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Photo-mechanics methods have matured and emerged as important engineering 

tools.  Although numerous image-processing algorithms have been developed to 

complement interferometric measurement techniques, these algorithms have been 

implemented originally for classical interferometry and the extensions to the general 

photo-mechanics fringe analysis have been limited.  In this dissertation, the existing 

computer-aided digital fringe image analysis and processing techniques are investigated; 

the most appropriate fringe image processing schemes and their limitations are identified.  

To make the computer-aided fringe analysis practical to the real engineering problems, 

the existing schemes are improved and a series of new fringe analysis techniques are 



developed.  Among these new techniques, the self-adaptive fringe filtering scheme 

considers not only the orientations of the local fringes but also the local fringe densities; 

the enhanced random phase shifting algorithm can detect the phase shift amounts and the 

full-field phase distributions automatically and simultaneously; the hybrid semi-

automatic O/DFM fringe centering technique combines the advantages of existing 

techniques and can be employed to obtain full-field fractional fringe orders and their 

gradients accurately.  Based on the study, a Windows GUI-based expert software system 

is developed for interferogram fringe analysis and processing.  This expert system 

includes all the algorithms presented in this dissertation. 

Selected but original applications of the computer-aided fringe analysis are 

presented.  They include: (1) development of infrared diffraction interferometer for co-

planarity of high-density solder bump patterns; the infrared light enables the regularly 

spaced solder bump arrays to produce well-defined diffracted wavefronts, (2) 

development of an inverse method to determine elastic constants using circular disc and 

moiré interferometry; this method uses a non-linear over-deterministic approach to 

determine elastic constants simultaneously, and (3) applications to out-of-plane shape and 

warpage measurement and in-plane displacement and strain measurements of electronic 

packaging components. 
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1. INTRODUCTION AND BACKGROUND 

1.1 Problem statement 

In recent years, various photomechanics methods have matured and emerged as 

important engineering tools.  The methods provide the full field information of 

displacement field.  Representative examples of the methods used for a quantitative 

deformation analysis are shown in Table 1.1 and Table 1.2 for in-plane and out-of-plane 

displacements, respectively [1]~[6]. 

The fringe patterns represent the contours of equal displacements.  The intensity 

distribution of the fringe patterns can be expressed as 

 

)]y,x(cos[)y,x(I)y,x(I)y,x(I am φ+=          (1.1) 

 

where I is the intensity distribution of the interferogram, Im is the mean intensity, Ia is the 

intensity modulation amplitude, φ is the angular phase information of the interferogram, 

and (x,y) represents all the points in the x-y plane of the object and the interferogram; φ 

represents the fringe order N at each point of the pattern by (x, y) 2 N(x, y)φ = π . 

Experimental fringe analysis is a procedure to obtain the desired experiment results or 

physical quantities from the fringe patterns.  In general, only the integer fringe orders can 

be directly determined from the fringe patterns, which are located along the centerlines of 

the black fringes.  The fringe analysis involves two steps: one is how to obtain the 
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fractional fringe orders and the other is how to get the desired results from the fractional 

fringe orders. 

The fringe patterns have been analyzed manually for experiment analyses.  As digital 

image processing has become more accessible, automatic analyses of the fringe patterns 

have become practical [7].  Numerous image-processing algorithms have been developed 

to complement interferometric measurement techniques.  The methods utilize a single or 

a series of phase-shifted interferograms to compute the fractional fringe orders.  The 

algorithms were originally implemented for classical interferometry.  Their extensions to 

general fringe analyses have been limited because of inherent optical noise encountered 

in the modern photomechanics techniques. 

Under an idealized condition where the interferogram is described faithfully by 

Equation (1.1), mathematical determination of the phase information can be readily 

achieved.  If random noise with relatively small amplitude exists, the general image 

processing algorithms for averaging and smoothing can be utilized effectively to 

eliminate the noise.  In practice, however, the general image processing algorithms are 

not directly applicable because of geometrical discontinuities in the region of interest as 

well as random noise with large amplitude. 
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Table 1.1 In-plane photomechanics methods 

Method 
Basic 

principle 

Sensitivity 

(fringes/disp.) 

Contour Interval 

(disp./fringe) 
Field of View Example 

Geometric 

moiré 

Additive 

intensities 

Less than 100 

lines/mm 

Greater than 10 

micrometers 
Large 

 

Moiré 

interferometry 

Laser 

interference 

2.4 

lines/micrometer 
0.417 micrometers 

Small 

(typically 5mm 

to 50mm) 
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Method 
Basic 

principle 

Sensitivity 

(fringes/disp.) 

Contour Interval 

(disp./fringe) 
Field of View Example 

Microscopic 

moiré 

interferometry 

Interference 

under 

refractive- 

index 

medium and 

microscope 

4.8 

lines/micrometer 

208 to 20.8 

nanometers 

Microscopic 

(typically 50 

micrometers to 

1 mm) 

 

 

Table 1.2 Out-of-plane photomechanics methods 

Method 
Basic 

principle 

Sensitivity 

(Fringes/disp.) 

Contour Interval 

(disp./fringe) 
Field of View Example 

Shadow moiré 
Additive 

intensities 

Less than 100 

lines/mm 

Greater than 10 

micrometers 

Large (up to 

100 mm) 
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Method 
Basic 

principle 

Sensitivity 

(Fringes/disp.) 

Contour Interval 

(disp./fringe) 
Field of View Example 

Infrared 

Fizeau 

interferometry 

Light 

interference 

200 to 400 

lines/mm 

2.5 to 5 

micrometers 

Medium (5 to 

45 mm) 

 

Twyman-

Green 

interferometry 

Laser-light 

interference 

3.2 

lines/micrometer 
.317 micrometers 

Small (less 

than 5 mm) 
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The inherent optical noise of an interferogram is illustrated in Figure 1.1.  The fringe 

pattern represents a horizontal displacement of a layered metal/ceramic composite 

subjected to a uniform bending, which was obtained from a microscopic moiré 

experiment.  The intensity distributions along the cross lines in the fringe patterns are 

also shown in the figure.  In spite of well-defined black fringes with excellent contrast, 

random noise with extremely large amplitude is evident.  The noise was caused by 

imperfection of diffraction gratings used in the experiment.  In addition, a strong gradient 

(or strain) is expected at the interfaces of material discontinuity.  If a general image-

processing algorithm is employed, the original deformation field can be altered 

significantly.  Image processing routines with specific functions are required to process 

the fringe pattern. 

 

 

Figure 1.1 Illustration of large random noise. 
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1.2 A review of digital fringe analysis and processing 

Digital fringe image processing techniques fall into two categories: one is an 

intensity-based analysis and the other one is a phase measurement technique.  The former 

is a semi-automatic processing technique while the latter can be regarded as an automatic 

processing technique. 

The intensity-based fringe analysis was established based on the traditional manual 

processing method.  This technique involves detecting and thinning fringe centerlines 

(skeletons), assigning fringe orders and interpolating fringe orders.  The intensity-based 

fringe processing is a tedious procedure and development of this technique has not been 

active since 1990’s [8]~ [38] because of its inherent limitation.  The phase measurement 

technique [39]~[97] offers an automatic processing procedure and has been widely used 

since late 1980’s.  In spite of its popularity, the digital fringe image processing is still not 

mature for practical applications.  One of the reasons is that the techniques were 

established based on theoretical descriptions of the optical interferograms; significant 

improvement is required to make the techniques practical for real engineering 

applications. 

 

1.2.1 Intensity-based analysis 

The core of the intensity-based analysis technique [8]~[38] includes fringe centerline 

detection and fringe order interpolation.  There are two kinds of methods for extracting 

the fringe centerlines from fringe patterns.  One method involves binarizing the fringe 
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patterns and then skeletonizing the binary fringes; another method finds the fringe 

centerlines through detecting the local maxima and minima of fringe intensities.  

Compared with binarization method, the fringe peak detection method usually yields 

centerlines with less error; however, this method is more sensitive to noise.  

Although many fringe centerline detection methods have been proposed and 

developed, few study work can be found in the literature for automatic fringe order 

assignment and interpolation.  Generally, it is practically impossible to assign fringe 

orders automatically because the fringe patterns do not contain the fringe order 

information.  A typical solution to this problem is detecting the ascending or descending 

directions of the fringe order while changing the load in the experiment.  For fringe order 

interpolation, only one-dimensional (1-D) algorithms based on linear interpolation have 

been implemented.  It is obvious that 1-D interpolation is not adequate for most cases 

simply because the fringe patterns contains two-dimensional (2-D) information. 

 

1.2.2 Phase measurement technique  

Unlike the intensity-based fringe analysis which utilizes only a small portion of the 

fringe pattern, i.e., the integer fringe orders, the phase measurement method uses full-

field fringe information for the analysis.  

The phase measurement technique includes Fourier transform analysis and phase 

shifting analysis.  Fourier transform method [39]~[56] requires a single fringe image for 

the analysis.  In order to separate the pure phase information in the frequency domain, 

Fourier transform usually requires carrier fringes; this brings difficulty in practice 
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because the frequency of the carrier fringe must be controlled accurately.  Another 

critical limitation of Fourier transform technique is inability of handling discontinuities. 

Phase shifting method [57]~[77] is a widely used automatic fringe processing 

technique.  This method uses a series of phase-shifted interferograms to calculate the 

fractional fringe orders. Theoretically, the phase shifting algorithm is ideal for a general 

fringe analysis. However, in real applications, the phase shifting technique also suffers 

from localized inaccuracy, especially when the gradients of the fringe orders are to be 

determined.  Another important issue associated with phase shifting technique is phase 

unwrapping [78]~[97] process.  Numerous phase unwrapping algorithms are available 

and new phase unwrapping algorithms are being proposed.  It is worth noting that most of 

the algorithms aim to solve one or more specific problems.  An investigation of the 

existing algorithms for automatic fringe analysis is in high demand. 

 

1.3 Scope and objective of this dissertation 

The scope of this dissertation invovles investigation of the digital fringe processing 

techniques for computer-aided fringe analyses.  The ultimate objective of this dissertation 

is to develop a general-purpose computer-aided fringe analysis tool and apply it to 

advanced engineering problems.  The specific goals include: 

(1) Full-field mapping of fractional fringe order, which usually denotes a deformed 

configuration, and 

(2) Full-field mapping of the gradient of the fractional fringe order, which usually 

denotes the displacement gradient, i.e., strain. 
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To achieve the goals, the following tasks will be implemented and completed in this 

dissertation: 

(1) Survey and investigate the existing fringe image processing schemes and 

identify the most appropriate image processing schemes and their limitations; 

(2) Improve the existing schemes and develop new techniques to cope with the 

limitations of existing schemes; 

(3) Develop an expert software system for computer-aided fringe analysis and 

processing; 

(4) Apply the computer-aided fringe analysis expert system to the real engineering 

problems. 
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2. PRE-PROCESSING OF FRINGE IMAGES 

This chapter is devoted to the algorithms for pre-processing of fringe patterns to 

eliminate the noise.  The existing algorithms are reviewed and the limitations are 

discussed.  New hybrid algorithms are proposed for the fringe patterns and the results 

from the proposed algorithms are presented. 

2.1 Spatial averaging and low-pass filtering 

Low pass filtering, also known as “smoothing”, was developed to remove noise with 

high spatial frequency [7] ~[11].  This type of noise is often produced during the analog-

to-digital conversion process (physical conversion of light energy into electrical signal). 

A typical form of low-pass filters is a moving window operator. The operator affects 

one pixel at a time, changing its value by some function of a “local” region of pixels 

(“covered” by the window).  The operator “moves” in the x and y direction to change the 

entire image. 

The most common low-pass filter is a neighborhood-averaging filter. The 

neighborhood-averaging filters replace the value of each pixel, say ( )y,xI , by a 

weighted-average of the pixels in some neighborhood around it, i.e. a weighted sum of 

( )qy,pxI ++ , with p = -k to k, q = -k to k, where k is a positive integer; the weights are 

given to each pixel in the window, usually non-negative value.  If all the weights are 

equal, it is called a “mean filter”.  Mathematically the neighborhood-averaging filtering 

method can be expressed as: 
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( ) ( ) ( )∑ ∑
−= −=

⋅++=′
k

kp

k

kq

q,phqy,pxIy,xI          (2.1) 

where ( )q,ph  is the weight of averaging at pixel (p, q).  Figure 2.1 shows a horizontal 

displacement fringe pattern of a layered metal/ceramic composite subjected to a uniform 

loading; Figure 2.1 (a) is the original fringe pattern and Figure 2.1 (b) is the same fringe 

pattern after low-pass filtering using a 5×5 window mean filter.  Significant reduction of 

noise is evident. 

The neighborhood-averaging filter has an excellent smoothing effect.  For the same 

reason, it can blur the images, especially along the edges, and thus it should be used with 

a caution when a large random noise is present. 

 

   

(a) Original fringe pattern     (b) Fringe pattern after filtering 

Figure 2.1 Example of low-pass filtering 
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2.2 Spatial median filtering 

Median filtering [7]~[11] is a non-linear filtering method, and it is very useful for 

reduction of salt-and-pepper type noise (i.e. isolated noise with extreme values).  The 

median filtering replaces each pixel value by the median of its neighbors.  For instance, 

consider a 3 by 3 pixel window, the intensity values of the nine pixels in the window are 

sorted in an ascending order and the value of the pixel in the center of the window is 

replaced by the fifth largest value.  Figure 2.2 shows the result of applying a 5×5 window 

median filtering on the same image in Figure 2.1 (a). 

 

 

Figure 2.2 Example of median filtering 

 
In general, median filtering takes longer time to execute because of a logical 

operation required in the algorithm and it is not very effective for noise reduction of 

fringe patterns.  However, the method does not alter the edges as much as low pass 
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filtering.  It is very effective for the filtering of phase map, which contains pixels with 

undefined phase values.  The phase map issue will be discussed more in Chapter 3. 

 

2.3 Frequency filtering: Fourier transform low-pass filtering 

Fourier transform low-pass filtering method [11] is a form of low pass filtering in 

frequency domain. With this method, an image is transformed into a frequency domain 

and an appropriate window is selected in the frequency domain to eliminate the high 

frequency noise. The filtering is expressed as: 

( ) ( )[ ] ( ){ }v,uHy,xfFTFTy,xg 1 ⋅= −           (2.2) 

 

 

Figure 2.3 Example of Fourier transform low-pass filtering 

 
where FT represents Fourier transform, FT-1 represents inverse Fourier transform, H(u, v) 

is a filter function, f(x, y) is the original intensity and g(x, y) is the modified intensity.  
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The typical filter function includes Ideal filter, Butterworth filter, Exponential filter and 

Trapezoidal filter [11].  Figure 2.3 shows the result of the same fringe pattern in Figure 

2.1 (a) after applying a Fourier transform Exponential filtering. 

 

2.4 Limitation of the conventional filtering methods 

The spatial image filtering methods were developed for general photographic images 

and they are not most effective for fringe patterns, which have more distinct orientational 

intensity variations compared with the general photographic images. More specifically, 

the intensity of fringe patterns changes much more rapidly along the orientation 

perpendicular to the fringe lines than along the orientation parallel to the fringe.  

Furthermore, the spatial filtering methods do not consider the variation of fringe density.  

Consequently, a fixed size of conventional square window is not most desirable for fringe 

patterns. 

The similar limitations can be realized with Fourier transform filtering.  The Fourier 

transform method filters the fringe in the global frequency domain. It considers neither 

the variation of fringe density nor the fringe orientation.  

 

2.5 New self-adaptive filtering 

A new self-adaptive filtering method is proposed in this dissertation.  The self-

adaptive filtering is based on spatial averaging filtering; however, it detects both the 

orientations and the densities of the fringes during the filtering.  
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2.5.1 Orientational filtering 

Orientational filtering utilizes the essentially “line” characteristic of the fringes.  In 

the process, the fringe orientation at every pixel is determined first.  Generally, a proper-

size window (usually a square window) is used to calculate the variances of fringe 

intensities in each orientation of the window: 

∑ ∑
= =









−=

k

1i

2k

1i

j
i

j
i

j I
k
1

IVar              (2.3) 

where I denotes the fringe intensity or pixel gray level, the superscript “j ” denotes the jth 

fringe orientation, the subscript “i” denotes the ith pixel in each orientation and k is the 

number of  pixels in each orientation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Schematic diagrams of the local fringe direction 
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Figure 2.4 illustrates an example. The example shows 8 possible orientations within 

the window. Details of the first four orientations are also shown for the window of 

11×11. 

Among all the orientations, the orientation with the minimum fringe intensity 

variance is chosen as the fringe orientation.  Then, instead of a square window which 

does not consider the fringe orientation, a rectangular window mask in the orientation of 

the fringe is used to smooth the fringes. 

