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This dissertation explored the combined use of lidar and other remote sensing 

data for improved forest structure and habitat mapping. The objectives were to 

quantify aboveground biomass and canopy dynamics and map habitat characteristics 

with lidar and /or fusion approaches. Structural metrics from lidar and spectral 

characteristics from hyperspectral data were combined for improving biomass 

estimates in the Sierra Nevada, California. Addition of hyperspectral metrics only 

marginally improved biomass estimates from lidar, however, predictions from lidar 

after species stratification of field data improved by 12%. Spatial predictions from 

lidar after species stratification of hyperspectral data also had lower errors suggesting 

this could be viable method for mapping biomass at landscape level. A combined 

analysis of the two datasets further showed that fusion could have considerably more 

value in understanding ecosystem and habitat characteristics.  



  

 The second objective was to quantify canopy height and biomass changes in 

in the Sierra Nevada using lidar data acquired in 1999 and 2008. Direct change 

detection showed overall statistically significant positive height change at footprint 

level (∆RH100 = 0.69 m, +/- 7.94 m). Across the landscape, ~20 % of height and 

biomass changes were significant with more than 60% being positive, suggesting 

regeneration from past disturbances and a small net carbon sink. This study added 

further evidence to the capabilities of waveform lidar in mapping canopy dynamics 

while highlighting the need for error analysis and rigorous field validation  

Lastly, fusion applications for habitat mapping were tested with radar, lidar 

and multispectral data in the Hubbard Brook Experimental Forest, New Hampshire. A 

suite of metrics from each dataset was used to predict multi-year presence for eight 

migratory songbirds with data mining methods. Results showed that fusion improved 

predictions for all datasets, with more than 25% improvement from radar alone. 

Spatial predictions from fusion were also consistent with known habitat preferences 

for the birds demonstrating the potential of multi- sensor fusion in mapping habitat 

characteristics. The main contribution of this research was an improved 

understanding of lidar and multi-sensor fusion approaches for applications in carbon 

science and habitat studies. 
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Chapter 1 Forest Structure and Habitat Characteristics using 

Multi-sensor Data Fusion  

 

1.1  Motivation 

Forest structure, including the vertical arrangement of vegetation within 

canopies, the horizontal distribution across landscapes, together with species 

composition comprises „habitat‟ and influences biogeochemical fluxes of carbon in 

the earth-atmosphere system (Fig 1-1). Managing forests for carbon and/or 

biodiversity under increasing anthropogenic pressures and a changing climate 

therefore requires improved quantitative measurements of forest vertical structure, 

floristics and biogeochemical status. Improving our capabilities to simultaneously 

map these attributes can go a long way in advancing critical research in carbon 

science, ecosystem and biodiversity studies. For instance, accurate maps of vertical 

structure can reduce uncertainties in carbon storage and flux estimates, which are 

currently between 30 and 70% of the total terrestrial budget (Canadell et al., 2007). 

Better maps of structural and biogeochemical composition of vegetation can improve 

our understanding of many ecosystems processes. Three dimensional forest structure 

and composition combined with habitat preferences can inform biodiversity 

conservation. The overarching questions are how can such integrated information be 

obtained and how can currently available remote sensing resources bridge the gap in 

knowledge?  

Remote sensing has greatly advanced forest mapping and monitoring 

capabilities in the last few decades by imaging the earth at various spatial and 
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temporal scales. Although multispectral airborne and space borne sensors have 

significantly improved spatial maps of vegetation and landcover, they have shown 

limited capabilities in measuring vertical structure critical for ecosystem studies. In 

addition, most multispectral metrics, such as the normalized difference vegetation 

index (NDVI) have not proven effective in monitoring the biogeochemical status of 

canopies, particularly in high biomass density forests (> 100 Mg/ha).   

In recent years, many new sensors have been developed, each with 

complementary capabilities. Three of them are of particular interest in this research. 

The first is Light Detection and Ranging (lidar), which provides three dimensional 

forest structure measurements. The second is hyperspectral remote sensing that can be 

used to map biochemical characteristics and species level variations in vegetation. 

The third is radar remote sensing which is less sensitive to structure than lidar but has 

greater spatio-temporal coverage. While each of these technologies has been studied 

extensively, individually, the potential of combining them for mapping forest 

structure is yet to be thoroughly understood.  

The overall goal of my dissertation is to explore applications of multi-sensor 

fusion for mapping forest structure and habitat characteristics. This is a vast area of 

research with many possible approaches. I use airborne data as a test bed for future 

space borne lidar /radar sensors such as the Deformation, Ecosystem Structure and 

Dynamics of Ice (DESDynI) and hyperspectral sensors such as Hyperspectral Infrared 

Imager (HyspIRI). My research focuses on three areas of interest: aboveground 

biomass estimation; canopy structural dynamics, and; quantification of habitat 

characteristics, all of which are key research requirements for carbon science 
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(Treuhaft et al., 2004) and biodiversity research (Bergen et al., 2006).  Specifically, 

my objectives are to: 

1. Test the combined use of lidar and hyperspectral data in mapping 

aboveground biomass using statistical fusion approaches. 

2. Evaluate the potential of temporal waveform lidar in quantifying canopy 

height and biomass dynamics.   

3. To integrate lidar, radar and multispectral data in a multi-sensor fusion 

approach for predicting bird habitat quality.  

 
Fig. 1-1 Improved understanding of interactions between vegetation, carbon flux and 

biodiversity requires quantitative assessments of forest vertical structure, floristic 

composition and biochemical characteristics, emphasizing the need for multi-sensor 

fusion approaches. 
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1.2 Background 

1.2.1 Remote Sensing for carbon science 

Quantifying the amount and distribution of carbon in various reservoirs 

(oceans, atmosphere, terrestrial ecosystem, and fossil fuels) is critical for 

understanding ecosystem responses to climate change. Although sources and sinks in 

the other components of the carbon cycle are fairly well quantified, major 

uncertainties still exist in the terrestrial carbon budget (30 to 70%). These are 

associated with lack of quantitative estimates of carbon storage in forests and changes 

from disturbance (Canadell et al., 2007; Houghton and Goetz, 2008). Consequently, 

there are several gaps in our understanding of ecosystems and their interactions with 

bio-geochemical cycles.  

One way of reducing these uncertainties is by quantifying aboveground 

biomass, about 50% of which is carbon. Remote sensing data have long been used to 

derive biomass by developing empirical relationships between spectral characteristics 

of images and field allometry. Although these methods are useful in low biomass 

ecosystems with densities less than 100 Mg/ha, they have limited sensitivity at 

moderate to high biomass levels (Imhoff et al., 1995). Biomass is closely related to 

vertical vegetation structurally; to a first approximation, forests that are taller have 

more biomass than similar forests that are shorter in stature. In addition, the most 

accurate allometric equations are developed from field measurements of tree height 

and diameter. Therefore, a better approach to improve biomass estimates is by 

improving three dimensional forest structure measurements from remote sensing. 
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While this has already been achieved to some extent with lidar remote sensing, more 

progress needs to be made in terms of accuracies and spatial coverage of biomass.  

1.2.2 Remote sensing for biodiversity studies 

Biodiversity management and conservation is increasingly a cause of concern, 

with rapid rates of species decline and extinction. According to the Millennium 

Ecosystem Assessment (2005), the rates of species extinctions have increased 1000 

fold in the last century alone and losses continue at an alarming rate of around 50,000 

species each year. Understanding habitat requirements of individual species is critical 

for the design and implementation of effective conservation strategies.  

Many studies have shown the influence of vertical arrangement of foliage 

within canopies on habitat and niche selection by wildlife (MacArthur & MacArthur 

1961; Robinson & Holmes, 1984; and Degraaf et al., 1998). As an example, the 

California spotted owl prefers old growth forests with tall trees, dense canopy cover, 

and presence of dead trees /snags for nesting (Verner et al., 1992). Another species of 

recent notoriety is the Ivory-billed woodpecker. Although, there have been no 

confirmed sightings for the bird, extant habitat preferences are for tall trees, large 

basal area, dense canopy cover with open mid-story, abundant standing dead trees, 

and dying vegetation (Tanner, 1942). Yet another example is the black-throated blue 

warbler that has a preference for taller deciduous trees with a well developed 

understory.  In each of these cases, habitat requirements are well understood but it is 

not clear how they can be characterized over large spatial scales for decision making. 

There are many other wildlife species for which the habitat requirements are not well 
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understood. In both these situations, comprehensive maps of forest attributes are 

invaluable. 

Although passive remote sensing has already proved useful for habitat 

mapping by providing information such as habitat fragmentation, landscape structure, 

patch characteristics, canopy cover and phenology, they have limited capabilities for 

providing three dimensional forest structure. Therefore, the need to explore multi-

sensor fusion approaches to address these requirements.  

1.2.3 Lidar, Radar and Hyperspectral Remote Sensing  

Lidar, radar and hyperspectral data provide vegetation attributes that are a 

potentially powerful combination for carbon, ecological and habitat studies. Lidar is 

an active remote sensing system that calculates distance by measuring the time taken 

by a laser pulses (infra red wavelengths for vegetation) to reach a target and return to 

the source. Airborne lidar instruments either record heights at intermittent levels or 

fully digitize the return signal to provide accurate measurements of sub-canopy 

topography, canopy height, and vertical distribution of canopy elements (Blair et al, 

1999). Three dimensional structure metrics from lidar are more accurate in 

quantifying aboveground biomass than other remote sensing methods (Drake et al., 

2002a; Lefsky et al., 2002). Metrics describing foliage distribution within the canopy 

have also proven to be useful in identifying suitable habitat conditions for many 

wildlife species, particularly birds (Goetz et al., 2007; Nelson et al., 2005; Martinuzzi 

et al., 2009). The main drawback of lidar however is its limited spatial and temporal 

coverage; hence the need for fusion with other sensors.  
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Radar (Radio Detection and Ranging) is also an active remote sensing system 

operating in the microwave region of the electromagnetic spectrum. Radar 

backscatter can be polarized in different ways to increase sensitivity to vertical or 

horizontal structural properties. Although radar is less sensitive to structure than lidar 

it has greater spatial coverage and is not affected by cloud cover, unlike lidar.  

Hyperspectral data provide information about vegetation biochemical 

attributes such as chlorophyll content, canopy moisture (Ustin et al, 2004) 

complementary to lidar and radar. Because of the higher spectral resolution (typically 

350 nm – 2500 nm), hyperspectral data can be more useful than multispectral data in 

discriminating species level differences in vegetation (Dennison and Roberts, 2003). 

Lidar, radar, and hyperspectral sensors observe vegetation through different 

mechanisms and at different wavelengths, and as such they can be combined to 

provide comprehensive forest structure and habitat characteristics (Table 1-1) 

relevant for carbon, ecosystem, and habitat studies.  

Table 1-1 Forest structure and habitat characteristics directly measured or modeled from 

Lidar / Fusion (adapted from Bergen et al., 2009)  
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1.2.4 Multi-sensor fusion 

The process of dealing with data from multiple sources to achieve 

refined/improved information for decision making has been termed as „Data Fusion‟ 

(Hall, 1992). In theory, combining data from different sensors and databases 

improves accuracies and provides inferences better than from one dataset alone (Hall 

and Llinas, 1997). There is considerable interest in fusion applications with remote 

sensing data but this area of research is still in its infancy. Fusion approaches with 

remote sensing are broadly classified as: pixel level; feature level, and; decision based 

fusion (Zhang, 2010). My approach towards fusion in this dissertation includes 

decision based fusion, where images are processed individually to extract information 

and then combined using statistical and machine learning methods. I use several 

image processing methods to process images for atmospheric effects, geolocation 

shifts and extract useful information with classification techniques. Waveform 

processing is used to obtain physically meaningful metrics such as ground elevation, 

canopy height and canopy cover from lidar data as well as statistical metrics such as 

waveform energy quantiles. Features/attributes obtained from datasets individually 

are then integrated using statistical and machine learning methods (described in detail 

in Chapter 2 and Chapter 4) to predict variables of interest such as aboveground 

biomass or habitat quality. Additionally, I use a range of data querying, data 

visualization and analytical methods to compare lidar and hyperspectral metrics to 

detect variations in structure and biochemical conditions of vegetation. While these 

approaches by themselves are not new methodological innovations, the ensemble of 
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techniques used here in combination with new datasets provides fresh insights into 

multi-sensor fusion. 

1.3 Dissertation Outline  

This dissertation is subdivided into five chapters. In Chapter 2, I integrate 

lidar and hyperspectral data for mapping aboveground biomass with an aim to 

understand whether fusion can be applied to reduce uncertainties in carbon storage. In 

addition, I combine the two sensors to detect „stress‟ in high biomass forests as an 

indicator of canopy loss or mortality. In Chapter 3, I explore the use of temporal lidar 

data to map changes in height and biomass spatially with a larger goal of identifying 

potential carbon sources and sinks. While this chapter does not include fusion 

directly, I make semi-quantitative comparisons between lidar changes and optical 

imagery/ hyperspectral stress maps from my previous results. In Chapter 3 my goal is 

to explore the potential of multi-sensor fusion with radar, lidar and multispectral 

imagery for mapping bird habitat characteristics (Fig 1-1). 

 

Fig. 1-2 Outline of dissertation chapters. 
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Chapter 1: Mapping biomass and stress with lidar and hyperspectral data 

In this chapter, I draw from extensive studies that have derived canopy 

biophysical and chemical properties from hyperspectral remote sensing and validated 

the use of lidar in mapping forest structural characteristics. The primary objective 

here is to test fusion approaches between these two sensors for improving quantitative 

and spatial estimates of aboveground biomass. In the first approach, I combine a suite 

of spectral metrics from hyperspectral data with canopy height and cover metrics 

from lidar for biomass estimation. This would detect the contributions of canopy 

biochemical characteristics to structure from lidar in estimating biomass. The second 

approach is to test whether stratifying by species with hyperspectral data improves 

biomass estimates from lidar. The hypothesis is that species stratification would 

improve results because field biomass is derived from species specific allometry. 

Thirdly, since there is clear but unexplored synergy between these datasets for 

mapping canopy condition in addition to structure, I combine canopy height, biomass, 

canopy cover with indices of moisture, chlorophyll content to detect relatively high 

and low stress areas in forests with similar structural characteristics as an indicator of 

possible canopy losses and mortality. 

 

Chapter 2: Mapping Canopy Height and Biomass Dynamics with Temporal Lidar 

Data 

In addition to quantifying carbon storage, there is also a need to map changes 

as a result of natural and anthropogenic disturbances to reduce the larger uncertainties 

in carbon flux estimates. This is particularly important in temperate forests, where 
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aboveground biomass is fairly well quantified but changes in carbon sources and 

sinks from disturbance are not understood. Most research with lidar has been static; 

studies are only beginning to explore their use in canopy dynamics and carbon flux 

estimation. I build upon previous work with small (Kellner et al., 2009) and medium 

footprint lidar (Dubayah et al., 2010) for mapping potential carbon sources and sinks 

in the temperate montane forests of the Sierra Nevada.  Going back to the results on 

canopy stress from Chapter 2, I test whether hyperspectral data can be used to 

identify areas with higher stress and that are thus likely to undergo canopy losses. 

   

Chapter 3: Mapping Bird Habitat Characteristics Using Multi-sensor Fusion  

This chapter brings together the lessons learned in previous chapters for an 

application in habitat mapping. The initial research plan was to integrate forest 

structure, composition and canopy dynamics in the Sierra Nevada from Chapters 2 

and 3 to map habitat for the California Spotted Owl. However, this could not be done 

due to lack of bird data. I therefore shifted my focus to the Hubbard Brook 

Experimental Forest in New Hampshire, where bird species have been extensively 

studied and monitored since the 1960‟s. Additionally, recent mapping of the area with 

small and medium footprint lidar, radar and multispectral data provided an excellent 

opportunity to test fusion ideas in habitat mapping. In this study, I test the individual 

and combined capabilities of multiple polarized backscatter from radar, phenology 

from multispectral data, broader scale vertical structure from waveform lidar and 

individual tree mapping from small footprint (0.5m resolution) lidar for mapping 

habitat characteristics. My goal is to explore what variables can be derived from these 
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sensors, how they can be combined with machine learning methods for predicting 

bird habitat quality, and what are the combined accuracies of predictions.  

 

1.4 Summary 

The broad arc of my research, from hyperspectral/lidar fusion, to multi-date 

lidar, to radar/lidar and multispectral fusion illustrates both the enormous potential of 

fusion for habitat and carbon studies, as well as the tremendous amount of work 

required to translate ideas of what we think should work to actual models of applied 

value. As space borne lidar, hyperspectral and radar data become available over 

inaccessible forests across the globe, multi-sensor fusion will become more important 

and exceptionally useful in optimizing information for decision making. By exploring 

both the promise and limits of the next generation of sensors, I hope to lay the 

groundwork for future work that brings us from notional concepts on forest 

characterization to demonstrated efficacies that can be used to help us manage the 

environment in a changing world. 



 

 13 

 

 

Chapter 2 Mapping Biomass and Stress in the Sierra Nevada 

using Lidar and Hyperspectral Data Fusion 

2.1 Introduction 

Improved estimates of forest aboveground biomass, hereafter “biomass” from 

remote sensing are critical for reducing uncertainties in the global carbon cycle 

(Rosenqvist et al., 2003; Hese et al., 2005) and are an important goal for future 

satellite missions. Although coarse-scale biomass estimates are well documented in 

temperate forests, they are mostly in the form of field measurements and averages 

over administrative units (Houghton, 2005). There is a need for higher resolution and 

spatially continuous estimates to quantify carbon flux and disturbance at scales at 

which land use activities occur (Houghton, 2005; Keith et al., 2009). Spatial 

distribution of carbon stocks in combination with species composition and vegetation 

stress can improve the understanding of ecosystem processes (Ustin et al., 2004; 

Chambers et al., 2007), carbon dynamics, and habitat structure (Bergen et al., 2007). 

