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Photo-mechanics methods have matured and emerged as important engineering
tools. Although numerous image-processing agorithms have been developed to
complement interferometric measurement techniques, these agorithms have been
implemented originally for classical interferometry and the extensions to the general
photo-mechanics fringe analysis have been limited. In this dissertation, the existing
computer-aided digital fringe image analysis and processing techniques are investigated,
the most appropriate fringe image processing schemes and their limitations are identified.
To make the computer-aided fringe analysis practical to the real engineering problems,

the existing schemes are improved and a series of new fringe analysis techniques are



developed. Among these new techniques, the self-adaptive fringe filtering scheme
considers not only the orientations of the local fringes but also the local fringe densities,
the enhanced random phase shifting algorithm can detect the phase shift amounts and the
full-field phase distributions automaticaly and simultaneoudy; the hybrid semi-
automatic O/DFM fringe centering technique combines the advantages of existing
techniques and can be employed to obtain full-field fractiona fringe orders and their
gradients accurately. Based on the study, a Windows GUI-based expert software system
is developed for interferogram fringe anaysis and processing. This expert system
includes al the agorithms presented in this dissertation.

Selected but original applications of the computer-aided fringe anaysis are
presented. They include: (1) development of infrared diffraction interferometer for co-
planarity of high-density solder bump patterns; the infrared light enables the regularly
spaced solder bump arrays to produce well-defined diffracted wavefronts, (2)
development of an inverse method to determine elastic constants using circular disc and
moiré interferometry; this method uses a non-linear over-deterministic approach to
determine e astic constants simultaneoudly, and (3) applications to out-of-plane shape and
warpage measurement and in-plane displacement and strain measurements of electronic

packaging components.
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1. INTRODUCTION AND BACKGROUND

1.1 Problem statement

In recent years, various photomechanics methods have matured and emerged as
important engineering tools. The methods provide the full field information of
displacement field. Representative examples of the methods used for a quantitative
deformation analysis are shown in Table 1.1 and Table 1.2 for in-plane and out-of-plane
displacements, respectively [1]~[6].

The fringe patterns represent the contours of equal displacements. The intensity

distribution of the fringe patterns can be expressed as

1(x,y) =1 (%,y) + 1, (X, y) cos[f (X, Y)] (1.1)

where | is the intensity distribution of the interferogram, |, is the mean intensity, I, isthe
intensity modulation amplitude, f is the angular phase information of the interferogram,
and (x,y) represents al the points in the x-y plane of the object and the interferogram; f
represents the fringe order N at each point of the pattern by f (X,y) =2pN(X,y).
Experimental fringe analysis is a procedure to obtain the desired experiment results or
physical quantities from the fringe patterns. In general, only the integer fringe orders can
be directly determined from the fringe patterns, which are located along the centerlines of

the black fringes. The fringe analysis involves two steps: one is how to obtain the
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fractional fringe orders and the other is how to get the desired results from the fractional
fringe orders.

The fringe patterns have been analyzed manualy for experiment analyses. As digitd
image processing has become more accessible, automatic analyses of the fringe patterns
have become practical [7]. Numerous image-processing algorithms have been developed
to complement interferometric measurement techniques. The methods utilize a single or
a series of phase-shifted interferograms to compute the fractional fringe orders. The
algorithms were originally implemented for classical interferometry. Their extensions to
general fringe analyses have been limited because of inherent optical noise encountered
in the modern photomechanics techniques.

Under an idedized condition where the interferogram is described faithfully by
Equation (1.1), mathematical determination of the phase information can be readily
achieved. If random noise with relatively small amplitude exists, the general image
processing algorithms for averaging and smoothing can be utilized effectively to
eliminate the noise. In practice, however, the genera image processing agorithms are
not directly applicable because of geometrical discontinuities in the region of interest as

well as random noise with large amplitude.



Table 1.1 In-plane photomechanics methods

Basic Sengitivity Contour Interval ] )
Method Field of View Example
principle (fringes/disp.) (disp./fringe)

}
Reference
Geometric Additive Lessthan 100 Greater than 10 L A
- o : : Large - L
moiré intensities linesmm micrometers — S
grating [
_*.
o Small
Moiré Laser 2.4 _ )
_ _ _ _ 0.417 micrometers | (typicaly 5mm
interferometry | interference | lines'micrometer
to 50mm)




Basic Sensitivity Contour Interval , .
Method o _ _ _ _ Field of View Example
principle (fringes/disp.) (disp./fringe)
Interference
, , under Microscopic =t
Microscopic ) )
o refractive- 4.8 208 t0 20.8 (typically 50
moiré
_ index lines/micrometer nanometers micrometers to
interferometry i
medium and 1 mm)
microscope
U-Field V-Field
Table 1.2 Out-of-plane photomechanics methods
Basic Sensitivity Contour Interval , .
Method Field of View
principle (Fringed/disp.) (disp./fringe)
_ Additive Lessthan 100 Greater than 10 Large (up to
Shadow moiré
intengities linemm micrometers 100 mm)




Basic Sensitivity Contour Interval , ]
Method o _ . _ _ Field of View Example
principle (Fringed/disp.) (disp./fringe)
Infrared . .
_ Light 200 to 400 25t05 Medium (5to
Fizeau _ _ _
_ interference linemm micrometers 45 mm)
interferometry
Twyman- _
Laser-light 3.2 ) Small (less
Green _ _ _ .317 micrometers
_ interference | linesymicrometer than 5 mm)
interferometry




The inherent optical noise of an interferogram is illustrated in Figure 1.1. The fringe
pattern represents a horizontal displacement of a layered metal/ceramic composite
subjected to a uniform bending, which was obtained from a microscopic moiré
experiment. The intensity distributions along the cross lines in the fringe patterns are
also shown in the figure. In spite of well-defined black fringes with excellent contrast,
random noise with extremely large amplitude is evident. The noise was caused by
imperfection of diffraction gratings used in the experiment. In addition, a strong gradient
(or strain) is expected at the interfaces of material discontinuity. If a general image-
processing agorithm is employed, the origina deformation field can be altered
sgnificantly. Image processing routines with specific functions are required to process

the fringe pattern.