 

2.5.2 Selection of filtering window based on fringe density  

In the neighborhood-averaging filtering, the filters can be applied repeatedly or a 

large window size can be used to tailor the degree of noise smoothing.  However, 

excessive smoothing can reduce the contrast of high-density fringes significantly, and 

thus can disturb the original phase information of the fringes. To cope with the problem, 

the filtering window size can be selected automatically based on the local fringe density.   

To find the local fringe density, firstly, the original fringe image is pre-smoothed 

using a small window neighborhood-averaging filtering.  Then, the fringe image is 

binarized to be a monochrome (black-white) image with a threshold which can be the 

mean intensity of the fringe pattern.  From the monochrome fringe image, the local fringe 

density along horizontal direction fx and along vertical direction fy can be determined; 

and the total local fringe density is calculated by 

 

2
y

2
x fff +=                 (2.4) 
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Finally, the original fringe pattern can be smoothed again using a low-pass filter with 

varying window whose size matches to the local fringe density. 

 

2.5.3 New self-adaptive filtering  

In the proposed self-adaptive filtering, the orientational filtering and the fringe-

density-based window filtering are combined to provide an optimum spatial filtering 

condition.  The filter window is a rectangular in the orientation of the local fringes; the 

width and height of the rectangular window can be selected to be one pitch of the local 

fringes (i.e., reciprocal of fringe density) and one quarter of the pitch, respectively.  

In the real application, the detection of fringe orientation at every pixel can be 

erroneous because of the noise.  A solution to this problem is to segment the whole fringe 

image into numerous blocks so that the fringe density and orientation are reasonably 

uniform in each block.  

Figure 2.5 illustrates the effect of different filtering methods.  The original image is 

shown in (a), which represents a vertical displacement field of a notched specimen 

subjected to a cyclic loading, obtained by moiré interferometry.  Using a conventional 

averaging filter with 3x3 size window, the noise in the high-density fringes around the 

crack was eliminated effectively but the noise in the low-density fringes at a far field was 

not cancelled (b).  When a larger (7x7) window was used, the noise of the far field 

reduced significantly but it caused smearing of the high-density fringes (c). The result 

obtained from the proposed self-adaptive method is shown in (d) and effective reduction 

of noise in both areas is evident. The intensity distributions along the same white solid 
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line in (a) are shown in (e)~(h).  Figure 2.6 illustrates the self-adaptive window at point A 

and B used in the filtering.  The proposed algorithm eliminated the noise very effectively 

without altering the original shape of the intensity distribution. 

 

       

(a) Original image      (b) 3×3 window averaging filtering 

 

       

 (c) 7×7 window averaging filtering      (d) Self-adaptive filtering 
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(e) Intensity plot of (a) along the line 
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(f) Intensity plot of (b) along the line 
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(g) Intensity plot of (c) along the line 
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(h) Intensity plot of (d) along the line 

Figure 2.5 Example of fringe image filtering 

 

 

 

 

5x1, 45° window at A                              45x13, 0° window at B 

Figure 2.6 Example of self-adaptive filtering window 
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3. FRINGE ANALYSIS I: AUTOMATIC ANALYSIS 

Two algorithms for automatic fringe analysis are studied: Fourier transform method 

[39]~[56] with a single image and phase shifting technique [57]~[77] with multiple 

images.  The purpose of these algorithms is to find a phase information at every pixel, 

and thus to determine a fractional fringe order at every point in the fringe pattern.  

Mathematical descriptions are given and illustrations are followed.  Limitations and 

restrictions in the application to the fringe patterns are discussed. 

 

3.1 Single image:  Fourier transform method 

3.1.1 Principle of general Fourier transform method 

Repeated here, the intensity distribution of the fringe patterns can be expressed as 

)]y,x(cos[)y,x(I)y,x(I)y,x(I am φ+=          (3.1) 

where I is the intensity distribution of the interferogram, Im is the mean intensity, Ia is the 

intensity modulation amplitude, φ is the angular phase information of the interferogram, 

and (x,y) represents all the points in the x-y plane of the object and the interferogram.  

The intensity function can also be expressed as 

( ) ( ) ( ) ( )y,xcy,xcy,xIy,xI m
∗++=           (3.2) 

with 

( ) ( ) ( )y,xi
a ey,xI

2
1

y,xc φ=              (3.3) 
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where * denotes complex conjugate. 

After a two-dimensional discrete Fourier transform (DFT), the spatial frequency 

domain representation of the pattern becomes 

( ) ( ) ( ) ( )ηζηζηζηζ ,C,C,A,F *++=          (3.4) 

where A(ζ, η) is the transform of Im(x, y), and C(ζ, η) and C*(ζ, η) are the positive and 

negative frequency spectra of the modulated carrier fringes. ζ and η are the spatial 

frequencies that represent intensity changes with respect to spatial distances. If the image 

size is 2n, the fast Fourier transform (FFT) can be used, which is much faster than the 

ordinary Fourier transform. 

At the frequency domain, if C(ζ, η) can be isolated from A(ζ, η) and C*(ζ, η) in 

equation (3.4), then an inverse Fourier transform can be performed for C(ζ, η). Finally, 

c(x, y) can be obtained at the spatial domain and the phase information φ can be 

calculated from 

( )[ ]
( )[ ]y,xcRe

y,xcIm
arctan=φ               (3.5) 

where Im[ ], Re[ ] represent the imaginary and real part of c(x, y), respectively.  The 

phase φ obtained from the above equation ranges from -π to +π, and it does not reflect the 

fringe order.  Phase unwrapping is required to make the phase represent the fractional 

fringe order and it will be discussed later in this chapter. 

 In order to be able to isolate C(ζ, η) from A(ζ, η) and C*(ζ, η) at the frequency 

domain, the intensity function should have continuous and monotonically changing 

derivatives across the field. Unfortunately, this condition is often violated for the fringe 

pattern representing engineering deformations.   
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(a) Original ideal fringes                                      (b) Fourier spectra of (a)  

 

           

(c) Phase map from Fourier transform                       (d) Theoretical phase map 

Figure 3.1 Example of fringe analysis using general Fourier transform technique 

 
Figure 3.1 shows one example of fringe pattern analysis using general Fourier 

transform technique introduced above.  The original computer-generated fringe pattern is 

shown in (a), The spectra of Fourier transform is shown in (b), where the positive first 
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harmonic (i.e., C(ζ η) ) is isolated by a rectangular box shown in the picture.  The result 

of the inverse Fourier transform of the isolated harmonic is shown in (c); it is a wrapped 

phase map.  The corresponding theoretical phase map is shown in (d).  The result 

illustrates that the above general Fourier transform method does not work for fringe 

analysis if the sign of the fringe gradient changes; i.e., it is difficult to isolate C(ζ, η) at 

the frequency domain.  A modified Fourier transform method was introduced to cope 

with this problem. 

 

3.1.2 Principle of carrier Fourier transform method 

In this modified Fourier transform method, a spatial carrier fringe is added to the 

original pattern to make the sign of the fringe gradient unchanged across the fringe 

pattern.  The carrier fringe is a uniform array of fringes representing a constant gradient.  

The original pattern is modulated by the relatively high frequency carrier pattern to 

produce a monotonically changing intensity function.  This process is analogous to FM 

(frequency modulated) radio waves, where the information is the irregular part of an 

otherwise constant carrier frequency.  The intensity function modulated by the carrier 

frequency can be expressed as 

( ) ( ) ( ) ( ) ( )[ ]y,xyfxf2cosy,xIy,xIy,xI yxam φ++π+=       (3.6) 

where fx and fy are the linear components of the carrier frequency in the x and y direction, 

respectively. Again, the intensity function can be rewritten in the exponential form as 

( ) ( ) ( ) ( ) ( ) ( )yfxfi2yfxfi2
m

yxyx ey,xcey,xcy,xIy,xI +π−∗+π ++=      (3.7) 

with 
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( ) ( ) ( )y,xi
a ey,xI

2
1

y,xc φ=              (3.8) 

where * denotes complex conjugate. 

After a two-dimensional Fourier transform, the spatial frequency representation of the 

pattern becomes 

( ) ( ) ( ) ( )yx
*

yx f,fCf,fC,A,F +η+ζ+−η−ζ+ηζ=ηζ      (3.9) 

where A(ζ, η) is the transform of Im(x, y), and C(ζ-fx, η-fy) and C*(ζ+fx, η+fy) are the 

positive and negative frequency spectra of the modulated carrier fringes. ζ and η are the 

spatial frequencies that represent intensity changes with respect to spatial distances.  It is 

essential for the three terms in equation (3.9) to be completely isolated from one another 

in the frequency domain.  This condition will be achieved if the signal of interest is 

sufficiently band-limited, and the frequency of the carrier pattern is large enough to 

separate the positive and negative spectra.  Otherwise, the positive spectra and negative 

spectra will be overlapped in the frequency domain and the first harmonic cannot be 

separated as seen in the general Fourier transform method. 

At the frequency domain, C(ζ-fx, η-fy) is isolated to eliminate A(ζ, η) and C(ζ+fx, 

η+fy) in equation (3.9). By shifting the center of the spectrum to the origin of the 

frequency axis, the carrier fx and fy are removed from C(ζ-fx, η-fy). Then, the inverse 

Fourier transform is performed for C(ζ, η), and finally c(x, y) can be obtained at the 

spatial domain.  The phase information φ can be calculated from the same equation as 

equation (3.5), repeated here, 

( )[ ]
( )[ ]y,xcRe

y,xcIm
arctan=φ               (3.5) 
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Similarly, a phase unwrapping is required to make the phase represent the fractional 

fringe order.  Because carrier Fourier transform can handle the practical engineering 

problems, it is more widely used than general Fourier transform method. The term 

Fourier transform actually represents carrier Fourier transform method.  

An example of the method is shown in Figure 3.2. The original fringe pattern is 

shown in (a), which contains two local maxima.  The carrier frequency and the pattern 

modulated by the carrier are shown in (b) and (c), respectively.  The modulated pattern 

has a monotonically changing gradient in the x direction.  The result of the Fourier 

transform is shown in (d), where the positive first harmonic (i.e., C(ζ-fx, η-fy) ) is isolated 

by a rectangular box shown in the picture.  The first harmonic is shifted to the origin and 

the result of the inverse Fourier transform of the shifted harmonic is shown in (e); it is a 

wrapped phase map.  The corresponding 3-D representation of the fractional fringe orders 

(or phase map) is shown in (f). 

 

            

(a) Original fringes                                      (b) Carrier fringes  
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(c) Modulated fringes with carriers                              (d) Fourier spectra of (c) 

 

  

(e) Fringe phase map                                        (f) 3-D unwrapped phase map 

 

Figure 3.2 3-D mapping using Fourier transform technique 
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3.1.3 Discussions on Fourier transform method 

The most important advantage of the Fourier transform method  (or carrier Fourier 

transform method) is that the only one interferogram is required for the analysis.  It is 

ideal for the automatic calculation of full-field displacements. 

Although ideal in the mathematical description, the Fourier transform method has 

several practical limitations. The most critical limitation is the lack of capability of 

handling discontinuities.  As mentioned earlier, the DFT assumes that the original 

function has a cyclic variation with a continuous gradient.  At the discontinuities, the 

process of transformation will spuriously distribute a large amount of energy over a wide 

range of frequencies.  This not only obscures the signal power, but also makes isolation 

of the pure signal impractical.  It is important to note that the edges of a fringe pattern are 

an inherent source of discontinuities even when the fringe pattern itself is continuous.  

The effect of discontinuities is illustrated in Figure 3.3, which represents an ideal U 

displacement field of a plate with a hole subjected to a uniform tension.  The original and 

the modulated fringe patterns are shown in (a) and (b), respectively.  The corresponding 

frequency spectra and the phase map obtained after the inverse transform are shown in (c) 

and (d). The theoretical phase map is shown in (e). As can be seen, the phase information 

along the edges is distorted significantly. 
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(a) Original fringe pattern                           (b) Modulated fringes with carriers 

 

           

(c) Fourier spectra of (b)                    (d) Phase map from Fourier transform 
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(e) Theoretical phase map 

Figure 3.3 Processing ideal fringes with in-side edges using Fourier transform 

 

It is also important to note that a precise shift of the first harmonic to the origin before 

the inverse transform is critical.  The effect of precise shift is illustrated in Figure 3.4.  (a) 

is the original ideal fringe pattern, the image size is 256 pixels by 256 pixels; (b) is the 

modulated fringes with carrier fx = 0.1 fringe/pixel, thus there are totally 25.6 fringes 

added through the whole horizontal  image width; (c) is the corresponding spectra of (b).  

In this example, a precise shift of first harmonic should be 25.6 pixels; however, this is 

not allowed in digital image processing.  (d) and (e) are the phase maps obtained from 

inverse Fourier transform after shifting the positive first harmonic to the left with 25 and 

26 pixels, respectively; (f) is the correct phase map.  The importance of the precise shift 

of the first harmonic is obvious in this example.  In the real application, it is generally 

impossible to control the number of the carrier fringes to be exact integer number in the 
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digitized image. This is an inherent error from a digital processing and another practical 

limitation of the Fourier transform method. 

 

              

(a) Original fringe pattern                            (b) Modulated fringes with carriers  

 

              

(c) Fourier spectra of (b)     (d) Phase with inadequate harmonic shift 
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 (d) Phase with excessive harmonic shift     (e) Correct phase map 

 

Figure 3.4 Processing ideal fringes with incorrect shift of first harmonic 

 

3.2 Multiple images: Phase shifting method 

3.2.1 Principle of phase shifting method 

The method utilizes a series of fringe or phase shifted interferograms to compute the 

fractional fringe orders [57]~[77].  The algorithms were originally implemented for 

classical interferometry.  Recently, their applications have been extended for other 

advanced photomechanics methods.  The basic algorithm and the enhanced algorithm are 

discussed.  A new algorithm is proposed to cope with one of the most critical 

requirements of the method; namely, accurate phase shift. 
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3.2.1.1 3, 4, 5, N frames algorithm 

Repeated here, the intensity I(x, y) of an interferogram at a point (x, y) is given as 

[ ])y,x(cos)y,x(I)y,x(I)y,x(I am φ+=          (3.1) 

There are three unknowns in the equation, namely Im, Ia, φ.  Three simultaneous equations 

are needed to evaluate the unknowns.  Experimentally, the three equations can be 

obtained by recording a series of intensity distributions with a uniform change of phase 

(or fringe order).  The three equations can be expressed as  

( ) ( ) ( ) ( )[ ]δ−φ+= y,xcosy,xIy,xIy,xI am1         (3.10) 

( ) ( ) ( ) ( )[ ]y,xcosy,xIy,xIy,xI am2 φ+=          (3.11) 

( ) ( ) ( ) ( )[ ]δ+φ+= y,xcosy,xIy,xIy,xI am3         (3.12) 

where I1, I2 and I3 are the intensity distributions recorded with a phase change of −δ, 0 

and +δ, respectively.  From the three equations, the phase φ(x, y) can be determined as 

( ) ( ) ( )
( ) ( ) ( )






−−

−
⋅

δ
δ−

=φ
y,xIy,xIy,xI2

y,xIy,xI
sin

cos1
arctany,x

312

31      (3.13) 

When π=δ
3
2

, the above expression becomes  

( ) ( ) ( )
( ) ( ) ( )






−−

−
⋅=φ

y,xIy,xIy,xI2
y,xIy,xI

3arctany,x
312

31       (3.14) 

For a more accurate phase calculation, other algorithms using more than three phase-

shifted images have been developed.  The most widely used algorithm uses four phase-

shifted images.  The set of four images are  

( ) ( ) ( ) ( )[ ]y,xcosy,xIy,xIy,xI am1 φ+=          (3.15) 
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( ) ( ) ( ) ( ) 



 π+φ+=

2
1

y,xcosy,xIy,xIy,xI am2        (3.16) 

( ) ( ) ( ) ( )[ ]π+φ+= y,xcosy,xIy,xIy,xI am3         (3.17) 

( ) ( ) ( ) ( ) 



 π+φ+=

2
3

y,xcosy,xIy,xIy,xI am4        (3.18) 

Then, the phase is expressed in a simpler form as 

( ) ( ) ( )
( ) ( )








−
−

=φ
y,xIy,xI
y,xIy,xI

arctany,x
31

24           (3.19) 

Another algorithm uses five images [61].  This algorithm was developed to minimize 

the cases of denominators with zero or near zero values, and thus to reduce uncertainties 

in the phase calculation.  The five different intensities are obtained with a symmetric 

phase shift as 

( ) ( ) ( ) ( )[ ]δ−φ+= 2y,xcosy,xIy,xIy,xI am1         (3.20) 

( ) ( ) ( ) ( )[ ]δ−φ+= y,xcosy,xIy,xIy,xI am2         (3.21) 

( ) ( ) ( ) ( )[ ]y,xcosy,xIy,xIy,xI am3 φ+=          (3.22) 

( ) ( ) ( ) ( )[ ]δ+φ+= y,xcosy,xIy,xIy,xI am4         (3.23) 

( ) ( ) ( ) ( )[ ]δ+φ+= 2y,xcosy,xIy,xIy,xI am5         (3.24) 

The phase is given by 

( ) ( ) ( )
( ) ( ) ( )






−−

−
⋅

δ
δ−

=φ
y,xIy,xIy,xI2

y,xIy,xI
sin

cos1
arctany,x

513

42      (3.25) 

If π=δ
2
1

,  
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( ) ( ) ( )
( ) ( ) ( )






−−

−
=φ

y,xIy,xIy,xI2
y,xIy,xI

arctany,x
513

42        (3.26) 

 

   

    

    

Figure 3.5 Example of 5-frame phase-shifting algorithm 

 

With the phase shifting method, uncertainties in phase determination are present 

when the phase shifting amount, δ, is not correctly introduced during the measurement.  
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When the three-phase-step is used, the phase is more sensitive to the phase shift error.  

