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The second objective was to quantify canopy height and biomass changes in
in the Sierra Nevada using lidar data acquired in 1999 and 2008. Direct change
detection showed overall statistically significant positive height change at footprint
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regeneration from past disturbances and a small net carbon sink. This study added
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Chapter 1 Forest Structure and Habitat Characteristics using

Multi-sensor Data Fusion

1.1 Motivation
Forest structure, including the vertical arrangement of vegetation within

canopies, the horizontal distribution across landscapes, together with species
composition comprises ‘habitat’ and influences biogeochemical fluxes of carbon in
the earth-atmosphere system (Fig 1-1). Managing forests for carbon and/or
biodiversity under increasing anthropogenic pressures and a changing climate
therefore requires improved quantitative measurements of forest vertical structure,
floristics and biogeochemical status. Improving our capabilities to simultaneously
map these attributes can go a long way in advancing critical research in carbon
science, ecosystem and biodiversity studies. For instance, accurate maps of vertical
structure can reduce uncertainties in carbon storage and flux estimates, which are
currently between 30 and 70% of the total terrestrial budget (Canadell et al., 2007).
Better maps of structural and biogeochemical composition of vegetation can improve
our understanding of many ecosystems processes. Three dimensional forest structure
and composition combined with habitat preferences can inform biodiversity
conservation. The overarching questions are how can such integrated information be
obtained and how can currently available remote sensing resources bridge the gap in
knowledge?

Remote sensing has greatly advanced forest mapping and monitoring

capabilities in the last few decades by imaging the earth at various spatial and



temporal scales. Although multispectral airborne and space borne sensors have
significantly improved spatial maps of vegetation and landcover, they have shown
limited capabilities in measuring vertical structure critical for ecosystem studies. In
addition, most multispectral metrics, such as the normalized difference vegetation
index (NDVI) have not proven effective in monitoring the biogeochemical status of
canopies, particularly in high biomass density forests (> 100 Mg/ha).

In recent years, many new sensors have been developed, each with
complementary capabilities. Three of them are of particular interest in this research.
The first is Light Detection and Ranging (lidar), which provides three dimensional
forest structure measurements. The second is hyperspectral remote sensing that can be
used to map biochemical characteristics and species level variations in vegetation.
The third is radar remote sensing which is less sensitive to structure than lidar but has
greater spatio-temporal coverage. While each of these technologies has been studied
extensively, individually, the potential of combining them for mapping forest
structure is yet to be thoroughly understood.

The overall goal of my dissertation is to explore applications of multi-sensor
fusion for mapping forest structure and habitat characteristics. This is a vast area of
research with many possible approaches. I use airborne data as a test bed for future
space borne lidar /radar sensors such as the Deformation, Ecosystem Structure and
Dynamics of Ice (DESDynl) and hyperspectral sensors such as Hyperspectral Infrared
Imager (HyspIRI). My research focuses on three areas of interest: aboveground
biomass estimation; canopy structural dynamics, and; quantification of habitat

characteristics, all of which are key research requirements for carbon science



(Treuhaft et al., 2004) and biodiversity research (Bergen et al., 2006). Specifically,
my objectives are to:
1. Test the combined use of lidar and hyperspectral data in mapping
aboveground biomass using statistical fusion approaches.
2. Evaluate the potential of temporal waveform lidar in quantifying canopy
height and biomass dynamics.
3. To integrate lidar, radar and multispectral data in a multi-sensor fusion

approach for predicting bird habitat quality.

Role of Forest Structure

Landscape/
Spatial
Structure

Vertical
Structure

Floristics/species
composition

Y
Habitat +
Biogeochemical
Status

A

Human Habitat Heterogeneity Climate
Impacts Impacts

A

Biodiversity +
Biogeochemical after Duba_\'ah etal. (2010)

Fluxes

Fig. 1-1 Improved understanding of interactions between vegetation, carbon flux and
biodiversity requires quantitative assessments of forest vertical structure, floristic
composition and biochemical characteristics, emphasizing the need for multi-sensor
fusion approaches.



1.2 Background

1.2.1 Remote Sensing for carbon science

Quantifying the amount and distribution of carbon in various reservoirs
(oceans, atmosphere, terrestrial ecosystem, and fossil fuels) is critical for
understanding ecosystem responses to climate change. Although sources and sinks in
the other components of the carbon cycle are fairly well quantified, major
uncertainties still exist in the terrestrial carbon budget (30 to 70%). These are
associated with lack of quantitative estimates of carbon storage in forests and changes
from disturbance (Canadell et al., 2007; Houghton and Goetz, 2008). Consequently,
there are several gaps in our understanding of ecosystems and their interactions with
bio-geochemical cycles.

One way of reducing these uncertainties is by quantifying aboveground
biomass, about 50% of which is carbon. Remote sensing data have long been used to
derive biomass by developing empirical relationships between spectral characteristics
of images and field allometry. Although these methods are useful in low biomass
ecosystems with densities less than 100 Mg/ha, they have limited sensitivity at
moderate to high biomass levels (Imhoff et al., 1995). Biomass is closely related to
vertical vegetation structurally; to a first approximation, forests that are taller have
more biomass than similar forests that are shorter in stature. In addition, the most
accurate allometric equations are developed from field measurements of tree height
and diameter. Therefore, a better approach to improve biomass estimates is by

improving three dimensional forest structure measurements from remote sensing.



While this has already been achieved to some extent with lidar remote sensing, more

progress needs to be made in terms of accuracies and spatial coverage of biomass.

1.2.2 Remote sensing for biodiversity studies

Biodiversity management and conservation is increasingly a cause of concern,
with rapid rates of species decline and extinction. According to the Millennium
Ecosystem Assessment (2005), the rates of species extinctions have increased 1000
fold in the last century alone and losses continue at an alarming rate of around 50,000
species each year. Understanding habitat requirements of individual species is critical
for the design and implementation of effective conservation strategies.

Many studies have shown the influence of vertical arrangement of foliage
within canopies on habitat and niche selection by wildlife (MacArthur & MacArthur
1961; Robinson & Holmes, 1984; and Degraaf et al., 1998). As an example, the
California spotted owl prefers old growth forests with tall trees, dense canopy cover,
and presence of dead trees /snags for nesting (Verner et al., 1992). Another species of
recent notoriety is the Ivory-billed woodpecker. Although, there have been no
confirmed sightings for the bird, extant habitat preferences are for tall trees, large
basal area, dense canopy cover with open mid-story, abundant standing dead trees,
and dying vegetation (Tanner, 1942). Yet another example is the black-throated blue
warbler that has a preference for taller deciduous trees with a well developed
understory. In each of these cases, habitat requirements are well understood but it is
not clear how they can be characterized over large spatial scales for decision making.

There are many other wildlife species for which the habitat requirements are not well



understood. In both these situations, comprehensive maps of forest attributes are
invaluable.

Although passive remote sensing has already proved useful for habitat
mapping by providing information such as habitat fragmentation, landscape structure,
patch characteristics, canopy cover and phenology, they have limited capabilities for
providing three dimensional forest structure. Therefore, the need to explore multi-

sensor fusion approaches to address these requirements.

1.2.3 Lidar, Radar and Hyperspectral Remote Sensing

Lidar, radar and hyperspectral data provide vegetation attributes that are a
potentially powerful combination for carbon, ecological and habitat studies. Lidar is
an active remote sensing system that calculates distance by measuring the time taken
by a laser pulses (infra red wavelengths for vegetation) to reach a target and return to
the source. Airborne lidar instruments either record heights at intermittent levels or
fully digitize the return signal to provide accurate measurements of sub-canopy
topography, canopy height, and vertical distribution of canopy elements (Blair et al,
1999). Three dimensional structure metrics from lidar are more accurate in
quantifying aboveground biomass than other remote sensing methods (Drake et al.,
2002a; Lefsky et al., 2002). Metrics describing foliage distribution within the canopy
have also proven to be useful in identifying suitable habitat conditions for many
wildlife species, particularly birds (Goetz et al., 2007; Nelson et al., 2005; Martinuzzi
et al., 2009). The main drawback of lidar however is its limited spatial and temporal

coverage; hence the need for fusion with other sensors.