The availability of such maps over difficult mountain terrain such as the Sierra 

Nevada can be particularly valuable for natural resource and wildlife habitat 

management. 

Many studies have demonstrated the efficacy of waveform lidar in accurately 

measuring three-dimensional vegetation characteristics including biomass for 

different forest cover and types (Lefsky, 2002; Drake et al., 2002a). Lidar metrics are 

less prone to saturation effects even at high biomass levels (Lefsky, 2002; Drake et 
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al., 2002a; Hyde et al., 2007a) unlike most remote sensing indices, which saturate at 

moderate values (Gao, 1996; Huete, 1997). Acquiring wall-to-wall coverage of 

airborne lidar however, is expensive. A promising alternative is to extrapolate forest 

structure from lidar samples using continuous remotely sensed data. There is 

considerable interest in fusing sparse but accurate lidar measurements with optical 

(Hudak et al., 2002; Kimes et al., 2006; Hyde et al., 2007a; Asner et al., 2008) and 

radar sensors (Treuhaft et al., 2004) to improve prediction accuracy and spatio-

temporal coverage of forest structure.  

Imaging spectrometers or hyperspectral sensors provide many attributes 

complementary to canopy structure from lidar and can be used to discriminate 

vegetation types based on spectral characteristics.(e.g. Martin et al., 1998; Dennison 

and Roberts 2003; Clark et al., 2005). Studies have suggested that spectral attributes 

(Ustin et al., 2004; Bergen et al., 2006) and species composition (Rosenqvist, et al., 

2003; Anderson et al., 2005) from hyperspectral data could improve biomass 

estimates in conjunction with lidar. However, it is still unclear as to how biophysical 

and biochemical attributes from hyperspectral data relate with structural attributes 

from lidar. There also remains considerable uncertainty on the efficacy of combining 

lidar with hyperspectral sensors for species-specific biomass mapping. Underlying 

causes of biomass change such as physiological stress, tree mortality and senescence 

cannot be detected from lidar alone, as it does not differentiate between healthy and 

stressed vegetation (Rosenqvist et al., 2003). While the ability of hyperspectral data 

to map stress is recognized (Roberts et al., 1997; Asner, 1998; Merton, 1998), the 
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combined use of the two sensors for mapping vertical structure and stress remains 

largely unexplored. 

Our goal in this study was to explore fusion of waveform lidar from the Laser 

Vegetation Imaging Sensor (LVIS) with hyperspectral imagery from the Airborne 

Visible Infrared Imaging Spectrometer (AVIRIS) for mapping biomass and stress in 

the diverse montane forests of the Sierra Nevada. In particular, we evaluated whether 

addition of spectral metrics from AVIRIS improved biomass estimates from LVIS. 

We also assessed whether species stratification using AVIRIS data prior to lidar 

estimation of biomass increased accuracy. Lastly, we explored the combined potential 

of the two sensors for mapping stress in the high biomass forests of the Sierra 

Nevada.  

 

2.2 Background 

Lidar and hyperspectral remote sensing are two potentially complementary 

technologies capable of providing comprehensive structural and biophysical 

characteristics of vegetation (Koetz et al., 2007). Lidar instruments record the time 

taken by laser pulses to reach the earth‟s surface from an aircraft/satellite and back to 

calculate distance to target. Discrete return lidar devices provide one or more laser 

returns that can be used for high resolution mapping of terrain and canopy elevation 

(Lefsky et al., 2002). Waveform lidar instruments digitize the entire outgoing and 

return signal to provide waveforms, from which various parameters such as 

subcanopy topography, canopy height, foliage profiles and vertical heterogeneity may 

be derived (Blair et al., 1999; Dubayah, 2000). Waveform metrics from small and 



 

 16 

 

large footprint lidar have been used to predict biomass in tropical (Drake et al., 

2002b; Clark et al., 2004) and temperate forests (Lefsky et al. 2002; Hyde et al. 2005; 

Anderson et al., 2005). 

Hyperspectral sensors measure vegetation absorption and scattering 

characteristics in the visible, near infrared and short wave infrared wavelengths of the 

electromagnetic spectrum. Spectral indices or band ratios from hyperspectral data  

provide many attributes useful for ecological studies (Ustin et al., 2004) such as 

chlorophyll content (Elvidge and Chen, 1995), canopy water status (Gao, 1996; 

Serrano et al., 2000), vegetation stress (Merton, 1998) and lignin and cellulose 

content (Kokaly and Clark, 1999; Curran et al., 2001). Narrow band and derivative- 

based indices from hyperspectral data are relatively less affected by background soil 

reflectance (Elvidge and Chen, 1995), illumination, saturation (Gao, 1996; Pu et al., 

2003, Roberts et al., 2004), and other factors that influence broadband vegetation 

indices such as the normalized difference vegetation index (NDVI). Measures of 

liquid water (e.g. equivalent water thickness, EWT) from hyperspectral data are 

highly sensitive to canopy properties such leaf area index (LAI) (Roberts et al., 2004). 

Measures of plant dry matter have been related to environmental stress (Asner, 1998) 

and could improve lidar estimates of biomass in areas with low canopy heights and 

sparse vegetation cover  (Ustin et al., 2004; Treuhaft et al., 2004; Bergen et al., 2006).  

Spectral Mixture Analysis (SMA) is a widely used remote sensing technique 

for obtaining ecologically relevant and meaningful components from an image pixel 

(Adams et al., 1986; Chambers et al., 2007). In SMA, two or more reference 

spectra/endmembers such as green vegetation, soil and shade are modeled as linear 
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combinations to estimate sub-pixel fractions of each component. A limitation of SMA 

is that it uses only one set of reference endmembers to model all pixels in an image. 

Multiple endmember spectral mixture analysis (MESMA) (Roberts et al., 1998) 

allows the number and type of reference endmembers to vary on a per-pixel basis, 

accounting for spectral variability in the landscape and improving the accuracy of 

resulting fractions. Because MESMA fractions are calculated using the entire 

spectrum, they are more robust than traditional vegetation indices and have 

successfully been used for estimating live fuel moisture (Roberts et al, 2006), LAI 

(Sonnetag et al., 2007) and green biomass in pastures (Numata et al., 2008). MESMA 

has also been used to map vegetation (Dennison and Roberts, 2003) and urban 

landcover (Franke et al., 2009). 

Most studies on lidar and hyperspectral fusion have focused on land cover 

classification. Asner et al. (2008) used lidar to mask gaps and low canopy heights, 

improving detection of invasive species from AVIRIS for Hawaiian rainforests. 

Koetz et al. (2007), classified fuel composition from fused lidar and hyperspectral 

bands using Support Vector Machines (SVM). Classification accuracies from fusion 

were higher than from either sensor alone. Mundt et al. (2006) fused co-registered 

lidar and hyperspectral data to map sagebrush communities and suggested further use 

of classified vegetation maps in biomass calculations. Few studies have explored the 

combined potential of the two sensors for biomass estimation. Anderson et al. (2008) 

used Minimum Noise Fraction (MNF) transformed AVIRIS bands in combination 

with LVIS and reported an 8 – 10 % increase in biomass prediction accuracy for 
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northeastern temperate forests. There is a need to test similar approaches over a wider 

range of forest cover and types, while retaining the physical significance of variables. 

2.3 Study Area and Data 

2.3.1 Study Area  

The study site (37°2'34.47"N, 119°9'33.81"W) covers an area of around 

22,000 ha and lies along the western slopes of the Sierra National Forest (Fig. 2-1), in 

California, USA. The region has a Mediterranean climate with elevations ranging 

from 1000 m to 2500 m. Forests are dense and complex in structure with average 

biomass values of around 200 Mg/ha, and as high as 1000 Mg/ha in Giant Sequoia 

(Sequoiadendron giganteum) stands. Dominant species include red fir (Abies 

magnifica), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and 

California black oak (Quercus kellogi) (Hunsaker et al., 2002).  

 

Fig. 2-1  Study area in the Sierra National Forest showing 1ha field plots. Plots are classified 

based on Wildlife Habitat Relation (WHR) type  
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2.3.2 Data  

Field data  

Field surveys were conducted in 2000 and 2001 (Hyde et al., 2005). A 

modified stratified random sampling scheme was used to measure structural 

parameters over 500 plots in the northern and southern Sierra Nevada. Field plots 

were laid out to provide a statistically representative measure of structural variability 

for the eight major Wildlife Habitat Relation (WHR) types: montane hardwood, 

montane hardwood conifer, red fir, white fir, sierran mixed conifer, pines, wet 

meadow, and barren (Mayer and Laudenslayer, 1988, Hyde et al., 2005). Structural 

variables for live trees such as height, diameter at breast height (DBH), crown form, 

canopy cover, species, heights of dead snags and snag decay classes were recorded 

for concentric plots with radii of 15 m (0.07 ha - footprint level) and 56.4 m (1 ha - 

stand level) respectively. For 1 ha plots, only large trees with dbh greater than 76 cm 

were measured. A detailed description of the methods used for field data acquisition 

is available in Pierce et al. (2002). The study area in the Sierra National forest had 

285 measured plots out of which 125 1 ha plots had collocated lidar, hyperspectral 

and field measurements and were used for analysis (Table 2-1). The 0.07 ha plots 

were not used in this study because of increased geolocation errors between 

reprocessed lidar and field data. 
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Table 2-1 Distribution of field plots by Wildlife Habitat Relation (WHR) Type 

 

 

Lidar Data 

The Laser Vegetation Imaging Sensor (LVIS) is a medium footprint, 

waveform digitizing, scanning laser altimeter, designed, and developed at NASA‟s 

Goddard Space Flight Center. LVIS operates at altitudes up to 10 km with a 7 º field 

of view and uses laser pulses with a wavelength of 1064 nm for profiling vertical 

vegetation structure (Blair et al., 1999). NASA flew LVIS over the Sierra National 

Forest in summer 1999 at an altitude of 7km with trees in leaf-on condition. The lidar 

shots had a nominal footprint radius of 12.5m. The data had a swath width of 1km 

and covered an area of 175 sq. km. The subset used for this study had around 892,444 

lidar footprints. Footprints were contiguous along track and overlapping across track. 

(See http://lvis.gsfc.nasa.gov/)  

 

 

 

http://lvis.gsfc.nasa.gov/
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Hyperspectral Data 

The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) designed and 

developed at the Jet Propulsion Laboratory, measures upwelling radiance from the 

earth‟s surface in wavelengths between 350 nm – 2500 nm in 224 contiguous bands 

with a bandwidth of 10 nm (Green et al., 1998). Fine spatial resolution AVIRIS 

images were acquired over the Sierra Nevada in July 2003. Radiometrically corrected 

images were processed to retrieve apparent surface reflectance using the MODTRAN 

based forward inversion approach as described in Green et al. (1993) and Roberts et 

al. (1997). The images were geometrically corrected using Digital photo Ortho Quads 

(DOQQ). The AVIRIS data consisted of three overlapping scenes covering a total 

area of 22,000 ha. Each image had a nominal spatial resolution of 3.3 m with 224 

spectral bands. Bands with a poor signal-to noise ratio from atmospheric interference 

of water vapor and carbon dioxide were eliminated, resulting in 118 bands for 

analysis. 

 

2.4 Methods 

The data sets used in this study had different geographical projections and 

were brought into a common frame of reference using the Universal Transverse 

Mercator Projection (UTM 19N) and NAD 1983 datum. Spatial overlay of AVIRIS 

and LVIS data showed good geolocation for analysis at the 1 ha level and no further 

rectification was performed. All hyperspectral processing was done using VIPER 

tools ENVI- Add on Module
©

 (Roberts et al., 2007) and a hyperspectral metrics add 

on module. 
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2.4.1 Field attributes 

Species-specific allometric equations from the USDA Forest Service (Waddell 

and Hiserote, 2003) were used to calculate biomass for all trees with dbh greater than 

76cm within 1 ha plots. Tree height, species, and dbh measurements from field data 

were used as inputs for calculating biomass of bole, bark, branches, and foliage 

separately for each tree. Biomass values for individual trees were then added to obtain 

aboveground biomass per hectare for large trees within each field plot. Field plots 

were classified based on WHR type for analysis by species/vegetation type. Although 

WHR types consist of species associations, most of them have a dominant plant 

genus/species. The MHC/MHW plots consisted of mixed hardwoods and conifers 

with broadleaf oaks (Quercus sp.) as the dominant vegetation type. Plots classified as 

PPN were mostly composed of ponderosa pine (Pinus ponderosa). SMC plots had 

mixed conifers including pines (Pinus sp.), firs (Abies sp.), and incense cedar 

(Libocedrus decurrens) with shade tolerant white fir (Abies concolor) becoming 

increasingly dominant after regeneration from fire (Zald et al., 2008). RFR plots were 

almost entirely composed of red fir (Abies magnifica) trees. 

2.4.2 LVIS metrics 

An LVIS waveform essentially consists of a signal with amplitudes 

proportional to energy reflected from intercepted surfaces within canopy and ground. 

LVIS footprints are geo-located to the global reference ellipsoid WGS 84, using a 

combination of GPS and Inertial Navigation System (INS) information (Blair et al., 

1999; Hofton and Blair, 2002). Ground elevation is determined by identifying the 

center of the lowest mode in the waveform greater than mean signal noise (Fig. 2-2). 
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Canopy elevation is the height at which the signal increases beyond a certain 

threshold (usually 3σ of the background noise) at the top of the waveform (Hofton 

and Blair, 2002). The difference between canopy elevation and ground elevation 

gives the canopy height metric or height of 100% laser energy return (RH100). The 

1999 LVIS data were reprocessed using algorithms for ground detection and an 

improved horizontal geolocation algorithm prior to the start of this analysis (Blair et 

al., 2006). For each LVIS waveform, quartile heights of laser energy return i.e. height 

of 25% (RH25), 50% (RH50) and 75% (RH75) energy return were calculated in 

addition to RH100 (Fig. 2-2). Canopy cover was calculated from the ground energy 

return of each waveform normalized by the canopy and background reflectivity ratio. 

We used a ratio of 1.6, derived from a previous study (Hyde et al., 2005). LVIS 

metrics were calculated for lidar shots within 1 ha plots and summarized to obtain 

minimum, maximum, mean and standard deviation for all metrics.  

 

Fig. 2-2 Example of an LVIS waveform centered on a field plot with area 0.0 7 ha. The 

amplitude of the waveform is proportional to energy reflected from canopy and ground. 

Metrics calculated from the waveform include ground elevation, quartile heights of energy 

return (RH25, RH50, RH75 & RH100) and canopy cover.   
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2.4.3 AVIRIS spectral metrics 

Reflectance spectra (e.g. Fig. 2-3) were extracted from AVIRIS images over 

field plots to construct a spectral library for the study area. A set of 19 hyperspectral 

indices (Table 2-2) were calculated to quantify vegetation attributes from each 

spectrum and aggregated to obtain mean and standard deviation of values for 1 ha 

plots. These mainly included vegetation indices, derivatives of the chlorophyll red 

edge, water band ratios, and ligno-cellulose band ratios. Indices based on the green, 

red, and blue wavelengths were found to be more robust than NDVI in estimating 

vegetation fractions (Gitelson et al., 2002). We tested the use of green band 

vegetation indices (VARIGREEN, VIGREEN) in addition to NDVI, Enhanced 

Vegetation Index (EVI), and Ratio Vegetation Index (RVI) for biomass prediction. 

Water absorption features in the infrared regions of the spectrum (e.g. 980nm 

1450nm, 1940nm) are sensitive to canopy biophysical properties (Serrano et al., 

2000, Roberts et al., 2004). The Normalized Difference Water Index (NDWI), 

Equivalent Water Thickness (EWT), and Ratio Water Index (RWI) were used as 

measures of canopy water content. The red edge or the rapid change in chlorophyll 

reflectance in the visible and near infrared portion of the spectrum provides a measure 

of chlorophyll content (Elvidge and Chen, 1995) and vegetation stress (Merton, 

1998). We used the first and second derivatives of the red edge as measures of 

chlorophyll content. Wavelength, asymmetry and area of lignin and cellulose 

absorption features (2045nm -2218nm) (Kokaly and Clark, 1999; Curran et al., 2001) 

were used to identify non-photosynthetic vegetation; their usefulness in improving 

biomass estimates in combination with LVIS data was also tested. 
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Table 2-2 Hyperspectral metrics calculated using AVIRIS data for 1ha field plots included 

vegetation indices, red edge derivatives, Ligno-cellulose band ratios and MESMA fractions 

of green vegetation, soil/NPV and shade.   
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Fig. 2-3 Examples of reflectance spectra extracted from AVIRIS images over the study area. 

A set of 19 band ratios describing vegetation characteristics such as chlorophyll content, 

water content, stress were calculated from the visible, near infrared and short wave infrared 

wavelengths 

 

2.4.4 MESMA fractions from AVIRIS 

The reflectance of an image pixel over a forested area is typically composed 

of varying combinations of bare soil, shade/shadows, green vegetation (GV) from 

foliage and non-photosynthetic vegetation (NPV) from dead bark, leaf litter or 

senescent vegetation (Roberts et al., 2004; Chambers et al., 2007). Multiple 

endmember spectral mixture analysis (MESMA) involves creation of regionally 

specific libraries by using reference spectra from an image, field, or modeled spectra. 