0 100 200 300 400 500
X direction

200

150

o W L

0 50 100 150 200 250 300 350 400
Y direction

Figure 1.1 Illustration of large random noise.
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1.2 A review of digital fringe analysis and processing

Digita fringe image processing techniques fall into two categories. one is an
intensity-based analysis and the other one is a phase measurement technique. The former
IS a semi-automatic processing technique while the latter can be regarded as an automatic
processing technique.

The intensity-based fringe analysis was established based on the traditiona manual
processing method. This technique involves detecting and thinning fringe centerlines
(skeletons), assigning fringe orders and interpolating fringe orders. The intensity-based
fringe processing is a tedious procedure and development of this technique has not been
active since 1990's [8]~ [38] because of its inherent limitation. The phase measurement
technique [39]~[97] offers an automatic processing procedure and has been widely used
since late 1980's. In spite of its popularity, the digital fringe image processing is still not
mature for practica applications. One of the reasons is that the techniques were
established based on theoretical descriptions of the optical interferograms; significant
improvement is required to make the techniques practical for rea engineering

applications.

1.2.1 Intensity-based analysis

The core of the intensity-based analysis technique [8]~[38] includes fringe centerline
detection and fringe order interpolation. There are two kinds of methods for extracting
the fringe centerlines from fringe patterns. One method involves binarizing the fringe

7



patterns and then skeletonizing the binary fringes, another method finds the fringe
centerlines through detecting the local maxima and minima of fringe intensities.
Compared with binarization method, the fringe peak detection method usualy yields
centerlines with less error; however, this method is more sensitive to noise.

Although many fringe centerline detection methods have been proposed and
developed, few study work can be found in the literature for automatic fringe order
assgnment and interpolation. Generdly, it is practicaly impossible to assign fringe
orders automatically because the fringe patterns do not contain the fringe order
information. A typical solution to this problem is detecting the ascending or descending
directions of the fringe order while changing the load in the experiment. For fringe order
interpolation, only one-dimensional (1-D) agorithms based on linear interpolation have
been implemented. It is obvious that 1-D interpolation is not adequate for most cases

simply because the fringe patterns contains two-dimensiona (2-D) information.

1.2.2 Phase measurement technique

Unlike the intensity-based fringe analysis which utilizes only a small portion of the
fringe pattern, i.e., the integer fringe orders, the phase measurement method uses full-
field fringe information for the analysis.

The phase measurement technique includes Fourier transform analysis and phase
shifting analysis. Fourier transform method [39]~[56] requires a single fringe image for
the analysis. In order to separate the pure phase information in the frequency domain,

Fourier transform usually requires carrier fringes;, this brings difficulty in practice



because the frequency of the carrier fringe must be controlled accurately. Another
critical limitation of Fourier transform technique is inability of handling discontinuities.
Phase shifting method [57]~[77] is a widely used automatic fringe processing
technigue. This method uses a series of phase-shifted interferograms to calculate the
fractional fringe orders. Theoreticaly, the phase shifting algorithm is idea for a genera
fringe analysis. However, in rea applications, the phase shifting technique also suffers
from localized inaccuracy, especially when the gradients of the fringe orders are to be
determined. Anocther important issue associated with phase shifting technique is phase
unwrapping [78]~[97] process. Numerous phase unwrapping algorithms are available
and new phase unwrapping algorithms are being proposed. It is worth noting that most of
the agorithms aim to solve one or more specific problems. An investigation of the

existing algorithms for automatic fringe analysis is in high demand.

1.3 Scope and objective of thisdissertation

The scope of this dissertation invovles investigation of the digital fringe processing
techniques for computer-aided fringe analyses. The ultimate objective of this dissertation
is to develop a genera-purpose computer-aided fringe analysis tool and apply it to
advanced engineering problems. The specific goals include:

(1) Full-field mapping of fractional fringe order, which usualy denotes a deformed

configuration, and

(2) Full-field mapping of the gradient of the fractional fringe order, which usually

denotes the displacement gradient, i.e., strain.



To achieve the goals, the following tasks will be implemented and completed in this

dissertation:

(1)

(2)

3)

(4)

Survey and investigate the existing fringe image processng schemes and
identify the most appropriate image processing schemes and their limitations;
Improve the existing schemes and develop new techniques to cope with the
limitations of existing schemes,

Develop an expert software system for computer-aided fringe anayss and
processing;

Apply the computer-aided fringe analysis expert system to the real engineering

problems.
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2. PRE-PROCESSING OF FRINGE IMAGES

This chapter is devoted to the agorithms for pre-processing of fringe patterns to
eliminate the noise. The existing algorithms are reviewed and the limitations are
discussed. New hybrid algorithms are proposed for the fringe patterns and the results

from the proposed algorithms are presented.

2.1 Spatial averaging and low-passfiltering

Low pass filtering, also known as “smoothing”, was developed to remove noise with
high spatial frequency [7] ~[11]. This type of noise is often produced during the analog-
to-digital conversion process (physical conversion of light energy into electrical signal).

A typical form of low-pass filters is a moving window operator. The operator affects
one pixel at a time, changing its value by some function of a “loca” region of pixels
(“covered” by the window). The operator “moves’ in the x and y direction to change the
entire image.

The most common low-pass filter is a neighborhood-averaging filter. The
neighborhood-averaging filters replace the value of each pixel, say I(x,y), by a
weighted-average of the pixels in some neighborhood around it, i.e. a weighted sum of
I(x +p,y+ q), with p = -k to k, g = -k to k, where k is a positive integer; the weights are
given to each pixel in the window, usually non-negative value. If al the weights are
equal, it is called a “mean filter”. Mathematically the neighborhood-averaging filtering

method can be expressed as.
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I€x,y)= & a I(x+p.y+aq)(p.q) (2.2)

p=- kg=- k
where h(p, q) is the weight of averaging at pixel (p, q). Figure 2.1 shows a horizontal
displacement fringe pattern of a layered metal/ceramic composite subjected to a uniform
loading; Figure 2.1 (@) is the origina fringe pattern and Figure 2.1 (b) is the same fringe
pattern after low-pass filtering using a 5° 5 window mean filter. Significant reduction of
noise is evident.