Radar (Radio Detection and Ranging) is also an active remote sensing system
operating in the microwave region of the electromagnetic spectrum. Radar
backscatter can be polarized in different ways to increase sensitivity to vertical or
horizontal structural properties. Although radar is less sensitive to structure than lidar
it has greater spatial coverage and is not affected by cloud cover, unlike lidar.

Hyperspectral data provide information about vegetation biochemical
attributes such as chlorophyll content, canopy moisture (Ustin et al, 2004)
complementary to lidar and radar. Because of the higher spectral resolution (typically
350 nm — 2500 nm), hyperspectral data can be more useful than multispectral data in
discriminating species level differences in vegetation (Dennison and Roberts, 2003).
Lidar, radar, and hyperspectral sensors observe vegetation through different
mechanisms and at different wavelengths, and as such they can be combined to
provide comprehensive forest structure and habitat characteristics (Table 1-1)
relevant for carbon, ecosystem, and habitat studies.

Table 1-1 Forest structure and habitat characteristics directly measured or modeled from
Lidar / Fusion (adapted from Bergen et al., 2009)

Variable [Sensor

Canopy Height Lidar/Radar

Canopy Cover Iptical/ Wavelorm lidar
3D foliage profile and cover at various  [Waveform lidar

levels within canopy

Life form/vegetation tvpe/species Multispectral/ Hyperspectral
composition

Coarse Woody Debris. snags. standing  [Hyperspectral + Lidar
dead

Biochemical properties (moisture, Hyperspectral

chlorophvll, lignin-cellulose)

Basal Area Lidar . Fusion

Biomass Lidar. Radar, Fusion
Temporal variation in spatial Iptical/Radar
characteristics Lidar

lemporal changes in height and biomass

Topography Lidar/Radar

LAI Lidar/ Radar/Hyperspectral
Stem Density Lidar

Patch/Edge characteristics ILidar/Radar/Hyperspectral
Phenology IMultispectral/Hyperspectral




1.2.4 Multi-sensor fusion

The process of dealing with data from multiple sources to achieve
refined/improved information for decision making has been termed as ‘Data Fusion’
(Hall, 1992). In theory, combining data from different sensors and databases
improves accuracies and provides inferences better than from one dataset alone (Hall
and Llinas, 1997). There is considerable interest in fusion applications with remote
sensing data but this area of research is still in its infancy. Fusion approaches with
remote sensing are broadly classified as: pixel level; feature level, and; decision based
fusion (Zhang, 2010). My approach towards fusion in this dissertation includes
decision based fusion, where images are processed individually to extract information
and then combined using statistical and machine learning methods. I use several
image processing methods to process images for atmospheric effects, geolocation
shifts and extract useful information with classification techniques. Waveform
processing is used to obtain physically meaningful metrics such as ground elevation,
canopy height and canopy cover from lidar data as well as statistical metrics such as
waveform energy quantiles. Features/attributes obtained from datasets individually
are then integrated using statistical and machine learning methods (described in detail
in Chapter 2 and Chapter 4) to predict variables of interest such as aboveground
biomass or habitat quality. Additionally, I use a range of data querying, data
visualization and analytical methods to compare lidar and hyperspectral metrics to
detect variations in structure and biochemical conditions of vegetation. While these

approaches by themselves are not new methodological innovations, the ensemble of



techniques used here in combination with new datasets provides fresh insights into

multi-sensor fusion.

1.3 Dissertation OQutline

This dissertation is subdivided into five chapters. In Chapter 2, I integrate
lidar and hyperspectral data for mapping aboveground biomass with an aim to
understand whether fusion can be applied to reduce uncertainties in carbon storage. In
addition, I combine the two sensors to detect ‘stress’ in high biomass forests as an
indicator of canopy loss or mortality. In Chapter 3, I explore the use of temporal lidar
data to map changes in height and biomass spatially with a larger goal of identifying
potential carbon sources and sinks. While this chapter does not include fusion
directly, I make semi-quantitative comparisons between lidar changes and optical
imagery/ hyperspectral stress maps from my previous results. In Chapter 3 my goal is
to explore the potential of multi-sensor fusion with radar, lidar and multispectral

imagery for mapping bird habitat characteristics (Fig 1-1).

* Mapping * Mapping * Mapping Bird
Biomass and Canopy Height Habitat
Stress in the and Biomass Characteristics
SierraNevada Dynamics in i New
using Lidar and Sierra Nevada Hampshire using
Hyperspectral using Waveform Radar, Lidar and
Data Fusion Lidar Multispectral

Data Fusion

» Remote Sensing
of Environment, e to be submitted * to be submitted
Teg3D Special
Issue (in press)

Fig. 1-2 Outline of dissertation chapters.



Chapter 1: Mapping biomass and stress with lidar and hyperspectral data

In this chapter, I draw from extensive studies that have derived canopy
biophysical and chemical properties from hyperspectral remote sensing and validated
the use of lidar in mapping forest structural characteristics. The primary objective
here is to test fusion approaches between these two sensors for improving quantitative
and spatial estimates of aboveground biomass. In the first approach, I combine a suite
of spectral metrics from hyperspectral data with canopy height and cover metrics
from lidar for biomass estimation. This would detect the contributions of canopy
biochemical characteristics to structure from lidar in estimating biomass. The second
approach is to test whether stratifying by species with hyperspectral data improves
biomass estimates from lidar. The hypothesis is that species stratification would
improve results because field biomass is derived from species specific allometry.
Thirdly, since there is clear but unexplored synergy between these datasets for
mapping canopy condition in addition to structure, I combine canopy height, biomass,
canopy cover with indices of moisture, chlorophyll content to detect relatively high
and low stress areas in forests with similar structural characteristics as an indicator of

possible canopy losses and mortality.

Chapter 2: Mapping Canopy Height and Biomass Dynamics with Temporal Lidar
Data

In addition to quantifying carbon storage, there is also a need to map changes
as a result of natural and anthropogenic disturbances to reduce the larger uncertainties

in carbon flux estimates. This is particularly important in temperate forests, where
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aboveground biomass is fairly well quantified but changes in carbon sources and
sinks from disturbance are not understood. Most research with lidar has been static;
studies are only beginning to explore their use in canopy dynamics and carbon flux
estimation. I build upon previous work with small (Kellner et al., 2009) and medium
footprint lidar (Dubayah et al., 2010) for mapping potential carbon sources and sinks
in the temperate montane forests of the Sierra Nevada. Going back to the results on
canopy stress from Chapter 2, I test whether hyperspectral data can be used to

identify areas with higher stress and that are thus likely to undergo canopy losses.

Chapter 3: Mapping Bird Habitat Characteristics Using Multi-sensor Fusion

This chapter brings together the lessons learned in previous chapters for an
application in habitat mapping. The initial research plan was to integrate forest
structure, composition and canopy dynamics in the Sierra Nevada from Chapters 2
and 3 to map habitat for the California Spotted Owl. However, this could not be done
due to lack of bird data. I therefore shifted my focus to the Hubbard Brook
Experimental Forest in New Hampshire, where bird species have been extensively
studied and monitored since the 1960’s. Additionally, recent mapping of the area with
small and medium footprint lidar, radar and multispectral data provided an excellent
opportunity to test fusion ideas in habitat mapping. In this study, I test the individual
and combined capabilities of multiple polarized backscatter from radar, phenology
from multispectral data, broader scale vertical structure from waveform lidar and
individual tree mapping from small footprint (0.5m resolution) lidar for mapping

habitat characteristics. My goal is to explore what variables can be derived from these
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sensors, how they can be combined with machine learning methods for predicting

bird habitat quality, and what are the combined accuracies of predictions.