Each spectrum in the reference spectral library is modeled as a combination of 

another spectrum and shade (Dennison et al., 2004).  
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Three fit metrics are used to identify representative spectra or endmembers for 

each class: Count Based endmember (COB) (Roberts et al., 2003; Franke et al., 

2009), Endmember Average Root mean square error (EAR) and Minimum Average 

Spectral Angle (MASA). COB values are used to select endmembers that model 

spectra within the same class (In COB) better than those in other classes (Out COB). 

EAR values are used to select spectra with lowest root mean square error in modeling 

other spectra of the same class (Dennison and Roberts, 2003). Spectra with low 

average spectral angle values (MASA) are selected as reference endmembers. A 

detailed description of MESMA and fit metrics can be found in Dennison et al., 

(2004).  

A library was created for the Sierra Nevada from AVIRIS images by 

extracting reference spectra for grass, shrubs, trees, soil, and NPV using field data 

and image interpretation. Each spectrum in the library was modeled as a combination 

of another spectrum and shade. We selected endmembers with high In COB values 

followed by those with low MASA and EAR values (Table 2-3). Several models with 

varying combinations of endmembers were tested using SMA/MESMA. For this 

study, we used 10 three-endmember (soil, green vegetation, and shade) models for 

unmixing the AVIRIS images. Soil and NPV endmembers were combined into one 

class. The resulting image consisted of fractional abundances of green vegetation, 

soil/NPV, and shade for each pixel at 3.3m nominal spatial resolution (Fig. 2-4). 

MESMA fractions were then summarized to calculate mean and standard deviation of 

values for 1 ha field plots.  
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Fig. 4. Subset of images showing endmember fractions generated using MESMA. Bright areas have high fractional 

abundance  and dark areas have low abundance. GV, soil/NPV and shade fractions were summarized to calculate 

mean and std. deviation of values for 1ha plots.

0 1

Fig. 2-4  Subset of images showing endmember fractions generated using MESMA. Bright 

areas have high fractional abundance and dark areas have low abundance. GV, soil/NPV and 

shade fractions were summarized to calculate mean and std. deviation of values for 1ha plots. 

 

Table 2-3 Reference endmembers used in 10 3 endmember MESMA models for unmixing 

AVIRIS images. Soil and non photosynthetic vegetation (NPV) spectra were grouped into 

one class. Fit metrics - EAR, MASA and COB values were used to select the best 

representative spectra to un-mix the entire image. 
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2.4.5 Land-cover classification from AVIRIS 

We also used MESMA to classify landcover and dominant vegetation type 

from AVIRIS images. A spectral library was constructed from the AVIRIS images 

using field knowledge, coarse vegetation type maps (USDA Forest Service CALVEG 

data, 2007), lidar height maps, and image interpretation. We isolated patches of 

vegetation with dense canopy cover and extracted relatively pure spectra for oaks 

(Quercus sp.), white fir (Abies concolor), red fir (Abies magnifica), mixed firs (Abies 

sp.), and pines (Pinus sp.). Field knowledge was used to avoid plots with abundant 

ground cover of chaparral (Ceonothus sp. and Arctostaphylos sp.) and reduce mixing 

with canopy dominant spectra. Spectral metrics from AVIRIS such as NDVI, NDWI, 

EWT, and lignocellulose band ratios were also useful for separating non-

photosynthetic vegetation, bare soil, and spectra for dominant vegetation types.  

Each spectrum in the library of 183 spectra was unmixed with another 

spectrum and shade resulting in 182 unique two endmember models for each 

spectrum. Fit metrics EAR, MASA, and COB (see sec. 2.4.4) were used to select 

suitable reference endmembers for landcover classification. We selected 47 spectra 

from several classes including pines, hardwoods, grass, soil, NPV, and chaparral. All 

AVIRIS images were unmixed using 47 two-endmember MESMA models to map 

landcover/ dominant vegetation type (Fig. 2-5a). Outputs included dominant 

landcover type in each pixel and the corresponding fractional abundance. Pixels 

mapped as soil, rock, NPV, chaparral, and grass in the AVIRIS vegetation map were 

excluded. A vector grid of 1ha polygons was placed over the species map and class 

statistics were calculated for pixels with pines, firs (red and white), and hardwoods 
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within each polygon. The dominant class in each polygon was recorded to create an 

aggregated 1 ha species map (Fig. 2-5b). 

 

Fig. 2-5 MESMA was used to map landcover and dominant vegetation types from AVIRIS 

images. AVIRIS maps at a resolution of 3.3m (a) were aggregated and dominant vegetation 

type at 1ha was identified (b). Labels show WHR types from field plots. *Forests classified 

with white fir as dominant vegetation type at 1ha also had a mixture of conifers and were 

grouped as the SMC type for biomass estimation. 

 

2.5 Analysis 

2.5.1 Stand Level 

The final data for stand level (1 ha) analysis included field-measured biomass, 

LVIS metrics, spectral indices, and MESMA fractions from AVIRIS. Wet Meadow 

(WTM) and barren (BAR) plots were excluded and 125 other plots with collocated 

LVIS, AVIRIS, and field data were used. We tested several linear and multiple 
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stepwise regression models to predict biomass before and after species stratification. 

Models for predicting total and species-specific biomass were tested using AVIRIS 

metrics alone, LVIS variables alone and a combination of AVIRIS and LVIS metrics. 

Three parameters were used to select the best models; high co-efficient of 

determination values (r
2
), low Root Mean Squared Error (RMSE), and p value < 0.05 

for r-squared as well as predictor variables. The Akaike information criteria (AIC) 

were used to select suitable predictor variables for all models. We also tested variable 

selection using Bayesian model averaging (BMA). Confidence intervals for co-

efficients of determination were calculated to compare the statistical significance of 

different models.  

 

2.5.2 Landscape Level  

Equations from stand level analysis were used to generate landscape maps to 

study variations between biomass from LVIS alone and species-specific biomass 

from fusion. The vegetation map at 1 ha had four classes: hardwoods, pines, white 

fir/mixed conifers, red fir. White fir (Abies concolor) and red fir (Abies magnifica), 

were grouped into one class at lower elevations (<2000m) because of mixing. At the 

hectare level, mixing of species/genera within each class was unavoidable, but our 

vegetation classes closely matched the WHR type classification from the USDA 

Forest Service map at a coarser resolution. For example, polygons grouped as 

hardwoods were similar in distribution to the MHC/MHW type; pines were similar to 

the PPN type. Polygons with white fir as the dominant species also had a mix of 

pines, red fir and some hardwoods. These polygons were grouped under the 
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firs/mixed conifer type. Biomass was calculated for each dominant vegetation type 

using equations derived from lidar and field data (Table 2-5).  

Spatial patterns of AVIRIS vegetation indices, water band indices and red 

edge derivatives were analyzed in combination with lidar heights, canopy cover, and 

biomass predicted from fusion. We used the NDWI as an indicator of water content 

(Gao et al., 1996; Serrano et al., 2000; Maki et al., 2004) and the normalized first 

derivative of red edge, D1GVI as an indicator of chlorophyll content (Merton, 1998; 

Smith, 2004). The species biomass map from fusion was combined with NDWI and 

D1GVI maps to detect 1 ha stands with biomass greater than 200Mg/ha, canopy cover 

greater than 40%, NDWI less than 0.05 and D1GVI less than 0.1. Stands with 

biomass greater than 200 Mg/ha, canopy cover greater than 40 %, NDWI greater than 

0.05 and D1GVI greater than 0.1 were identified as areas with relatively low stress. 

To rule out effects of soil reflectance on water band indices (Gao, 1996) we further 

analyzed NPV fractions within canopies alone by masking other landcover types. 

 

2.6 Results 

2.6.1 Stand Level  

 AVIRIS variables explained around 60% of the variability in biomass (r
2
= 

0.60 RMSE = 92.13 Mg/ha) with water band indices being the most important 

variables (Fig. 2-6a). LVIS height metrics were found to be consistently better 

predictors of total and species specific biomass. The best model for stand level 

prediction had an r
2
=0.77, RMSE = 70.12 Mg/ha, with RH75 being the single best 
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predictor (Fig. 2-6b). AVIRIS metrics showed marginal improvement in biomass 

prediction (but not statistically significant) when combined with LVIS metrics for 1 

ha plots (r
2
= 0.80, RMSE = 64.18 Mg/ha) (Table 2-4, Fig. 2-6c). AVIRIS variables 

including water band ratios (RWI, NDWI, EWT) and shade fractions from MESMA 

showed strong correlation with LVIS heights (r
2
= 0.69, RMSE = 5.2 m). Mean and 

standard deviation of shade fractions alone explained more than 50% variability in all 

LVIS metrics (for example, r
2
= 0.54, RMSE = 6.25 m for RH100).  

 

Fig. 2-6 Biomass predicted for 125 field plots at 1ha scale using various metrics: (a) AVIRIS; 

(b) LVIS; (c) LVIS and AVIRIS metrics; (d) LVIS after species stratification of field data. 

 

Species-specific biomass relationships were analyzed for 125 plots (excluding 

barren and meadow plots). Classification of field plots by vegetation type/species 

before biomass estimation from LVIS improved prediction accuracy (r
2 

= 0.84, 

RMSE = 58.78 Mg/ha) (Fig.2-6d). The maximum increase in predicted values were 
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observed for MHC/MHW plots with hardwoods as dominant vegetation (r
2
 = 0.94, 

RMSE = 12.7 Mg/ha). For other dominant vegetation types, there was little change or 

even a slight increase in RMSE with species stratification (Table 2-5). RH75 was 

again the single best predictor of biomass for almost all vegetation types. AVIRIS 

metrics showed strong correlation with biomass for pines and hardwoods (r
2
 greater 

than 0.7). Relationship between AVIRIS metrics and field biomass decreased 

considerably (r
2
 less than 0.45) in high biomass plots of red fir (Abies magnifica) and 

mixed conifers.  

 

Table 2-4 The predictive power of AVIRIS metrics alone , LVIS metrics alone , LVIS + 

AVIRIS metrics and LVIS metrics after species stratification of field data was tested over 

125 1ha plots. Suitable predictor variables were selected using AIC criteria. The best model 

was obtained by predicting biomass with LVIS variables after stratifying field plots into 

WHR/species type 
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Statistical Significance of Models  

Confidence intervals for coefficients of determination were calculated for all 

the models used to predict biomass (Fig. 2-7). Prediction using lidar variables alone 

showed a statistically significant improvement over the model using AVIRIS 

variables alone. Addition of AVIRIS variables to LVIS did not show a significant 

improvement over LVIS metrics alone. Species stratification prior to lidar estimation 

of biomass reduced prediction errors from LVIS alone by 12%, but the reduction was 

again not statistically significant. However, confidence intervals for the model using 

species stratification were narrower than the other models.  

 

Fig. 2-7 Co-efficients of determination
 
for predicted biomass with 95% confidence intervals. 

Narrower confidence intervals for LVIS + species stratification suggest a small improvement, 

but overlap of intervals shows that it is not statistically significant. 
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2.6.2 Landscape level  

Classified land cover map 

An error matrix was generated to assess the accuracy of the AVIRIS image 

classification. 183 reference spectra were modeled using 47 spectra in the selected 

MESMA model. Classification results showed an overall accuracy of 87.7% for level 

1 (genera/species) with a kappa value of 0.86 (Table 2-6). Errors were higher because 

of mixing between white fir (Abies concolor) and red fir (Abies magnifica) spectra. 

Level 2 classification (plant functional type/ genera) had a higher accuracy of 93%. It 

was noted that around 14 spectra in the original library were left un-modeled. Visual 

comparisons showed the dominant vegetation types in the AVIRIS maps were similar 

to WHR types in the USDA Forest Service map. At the hectare level, we generated an 

error matrix using WHR types from field polygons as reference (Table 2-7). Overall 

accuracy for this classification was 69.5%. Accuracy could be lower (45%) in areas 

with greater mixing between pines, firs, and hardwoods. Accuracy was also lower 

because the reference maps were classified as discrete polygons and were at a coarser 

scale than the AVIRIS classified map.  
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Table 2-5 Biomass was predicted using a single lidar equation before species stratification 

and a different equation for each species after stratification of field plots  by WHR type. 
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Table 2-6 Error matrix for level 1 (genera/species) classification of AVIRIS images using 47 

2-endmember MESMA models. Overall Accuracy = 87.7 % Kappa =0.86, Kappa variance = 

0.001 

 
 

 
Table 2-7 Error matrix showing classification accuracy at hectare level. WHR types from 

field polygons were used as ground reference. Overall accuracy = 0 69.5% 

 
 

Biomass 

Biomass maps predicted from LVIS before and after species stratification 

showed large differences in spatial variability, mainly in forests with hardwoods and 

pines as dominant vegetation type (Fig. 2-8). Histograms of biomass distribution 

before and after species stratification showed increases in predicted values for both 
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hardwoods and pines in low biomass ranges (<50 Mg/ha) and decreases in high 

ranges (> 200 Mg/ha) (Fig. 2-9). High biomass firs and mixed conifer stands showed 

little variation in predicted values before and after species stratification. Histograms 

of biomass for hardwoods and pines derived using classified AVIRIS maps and from 

USDA Forest Service vegetation maps showed similar trends in low and high 

biomass ranges. 

 

Fig. 2-8 Landscape maps of biomass were generated from LVIS before (8a) and after species 

stratification of AVIRIS imagery (8b), using equations in Table 2-4 & 2-5. Forests dominated 

by pine and hardwood species (e.g. black rectangle) show more spatial variations in predicted 

biomass. 

 

Stressed Biomass  

Combined analysis of AVIRIS and LVIS metrics revealed spatial patterns that 

could not be detected from either sensor alone (Fig. 2-10). For most of the study area, 

water band indices, red edge derivatives and vegetation indices had very low values 
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over barren land, exposed rock surfaces, and higher values over dense forests and wet 

meadows. However, we found low values for water band indices and vegetation 

indices in some high biomass (>200 Mg/ha) forests, particularly in red fir stands 

around the Teakettle Experimental Forest (Smith et al., 2005) and some mixed conifer 

stands. (Fig.2-11). NPV fractions were also high in the areas where we detected water 

and chlorophyll stress (Fig.2-12).  

 

 

Fig. 2-9 Histograms showing differences between biomass predicted before (9a, 9c) and after 

(9b, 9d) species stratification of AVIRIS imagery. Stratification for hardwoods and pines 

increased predicted values in low (<50 Mg/ha) ranges and decreased values in high ranges 

(>200 Mg/ha) of biomass.   

 



 

 41 

 

 

Fig. 2-10 Landscape maps of biomass, canopy cover, NDWI and D1GVI used for detecting 

water and chlorophyll stress in high biomass forests. 

 

Fig. 2-11 Map showing high and low stress in stands with high biomass (>200 Mg/ha). 

Height of bars represents biomass values.  
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Fig. 2-12 Spatial distribution of non-photosynthetic vegetation (NPV) fractions within 

canopies for one AVIRIS image (1 ha level). Stands with high biomass and stress (Fig.2-11) 

also showed high NPV values. 

 

2.7 Discussion  

Our first objective was to test the efficacy of combining hyperspectral metrics 

with lidar variables for biomass prediction. AVIRIS band indices and MESMA 

fractions added little explanatory value to LVIS, even though they explained around 

60% of the variability in biomass at the stand level. This was because of strong 

correlations between LVIS and AVIRIS metrics, particularly water band indices and 

shade fractions. Similar relationships between field measured canopy height and 

shade fractions were reported by Numata et al. (2008). Shade fractions are related to 

canopy structure, so this correlation is not unexpected. Roberts et al. (2004) showed 

that liquid water is highly sensitive to LAI, which may explain the observed 

correlation between water band indices and structural metrics from LVIS that respond 

most strongly to photosynthetic leaf material. Our results also showed that narrow 



 

 43 

 

band AVIRIS metrics such as red edge derivatives were more sensitive to biomass 

than NDVI, similar to Elvidge and Chen (1995), Roberts et al. (1997), and Roberts et 

al. (2004). However, these metrics suffered saturation effects over the high biomass 

range of this study area.  

Although AVIRIS metrics did not add much predictive power in our 

moderately high biomass test area, shade fractions and water band indices may be 

useful in areas with lower biomass and little or no lidar coverage. Approximately 

40% of the world‟s forests fall in the low canopy height, low biomass category 

(Bergen et al., 2006), where lidar performance is largely untested. The potential of 

hyperspectral and other optical imagery in extrapolating forest structure from lidar 

samples in such areas requires further investigation. 

Previous studies combining lidar with multispectral (Hyde et al., 2007a), radar 

(Hyde et al., 2007b) and hyperspectral sensors (Anderson et al., 2008) have shown 

that lidar was more useful than other sensors for biomass prediction. Our results 

further support this. Drake et al. (2002a) and Anderson et al. (2008) have shown the 

predictive power of the RH50 metric and suggested the use of canopy cover to 

improve biomass estimates from LVIS. We additionally included RH75 and canopy 

cover to the variables used by Hyde et al. (2005) for the Sierra Nevada. Although 

both RH50 and RH75 were strongly correlated with biomass, RH75 was consistently 

selected as the best predictor variable in all regression models. One probable reason 

could be the species composition and vertical foliage distribution in this study area. 