The neighborhood-averaging filter has an excellent smoothing effect. For the same
reason, it can blur the images, especially aong the edges, and thus it should be used with

a caution when a large random noise is present.

(& Origina fringe pattern (b) Fringe pattern after filtering

Figure 2.1 Example of low-passfiltering
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2.2 Spatial median filtering

Median filtering [7]~[11] is a non-linear filtering method, and it is very useful for
reduction of salt-and-pepper type noise (i.e. isolated noise with extreme values). The
median filtering replaces each pixel value by the median of its neighbors. For instance,
consider a 3 by 3 pixel window, the intensity values of the nine pixels in the window are
sorted in an ascending order and the value of the pixel in the center of the window is
replaced by the fifth largest value. Figure 2.2 shows the result of applying a5 5 window

median filtering on the sameimage in Figure 2.1 (a).

Figure 2.2 Example of median filtering

In general, median filtering takes longer time to execute because of a logical
operation required in the algorithm and it is not very effective for noise reduction of

fringe patterns. However, the method does not alter the edges as much as low pass
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filtering. It is very effective for the filtering of phase map, which contains pixels with

undefined phase values. The phase map issue will be discussed more in Chapter 3.

2.3 Frequency filtering: Fourier transform low-passfiltering

Fourier transform low-pass filtering method [11] is a form of low pass filtering in
frequency domain. With this method, an image is transformed into a frequency domain
and an appropriate window is selected in the frequency domain to eliminate the high

frequency noise. Thefiltering is expressed as:

g(x.y) = FTH{FT[f (x,y)|H(u, v)} (2.2)

Figure 2.3 Example of Fourier transform low-passfiltering

where FT represents Fourier transform, FT™ represents inverse Fourier transform, H(u, v)
is a filter function, f(x, y) is the origina intensity and g(x, y) is the modified intensity.
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The typicd filter function includes Ided filter, Butterworth filter, Exponentia filter and
Trapezoidal filter [11]. Figure 2.3 shows the result of the same fringe pattern in Figure

2.1 () after applying a Fourier transform Exponential filtering.

2.4 Limitation of the conventional filtering methods

The spatia image filtering methods were developed for general photographic images
and they are not most effective for fringe patterns, which have more distinct orientational
intensity variations compared with the genera photographic images. More specificaly,
the intensity of fringe patterns changes much more rapidly along the orientation
perpendicular to the fringe lines than along the orientation paralel to the fringe.
Furthermore, the spatial filtering methods do not consider the variation of fringe density.
Consequently, a fixed size of conventional square window is not most desirable for fringe
patterns.

The similar limitations can be realized with Fourier transform filtering. The Fourier
transform method filters the fringe in the global frequency domain. It considers neither

the variation of fringe density nor the fringe orientation.

2.5 New sdlf-adaptivefiltering

A new self-adaptive filtering method is proposed in this dissertation. The self-
adaptive filtering is based on spatial averaging filtering; however, it detects both the

orientations and the densities of the fringes during the filtering.
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25.1 Orientational filtering

Orientationa filtering utilizes the essentially “line” characteristic of the fringes. In
the process, the fringe orientation at every pixel is determined first. Generaly, a proper-
size window (usually a sguare window) is used to calculate the variances of fringe

intengities in each orientation of the window:

J
13

(2.3)

o~

s 1k 0
Varl =3 ¢ll- =311+
a ¢l K .

i=1e i=1

where | denotes the fringe intensity or pixel gray level, the superscript “j ” denotes the |
fringe orientation, the subscript “i” denotes the i™ pixel in each orientation and k is the

number of pixelsin each orientation.

8 2 Orientation 1 Orientation 2

Fringe orientation definition

| |
Orientation 3 Orientation 4

Figure 2.4 Schematic diagrams of the local fringe direction
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Figure 2.4 illustrates an example. The example shows 8 possible orientations within
the window. Details of the first four orientations are also shown for the window of
117 11.

Among all the orientations, the orientation with the minimum fringe intensity
variance is chosen as the fringe orientation. Then, instead of a sguare window which
does not consider the fringe orientation, a rectangular window mask in the orientation of

the fringe is used to smooth the fringes.

2.5.2 Selection of filtering window based on fringe density

In the neighborhood-averaging filtering, the filters can be applied repeatedly or a
large window size can be used to tailor the degree of noise smoothing. However,
excessive smoothing can reduce the contrast of high-density fringes significantly, and
thus can disturb the original phase information of the fringes. To cope with the problem,
the filtering window size can be selected automatically based on the local fringe density.

To find the local fringe density, firstly, the original fringe image is pre-smoothed
using a small window neighborhood-averaging filtering. Then, the fringe image is
binarized to be a monochrome (black-white) image with a threshold which can be the
mean intensity of the fringe pattern. From the monochrome fringe image, the local fringe
density along horizontal direction fy and aong vertica direction f, can be determined,

and the total local fringe density is calculated by

f=fZ+f2 (2.4)
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Finaly, the origina fringe pattern can be smoothed again using a low-pass filter with

varying window whose size matches to the local fringe density.

2.5.3 New sdf-adaptivefiltering

In the proposed self-adaptive filtering, the orientational filtering and the fringe-
density-based window filtering are combined to provide an optimum spatial filtering
condition. The filter window is a rectangular in the orientation of the local fringes; the
width and height of the rectangular window can be selected to be one pitch of the local
fringes (i.e., reciprocal of fringe density) and one quarter of the pitch, respectively.

In the real application, the detection of fringe orientation at every pixel can be
erroneous because of the noise. A solution to this problem is to segment the whole fringe
image into numerous blocks so that the fringe density and orientation are reasonably
uniform in each block.