1.4 Summary

The broad arc of my research, from hyperspectral/lidar fusion, to multi-date
lidar, to radar/lidar and multispectral fusion illustrates both the enormous potential of
fusion for habitat and carbon studies, as well as the tremendous amount of work
required to translate ideas of what we think should work to actual models of applied
value. As space borne lidar, hyperspectral and radar data become available over
inaccessible forests across the globe, multi-sensor fusion will become more important
and exceptionally useful in optimizing information for decision making. By exploring
both the promise and limits of the next generation of sensors, I hope to lay the
groundwork for future work that brings us from notional concepts on forest
characterization to demonstrated efficacies that can be used to help us manage the

environment in a changing world.
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Chapter 2 Mapping Biomass and Stress in the Sierra Nevada

using Lidar and Hyperspectral Data Fusion

2.1 Introduction

Improved estimates of forest aboveground biomass, hereafter “biomass” from
remote sensing are critical for reducing uncertainties in the global carbon cycle
(Rosengqvist et al., 2003; Hese et al., 2005) and are an important goal for future
satellite missions. Although coarse-scale biomass estimates are well documented in
temperate forests, they are mostly in the form of field measurements and averages
over administrative units (Houghton, 2005). There is a need for higher resolution and
spatially continuous estimates to quantify carbon flux and disturbance at scales at
which land use activities occur (Houghton, 2005; Keith et al., 2009). Spatial
distribution of carbon stocks in combination with species composition and vegetation
stress can improve the understanding of ecosystem processes (Ustin et al., 2004;
Chambers et al., 2007), carbon dynamics, and habitat structure (Bergen et al., 2007).
The availability of such maps over difficult mountain terrain such as the Sierra
Nevada can be particularly valuable for natural resource and wildlife habitat
management.

Many studies have demonstrated the efficacy of waveform lidar in accurately
measuring three-dimensional vegetation characteristics including biomass for
different forest cover and types (Lefsky, 2002; Drake et al., 2002a). Lidar metrics are

less prone to saturation effects even at high biomass levels (Lefsky, 2002; Drake et
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al., 2002a; Hyde et al., 2007a) unlike most remote sensing indices, which saturate at
moderate values (Gao, 1996; Huete, 1997). Acquiring wall-to-wall coverage of
airborne lidar however, is expensive. A promising alternative is to extrapolate forest
structure from lidar samples using continuous remotely sensed data. There is
considerable interest in fusing sparse but accurate lidar measurements with optical
(Hudak et al., 2002; Kimes et al., 2006; Hyde et al., 2007a; Asner et al., 2008) and
radar sensors (Treuhaft et al., 2004) to improve prediction accuracy and spatio-
temporal coverage of forest structure.

Imaging spectrometers or hyperspectral sensors provide many attributes
complementary to canopy structure from lidar and can be used to discriminate
vegetation types based on spectral characteristics.(e.g. Martin et al., 1998; Dennison
and Roberts 2003; Clark et al., 2005). Studies have suggested that spectral attributes
(Ustin et al., 2004; Bergen et al., 2006) and species composition (Rosengqvist, et al.,
2003; Anderson et al., 2005) from hyperspectral data could improve biomass
estimates in conjunction with lidar. However, it is still unclear as to how biophysical
and biochemical attributes from hyperspectral data relate with structural attributes
from lidar. There also remains considerable uncertainty on the efficacy of combining
lidar with hyperspectral sensors for species-specific biomass mapping. Underlying
causes of biomass change such as physiological stress, tree mortality and senescence
cannot be detected from lidar alone, as it does not differentiate between healthy and
stressed vegetation (Rosenqvist et al., 2003). While the ability of hyperspectral data

to map stress is recognized (Roberts et al., 1997; Asner, 1998; Merton, 1998), the

14



combined use of the two sensors for mapping vertical structure and stress remains
largely unexplored.

Our goal in this study was to explore fusion of waveform lidar from the Laser
Vegetation Imaging Sensor (LVIS) with hyperspectral imagery from the Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) for mapping biomass and stress in
the diverse montane forests of the Sierra Nevada. In particular, we evaluated whether
addition of spectral metrics from AVIRIS improved biomass estimates from LVIS.
We also assessed whether species stratification using AVIRIS data prior to lidar
estimation of biomass increased accuracy. Lastly, we explored the combined potential
of the two sensors for mapping stress in the high biomass forests of the Sierra

Nevada.

2.2 Background

Lidar and hyperspectral remote sensing are two potentially complementary
technologies capable of providing comprehensive structural and biophysical
characteristics of vegetation (Koetz et al., 2007). Lidar instruments record the time
taken by laser pulses to reach the earth’s surface from an aircraft/satellite and back to
calculate distance to target. Discrete return lidar devices provide one or more laser
returns that can be used for high resolution mapping of terrain and canopy elevation
(Lefsky et al., 2002). Waveform lidar instruments digitize the entire outgoing and
return signal to provide waveforms, from which various parameters such as
subcanopy topography, canopy height, foliage profiles and vertical heterogeneity may

be derived (Blair et al., 1999; Dubayah, 2000). Waveform metrics from small and
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large footprint lidar have been used to predict biomass in tropical (Drake et al.,
2002b; Clark et al., 2004) and temperate forests (Lefsky et al. 2002; Hyde et al. 2005;
Anderson et al., 2005).

Hyperspectral sensors measure vegetation absorption and scattering
characteristics in the visible, near infrared and short wave infrared wavelengths of the
electromagnetic spectrum. Spectral indices or band ratios from hyperspectral data
provide many attributes useful for ecological studies (Ustin et al., 2004) such as
chlorophyll content (Elvidge and Chen, 1995), canopy water status (Gao, 1996;
Serrano et al., 2000), vegetation stress (Merton, 1998) and lignin and cellulose
content (Kokaly and Clark, 1999; Curran et al., 2001). Narrow band and derivative-
based indices from hyperspectral data are relatively less affected by background soil
reflectance (Elvidge and Chen, 1995), illumination, saturation (Gao, 1996; Pu et al.,
2003, Roberts et al., 2004), and other factors that influence broadband vegetation
indices such as the normalized difference vegetation index (NDVI). Measures of
liquid water (e.g. equivalent water thickness, EWT) from hyperspectral data are
highly sensitive to canopy properties such leaf area index (LAI) (Roberts et al., 2004).
Measures of plant dry matter have been related to environmental stress (Asner, 1998)
and could improve lidar estimates of biomass in areas with low canopy heights and
sparse vegetation cover (Ustin et al., 2004; Treuhaft et al., 2004; Bergen et al., 2006).

Spectral Mixture Analysis (SMA) is a widely used remote sensing technique
for obtaining ecologically relevant and meaningful components from an image pixel
(Adams et al., 1986; Chambers et al., 2007). In SMA, two or more reference

spectra/endmembers such as green vegetation, soil and shade are modeled as linear
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combinations to estimate sub-pixel fractions of each component. A limitation of SMA
is that it uses only one set of reference endmembers to model all pixels in an image.
Multiple endmember spectral mixture analysis (MESMA) (Roberts et al., 1998)
allows the number and type of reference endmembers to vary on a per-pixel basis,
accounting for spectral variability in the landscape and improving the accuracy of
resulting fractions. Because MESMA fractions are calculated using the entire
spectrum, they are more robust than traditional vegetation indices and have
successfully been used for estimating live fuel moisture (Roberts et al, 2006), LAI
(Sonnetag et al., 2007) and green biomass in pastures (Numata et al., 2008). MESMA
has also been used to map vegetation (Dennison and Roberts, 2003) and urban
landcover (Franke et al., 2009).

Most studies on lidar and hyperspectral fusion have focused on land cover
classification. Asner et al. (2008) used lidar to mask gaps and low canopy heights,
improving detection of invasive species from AVIRIS for Hawaiian rainforests.
Koetz et al. (2007), classified fuel composition from fused lidar and hyperspectral
bands using Support Vector Machines (SVM). Classification accuracies from fusion
were higher than from either sensor alone. Mundt et al. (2006) fused co-registered
lidar and hyperspectral data to map sagebrush communities and suggested further use
of classified vegetation maps in biomass calculations. Few studies have explored the
combined potential of the two sensors for biomass estimation. Anderson et al. (2008)
used Minimum Noise Fraction (MNF) transformed AVIRIS bands in combination

with LVIS and reported an 8 — 10 % increase in biomass prediction accuracy for
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northeastern temperate forests. There is a need to test similar approaches over a wider

range of forest cover and types, while retaining the physical significance of variables.

2.3 Study Area and Data

2.3.1 Study Area

The study site (37°2'34.47"N, 119°9'33.81"W) covers an area of around
22,000 ha and lies along the western slopes of the Sierra National Forest (Fig. 2-1), in
California, USA. The region has a Mediterranean climate with elevations ranging
from 1000 m to 2500 m. Forests are dense and complex in structure with average
biomass values of around 200 Mg/ha, and as high as 1000 Mg/ha in Giant Sequoia
(Sequoiadendron giganteum) stands. Dominant species include red fir (4bies

magnifica), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and

California black oak (Quercus kellogi) (Hunsaker et al., 2002).