Further analysis of lidar waveforms, foliar profiles, and stem densities within lidar 
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footprints is required to understand the physical significance of RH75 in biomass 

estimation for the Sierra Nevada.  

The issue of the efficacy of fusing lidar and hyperspectral data for species 

level biomass estimation remains open. Similar to Anderson et al. (2008), our results 

show that a combination of LVIS and AVIRIS metrics improves biomass estimates 

marginally than using either sensor alone. Anderson et al. (2008) found that AVIRIS 

metrics explained most of the variability in species fractions of biomass for 

northeastern temperate forests. Our results show that LVIS metrics were better 

predictors of species level biomass (Table 2-5) while AVIRIS metrics were mostly 

redundant when combined with LVIS. One reason could be the difference in tree 

species in the Sierra Nevada as compared to Bartlett. Most of the species in Bartlett 

are broadleaf deciduous, while in the Sierra Nevada they are conifer dominants. 

Another reason could be that the predictive power of AVIRIS is higher when lidar 

relationships with biomass are weaker as observed in the Bartlett Experimental 

Forest. A study by Roth (2009) showed similar results for the Smithsonian 

Environmental Research Center (SERC) study site. Lidar metrics in the Sierra 

Nevada study area were strongly correlated with biomass, so addition of AVIRIS 

probably did not show much improvement.  

 The overlap of confidence intervals of the co-efficients of determination 

before and after species stratification suggests that overall predictive power for 

biomass was not significantly higher at the species level for our study area. Part of the 

reason for this could be the relatively small sample size used in this study. The 

dominance of high biomass mixed conifers and low abundance of deciduous species 
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in the study area could have also affected the results. Yet another factor could be the 

relatively coarse spatial scale of 1 ha used in our study, one that is large enough to 

encompass various species and canopy configurations. These limitations aside, 

stratification seemed to perform better at lower biomass levels. Increased prediction 

accuracy, lower RMSE values, and narrow confidence intervals suggest a small 

improvement with species stratification (Fig. 2-7). 

We tested both linear and non-linear variables for all regression models. Best-

fit models were obtained with linear combinations of variables. Although there is an 

apparent non-linear trend in Fig. 2-6a and Fig. 2-6c., it is because of the poor 

predictive power of the models in low biomass plots (<50Mg/ha). The RMSE values 

from the regression models should be interpreted in terms of model-to-model 

comparisons rather than an absolute measure of accuracy in a mapping perspective. 

Spatial predictions of biomass from LVIS were quite different before and after 

species stratification by AVIRIS. Relative to species-level equations, a single lidar 

equation underestimated values in the lower ranges and overestimated it in the higher 

ranges of biomass, particularly for hardwoods and pines. Using a different lidar 

equation for hardwoods and pines reduced apparent errors in lower ranges of biomass 

for both these vegetation types (Fig. 2-9b & 2-9d). The trend towards reduced error 

and improved prediction accuracy was clear (Fig. 2-7) even at stand level analysis for 

hardwoods but not for pines.  

Fusion of lidar and hyperspectral sensors at species level and in areas with 

low biomass is an important remote sensing research requirement (Rosenqvist et al., 

2003; Treuhaft et al., 2004; Bergen et al., 2006). Our study shows that species 
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stratification could potentially improve predictions from sparse lidar samples, in low 

biomass regions better than fusion with spectral metrics. More work is needed to 

confirm these results over larger samples and homogenous stands. Improving 

classification accuracies for individual species by using field spectra may further 

refine spatial prediction of biomass from AVIRIS. Also the optimum level of 

classification (plant functional type, genera or species) and scale (1 ha or less) must 

be studied further.  

Intuitively, we would expect species stratification to provide an improvement 

because the data used for biomass ground truth is routinely derived from forestry 

tables on a species-level, just as we did in our research here. However, there is the 

larger, and unanswered question, of whether lidar metrics are sensitive to species-

level differences in canopy vertical structure, canopy gap spatial pattern, stem density 

and stem spatial pattern, among others, that should be predictive of biomass, and at 

what spatial scales. While species-specific predictions as applied in this study could 

improve estimates over other forested areas, the true impact of a priori stratification 

may never be known unless this problem is explored thoroughly.  

We did not expect a significant change in species composition within the time 

lag between lidar and hyperspectral data acquisition. However, some uncertainty in 

spectral metrics related to changes in structure and stress may have affected the 

outcome. Another limitation was that only large trees (>76cm dbh) were measured in 

1 ha plots. Footprint level plots (0.07 ha) included measurements of all trees above 

10cm dbh but were not included in this study because of increased geolocation errors 

between reprocessed LVIS data and 2000/2001 field plot centers. Better geolocation 
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of field, lidar, and hyperspectral data may help, but this may also only increase 

correlation between metrics rather than improve biomass estimates.  

Spatial maps of various AVIRIS metrics in combination with LVIS maps 

showed increased water stress in many high biomass red fir (Abies magnifica) and 

mixed conifer stands. High values of NPV fractions within canopies in addition to 

low vegetation and water band indices, suggests increased stress and mortality in 

these areas. Moisture stress was high in open stands with more canopy gaps as well as 

in dense stands, consistent with findings from Smith et al., (2005). Our results are 

similar to recent studies linking water stress and increased tree mortality in the Sierra 

Nevada (van Mantgem et al., 2009; Lutz et al., 2009). 

Areas within the Teakettle Experimental Forest (North et al., 2002), where red 

fir was the dominant vegetation type also showed a large number of NPV spectra in 

the 2003 AVIRIS images. Subsequent field observations in 2008 showed abundant 

dead trees as well as evidence of logging in these areas. Further analysis is required to 

confirm whether stress maps from 2003 AVIRIS images showed early indications of 

the tree mortality observed in 2008. Presumably, lidar/hyperspectral data could be 

used to map areas of high stress and mortality in response to climate change as 

suggested by Van Mantgem et al. (2009). 

 

2.8 Conclusion 

Species stratification may improve predictions from lidar, a result only 

suggested by our work, as overall predictive ability did not improve significantly; 

however, confidence intervals were narrowed and biomass showed very different 
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spatial variability when mapped across the landscape. Extrapolating structure from 

lidar samples with stratified optical data can be a promising strategy for mapping low 

biomass forests from future space borne lidar sensors such as DESDynI. Such 

species-specific biomass maps have the potential to be exceptionally useful for 

carbon and ecosystem modeling. 

AVIRIS indices and MESMA fractions provide quantitative measures of 

canopy condition and can be of considerable value in ecological applications, when 

combined with lidar. We demonstrated one such application here, by mapping stress 

in high biomass forests of Sierra Nevada. Stress maps can serve as early indicators of 

mortality, drought, and fire susceptibility in old growth forests and help improve 

forest management practices. Classified vegetation maps can be further used to study 

regeneration from fire or combined with small footprint lidar data to map individual 

tree biomass/mortality. 

Lidar can provide measures of vertical structure such as canopy height, 

understory cover, and foliage diversity while species composition, stress, and 

decadence can be obtained from hyperspectral data. Fusion of the two sensors is 

therefore, powerful for biodiversity and habitat studies. Future research will focus on 

combining the two sensors for mapping potential habitats for rare and endangered 

bird species. 
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Chapter 3 Mapping Canopy Height and Biomass Dynamics in 

the Sierra Nevada using Waveform Lidar 

3.1 Introduction  

Changes in forest structure from disturbances such as fires, wind throw, insect 

outbreaks and logging reduce the amount of carbon stored in the form of 

aboveground biomass. On the other hand, recovery from disturbances and growth in 

canopies increases biomass and carbon storage. The lack of quantitative estimates of 

such changes leads to large uncertainties in carbon flux in forests (Houghton et al., 

2010). Improved measurements of canopy dynamics are critical for reducing these 

uncertainties (Frolking et al., 2009) and understanding how ecosystems respond to 

disturbances (NRC, 2007). 

Field data on canopy dynamics are generally sparse spatially with most in the 

form of averages at coarse resolutions (Houghton, 2005). Although passive remote 

sensing data have been extensively used in change detection (Coppin et al., 2004), the 

focus has been on mapping areal extents of change and estimating carbon flux with 

models. It has been suggested that these models can be improved or validated 

independently with direct measurements of canopy height and biomass changes from 

active remote sensing (Houghton et al., 2010). 

Light Detection and Ranging (lidar) is an active remote sensing system that 

can measure and map three-dimensional vegetation attributes, including canopy 

height and cover, at various spatial scales. Lidar metrics have been used to derive 

aboveground biomass in tropical and temperate forests (Lefsky, 2002a; Drake et al., 
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2002a; Hyde et al., 2005; Anderson et al., 2006; Dubayah et al., 2010) with greater 

accuracies than other remote sensing data. Most lidar maps of forest structure, 

however, are static and do not provide information on changes (Frolking et al., 2009). 

There is considerable interest in directly mapping canopy dynamics from temporal 

lidar data, but the errors and accuracies are largely unexplored. 

In a recent study, Kellner et al. (2009) used small footprint lidar data with 

high spatial resolution to quantify gaps and analyze height transitions over old-growth 

tropical forests in Costa Rica. By comparing lidar height distributions from 1997 and 

2006 with projected equilibrium conditions, they showed that these forests were in 

steady state, i.e., canopy height increases from growth balanced losses from tree 

mortality. Dubayah et al. (2010) further quantified canopy height and biomass 

changes across successional types at La Selva with medium footprint (25 m) lidar 

data and also mapped the distribution of potential carbon sources and sinks. This 

study evaluated the strengths and challenges of measuring changes from medium 

footprint lidar and discussed its implications for future space-borne sensors.  

Simultaneous observations of airborne lidar and field data over a span of 

nearly a decade in the Sierra Nevada in the western United States provide an 

opportunity to test similar approaches in temperate montane forests. These forests are 

increasingly becoming a cause of concern because of catastrophic fires, insect attacks 

and higher-than-usual tree mortality from moisture stress (van Mantgem et al., 2007). 

Empirical maps of changes can help improve management efforts for fire, timber and 

habitat conservation. 
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The goal of this study was to evaluate the use of temporal lidar data from the 

Laser Vegetation Imaging Sensor (LVIS) in quantifying and mapping canopy 

dynamics over the montane forests of the Sierra Nevada. We tested whether LVIS 

measurements in 1999 and 2008 could predict canopy height and biomass changes 

observed in the field. We also evaluated the potential of directly measuring canopy 

dynamics from lidar data at footprint, plot (0.07 ha) and hectare scales. Results from 

this research can add to the growing body of knowledge on lidar remote sensing 

applications for forest monitoring and carbon modeling. 

 

3.2 Study Area and Data 

3.2.1 Study Area 

The study site lies in the Sierra National Forest in California, USA (Fig. 3-1). 

The region is characterized by a Mediterranean climate and has elevations ranging 

from 1000 m to 2500 m. Distribution of vegetation is largely determined by climate 

and topography (Raumman and Soulard, 2007). Dominant tree species include red fir 

(Abies magnifica), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and 

California black oak (Quercus kellogi). The landscape is a mosaic of patchy and 

heterogeneous forests (North, 2002), shaped by natural and anthropogenic 

disturbances such as fire (Collins et al., 2006), insect outbreaks, (Das et al., 2008), 

thinning treatments for fire suppression (Rambo & North, 2009) and commercial 

timber harvests (Raumman and Soulard, 2007). A major portion of the study site is 

under uneven-aged forest management. Patches of mixed tree species are in different 
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stages of regeneration from past disturbances (Kern et al., 2008). Areas reserved for 

old growth and wildlife habitats are relatively undisturbed (Hunsaker et al., 2002).  

 

Fig. 3-1 Study site in the Sierra National Forest, California showing field plots measured in 

2000/2001 and 2008.   

 

3.2.2 Field Data 

A detailed description of field data acquisition in the Sierra Nevada is 

available in Pierce et al., (2002) and Hyde et al., (2005). Field surveys were 

conducted in 2000/2001 (Hyde et al., 2005) in over 285 concentric circular plots with 

0.07 ha and 1 ha areas, respectively (Fig. 3-2). Structural variables including location, 

tree height, diameter at breast height (dbh), crown form and species were recorded for 

all trees greater than 10 cm dbh within the inner 0.07 ha plot. In the outer 1 ha plots, 

dbh and height for trees greater than 76 cm were recorded. In 2008, we re-measured 
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25 of these plots to obtain a statistically representative sample of canopy height, 

cover, biomass and topography. The 2008 1 ha plots were subdivided into 9 square 

subplots (3X3) with 33.3 m on each side (0.11 ha) and were oriented upwards along 

slopes (Fig 3-2). The square subplots were slightly larger than the 2000/2001 inner 

circular plots to account for collocation offsets between lidar and field data. In the 

central subplot, all trees mapped in 2000/2001 were identified and re-measured. In the 

8 outer subplots, dbh was recorded for trees greater than 10 cm. The hectare data 

from 2000/2001 were not used in this study because only large trees were measured. 

 
Fig. 3-2 Schematic  layout of field plots in 2000/2001 and 2008. The 2008 square 

subplots were slightly larger than the inner circular plots to account for geolocation 

shifts between field and lidar data. Plots were oriented upslope.   

 

3.2.3 LVIS Data  

The Laser Vegetation Imaging Sensor (LVIS) is a large footprint waveform 

digitizing, scanning laser altimeter, designed and developed at NASA‟s Goddard 

Space Flight Center. LVIS operates at altitudes up to 10 km with a 7º field of view 

and uses laser pulses with a wavelength of 1064 nm for profiling vertical vegetation 
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structure (Blair et al., 1999). The entire outgoing and return signal is digitally 

recorded to provide a waveform describing the reflected energy from intercepted 

surfaces. NASA flew LVIS over the Sierra National Forest in the summer of 1999 

with trees in leaf-on condition. The lidar shots had a nominal footprint radius of 12.5 

m. Footprints were contiguous across track and overlapping along track, covering an 

area of about 175 sq. km. (See http://lvis.gsfc.nasa.gov/). Final coverage was denser 

in some areas because of repeated flight lines.  The site was re-flown in 2008 to 

acquire coincident data. Parts of the study area were not mapped in one or both years 

because of cloud cover, flight path irregularities, and noise. These „no data‟ areas 

were larger in 1999 as compared to 2008, which oversampled the study area. Because 

of overlapping flight lines, the number and spatial distribution of lidar footprints 

varied between years across the landscape. 

The digitized LVIS return signals were geolocated with respect to the WGS84 

ellipsoid. LVIS waveforms were processed using Gaussian decomposition methods 

outlined in Hofton and Blair (2002). Ground elevation was determined by finding the 

mode of the lowest peak in the waveform with amplitude greater than 3 σ of the 

noise. The canopy top was identified as the largest return above the noise threshold at 

the top of the waveform. The difference between the ground return and canopy top 

was measured as canopy height (RH100). Other metrics calculated from the 

waveform were heights of 25% (RH25), 50% (RH50), 75% (RH75) energy return 

(Drake, 2002a; Hyde et al., 2005; Anderson et al., 2006), canopy cover (Ni Meister et 

al., 2001). A detailed description of LVIS waveform processing and associated errors 

is available in Hofton et al. (2006) and Dubayah et al. (2010).  

http://lvis.gsfc.nasa.gov/
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Because of potential ground finding errors, canopy elevation metrics, i.e., 

LVIS RH + elevation, hereafter „RHE‟ were used wherever possible (see Dubayah et 

al., 2010 for a detailed description). RH metrics were used for predicting biomass 

separately from 1999 and 2008 LVIS data because RHE metrics were not applicable 

to individual year predictions. At footprint scale, we minimized elevation errors and 

therefore used RH metrics (described below) to measure changes. For height changes 

across the landscape, RHE metrics were used because this method of correction is 

only applicable to co-incident footprints as opposed to characterizing changes over 

target 0.07 ha and 1 ha areas that use averages of footprints within each year. 

 

3.3 Methods 

The datasets used in this study were projected to UTM 11N and WGS 84 

ellipsoid. LVIS waveforms were processed using IDL 7.2
©

 and analyses were 

performed using ESRI
©

 Arc GIS 9.3 and R
©

 statistical software. We first tested 

whether lidar plot average change metrics were sensitive to canopy height and 

biomass changes observed in the field between 1999 and 2008 using linear and 

stepwise regression methods. Next, we directly calculated height changes in nearly 

coincident LVIS footprints and analyzed canopy height dynamics using transition 

probability matrices. Finally, we mapped canopy height and biomass changes across 

the landscape at 0.07 ha and 1 ha scales and validated these changes outside of plot 

data areas with optical imagery (See Fig. 3-3). 
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Fig. 3-3 Flowchart showing summary of methods and LVIS RH/RHE metrics used. 

 

3.3.1 LVIS and field measured changes  

Out of the 25 re-measured 0.07 ha field plots, 18 had a tree-to-tree stem plot 

match in both years. One plot was removed because the 1999 LVIS footprints were 

close to the edge of the plot (Fig. 3-4) leaving 17 plots for analyses. Maximum, 

average and Lorey‟s (basal area weighted average) heights were calculated for both 

years. Aboveground biomass was calculated as the sum of bole, bark, live branch, and 

foliage for each tree using species-specific allometric equations from the California 

Inventory Manual (Waddell & Hiserote, 2003). For dead trees, biomass also 

calculated using bark and bole biomass, excluding foliage and live branches (Kim et 

al., 2009). Total biomass changes (2008-1999) for all live and dead trees within each 

plot were summarized. Neither 1999 nor 2008 were LVIS footprints exactly 
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coincident with field plot centers, so we averaged ∆RHE metrics for all footprints that 

had their centroids within the 0.07 ha plots. Lidar metrics were validated with field 

attributes for each year separately. Changes in lidar and field data were compared 

using linear and stepwise regressions.  