Figure 2.5 illustrates the effect of different filtering methods. The origina image is
shown in (a), which represents a vertical displacement field of a notched specimen
subjected to a cyclic loading, obtained by moiré interferometry. Using a conventional
averaging filter with 3x3 size window, the noise in the high-density fringes around the
crack was eliminated effectively but the noise in the low-density fringes at a far field was
not cancelled (b). When a larger (7x7) window was used, the noise of the far field
reduced significantly but it caused smearing of the high-density fringes (c). The result
obtained from the proposed self-adaptive method is shown in (d) and effective reduction

of noise in both areas is evident. The intensity distributions along the same white solid
18



linein (a) are shown in (e)~(h). Figure 2.6 illustrates the self-adaptive window at point A
and B used in the filtering. The proposed algorithm eliminated the noise very effectively

without altering the original shape of the intensity distribution.

(b) 3x3 window averaging filtering

e [

(c) 7x7 window averaging filtering (d) Self-adaptive filtering
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3. FRINGE ANALYSISI: AUTOMATIC ANALYSIS

Two agorithms for automatic fringe analysis are studied: Fourier transform method
[39]~[56] with a single image and phase shifting technique [57]~[77] with multiple
images. The purpose of these algorithms is to find a phase information at every pixel,
and thus to determine a fractiona fringe order at every point in the fringe pattern.
Mathematical descriptions are given and illustrations are followed. Limitations and

restrictions in the application to the fringe patterns are discussed.

3.1 Singleimage: Fourier transform method

3.1.1 Principle of general Fourier transform method
Repeated here, the intensity distribution of the fringe patterns can be expressed as
1%, y) =1, (x,y) +1.(x,y) cod[f ()] (3.1)
where | is the intensity distribution of the interferogram, |, is the mean intensity, I, isthe
intensity modulation amplitude, f is the angular phase information of the interferogram,

and (x,y) represents all the points in the x-y plane of the object and the interferogram.

The intensity function can also be expressed as

1(x,y) =1, (x,y) +cx,y)+ ¢ (x,y) (3.2)

with
_1 i (x.y)
c(x,y) —Ela(x,y)e (3.3)
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where * denotes complex conjugate.

After a two-dimensional discrete Fourier transform (DFT), the spatial frequency
domain representation of the pattern becomes

Fiz,h)=A(z,h)+C(z,h)+C'(z ,h) (3.4)

where A(z, h) is the transform of I(X, y), and C(z, h) and C*(z, h) are the positive and
negative frequency spectra of the modulated carrier fringes. z and h are the spatial
frequencies that represent intensity changes with respect to spatial distances. If the image
size is 2", the fast Fourier transform (FFT) can be used, which is much faster than the
ordinary Fourier transform.

At the frequency domain, if C(z, h) can be isolated from A(z, h) and C*(z, h) in
eguation (3.4), then an inverse Fourier transform can be performed for C(z, h). Findly,
c(x, y) can be obtained at the spatial domain and the phase information f can be

caculated from

f= arctanM (3.5)

Refc(x, y)

where Im[ ], Re[ ] represent the imaginary and rea part of c(x, y), respectively. The
phase f obtained from the above equation ranges from -p to +p, and it does not reflect the
fringe order. Phase unwrapping is required to make the phase represent the fractional
fringe order and it will be discussed later in this chapter.

In order to be able to isolate C(z, h) from A(z, h) and C*(z, h) at the frequency
domain, the intensity function should have continuous and monotonically changing
derivatives across the field. Unfortunately, this condition is often violated for the fringe

pattern representing engineering deformations.
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(&) Original ideal fringes (b) Fourier spectra of (a)

(c) Phase map from Fourier transform (d) Theoretical phase map

Figure 3.1 Example of fringe analysis using general Fourier transform technique

Figure 3.1 shows one example of fringe pattern analysis using genera Fourier
transform technique introduced above. The original computer-generated fringe pattern is

shown in (a), The spectra of Fourier transform is shown in (b), where the positive first
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harmonic (i.e.,, C(z h) ) isisolated by a rectangular box shown in the picture. The result
of the inverse Fourier transform of the isolated harmonic is shown in (c); it is a wrapped
phase map. The corresponding theoretical phase map is shown in (d). The result
illustrates that the above general Fourier transform method does not work for fringe
anaysis if the sign of the fringe gradient changes; i.e,, it is difficult to isolate C(z, h) at
the frequency domain. A modified Fourier transform method was introduced to cope

with this problem.

3.1.2 Principleof carrier Fourier transform method

In this modified Fourier transform method, a spatial carrier fringe is added to the
original pattern to make the sign of the fringe gradient unchanged across the fringe
pattern. The carrier fringe is a uniform array of fringes representing a constant gradient.
The original pattern is modulated by the relatively high frequency carrier pattern to
produce a monotonically changing intensity function. This process is analogous to FM
(frequency modulated) radio waves, where the information is the irregular part of an
otherwise constant carrier frequency. The intensity function modulated by the carrier

frequency can be expressed as
1(¢,y) =1, (¢, y) +1,(x,y)cos2plf x +,y )+ £ (x,y)| (36)
where f, and fy are the linear components of the carrier frequency in the x and y direction,

respectively. Again, the intensity function can be rewritten in the exponential form as
1(x,y) =1 (x,y)+c(x, y)e2 =) 4 ¢ (x, y e 2P x+1) (3.7)

with
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co(x,y)= % 1, (x,y)elf ) (3.8)

where * denotes complex conjugate.

After atwo-dimensional Fourier transform, the spatial frequency representation of the

pattern becomes

Fiz,h)=A(z,h)+Clz- f,,h-f,)+C (z+f h+f ) (3.9)

where A(z, h) is the transform of I(X, y), and C(z-fy, h-fy) and C*(z+fy, h+fy) are the
positive and negative frequency spectra of the modulated carrier fringes. z and h are the
gpatia frequencies that represent intensity changes with respect to spatial distances. It is
essential for the three terms in equation (3.9) to be completely isolated from one another
in the frequency domain. This condition will be achieved if the signal of interest is
aufficiently band-limited, and the frequency of the carrier pattern is large enough to
separate the positive and negative spectra.  Otherwise, the positive spectra and negative
spectra will be overlapped in the frequency domain and the first harmonic cannot be
separated as seen in the general Fourier transform method.