Fig. 2-1 Study area in the Sierra National Forest showing 1ha field plots. Plots are classified
based on Wildlife Habitat Relation (WHR) type
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2.3.2 Data

Field data

Field surveys were conducted in 2000 and 2001 (Hyde et al., 2005). A
modified stratified random sampling scheme was used to measure structural
parameters over 500 plots in the northern and southern Sierra Nevada. Field plots
were laid out to provide a statistically representative measure of structural variability
for the eight major Wildlife Habitat Relation (WHR) types: montane hardwood,
montane hardwood conifer, red fir, white fir, sierran mixed conifer, pines, wet
meadow, and barren (Mayer and Laudenslayer, 1988, Hyde et al., 2005). Structural
variables for live trees such as height, diameter at breast height (DBH), crown form,
canopy cover, species, heights of dead snags and snag decay classes were recorded
for concentric plots with radii of 15 m (0.07 ha - footprint level) and 56.4 m (1 ha -
stand level) respectively. For 1 ha plots, only large trees with dbh greater than 76 cm
were measured. A detailed description of the methods used for field data acquisition
is available in Pierce et al. (2002). The study area in the Sierra National forest had
285 measured plots out of which 125 1 ha plots had collocated lidar, hyperspectral
and field measurements and were used for analysis (Table 2-1). The 0.07 ha plots
were not used in this study because of increased geolocation errors between

reprocessed lidar and field data.
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Table 2-1 Distribution of field plots by Wildlife Habitat Relation (WHR) Type

Species/WHR type Number of Plots 1 ha
(LVIS. AVIRIS, field)

WTM (wet meadow) 8

BAR (barren) 3

RFR (red fir) 32

WEFR (white fir) 27

SMC (Sierran mixed conifer) 37

PPN/JPI (pines) 18

GSQ (Giant Sequoia) 1

MHC/MHW 11

Total 137

Lidar Data

The Laser Vegetation Imaging Sensor (LVIS) is a medium footprint,
waveform digitizing, scanning laser altimeter, designed, and developed at NASA’s
Goddard Space Flight Center. LVIS operates at altitudes up to 10 km with a 7 ° field
of view and uses laser pulses with a wavelength of 1064 nm for profiling vertical
vegetation structure (Blair et al., 1999). NASA flew LVIS over the Sierra National
Forest in summer 1999 at an altitude of 7km with trees in leaf-on condition. The lidar
shots had a nominal footprint radius of 12.5m. The data had a swath width of 1km
and covered an area of 175 sq. km. The subset used for this study had around 892,444
lidar footprints. Footprints were contiguous along track and overlapping across track.

(See http://lvis.gsfc.nasa.gov/)

20


http://lvis.gsfc.nasa.gov/

Hyperspectral Data

The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) designed and
developed at the Jet Propulsion Laboratory, measures upwelling radiance from the
earth’s surface in wavelengths between 350 nm — 2500 nm in 224 contiguous bands
with a bandwidth of 10 nm (Green et al., 1998). Fine spatial resolution AVIRIS
images were acquired over the Sierra Nevada in July 2003. Radiometrically corrected
images were processed to retrieve apparent surface reflectance using the MODTRAN
based forward inversion approach as described in Green et al. (1993) and Roberts et
al. (1997). The images were geometrically corrected using Digital photo Ortho Quads
(DOQQ). The AVIRIS data consisted of three overlapping scenes covering a total
area of 22,000 ha. Each image had a nominal spatial resolution of 3.3 m with 224
spectral bands. Bands with a poor signal-to noise ratio from atmospheric interference
of water vapor and carbon dioxide were eliminated, resulting in 118 bands for

analysis.

2.4 Methods

The data sets used in this study had different geographical projections and
were brought into a common frame of reference using the Universal Transverse
Mercator Projection (UTM 19N) and NAD 1983 datum. Spatial overlay of AVIRIS
and LVIS data showed good geolocation for analysis at the 1 ha level and no further
rectification was performed. All hyperspectral processing was done using VIPER
tools ENVI- Add on Module® (Roberts et al., 2007) and a hyperspectral metrics add

on module.
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2.4.1 Field attributes

Species-specific allometric equations from the USDA Forest Service (Waddell
and Hiserote, 2003) were used to calculate biomass for all trees with dbh greater than
76¢cm within 1 ha plots. Tree height, species, and dbh measurements from field data
were used as inputs for calculating biomass of bole, bark, branches, and foliage
separately for each tree. Biomass values for individual trees were then added to obtain
aboveground biomass per hectare for large trees within each field plot. Field plots
were classified based on WHR type for analysis by species/vegetation type. Although
WHR types consist of species associations, most of them have a dominant plant
genus/species. The MHC/MHW plots consisted of mixed hardwoods and conifers
with broadleaf oaks (Quercus sp.) as the dominant vegetation type. Plots classified as
PPN were mostly composed of ponderosa pine (Pinus ponderosa). SMC plots had
mixed conifers including pines (Pinus sp.), firs (Abies sp.), and incense cedar
(Libocedrus decurrens) with shade tolerant white fir (Abies concolor) becoming
increasingly dominant after regeneration from fire (Zald et al., 2008). RFR plots were

almost entirely composed of red fir (Abies magnifica) trees.

2.4.2 LVIS metrics

An LVIS waveform essentially consists of a signal with amplitudes
proportional to energy reflected from intercepted surfaces within canopy and ground.
LVIS footprints are geo-located to the global reference ellipsoid WGS 84, using a
combination of GPS and Inertial Navigation System (INS) information (Blair et al.,
1999; Hofton and Blair, 2002). Ground elevation is determined by identifying the

center of the lowest mode in the waveform greater than mean signal noise (Fig. 2-2).
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Canopy elevation is the height at which the signal increases beyond a certain
threshold (usually 36 of the background noise) at the top of the waveform (Hofton
and Blair, 2002). The difference between canopy elevation and ground elevation
gives the canopy height metric or height of 100% laser energy return (RH100). The
1999 LVIS data were reprocessed using algorithms for ground detection and an
improved horizontal geolocation algorithm prior to the start of this analysis (Blair et
al., 2006). For each LVIS waveform, quartile heights of laser energy return i.e. height
of 25% (RH25), 50% (RH50) and 75% (RH75) energy return were calculated in
addition to RH100 (Fig. 2-2). Canopy cover was calculated from the ground energy
return of each waveform normalized by the canopy and background reflectivity ratio.
We used a ratio of 1.6, derived from a previous study (Hyde et al., 2005). LVIS
metrics were calculated for lidar shots within 1 ha plots and summarized to obtain

minimum, maximum, mean and standard deviation for all metrics.
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Fig. 2-2 Example of an LVIS waveform centered on a field plot with area 0.0 7 ha. The
amplitude of the waveform is proportional to energy reflected from canopy and ground.
Metrics calculated from the waveform include ground elevation, quartile heights of energy
return (RH25, RH50, RH75 & RH100) and canopy cover.
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2.4.3 AVIRIS spectral metrics

Reflectance spectra (e.g. Fig. 2-3) were extracted from AVIRIS images over
field plots to construct a spectral library for the study area. A set of 19 hyperspectral
indices (Table 2-2) were calculated to quantify vegetation attributes from each
spectrum and aggregated to obtain mean and standard deviation of values for 1 ha
plots. These mainly included vegetation indices, derivatives of the chlorophyll red
edge, water band ratios, and ligno-cellulose band ratios. Indices based on the green,
red, and blue wavelengths were found to be more robust than NDVI in estimating
vegetation fractions (Gitelson et al., 2002). We tested the use of green band
vegetation indices (VARIGREEN, VIGREEN) in addition to NDVI, Enhanced
Vegetation Index (EVI), and Ratio Vegetation Index (RVI) for biomass prediction.
Water absorption features in the infrared regions of the spectrum (e.g. 980nm
1450nm, 1940nm) are sensitive to canopy biophysical properties (Serrano et al.,
2000, Roberts et al., 2004). The Normalized Difference Water Index (NDWI),
Equivalent Water Thickness (EWT), and Ratio Water Index (RWI) were used as
measures of canopy water content. The red edge or the rapid change in chlorophyll
reflectance in the visible and near infrared portion of the spectrum provides a measure
of chlorophyll content (Elvidge and Chen, 1995) and vegetation stress (Merton,
1998). We used the first and second derivatives of the red edge as measures of
chlorophyll content. Wavelength, asymmetry and area of lignin and cellulose
absorption features (2045nm -2218nm) (Kokaly and Clark, 1999; Curran et al., 2001)
were used to identify non-photosynthetic vegetation; their usefulness in improving

biomass estimates in combination with LVIS data was also tested.
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Table 2-2 Hyperspectral metrics calculated using AVIRIS data for 1ha field plots included
vegetation indices, red edge derivatives, Ligno-cellulose band ratios and MESMA fractions
of green vegetation, soil/NPV and shade.