 

Fig. 3-4 Geolocation shifts between field plot locations and lidar data affected comparisons of 

LVIS and field metrics. The two 1999 LVIS footprint centers are 7m and 14.5m away from 

plot center respectively. The 2008 LVIS data (only footprint centroid shown) oversampled 

field plots but were not co-incident with field plot centers. 

 

3.3.2 Coincident footprint dynamics  

Height changes 

Assuming that coincident footprints have no elevation difference in the time 

period studied (e.g., from tectonics, erosion etc.), we determined the relative 

geolocation shift between the two datasets by finding the distance at which average 

elevation errors were near zero. LVIS footprint centers from 1999 and 2008 were 

selected from the entire coverage (not the study area alone), at consecutive 0.5 m 
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distance intervals, i.e., 0-0.5 m, 0.5-1 m, 1-1.5 m and so on. Average elevation errors 

were plotted as a function of distance  

(Fig.3-5).  

 

Fig. 3-5 Average ground elevation error between 1999 and 2008 (∆ ZG)  as a function of  

distance between lidar footprints. Errors were lowest at 15% trimmed means and closest to 

zero for shots between 2 and 2.5m distance from each other. This suggests an average relative 

geo-location error of 2 - 2.5m between 1999 and 2008 footprints. 

 

Trimmed means (Caprra & Rivest, 1995) of errors were also plotted along 

with original errors for all distances. Trimming allows the removal of outliers or 

extreme values affecting the mean, most of which in this case were related to 

instrument noise and ground finding errors in the data rather than actual change. The 

lowest average elevation errors were obtained with 15% trimmed means (15% 

extreme values on either side of the mean removed). Errors after trimming were 

closest to zero for a footprint distance of 2-2.5m and increased thereafter. This 

suggests an average relative geolocation shift of 2-2.5 m between the two datasets. 



 

 60 

 

We therefore used only those lidar footprints that were between 2 and 2.5 m of each 

other with 15% trimmed means for analyzing footprint level height changes. Paired t-

tests were used to determine whether the overall height changes from co-incident 

footprints were significant. 

 

Height transition matrix 

Transition probability matrices or Markov chains have been extensively used 

to analyze forest transitions from one ecological state to another (Usher, 1981; Hall et 

al., 1991). A transition matrix gives the probability of an element in „j‟ class at time„t‟ 

to be in „i‟ class at time „t+1‟ (Biondini & Kandus, 2006). A basic assumption is that 

the future state of an element in the matrix depends only on the current state and not 

on past conditions (Perry & Millington, 2008). Transition matrices have been used to 

study canopy height dynamics in tropical forests using lidar observations (Kellner et 

al., 2009; Dubayah et al., 2010) and temperate forests using aerial photographs 

(Tanaka & Nakashizuka, 1997). Matrices were generated in this study using LVIS 

heights (RH100) from the co-incident footprints corrected for geolocation errors. The 

rows of the height transition matrix show the likelihood of canopies occupying past 

height classes or retrospective probabilities, while the columns show those occupying 

future classes or prospective probabilities. The diagonal shows probabilities of 

staying in the same class or no net change. The triangle above the diagonal shows 

probabilities canopy height loss while the one below the diagonal shows probabilities 

of growth.  
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Forest transitions are expected to eventually reach a steady or equilibrium 

state, similar to a Markov chain. By analyzing transition probability matrices, it is 

possible not only to compare changes within a given time interval, but also project 

distributions into the future at successive time intervals, provided the disturbance 

regime remains fairly unchanged (Usher, 1981; Caswell, 2000). Canopy height 

projections over successive nine-year time intervals were calculated as x (t) = x*P
t 
, 

where x is the height distribution at time t and P is the transition matrix (Perry & 

Millington, 2008). Steady-state canopy height projections were obtained by solving 

for the dominant right-handed eigenvector of the matrix (Caswell, 2000).  

 

3.3.3 Landscape level changes from LVIS 

Direct canopy height changes (0.07 ha and 1 ha) 

In addition to calculating changes at footprint scale, we also analyzed spatial 

patterns of change across the landscape. The 0.07 ha scale was used to create a map 

comparable to field plot scale and the 1 ha scale was used because it is a scale used 

for analyzing biomass dynamics with models (See Dubayah et al., 2010). Canopy 

elevations (RhE100) from LVIS footprints within 0.07 ha and 1 ha grids were 

averaged and subtracted to map changes across the landscape. To determine how 

many grid cells showed statistically significant change at 95% confidence, we 

compared height changes within each cell using the non-parametric Wilcoxon-Mann-

Whitney rank sum test. This test was preferred to the two sample t-tests because the 

number of lidar footprints within each grid cell was small, and normal distribution 

could not be assumed. The Wilcoxon-Mann-Whitney test ranks observations from 
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both datasets and calculates the probabilities of the distributions being identical or 

significantly different. Results from the test were mapped across the landscape at both 

0.07 ha and 1 ha scales. 

 

Predicted biomass changes (0.07 ha and 1 ha) 

The selection of field plots in 2008 was to cover the range of biomass for 

DESDynI rather than biomass change. The lack of sufficient re-measured field plots 

made it difficult to derive an equation to predict changes across the landscape as in 

Dubayah et al. (2010). We therefore estimated biomass individually for each year 

using a lidar regression equation derived over 126 0.07 ha field plots measured in 

2000/2001. A similar approach was tested over 215 subplots (9 subplots in each 1 ha 

plot) measured in 2008. Predictions from both years were similar but the 1999 

regression had lower residual errors. Field allometry was also more robust in 

2000/2001 because biomass was calculated with both dbh and height as against only 

dbh in 2008 using Jenkins et al., 2003. We therefore used the 1999 lidar equation to 

predict biomass for both years and subtracted the two products to map changes across 

the landscape. Statistically significant changes were identified by selecting areas 

where 95% prediction intervals for both years did not overlap. The same equation was 

applied to average RH metrics at 1 ha scale.  

 

Comparisons with optical imagery/landuse maps 

Spatial maps of change from LVIS at 1 ha scale were compared with optical 

imagery as an alternate form of validation since plot level changes could not be 
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validated with field measurements as described. A visual metric was used to validate 

height losses with high resolution using aerial photos (Google Earth
©

). A random 

sample of 100 1 ha cells with significant canopy height loss estimated from LVIS was 

overlaid with temporal aerial photos and visually assessed for canopy cover change. 

We also compared canopy height changes with Land Management maps (USDA 

Forest Service, 2006). More canopy height increases were expected in protected areas 

than in areas under timber management. Lastly, we compared height change maps 

with stress maps (Swatantran et al., in press) generated in a previous study with lidar 

and hyperspectral data. The high stress areas had biomass > 200 Mg/ha but low 

moisture and chlorophyll content while low stress areas had both high biomass and 

high moisture/chlorophyll content. We hypothesized that areas predicted as high 

stress from hyperspectral data would show more canopy height losses and vice versa.   

3.4 Results 

3.4.1 LVIS and field measured changes 

We used RH metrics for validating lidar data for individual years and RHE 

metrics for change comparisons. Field heights were strongly correlated with RH100 

for both 1999 and 2008 with similar root mean squared errors (R
2
= 0.84, RMSE = 

4.41 m for 1999 and R
2
 = 0.85, RMSE = 4.07 m for 2008) (Fig. 3-6). RH50 was a 

good predictor of biomass for both years and prediction errors were similar (R
2
= 0.70, 

RMSE = 186.4 Mg/ha for 1999 and R
2 

= 0.79, RSE = 167.5 Mg/ha for 2008) (Fig. 3-

7). Although LVIS metrics and field attributes were in good agreement for individual 

years, changes in RHE metrics did not show any clear relationship with changes in 

average height, Lorey‟s height or biomass from field data. We discussed possible 
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reasons for this; however, the most important one was that changes in re-measured 

field plots were too small (Fig. 3-8) to be detected by LVIS. 

 

Fig. 3-6 Maximum field height was strongly correlated with LVIS RH100 for both years with 

similar errors. 

 

 

 

Fig. 3-7 Field biomass was strongly correlated with LVIS RH50 for individual years with 

similar errors. Note that these equations were not used to predict biomass for 1999 and 2008 

across landscape. 
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Fig. 3-8 Distribution of maximum field height changes relative to 1999 heights (a) 4 plots 

showed  height decreases greater than 4m. The remaining show small changes, with increases 

slightly exceeding decreases. Biomass change relative to 1999 biomass (b)Two plots showed 

more than 50Mg/ha biomass gain and two less than 50Mg/ha loss. Both height and biomass 

changes were too small to be detected by LVIS metrics. 

 

3.4.2 Coincident footprint dynamics  

Height Changes 

LVIS footprints between 2 and 2.5 m of each other were selected with 15% 

trimmed means to reduce geolocation and elevation errors. This resulted in a 

comparison of over 100,000 coincident footprints. Since elevation errors were 

reduced to a minimum, there was practically no difference between ∆RH and ∆RHE 

metrics for these footprints, e.g., average ∆RH100 was 0.69 m +/- 7.94m and 

∆RHE100 was 0.69 +/ 7.91 m SD. Paired t-tests showed overall small but statistically 

significant positive changes in all LVIS RH metrics (Table 3-1).  
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Table 3-1 Changes in LVIS RH metrics from nearly co-incident footprints. 

 

 

Height transition matrix  

In general, the probabilities along the diagonal of the transition matrix or the 

likelihood of canopies staying in the same class were higher than transitions to other 

height classes (Table 3-2). Shorter canopies (< 40 m) showed more transitions to the 

immediate higher 5 m height class. Transitions to higher and lower classes were 

nearly equal between 35-40 m. In canopies taller than 40 m, shifts to lower height 

classes were more likely than shifts to higher height classes. Beyond 60 m, there was 

an abrupt drop in the probability of canopies staying in the same class while 

transitions to lower height classes increased exponentially (Fig.3- 9). There was a 5 -9 

% probability of transitions to higher classes showing growth of more than 10 m. 

Height distributions from coincident footprints were bimodal in both 1999 and 2008 

and did not match the projected steady state (Fig.3-10) although 2008 heights were 

closer to equilibrium than 1999. Projections from the transition matrix showed that 

canopy heights would gradually shift towards a normal distribution over successive 

nine-year time intervals and would hypothetically reach steady state in about 350 

years under the current disturbance regime (Fig. 3-10). 

 

 

 

 



 

 67 

 

 

 

Table 3-2 Transition matrix for LVIS canopy heights (RH100) co-incident footprints 

in 1999 and 2008. Reading down columns gives prospective transition probabilities.  

Reading across rows gives the retrospective transition probabilities. The diagonal 

shows the probability of staying in the same class.  

 

 
Fig. 3-9  Probability of transition to a higher height class is greater  for shorter canopies, < 

40m. In taller height classes (> 60m), losses increase exponentially and probability of staying 

in the same height class is very low.  
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Fig. 3-10 Canopy Height (RH100) projections from the transition matrix at successive nine 

year time intervals (t) from 1999 to steady state in 2431 (t = 38). 

 

3.4.3 Landscape level canopy height and biomass changes 

 

 Direct canopy height changes (0.07 ha and 1 ha) 

Landscape maps of ∆RHE100 showed many areas with losses greater than 10 

m and also areas with more than 5 m growth (Fig. 3-11). The Wilcoxon-Mann-

Whitney test identified significant changes in 7% of the grids at 0.07 ha scale and in 

28% at hectare scale (Fig. 3-12). Spatial patterns of significant changes were similar 

at both scales with more than 65% being positive.  

 

Predicted biomass changes (0.07 ha and 1 ha) 

The 1999 lidar regression equation (Biomass =  0.50 * max RH75
2
 –19.71* 

sdRH75 + 40)  had a lower coefficient of determination (R
2 

= 0.67, RMSE = 235 
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Mg/ha, Fig. 3-13a.), but also lower residual errors than the 2008 regression equation 

(Biomass = 0.81* mean RH75
2 

 +88.8* sdRH25 -58.52* mean RH25 -70.5, R
2 

= 0.72, 

RMSE = 258 Mg/ha, Fig. 3-13b) and was used to predict biomass for both years. 

Errors were high with this equation because biomass range was as high as 3000 

Mg/ha. Note that we did not use the equation derived over 17 field plots (Fig. 3-14) 

for this analysis because it does not cover the entire biomass range. When 95% 

prediction intervals were applied to predicted biomass for both years, around 33% of  

intervals did not overlap or were significant at 0.07 ha scale and 23% were significant 

at 1 ha (Fig. 3-15). At both scales, more than 65% of the significant changes were 

positive. Only 25% of the areas with significant height changes at 1 ha also had 

significant biomass changes (Fig. 3-13 & Fig. 3-15). For better clarity, 0.07 ha 

changes are shown only around the Teakettle region (North et al., 2002), an 

experimental forest of interest in the study area. 
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Fig. 3-11 Canopy height changes were mapped across the landscape by directly calculating 

average ΔRHE100 from 1999 and 2008 LVIS data. Inset shows losses and gains at 0.07 ha 

scale over the Teakettle Experimental Forest 

 

Fig. 3-12 Statistically significant RHE100 changes were mapped across the landscape using 

non parametric tests. Inset shows losses and gains at both scales over the Teakettle 

Experimental Forest. Histogram shows net positive change. 
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Fig. 3-13 Regression equations derived for predicting biomass from LVIS and 2000/2001 

field data (a) and all 2008 subplots (b). The 1999 equation was used to predict biomass for 

both years. 

 

Fig. 3-14 Biomass changes predicted from LVIS (2008 – 1999) RH metrics at plot and 

hectare scales. Inset shows losses and gains at 0.07 ha scale over the Teakettle Experimental 

Forest. 
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Fig. 3-15 Statistically significant biomass changes were mapped across the landscape. Inset 

shows losses and gains at both scales over the Teakettle Experimental Forest.  Histogram 

shows net positive change. 

 

 

Comparisons with optical imagery/landuse maps 

Canopy height and biomass changes at 0.07 ha and 1 ha matched expected 

landuse patterns but height changes were more comparable with optical imagery and 

landuse maps (Fig. 3-16). A random sample of 100 cells with significant height losses 

at 1ha was visually compared with high resolution aerial photos for canopy cover 

change. Around 10% of the sample had more than 50% visually determined cover 

loss; 70% of the sample had visible but less than 50% cover loss and 20% did not 

show any visually identifiable change. In other words, 80% of the sample cells with 

height losses also showed canopy cover losses on aerial photos. Note that these visual 

estimates of changes in cover were approximate and more reliable in detecting large 

changes than small. Average height increases were higher in forests sensitive for 
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wildlife habitats (1.3 m) and slightly lower in areas under uneven aged management 

(0.8 m). Areas under high stress showed an overall canopy height loss (- 3.6 m) while 

those with low stress had an average height increase (1.17 m) (Fig. 3-17). A two 

sample unequal variance T-test showed that these changes were statistically 

significant.  

 

3.5 Discussion  

In this study, we tested the capabilities of waveform lidar in measuring and 

mapping forest structural changes at various spatial scales. Our major findings can be 

summarized as follows: 

 

1. LVIS metrics were strongly correlated with field height and biomass for individual 

years, but regression equations relating changes in each could not be derived. 

2. Direct comparisons between nearly coincident LVIS footprints showed overall 

positive changes in height after accounting for geolocation and elevation errors.  

3. Canopy height projections from the footprint level transition matrix showed that the 

landscape was not in steady state in both 1999 and 2008. 

4. Canopy height and biomass changes at 0.07 ha and 1 ha scale showed more gains 

than losses.  

5.  Statistically significant canopy height changes from LVIS were consistent with 

landuse and aerial photo patterns in the Sierra Nevada.  
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Fig. 3-16 Spatial overlay of average canopy top elevation (∆RHE100) change map with aerial 

photos showing areas with significant gain (a -> b) and significant loss (c-> d). Note that 

visual change in percent canopy cover was only an approximate estimate and more reliable 

for large changes than small. 

 

Fig. 3-17 Areas sensitive for wildlife showed overall increase in height. Forests under uneven 

aged management also had net height increase but less than protected areas. Low stress areas 

showed increase in height while high stress areas showed an overall decrease. Changes were 

statistically significant. 
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3.5.1 LVIS and field-measured changes 

Despite strong correlations between LVIS and field metrics for individual 

years, canopy height and biomass changes observed in the field could not be 

predicted successfully with lidar data. This was primarily because these changes in 

the 17 plots did not show enough variability, since we had re-measured plots to cover 

the range of biomass and not biomass changes. Average changes in field heights in 

most plots were less than 4 m while heights predicted from lidar data had a root mean 

squared error of more than 4 m (Fig. 3-8a.). Similarly, biomass changes in most field 

plots were less than 100 Mg/ha, while prediction errors from lidar for both years were 

higher (Fig. 3-8b). This means that either large losses or rapid growth should have 

occurred for lidar to detect them or prediction errors should be reduced to less than 2 

m (e.g., with small footprint data). 

