbs sampling. 

Software implementation 

We develop the software tool in C++ with the Eigen 3 library for fast matrix 

computation and Intel MKL for fast random number generation. Our software tool is 

named SSGP (SNP-set based Genomic Prediction). 

Example usage 

Two examples on how to use SSGP are illustrated in Fig. 5.2. First, we can group SNPs 

of similar importance, as previous functional genomics studies have accumulated much 

evidence on which genes are more/less important for a trait of interest (Fig. 5.2A). A 

simple grouping way is to group SNPs based on proximity, in that SNPs close to each 

other tend to behave similarly due to LD. Second, we can weight SNPs based on their 

MAFs and LD scores (Speed et al, 2017), e.g., setting bigger weight to low-MAF SNPs 

(Fig. 5.2B). 

Data analysis 

Simulation data  

We analyzed the 16th QTL-MAS workshop data. In this simulation data set, there are 

3000 animals as training and 1200 as validation. Each animal has genotypes of ten 

thousand equally distributed SNPs. Fifty QTLs and three traits (milk, fat and % fat) are 

simulated. 
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Real data 

We analyzed two traits (%CD4+ and %CD8+) in the WTCCC heterogeneous stock 

mice data set, which consists of ~1400 individuals and ~10k SNP markers (Valdar et 

al, 2006). %CD4+ and %CD8+ have a heritability of ~0.4 and ~0.9, respectively. We 

randomly split the sample into two equal parts, and used one part as training and the 

other as validation. The splitting was repeated 20 times. 

We also analyzed five milk production traits in a large dairy cattle data set 

(VanRaden et al, 2017). The data set has genotypes of 760K SNPs. We used 20K old 

bulls as training and 4K young bulls as validation. 

 The human lipid profile data (Investigators, 1989) consist of ~10k unrelated 

individuals. We used 10-fold cross validation and ~620K whole-genome SNP markers 

to predict four lipid profile traits and body mass index.  

Benchmarking 

We compared SSGP to GBLUP (via GCTA) (Yang et al, 2011a), BayesA (VanRaden, 

2008), BayesB (Nadaf et al, 2012), and BayesRv2 (Moser et al, 2015), in terms of 

prediction accuracy (or root-mean-square error (RMSE)), running speed and memory 

usage. External functional annotation was not used in SSGP. Instead, we just divided 

SNP markers into continuous, non-overlapping chunks (i.e., simple grouping based on 

proximity).  
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Results 

Prediction accuracy or RMSE 

QTL-MAS 2012 simulation data 

When setting SNP-set size to 10 or 100, both MCMC and VB in SSGP performs better 

than BayesB which has been reported to be the best method for the data set (http://qtl-

mas-2012.kassiopeagroup.com) (Fig. 5.3). In addition, MCMC produces higher 

prediction accuracy than VB, especially when SNP-set size is 1. 

WTCCC heterogeneous stock mice data 

BayesR and SSGP clearly produce smaller RMSEs than GBLUP and thus have better 

performance (Fig. 5.4). SSGP is overall similar to BayesR, but in some scenarios is 

significantly better (Fig. 5.4). 

Dairy cattle data 

In SSGP, each SNP set contains 1K continuous SNPs. SSGP-VB has an increase of up 

to 8 percentage points in prediction accuracy for the five milk production traits 

compared to BayesA (Fig. 5.5).  

Human lipid profile data 

For this data, each SNP set contains 200 continuous SNPs in SSGP. SSGP-VB has 

much higher prediction accuracy than GBLUP for all four lipid profile traits (Fig. 5.6). 

For body weight index, which is known to have a highly polygenic architecture, SSGP 

and GBLUP show similar genomic predictions (Fig. 5.6). 

http://qtl-mas-2012.kassiopeagroup.com/
http://qtl-mas-2012.kassiopeagroup.com/
http://qtl-mas-2012.kassiopeagroup.com/
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Speed and memory usage 

SSGP-VB is faster than GBLUP by GCTA, even though the data sets have much 

smaller sample size than the number of SNPs and thus favor GCTA (Table 5.1). In 

addition, SSGP-VB is two orders of magnitude faster than BayesRv2, while SSGP-

MCMC is slightly slower (Table 5.1). The speed of SSGP-MCMC is reasonable, 

considering that BayesRv2 uses an improved algorithm for updating effects across 

multiple SNPs in blocks (Calus, 2014) and is one of the fastest MCMC-based 

computing tools for genomic prediction. As shown in Table 5.2, SSGP is also memory 

efficient. 