Variable Hyperspectral metric (mean, std. Reference
deviation)
IDL_DGVI First Derivative of Red Edge normalized | (Elvidge & Chen,
to 626-795 baseline 1995)
1DZ_DGVI First Derivative of Red Edge normalized | (Elvidge & Chen,
to 626 baseline 1995)
2DZ _DGVI Second derivative of Red Edge normalized | (Elvidge & Chen,
to 626 baseline 1995)
EVI Enhanced Vegetation Index (Heute, 1997)
EWT Equivalent Water Thickness (Roberts, et al)
LC2 BAND Area, Asymmetry, Depth, Width, (Kokaly & Clark,
RATIOS Wavelength of SWIR ligno-cellulose 1999)
absorption feature (range 2045-2218 nm)
NDVI Normalized Difference Vegetation Index (Tucker, 1979)
NDVI
NDWI Normalized Difference Water Band Index | (Gao,1996)
RWI Ratio Water Band Index (Penuelas et
al.,1993)
RVI Ratio Vegetation Index (Jordan, 1969)
RVSI Red Edge Vegetation Stress Index (Merton,1998)
REDEDGEWAVE | Red Edge Wavelength (Puet al., 2003)
REDEDGEMAG Magnitude of Red Edge (Puet al., 2003)
VARIGREEN Visible Atmospherically Resistant (Gitelson,2002)
Vegetation Index Green
VIGREEN Vegetation Index Green (Gitelson,2002)
SHADE fraction of vegetation shade within each MESMA,
FRACTION pixel (calculated using MESMA) Roberts et al, 1998
GV FRACTION fraction of green vegetation withineach | MESMA,
pixel (calculated using MESMA) Roberts et al, 1998
SOIL+ NPV fraction of soil + non photosynthetic MESMA,
FRACTION vegetation within each pixel Roberts et al, 1998
(calculated using MESMA)
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Reflectance Spectra
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Fig. 2-3 Examples of reflectance spectra extracted from AVIRIS images over the study area.
A set of 19 band ratios describing vegetation characteristics such as chlorophyll content,
water content, stress were calculated from the visible, near infrared and short wave infrared
wavelengths

2.4.4 MESMA fractions from AVIRIS

The reflectance of an image pixel over a forested area is typically composed
of varying combinations of bare soil, shade/shadows, green vegetation (GV) from
foliage and non-photosynthetic vegetation (NPV) from dead bark, leaf litter or
senescent vegetation (Roberts et al., 2004; Chambers et al., 2007). Multiple
endmember spectral mixture analysis (MESMA) involves creation of regionally
specific libraries by using reference spectra from an image, field, or modeled spectra.
Each spectrum in the reference spectral library is modeled as a combination of

another spectrum and shade (Dennison et al., 2004).
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Three fit metrics are used to identify representative spectra or endmembers for
each class: Count Based endmember (COB) (Roberts et al., 2003; Franke et al.,
2009), Endmember Average Root mean square error (EAR) and Minimum Average
Spectral Angle (MASA). COB values are used to select endmembers that model
spectra within the same class (In COB) better than those in other classes (Out COB).
EAR values are used to select spectra with lowest root mean square error in modeling
other spectra of the same class (Dennison and Roberts, 2003). Spectra with low
average spectral angle values (MASA) are selected as reference endmembers. A
detailed description of MESMA and fit metrics can be found in Dennison et al.,
(2004).

A library was created for the Sierra Nevada from AVIRIS images by
extracting reference spectra for grass, shrubs, trees, soil, and NPV using field data
and image interpretation. Each spectrum in the library was modeled as a combination
of another spectrum and shade. We selected endmembers with high In COB values
followed by those with low MASA and EAR values (Table 2-3). Several models with
varying combinations of endmembers were tested using SMA/MESMA. For this
study, we used 10 three-endmember (soil, green vegetation, and shade) models for
unmixing the AVIRIS images. Soil and NPV endmembers were combined into one
class. The resulting image consisted of fractional abundances of green vegetation,
soil/NPV, and shade for each pixel at 3.3m nominal spatial resolution (Fig. 2-4).
MESMA fractions were then summarized to calculate mean and standard deviation of

values for 1 ha field plots.
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Green Vegetation (GV) fraction

o[

Fig. 2-4 Subset of images showing endmember fractions generated using MESMA. Bright
areas have high fractional abundance and dark areas have low abundance. GV, soil/NPV and
shade fractions were summarized to calculate mean and std. deviation of values for 1ha plots.
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Table 2-3 Reference endmembers used in 10 3 endmember MESMA models for unmixing
AVIRIS images. Soil and non photosynthetic vegetation (NPV) spectra were grouped into

one class. Fit metrics - EAR, MASA and COB values were used to select the best

representative spectra to un-mix the entire image.

Endmember | Class Brightness | EAR | MASA | In_CoB | Out_CoB | CoBI
Rock/Soil Soil/NPV | 421.53 0.13 | 0.66 10 0 0

Soil Soil/NPV | 345.05 0.04 {0095 |0 0 0
NPV Soil/NPV | 254.47 0.04 | 0.13 0 0
NPV Soil/NPV | 260.65 0.04 |0.133 2 0.08
NPV Soil/NPV | 203.46 0.08 | 0.24 17 1 0.46
Green

Vegetation |GV 188.92 0.09 | 0.39 0 0 0
Green

Vegetation |GV 210.73 0.09 | 0.41 0 0 0
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2.4.5 Land-cover classification from AVIRIS

We also used MESMA to classify landcover and dominant vegetation type
from AVIRIS images. A spectral library was constructed from the AVIRIS images
using field knowledge, coarse vegetation type maps (USDA Forest Service CALVEG
data, 2007), lidar height maps, and image interpretation. We isolated patches of
vegetation with dense canopy cover and extracted relatively pure spectra for oaks
(Quercus sp.), white fir (Abies concolor), red fir (Abies magnifica), mixed firs (Abies
sp.), and pines (Pinus sp.). Field knowledge was used to avoid plots with abundant
ground cover of chaparral (Ceonothus sp. and Arctostaphylos sp.) and reduce mixing
with canopy dominant spectra. Spectral metrics from AVIRIS such as NDVI, NDWI,
EWT, and lignocellulose band ratios were also useful for separating non-
photosynthetic vegetation, bare soil, and spectra for dominant vegetation types.

Each spectrum in the library of 183 spectra was unmixed with another
spectrum and shade resulting in 182 unique two endmember models for each
spectrum. Fit metrics EAR, MASA, and COB (see sec. 2.4.4) were used to select
suitable reference endmembers for landcover classification. We selected 47 spectra
from several classes including pines, hardwoods, grass, soil, NPV, and chaparral. All
AVIRIS images were unmixed using 47 two-endmember MESMA models to map
landcover/ dominant vegetation type (Fig. 2-5a). Outputs included dominant
landcover type in each pixel and the corresponding fractional abundance. Pixels
mapped as soil, rock, NPV, chaparral, and grass in the AVIRIS vegetation map were
excluded. A vector grid of 1ha polygons was placed over the species map and class

statistics were calculated for pixels with pines, firs (red and white), and hardwoods
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within each polygon. The dominant class in each polygon was recorded to create an

aggregated 1 ha species map (Fig. 2-5b).

B Quercus sp. (oaks)
[ Pinus sp. (pines)
I Abies sp. (mostly white fir)*
[ Abies sp. (mostly red fir)
[ Grass/chaparral

B Rock, Soil, NPV

Fig. 2-5 MESMA was used to map landcover and dominant vegetation types from AVIRIS
images. AVIRIS maps at a resolution of 3.3m (a) were aggregated and dominant vegetation
type at 1ha was identified (b). Labels show WHR types from field plots. *Forests classified
with white fir as dominant vegetation type at 1ha also had a mixture of conifers and were
grouped as the SMC type for biomass estimation.