Large losses and gains did occur across the landscape but their range was not 

fully captured by the re-measured field plots. These plots were generally in 

experimental or old-growth forests where large changes did not occur. Almost none 

of them were in areas designated for commercial timber harvests. Although there 

were occasional signs of logging and fire, only two plots showed extensive losses 

(Fig. 3-8b). Increments in dbh and height in younger trees compensated for losses 

from mortality resulting in an overall positive change too small to be detected by 

lidar. One way of addressing this problem would be directly mapping large losses and 

gains from LVIS at landscape level and re-sampling field plots to cover the larger 

range of disturbance and growth. 
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Another factor influencing field validation might be the collocation 

differences between LVIS and field plots (Fig. 3-4). Since none of the lidar shots in 

1999 or 2008 were coincident with plot centers, errors increased when lidar footprints 

were near the edge of a plot with tall trees outside it as shown previously by Hyde et 

al. (2005) and Anderson et al., (2006). A simulation of LVIS geolocation and canopy 

height errors with small footprint lidar showed that a shift of 2 m leads to an average 

canopy height error of 1.8 m (Tang & Dubayah, AGU 2010). Reprocessing of the 

1999 LVIS data led to a geolocation shift of 3-5 m between field plot centers and 

lidar footprints (Swatantran et al., in press). Combining this with the relative shift of 

2-2.5 m between 1999 and 2008 data could have reduced the predictive power of 

LVIS in plot level comparisons. Field and lidar change relationships may be stronger 

at the hectare scale, but they could not be tested in this study because only large trees 

were measured in 1999.  

3.5.2 Coincident footprint dynamics  

We analyzed direct canopy height changes over more than 100,000 coincident 

LVIS footprints by reducing geolocation and elevation errors. The large number of 

footprints increased the power of the paired t-test in detecting height change. Even 

though changes in RH metrics were small, they were statistically significant and 

positive, indicating overall growth.  

Canopy height transitions between coincident LVIS footprints were analyzed, 

similar to Dubayah et al. (2010) and Kellner et al. (2009). High probability values 

along the diagonal suggest that a major portion of the landscape did not undergo 

changes of more than 5 m. Most height increases occurred in canopies less than 40 m 
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tall. Canopies taller than 40 m are were more likely to shift to lower height classes. 

Losses in taller trees were consistent with evidence of clear-cut logging on optical 

imagery. Beyond 60 m, canopies had very little probability of staying in the same 

class. Some of these changes could be waveform errors or mortality in large trees. 

Transitions showing height increases of more than 10 m are more likely to be 

waveform errors or canopy filling from adjacent areas rather than actual growth. 

Canopy height distributions in 1999 were not in steady state, suggesting 

higher rates of disturbance prior to time period studied, consistent with Raumman and 

Soulard (2007). On the other hand, height distributions in 2008 were closer to 

equilibrium showing that the landscape was recovering from past disturbances. 

Although predictions of reaching canopy height equilibrium in 350 years may be 

unrealistic, given the frequency of catastrophic events in the Sierra Nevada, our 

results demonstrated the possibility of modeling future transition pathways under 

different forest management scenarios using temporal lidar data. Matrix models used 

in this study can be further modified to account for harvest, growth and mortality 

(Buongiorno, 1980). Other transitions in canopy cover and biomass can also be 

modeled.  

3.5.3 Landscape changes in canopy height and biomass 

The third objective of this study was to analyze spatial patterns of canopy 

dynamics from lidar across the landscape. Canopy height changes were calculated 

directly from LVIS while biomass changes were predicted using lidar and field 

allometry. Although the non-parametric Wilcoxon-Mann-Whitney test was more 

robust than a two-sample t-test in detecting significant height differences at 0.07 ha 
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scale, it is possible that more grid cells at this scale had Type II errors because of 

small sample sizes. At the hectare scale, the test had greater power because sample 

sizes were larger.  Changes as small as 0.25 m were detected as significant in the 

canopy height change map at 1 ha explaining why only 25% of the significant height 

changes showed significant biomass changes. 

Our results showed that direct estimation of biomass from temporal lidar is 

difficult without adequate field data, concurring with Dubayah et al. (2010). This is 

partly because of the high prediction errors in biomass for this study area and also 

because of insufficient field plots. It may be more effective in areas where the 

prediction errors are not as high and number of field plots is large. Integration with 

other remotely sensed data disturbance maps from Landsat or repeat observations 

from radar data may also improve estimates. Despite these drawbacks, areas that did 

show biomass gains and losses are likely to be sources/sinks because changes had to 

be more than +/-100 Mg/ha (histogram, Fig. 3-15) to be recorded as significant. The 

biomass change map can therefore be used to detect large potential carbon sources 

and sinks but not smaller changes.  

Canopy height and biomass changes over more than 75% of the study area 

were not statistically significant, if we assume that these areas did not have actual 

large changes. These results are consistent with previous change detection studies 

with Landsat imagery over the Sierra Nevada (Raumman and Soulard, 2007). In areas 

where significant changes did occur, increases in height and biomass outweighed 

decreases suggesting overall growth.  
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Although our results show overall growth, spatial patterns of canopy height 

losses showed interesting patterns when compared with temporal aerial photos. 

Around 80% of the lidar height losses at 1 ha were identified as visible canopy cover 

losses, although these were approximate estimates. Large patches of height loss were 

visually identified as selective logging or clear cuts on lands outside protected areas 

(Fig. 3-16c, d). Smaller changes could indicate increased pest infestations (e.g. fire 

engraver beetle) in areas where canopy heights reduced by only a few meters 

(Schwilk et al., 2006). Evidence of extensive crown damage was also observed in the 

study area during field data collection in 2008. Forests that were reserved for habitat 

conservation or unsuitable for timber generally showed growth as also did patches 

regenerating from past disturbances (Fig. 3-16a, b).  

We could not analyze small tree mortality from moisture stress (van Mantgem 

et al., 2007) with temporal lidar data. Footprint scale was the closest we could get to 

individual trees but even at this scale changes in trees with dbh less than 10 cm could 

not be easily detected. We did, however, detect greater height losses in high biomass 

stands with moisture/chlorophyll stress and growth in low stress forests. Stress maps 

generated from lidar and hyperspectral data in 2003 could have been early indicators 

of canopy height loss detected in 2008. Another interesting observation was that the 

low stress areas generally coincided with protected forests, which also showed 

canopy height increases. More research is needed to determine whether an empirical 

relationship between stress, protected areas and height change exists and if such areas 

can be mapped with lidar and hyperspectral data. 
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3.6 Conclusion  

This study highlights some of the challenges of analysis with temporal data 

and field observations, each of which has inherent errors. Despite several limitations, 

such as inadequate field data for validation, differences in LVIS instruments between 

1999 and 2008, random geolocation, elevation and sampling errors, we showed that it 

was possible to quantify large changes in height and biomass. It may also be possible 

to detect small canopy height changes with LVIS, as shown by statistical tests, but the 

accuracies can be known only with more validation experiments. Although large 

gains and losses in biomass were detected with lidar data more research is needed to 

improve the accuracies for mapping smaller changes at finer scales.  

An important requirement for robust validation of lidar with field changes is 

to cover the entire range of disturbance and growth in field measurements. Maps of 

direct canopy height and biomass changes from lidar can be stratified into disturbance 

ranges, which can further be used to resample field plots and improve validation. 

These results could be further improved with better calibration of lidar data and more 

field plots for validation.  

There is considerable potential in using temporal lidar data by itself or in 

combination with other remote sensing data for ecological applications. We 

demonstrated the use of transition matrices predicting future canopy height 

distributions with lidar data. We also combined lidar data with landuse maps and 

hyperspectral data to understand canopy dynamics and stress. Maps of forest 

structural changes can be of considerable value to forest managers in understanding 

how losses and gains are spatially distributed and can be extremely useful for making 

decisions regarding conservation and forest management. 
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Chapter 4 Mapping Bird Habitat Quality in New Hampshire 

using Radar, Lidar and Multispectral Fusion  

 

4.1 Introduction   

Habitat management efforts for wildlife species are often hindered by lack of 

accurate maps of both forest structural characteristics as well as species distribution. 

Habitat selection in wildlife species, particularly birds, is strongly influenced by 

vegetation structure and composition, among other factors (MacArthur & MacArthur 

1961; Robinson & Holmes, 1984; and Degraaf et al., 1998) but cannot be quantified 

from one remote sensing system alone. With advances in remote sensing technology, 

newer data with complementary attributes are becoming increasingly available 

(Bergen et al., 2009). Multi-sensor fusion is therefore a promising approach for 

optimizing capabilities of different remote sensing data to improve forest structure 

and habitat mapping. 

Optical remote sensing data have already been used extensively to map habitat 

preferences by relating species presence/abundance to spatial distribution of 

vegetation across landscapes. Yet, while vegetation characteristics such as land cover 

(Franklin & Wulder, 2003), phenology (Moody & Johnson, 2001) patch size, and 

fragmentation (Gustafen, 1998; and McDermid et al., 2005) have been mapped from 

optical data, measurements of vertical structure are not easily available. Light 

detection and ranging (Lidar) is an active remote sensing system that can provide 
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accurate measurements of vertical vegetation structure and is increasingly being used 

in ecological applications (Vierling et al., 2008).  

Lidar instruments essentially record the time taken by an infrared laser pulse 

to reach the earth‟s surface or canopy top from an airplane/spacecraft and return, in 

order to measure ground elevation and canopy height. Depending on the area covered 

by the laser beam on the ground, it can be classified as a small- (< 2m), medium- (10 

-30 m) or large- footprint (> 70m). Discrete return lasers record two or more returns, 

namely, one from the ground, one from the top of the canopy and some in between 

(Lefsky et al., 2002). Full waveform digitizing lidar instruments record the entire 

outgoing and return signal to provide a waveform with amplitudes proportional to the 

vertical distribution of canopy material within a footprint (Blair et al., 1999). Both 

small-footprint discrete-return lidar and medium-footprint waveform lidar data have 

been used to map forest structural characteristics such as canopy height, canopy cover 

and aboveground biomass, in addition to sub-canopy topography (Drake et al, 2002a; 

Clark et al., 2004; Popescu et al., 2004; Hyde et al., 2005; and Anderson et al., 2005). 

Many recent studies have also shown the potential of small- and medium-footprint 

lidar in mapping wildlife habitat characteristics (Bradbury et al., 2005; Nelson et al., 

2005; Hinsley et al., 2006; Goetz et al., 2007; Martinuzzi et al., 2009; and Goetz et 

al., 2010) However, few studies have compared the relative capabilities of small- and 

medium-footprint lidar in mapping habitat characteristics.  

Radio Detection and Ranging (radar) is also an active remote sensing system 

that records backscattered radiation in the microwave region of the electromagnetic 

spectrum. Radar sensors are more sensitive to structural and dielectric characteristics 
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of vegetation than optical remote sensing data, but do not provide direct 

measurements of structure unlike lidar. Radar data have been used to derive structural 

attributes (Imhoff, 1995; and Saatchi et al., 2007) and map bird habitat characteristics 

(Imhoff et al., 1997; and Bergen et al., 2007). Adding lidar to radar can increase 

accuracies for mapping vegetation structure. Fusion of the two sensors can also 

increase spatio-temporal coverage of forest structure, which is lower with lidar alone. 

There is considerable interest in combining measurements of vertical vegetation 

structure from lidar samples with structural attributes from radar and spectral 

attributes from optical remote sensing data to improve habitat mapping at larger 

spatial scales. However, questions remain on the efficacy of metrics that can be 

derived from these data, their accuracies and their combined use for mapping species 

habitats (Bergen et al., 2009). 

Bird population trends and species preferences for vegetation structure and 

type have long been studied with field data in the Hubbard Brook Experimental 

Forest in New Hampshire. The availability of radar, lidar and multispectral remote 

sensing data in addition to bird data provided an opportunity to explore fusion 

applications for habitat mapping in the Hubbard. Our objective was to test how well 

each dataset predicted multi-year bird presence (hereafter, “prevalence”) individually 

and in combination for 8 songbird species. We further analyzed the importance of 

predictor variables to determine which remote sensing metrics were more useful in 

describing bird habitat characteristics. Finally, we mapped prevalence as a measure of 

habitat quality across the landscape and compared spatial patterns with known habitat 

preferences for each species. By exploring vertical and spatial canopy structure in 
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detail through fusion, this research may potentially add new technical and ecological 

insights to the already well-studied bird species habitats in this study area.  

4.2 Study Area and Data 

4.2.1 Study Area  

This study was conducted in the Hubbard Brook Experimental Forest (HBEF) 

in the White Mountains of New Hampshire, USA (Fig. 4-1). The HBEF is a bowl-

shaped watershed covering an area of 3,160 ha with elevations ranging from 220 m to 

1,015 m (Schwarz et al., 2001). Slopes are predominantly north-south facing with an 

average gradient of 16% and as high as 70%. Dominant deciduous tree species at 

lower elevations include beech (Fagus grandiflora) and sugar maple (Acer 

saccharum). At higher elevations, forests are dominated by deciduous birch (Betula 

sp) and conifer species such as balsam fir (Abies balsamica) and red spruce (Picea 

rubens). Understory vegetation includes saplings of dominant tree species as well as 

striped maple (Acer pensylvanicum), mountain maple (Acer spicatum), hobblebush 

(Viburnum alnifolium) and many herbs. The study area is a long-term ecological 

research (LTER) site and is representative of northern hardwood forests. Detailed site 

characteristics can be found in Holmes et al. (1979), Schwarz et al. (2001) and 

Solomonoff (2007).  
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Fig. 4-1 Study area in the Hubbard Brook Experimental Forest showing plot transects laid out 

by Schwarz (2001). Bird point count data were collected over 371 plots by Doran et al., 

(2005). 

4.2.2 Bird Data  

Long-term bird population trends have been monitored since the 1960s at the 

HBEF for over 70 species. The data used in this study were collected over a period of 

9 years between 1999 and 2008 (Doran et al., 2005) over a grid of 371 plots laid out 

by Schwarz et al. (2001). The plots are separated by 100 m or 200 m and run in north-

south transects across the entire study area (Fig. 4-1). Bird sightings were recorded 

for 10 minutes within a radius of 50 m around each plot center (0.79 ha area) 

following the point count methods outlined by Ralph et al. (1995). Observations were 

recorded two or three times every year during the peak breeding season. Bird point 

counts were used to calculate presence, absence, multi-year presence (prevalence), 

total species richness and average abundance over the 9-year time interval. For this 

study, we focused on 8 migratory songbirds (Table 4-1) where preliminary analyses 

showed strong relationships (> 30%) between lidar metrics and variability in 

prevalence. These included the blackpoll warbler (BLPW), black-throated blue 

warbler (BTBW), magnolia warbler (MAWA), yellow-rumped warbler (MYWA), 
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ovenbird (OVEN), red-eyed vireo (REVI), dark-eyed junco (SCJU) and the yellow-

bellied flycatcher (YBFL). A detailed description of habitat characteristics of these 

birds and data collection can be found in Doran et al. (2003). Most of the other 

species had very low values of prevalence and large number absences. We restricted 

the number of species modeled to 8 in this study to avoid errors because of zero – 

inflated data. These species have also been studied more extensively for their habitat 

preferences (Doran et al., 2003) than the birds that had very low prevalence allowing 

for a better comparison with remote sensing variables. 

 
Table 4-1 Common and scientific names for songbird species 

 

4.2.3 Radar Data 

The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is an 

L-band radar developed at the Jet Propulsion Laboratory (Rosen et al., 2006) that 

records backscattered energy from the earth‟s surface in the microwave region of the 

electromagnetic spectrum (23 cm). UAVSAR has full polarimetric capabilities, i.e., it 

can record four combinations of transmitted and received polarizations (Fig. 4-2). Co-

polarized bands include horizontal transmitted and horizontal received polarization 

(HH) as well as vertical transmitted and vertical received (VV). Cross-polarized 
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bands include horizontal transmitted and vertical received polarization (HV) and vice 

versa. Studies have suggested that fully polarimetric data are useful for studying 

surface and volume scattering from vegetation and are more sensitive to structural 

properties such as Leaf Area Index (LAI), basal area and biomass than single 

polarization (Imhoff, 1995; Balzter, 2001; and Treuhaft et al., 2004). L-band has 

greater penetrating power and is more sensitive to tree trunks and vertical structure 

than smaller wavelengths (Imhoff, 1995). 

 

Fig. 4-2 UAVSAR backscatter images from  horizontal transmitted horizontal return 

(HH), vertical transmitted vertical return (VV) and Horizontal transmitted vertical 

return (HV) polarizations.   

In this study, we used co-polarized HH, VV and cross-polarized HV data from 

the L-band radar (Fig. 4-2). Raw data were processed into backscatter images with 5 

m nominal spatial resolution, orthorectified with digital elevation models and 

corrected for slope at the Jet Propulsion Laboratory. We converted backscatter values 

into power, applied a (3*3) gamma filer to reduce speckle and calculated average 
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statistics for HH, VV and HV bands within bird plots. In addition, band ratios 

HH/VV, HV/VV HV/HH and normalized difference band ratios [HH-VV/HH+VV] 

(Simental et al., 2005), [VV-HV/VV+HV] and [HH-HV/HH+HV] (Saatchi et al., 

2010) were also calculated to increase sensitivity to structure. Backscatter ratios and 

indices have been found to be sensitive to biomass (Saatchi et al., 2010), canopy 

height, basal area (Imhoff et al., 1997) and other canopy biophysical variables. In this 

study, we did not derive biomass from radar because of difficulties in biomass 

estimation from lidar and radar in the HBEF. Instead, we used the ratios directly 

because of their sensitivity to vegetation structure.  