 Both time cost and memory usage in SSGP are linearly proportional to sample 

size and number of markers. It is accordingly projected that SSGP can complete 

genomic prediction of one trait for two million animals and 60K SNPs in one day with 

a few cores of modern computer processor. 
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Conclusion 

We propose a flexible method to incorporate functional annotation into genomic 

prediction, and develop a fast software tool, SSGP. SSGP can readily handle very large 

data sets. The method and software show great potential to increase accuracy in 

genomic prediction. Our data analyses also show that SNP grouping based on proximity 

is helpful. 
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Tables  

Table 5.1. Running speed of GCTA, BayesRv2 and SSGP 

Trait 

Data size Time cost (minutes)  

Samples SNPs GCTAb BayesRv2cd SSGP-VB 
SSGP-

MCMCd 

TGa 8,240 612,926 18.6 (0.1) NA 12.3 (0.2) NA 

%CD4+ 704 9,159 0.0417 (0.0085) 4.15 (0.23) 0.0283 (0.0095) 7.39 (0.067) 

aGCTA and SSGP were used with 10 cores of Intel Xeon E5-2680 v2. 

bThe time used by GCTA included time for building GRM, GREML and calculating 

SNP effects. 

cBayesRv2 was used with options –msize 500 and –blocksize 2. 

dThe chain length was 50,000. 

 

Table 5.2. Peak memory usage (Gb) 

Trait 
Data size Peak memory usage (Gb) 

Samples SNPs GCTA-GREML SSGP 

TG 8,240 612,926 1.7 ~6 

TG: Triglycerides. 
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Figures 

 

Figure 5.1. Scheme of incorporating functional annotations into genomic prediction by 

SSGP. Symbols in the figure are the same as in model (5.1). 
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Figure 5.2. Two examples on how to use SSGP. 

A) Grouping SNPs based on relative importance 

B) Weighting SNPs based on MAFs 

  

B 



 

 

 

 

Figure 5.3. Prediction accuracies of SSGP and BayesB for the QTL-MAS 2012 simulation data 



 

 

 

 

Figure 5.4. Root-mean-square errors (RMSEs) of GBLUP and SSGP compared to BayesR for the WTCCC heterogeneous stock mice 

data. The baseline is BayesR. Boxplots show the RMSE difference of GBLUP/SSGP as compared to BayesR. Negative values indicate 

a better performance than BayesR. SSGP-MCMC-1, -10, -20, and -100 denote a SNP set size of 1, 10, 20, and 100, respectively. *: p-

value<0.05. **: p-value<0.01. ***: p-value<0.001. The p-values are from the tests for whether the RMSE difference equals 0. 



 

 

 

 

Figure 5.5. Prediction accuracies of BayesA and SSGP-VB for five milk production traits. SSGP-VB-IG denotes SSGP VB with an 

inverse-gamma prior.  

  



 

 

 

 

Figure 5.6. Prediction accuracies of GBLUP and SSGP for four lipid profile traits and body mass index. GBLUP was performed using 

GCTA. SSGP was run using VB. TC: Total cholesterol. LDL: Low-density lipoprotein. HDL: High-density lipoprotein. TG: 

Triglycerides. BMI: Body mass index. 
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Chapter 6: Conclusions 

The objective of this research was to gain knowledge on the genetic architecture of 

complex traits and to develop a method for using the knowledge to improve genomic 

prediction in dairy cattle. Studies in Chapters 2-5 were all centered on this objective. 

In Chapter 2, we aimed to dissect additive and non-additive genetic effects for 

production, reproduction and health traits in dairy cattle. By the study, we have found 

that non-additive effects contributed a non-negligible amount (more for reproduction 

traits) to the total genetic variance of complex traits in cattle. We also identified a 

dominance QTL for milk yield, demonstrating that detection of QTLs with non-

additive effect is possible in GWAS using a large dataset.  