2.5 Analysis

2.5.1 Stand Level

The final data for stand level (1 ha) analysis included field-measured biomass,
LVIS metrics, spectral indices, and MESMA fractions from AVIRIS. Wet Meadow
(WTM) and barren (BAR) plots were excluded and 125 other plots with collocated

LVIS, AVIRIS, and field data were used. We tested several linear and multiple
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stepwise regression models to predict biomass before and after species stratification.
Models for predicting total and species-specific biomass were tested using AVIRIS
metrics alone, LVIS variables alone and a combination of AVIRIS and LVIS metrics.
Three parameters were used to select the best models; high co-efficient of
determination values (), low Root Mean Squared Error (RMSE), and p value < 0.05
for r-squared as well as predictor variables. The Akaike information criteria (AIC)
were used to select suitable predictor variables for all models. We also tested variable
selection using Bayesian model averaging (BMA). Confidence intervals for co-
efficients of determination were calculated to compare the statistical significance of

different models.

2.5.2 Landscape Level

Equations from stand level analysis were used to generate landscape maps to
study variations between biomass from LVIS alone and species-specific biomass
from fusion. The vegetation map at 1 ha had four classes: hardwoods, pines, white
fir/mixed conifers, red fir. White fir (Abies concolor) and red fir (Abies magnifica),
were grouped into one class at lower elevations (<2000m) because of mixing. At the
hectare level, mixing of species/genera within each class was unavoidable, but our
vegetation classes closely matched the WHR type classification from the USDA
Forest Service map at a coarser resolution. For example, polygons grouped as
hardwoods were similar in distribution to the MHC/MHW type; pines were similar to
the PPN type. Polygons with white fir as the dominant species also had a mix of

pines, red fir and some hardwoods. These polygons were grouped under the
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firs/mixed conifer type. Biomass was calculated for each dominant vegetation type
using equations derived from lidar and field data (Table 2-5).

Spatial patterns of AVIRIS vegetation indices, water band indices and red
edge derivatives were analyzed in combination with lidar heights, canopy cover, and
biomass predicted from fusion. We used the NDWI as an indicator of water content
(Gao et al., 1996; Serrano et al., 2000; Maki et al., 2004) and the normalized first
derivative of red edge, D1GVI as an indicator of chlorophyll content (Merton, 1998;
Smith, 2004). The species biomass map from fusion was combined with NDWI and
D1GVI maps to detect 1 ha stands with biomass greater than 200Mg/ha, canopy cover
greater than 40%, NDWI less than 0.05 and D1GVI less than 0.1. Stands with
biomass greater than 200 Mg/ha, canopy cover greater than 40 %, NDWI greater than
0.05 and DIGVI greater than 0.1 were identified as areas with relatively low stress.
To rule out effects of soil reflectance on water band indices (Gao, 1996) we further

analyzed NPV fractions within canopies alone by masking other landcover types.

2.6 Results

2.6.1 Stand Level

AVIRIS variables explained around 60% of the variability in biomass (r’=
0.60 RMSE = 92.13 Mg/ha) with water band indices being the most important
variables (Fig. 2-6a). LVIS height metrics were found to be consistently better
predictors of total and species specific biomass. The best model for stand level

prediction had an r*=0.77, RMSE = 70.12 Mg/ha, with RH75 being the single best
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predictor (Fig. 2-6b). AVIRIS metrics showed marginal improvement in biomass

prediction (but not statistically significant) when combined with LVIS metrics for 1

ha plots (= 0.80, RMSE = 64.18 Mg/ha) (Table 2-4, Fig. 2-6¢). AVIRIS variables

including water band ratios (RWI, NDWI, EWT) and shade fractions from MESMA

showed strong correlation with LVIS heights (= 0.69, RMSE = 5.2 m). Mean and

standard deviation of shade fractions alone explained more than 50% variability in all

LVIS metrics (for example, ’= 0.54, RMSE = 6.25 m for RH100).

Predicted Biomass (Mg/ha)
0 100 200 300 400 500 600

100 200 300 400 500 600

0

Fig. 2-6 Biomass predicted for 125 field plots at 1ha scale using various metrics: (a) AVIRIS
(b) LVIS; (c¢) LVIS and AVIRIS metrics; (d) LVIS after species stratification of field data.
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Species-specific biomass relationships were analyzed for 125 plots (excluding

barren and meadow plots). Classification of field plots by vegetation type/species

before biomass estimation from LVIS improved prediction accuracy (r*=0.84,

RMSE = 58.78 Mg/ha) (Fig.2-6d). The maximum increase in predicted values were
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observed for MHC/MHW plots with hardwoods as dominant vegetation (r* = 0.94,
RMSE = 12.7 Mg/ha). For other dominant vegetation types, there was little change or
even a slight increase in RMSE with species stratification (Table 2-5). RH75 was
again the single best predictor of biomass for almost all vegetation types. AVIRIS
metrics showed strong correlation with biomass for pines and hardwoods (1 greater
than 0.7). Relationship between AVIRIS metrics and field biomass decreased
considerably (r* less than 0.45) in high biomass plots of red fir (Abies magnifica) and

mixed conifers.

Table 2-4 The predictive power of AVIRIS metrics alone , LVIS metrics alone , LVIS +
AVIRIS metrics and LVIS metrics after species stratification of field data was tested over
125 1ha plots. Suitable predictor variables were selected using AIC criteria. The best model
was obtained by predicting biomass with LVIS variables after stratifying field plots into
WHR/species type

Regression Model Predicted Biomass
56.4 m (1 ha) n= 125
R? RMSE
(95%C.1) (Mg/ha)
Field Biomass ~AVIRIS 0.60 92.13

(Biomass = 8865*sd NDWI -1624.13*sd NDVI - | (0.49-0.69)
5421.92*sd EWT+ 3658.35 mean NDWI -
1218.99*mean EWT -28.90* mean RVI+ 20166.10
sd RVST -125305.76* mean Rededgemag)

Field Biomass ~ LVIS metrics

(Biomass = 60.58*mean RH75 - 698.24* mean 0.77 70.12
CCover - 27.84*mean RH100 + 149.18) (0.69-0.83)

Field Biomass ~ LVIS + AVIRIS metrics 64.18
(Biomass = 55.83*mean RH75-24.76*mean 0.80

RH100-776.32*mean CCover-326.10* (0.74-0.86)

meanlDZ_DGVI+ 820.65 mean NDWI -5299.80
sdlc2dpth+ 339.99)

Species Specific Biomass from Field ~ LVIS 0.84 58.78
(Equations in table 6) (0.79-0.88)
sd = standard deviation
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Statistical Significance of Models

Confidence intervals for coefficients of determination were calculated for all
the models used to predict biomass (Fig. 2-7). Prediction using lidar variables alone
showed a statistically significant improvement over the model using AVIRIS
variables alone. Addition of AVIRIS variables to LVIS did not show a significant
improvement over LVIS metrics alone. Species stratification prior to lidar estimation
of biomass reduced prediction errors from LVIS alone by 12%, but the reduction was
again not statistically significant. However, confidence intervals for the model using

species stratification were narrower than the other models.

0.9
0.8 i|:
0.7

0.6 y

Co-efficient of determination

0.5

AVIRIS LVIS LVIS + LVIS +
AVIRIS SPECIES

Fig. 2-7 Co-efficients of determination for predicted biomass with 95% confidence intervals.
Narrower confidence intervals for LVIS + species stratification suggest a small improvement,
but overlap of intervals shows that it is not statistically significant.
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2.6.2 Landscape level

Classified land cover map

An error matrix was generated to assess the accuracy of the AVIRIS image
classification. 183 reference spectra were modeled using 47 spectra in the selected
MESMA model. Classification results showed an overall accuracy of 87.7% for level
1 (genera/species) with a kappa value of 0.86 (Table 2-6). Errors were higher because
of mixing between white fir (Abies concolor) and red fir (Abies magnifica) spectra.
Level 2 classification (plant functional type/ genera) had a higher accuracy of 93%. It
was noted that around 14 spectra in the original library were left un-modeled. Visual
comparisons showed the dominant vegetation types in the AVIRIS maps were similar
to WHR types in the USDA Forest Service map. At the hectare level, we generated an
error matrix using WHR types from field polygons as reference (Table 2-7). Overall
accuracy for this classification was 69.5%. Accuracy could be lower (45%) in areas
with greater mixing between pines, firs, and hardwoods. Accuracy was also lower
because the reference maps were classified as discrete polygons and were at a coarser

scale than the AVIRIS classified map.
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Table 2-5 Biomass was predicted using a single lidar equation before species stratification
and a different equation for each species after stratification of field plots by WHR type.