At the frequency domain, C(z-fy, h-fy) is isolated to eliminate A(z, h) and C(z+f,,
h+fy) in equation (3.9). By shifting the center of the spectrum to the origin of the
frequency axis, the carrier fy and f, are removed from C(z-fx, h-fy). Then, the inverse
Fourier transform is performed for C(z, h), and findly c(x, y) can be obtained at the
gpatial domain. The phase information f can be calculated from the same equation as

eguation (3.5), repeated here,

f = arctanM (3.5

Relc(x, y)]
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Similarly, a phase unwrapping is required to make the phase represent the fractional
fringe order. Because carrier Fourier transform can handle the practical engineering
problems, it is more widely used than general Fourier transform method. The term
Fourier transform actually represents carrier Fourier transform method.

An example of the method is shown in Figure 3.2. The origina fringe pattern is
shown in (&), which contains two local maxima. The carrier frequency and the pattern
modulated by the carrier are shown in (b) and (c), respectively. The modulated pattern
has a monotonically changing gradient in the x direction. The result of the Fourier
transform is shown in (d), where the positive first harmonic (i.e., C(z-f, h-fy) ) isisolated
by a rectangular box shown in the picture. The first harmonic is shifted to the origin and
the result of the inverse Fourier transform of the shifted harmonic is shown in (e); itisa
wrapped phase map. The corresponding 3-D representation of the fractional fringe orders

(or phase map) is shown in (f).

(&) Original fringes (b) Carrier fringes
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(c) Modulated fringes with carriers (d) Fourier spectra of ()
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(e) Fringe phase map (f) 3-D unwrapped phase map

Figure 3.2 3-D mapping using Fourier transform technique
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3.1.3 Discussionson Fourier transform method

The most important advantage of the Fourier transform method (or carrier Fourier
transform method) is that the only one interferogram is required for the analysis. It is
ideal for the automatic calculation of full-field displacements.

Although idedl in the mathematical description, the Fourier transform method has
several practical limitations. The most critical limitation is the lack of capability of
handling discontinuities. As mentioned earlier, the DFT assumes that the original
function has a cyclic variation with a continuous gradient. At the discontinuities, the
process of transformation will spurioudy distribute a large amount of energy over a wide
range of frequencies. This not only obscures the signa power, but aso makes isolation
of the pure signal impractical. It isimportant to note that the edges of a fringe pattern are
an inherent source of discontinuities even when the fringe pattern itself is continuous.

The effect of discontinuities is illustrated in Figure 3.3, which represents an idea U
displacement field of a plate with a hole subjected to a uniform tension. The origina and
the modulated fringe patterns are shown in (a) and (b), respectively. The corresponding
frequency spectra and the phase map obtained after the inverse transform are shown in (c)
and (d). The theoretical phase map is shown in (€). As can be seen, the phase information

along the edges is distorted significantly.
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(&) Origina fringe pattern (b) Modulated fringes with carriers

(c) Fourier spectra of (b) (d) Phase map from Fourier transform
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(e) Theoretical phase map

Figure 3.3 Processing ideal fringes with in-side edges using Fourier transform

It is also important to note that a precise shift of the first harmonic to the origin before
the inverse transform is critical. The effect of precise shift isillustrated in Figure 3.4. (@)
is the original ideal fringe pattern, the image size is 256 pixels by 256 pixels; (b) is the
modulated fringes with carrier fx = 0.1 fringe/pixel, thus there are totally 25.6 fringes
added through the whole horizontal image width; (c) is the corresponding spectra of (b).
In this example, a precise shift of first harmonic should be 25.6 pixels, however, this is
not allowed in digital image processing. (d) and (e) are the phase maps obtained from
inverse Fourier transform after shifting the positive first harmonic to the left with 25 and
26 pixels, respectively; (f) is the correct phase map. The importance of the precise shift
of the first harmonic is obvious in this example. In the rea application, it is generally

impossible to control the number of the carrier fringes to be exact integer number in the
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digitized image. This is an inherent error from a digital processing and another practical

|

(a) Original fringe pattern (b) Modulated fringes with carriers

limitation of the Fourier transform method.

(c) Fourier spectra of (b) (d) Phase with inadequate harmonic shift
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(d) Phase with excessive harmonic shift (e) Correct phase map

Figure 3.4 Processing ideal fringes with incorrect shift of first harmonic

3.2 Multipleimages. Phase shifting method

3.2.1 Principle of phase shifting method

The method utilizes a series of fringe or phase shifted interferograms to compute the
fractional fringe orders [57]~[77]. The agorithms were originaly implemented for
classica interferometry. Recently, their applications have been extended for other
advanced photomechanics methods. The basic algorithm and the enhanced algorithm are
discussed. A new agorithm is proposed to cope with one of the most critical

requirements of the method; namely, accurate phase shift.
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3211 3,4,5 N framesalgorithm
Repeated here, the intensity I(X, y) of an interferogram at a point (X, y) isgiven as
1(%,Y) =1, (x,y) +1,(x, ) codf (x,y)] (3.1
There are three unknowns in the equation, namely I, 15, f. Three simultaneous equations
are needed to evaluate the unknowns. Experimentaly, the three equations can be

obtained by recording a series of intensity distributions with a uniform change of phase

(or fringe order). The three equations can be expressed as

l(x.y) =10 (x,y)+ 1, (x.y)codf (x.y)- d] (3.10)
1 (Y) =1 (6 y) + 14 (x, y)codf (x.y)] (3.11)
13 (x,y) =1 () +1, (¢ y)codf (x, y) +d (3.12)

where I, |, and |3 are the intensity distributions recorded with a phase change of -d, O

and +d, respectively. From the three equations, the phase f (X, y) can be determined as

él- cosd Ly)- I(xy)  w
eyl =ang S o o) Ly)- o) (619
When dz%p,the above expression becomes
L(y)- 1s(xy) @
tangy'3 3.14
)=l ) L 9

For a more accurate phase calculation, other algorithms using more than three phase-
shifted images have been developed. The most widely used agorithm uses four phase-

shifted images. The set of four images are

1 (,y) = 1 (6. Y)+ 1, (x, y)codff (x.y)] (3.15)



126y)= 1 o) 14 b y)oosg (c.y) + 5 py (316
(%, y) =15 (6. Y)+ 14 (x,y)eodf (x,y) + ] (317)