In Chapter 3, I aimed to develop a powerful method and a fast software tool 

for SNP-set association and fine-mapping. In the study, I proposed a unified Bayesian 

model for single-marker/SNP-set association and fine-mapping and developed a 

software tool, BFMAP, which can deal with both population and pedigree data. I 

demonstrated that BFMAP achieves a power similar to or higher than existing software 

tools but is at least a few times faster with respect to single-marker/SNP-set association 

tests. I also showed that BFMAP performs well for fine-mapping even for complex 

linkage disequilibrium structures. Additionally, BFMAP can easily incorporate 

functional annotation into fine-mapping and efficiently use fine-mapping results to do 

functional enrichment analysis. Our method and software tool will be especially useful 

for unraveling causal effect enrichment patterns, as many more functional annotations 

are becoming available in dairy cattle genome. 
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In Chapter 4, we aimed to identify QTLs underlying the complex traits in 

Holstein cattle using imputed sequence data, and to fine-map 35 production, 

reproduction, and body conformation traits to single-gene resolution. By the study, we 

found many novel association signals and identified many promising candidate genes, 

including some previously reported ones. We also showed causal effect enrichment 

patterns for a few functional annotations available in dairy cattle genome and 

demonstrated that our fine-mapping result can be readily used for future functional 

studies. This study may facilitate follow-up functional validation and expand our 

understanding of complex traits in dairy cattle.  

In Chapter 5, I aimed to develop an efficient method and a fast computing tool 

for using functional annotations in genomic prediction. In the study, I proposed a 

Bayesian model that can incorporate functional annotation in a flexible way, 

implemented both variational Bayes and Gibbs sampling to fit the model, and 

developed a fast software package named SSGP. I illustrated how to use SSGP to 

incorporate functional annotation in genomic prediction. I also demonstrated by 

extensive data analyses that the method and software have great potential to increase 

accuracy in genomic prediction and the capability to handle very large data. 

It should be noted that the studies in these four chapters are closely related with 

each other and can be further integrated together. This directly provides a future 

direction. For example, the causal effect enrichment patterns in the Chapter 4 study can 

be readily used in SSGP to test a functional annotation-driven GP model for dairy 

cattle. The tests for non-additive effects in the Chapter 2 study can be readily improved 

by BFMAP.  
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It should also be noted that BFMAP and SSGP are applicable for any species. 

As sequence data are rapidly growing for many livestock species, fine-mapping to 

single-gene or even single-variant resolution is becoming feasible. BFMAP will be 

especially useful for these studies, in that it has features favorable to livestock data. In 

addition, as the FAANG or other related projects produce more functional annotations 

on animal genomes, BFMAP will be also useful for discovering causal effect 

enrichment patterns. Furthermore, the discovered enrichment patterns can be readily 

used in SSGP to test more sophisticated genomic prediction models driven by 

functional annotations.  

In the near future, I am particularly interested in testing prediction accuracy of 

SSGP for current dairy cattle genomic evaluation data maintained at the CDCB. In the 

Chapter 5 study, SSGP showed a considerable increase in prediction accuracy 

compared to BayesA (the method currently used in CDCB evaluations) when sequence 

genotypes were used. In that analysis, we did not use any functional annotation. Instead, 

we grouped markers based on only their proximity. It is interesting to see whether the 

proximity-based marker grouping also benefits 60K SNP genotypes which are 

currently used in practice. If the advantage is still available, it will be possible to apply 

SSGP to dairy cattle breeding considering its capability of handling very big data. 
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Appendix A 

Proof of the Equivalence between Scaling Genotypes and Weighting Variants 

Suppose that the weight of variance for variant i is Aii. Here we prove that weighting 

variants via A is equivalent to scaling genotypes by square root of corresponding 

weights. For unscaled genotypes Z, we compute the scaled genotypes (denoted by Z ) 

by 1 2Z ZA . Based on equation (3.2), it is easy to obtain 

   log , , , log , ,P M P MZ A X y Z X y . Thus, weighting variants results in the same 

Bayes factor for any marker set as scaling genotypes by square root of corresponding 

weights.  

Next, we show that they also result in the same null distribution of Bayes factor. 

For Z, we have  
1

1 1


     H PZ Z P PZ A Z P  where H, P, and γ are the same as in 

equation (3.9). Similarly, we have  
1

1


    H PZ Z P PZ Z P  for Z . Therefore, 

H H , which results in the same null distribution according to equation (3.9).  
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