Small errors in the phase shift result in significant overestimation or underestimation of 

the phase.  Using more phase steps, the errors in the phase shift can be smoothed out, 

which produces more stable results.  Considering the computational time, four or five 

phase steps are most widely used in practice.  Figure 3.5 shows an example of the 5-

frame phase shifting algorithm.  The last image is the calculated phase map. 

 

3.2.1.2 Advanced phase shifting method: Carré method  

With Carré method [61], the phase shift amount is also treated as an unknown. The 

method uses four phase-shifted images as 

( ) ( ) ( ) ( ) 



 δ−φ+=

2
3

y,xcosy,xIy,xIy,xI am1        (3.27) 

( ) ( ) ( ) ( ) 



 δ−φ+=

2
1

y,xcosy,xIy,xIy,xI am2        (3.28) 

( ) ( ) ( ) ( ) 



 δ+φ+=

2
1

y,xcosy,xIy,xIy,xI am3        (3.29) 

( ) ( ) ( ) ( ) 



 δ+φ+=

2
3

y,xcosy,xIy,xIy,xI am4        (3.30) 

Assuming the phase shift is linear and does not change during the measurements, the 

amount of phase shift can be calculated as  

( ) ( )
( ) ( ) 












−+−
−−−

=δ −

4132

41321

IIII
IIII3

tan2           (3.31) 

and the phase at each point is determined as  

 



 38

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 4 2 31

2 3 1 4

1 4 2 3 2 3 1 41

2 3 1 4

I I I I
tan tan

2 I I I I

I I I I 3 I I I I
tan

I I I I

−

−

  − + −δ  φ =     + − +    
 − + − − − −       =  + − +  

    (3.32) 

 

The advantage of Carré algorithm is clear; it does not require accurate calibration of 

the phase shifting mechanism as long as it is linear and stable during the measurement.  

 

3.2.2 Enhanced random phase shifting algorithm 

Under an idealized condition where the phase shifting is performed perfectly, any of 

the above algorithms would suffice to produce accurate phase information.  In practice, 

the phase shifting has uncertainties.  Figure 3.6 shows how each algorithm is sensitive to 

the phase shifting error, where peak to valley (P-V) phase errors are plotted as a function 

of the phase shift error. When a linear phase shift error (the actual phase shift error is a 

linear function of the desired phase shift) exists, the 3-frame and 4-frame algorithms yield 

a large error.  The error is suppressed significantly with the 5-frame algorithm and it is 

nullified completely with the Carré method.  For a nonlinear phase-shifter error (the 

actual phase shift error is a non-linear function of the desired phase shift, and non-linear 

errors include non-linear response from a CCD detector, quantization error, vibration, 

etc.), however, all the methods yield substantial error in phase determination. 
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Figure 3.6 Peak-to-valley (P-V) phase error versus percent phase shifter error [61] 

 

It is important to note that the series of phase-shifted interferograms contain the 

information required to obtain the phase distribution as well as the phase shift amount of 

each interferogram. Okada [72] proposed an algorithm based on iteration to treat all the 

variables in the intensity distribution as “unknowns”.  The algorithm is very effective but 

it works only when the amount of phase shift error is small.  When the shifting error 

becomes larger, a convergence problem occurs and accuracy decreases significantly.  

This is a rational for the proposed algorithm. 

 

3.2.2.1 Enhanced iteration algorithm 

The algorithm is based on the non-linear least square method.  An estimated intensity 

is defined for the cases of known phase values and known phase shifting amounts.  An 

iteration process is performed until the sum of the squared difference between the 

estimated intensity and the measured intensity converges to a small value. 
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1. Step 1: Phase calculation under an assumption of no random noise 

The estimated intensity of the ith phase shifted image, e
ijI , can be defined as 

( )e
ij ij ij j i ij ij j i ij j iI A B cos A B cos cos B sin sin , i 0,1, , ,M 1= + ⋅ φ + δ = + ⋅ φ ⋅ δ − ⋅ φ ⋅ δ = −  

(3.33) 

where the subscript “i” denotes the ith phase shifted image and the subscript “j” denotes 

the individual pixel locations in each image.  In the equation, δi is the amount of phase 

shift of each frame, φj is the unknown phase, Aij is the background intensity and Bij is the 

modulation amplitude.   

Assuming that there is no random noise in the patterns, Aij and Bij become single 

order tensors, i.e., A1j = A2j = AMj and B1j = B2j = BMj. Defining a new set of variables as 

j ija A= , j ij jb B cos= φ , j ij jc B sin= − φ , the estimated intensity can be expressed as  

ijijj
e

ij sinccosbaI δ⋅+δ⋅+=            (3.34) 

In the classical least-square approach, an expression for the error Sj, accumulated from all 

the images, can be written as  

( ) ( )∑∑
−

=

−

=

−δ⋅+δ⋅+=−=
1M

0i

2
ijijijj

1M

0i

2

ij
e

ijj IsinccosbaIIS     (3.35) 

In this step, it is assumed that iδ  have correct values. Then the least squares criteria 

require 


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


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
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0
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0
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j

                 (3.36) 
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The above equation yields 
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From above matrix equations, the constants aj, bj, cj can be determined and the 

unknown phase can be determined from 


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j b

c
tan                (3.38) 

 

2. Step 2: Phase shift calculation under an assumption of uniform background 

In the second part of iteration, it is assumed that the background and modulation are 

constant for each frame. Then Aij and Bij become single order tensors, i.e., Ai1 = Ai2 = AiN 

and Bi1 = Bi2 = BiN.  Defining another set of variables for each frame as i ija A′ = , 

i ij ib B cos′ = δ , i ij ic B sin′ = − δ , the estimated intensity can be expressed as 

jijii
e

ij sinccosbaI φ⋅′+φ⋅′+′=            (3.39) 

 An expression for the error iS′ , accumulated from all the pixels in the ith image, can 

be expressed as 
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In this step, it is assumed that jφ  computed in Step 1 is correct.  Then, the least squares 

criteria require 
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The result yields 
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The constants ia′ , ib′ , ic′  can be determined from the above equation. Then, the 

amount of phase shift in each frame can be determined from 
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3. Step 3 

Repeat the steps until the phase shift values converge, i.e., a condition ε<δ−δ −1ii  is 

satisfied, where ε is a very small value, e.g., 10-6. 

 

An example of random phase shifting is shown in Figure 3.7. The fringes shown in 

the figure were generated by a computer simulation, and random noise is added in the 

fringes.  The phase shifts in the patterns are 0°, 40°, 90° and 150°, respectively.  In the 

calculation, the initial values of the phase shift were 0°, 90°, 180° and 270° (used for the 
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four-image algorithm). The original iteration algorithm converged at 0°, 71°, 116°, and 

238°.  This large error was expected because of the high degree of randomness of the 

phase shift.  The proposed algorithm yields 0°, 40°, 91° and 151°, which are much closer 

to the real phase shift amount. It is important to note that the proposed iteration algorithm 

does not require the phase shifting amounts are ascending, i.e., the phase shifts can be 

random. 

 

   

φ=0°         φ=40° 

   

φ=90°         φ=150° 

Figure 3.7 Example of a random phase shifting 
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3.3 Fractional fringe order calculation: phase unwrapping 

Phase unwrapping [78]~[97] is the process by which the absolute value of the phase 

angle of a continuous function that extends over a range of more than 2π (relative to a 

predefined starting point) is recovered. This absolute value is lost when the phase term is 

wrapped upon itself with a repeat distance of 2π due to the fundamental sinusoidal nature 

of the wave functions used in the measurement of physical properties.  Phase unwrapping 

is illustrated in Figure 3.8 for a linearly increasing displacement field. 

 

      

Wrapped phase                                      Real phase 

Figure 3.8 Wrapped and unwrapped phase for a linearly changing displacement 

field 

 

Numerous algorithms have been proposed for phase unwrapping of various scientific 

images such as optical shape reconstruction, medical image analysis, geometrical survey, 

etc.  The number of new phase unwrapping algorithms continues to grow.  In this 
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dissertation work, the existing phase unwrapping algorithms were evaluated and the 

following algorithms were selected for the fringe analysis. 

 

3.3.1 Sequential filling 

The simplest phase unwrapping method is a sequential scan through the phase data, 

line by line.  If any of the pixels are masked, or a phase jump is incorrectly detected, 

however, the unwrapping process will be interrupted or an error will propagate through 

the rest of the data.  To improve the unwrapping results, multiple scan directions can be 

adopted.  This method is very simple and fast.  However, the unwrapping produces large 

errors at the regions where the phase has an incorrect jump or the pixels are masked [82].  

A simple solution to cope with the above problem is sequential filling. With this 

method, after the phase is unwrapped at a pixel, the following pixel to be unwrapped will 

be one of the neighboring pixels that have not been unwrapped.  The same procedure is 

repeated until the whole wrapped phases have been unwrapped.  For the pixels with an 

incorrect jump, masks are used to exclude them before the unwrapping process, and the 

masked pixels are skipped during unwrapping.  At the end of the unwrapping procedure, 

the phase at masked pixels can be restored through phase value interpolations. 

The sequential filling is the fastest method among those presented here.  However, 

the masking of the incorrect jump pixels usually requires a human-computer interactive 

operation. 
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3.3.2 Minimum spanning tree 

Minimum spanning tree method [93][94] is similar to the sequential filling method 

except that the next pixel to be unwrapped is not chosen arbitrarily among the 

neighboring pixels of the current pixel.  Instead, the pixels are divided into three groups: 

the unwrapped pixels fall into the first group; the wrapped pixels that have at least one 

neighboring unwrapped pixel are put into the second group; all other wrapped pixels 

belong to the third group.  The next pixel to be unwrapped is from the second group and 

this pixel should have the minimum phase difference with its unwrapped neighbor among 

the first group.  Because sorting is required, the minimum spanning tree algorithm takes a 

longer time to process.  Effective sorting algorithms developed for computer data 

structure, such as red-black tree sorting, can be used to decrease the unwrapping time 

significantly [94]. 

 

3.3.3 Preconditioned-conjugate-gradient (PCG) least-square iteration 

Least-squares iteration is used in this method; preconditioned conjugate gradient 

algorithm is helpful for accelerating the iteration. Following is a brief description of this 

method [95][96]. 

The relation between the wrapped phase j,iψ  and the unwrapped phase j,iφ  can be 

expressed as 

k2j,ij,i π+ψ=φ                (3.44) 

where π≤ψ<π− j,i , k is an integer, 1M0i −= L , 1N0j −= L , M is the image 

dimension in x direction, and N is the dimension in y direction. 
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The least squares error is  
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where, 
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Applying the least squares criteria gives 
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A preconditioned conjugate gradient iteration algorithm is used to solve equation (3.48): 

(1) k=0, 00 =φ , cr0 = . 

(2) For 0rk ≠ , solve kk rPz = . 

(3) k=k+1; 

(4) If k=1, 01 zp = . 

(5) If k>1, then 

2k
T

2k

1k
T

1k
k

zr

zr

−−

−−=β  

1kk1kk pzp −− β+=  
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(6) One scalar and two vector updates are performed: 

k
T

k

1k
T

1k
k

Qpp

zr −−=α  

kk1kk pα+φ=φ −  

kk1kk Qprr α−= −  

(7) If maxkk ≥ , or 0k rr ε< , the calculation stopped. Otherwise, go to Step (2). 

 

Surveys and comparisons indicate that PCG least-square iteration always gives the 

best performance for phase unwrapping.  The disadvantage of PCG iteration method is 

that the unwrapping time is much longer than the above two methods.  The details of the 

algorithm can be found in refs. [95] and [96]. 

 

3.3.4 About the phase unwrapping methods 

The above three unwrapping algorithms are three typical methods among dozens of 

existing phase unwrapping methods. The sequential filling is a very fast method; it can be 

used for the fringe analysis of good-quality fringe patterns (e.g., interferometric moiré 

fringes). The minimum spanning tree method is much slower than sequential filling but 

generally yields reliable results for most of the photomechanics fringe analysis. The PCG 

least-squares iteration is a relatively slow method but it offers the best performance. 

Figure 3.9 is an example of phase unwrapping for a complicated fringe pattern using the 

three algorithms.  It is evident that the PCG method yields the best result because the 

unwrapped phase is consistent with the original wrapped phase.   
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Some other phase unwrapping methods, such as Flynn’s minimum discontinuity 

method, L0 method and cellular-automata method, also offer good performance for phase 

unwrapping of fringe patterns.  However, these methods are less practical and are not 

discussed here [92]. 

 

     

(a) Wrapped phase    (b) Unwrapping using sequential filling 

 

     

(c) Unwrapping using minimum spanning tree  (d) Unwrapping using PCG iteration 

Figure 3.9 Unwrapping of complicated phase using different algorithms 
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3.4 Calculation of fringe order gradient 

When an in-plane displacement field is studied, it is often required to obtain its 

derivative (or strain) to complete the deformation analysis.  The strain distribution can be 

calculated from the full-field displacement field by 

U(x, y) N(x, y) k (x, y)
(x, y) k

x x 2 x
∂ ∆ ∆φ

ε = ≈ =
∂ ∆ π ∆

       (3.51) 

where ε is an engineering strain component, U is the displacement field, k is a contour 

interval of the fringe pattern, ∆N is the change of fringe orders in the fringe pattern and 

∆x is any gage length across which ∆N is determined. 

In practice, the displacement field obtained from the experiment contains optical and 

electrical noise.  The noise will not affect the displacement field much; however, it can 

result in large errors in gradient or strain calculation.  For this reason, low-pass filtering 

or smoothing can be applied to the displacement fields to reduce the noise using general 

filtering techniques such as averaging filtering or median filtering.  The displacement 

smoothing can also be implemented through a surface polynomial fitting.  Similar to 

smoothing displacement fields before gradient calculation, an alternative technique is 

using the gage lengths of many pixels in the gradient or strain calculation. However, this 

arbitrariness in smoothing filer or gage length selection makes the accurate strain 

calculation difficult.  Figure 3.10 illustrates an example of strain calculation using various 

gage lengths. The fringe pattern represents a horizontal direction displacement of an 

infinite plate with a hole subjected to a uniform tension. 
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As can be seen from the plots, a larger gage length smoothes out the strain plot but 

they mask the strain concentration at the hole boundary.  A similar situation happens at 

the interface of dissimilar materials, where a strain gradient is extremely large. 

 

   

(a) Original images   (b) Wrapped phase   (c) Displacement 
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(d) Strain εx plot along vertical center line 

Figure 3.10 Examples of strain calculation using different gage lengths 



 52

 

3.5 Limitations of automatic analysis 

The automatic fringe analysis techniques are very powerful tools to determine a full 

field phase (or fractional fringe order) map.  The results can be used to plot a 2-D or 3-D 

deformed configuration.   

However, the automated analysis should be restricted to regions of singular material 

properties when a gradient is sought; they should not cross boundaries between materials 

of different properties because stresses (forces) are continuous functions across 

boundaries, so strains and displacement derivatives must be discontinuous wherever 

abrupt changes of properties (e.g., the elastic modulus) occur.  Otherwise, the filtering or 

smoothing misrepresents the data near discontinuities.  A similar argument has been 

made for a region with a stress concentration.  This is the motivation of development of a 

semi-automatic process for strain calculation. 

 
 



 53

4. FRINGE ANALYSIS II: SEMI-AUTOMATIC ANALYSIS 

This chapter is devoted to semi-automatic processing techniques for fringe patterns.  

The exiting techniques are reviewed and the limitations are discussed.  New hybrid 

algorithms are proposed and the preliminary results from the proposed algorithms are 

presented. 