WHR TYPE Biomass predicted using single Biomass predicted using a different equation for each
lidar equation species.
Total biomass (actual vs. Species specific biomass (actual vs. predicted)
predicted) r2=10.84 RMSE = 58.78 Mg/ha
r2=0.7667 RMSE = 70.12 Mg/ha
r’ RMSE r? RMSE
(95% C.L) (Mg/ha) (95% C.1) (Mg/ha)
Montane 0.82 22.6 0.94 12.7
Hardwood Conifer | (0.41-0.96) (0.77 - 0.99)
(MEIC) Biomass = 6.03*mean RH75 - 29.60
n= 10
Sierran Mixed 0.77 60.35 0.78 59.73
Conifer (SMC) (0.60-0.88) (0.61—0.89)
n=37

Biomass = 49.69*mean RH75-20.98* mean
RH100 -553.06*mean CCover + 77.21

Red Fir (RFR) 0.82 71.02 0.83 69.82
n=232 (0.67-0.91) (0.68—10.91)
Biomass =81.57*mean RH75-40.7512* mean
RH100-1009.77*meanCCover+255.02
White Fir (WFR) | 0.70 75.59 0.70 74.63
n=27 (0.45-0.85) (0.45—0.85)
Biomass =70*mean RH75-31.55*mean
RH100-669.16*mean CCover+86.42
Pines (PPN) 0.7542 28.22 0.75 28.7
n=18 (0.46-0.90)

(0.43-0.90)
Biomass =5.95*mean RH75 - 45.84
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Table 2-6 Error matrix for level 1 (genera/species) classification of AVIRIS images using 47
2-endmember MESMA models. Overall Accuracy = 87.7 % Kappa =0.86, Kappa variance =
0.001

Matrix Firs/ |granite |grass |chaparr |NPV |Pines Hardwoods |Red Fir soil | White Fir
mixed al (Pinus sp.) | (Quercus (Abies (Abies

sp.) magnifica) concolor)

Firs/mixed 2 0 0 0 0 0 0 0 1

granite 0 20 0 0 0 0 0 0 3 0

orass 0 5 0 0 0 0 0 0 0

Chaparral 0 0 0 24 0 0 0 0 0 0

NPV 0 0 0 0 17 0 0 0 0 0

Pines 1 0 0 0 0 6 0 1 0 0

(Pinus sp.)

Hardwoods 0 0 0 1 0 1 3 0 0 0

(Quercus sp.)

Red fir 4 0 0 0 0 0 0 8 0 0

(Abies

magnifica)

soil 0 0 0 0 1 0 0 0 15 0

White fir 1 0 0 0 7

(Abies concolor)

Table 2-7 Error matrix showing classification accuracy at hectare level. WHR types from
field polygons were used as ground reference. Overall accuracy = 0 69.5%

WHR type/ field
polygons Dominant vegetation type AVIRIS 1ha map Total Classified
White fir /
mixed Firs/
Hardwoods | Pines | conifers mostly red | total
MHC/MHW 6 7 5 0 18
PPN 1 2 5 0 8
SMC 0 4 35 0 39
RFR 0 0 10 30 40
Total ground
truth 7 13 55 30 105
Overall Accuracy | 69.5%

Biomass

Biomass maps predicted from LVIS before and after species stratification
showed large differences in spatial variability, mainly in forests with hardwoods and
pines as dominant vegetation type (Fig. 2-8). Histograms of biomass distribution

before and after species stratification showed increases in predicted values for both
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hardwoods and pines in low biomass ranges (<50 Mg/ha) and decreases in high
ranges (> 200 Mg/ha) (Fig. 2-9). High biomass firs and mixed conifer stands showed
little variation in predicted values before and after species stratification. Histograms
of biomass for hardwoods and pines derived using classified AVIRIS maps and from
USDA Forest Service vegetation maps showed similar trends in low and high

biomass ranges.

2. Biomass from LVIS alone 1 .‘ b. Species Biomass from fusion

'I<0

50 100 150 >150

Fig. 2-8 Landscape maps of biomass were generated from LVIS before (8a) and after species
stratification of AVIRIS imagery (8b), using equations in Table 2-4 & 2-5. Forests dominated
by pine and hardwood species (e.g. black rectangle) show more spatial variations in predicted
biomass.

Stressed Biomass
Combined analysis of AVIRIS and LVIS metrics revealed spatial patterns that
could not be detected from either sensor alone (Fig. 2-10). For most of the study area,

water band indices, red edge derivatives and vegetation indices had very low values
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over barren land, exposed rock surfaces, and higher values over dense forests and wet
meadows. However, we found low values for water band indices and vegetation
indices in some high biomass (>200 Mg/ha) forests, particularly in red fir stands
around the Teakettle Experimental Forest (Smith et al., 2005) and some mixed conifer
stands. (Fig.2-11). NPV fractions were also high in the areas where we detected water

and chlorophyll stress (Fig.2-12).
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Fig. 2-9 Histograms showing differences between biomass predicted before (9a, 9¢c) and after
(9b, 9d) species stratification of AVIRIS imagery. Stratification for hardwoods and pines
increased predicted values in low (<50 Mg/ha) ranges and decreased values in high ranges
(>200 Mg/ha) of biomass.
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Fig. 2-10 Landscape maps of biomass, canopy cover, NDWI and D1GV]I used for detecting
water and chlorophyll stress in high biomass forests.

Height of bars (biomass)
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- Low stress, biomass > 200 Mg/ha
[ More stress, biomass >200 Mg/ha

[] Biomass<200Mg/ha

Fig. 2-11 Map showing high and low stress in stands with high biomass (>200 Mg/ha).
Height of bars represents biomass values.
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Fig. 2-12 Spatial distribution of non-photosynthetic vegetation (NPV) fractions within
canopies for one AVIRIS image (1 ha level). Stands with high biomass and stress (Fig.2-11)
also showed high NPV values.

2.7 Discussion

Our first objective was to test the efficacy of combining hyperspectral metrics
with lidar variables for biomass prediction. AVIRIS band indices and MESMA
fractions added little explanatory value to LVIS, even though they explained around
60% of the variability in biomass at the stand level. This was because of strong
correlations between LVIS and AVIRIS metrics, particularly water band indices and
shade fractions. Similar relationships between field measured canopy height and
shade fractions were reported by Numata et al. (2008). Shade fractions are related to
canopy structure, so this correlation is not unexpected. Roberts et al. (2004) showed
that liquid water is highly sensitive to LAI, which may explain the observed
correlation between water band indices and structural metrics from LVIS that respond

most strongly to photosynthetic leaf material. Our results also showed that narrow
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band AVIRIS metrics such as red edge derivatives were more sensitive to biomass
than NDVI, similar to Elvidge and Chen (1995), Roberts et al. (1997), and Roberts et
al. (2004). However, these metrics suffered saturation effects over the high biomass
range of this study area.

Although AVIRIS metrics did not add much predictive power in our
moderately high biomass test area, shade fractions and water band indices may be
useful in areas with lower biomass and little or no lidar coverage. Approximately
40% of the world’s forests fall in the low canopy height, low biomass category
(Bergen et al., 2006), where lidar performance is largely untested. The potential of
hyperspectral and other optical imagery in extrapolating forest structure from lidar
samples in such areas requires further investigation.

Previous studies combining lidar with multispectral (Hyde et al., 2007a), radar
(Hyde et al., 2007b) and hyperspectral sensors (Anderson et al., 2008) have shown
that lidar was more useful than other sensors for biomass prediction. Our results
further support this. Drake et al. (2002a) and Anderson et al. (2008) have shown the
predictive power of the RH50 metric and suggested the use of canopy cover to
improve biomass estimates from LVIS. We additionally included RH75 and canopy
cover to the variables used by Hyde et al. (2005) for the Sierra Nevada. Although
both RH50 and RH75 were strongly correlated with biomass, RH75 was consistently
selected as the best predictor variable in all regression models. One probable reason
could be the species composition and vertical foliage distribution in this study area.