4.2.4 Small-Footprint lidar Data 

Small-footprint discrete return lidar (DRL) data were collected over the study 

area in September 2009 by the Canaan Valley Institute using the Optech ALTM 3100 

instrument with at least one laser shot per square meter (but on average > 5 shots) and 

four vertical returns. The laser ranging data were geolocated with GPS and inertial 

navigation units and interpolated to create a digital surface model with a resolution of 

0.5 m. A three dimensional canopy height model (CHM) with a horizontal resolution 

of 0.5 m and vertical resolution of 0.15 m was derived by subtracting ground 

elevation from the digital surface model. The high spatial resolution of the CHM 

made it possible to delineate dominant and co-dominant tree crowns. We used an 

adaptive „local maxima‟ filtering algorithm (TreeVaW) developed by Popescu et al. 

(2004) to identify individual treetops from the CHM and obtain crown radii and 

height (Fig. 4-3). The algorithm was calibrated using field measurements of canopy 

height and crown radii collected over the HBEF in 2009. Details of the TreeVaW 
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algorithm are available in Popescu et al. (2004) and Popescu et al. (2007). We 

calculated summary statistics for crown diameter and individual tree heights within 

bird plots and also crown weighted height for each plot using the following equation: 

, where Cwght = crown weighted height. This 

metric is similar to Lorey‟s (basal area weighted) height from field data.  

 

Fig. 4-3 Discrete return lidar canopy height map showing individual tree locations (inset) 

detected by TreeVaW. Crown radius and height are calculated for each tree by the algorithm.  

 

4.2.5 Medium-footprint lidar data 

The Laser Vegetation Imaging sensor (LVIS) is a medium-footprint (25 m 

diameter), full-waveform digitizing lidar designed and developed at NASA‟s 

Goddard Space Flight Center. (Blair et al., 1999) LVIS data were acquired over New 

Hampshire in the summer of 2009 with trees in leaf-on condition. The waveforms 

were geolocated with respect to the WGS 84 ellipsoid. Canopy top was detected by 

finding the lidar return greater than the noise threshold at the top of the waveform 

(Fig. 4-4). Because of occasional large ground-finding errors in this study area where 
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LVIS ground elevations were determined incorrectly, we substituted LVIS elevations 

with those from discrete return lidar data. Canopy height (RH100) was calculated by 

subtracting the average DRL ground elevation within each LVIS footprint from the 

canopy top. Other metrics such as heights of 25% (RH25), 50% (RH50) and 75% 

(RH75) energy returns were calculated in a similar manner (Swatantran et al., in 

press). Total canopy cover was calculated from the normalized cumulative energy 

return following methods in Ni Meister et al. (2001). Additionally, canopy cover was 

calculated from the cumulative profile at every 5 m interval between ground and 40 

m, resulting in 8 metrics. Metrics showing variations in amount of foliage at different 

levels within the canopy possibly could explain bird occurrence/prevalence better 

than total canopy cover alone. Summary statistics for canopy cover metrics and LVIS 

RH metrics were calculated within bird plots. 

 

Fig. 4-4  Components of an LVIS waveform (left) and canopy top height map showing 

vertical and spatial distribution of heights. Heights of 25%, 50%, and 75% lidar energy 

returns (RH metrics) are calculated from the waveform. The bold solid line shows the 

normalized cumulative energy return from which canopy cover at every 5m interval was 

calculated. 
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4.2.6 Landsat Data 

Landsat ETM images acquired in August 1999 and late October 2000 were 

corrected for Earth-Sun distances and solar zenith angle variations, converted into 

top-of-atmosphere reflectance and georeferenced (Goetz et al., 1997). The 

Normalized Difference Vegetation Index (NDVI) was calculated for both images. In 

this study, we used the NDVI as a measure of greenness and the difference between 

NDVI from leaf-on and leaf-off seasons as a measure of deciduousness (Fig. 4-5). 

Goetz et al. (2010) showed the importance of these variables in determining habitat 

quality for the Black-throated Blue Warbler. In this study, we tested the use of these 

metrics for 8 species including the BTBW. 

 

Fig. 4-5 Normalized difference vegetation index from Landsat data (leaf off) and 

seasonal NDVI change between from leaf off and leaf on data. High NDVI  difference 

values show deciduous cover, low values show conifers. 

 

4.3 Methods  

All datasets were brought into a common frame of reference using the UTM 

19N projection and the WGS 84 ellipsoid. Summary statistics (Table 4-2) were 

calculated for all metrics from radar, lidar and Landsat data within bird plots. Bird 
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prevalence was calculated as the total number of years a bird was sighted in a plot out 

of the 9 years observed, i.e., the lowest prevalence was zero and maximum 

prevalence was 9. Since bird observations were recorded many times a year, 

prevalence was treated as a continuous variable rather than categorical. Statistical 

models for predicting prevalence were tested for all bird species using radar, LVIS, 

DRL and Landsat metrics individually and in combination with each other.  IDL was 

used for processing LVIS waveforms, ArcGIS v 9.3 for spatial analyses and packages 

in R (R Development Core Team, 2009) for statistical analyses. 

 

Table 4-2 Metrics calculated from the different datasets. 
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4.3.1 Predicting prevalence  

Many models have been used to derive empirical relationships between field 

measures of habitat characteristics and remote sensing observations (Guisan & 

Zimmerman, 2000). Commonly used statistical methods include least square 

regression for Gaussian distribution, logistic regression for binary data and 

Generalized Linear Models (GLM), or Generalized Additive Models (GAM) for point 

count data. Recent studies have shown that machine learning algorithms, such as 

Classification and Regression Trees (CART), have more advantages over other 

methods because they do not make any assumptions about the relationships between 

the explanatory and response variables (De‟ath and Fabricius, 2000). Regression trees 

are constructed by partitioning the data into two homogenous sets based on the best 

explanatory variable. The binary tree is further subdivided using decision rules and 

the terminal node provides a mean value for a response variable. 

 Random Forests, RF (Breiman, 2001; Breiman and Cutler, 2003) is a data 

mining method in which a large number of such regression trees are fit to a dataset (~ 

800). Bootstrap samples are used from the data to construct each tree and at each 

node, a random subset of predictors are tested, hence, the name „Random Forests‟ 

(Prasad et al., 2006). Response values from all trees are averaged to provide accurate 

predictions. Around 37% of the data are retained and “out-of-bag” error estimates 

(Breiman, 2001; Berk, 2008) are calculated using each regression tree, thus avoiding 

over fitting and eliminating the need for cross validation. Predictions from RF 

regression are more accurate than other methods and can be used to model linear/non-

linear relationships using a large number of predictor variables (Cutler et al., 2007). 
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Recent studies have demonstrated applications of Random Forests in mapping 

presence, absence (Cutler et al., 2007; and Magness et al., 2008) and habitat quality 

(Goetz et al., 2010).  

We constructed RF models using radar, lidar, and Landsat metrics 

individually and in combination to predict prevalence for 8 species, resulting in a total 

of 40 models. We compared the decrease in mean residual error with increasing the 

number of trees from 100 to 8,000 and found that 800 trees gave the best predictions. 

Growing more than 800 trees did not improve predictive power for any species. By 

default, the RF algorithm sampled one-third of the total variables at each node split, 

which was not modified in this study. Accuracies were assessed by percent variance 

in bird prevalence explained by each model. Variance explained, also known as 

„pseudo r-squared‟ was calculated by the RF algorithm from out-of-bag estimates for 

each tree and averaged across all trees to give a cross-validated value, similar to „r-

squared‟ from classical regression models (Breiman, 2001).  

 

4.3.2 Variable importance 

In addition to pseudo r-squared, RF also gives a measure of variable 

importance calculated as decrease in accuracies on removing a predictor variable. A 

large decrease in model accuracy on removal of a variable indicates high importance 

(Breiman, 2001). We compared important variables from RF models to known habitat 

preferences for the birds from previous studies (Doran et al., 2003). The frequency of 

occurrence of a radar, lidar or Landsat metric within the 10 most important predictors 

for the 8 bird species was recorded to determine which variables were selected more 

often than others. 
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4.3.3 Prevalence at plot and landscape scales 

Histograms of prevalence predicted from fusion were compared to observed 

values at plot locations. We then mapped prevalence across the landscape for the 8 

bird species using the models with the lowest accuracy (radar variables alone) and the 

ones with the highest accuracy (from fusion). Prevalence values were classified into 4 

indicators of habitat quality. Prevalence of less than 2 years was considered as low 

quality, between 2 and 4 years was medium, 4 to 6 years was considered as good 

habitat and more than 6 years‟ prevalence was classified as excellent habitat quality. 

Spatial distributions of habitat quality were compared with known habitat preferences 

of the individual bird species.  

RF models only retain the mean observations at each node in a regression tree 

and do not take into account the entire distribution of the predicted values. In contrast, 

quantile regression forests (QRF) keep the values of all observations allowing for the 

construction of prediction intervals for the observed values (Meinshausen, 2006). We 

predicted the best possible (90%) and worst possible (10%) habitat quality for the 

Black-throated Blue Warbler as a test case using QRF in addition to mean predictions 

from fusion and compared the three maps spatially.  

4.4 Results  

4.4.1 Predictive capabilities of different datasets for prevalence 

Predictive power for each dataset individually and with all metrics combined 

for 8 species are summarized in Fig 4-6. Radar metrics alone explained more than 

30% variability in prevalence for all the 8 species studied. The highest variance 

explained was for the Magnolia Warbler (50%) while lowest was for the Black-
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throated Blue Warbler (33%). Landsat data performed better than radar for all 

species. In the case of the Magnolia Warbler, Landsat metrics alone accounted for 

64% variability, similar to the results from lidar. For the other species, Landsat 

metrics explained between 35% and 50% variance in prevalence. LVIS metrics 

predicted more than 50% variance in prevalence for all species, except the Black-

throated Blue Warbler. Fusion improved the predictive power of radar metrics by 

25% (Fig 4-7), Landsat metrics by 15% and lidar metrics by 5% on an average, 

although increase in predictive power varied between species. Results from DRL 

metrics were similar to LVIS for most species. In general, predictive power was 

lowest for the Black-throated Blue Warbler. 

 
Fig. 4-6  Random Forests regression  results for bird prevalence using  radar, lidar 

and Landsat data individually and in combination with each other. 



 

 97 

 

 
Fig. 4-7 Comparison of variance explained from models using radar metrics alone 

with those using all metrics. 

4.4.2 Variable importance in predictions 

Radar metrics were rarely selected within the 10 most important predictors 

when used in combination with LVIS and DRL (Fig. 4-8). When selected, co-

polarized backscatter ratios, particularly the HH/VV ratio, the (HH-VV/HH+VV) 

index and the HV/VV metric were more important for predictions than other radar 

metrics. The NDVI difference or the measure of deciduousness from Landsat data 

was an important predictor for 7 out of the 8 species studied. Total crown diameter, 

crown weighted height and other crown diameter metrics from discrete return lidar 

were also selected in almost every model. Ground elevation was an important 

variable for 6 out of 8 species. LVIS RH metrics were found to be more useful than 

most canopy cover variables.  Canopy cover at 20-25 m was selected for 5 out of the 

8 species. Canopy cover metrics at lower heights were never within the 10 important 

variables for any species. 
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.  

Fig. 4-8 Variable  selection  within 10 most important predictors for all species taken 

together. Model used : UAVSAR +LVIS +DRL + Landsat. 

 

4.4.3 Predictions at plot and landscape scale 

At plot scale, histograms of actual and predicted prevalence showed many 

similarities and differences (Fig.4-9 & Fig. 4-10). There were no negative values or 

predictions greater than 9 years, however, RF models overestimated predictions in 

some ranges of prevalence and underestimated it in others. Predictions were 

underestimated when actual prevalence was more than 7 years. Absences were more 

accurately predicted than prevalence.  

Landscape patterns of prevalence values from both radar data and fusion were 

similar but showed wide inter-specific spatial variations (Fig. 4-11. & Fig. 4-12). 

There was consistency between known habitat preferences of birds and the spatial 

distribution of predicted habitat quality across the landscape. For example, the 
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Blackpoll Warbler is known to prefer conifer vegetation at high elevation with lower 

canopy heights and cover (Doran, 2003). The spatial pattern of predicted prevalence 

from both radar and fusion showed highest habitat quality for the BLPW at the 

corners of the study areas that occur at high elevations. On the other hand, the Black-

throated Blue Warbler prefers deciduous vegetation at lower elevations with high 

canopy cover and well-developed understory (Doran et al., 2005; and Goetz et al., 

2010). Spatial patterns of prevalence show that best habitat quality for the BTBW was 

at lower elevations near the valley where canopy height, cover and deciduousness 

were high. Although spatial patterns of predictions from radar variables were similar 

to those from fusion (Fig 4  ), all radar models consistently underestimated prevalence 

and had more false presences in areas of actual absence.  

The 90% and 10% predictions from quantile regression forests were very 

different from the 50% predictions for the Black-throated Blue Warbler. The 90% 

prediction map or optimistic estimate showed excellent habitat quality or prevalence 

greater than 6 years over almost the entire study area.  On the other hand, the 10% 

quantile or the conservative estimate showed little or no areas as excellent habitat and 

more medium- or good-quality habitat, i.e., between 2 and 6 years prevalence  

(Fig. 4-13).  
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Fig. 4-9 Histograms of actual (left) versus predicted prevalence  from models with all metrics 

combined.(right) . For species codes refer to Table 4-1. 
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Fig. 4-10 Histograms of actual (left) versus predicted prevalence from models with all 

metrics combined (right). For species codes refer to Table 4-1. 
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Fig. 4-11 Predicted prevalence from radar metrics alone (left) and all metrics together (right) . 

For species codes refer to Table 4-1. 
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Fig. 4-12 Predicted prevalence from radar metrics alone (left) and all metrics together (right). 

For species codes refer to Table 4-1. 
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Fig. 4-13 Quantile predictions of habitat quality using Random Forest Regression.   

 

4.5 Discussion  

4.5.1 Predictive capabilities of different datasets for prevalence  

Previous studies by Imhoff et al. (1997) and Bergen et al. (2007) have shown 

the usefulness of radar data with different wavelengths and polarizations in mapping 

bird habitat characteristics. Our results also showed that radar backscatter data could 

explain more than 30% variability in bird prevalence and in some cases as high as 

50%. This was because of the sensitivity of the metrics to vegetation structure, since 

radar HH/VV ratios were also moderately correlated with lidar heights, canopy cover 

and crown diameter.  
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Landsat metrics performed better than radar data for all species, even though 

radar is known to be more sensitive to structure than optical data (Imhoff et al., 1995; 

and Treuhaft et al., 2004). One reason for this could be the use of the NDVI seasonal 

change, which not only differentiated between conifer and deciduous cover, but also 

correlated canopy height. Interestingly, Landsat metrics alone were as good as lidar 

for the Ovenbird and even better than lidar for the Magnolia Warbler. This implies 

that deciduous cover was a more important explanatory variable than structure for 

these birds.  

Our results showed that both LVIS and DRL metrics performed equally for 

most species, explaining more than 50% in prevalence because LVIS RH metrics 

(particularly RH75) were strongly correlated with crown diameter/crown weighted 

height from DRL data. Although LVIS and DRL had similar predictive power, fewer 

variables from DRL data were sufficient to explain the same variation than with more 

variables from LVIS. In addition, the finer spatial scales of DRL data could 

complement the larger scale LVIS data if information such as patch characteristics, 

understory shrub density, and other variables are derived from DRL. Conversely, the 

broader mapping capabilities of waveform lidar such as LVIS as compared to DRL 

are a large advantage for landscape scale mapping.  

Bergen et al., (2007) derived biomass from radar data and found that it 

improved predictions of bird species distributions when added to Landsat data. In this 

study, biomass was not used as a predictor; instead a suite of crown, height and 

canopy cover metrics from lidar were combined with Landsat and radar data to 

improve predictive power. Fusion improved accuracies by an average of 25% for 
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radar and 15 % for Landsat. These results show that multi-sensor fusion could 

improve results from either sensor alone. It is furthermore likely that wall-to-wall 

lidar mapping is not required; limited samples or transects of lidar may be sufficient 

to increase the predictive power of radar and/or Landsat, but this needs more 

research. 

Goetz et al. (2010) tested the combined potential of lidar and Landsat data in 

mapping prevalence for the Black-throated Blue Warbler. Our results show a 10% 

improvement in variance explained with radar, LVIS, DRL and Landsat combined. 

We speculate the increase is because of addition of small-footprint lidar metrics. 

Despite this improvement, the variance explained for the BTBW by all models was 

the lowest among the 8 species studied. It is possible that the predictive power for 

other species was inflated because of more zero values than were in the BTBW. It is 

also likely that predictions were lower for the BTBW because of factors other than 

structure and vegetation type (e.g., social information) influencing prevalence for this 

species‟ information (Betts et al., 2008).  

4.5.2 Variable importance in predictions  

Radar metrics were not selected within the 10 most important when lidar data 

were used because of the correlation between radar and lidar metrics and the stronger 

explanatory power of lidar. When selected, the HH/VV or the ratio or surface-to-

volume scattering was more effective than other ratios using cross-polarized bands 

because they were more correlated with structural metrics than any other radar metric. 