4.1 Single image: fringe centering method 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Flow chart of fringe centering method 
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Fringe centering technique, also known as “fringe skeletonizing”, was developed for 

the traditional manual fringe analysis, in which the fringe spacings are used to calculate 

displacements or strains.  Before the phase measurement techniques became available, 

the fringe centering technique was the only processing tool available for the automatic 

analysis of interferograms.  This class of techniques remains a vital element in the 

repertoire of fringe analysis methods.  The fringe centering method is the only viable 

automatic fringe analysis technique for interferograms if only photographic records of the 

interferograms are available or the experimental event is dynamic such as impact testing.  

The flow chart of the fringe centering method is shown in Figure 4.1. The details of each 

step are explained below. 

 

4.1.1 Fringe centerline detection 

In this method, only the integer fringe orders along the fringe centerlines are sought.  

The process of fringe centerline detection is to find points representing the fringe 

centerlines by eliminating all other parts of the fringes.  There are two different methods 

for extracting the fringe centerlines from the fringe patterns [8]~[12].  The first one 

involves binarizing the fringe patterns and then skeletonizing the binary fringes; the other 

method detects the local maxima or minima of fringe intensities in a gray-scale.  The 

peak detection methods are more sensitive to noise than their binary counterparts, but 

they offer the prospect of higher resolution detection of the fringe centers. 
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4.1.1.1 Binarization 

In the binarization process, the gray levels above or below a threshold value are 

truncated to the maximum or zero intensity, respectively, to convert the image into a 

binary intensity image [13]~[15].  The mean intensity of the fringe pattern can be chosen 

as the binarization threshold.  When the image has an uneven background, the image can 

be segmented into small blocks and binarizing operation is applied to each block.  After 

binarization, the geometric centerline of the black fringe is regarded as the fringe 

centerline.  This assumption can give rise to a large error if the fringe intensity is 

asymmetric.  Because of this disadvantage, the fringe binary method is not widely used. 

4.1.1.2 Peak detection 

Peak detection [16]~[24] means finding the local maxima or minima of the gray-scale 

images.  In this method, the whole image is subjected to a peak detection matrix and the 

gray level of the pixels in the matrix is reduced to zero value if a peak does not exist and 

to logical ‘1’ if a peak is found. Among many fringe centerline detection methods, a 5×5 

window pixel peak detection scheme is one of the easiest and most effective methods. 

 

 

 

 

 

 

Figure 4.2 Pixel matrix of 5×5 and directions for fringe peak detection 

P-2 2 P-1 2 P0 2 P1 2 P2 2 

P-2 1 P-1 1 P0 1 P1 1 P2 1 

P-2 0 P-1 0 P0 0 P1 0 P2 0 

P-2 -1 P-1 -1 P0 -1 P1 -1 P2 -1 

P-2 -2 P-1 -2 P0 -2 P1 -2 P2 -2 

X 

Y 
XY 

-XY 



 56

 

The fringe peak detection uses two-dimensional peak detection, locally performed 

within a 5×5 pixel matrix, as shown in Figure 4.2.  With respect to the four directions 

shown in the figure, the peak conditions are defined as follows: 

For the X-direction, 

1,21,20,21,01,00,0 PPPPPP −−−−− ++>++          (4.1) 

1,21,20,21,01,00,0 PPPPPP ++>++ −−           (4.2) 

For the Y-direction, 

2,12,12,00,10,10,0 PPPPPP −−−−− ++>++          (4.3) 

2,12,12,00,10,10,0 PPPPPP ++>++ −−           (4.4) 

For the XY-direction, 

2,11,22,21,11,10,0 PPPPPP −−−−− ++>++           (4.5) 

1,22,12,21,11,10,0 PPPPPP −−−−− ++>++           (4.6) 

For the -XY-direction, 

2,11,22,21,11,10,0 PPPPPP −−−−−−−− ++>++          (4.7) 

1,22,12,21,11,10,0 PPPPPP ++>++ −−           (4.8) 

When the peak conditions are satisfied for any of two or more directions, the object 

point is recognized as a point on a fringe skeleton. 
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4.1.1.3 Fringe thinning 

In many cases, the fringe obtained from the image binary or the peak detection 

schemes is usually wider than the width of one pixel.  Binary image thinning algorithms 

[28]~[30] are required to further reduce the fringe width and thus to obtain a true fringe 

centerline.  Among many proposed algorithms, Rosenfeld thinning algorithm and 

Hilditch thinning algorithm are employed in this study. 

 

4.1.1.4 Fringe centerline improvement 

Fringe patterns uniquely define the displacement fields.  Because of the noise, the 

fringe centerlines obtained from above steps inevitably have undesired defects, such as 

broken fringe centerlines, cross-connected fringe centerlines and fringe centerlines with 

short branches.  These defects must be eliminated before next processing.  A series of 

corresponding algorithms to cope with these fringe centerline defects are utilized in this 

dissertation; these algorithms include automatic broken-line connection, automatic cross-

connection line seperation, short fringe branch elimination, manual fringe connection and 

elimination, and so on [31]. 

Figure 4.3 shows an example of fringe centerline detection using binarization and 

peak detection methods. (a) is the original experiment horizontal field fringe pattern of a 

diametrical compression circular disc with a hole in the center; (b) is the fringe pattern 

after low-pass filtering of (a); (c) is the image after binarizing; (d) is the fringe centerline 

after thinning and (e) is the image after improving fringe centerlines; (f) is the overlap of 

original fringe pattern (a) and the fringe centerline pattern (e) where the color of the 
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centerlines were changed to be white.  It is evident that the fringe centerlines are well 

recognized.  Similarly, (g) through (j) are the results of using fringe peak detection 

method. 

 

  
(a) Original fringe pattern   (b) Low-pass filtering of (a) 

 

  
(c) Binarization of (b)    (d) Thinning of (c) 
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   (e) Fringe improvement of (d)  (f) Overlap of (a) and (e) 

 

  
(g) Peak detection of (b)    (h) Thinning of (g) 

 

  
  (i) Fringe improvement of (h)  (j) Overlap of (a) and (i) 

 

Figure 4.3 Example of fringe centerline detection 
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4.1.2 Semi-automatic fringe orders assignment 

Fringe centerlines represent the contours of equal displacements; the fringe centerline 

itself does not contain information of fringe orders.  Therefore, fringe order assignment is 

necessary for the whole-field fractional fringe order calculation [11][12]. 

The adjacent fringe orders differ by -1 or 1 except in zones of local maxima and 

minima.  Based on this feature, a semi-automatic process to assign fringe orders has been 

developed to achieve fringe ordering.  This semi-automatic process requires a simple 

human-computer interaction and the increasing or decreasing directions of some fringe 

orders should be known. The later requirement can be provided through a judgment based 

on the mechanical behavior of the testing specimen or the moving orientation of the 

fringes when small phase change is added into the experiment system. 

 

 

Figure 4.4 Example of semi-automatically fringe order assigning 
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Figure 4.4 shows an example of the process. Suppose the order of a fringe located at 

L1 is 0 and the direction from L1 to H1 is known (increasing or decreasing).  Then the 

orders of the fringes spanned from L1 to H1 can be determined.  Now, fringe orders at the 

fringes that contain H1’ and H2 are known; according to this information, fringe orders 

from H2 to L2 can also be determined automatically.  The same procedure can be used for 

other segments except the circular fringe located in the center whose fringe order 

determination requires a human judgment.  The fringe order at L1’ is compared with the 

fringe order at L1 to double check whether the fringe orders are assigned correctly.  

Finally, a constant fringe order can be added to all the fringes to reflect the real fringe 

orders. 

 

4.1.3 Fractional fringe order calculation: fringe order interpolation 

In the fringe centering method, only the integral fringe orders along the fringe 

centerlines are determined.  Interpolation is required to obtain fractional fringe orders at 

every pixel.  The following sections describe the interpolation methods used in this study. 

 

4.1.3.1 1-D interpolation 

The most widely used 1-D interpolation algorithm is cubic spline interpolation, and it 

has been successfully applied to fringe order interpolations [9][12].  Cubic spline 

interpolation requires the boundary conditions to be known, which is the most critical 

limitation of this algorithm since the boundaries are often regions of interest.  For this 

reason, a segment-by-segment curve fitting interpolation algorithm is proposed to avoid 
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the requirements of boundary conditions.  The proposed algorithm is based on a 

continuous differential of the first derivative (2nd order differential of displacement). 

The proposed algorithm is illustrated in Figure 4.5.  For an arbitrary point X, the 

fringe order at point X can be calculated by: 
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 (4.9) 

 

where X1, X2, X3, X4 are the fringe centerline points and their fringe orders f( Xi ) are 

known.  It is obvious from equation (4.9) that the derivative of the fringe order is 

continuous.  Actually, the 2nd order differential of the fringe order is also continuous. 

 

 

 

 

 

 

Figure 4.5 1-D interpolation 
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4.1.3.2 Limitation of 1-D interpolation 

The main disadvantage of 1-D interpolation is that interpolations along x-direction 

and y-direction do not yield the exactly same results.  This implies that 1-D interpolation 

is not sufficient to describe the full-field experimental parameters.  The error can be 

expected when the derivatives are calculated along one direction using data obtained 

from interpolation along another direction (e.g., calculation of strain εx in the x-direction 

using the U-field displacement data that were obtained from the interpolation along y-

direction). 

 

4.1.3.3 New approach: Improved 1-D interpolation 

Instead of using the fixed Cartesian coordinates, the directions normal to the fringe 

orientations can be used to improve the efficiency of 1-D interpolation.  For example, the 

interpolation along the virtual-lines in Figure 4.6 should yield better results for the points 

along those lines simply because fringe orders change more rapidly along them. Once the 

fractional fringe orders are obtained at the points of the virtual lines, the virtual-lines can 

be regarded as regular fringe centerlines. These lines are called as “assistant fringes”; 

although they are not real fringe centerlines, they are useful for the fringe order 

interpolation.  

Figure 4.7 shows an example of 1-D interpolation.  The fringe pattern represents a 

vertical displacement of a plate with a hole subjected to a uniform tension.  The results 

clearly indicate effective performance of the improved 1-D interpolation. 
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Figure 4.6 Improved 1-D interpolation 

 

         

(a)                        (b)                      (c)                       (d)                      (e) 

(a) V-field fringe; (b)Fringe centerlines; (c) X-direction interpolation; 

(d) Y-direction interpolation; (e)Improved X-direction interpolation 

Figure 4.7 Example of improved 1-D interpolation 
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4.1.3.4 Proposed 2-D interpolation approach: tile-by-tile interpolation 

Since fringe pattern is a 2-D image, a 2-D fringe order interpolation seems more 

attractive.  For simple and uniform fringe patterns, a global 2-D polynomial interpolation 

can be used.  However, for the real engineering problems, the 2-D interpolation should be 

based on tile-by-tile processing.  To use a proper number of fringe centerlines, the size of 

the tile should be adjusted according to the fringe density.  After the 2-D polynomial 

interpolation within every tile is conducted, the displacement data at the edge of adjacent 

tile are compared and smoothly connected.  Figure 4.8 shows the result of the fringes in 

Figure 4.7, obtained by using the 2-D interpolation.   

Currently, 2-D interpolation is still in somewhat immature state, more development 

efforts are need to complete the 2-D interpolation. 

 

 

Figure 4.8 Example of 2-D interpolation 



 66

 

4.1.4 Fringe order gradient or strain calculation 

Fringe order gradient or strain can be calculated using the interpolation function, 

namely differentiating the polynomial function used in interpolation. Figure 4.9 shows an 

U-field example of a tensile specimen with a hole.  The theoretical stress (also strain) 

concentration factor at the top point of the hole is 3.0, and the fringe centering method 

gives 3.08. 

 

    

(a) Fringe pattern                                 (b) Strain distribution 

Figure 4.9 Example of strain calculation 

 

4.2 Overall limitations of fringe centering method 

Compared with automatic fringe analysis methods (such as Fourier transform and 

phase shifting techniques), the fringe centering method uses only the fringe centerlines 



 67

for the processing.  Because interpolation is employed to determine the fractional fringe 

orders, the strain calculation is simple with the fringe centering method.  Figure 4.10 

illustrates an example of using the fringe centering method to process the thermally 

induced vertical displacement fringe pattern of a solder ball interconnection in an 

electronic packaging component; 1-D interpolation is used in this example. 

 

   
(a) Original Fringe pattern     (b) Image filtering 

 

   
(c) Fringe centerlines detection (d) Fringe centerlines improvement 

 

   
 (e) Fringe orders assignment    (f) Displacement field 
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(g) Strain field 

 

Figure 4.10 Example of fringe analysis using fringe centering method 

 

Despite its advantages, applications of the fringe centering method are cumbered with 

some limitations. They include: 

(1) The fringe centerline location should be accurately determined; otherwise, the 

strain calculation might produce a significant error.  Unfortunately, accurate 

locating of the fringe centerlines is often difficult for the fringe patterns with 

noise. 

(2) Semi-automatic fringe order assignment requires some knowledge on fringe 

orders.  With a complex loading and/or geometry, fringe orders can be 

ambiguous. 

(3) The interpolation is implemented based on the fringe centerlines; however, in 

many cases, the number of fringe centerlines available for accurate interpolation 

is often insufficient. 

(4) For many engineering problems, the most important areas are near the 

geometrical boundaries.  However, the fringe centerlines are not usually 
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available at the boundaries or very close to the boundaries.  The gradient at the 

boundaries can be erroneous depending upon a choice of interpolation function. 

To improve the accuracy of fringe centerline locations, sub-pixel operations through 

magnifying the original fringe image can be adopted.  This involves an interpolation of 

the image. 

Another effective solution to the above limitations is using optical/digital fringe 

multiplication (O/DFM) technique [25].  The O/DFM method uses a series of phase-

shifted fringe images.  The method provides multiplied fringe centerlines with high 

accuracy.  An added benefit is its ability of automatic fringe ordering. 

 

4.3 New hybrid O/DFM fringe centering method for multiple images 

A hybrid method combining the optical/digital fringe multiplication (O/DFM) method 

[25] and the fringe centerline method is proposed to cope with the limitations of the 

fringe centering method. 

4.3.1 Optical/digital Fringe multiplication (O/DFM) 

In O/DFM, a series of n shifted patterns are utilized [25].  These shifted patterns are 

sharpened and combined into a single contour map, which exhibits n time as many 

fringes as the original pattern.   

Figure 4.11 shows a schematic illustration of O/DFM for n = 2.  The O/DFM 

algorithm subtracts the intensities at each point, as illustrated in (b). Then it inverts the 

negative portions by talking absolute values, as illustrated in (c).  The algorithm proceeds 

by truncating the data near 0I r = and binarizing by assigning intensities of zero and one 
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to points below and above the truncation value, respectively.  The result is graphed in (d). 

The result is a sharpened contour map that has twice as many contour lines as the number 

of fringes in the initial pattern.  The sharpened contours occur at the crossing points of 

the complementary graphs, where the intensities of the complementary patterns are equal.  

Note that any noise or other factor that affects the two patterns equally has no influence 

on the locations of the crossing points.  (e) illustrates a fringe multiplication of 6. 

Figure 4.12 shows an example of the O/DFM method for n = 4 on a whole field basis, 

where the fringes represent the same fringe pattern in Figure 4.10.  Compared with the 

conventional fringe centerline detection shown in Figure 4.10 (c), the O/DFM offers 

much higher quality of the fringe centerlines (Figure 4.12 d) and fringe centerline 

improvement is not required.  In addition, the fringe orders can be assigned 

automatically. 

 

    

Figure 4.11 Schematic illustration of O/DFM 
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       (a) The initial fringe patterns       (b) O/DFM subtraction pattern 

 

            

      (c) Sharpened contours                 (d) Fringe centerlines 

 

            

(e) Displacement field                 (f) Strain field 

Figure 4.12 Example of O/DFM 
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4.3.2 Hybrid approach 

The O/DFM method overcomes several limitations of the fringe centering method.  

The combination of the O/DFM and the fringe centering method makes the semi-

automatic fringe analysis more effective.  In the hybrid approach, the O/DFM method is 

first employed to obtain the accurate high-quality fringe centerlines.  Then the fringe 

interpolation proceeds to obtain fractional fringe orders at every pixel.  Besides noise 

reduction, the fringe orders can be determined automatically using the phase shifting 

algorithm described before.  The displacement interpolation can be performed with 

higher fidelity because of the enhanced displacement sensitivity (i.e., more fringe 

contours). 

Figure 4.13 shows the results of the fringes in Figure 4.9, processed by the hybrid 

O/DFM fringe centering method.  The strain concentration factor of 2.98 was achieved. 