Further analysis of lidar waveforms, foliar profiles, and stem densities within lidar
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footprints is required to understand the physical significance of RH75 in biomass
estimation for the Sierra Nevada.

The issue of the efficacy of fusing lidar and hyperspectral data for species
level biomass estimation remains open. Similar to Anderson et al. (2008), our results
show that a combination of LVIS and AVIRIS metrics improves biomass estimates
marginally than using either sensor alone. Anderson et al. (2008) found that AVIRIS
metrics explained most of the variability in species fractions of biomass for
northeastern temperate forests. Our results show that LVIS metrics were better
predictors of species level biomass (Table 2-5) while AVIRIS metrics were mostly
redundant when combined with LVIS. One reason could be the difference in tree
species in the Sierra Nevada as compared to Bartlett. Most of the species in Bartlett
are broadleaf deciduous, while in the Sierra Nevada they are conifer dominants.
Another reason could be that the predictive power of AVIRIS is higher when lidar
relationships with biomass are weaker as observed in the Bartlett Experimental
Forest. A study by Roth (2009) showed similar results for the Smithsonian
Environmental Research Center (SERC) study site. Lidar metrics in the Sierra
Nevada study area were strongly correlated with biomass, so addition of AVIRIS

probably did not show much improvement.

The overlap of confidence intervals of the co-efficients of determination
before and after species stratification suggests that overall predictive power for
biomass was not significantly higher at the species level for our study area. Part of the
reason for this could be the relatively small sample size used in this study. The

dominance of high biomass mixed conifers and low abundance of deciduous species
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in the study area could have also affected the results. Yet another factor could be the
relatively coarse spatial scale of 1 ha used in our study, one that is large enough to
encompass various species and canopy configurations. These limitations aside,
stratification seemed to perform better at lower biomass levels. Increased prediction
accuracy, lower RMSE values, and narrow confidence intervals suggest a small

improvement with species stratification (Fig. 2-7).

We tested both linear and non-linear variables for all regression models. Best-
fit models were obtained with linear combinations of variables. Although there is an
apparent non-linear trend in Fig. 2-6a and Fig. 2-6¢., it is because of the poor
predictive power of the models in low biomass plots (<50Mg/ha). The RMSE values
from the regression models should be interpreted in terms of model-to-model
comparisons rather than an absolute measure of accuracy in a mapping perspective.

Spatial predictions of biomass from LVIS were quite different before and after
species stratification by AVIRIS. Relative to species-level equations, a single lidar
equation underestimated values in the lower ranges and overestimated it in the higher
ranges of biomass, particularly for hardwoods and pines. Using a different lidar
equation for hardwoods and pines reduced apparent errors in lower ranges of biomass
for both these vegetation types (Fig. 2-9b & 2-9d). The trend towards reduced error
and improved prediction accuracy was clear (Fig. 2-7) even at stand level analysis for
hardwoods but not for pines.

Fusion of lidar and hyperspectral sensors at species level and in areas with
low biomass is an important remote sensing research requirement (Rosenqvist et al.,

2003; Treuhaft et al., 2004; Bergen et al., 2006). Our study shows that species
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stratification could potentially improve predictions from sparse lidar samples, in low
biomass regions better than fusion with spectral metrics. More work is needed to
confirm these results over larger samples and homogenous stands. Improving
classification accuracies for individual species by using field spectra may further
refine spatial prediction of biomass from AVIRIS. Also the optimum level of
classification (plant functional type, genera or species) and scale (1 ha or less) must
be studied further.

Intuitively, we would expect species stratification to provide an improvement
because the data used for biomass ground truth is routinely derived from forestry
tables on a species-level, just as we did in our research here. However, there is the
larger, and unanswered question, of whether lidar metrics are sensitive to species-
level differences in canopy vertical structure, canopy gap spatial pattern, stem density
and stem spatial pattern, among others, that should be predictive of biomass, and at
what spatial scales. While species-specific predictions as applied in this study could
improve estimates over other forested areas, the true impact of a priori stratification
may never be known unless this problem is explored thoroughly.

We did not expect a significant change in species composition within the time
lag between lidar and hyperspectral data acquisition. However, some uncertainty in
spectral metrics related to changes in structure and stress may have affected the
outcome. Another limitation was that only large trees (>76cm dbh) were measured in
1 ha plots. Footprint level plots (0.07 ha) included measurements of all trees above
10cm dbh but were not included in this study because of increased geolocation errors

between reprocessed LVIS data and 2000/2001 field plot centers. Better geolocation
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of field, lidar, and hyperspectral data may help, but this may also only increase
correlation between metrics rather than improve biomass estimates.

Spatial maps of various AVIRIS metrics in combination with LVIS maps
showed increased water stress in many high biomass red fir (4bies magnifica) and
mixed conifer stands. High values of NPV fractions within canopies in addition to
low vegetation and water band indices, suggests increased stress and mortality in
these areas. Moisture stress was high in open stands with more canopy gaps as well as
in dense stands, consistent with findings from Smith et al., (2005). Our results are
similar to recent studies linking water stress and increased tree mortality in the Sierra
Nevada (van Mantgem et al., 2009; Lutz et al., 2009).

Areas within the Teakettle Experimental Forest (North et al., 2002), where red
fir was the dominant vegetation type also showed a large number of NPV spectra in
the 2003 AVIRIS images. Subsequent field observations in 2008 showed abundant
dead trees as well as evidence of logging in these areas. Further analysis is required to
confirm whether stress maps from 2003 AVIRIS images showed early indications of
the tree mortality observed in 2008. Presumably, lidar/hyperspectral data could be
used to map areas of high stress and mortality in response to climate change as

suggested by Van Mantgem et al. (2009).

2.8 Conclusion

Species stratification may improve predictions from lidar, a result only
suggested by our work, as overall predictive ability did not improve significantly;

however, confidence intervals were narrowed and biomass showed very different
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spatial variability when mapped across the landscape. Extrapolating structure from
lidar samples with stratified optical data can be a promising strategy for mapping low
biomass forests from future space borne lidar sensors such as DESDynl. Such
species-specific biomass maps have the potential to be exceptionally useful for
carbon and ecosystem modeling.

AVIRIS indices and MESMA fractions provide quantitative measures of
canopy condition and can be of considerable value in ecological applications, when
combined with lidar. We demonstrated one such application here, by mapping stress
in high biomass forests of Sierra Nevada. Stress maps can serve as early indicators of
mortality, drought, and fire susceptibility in old growth forests and help improve
forest management practices. Classified vegetation maps can be further used to study
regeneration from fire or combined with small footprint lidar data to map individual
tree biomass/mortality.

Lidar can provide measures of vertical structure such as canopy height,
understory cover, and foliage diversity while species composition, stress, and
decadence can be obtained from hyperspectral data. Fusion of the two sensors is
therefore, powerful for biodiversity and habitat studies. Future research will focus on
combining the two sensors for mapping potential habitats for rare and endangered

bird species.
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Chapter 3 Mapping Canopy Height and Biomass Dynamics in

the Sierra Nevada using Waveform Lidar

3.1 Introduction
Changes in forest structure from disturbances such as fires, wind throw, insect

outbreaks and logging reduce the amount of carbon stored in the form of
aboveground biomass. On the other hand, recovery from disturbances and growth in
canopies increases biomass and carbon storage. The lack of quantitative estimates of
such changes leads to large uncertainties in carbon flux in forests (Houghton et al.,
2010). Improved measurements of canopy dynamics are critical for reducing these
uncertainties (Frolking et al., 2009) and understanding how ecosystems respond to
disturbances (NRC, 2007).

Field data on canopy dynamics are generally sparse spatially with most in the
form of averages at coarse resolutions (Houghton, 2005). Although passive remote
sensing data have been extensively used in change detection (Coppin et al., 2004), the
focus has been on mapping areal extents of change and estimating carbon flux with
models. It has been suggested that these models can be improved or validated
independently with direct measurements of canopy height and biomass changes from
active remote sensing (Houghton et al., 2010).