1L(x.y)= lm(x,y)ﬂa(x,y)cosg <x,y>+gpg (3.18)

Then, the phase is expressed in asimpler form as

e a0y 1y
f(x,y)—arctangll(x’y)_ oyl (3.19)

Another algorithm uses five images [61]. This agorithm was developed to minimize
the cases of denominators with zero or near zero values, and thus to reduce uncertainties

in the phase calculation. The five different intensities are obtained with a symmetric

phase shift as
(6 y) =10 06y) + 1, (x y)codf (x,y)- 2d] (3.20)
1 (6, Y) = 1 (6, y) +1, (¢, y) codf (x, y) - df (3.21)
130, y) = 1 (. y) + 1 (x,y)codf (x, )] (3.22)
1, 06y) =1, 06, y) + 1, (¢, y)codf (x, y) + ] (3.23)
15(¢,y) = 1 (6, y) + 1 (x, y)codf (x, y) + 2d] (3.24)

The phaseis given by

é1- cosd 1,(x,y)- 1,(x,y) u
f(x,y)=arctang— x 2 2 ’ (3.25)
by) =g o) Ly)- Tyl

1
If d==p,
2p
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f(x,y) = arctang

u
] 3.26
&21,(x,y)- 1,(x.y)- 1;(xy)§ (3.26)

Figure 3.5 Example of 5-frame phase-shifting algorithm

With the phase shifting method, uncertainties in phase determination are present

when the phase shifting amount, d, is not correctly introduced during the measurement.
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When the three-phase-step is used, the phase is more sensitive to the phase shift error.
Small errors in the phase shift result in significant overestimation or underestimation of
the phase. Using more phase steps, the errors in the phase shift can be smoothed out,
which produces more stable results. Considering the computationa time, four or five
phase steps are most widely used in practice. Figure 3.5 shows an example of the 5-

frame phase shifting algorithm. The last image is the calculated phase map.

3.2.1.2 Advanced phase shifting method: Carré method

With Carré method [61], the phase shift amount is aso treated as an unknown. The

method uses four phase-shifted images as

L(xy) =1, (x,y)+1,( cosg X,y)- —d (3.27)
Lxy) =1, (x,y)+1,(xy cosg X,y)- —d (3.28)
L(x,y)=1, (x,y)+1,(x,y cosg (3.29)
Ly) =1, (x,y)+1,(xy cosg (3.30)

Assuming the phase shift is linear and does not change during the measurements, the
amount of phase shift can be calculated as

— -1? 3('2' |3)' (Il' |4)l‘:I
d=zten @ (lz' |3)+(|1' |4)a

(3.31)

and the phase at each point is determined as
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e 1)1

T 8Zf’e(les)' (1+14)

8l 1)+ (12 1)1z 1)- (- )
T (|2+|3)' (|1+|4)

S&E

(3.32)

=tan

o ni o

The advantage of Carré algorithm is clear; it does not require accurate calibration of

the phase shifting mechanism aslong asit is linear and stable during the measurement.

3.2.2 Enhanced random phase shifting algorithm

Under an idealized condition where the phase shifting is performed perfectly, any of
the above algorithms would suffice to produce accurate phase information. In practice,
the phase shifting has uncertainties. Figure 3.6 shows how each agorithm is sensitive to
the phase shifting error, where peak to valley (P-V) phase errors are plotted as a function
of the phase shift error. When a linear phase shift error (the actua phase shift error is a
linear function of the desired phase shift) exists, the 3-frame and 4-frame algorithms yield
a large error. The error is suppressed significantly with the 5-frame algorithm and it is
nullified completely with the Carré method. For a nonlinear phase-shifter error (the
actual phase shift error is a non-linear function of the desired phase shift, and non-linear
errors include non-linear response from a CCD detector, quantization error, vibration,

etc.), however, all the methods yield substantia error in phase determination.
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Figure 3.6 Peak-to-valley (P-V) phase error versus percent phase shifter error [61]

It is important to note that the series of phase-shifted interferograms contain the
information required to obtain the phase distribution as well as the phase shift amount of
each interferogram. Okada [72] proposed an agorithm based on iteration to treat all the
variables in the intensity distribution as “unknowns’. The agorithm is very effective but
it works only when the amount of phase shift error is smal. When the shifting error
becomes larger, a convergence problem occurs and accuracy decreases significantly.

Thisisarationa for the proposed algorithm.

3.22.1 Enhanced iteration algorithm

The algorithm is based on the non-linear least square method. An estimated intensity
is defined for the cases of known phase values and known phase shifting amounts. An
iteration process is performed until the sum of the sguared difference between the

estimated intensity and the measured intensity convergesto asmall value.
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1. Step 1: Phase calculation under an assumption of no random noise

¢, can be defined as

ij

The estimated intensity of the i phase shifted image, |
= A, +B;>cos(f +d ) = A, +B;>cosf  xcosd, - B>sinf >sind, i=01,,M-1
(3.33)

where the subscript “i” denotes the i phase shifted image and the subscript “j” denotes
the individua pixel locations in each image. In the equation, d; is the amount of phase
shift of each frame, f;is the unknown phase, A is the background intensity and B;; is the
modulation amplitude.

Assuming that there is no random noise in the patterns, A;; and B;; become single
order tensors, i.e., Ay = Ay = Awj and By = By = By;j. Defining anew set of variables as
a=A

b, = B;cosf, ¢, =- B;sinf , the estimated intensity can be expressed as

ij 1
I,° =a, +b, >xcosd, +c,>snd, (3.34)

In the classical |east-square approach, an expression for the error §, accumulated from all

the images, can be written as

1

(8, + b, xcosd, +c,>sind, - 1, (3.35)

Qo

S, :“gl(lije - 'ij)2 =

i=0 i

0

In this step, it is assumed that d, have correct values. Then the least squares criteria

require
| 1S
: Eal - O
T 1<
115 _
=0 3.36
b, (3.36)
: S _ 0
1 Tc;
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The above equation yields

e "ot Gt u é &t u
a M cosd, snd, A L
é . ia, . @& i U
A =0 i=0 ' . A =0 e
e 025 G
ga cosd  gcos’d g cosd sind HXA = ga 1 cosdig (3.37)
Xi=0 i=0 i=0 - A o ~1=0 -
M- 1 M-1 et u gc_u M1 u
P o . o . - i u Yo .