 

     
(a) Fringe patterns                                 (b) Strain distribution 

Figure 4.13 Example of strain calculation 
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4.3.3 Advantages and disadvantages of hybrid semi-automatic analysis 

4.3.3.1 Comparisons with automatic analysis method 

Compared with automatic fringe analysis methods (i.e., Fourier transform method and 

phase shifting method), the hybrid semi-automatic method has the following advantages: 

(1) The hybrid approach does not require that the intensities of fringe patterns should 

be cosinusoidal. 

(2) The hybrid approach uses fringe order interpolation for the displacement and 

strain calculations; the effect of the noise is much smaller. 

(3) The hybrid approach is suitable for problems containing geometrical as well as 

material discontinuities. 

The only disadvantage of hybrid approach is that interpolation algorithm is required. 

 

4.3.3.2 Comparisons with conventional fringe centering analysis method 

Compared with the conventional fringe centering method, the hybrid semi-automatic 

approach has the following advantages: 

(1) Fringe centerline detection is less sensitive to the noise; the fringe centerline 

location is determined more accurately. 

(2) The number of fringes is multiplied; this increases accuracy in fringe order 

interpolation. 

(3) Fringe orders can be assigned automatically. 

The disadvantage of the hybrid method is that it requires more than one image. 
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5. SOFTWARE DEVELOPMENT 

Software design and development are important portions of this dissertation.  The 

software is developed using Microsoft Visual C++ 6.0 and Microsoft Visual Studio .Net.  

The software is based on Windows Graphic User Interface (GUI) and can be executed on 

Microsoft Windows 9X/NT/2K/XP operating systems.  

Figure 5.1 shows the main architecture of the fringe analysis software schematically.  

The software includes the general digital image processing algorithms and all the 

algorithms discussed in this dissertation.  The main features of the software include but 

not limited to: 

 

(1) General features 

§ Create, open, close, save image or images 

§ Image preview 

§ Print and print preview 

§ Undo and redo 

§ Cut, copy and paste 

§ Status and tool bars 

§ Display setup 

(2) General Image processing 

§ Adjust color and balance color 

§ Process multiple images simultaneously 
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§ General drawing tools: line, ellipse, rectangular, eraser, etc. 

§ Resize image 

§ Crop image 

§ Rotate image 

§ Zoom in and out 

§ Create user-defined color palette 

§ Create and copy boundary 

(3) Pre-processing: image filtering 

§ Spatial neighborhood-averaging filter 

§ Spatial median filter 

§ FFT and DFT low-pass filters 

§ FFT and DFT high-pass filters 

§ Self-adaptive filters 

(4) Automatic fringe analysis 

§ General Fourier transform 

§ Carrier Fourier transform 

§ Conventional phase-shifting algorithms (automatic frame detection) 

§ Random phase-shifting algorithm 

§ Four kinds of advanced phase-unwrapping algorithms (sequential filling, 

minimum spanning tree, PCG least-squares iteration and cellular-automata) 

§ Displacement field smoothing 

§ Strain calculation with different differential gaps 

§ Shear strain calculation 
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(5) Semi-automatic fringe analysis 

§ Image binarization 

§ Fringe peak detection 

§ O/DFM and O/DFM2 

§ Automatic fringe thinning 

§ Automatic and semi-automatic fringe improvement techniques 

§ Automatic fringe searching 

§ Semi-automatic and automatic fringe order assignment 

§ 1-D cubic spline interpolation 

§ 1-D segment-by-segment curve fitting interpolation 

§ Improved 1-D interpolation: assistant fringes selection 

§ Global 2-D interpolation 

§ Tile-by-tile 2-D interpolation 

§ Strain calculation with refinement 

§ Shear strain calculation 

(6) Post-processing: display and output 

§ Display in gray-scale or color scale 

§ Section display 

§ Isoline display 

§ 2-D in-plane deformation display 

§ 3-D display (rotation and hiding) 

§ Data and image compression and decompression 

§ Data and image storage 



 77

§ Data interface with other software 

§ Image and result printing 

§ Report creation 

(7) Other features 

§ On-line Help 

§ Tip of the day 

§ Operation hint 

§ Fringes simulations (more than 10 kinds of mechanics experiments) 

§ Pixel value plotting 

§ Software demo 

§ Standard windows application software installation 

 

The software is menu-driven and mouse-driven.  Figure 5.2 illustrates some screen 

captures of the software. 
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Figure 5.1 Schematic architecture of the fringe analysis methods in software 
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(a) Strain field calculation 

 

 
(b) Multiple images processing and operation hint 
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(c) 2-D deformation calculation 

 

 
(d) 3-D warpage calculation 

 

Figure 5.2 Examples of screen captures of the software 
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6. APPLICATION I: OUT-OF-PLANE SHAPE AND WARPAGE 

MEASUREMENT 

Applications to shape determination and warpage measurement are presented.  

Different experiment methods and fringe processing techniques are employed based on 

the specific requirements for each measurement.  Among these applications, a new 

infrared diffraction interferometer is proposed for out-of-plane co-planarity measurement 

of high density solder bump pattern. 

 

6.1 Infrared diffraction interferometer for co-planarity measurement 

of high density solder bump pattern 

An IR diffraction interferometer is proposed for co-planarity measurement of high-

density solder bump patterns.  The method utilizes long wavelength (λ = 10.6 µm), 

coherent infrared laser light, which serves to reduce the apparent roughness of test 

objects, and enables the regularly spaced solder bump arrays to produce well-defined 

diffracted wavefronts.  A single diffracted wavefront is isolated by an optical system and 

directed to interfere with a reference wavefront to produce a whole-field map of bump 

topography.  An optical configuration similar to classical Fizeau interferometry is 

implemented to prove the concept.  Digital moiré fringe processing techniques are used in 

the experiment data analysis. 
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6.1.1 Introduction 

The ability to accurately monitor bump co-planarity is critical to the prevention of 

non-wetting of chip level, high density solder interconnects during assembly.  Bump co-

planarity has traditionally been measured through existing methods developed for 

topographical mapping.  These include projection moiré, shadow moiré and white light 

surface profilometers [102]~[106].  The first two methods can map a relatively large area 

on a whole-field basis, but their application to high-density bump co-planarity has been 

limited due to inherent limitations in spatial resolution.  The white light surface 

profilometer is a scanning, point-measurement technique that provides high-resolution 

measurements of surface topography.  With sophisticated algorithms and automation 

techniques, the point-wise profilometer data can be stitched together to generate a map of 

surface topography.  However, this method does not naturally generate a quick turn and 

real time map of surface topography as provided by whole-field measurement techniques.  

This research work proposes a new method to cope with the above limitations; 

namely, a whole-field interferometric method to measure the co-planarity of high-density 

bump patterns.  The method utilizes coherent, infrared (IR) laser light source of long 

wavelength (λ= 10.6 µm) (1) to relax the surface roughness limitations of visible light 

interferometers, and (2) to enable the regularly spaced solder bump arrays to produce 

well-defined diffracted wavefronts.  In the proposed scheme, a single diffracted 

wavefront is isolated and it is directed to interfere with a reference wavefront to produce 

a whole-field map of bump topography.  The principles of the method and selected 

examples are described. 
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6.1.1.1 Shifting to a longer wavelength 

By shifting to a longer wavelength, a surface, which typically acts to diffusely scatter 

a collimated visible light beam, may become specular.  This has been the precise 

motivation for developing long IR light interferometric systems to measure the 

topography of non-specular surfaces [107]~[112].   

Based on a bi-directional reflectance distribution function (BRDF), the specular 

component dIspec, which is responsible for the sharp mirror-like reflection generated by a 

Gaussian, isotropically rough surface, can be expressed as [113]~[115] 

2 g
spec idI F e SI−=                (6.1) 

where F represents the Fresnel reflectivity, S is a geometrical shadowing function and Ii 

is the incident radiance.  The function g, which depends on the rms surface roughness σ, 

is given by  

2
4 cos

g
πσ Θ =  λ 

               (6.2) 

where Θ is the angle of incidence, and λ is the wavelength of light.  According to 

equation (6.1), the specular component increases as the value of g decreases.  The 

influence of surface roughness on specularity is then captured by the “apparent” 

roughness factor:  

r
4 cosπσ Θ

ε =
λ

               (6.3) 

The factor, σ cosΘ, represents the projection of the rms surface roughness into the 

incident light direction. 
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A surface therefore appears rough or smooth to an incident light wave depending 

upon whether the apparent roughness is large or small.  It is interesting to note that all 

surfaces appear smooth as the incident light approaches grazing angles, that is, as Θ 

approaches 90°.  Alternatively, for a given degree of surface roughness and a fixed angle 

of incidence, specular reflection can be increased by lowering the ratio σ/λ, i.e., by an 

increase in the wavelength of the light source. 

In the proposed approach, a λ = 10.6 µm light beam, generated by a CO2 laser, 

reduces the apparent surface roughness of the test sample by a factor of 20 at normal 

incidence (Θ = 0°), compared with a wavelength in the middle of the visible spectrum 

(green light with 0.5 µm).  The surfaces defined by the solder bump array and underlying 

substrate, appear optically rough to visible light, yet produce specular reflections when 

illuminated by the longer wavelength IR radiation.  In addition, the long wavelength light 

can interact with the regularly spaced arrays to produce well-defined diffracted 

wavefronts.  These two features, namely the conversion of a diffusive surface to a 

specular surface and the diffraction phenomenon associated with it, form the basis of the 

proposed method. 

6.1.1.2 Problems associated with classical IR interferometry 

Traditional IR interferometry in the literature has been implemented using the optical 

configurations of classical two-beam interferometry; namely, Twyman/Green 

interferometry [108]~[110] and Fizeau interferometry [111][112].  In both configurations 

(Figure 6.1), a beam splitter directs one-half of the incident light onto the specimen 

surface along a direction virtually normal to its surface, while the other half is reflected 
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by an optically flat reference surface.  The wavefront from the specimen (κ2) interferes 

with the wavefront from the reference mirror (κ1).  The resulting interference pattern is 

then viewed upon the surface of interest to produce a contour map of the z coordinate of 

the specimen surface. 

In Fizeau interferometry (Figure 6.1 b), the reference path and the active path are 

identical, whereas the active path is perpendicular to the reference path in T/G 

interferometry (Figure 6.1 a).  Consequently, the Fizeau interferometer is much easier to 

tune.  This feature is especially advantageous to an IR optical system inasmuch as the IR 

light is not visible during normal operation [111][112].  With the configuration shown in 

Figure 6.1 b, fringes are usually visible on the monitor with small or no adjustment after 

the specimen is aligned to be parallel to the optical flat through a simple visual 

inspection. 

 

 

(a) Twyman/Green interferometry 
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(b) Fizeau interferometry 

Figure 6.1 Optical configuration of classical interferometry 

 

When the substrate and high-density solder bump pattern are normally illuminated by 

the long IR light, a complex light field is generated.  The situation can be best described 

by the combined effect of two separate sets of uniform structures, as illustrated 

schematically in Figure 6.2; the solder bump array and the uniform spacing of the 

exposed underlying substrate.  These two periodic structures behave like separate 

diffraction gratings since each surface has different reflectivity; a phase-type grating 

(solder bump; referred to as bump grating) and an amplitude-type grating (uniform 
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spacing; referred to as substrate grating).  The wavefront profile of the specular 0th order 

diffraction is thus affected by the reflectance and topography of both arrays.   

 

 

 

Figure 6.2 Schematic illustration of reflection from the bump arrays and the 

underlying spaces 

 

In general, the surface of the substrate is not flat and it is different from the top 

surface profile of the bump array.  Thus, the 0th diffraction order from the substrate 

grating produces a warped wavefront, which interferes with the 0th diffraction order 

generated by the bump grating and produces a wavefront that is confounded and un-

interpretable.  Consequently, the optical configuration of classical two-beam 

interferometry requiring normal illumination and specular reflection cannot be used to 

map the top surface of the bump profile.  The wavefront from the bump array must be 

isolated, and the following optical configuration is proposed to achieve the condition. 
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6.1.2 Infrared diffraction Fizeau interferometry 

6.1.2.1 Basic concept 

When an amplitude grating is illuminated by a collimated beam, most of the 

diffracted radiation is concentrated along the direction of specular reflection, or the 0th 

order direction, from the surface normal [116].  Consequently, the influence of the 

substrate grating, which acts as an inefficient amplitude grating, will diminish drastically 

if a diffraction order other than the 0th order is viewed.   

 

 

 

Figure 6.3 Basic concept of IR diffraction interferometry 

 
The basic principle of the proposed method is illustrated in Figure 6.3.  A collimated 

IR beam illuminates a partially reflective optical flat placed near the specimen.  One side 

of the optical flat is coated with an anti-reflection coating to avoid ghost patterns.  A 
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portion of the collimated beam is reflected from the uncoated surface of the optical flat 

and the transmitted beam is diffracted from the specimen surface.  In the set up, the 

specimen is tilted in such a way that a particular diffraction order becomes parallel to the 

reference beam.  The diffracted wavefront interferes with the reference beam to produce 

an interference pattern. 

From the grating equation with and with respect to proper sign conventions [117], 

msin sin m
p
λ

θ = − ψ +               (6.4) 

where ψ is the tilt angle, m is the diffraction order, p is the pitch of the bump array and 

θm is the angle of the mth diffraction order.  The incident angle and the diffraction angle 

are measured with respect to the axis perpendicular to the plane of bump array. 

The condition that a diffracted wavefront becomes parallel to the reference wavefront 

can be achieved when the mth diffraction order has an angle of diffraction identical to the 

tilt angle; i.e., θm = ψ.  From equation (6.4), the condition provides the tilt angle 

requirement as 

1 m
sin

2p
−  λ

ψ =  
 

               (6.5) 

When the tilt angle satisfies the above condition, the mth order beam will now be directed 

back along the incident axis, which is coincident with the planar reference beam 

generated by the optical reference flat.  The 0th order beam (containing the un-wanted 

substrate reflection) now makes an angle of 2ψ  with respect to the incident axis and is 

therefore completely diverted from the interference path. 
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As the diffraction order increases, the intensity of the diffracted wavefront decreases 

rapidly.  Consequently, the high orders are not desired in practice.  Considering the first 

order diffraction, the required tilt angle becomes  

1sin
2p

−  λ
ψ =  

 
               (6.5)′ 

The required tilt angle for various bump pitches is plotted in Figure 6.4.  The plot 

clearly shows that the shallow first order diffraction angles result across the domain of 

typical bump pitch values.  Only a few degrees of specimen tilt angle are required in 

order to obtain a spatially filtered interference pattern. 
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Figure 6.4 Required tilt angle for different bump pitches when the first diffraction 

order is used 

 



 91

6.1.2.2 Governing equation 

The analysis used to determine the difference in optical path lengths follows the 

approach of Refs. [118].  Figure 6.5 illustrates details.  Consider any point P on an 

idealized bump surface (i.e., perfectly uniform array with an equal bump height).  If the 

bump surface deviates from the ideal position, point P moves to a new location P′, where 

W and U are the out-of-plane (planarity) and in-plane (irregular pitch) components of 

deviation, respectively. 

 

 

Figure 6.5 Changes of optical path length when point P moves to P′ 

 

In the figure, a plane wavefront transmitted through the optical flat is incident upon 

the bump surface at ψ.  The optical path from the light source is the same for every ray in 
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the incident beam.  The change of path length (∆OPL) with respect to the incident beam, 

caused by the movement of the point, is analyzed in the figure, with the result 

OPL(x, y) 2W(x, y) cos 2U(x, y)sin∆ = ψ + ψ        (6.6) 

where ∆OPL represents the fringe order N at each point in the interference pattern by 

OPL(x, y)
N(x, y)

∆
=

λ
. 

In a well manufactured bump array, variations in a bump pitch are usually negligible 

( U 0≈ ).  Assuming for the moment that we can neglect the in-plane term, 

2U(x, y)sin ψ , the out-of-plane position, W, can be expressed as 

( ) ( )W x, y N x, y
2cos

λ
=

ψ
            (6.7) 

Equation (6.7) is identical to the governing equation of classical Fizeau 

interferometry with a small inclined angle of illumination ψ.  Using equation (6.5)′, the 

governing equation of the IR diffraction Fizeau interferometry can be written as 

( ) ( )
2

W x, y N x, y

2 1
2p

λ
=

 λ
−  

 

          (6.8) 

The above equation defines a contour interval as 
2

2 1
2p

 λλ −  
 

 displacement per 

fringe order.  For typical bump pitch values ranging from 150 to 500 µm, 

1
p2

1
2

≈






 λ
− and the contour interval remains virtually constant as 5.3 m

2
λ

= µ .   
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The bump pitch was assumed uniform in the derivation of equation (6.8) was derived.  