The HV/VV metric, which is also strongly sensitive to volume scattering, was useful 

in models using radar metrics alone but had lower explanatory power than the ratios 
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of HH and VV bands.  In this study, we only used band ratios and indices from radar 

data. Another useful approach could be to derive characteristics such as patch 

characteristics and edges similar to Imhoff et al. (1997) or structure from 

interferometric SAR (Treuhaft et al., 2004).  

The NDVI difference or deciduousness metric from Landsat was extremely 

useful in predicting bird prevalence individually and in combination with lidar 

metrics because it accounted for differences in conifer and deciduous species. It was 

not selected as an important metric only for the Blackpoll Warbler because elevation 

and DRL crown metrics were more important for this species. Deciduousness was the 

most important predictor for the Ovenbird and the Magnolia Warbler. As previously 

discussed, the difference is that the Ovenbird prefers high deciduousness or 

broadleaved species while the Magnolia Warbler prefers low deciduousness or 

conifer species, consistent with Doran et al. (2003).  

Elevation from lidar data was an important variable for 5 out of the 8 species 

studied. Total crown diameter for trees identified within each plot from DRL data was 

the best predictor for 5 out of the 8 bird species. This metric was very similar to stem 

density from DRL data. Some species were positively correlated with total crown 

diameter (e.g., Blackpoll Warbler, Magnolia Warbler) showing preference for greater 

stem density and small trees while others (e.g., Black-throated Blue Warbler, Red-

eyed Vireo) were negatively correlated showing preference for lower stem density 

and large trees. In addition to total crown diameter, average crown diameter and 

crown weighted height were also important metrics in many models. 
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DRL crown metrics were strongly correlated with LVIS RH metrics and LVIS 

canopy cover metrics at different levels within the canopy but had more explanatory 

power for bird prevalence than LVIS metrics for most species. We expected cover 

metrics at lower levels within the canopy to be selected as important for species that 

had a higher preference for shrubs (Ovenbird) and well-developed understory (Black-

throated Blue Warbler). However, the LVIS canopy cover between 20-25 m or 

overstory cover were better predictors for most species than lower-canopy cover 

metrics.  This does not mean that lower-cover metrics were not important. For some 

species (e.g., Yellow-rumped Warbler), the relationship with cover at 20-25 m was 

negative, meaning bird prevalence was higher in areas with low cover in the 

overstory, which is more consistent with expected patterns. Limited analysis showed 

variations in prevalence at different levels within the canopy for the same species, 

consistent with findings from field data (Robinson & Holmes, 1984). More research 

is needed to model these relationships explicitly with lidar data and understand their 

influence on habitat selection.                                         

4.5.3 Predictions at plot and landscape scale  

Our results showed that RF models overestimated prevalence in some cases 

and underestimated them in others. This was probably because the regression was 

weighted by the most frequently occurring prevalence values. When absences were 

more than presences, they were predicted accurately or overestimated. In birds that 

were more abundant, the class with the highest frequency was overestimated. For 

example, in the case of the Black-throated Blue Warbler, the highest prevalence was 

between 4 and 5 years. RF Forest predictions overestimated the 4-5 year prevalence 
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for BTBW by nearly 40%. On the other hand, prevalence was always underestimated 

beyond 7 years in all species. This shows that the RF models were weaker in 

predicting beyond 6 years‟ prevalence. More work is needed to compare Random 

Forests regression models with other statistical approaches like Boosted Regression 

Trees (Elith et al., 2006) or ensemble modeling (BIOMOD, Lomba et al., 2010) for 

fusion applications. 

Spatial patterns of predictions at landscape level from both radar and fusion 

were consistent with bird abundance maps generated by Doran et al. (2003) despite 

some over- and underestimation. Although there was more mixing between low and 

good habitat predicted from radar alone, areas with low- and medium-habitat quality 

were well identified. Radar data per se may be more useful in classifying presence 

and absence even if it is weaker for prevalence. Radar data can also be used to stratify 

areas at larger scales to identify species presence and further detailed mapping of 

prevalence or abundance can be done with fusion.  

Our results from quantile regression forests suggest that predictions from 

Random Forests and other methods may not be sufficient for decision making if they 

only provide mean values. The 10% or worst-case predictions for the Black-throated 

Blue Warbler suggest that there may be little or no habitat with high quality in the 

areas predicted as excellent from mean values. If resources for habitat management 

were limited, a 10% quantile map would show areas that necessarily need 

conservation. On the other hand, the 90% quantile map predicts that practically the 

entire study area is suitable habitat for the Black-throated Blue Warbler. This is useful 

when maximum resources can be applied to conserve a particular species. The 
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absence of uncertainty maps in most studies of statistically-predicted habitat has been 

a major limitation and must be given much more attention. 

4.6 Conclusion 

This research showed that combining metrics from radar, lidar and Landsat 

data can improve predictions from either dataset alone. The improvement in 

predictive power was highest for radar variables. With space-borne radar data 

becoming increasingly available, both spatially and temporally, there is considerable 

potential in mapping habitat characteristics directly from radar alone or in 

combination with Landsat and other multispectral data such as ASTER. In areas 

where lidar data are available, the addition of structural metrics could further improve 

maps of habitat characteristics.  

Random forest regression is a powerful machine learning method that can be 

applied in ecological and habitat studies in many ways. We showed the application of 

variable importance measures from RF models in determining useful metrics for 

fusion. These studies can be extended to include other metrics and other datasets as 

well. More research is needed to test the accuracy of random forest regression and 

compare it with methods to model zero-inflated data for rare bird species.  

Finally, this study shows that multi-sensor fusion is powerful for mapping 

multi-dimensional habitat attributes and can provide much more information than any 

one sensor alone. We found several similarities and differences between small- and 

medium-footprint lidar data at plot scale in this study. More research is needed to test 

whether these similarities can be used to derive attributes of one dataset from the 

other using limited spatial sampling. There is also considerable potential in using 
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other metrics from lidar such as understory shrub density, canopy layers and patch 

characteristics as well as other landscape metrics from canopy 3D structure that is 

potentially available from radar interferometry (Treuhaft et al., 2004). 
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Chapter 5 Discussion and Conclusion 

This dissertation explored multi-sensor fusion for bridging the gap between 

science requirements for carbon/biodiversity studies and lack of comprehensive forest 

structure maps using remote sensing. My research resulted in the generation of a wide 

range of quantitative maps including canopy height, biomass, canopy cover at 5 m 

vertical intervals, high resolution maps of vegetation type/genera, biochemical status, 

canopy height and biomass change. The methods used in this dissertation are not site-

specific and can be applied to other study areas where data are available. My research 

has added insights into remote sensing fusion approaches and also provided further 

evidence that multi-sensor fusion with lidar is powerful over using lidar, 

hyperspectral or radar alone.  

Chapter 2 focused on combining lidar and hyperspectral data for mapping 

biomass in the Sierra Nevada. Here, I used fusion at two levels: the first one was a 

direct statistical fusion of lidar height metrics and hyperspectral band ratios using 

stepwise regression, a simple yet useful and widely used method for biomass 

estimation. My results showed that narrow band derivative indices and water band 

ratios from hyperspectral data added little value to biomass estimates from lidar 

because they were also moderately correlated with lidar metrics. In addition, these 

indices suffered saturation effects in the high biomass forests of this study area, even 

though they are known to be more sensitive to canopy biophysical properties than 

multispectral data. Nevertheless, the correlation of these indices with lidar heights 
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suggests that hyperspectral data could be more effective in low biomass density (< 

100 Mg/ha) ecosystems than in high biomass forests.  

The other approach involves stratification of hyperspectral data into 

vegetation types/genera using sub-pixel level image processing and integration with 

lidar equations for biomass estimation. Even though stratification before lidar 

estimation of biomass did not improve results significantly at field plot scale, 

confidence intervals were narrower and spatial predictions with hyperspectral and 

lidar data had lower errors for some genera, such as hardwoods and pines. This 

method is applicable to multispectral data while hyperspectral data have the added 

advantage in discriminating species level differences in vegetation. Species 

stratification with hyperspectral/multispectral data could therefore be a viable strategy 

for biomass estimation with sparse lidar data. 

While the integration of lidar and hyperspectral data has advantages for the 

carbon cycle, fusion could be of greater value for mapping ecosystem and habitat 

characteristics. I demonstrated one application by mapping areas with relatively high 

and low stress in the Sierra National Forest. Many high biomass density stands 

showed low moisture and chlorophyll content in the study area. Spectra from 

hyperspectral images in these sites also showed signatures of chlorophyll stress, 

senescence or dead vegetation (non photosynthetic vegetation).Areas with a 

combination of „low-chlorophyll‟, low-moisture‟ and higher abundance of NPV  

spectra in high biomass, high canopy cover forests were identified as likely to be 

under physiological/structural stress. While these areas could be early signs of canopy 

loss or mortality from various factors, they could be caused by more woody debris, 



 

 114 

 

leaf litter or simply mature forests with less green understory. These results are 

noteworthy and could potentially be linked with recent findings on increased tree 

mortality in the Sierra Nevada from temperature induced moisture stress (van 

Mantgem et al., 2009). 

The next step in taking this research forward would be to define „stress‟ more 

robustly. One way to do this is by differentiating between mature woody vegetation 

and  physiological stress using changes in chemical composition from hyperspectral 

data (e.g. xanthophylls using the Photochemical Reflectance Index). Structural stress 

can also be analyzed better by mapping abundance of NPV within individual tree 

crowns. Combining small footprint lidar with hyperspectral data and stem maps from 

field data can be another way of mapping stress related changes.  

I compared stress and canopy structural changes further as one part of the 

analyses in Chapter 3, where I mapped canopy height and biomass changes in the 

Sierra Nevada with temporal lidar data. The larger goal of Chapter 3 was to evaluate 

the efficacy of multi-date lidar data in mapping canopy dynamics, as a test bed for 

space borne lidar sensors such as the Deformation, Ecosystem Structure and 

Dynamics of Ice (DESDynI). The availability of two sets of field and lidar 

measurements, one in 1999 and again in 2008, allowed the quantification of changes 

over a decade. However, field plots were measured in 2008 for biomass validation 

experiments for DESDynI and not biomass change and did not cover the range of 

disturbance and growth. Therefore, field measured height and biomass changes did 

not have enough variability to be detected with lidar measurements from 1999 and 

2008. 
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Next, I tested whether changes could directly be measured from waveform 

lidar data. This approach was used because lidar metrics had been validated for 

quantifying height and biomass in previous studies. My analysis showed that after 

accounting for geolocation and elevation errors between nearly co-incident lidar 

footprints there was a small positive change in canopy height significant over more 

than 100,000 lidar footprints in the nine year time interval. By further analyzing 

height changes in these footprints with transition probability matrices, I was able to 

project height distributions at equilibrium/steady state.  Comparing these with lidar 

canopy height distributions from 1999 and 2008 showed that the landscape was not in 

steady state in both years, but was recovering from past disturbances (e.g. clear cut 

logging, fire), with more growth in smaller trees. Results also showed that the 

landscape would reach steady state after around 300 years under the current 

disturbance regime. 

I further mapped height and biomass changes across the landscape to detect 

the areas that had statistically significant change. Only about 20 % of the 22,000 ha 

study area showed significant height and biomass changes suggesting most of the 

landscape did not undergo catastrophic changes large enough to be detected by lidar. 

Biomass changes that were significant were also likely to be potential carbon sources 

and sinks because they had to be larger than 100 Mg/ha to be detected. Results from 

footprint, plot and hectare scales taken together suggest overall positive changes and 

a small net carbon sink in these forests. These results are important because currently 

no maps quantifying height and biomass changes at such fine scales used in this 

study. 
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 Analyzing forest structural changes across the landscape with two dates of 

lidar data revealed many aspects relevant to land use and ecosystem processes in the 

study area. Comparisons of height change maps with aerial photos showed signs of 

re-growth in areas with height increases and clear-cut logging/other losses in places 

where heights decreased. The Sierra National Forest has areas managed for timber as 

well as those protected for the California Spotted Owl habitat. My analysis showed 

that both protected and managed forests had an average height increase in the time 

period studied but growth in protected areas was significantly higher. Going back to 

results from Chapter 2, I compared height changes in the low and high stress areas 

detected with hyperspectral data, acquired in 2003. I found that there were significant 

canopy height losses in the stressed areas while the forests with lower stress had 

significant canopy height increase. This exercise showed  that stress maps from 

fusion may be indicators of  areas likely to undergo changes.  

While Chapters 2 and 3 focused on deriving forest structural characteristics 

from lidar and fusion, Chapter 4 was an application of different sensors in habitat 

mapping. I tested fusion approaches in the Hubbard Brook Experimental Forest in 

New Hampshire, where abundant bird data, radar, lidar and Landsat data were 

available. The relationships between forest structure, vegetation composition and bird 

habitat preferences have been studied at the HBEF since the 1960s. More recently, 

Goetz et al (2010) suggested that novel metrics can be derived from waveform lidar 

for mapping bird habitat quality for the black-throated blue warbler. In this study, I 

tested the relative and combined explanatory power of radar, lidar and multispectral 
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data in predicting bird habitat quality for 8 bird species including the black-throated 

blue warbler using data mining methods.  

Results from this study showed that radar data alone explained more than 30% 

variance in bird prevalence for the eight bird species studied. Fusion improved results 

from either sensor alone; by 25% for radar, 15% for Landsat and 5% for lidar on an 

average. These results suggest that radar and multispectral data could be used to 

predict and mask forests where a given species was not likely to be present. Areas 

that show presence can further be mapped more accurately with fusion approaches or 

scattered lidar. 

 Analysis of predictor variables from each dataset further showed that 

complementary attributes such as crown characteristics, canopy cover, phenology 

improved results over using any one sensor alone. Although bird habitat quality/ 

prevalence maps from fusion were more accurate than from radar data alone, spatial 

distributions from both were consistent with known habitat preferences for the birds. 

One interesting aspect of this study was the comparison of relative efficacies of 

small- and medium-footprint lidar. This study showed that individual tree crown 

diameter metrics from small-footprint lidar was among the most important predictor 

variables suggesting the need to derive more high resolution metrics from this dataset. 

However, there were also strong correlations between from the small– and medium-

footprint lidar metrics suggesting that medium-footprint lidar would be just as 

effective for larger landscape scale habitat mapping.  

The habitat study at Hubbard Brook was a combination of better data 

processing methods and more advanced machine learning methods than shown in the 
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other studies. The results from this study can further form a feedback loop to refine 

methodological approaches used in Chapters 2 and 3. Even though Chapter 4 had a 

different study area, the methods and analyses are common to both study sites and 

can be applied to other study areas as well with site-specific modifications.   

Common limitations in all the studies were geolocation errors, and time 

intervals between acquisition dates of different datasets. I made an effort to reduce 

them to a minimum by correcting errors when possible or using spatial scales that 

minimized errors (such as geolocation) for my studies. However, some geolocation 

shifts between lidar and field plots were not easy to detect and correct. Lack of field 

data for validation is a common problem in many remote sensing studies and this 

study was no exception. Although research has suggested that lidar data could be used 

as ground truth because of high validation accuracies, my results suggest the need for 

more rigorous field validation for mapping canopy dynamics from lidar. Lidar and 

hyperspectral fusion studies require more field spectra for validating stress and 

species composition maps. In addition to data for forest structure, bird and animal 

data are also required to develop useful fusion applications for habitat studies.  

The limitations described above point to some fundamental problems 

encountered in multisensor fusion applications. It is very likely that if the input 

datasets are not processed robustly for atmospheric corrections, terrain, geolocation 

and other issues, fusion results could be poorer than using either sensor by itself. 

Since the number of datasets used in this research was small, it was possible to 

analyze some of the errors at fine spatial scales. Scaling these studies to regional or 

landscape level will require more rigorous error analysis on input datasets, more 
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innovation and automated methods for integrating large databases using data mining 

approaches.  

Remote sensing fusion is still in its infancy and far more research is need to 

develop and assess algorithms for combining data from different sensors in ways that 

are germane to the task at hand. The largest limitation of lidar data is that it is 

expensive to obtain from airborne sensors and has reduced spatial sampling from 

existing and planned space borne sensors. This almost demands that fusion techniques 

be developed for applied uses of these data to forest and habitat management. This 

research has shown great advantages in combining different remote sensing data with 

lidar. Lidar and hyperspectral data can form a powerful combination for habitat 

mapping by proving structure, species composition and stress. Radar data is also 

useful for large scale mapping and accuracies of forest structure and habitat 

characteristics from radar can be further improved with lidar samples. It is 

unquestionable that the coming decades will see an explosion of work on fusion. The 

many new missions coming online, from SMAP (Soil Moisture Active and Passive) 

to DESDynI to HyspIRI will provide an unprecedented wealth of global remote 

sensing data. The availability of spaceborne lidar, radar and hyperspectral data can 

make it possible to extend the fusion applications developed in this study to larger 

spatial scales, for carbon monitoring in tropical forests, mapping pine beetle 

infestations in temperate forests and mapping habitat for rare and endangered species 

in other parts of the world.  

From a habitat management perspective, lidar, radar, hyperspectral and 

multispectral data in synergy can provide information on forests and habitats that 
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were previously unavailable. Armed with such multi-dimensional information and 

improved computational capabilities, ecologists can explore biodiversity and 

ecological interactions in many novel ways. With more synthesis between the world 

views of ecologists, remote sensing scientists and engineers, fusion applications can 

become more powerful and truly applicable to conservation in the real world. This 

research was one such attempt to integrate technical aspects of remote sensing with 

practical applications in carbon science and biodiversity. Towards this end, I hope my 

dissertation has provided some forward progress 
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