éq snd, g snd, cosd, asn<d u ea l;sndu
Bi=o i=0 i=0 0] Bi=o 0]

From above matrix equations, the constants g, by, ¢; can be determined and the

unknown phase can be determined from

(3.39)

2. Step 2: Phase shift calculation under an assumption of uniform background

In the second part of iteration, it is assumed that the background and modulation are

constant for each frame. Then A;; and Bj; become single order tensors, i.e., Air = Az = Ain

and Bi1 = Biz = Bin. Defining another set of variables for each frame as at=A;,
b¢=B; cosd,, ct=-B;sind , the estimated intensity can be expressed as
I,° = af+bgxcosf | +chenf (3.39)

An expression for the error St, accumulated from al the pixels in the i image, can

be expressed as

Qo

St= Nal(l - Iij)2 = _l(a,¢+ bgxcosf | +ctenf | - Iij)2 (3.40)

=0 i=0

In this step, it is assumed that f; computed in Step 1 is correct. Then, the least squares

criteriarequire
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fla¢
- ¢
:'ﬂ—s'=0 (3.41)
Hce ="
| i
The result yields
é 51 1 u e % u
& N a cosf, asnf, g N e aly u
é j=0 =0 U éaty & =0 a
S cost,  Hoosf, & cost snf bdoi=E81 cost U (342
@_Ocos j aocos j _a_ocos EL j@xé "’J_@B i cosf (3.42)
g#\l_-l N—lJ_ " N-1 l:' €C|¢H g:\l_l u
eO f o] f f o] 'Zf. u eo fu
~a ant;, g sant,cost asn<t;, - ~a l;anf,
8]20 j=0 j=0 H 81-:0

The constants af,b(,c( can be determined from the above equation. Then, the

amount of phase shift in each frame can be determined from

(3.43)

3. Step 3
Repest the steps until the phase shift values converge, i.e., acondition |d; - d,_,| <e is

satisfied, where eis avery small value, eg., 10°.

An example of random phase shifting is shown in Figure 3.7. The fringes shown in
the figure were generated by a computer ssimulation, and random noise is added in the
fringes. The phase shifts in the patterns are 0°, 40°, 90° and 150°, respectively. In the

calculation, the initial values of the phase shift were 0°, 90°, 180° and 270° (used for the
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four-image agorithm). The origina iteration agorithm converged at 0°, 71°, 116°, and
238°. This large error was expected because of the high degree of randomness of the
phase shift. The proposed algorithm yields 0°, 40°, 91° and 151°, which are much closer
to the real phase shift amount. It isimportant to note that the proposed iteration algorithm

does not require the phase shifting amounts are ascending, i.e., the phase shifts can be

random.

f=0° f =40°

f=90° f =150°

Figure 3.7 Example of a random phase shifting
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3.3 Fractional fringe order calculation: phase unwrapping

Phase unwrapping [78]~[97] is the process by which the absolute value of the phase

angle of a continuous function that extends over a range of more than 2p (relative to a

predefined starting point) is recovered. This absolute value is lost when the phase term is

wrapped upon itself with a repeat distance of 2p due to the fundamental sinusoidal nature

of the wave functions used in the measurement of physical properties. Phase unwrapping

isillustrated in Figure 3.8 for alinearly increasing displacement field.

Figure 3.8 Wrapped and unwr apped phase for alinearly changing displacement

Numerous algorithms have been proposed for phase unwrapping of various scientific

images such as optica shape reconstruction, medical image analyss, geometrical survey,

The number of new phase unwrapping agorithms continues to grow.

etc.



dissertation work, the existing phase unwrapping algorithms were evaluated and the

following algorithms were selected for the fringe analysis.

3.3.1 Sequential filling

The simplest phase unwrapping method is a sequential scan through the phase data,
line by line. If any of the pixels are masked, or a phase jump is incorrectly detected,
however, the unwrapping process will be interrupted or an error will propagate through
the rest of the data. To improve the unwrapping results, multiple scan directions can be
adopted. This method is very smple and fast. However, the unwrapping produces large
errors at the regions where the phase has an incorrect jump or the pixels are masked [82].

A simple solution to cope with the above problem is sequential filling. With this
method, after the phase is unwrapped at a pixel, the following pixel to be unwrapped will
be one of the neighboring pixels that have not been unwrapped. The same procedure is
repeated until the whole wrapped phases have been unwrapped. For the pixels with an
incorrect jump, masks are used to exclude them before the unwrapping process, and the
masked pixels are skipped during unwrapping. At the end of the unwrapping procedure,
the phase at masked pixels can be restored through phase value interpolations.

The sequentid filling is the fastest method among those presented here. However,
the masking of the incorrect jump pixels usualy requires a human-computer interactive

operation.

45



3.3.2 Minimum spanning tree

Minimum spanning tree method [93][94] is similar to the sequentid filling method
except that the next pixel to be unwrapped is not chosen arbitrarily among the
neighboring pixels of the current pixel. Instead, the pixels are divided into three groups:
the unwrapped pixels fal into the first group; the wrapped pixels that have at least one
neighboring unwrapped pixel are put into the second group; all other wrapped pixels
belong to the third group. The next pixel to be unwrapped is from the second group and
this pixel should have the minimum phase difference with its unwrapped neighbor among
the first group. Because sorting is required, the minimum spanning tree algorithm takes a
longer time to process. Effective sorting agorithms developed for computer data
structure, such as red-black tree sorting, can be used to decrease the unwrapping time

sgnificantly [94].

3.3.3 Preconditioned-conjugate-gradient (PCG) least-squar e iteration

Least-squares iteration is used in this method; preconditioned conjugate gradient
algorithm is helpful for accelerating the iteration. Following is a brief description of this

method [95][96].