In reality, the bump pitch may be slightly irregular due to inherent manufacturing 

variability. 

If the bump pitch is irregular, the shape of the diffracted wavefront (and thus the 

fringe order) is influenced by perturbations in the bump pitch as well as the bump surface 

topography.  Recalling equation (6.6), the apparent fringe order N′ can be defined as 

OPL(x, y) 2W(x, y) cos 2U(x, y)sin
N (x, y)

∆ ψ + ψ′ = =
λ λ

    (6.9) 

Using equation (6.5), the W position can be expressed as 

( ) ( ) ( ) ( )
2 2

m
W x, y N x, y U x, y N x, y

pm m
2 1 2 1

2p 2p

 λ λ′= − = 
    λ λ

− −   
   

  (6.10) 

Therefore 

m
N (x, y) N(x, y) U(x, y)

p
′ − =             (6.11) 

Equation (6.11) defines an error in reading a fringe order, caused by the irregular 

bump pitch.  The error increases linearly as the local bump pitch irregularity as well as 

the diffraction order increases.  In a typical manufacturing environment, the bump pitch 

deviation of 0.5% is acceptable (e.g., 1.0 µm deviation for 200 µm pitch), which will 

disturb the fringe order only by 1/200, or a co-planarity error of less than 0.03 µm when 

the first order diffraction (m = 1) is used.  For this reason, equations (6.7) and (6.8) are 

regarded as the governing equations of the proposed technique. 
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6.1.2.3 Optical configuration 

The complete optical setup is illustrated in Figure 6.6.  An air-cooled all-aluminum 

CO2 laser (Synrad: Model 48-I) was used as a coherent light source.  It produced a highly 

stable TEM00 single mode.  The laser emitted a vertically polarized light with the central 

output wavelength of 10.6 µm. 

 

 

 

Figure 6.6 Optical configuration of IR diffraction interferometry 

 

The laser beam was first expanded by a plano-convex lens.  A beam splitter directed 

the light to a collimating lens, which also served as a field lens.  An optical flat was 

placed next to the collimating lens.  The two interfering beams were collected by an 

imaging system.  The imaging system consisted of an imaging lens and an IR CCD 

camera (Electrophysics: Model PV-320).  All the optical elements described above were 

fabricated from ZnSe.   
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All surfaces except one side of the optical flat were coated with anti-reflection 

coating.  ZnSe has a refractive index of 2.4208 at λ = 10.6 µm, which yields reflectivity 

of about 17% at normal incidence.  This high reflectivity of the uncoated surface is an 

added advantage, which can accommodate surfaces with a wide range of reflectivity 

while maintaining good fringe contrast [111]. 

An aperture plate was placed at the focal plane of the field lens (or collimating lens) 

to isolate the two interfering beams.  It was accomplished by the following simple 

procedure: 

(Step 1) Adjust the optical flat and the specimen to make them parallel to each 

other 

(Step 2) Arrange the aperture so that the reference beam and the 0th order 

diffraction from the specimen pass through the aperture, and 

(Step 3) Tilt the specimen slowly with respect to the axis normal to its surface 

until a new fringe pattern is observed. 

Representative fringe patterns obtained from the above procedure are shown in Figure 

6.7.  The images in (a) and (b) represent an interference pattern obtained from the 0th 

order diffraction (Steps 1 and 2) and the first order diffraction (Step 3), respectively.  The 

images clearly demonstrate the effect mentioned in the previous section; i.e., that in 

image (a) the wavefront from the bump array is combined with the wavefront from the 

substrate to produce a very complex and uninterpretable 0th order wavefront.   
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(a)            (b) 

Figure 6.7 Fringe patterns obtained from (a) the conventional IR Fizeau 

interferometry and (b) the proposed method 

 

6.1.3 Co-planarity of flip-chip package bump pattern 

It is a standard practice to manufacture high density solder bumps directly onto an 

organic substrate.  The bumping process on the substrate is achieved through a low cost 

reflow process.  The proposed method was implemented to measure co-planarity of a 

bump array on a flip-chip substrate.  The cross-sectional view of the specimen is similar 

to the one shown in Figure 6.2 and the pitch of the array was 200 µm.   

The fringe patterns produced by the proposed method are shown in Figure 6.8.  A 

series of four fringe-shifted interferograms was recorded with sequential changes of 

phase by a constant increment of π/2.  This was accomplished by a successive movement 

of the optical flat in the direction normal to the specimen by 
8cos

λ
ψ

.  A high precision 

motorized stage was employed to achieve the desired fringe shifting accuracy.   
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(a) 0         (b) π/2 

 

  

(c) π         (d) 3π/2 

 

Figure 6.8 Four phase-shifted images obtained from a flip-chip bump arrays on an 

organic substrate 

 

The four phase-shifted fringe patterns were analyzed by using digital fringe image 

random phase shifting technique introduced in previous chapter.  The real phase shift 

amounts are detected to be 0, 93°, 179° and 283°, respectively; sequential filling 
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unwrapping algorithm is employed to get the full-filed phase map.  The maps of the 

wrapped phase and unwrapped phase are shown in Figure 6.9 and the resultant 3-D map 

is shown in Figure 6.10.  The deviations along the two lines are also plotted in Figure 

6.11.  The maximum deviation was seen in the line AA’ and its magnitude was 

approximately 7 µm.  Considering a typical bump height of 60 µm, it was a significant 

deviation, which must be known before assembly process. 

 

  

(a) wrapped phase     (b) unwrapped phase 

Figure 6.9 Results of fringe processing  
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Figure 6.10 Three dimensional representation of bump co-planarity  

 

 

(a) 
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(c) 

Figure 6.11 Deviations along (b) AA′ and (c) BB′  
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6.1.4 Summary 

An IR diffraction interferometer technique has been proposed for co-planarity 

measurement of high-density solder bump patterns.  The method utilized coherent IR 

laser light of long wavelength (λ = 10.6 µm).  The long wavelength served to reduce the 

apparent roughness of the solder bump and substrate surfaces, and thus increased 

specular reflection significantly.  This roughness reduction enabled the high-density 

bump arrays to produce well-defined diffracted wavefronts.  A single diffracted 

wavefront was isolated by an optical system and it was directed to interfere with a 

reference wavefront to produce a whole-field map of bump topography.  An optical 

configuration similar to a classical Fizeau interferometer was implemented to 

successfully document the topographical map of a solder bump array.  The method was 

proven effective for co-planarity measurement of high-density bump arrays.  Digital 

fringe image processing techniques, specifically, phase shifting technique and random 

phase shifting technique, provide the robust tool to automatically obtain the out-of-plane 

shape ad warpage for the co-planarity measurement. 

 

6.2 Warpage measurement of electronic packaging components 

Electronic packaging is progressing toward integrating more devices with more 

functions into a smaller confined space, while requiring a high level of reliability.  New 

electronic components, materials, fabrication processes and configurations are emerging 

to achieve these goals.  From the structural point of view, efforts are being made to stack 

as many layers of materials as possible within a confined space. These layers consist of 
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different materials, such as, Cu, Al, silicon, polymers, ceramics, and solder. The materials 

possess different mechanical, thermal, and hygroscopic properties. After combinations of 

these materials are laminated, each material will exhibit a unique behavior under the 

variation of mechanical, thermal, and hygroscopic loading.  Warpage is a global effect of 

interfacial stress and displacement.  Accumulated interfacial stress and relative 

displacement will eventually delaminate and fail the structure.    Warpage can also mis-

registration and non-contact between a component and its substrate.  For high-density 

interconnection, such as flip-chip (FC), chip scale packaging (CSP), and ball grid array 

(BGA), maintaining a flat surface to achieve high solder connection yield is vitally 

important [120]. 

Photomechanics is taking a leadership role for the warpage measurement of electronic 

packaging components.  The general experimental techniques for out-of-plane 

displacement measurement include Twyman-Green interferometry [3][121][122], Fizeau 

interferometry, far infrared Fizeau interferometry [111][112], shadow moiré [123]~[127] 

and projection moiré [120].  Among these methods, Twyman-Green interferometry and 

shadow moiré are the most widely used techniques; their typical sensitivities are 0.316 

µm and 25 µm respectively. 

 

6.2.1 Warpage measurement using Twyman-Green interferometry 

The optical configuration of Twyman-Green interferometry was introduced in Figure 

6.1 (a).  The interference pattern is a contour map of the z coordinate of the specimen 

surface, where the contour interval is half of the wavelength of the laser light.  The 

governing equation is 
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( ) ( )y,xN
2

y,xW
λ

=               (6.12) 

where W is the out-of-plane displacement, N is the fringe order and λ is the wavelength 

of the laser light. 

Figure 6.12 shows an example of warpage measurement of a tape-automated bonding 

(TAB) package using Twyman-Green interferometry.  In this experiment, a series of 10 

frame phase shifted fringe images were captured randomly (a).  The random phase 

shifting algorithm was employed to obtain the wrapped phase (b).  After unwrapping 

using the sequential filling method, the unwrapped phase map was obtained (c).  It is 

worth noting that the defects in the original fringe patterns (a) were masked, which can be 

seen from the wrapped phase map (b); these defects were automatically corrected using 

non-linear interpolations after the unwrapping.  The 3-D warpage was shown in (d)  

 

 

(a) Fringe image patterns 
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(b) wrapped phase     (c) unwrapped phase 

 

 

(d) 3-D warpage 

 

Figure 6.12 Warpage measurement of a TAB package  
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6.2.2 Warpage measurement using shadow moiré method 

Figure 6.13 illustrates the basic concepts of shadow moiré [117].  The specimen is 

prepared by spraying it with a matte white paint.  A linear reference grating of pitch g is 

fixed adjacent to the surface.  A light source illuminates the grating and specimen, and 

the observer or camera receives the light that is scattered in its direction by the matte 

specimen.  The explanation of shadow moiré assumes that the shadow of the reference 

grating is also a grating; the superposition of the shadow grating and reference grating 

forms a moiré pattern.  From the cross-sectional view of Figure 6.13, the governing 

equation of shadow moiré can be obtained as 

( ) ( )y,xN
tantan

g
y,xW

β+α
=            (6.13) 

where W is the out-of-plane displacement, N is the fringe order, g is the pitch of the 

reference grating, α and β are the angles of incoming and outgoing rays, respectively.  

The frequency of the grating used in shadow moiré is usually less than 40 lines/mm 

(corresponding pitch is 0.025 mm/line), thus its sensitivity is much lower than Twyman-

Green interferometry.  This relative low sensitivity makes shadow moiré for 

measurement of relatively large warpage.  Figure 6.14 shows another example of 3-D 

surface measurement of a quarter coin.  This measurement cannot be implemented by 

using Twyman-Green interferometry because its sensitivity is too high for this surface 

measurement.  The random phase shifting and the PCG iterative phase unwrapping 

algorithm were employed for the fringe analyses in this example. 

 



 106 

 

Figure 6.13 Principle of shadow moiré method  

 

 

   

(a) Fringe patterns     (b) Wrapped phase 
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(c) Unwrapped phase     (d) 3-D shape 

 

Figure 6.14 Surface measurement of a quarter coin  

 

Figure 6.15 shows an example of warpage measurement of a plastic ball grid array 

(PBGA) package using shadow moiré.  In this experiment, a series of four frame phase 

shifted fringe images were captured (a).  The random phase shifting algorithm was 

employed to obtain the wrapped phase (b).  After unwrapping using the minimum 

spanning tree method, the unwrapped phase map was obtained (c).  The 3-D warpage was 

shown in (d). 

 

      

(a) Fringe patterns    (b) wrapped phase 
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(c) unwrapped phase map       (d) 3-D warpage 

 

Figure 6.15 Warpage measurement of a PBGA package  

 

6.2.3 Warpage measurement using far infrared Fizeau interferometry (FIFI) 

The optical configuration of Fizeau interferometry was introduced in Figure 6.1 (b).  

Similar to Twyman-Green interferometry, the reflection beam from the specimen and the 

reflection beam from the optical flat meet again and they are collected by the camera.  

The interference pattern seen by the camera is the contour map of separation between the 

warped wavefront κ2 and the plane wavefront κ1.  The interference pattern is a contour 

map of the z coordinate of the specimen surface, the governing equation is 

( ) ( )y,xN
cos2

y,xW
θ

λ
=              (6.14) 

where W is the out-of-plane warpage or displacement, N is the fringe order and λ is the 

wavelength of the laser light.  

By employing a far infrared light with a very long wavelength (10.6 µm), the surface 

that are regarded as rough under visible light can be tested. 
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Figure 6.16 shows an example of warpage measurement of a flip-chip plastic ball grid 

array (FC-PBGA) package using far infrared Fizeau interferometry (FIFI) [6].  In this 

package, a square chip (12 mm× 12 mm) was mounted on a substrate (12 mm× 12 mm).  

The package was virtually flat at the underfill curing temperatures; however, the large 

mismatch in CTE caused the package to bend as the temperature decreased.  The fringe 

patterns obtained at 150°C, 100°C and room temperature are shown in (a)-(c).  The laser 

wavelength is 10.6 µm, therefore the contour interval is 5.3 µm per fringe order.  The 

fringes were analyzed using the fringe centering method.  The fringe centerline is shown 

in (d); the 2D and 3D warpage maps at room temperature are shown in (e) and (f), 

respectively.  Figure 6.16 (f) reveals a significant bending in both chip and substrate.  

Irregularities shown in the substrate are not caused by optical noise.  Instead, they 

represent the heterogeneous deformation of the multi-ply glass/epoxy composite. 

 

   

(a) 150°C         (b) 100°C 
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(c) Room temperature      (d) Fringe centerline 

 

   

(e) 2-D warpage         (f) 3-D warpage 

 

Figure 6.16 Warpage measurement of a FC-PBGA package  
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7. APPLICATION II: IN-PLANE DISPLACEMENT AND STRAIN 

MEASUREMENT 

In this chapter, Applications of in-plane displacement and strain measurement are 

presented.  Among these applications, an inverse method to determine elastic constants is 

a new method and it is described in details. 

 

7.1 Inverse method to determine elastic constants using circular disc 

and moiré interferometry 

An inverse method using a circular disc in diametrical compression is proposed and 

used for simultaneous determination of two elastic constants, E and ν, from a single 

displacement map.  Moiré interferometry combined with the phase-shifting technique 

provides a full-field displacement field.  An over-deterministic approach using the 

nonlinear least squares method is implemented to fit the experimentally determined 

displacements to the theoretical solution.  An implementation guideline is provided 

considering the effects of accidental rigid-body motions, random noise and imperfect 

position of the origin.  Accuracy of the proposed method is verified experimentally. 

 

7.1.1 Introduction 

A circular disc in diametrical compression is an experimental configuration that is 

easy to machine and load.  With the well-established theoretical displacement fields 
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[128]~[132], a classical coefficient inverse approach can be implemented to determine 

material constants and/or applied load from the experimentally determined displacement 

fields [133][134]. 

Moiré interferometry measures in-plane displacements, U and V.  The method is 

characterized by a list of excellent qualities, including full-field technique, high 

measurement sensitivity, high spatial resolution and high signal-to-noise ratio [135].  The 

data are received as whole-field interference fringe patterns, or contour maps, of the 

displacement fields.  Because of the high sensitivity and abundance of data, reliable strain 

distributions—normal strains and shear strains—can be extracted from the patterns. 

For most practical applications, where the analyses are designed to investigate 

specific characteristics of the structure, quantitative results are extracted only at 

designated locations − at points, or along lines in the specimen − and whole-field analysis 

techniques are not employed.  In the original attempts of the inverse approach using 

moiré fringes [133][134], only a limited number of displacement data were utilized for 

the analyses.  The full–field displacement information had not been utilized completely.  

The full-field data are used advantageously in the current work 

In this dissertation, an inverse approach is proposed to determine two elastic 

constants from the whole-field displacement information provided by a moiré pattern.  

With the aid of a digital image processing scheme, displacement information is obtained 

at every point, which allows use of an over-deterministic analysis by the nonlinear least 

square method.  Young’s modulus and Poisson’s ratio are determined simultaneously 

from a single moiré fringe pattern. 

 



 113 

 

7.1.2 Background 

7.1.2.1 Moiré interferometry with phase shifting 

Moiré interferometry has matured rapidly to emerge as an invaluable tool, utilized by 

many industrial and scientific applications [135][136].  In the method, a high-frequency 

cross-line grating on the specimen, initially of frequency fs, deforms together with the 

specimen.  Two mutually coherent beams of laser light form a virtual reference grating, 

which interacts with the deformed specimen grating to produce a moiré fringe pattern.  

The principle of moiré interferometry is depicted schematically in Figure 7.1.  The moiré 

patterns are contour maps of the U or V displacement fields, i.e., the displacements in the 

x and y directions, respectively, of each point in the specimen grating.  The relationships, 

for every x,y point in the field of view, are 

x
s

y
s

1
U(x,y) N (x, y)

2f
1

V(x, y) N (x, y)
2f

=

=
             (7.1) 

In routine practice of moiré interferometry, fs = 1200 lines/mm.  In the fringe 

patterns, the contour interval is 1/2fs, which is 0.417 µm displacement per fringe order. 
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Figure 7.1 Schematic diagram of moiré interferometry 

 

As stated in previous chapter, the phase shifting method utilizes a series of phase-

shifted digital images to determine the phase at every point in the moiré pattern.  

Recalling it here, with succesive phase shifts of ∆ = π/2, one can obtain the intensity 

distributions of four phase-shifted images as 

( ) ( ) ( ) ( )i m aI x, y I x, y I x, y cos x, y i , i 0,1, 2, 3
2

 π = + φ + =    
   (7.2) 

where Ii is the intensity at a point (or pixel) in the moiré pattern, Im is the mean intensity, 

Ia is the intensity modulation amplitude, φ is the angular phase information of the moiré 



 115 

pattern, and (x,y) represents all the points in the x-y plane of the object and the moiré 

pattern.  Then, using the well-established phase shifting algorithm introduced previously, 

the phase can be expressed in a simple form as 

( ) ( ) ( )
( ) ( )






−
−

=
y,xIy,xI
y,xIy,xI

arctany,x
20

13φ           (7.3) 

After the unwrapping process, the phase φ represents the fringe order N at each point 

of the pattern by ( ) ( )x, y
N x, y

2
φ

=
π

.  Then the whole-field displacement can be obtained 

with equation (7.1). 

 

7.1.2.2 Displacement fields of circular disc in diametrical compression 

A circular disc in diametrical compression is shown schematically in Figure 7.2.  

Using the approach of Timoshenko and Goodier [138], the in-plane displacement 

components for the plane stress condition can be expressed as 

x x x

y y y

1
u A B

E E
1

u A B
E E

ν
= +

ν
= +

               (7.4) 

where 

ux and uy : theoretical in-plane displacement components, 

E : Young’s modulus,  

ν : Poisson’s ratio, 

( ) ( ) ( ) 



 −θ−θ−θ+θ

π
−=

R
x

2sin
2
1

2sin
2
1

t
P

A 2121x       (7.5) 
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( ) ( ) ( ) 



 −θ+θ+θ+θ

π
=

R
x

2sin
2
1

2sin
2
1

t
P

B 2121x        (7.6) 

( ) ( ) ( ) 



 −θ−θ+

π
−=

R
y

2cos
2
1

2cos
2
1

r/rln2
t

P
A 2112y       (7.7) 

( ) ( ) 



 +θ−θ

π
−=

R
y

2cos
2
1

2cos
2
1

t
P

B 21y          (7.8) 









−

= −

yR
x

tan 1
1θ                (7.9) 









+

= −

yR
x

tan 1
2θ                (7.10) 

( )22
1 yRxr −+=               (7.11) 

( )22
2 yRxr ++=               (7.12) 

P: load, 

t : thickness, and 

R : radius. 

 

Theoretical displacement fields calculated from equation (7.4) are illustrated in 

Figure 7.2 (b) and (c) in the form of contour maps, or moiré fringe patterns.  The 

diameter and thickness of the disc were 25.4 mm and 3.17 mm, respectively.  The applied 

load was 1800 N and the elastic constants for aluminum (E = 70 GPa, ν = 0.33) were 

used for the calculations.   
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(a) 

 

 

 

(b)                                             (c) 

 

Figure 7.2 (a) Schematic diagram of a circular disc in compression, and (b) U and 

(c) V displacement fields obtained from a theoretical solution 

 



 118 

7.1.3 Over-deterministic inverse approach 

7.1.3.1 Displacement fields of circular disc in diametrical compression 

Equation (7.4) shows that E and ν are coupled non-linearly.  Therefore, E and ν can 

be obtained simultaneously using either the U or the V displacement field.  This is a very 

important advantage of the proposed approach.  Numerous simple optical schemes are 

available for two-beam moiré interferometry (single field). 

Then which field should be used?  Further investigation of equations (7.5) to (7.8) 

reveals that Ax and Bx are similar in magnitude but By is generally much smaller than Ay.  

Consequently, the V field displacements are much more sensitive to E than ν.  

The theoretical displacement fields of Figure 7.2 were utilized to investigate the 

sensitivity of displacement fields to elastic constants.  The displacement fields were 

calculated for various combinations of E and ν; each variation was ±25%.  The U 

displacements along the horizontal centerline (OA in Figure 7.2 b) and the corresponding 

V displacements along the vertical centerline (OB in Figure 7.2 c) are plotted in Figure 

7.3 (a) and (b), respectively.  The displacements were normalized by the displacement of 

the reference case at point A.   

The plots clearly indicate that the U displacements are uniquely defined for different 

combinations of E and ν, whereas the V displacements are virtually insensitive to ν.  

Only U displacements can be used for simultaneous measurement of both constants.  In 

the following analyses, the term “displacement” represents the U displacements for 

simplicity. 
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(b) 

 

Figure 7.3 Sensitivity of displacement fields to elastic constants, E and ν.  
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7.1.3.2 Nonlinear least squares analysis 

The least-squares method has been used in a regression analysis [139]~[142].  The 

basic assumption that underlies this approach is that there are always differences between 

experimental results and theoretical values.  Their relationship can be expressed as 

s ru(x, y) U(x, y) e (x, y) e (x, y)= + +           (7.13) 

where u and U are the theoretical and experimentally-measured displacements at each 

point (x,y), respectively, and es is the systematic displacement error and er is the random 

noise.  Under an idealized condition where es and er are negligible, E and ν can be 

obtained using two arbitrary points in the U displacement field.  In practice, the errors are 

not negligible and this is the rationale of the least-squares approach to fit the 

experimentally determined displacements to the theoretical solution.   

There are two types of random noise.  One is random electrical noise introduced by 

the CCD camera and image grabber used for imaging and digital image processing.    The 

other is defects or imperfections of the specimen grating. 

In practice, it is difficult to control accidental rigid-body motions of the specimen 

while applying external loads.  Systematic errors are associated with these rigid-body 

motions.  When studying deformations, we are interested in only relative displacements 

and the rigid-body displacements are inconsequential.  For the proposed approach, 

however, absolute displacements are required and displacements altered by rigid-body 

motions must be considered.   

Rigid-body translation in the x direction changes the fringe order of every point in the 

U field by a constant, while rigid-body translation in the y or z direction does not affect 

the U displacements.  Rigid-body in-plane rotation (about the z axis) alters the apparent 
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U displacements and it changes the fringe order by a linear function of y.  Although out-

of-plane rigid-body rotation about the x axis does not alter the fringe pattern, out-of-plane 

rigid-body rotation about the axis parallel to the grating lines (about the y axis) causes a 

foreshortening effect of the specimen grating [135].  This effect produces an apparent 

compressive strain of the specimen and thus apparent U displacement, which changes the 

fringe order by a linear function of x.   

Considering the above and using equation (7.1), the error function of least squares 

method can be expressed as 

( )

( )

2
M

i i
x x 0 1 2 r

i 1 s

2M
i i i
x x x 0 1 2 r

i 1 s

1
S u N x y e

2f

1 1
A B N x y e

E E 2f

=

=

 
= − + + δ + δ + δ + 

 

 ν = − + + + δ + δ + δ +  
  

∑

∑
    (7.14) 

where i
xN  is the fringe order at the point i in the fringe pattern; i

xu  is the corresponding 

theoretical displacement; M is the number of points used in the calculation; 0δ  is the 

fringe order change caused by the rigid body translation in the x direction; ( )1xδ  is the 

fringe order change caused by the out-of-plane rigid-body rotation about the y axis; and 

( )2yδ  is the fringe order change caused by the in-plane rigid body translation about the z 

axis.  1 2andδ δ  are fringe gradients, expressed as fringes per mm.  Let 

E
1

=α  and 
E
ν

β =                (7.15) 

Then 

( ) ( )
2

M
i i i
x x x 0 1 2 r

i 1 s

1
S A B N x y e

2f=

 
= − α + β + + δ + δ + δ + 

 
∑     (7.16) 
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The least squares criterion for the five independent variables requires 
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This yields 
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The values of α, β, δ0, δ1 and δ2 can be determined by solving equation (7.18), and E and 

ν from equation (7.15). 

 

7.1.4 Technical considerations for implementation 

Two technical issues arise when the proposed method is implemented: (1) the 

optimum number of data points for least-squares calculation and (2) the effect of the 

geometric center of the disc.  A computer simulation was conducted to address these 

issues. 

7.1.4.1 Systematic error and random noise 

The fringe patterns shown in Figure 7.2 were modified again to incorporate the 

systematic errors and the random noise.  First, the maximum value of 0δ  was estimated to 

be 0.25 fringe order.  This systematic error occurs when a zero fringe order is assigned to 

the center point of the fringe pattern, and 0 0.25 fringe orderδ = is a very conservative 

estimate. 

The maximum value 2δ  was chosen as 3.94 x 10-2 fringes per mm, which is 

equivalent to 1.0 fringe order change across the vertical diametric centerline (BB’).  A 

moiré interferometer is usually equipped for adjustment of in-plane rotation, and the 1.0 

fringe order difference across the diameter is readily discernable during adjustment.   

The value of 1δ  is directly related to the accidental out-of-plane rotation.  In practice, 

the angle is determined by observing the spot of light reflected back to the source [135].  

The magnitude of 1δ  can be determined by 
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2

1 s
d

f
FL

 δ = −  
 

               (7.19) 

where FL is the focal length of the collimating lens and d is the movement of the spot of 

light at the focal plane of the imaging lens.  Considering a collimating lens with FL = 6” 

(150 mm) and d = 1 mm, 1δ  becomes 5.33 x 10-2 fringes per mm.  The resultant U field 

fringe pattern with the above systematic noise is shown in Figure 7.4 (a). 

 

   

 

(a)                                                           (b) 

 

Figure 7.4 (a) Theoretical fringe patterns with systematic errors caused by rigid-

body displacements, and (b) the corresponding fringe patterns after adding random 

noise with a maximum variance of 0.25 fringe.  
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The fringe pattern was then modified with random noise, which was specified as 

max
r

r
s

N
e ran()

2f
=                (7.20) 

where max
rN  is the maximum variance of the random error in fringe order and ran() was 

random numbers ranging from –1 to 1.  The results of these modifications are illustrated 

in Figure 7.4 (b) for max
rN 0.25= .  The size of the digital fringe image is 1000 pixels by 

1000 pixels, which is a typical resolution provided by a 1-inch format CCD camera.   

 

7.1.4.2 Optimum number of data points 

It is desired to use all the points on the specimen for the nonlinear least-squares 

calculation because more data points can suppress random noise better and thus make the 

variables converge faster and more accurately.  However, the theoretical solution is based 

on a point load, whereas the real experimental loading is applied over a small area 

(distributed load).  The theoretical displacements near the loading area can be different 

from the experimental data because of the different loading condition and plastic 

deformations.  In addition, the specimen grating along the free-edges can be damaged 

during replication, which can disturb the displacements along the free-edges.  For these 

reasons, the points located in the central part of the specimen were used for least-squares 

calculation, as illustrated in Figure 7.5.  The following simulation was conducted to 

determine the minimum number of data points that provides sufficient accuracy 
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Figure 7.5 Schematic diagram of the areas used in the nonlinear least squares 

calculation.  

 

The fringe pattern of Figure 7.4 (a) was first used to determine α and β with various 

values of m.  The maximum value of m was limited to “1” to avoid the points that are 

close to the loading areas and disc edges.  All five variables converged within a few 

iterations and the values remained the same regardless of m.  In order to evaluate the 

effect of random noise, five different sets of fringe patterns with max
rN 0.25=  were 

generated.  The results with various values of m are plotted in Figure 7.6, where the 

values of α and β are normalized by those obtained from the fringe pattern of Figure 7.4 

(a).  The values of α and β converged within ±1% at m = 0.6.  In typical moiré patterns, 

max
rN  does not exceed 0.25 fringe order and it is reasonable to assume that m = 0.6 will be 

sufficient for accurate determination of α and β, which corresponds to 90,000 data points 

when the digital fringe image has a resolution of 1000 pixels by 1000 pixels. 
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(b) 

Figure 7.6 Effect of calculation area on α and β.  
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7.1.4.3 Effect of geometric center of the disc 

It is difficult to locate the exact location of the origin in the digital fringe patterns.  

This also produces a systematic error in the experimentally determined displacement 

fields.  Mathematically, the error, cpe , can be expressed as 

( ) ( )cp 0 0e U x, y U x x , y y= − − −            (7.21) 

where 0 0x and y  are the x and y coordinates of an incorrect origin.  It is important to note 

that this error is different from that caused by the horizontal rigid-body translation ( 0δ ).  

The 0δ  changes the fringe order uniformly and thus the relative displacement between 

any two points in the field remains unchanged.  However, the change in fringe order 

produced by cpe  varies from point to point and the relative displacement changes with 

0 0x and y . 

A computer simulation was conducted to illustrate the effect of cpe .  In the 

simulation, the position of origin was intentionally moved to a point of (0.02R, 0.02R) 

and the values of α and β were determined with m greater than 0.6.  The results are 

shown in Figure 7.7.  The values of α and β were underestimated significantly and 

converged slowly as m increased.  Another simulation with an origin of (−0.02R, −0.02R) 

was also conducted and the results were virtually identical to the plot shown in Figure 

7.7.  The simulation indicates that only the correct location of the origin can provide 

stable outputs as m increase from 0.6 to 1.0. 
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(b) 

Figure 7.7 Effect of location of the origin on α and β.  
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The 0 0x and y  can be considered as variables in the nonlinear least-squares 

algorithm.  Unlike other systematic errors, however, they are coupled with the material 

constants non-linearly.  This would affect the stable convergence of the constants.  

Instead, a simple solution using a concept of minimum variance is proposed to find the 

correct location of the origin. 

Recalling the analysis shown in the previous section, the values of α and β converge 

and remain unchanged if a region with m > 0.6 is used for calculation in spite of the 

random noise.  In other words, the variance in α and β for m greater 0.6 should provide 

minimum variance if the correct origin is used in the calculation.   

This approach can be expressed mathematically as 
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K
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K
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β = β

∑

∑
                (7.23) 

and K is the number of areas with m > 0.6 used for the calculation, iα  and iβ  are the 

values calculated from equation (7.18) for the i-th calculation area.  A point with the 

minimum variances of α and β is selected as the origin, and the E and ν are determined 

from: 

1
E

ˆ
ˆ

ˆ

=
α
β

ν =
α

                  (7.24) 
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7.1.5 Experimental verification 

A moiré experiment was conducted to verify the proposed method.  The specimen 

was a circular disc, shown schematically in Figure 7.8 (a); it was made of 6061-T6 

aluminum alloy.  The diameter was 25.4 mm and the thickness was 3.17 mm.  Two 

spherical indents with a radius of 3.2 mm were made and the load was transferred 

through steel balls to ensure accurate alignment of diametrical compression.  A general-

purpose compression loading fixture was utilized for the experiment.  As shown 

schematically in Figure 7.8 (b), the compressive displacements were achieved by driving 

the lower wedge to the left.  The load was measured with an accuracy of 0.01 N by an 

electrical load cell.  Figure 7.8 (c) and (d) show the photos of the real experiment setup. 

The U field fringe patterns at 1800 N are shown in Figure 7.9; (a)-(d) is a series of 

four phase-shifted fringe patterns for this load level; (e) and (f) are the corresponding 

wrapped and unwrapped phase maps.  The fringe patterns at a higher load level (2200 N) 

are shown in Figure 7.10. 

The proposed algorithm was implemented with these fringe patterns.  First, the 

geometric center of the image was marked as an initial location of the origin.  Then the 

area of possible locations of the true origin was selected as 0.04R by 0.04R (n = 0.04 in 

Fig. 4), which corresponded to an area of 20 pixels by 20 pixels in the digital fringe 

patterns.  The values of α and β were calculated for each point within the area by 

equation (7.18) using m > 0.6 with an interval of m = 0.1.  The variances were calculated 

by equation (7.22) and the point that produced the minimum variance was chosen as the 

true origin.   
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The results obtained using the correct origin are plotted in Figure 7.11 for m > 0.6, 

where iα  and iβ  were normalized by ˆˆ andα β , respectively.  The material constants 

were evaluated by equation (7.24) and the results are summarized in Table 7.1.  The 

results agree well with the values of the handbook [143], which confirms the validity of 

the proposed method. 

    

(a) 

 

 

(b) 



 133 

 

 

(c) 

 

 

(d) 

 

Figure 7.8 (a) Schematic diagram of the specimen; (b) Schematic diagram of 

compression loading fixture used in the moiré experiments; (c) Photo of the 

experiment setup and (d) the specimen loaded in the loading fixture.  
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(a) 0       (b) π/2 

 

      

(c) π       (d) 3π/2 

 

      
 (e) wrapped phase map  (f) unwrapped phase map 

 

Figure 7.9 U field fringe patterns obtained at 1800 N; (a)-(d) four phase-shifted 

moiré patterns; (e) and (f) phase maps before and after unwrapping process.  
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(a) 0       (b) π/2 

 

      

(c) π       (d) 3π/2 

 

      
(e) wrapped phase map  (f) unwrapped phase map 

 

Figure 7.10 U field fringe patterns obtained at 2200 N; (a)-(d) four phase-shifted 

moiré patterns; (e) and (f) phase maps before and after unwrapping process.  
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Figure 7.11 Values of α and β obtained from the fringe patterns in Fig. 7.8 and 7.9.  
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Table 7.1 Experimental results 

 E (GPa) ν 

1800 N 70.4±1.1 0.32±0.01 

2200 N 69.7±1.1 0.31±0.01 

Handbook [143] 69.7 0.33 

 

7.1.6 Discussion 

The proposed method utilizes only the U field fringe pattern to determine the two 

elastic constants.  A variety of simple optical configurations of two-beam moiré 

interferometry can be employed. Rigid-body displacements induced by practical loading 

systems cannot be avoided.  To account for these effects, the magnitudes of 1δ  and 2δ  

were 3.94 x 10-2 and 5.33 x 10-2 fringes per mm, respectively.  These displacement 

gradients are equivalent to only 17 and 22 micro strain, which are negligible for most 

deformation analyses.  Together with the unavoidable random noise, however, it was 

demonstrated that these small displacement gradients could produce significant 

uncertainties in the elastic constants.  With the high accuracy provided by moiré 

interferometry and with the over-deterministic approach, the proposed algorithm handles 

the rigid-body motions effectively. The use of simple optical configurations to record a 

single displacement field, together with the powerful algorithm that is capable of 

handling the accidental rigid-body displacements, provides a practical method for 

advanced engineering materials.   
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7.1.7 Summary 

An inverse method has been proposed to determine the elastic constants E and ν.  The 

method is based on the theoretical displacement of a circular disc in diametrical 

compression.  High sensitivity moiré interferometry combined with the phase-shifting 

technique provides the experimental data in the form of a full-field displacement map.  

An over-deterministic approach using the nonlinear least squares method is implemented 

to fit the experimentally determined displacements to the theoretical solution. 

A computer simulation was conducted to investigate the effect of systematic errors 

and random noise encountered in implementing the proposed method.  The optimum 

number of data points for least-squares calculation was determined as 0.36R2 of the 

number of pixels in the image.  It was found that the results were sensitive to the location 

of the geometric center, and a simple procedure using minimum variance was utilized to 

identify the correct origin. 

A moiré experiment was conducted to verify the proposed method experimentally.  

With only one moiré field, two elastic constants, E and ν, were determined 

simultaneously with high accuracy. 
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7.2 In-plane deformation and strain measurement of electronic 

packaging components 

Moiré interferometry is the most widely used experimental technique for thermal 

deformation analyses of electronic packaging [144]~[153].  The typical sensitivity of 

moiré interferometry is 0.417µm.  As the components and structures are made smaller 

and smaller, microscopic moiré interferometry, which can provide higher resolution and 

sensitivity, has also become important. 

 

7.2.1 In-plane deformation measurement using moiré interferometry 

Moiré interferometry uses a high frequency diffraction grating.  Because of the defect 

and imperfection of the high-frequency specimen grating, the fringe images obtained 

from moiré interferometry usually contain much more noise than those obtained in out-

of-plane displacement measurement methods. 

Figure 7.12 shows the experiment results of the deformations of a plastic quad flat 

package (PQFP) due the thermal loading and hygroscopic swelling [154].  PQFP is a 

plastic encapsulated microcircuit which consists of a silicon chip, a metal support or 

leadframe, wires than electrically attach the chip’s circuits to the leadframe, and a plastic 

epoxy encapsulating material, or mold compound, to protect the chip and the wire 

interconnects.  The mold compound is a composite material made of an epoxy matrix that 

encompasses silica fillers, stress relief agents, flame-retardants, and many other additives.  

In spite of many advantages, one important disadvantage of PEMs is that the polymeric 

mold compound absorbs moisture when exposed to a humid environment due to the 
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polymer-water affinity action.  The goal of the experiment in Figure 7.12 was to 

investigate the effect of hygroscopic swelling on the package and to compare it with that 

of thermal expansion. 

 

 

(a) Fringe patterns generated due to thermal loading ∆T = -60°C 

 

 

(b) Fringe patterns generated due to hygroscopic swelling under a virtual saturation state 

at %85RH 

Figure 7.12 Moiré fringe pattern of PQFP package with hygroscopic and thermal 

deformations  

 

Figure 7.13 shows the deformed configuration.  It is obvious that hygroscopic 

swelling brings much more deformation than a thermal loading (∆T = -60°C), thus 
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hygroscopic swelling must be considered for accurate reliability assessment when PQFP 

packages are subjected to environments where the relative humidity fluctuates.  It is also 

worth noting that the deformed shape due to hygroscopic swelling is convex whereas the 

deformed shape due to heating is concave (convex for cooling). 

 

 

(a) Deformed shape due to hygroscopic swelling 

 

 

(b) Deformed shape due to thermal loading (cooling) 

  

Figure 7.13 2-D deformations 

(Deformations are magnified with same magnification) 

 

 



 142 

7.2.2 In-plane deformation and strain measurement using microscopic moiré 

interferometry 

Microelectronics devices contain many very tiny electronic components within an 

active silicon chip, such as transistors, capacitors, resistors, etc.  A silicon chip requires 

protection from the environment as well as electrical and mechanical connections to the 

surrounding components.  The various conducting and insulating materials involved in 

the devices have different coefficients of thermal expansions (CTEs).  When electrical 

power is applied, the device is subjected to a temperature excursion and each material 

expands at a different rate.  This non-uniform CTE produces thermally induced 

mechanical stresses within the device assembly. 

As the components and structures involved in high-end microelectronics devices are 

made smaller, the thermal gradient increases and the strain concentrations become more 

serious.  Hence, there is a continuously increasing activity in experimental analysis, both 

for specific studies and for guidance of numerical analyses.  Moiré interferometry and 

microscopic moiré interferometry are the leading methods for experimental analyses [2]~ 

[4][121][155]. 

One of several purposes of a chip carrier is to provide conducting paths between the 

extremely compact circuits on the chip and the more widely spaced terminals on the 

PCB.  The micro via technology enabled the industry to produce laminate substrates with 

a high density, and fine pitch conductors, called surface laminar circuit (SLC), as 

required for advanced assemblies.  Extensive research and development efforts have been 

and are being made to perfect the underfill process for the high-density organic 

substrates, and to develop optimum underfill materials for the larger silicon devices. An 
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important trend in newly developed underfill materials is its increased Young’s modulus, 

which increases the coupling between the silicon chip and the substrate. This high degree 

of coupling transfers the CTE mismatch-induced-loading to the build-up layers of the 

substrate.  Figure 7.14 (a) shows the schematic diagram of the flip-chip assembly on a 

high-density substrate used in reference [156] to quantify the thermal-mechanical  

deformations of the microstructures within the build-up layers.  Microscopic moiré 

interferometry [157] was employed in the experiment.  Two specimen configurations 

were analyzed to study the deformations induced by the subsequent manufacturing 

process: a bare substrate and a flip-chip package.  In the assembly, a silicon chip was 

attached to a high-density substrate by solder bumps and the gap between the solder 

bumps was filled with an underfill [156]. 

 

Figure 7.14 Schematic diagram of the flip-chip assembly on a high-density substrate 

(a) before and (b) after specimen preparation 
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The specimens were cut and ground to expose the desired microstructures as 

illustrated schematically in Figure 7.14 (b), where the inset depicts the detailed 

microstructures within the build-up layer.  The specimen grating was replicated at 92°C 

and the fringes were recorded at room temperature of 22°C.  Therefore, the thermal 

loading is ∆T = -70°C. 

The displacement fields for a small region containing the microstructures were 

recorded by microscopic moiré interferometry. The region is marked by a dashed box in 

Figure 7.15; it is approximately 500 µm by 375 µm. The resultant fringe patterns are 

shown in Figure 7.16 (a) for the bare substrate and in Figure 7.16 (b) for the flip-chip 

assembly. O/DFM was employed to produce a displacement contour interval of 52 

nm/fringe. 

 

 
 

 
 

Figure 7.15 Micrographs of the region of interest. 
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Figure 7.16 Microscopic U and V displacement fields of (a) the bare substrate and 

(b) the flip-chip assembly. 

 

To investigate the effect of the chip and underfill, the deformations of the solder and 

metal via were analyzed using hybrid semi-automatic fringe processing technique.  The 

deformed shape of the solder and the metal via in the substrate and the flip-chip assembly 

are plotted in Figure 7.17 and Figure 7.18, respectively.  The deformed shapes were 

exaggerated with same magnification in both figures.  It is evident that deformations of 

the solder and the metal via increased significantly after the chip was assembled to the 

substrate. 
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(a) Undeformed shape     (b) Deformed shape 

 

Figure 7.17 Deformations of the solder and the metal via in substrate. 

 

 

(a) Undeformed shape     (b) Deformed shape 

 

Figure 7.18 Deformations of the solder and the metal via in Flip-chip assembly. 

 

The normal strain εy strain distributions are plotted in Figure 7.19.  Compared with 

the strain field in substrate, strain concentration happens in flip-chip assembly.  The 

maximum strain in assembly is about three times of the maximum strain the substrate. 
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Figure 7.19 Strain εy distributions in the solder and the metal via. 

 

7.2.3 Coefficient of thermal expansion (CTE) measurement using moiré 

interferometry 

Because coefficient of thermal expansion (CTE) mismatch can reduce the reliability 

of electronic packaging systems by causing localized stress, CTE measurement is 

important for optimizing the packaging design.  Real-time moiré interferometry has been 

successfully used to measure the CTE of the electronic packaging components [158].   

Mathematically, CTE can be calculated by 

T∆
ε∆

=α                  (7.25) 

where α is CTE, ∆ε is the strain change due to a temperature change of ∆T.  Apparently, 

CTE measurement is actually a thermal strain measurement. 

Figure 7.20 and Figure 7.21 show some fringe patterns for the CTE measurement of 

the printed circuit board (PCB) and the module in a PBGA package.  Compared with 

manual method which selects several lines across the specimen for the CTE calculation, 



 148 

computer-aided fringe analysis can calculate the whole-field CTEs and the average CTE 

can be regarded as the specimen’s CTE.  Table 7.2 shows the results of CTEs of PCB and 

module. 

 

   

(a) U at 60 °C       (b) V at 60 °C 

 

   

(c) U at 100 °C     (d) V at 100 °C 

 

Figure 7.20 CTE measurement of PCB. 
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(a) U at 60 °C       (b) V at 60 °C 

 

   

(c) U at 100 °C      (d) V at 100 °C 

  

Figure 7.21 CTE measurement of module. 

Table 7.2 Results of CTE measurement at 60~100 °C  

 
CTE: X direction 

(ppm/°C) 

CTE: Y direction 

(ppm/°C) 

PCB 18.0 17.5 

Module 6.8 6.7 
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8. CONCLUSIONS 

8.1 Conclusions 

Photomechanics methods produce fringe patterns, which generally provide the full 

field information of displacement field.  Traditionally, the fringe patterns have been 

analyzed manually for experiment analyses.  As digital image processing has become 

more accessible, computer-aided automatic fringe pattern analyses have become 

practical.  Although numerous image-processing algorithms have been developed to 

complement interferometric measurement techniques, their extensions to general fringe 

analyses have been limited because of inherent optical noise encountered in the modern 

photomechanics techniques.  To enhance the applications of photomechanics methods to 

advanced engineering problems, a robust general-purpose computer-aided fringe analysis 

tool was developed in this dissertation. 

The major contributions made in this dissertation include: 

(1) Complete survey and investigation on the existing fringe image processing 

schemes; the most appropriate image processing schemes and their limitations 

were identified. 

(2) Development of self-adaptive fringe filtering algorithm.  This algorithm is a 

spatial low-pass filtering.  Unlike the conventional digital image filtering, the 

filter window in this algorithm is selected in a self-adaptive manner; it considers 

not only the orientations of the local fringes but also the local fringe densities.  
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This algorithm is very effective for suppressing and reducing noise without 

blurring and losing useful fringe information. 

(3) Quantitative evaluation of the automatic fringe analysis techniques: Fourier 

transform technique and phase shifting technique.  Although the techniques are 

widely used, the evaluation shows that neither of the two techniques can handle 

discontinuities effectively.  The investigation also shows that these two 

techniques are effective for determining fractional fringe orders, but should not 

be used for calculation of fringe gradient. 

(4) Development of enhanced random phase shifting algorithm.  The conventional 

phase shifting algorithm requires pre-determined or known phase shift amounts.  

The random phase shifting algorithm is a least squares iteration procedure; it can 

detect the phase shift amounts and the full-field phase distributions 

automatically and simultaneously.  Using the random phase shifting algorithm, 

the phase shift amounts can be any random values; thus an accurate phase 

shifting devices are not required in the experiment. 

(5) Development of semi-automatic fringe order assignment and interpolation.  A 

series of algorithms for fringe order assignment and interpolation are proposed 

and implemented, which include semi-automatic fringe order assignment, 1-D 

segment-by-segment curve fitting interpolation, improved 1-D fringe order 

interpolation considering fringe orientation, and 2-D tile-by-tile interpolation.  

These algorithms make the existing fringe centering technique practical and 

increase applicability of the fringe centering technique significantly. 
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(6) Development of hybrid O/DFM (Optical/digital fringe multiplication) fringe 

centering technique.  This hybrid technique combines the advantages of the 

O/DFM, the phase shifting technique and the fringe centering technique.  The 

hybrid O/DFM fringe centering technique is a very effective semi-automatic 

processing technique and it can be employed to obtain full-field fractional fringe 

orders (displacements) and their gradients (strains) accurately. 

(7) Development of a Windows GUI-based expert system (software) for 

interferogram fringe analysis and processing.  The software system includes the 

general digital image processing algorithms and all the algorithms introduced in 

this dissertation. 

(8) Application using infrared diffraction interferometer for the co-planarity 

measurement of high-density solder bump patterns.  The method utilizes long 

wavelength (λ ?= 10.6 µm), coherent infrared laser light, which serves to reduce 

the apparent roughness of test objects, and enables the regularly spaced solder 

bump arrays to produce well-defined diffracted wavefronts.  The expert system 

was utilized to produce a full-field surface topography map. 

(9) Development of an inverse method to determine elastic constants using circular 

disc and moiré interferometry.  This inverse method uses a circular disc in 

diametrical compression to simultaneously determine the two elastic constants, 

E and ν, from a single displacement map.  Moiré interferometry combined with 

the phase-shifting technique provides a full-field displacement field.  An over-

deterministic approach using the nonlinear least squares method is implemented 

to fit the experimentally determined displacements to the theoretical solution. 
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(10) Applications of photomechanics and computer-aided digital fringe processing to 

electronic packaging.  The computer-aided fringe processing techniques have 

been successfully applied to obtain the out-of-plane shape and warpage, in-plane 

deformation and strain of various electronic and microelectronic packaging 

components. 

 

8.2 Future work 

This dissertation work presents a variety of robust computer-aided fringe analysis 

techniques for the general–purpose photomechanics fringe analysis.  The expert system 

can be used to obtain whole field fringe orders (usually, displacements) with high 

accuracy automatically; however, the gradient calculation is very sensitive to noise and 

very small change of fringe orders can result in large gradient variation.  Therefore, the 

whole-field gradient calculation is usually a qualitative analysis.  Fortunately, the 

engineering problems usually require a quantitative analysis at one single point, along 

one single line or in one small area.  With user’s judgment, such a quantitative analysis is 

possible in the expert system; nevertheless, more work is required to achieve quantitative 

analysis of fringe order gradients automatically. 

A least squares inverse approach was developed in this dissertation to determine the 

elastic constants using whole-field displacement information; a similar approach can be 

extended to measure the residual stresses using moiré hole drilling method.  Moiré 

interferometry combined with computer-aided fringe analysis can provide whole-field 

displacement information around the moiré hole, an over-deterministic least squares 
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approach can then be employed to obtain the orientations and magnitudes of the residual 

stresses.  This future work will provide a new way for residual stress measurement with 

high accuracy. 
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