The relation between the wrapped phase y,;; and the unwrapped phase f; can be
expressed as
fi, =y +2pk (3.44)
where - p<y,;, £p, k is an integer, i=0---M-1, j=0---N-1, M is the image

dimension in x direction, and N isthe dimension in 'y direction.
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The least squares error is

M-2N-1 M-1N-2
S= é é ( i+1j fi,j - Di(,j)z +é é (fi,j+1' fi,j - Di/,j)z (3-45)
i=0 j=0 i=0 j=0
where,
D, =Wly .-y} i=0-M-2,j=0-N-1 (3.46)
Iji/,j:W{yi,jﬂ_yi,j} i=0---M-1, j=0--N- 2 (3.47)
Applying the least squares criteria gives
Qf =c (3.48)

where

Qf,. —mln(wlﬂj,wzj)(fiﬂyj - fiyj)- min(w LW )(f - fi-l,j)

+m'”(Wu+1'Wﬁj)(fi,j+1' fi,j)' min(wﬁj,w Jl)flJ fir 1)

(3.49)

J)D‘ mln(W. ,,W )Di(-l,j (3.50)
WIJ l)UJ 1

G, = mln( Wi W

+m|n( W g, W )D,’J mln(wI Iy
A preconditioned conjugate gradient iteration algorithm is used to solve equation (3.48):
(1) k=0, f,=0,1,=c.
(2) Forr,* 0, solve Pz, =r,.
(3) k=k+1;
(4) If k=1, p, =z,.

(5) If k>1, then

-
b — rk—l Zk—l

k — T
-2 Zy-2

P =Z.1 TbeP 4

a7



(6) One scalar and two vector updates are performed:

T
- rk—l Zk—l

a
“ p.Qp,

fk :fk-l+akpk
e =Teq- akak

(7) 1f k3 K, OF ||r | <€]r,|, the calculation stopped. Otherwise, go to Step (2).

max !

Surveys and comparisons indicate that PCG least-square iteration always gives the
best performance for phase unwrapping. The disadvantage of PCG iteration method is
that the unwrapping time is much longer than the above two methods. The details of the

algorithm can be found in refs. [95] and [96].

3.3.4 About the phase unwrapping methods

The above three unwrapping algorithms are three typical methods among dozens of
existing phase unwrapping methods. The sequentia filling is a very fast method; it can be
used for the fringe analysis of good-quality fringe patterns (e.g., interferometric moiré
fringes). The minimum spanning tree method is much slower than sequentia filling but
generaly yields reliable results for most of the photomechanics fringe anaysis. The PCG
least-squares iteration is a relatively dow method but it offers the best performance.
Figure 3.9 is an example of phase unwrapping for a complicated fringe pattern using the
three algorithms. It is evident that the PCG method yields the best result because the

unwrapped phase is consistent with the original wrapped phase.
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Some other phase unwrapping methods, such as Flynn's minimum discontinuity
method, L° method and cellular-automata method, also offer good performance for phase
unwrapping of fringe patterns. However, these methods are less practical and are not

discussed here [92].

(8) Wrapped phase (b) Unwrapping using sequentid filling

() Unwrapping using minimum spanning tree (d) Unwrapping using PCG iteration

Figure 3.9 Unwrapping of complicated phase using different algorithms

49



3.4 Calculation of fringe order gradient

When an in-plane displacement field is studied, it is often required to obtain its
derivative (or strain) to complete the deformation analysis. The strain distribution can be

calculated from the full-field displacement field by

U(xy) | DNGY) _ K DE(x.y)

&x.y) = fix Dx 2p Dx

(3.51)

where e is an engineering strain component, U is the displacement field, k is a contour
interval of the fringe pattern, DN is the change of fringe orders in the fringe pattern and
Dx is any gage length across which DN is determined.

In practice, the displacement field obtained from the experiment contains optical and
electrical noise. The noise will not affect the displacement field much; however, it can
result in large errors in gradient or strain calculation. For this reason, low-pass filtering
or smoothing can be applied to the displacement fields to reduce the noise using general
filtering techniques such as averaging filtering or median filtering. The displacement
smoothing can aso be implemented through a surface polynomia fitting. Similar to
smoothing displacement fields before gradient calculation, an alternative technique is
using the gage lengths of many pixels in the gradient or strain calculation. However, this
arbitrariness in smoothing filer or gage length selection makes the accurate strain
calculation difficult. Figure 3.10 illustrates an example of strain calculation using various
gage lengths. The fringe pattern represents a horizontal direction displacement of an

infinite plate with a hole subjected to a uniform tension.
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As can be seen from the plots, a larger gage length smoothes out the strain plot but
they mask the strain concentration at the hole boundary. A similar situation happens at

the interface of dissmilar materials, where a strain gradient is extremely large.

I

(&) Original images (b) Wrapped phase (c) Displacement
70 ‘
0 4 —&— gage length: 1
- —8— gage length: 5
.% - gage length: 20
7 —%— Theoretical
o
G 40
E
§ 30 -
c
°
7 20 |
o
()
10 1
0
150 200 250 300 350 400

X position

(d) Strain e plot along vertical center line

Figure 3.10 Examples of strain calculation using different gage lengths
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3.5 Limitationsof automatic analysis

The automatic fringe analysis techniques are very powerful tools to determine a full
field phase (or fractional fringe order) map. The results can be used to plot a 2-D or 3-D
deformed configuration.

However, the automated analysis should be restricted to regions of singular materia
properties when a gradient is sought; they should not cross boundaries between materials
of different properties because stresses (forces) are continuous functions across
boundaries, so strains and displacement derivatives must be discontinuous wherever
abrupt changes of properties (e.g., the elastic modulus) occur. Otherwise, the filtering or
smoothing misrepresents the data near discontinuities. A similar argument has been
made for a region with a stress concentration. This is the motivation of development of a

semi-automatic process for strain calculation.
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4. FRINGE ANALYSISII: SEMI-AUTOMATIC ANALYSIS

This chapter is devoted to semi-automatic processing techniques for fringe patterns.
The exiting techniques are reviewed and the limitations are discussed. New hybrid
algorithms are proposed and the preliminary results from the proposed algorithms are

presented.

4.1 Singleimage: fringe centering method

Image input
v
Image pre-processing
v

Fringe centerline detection
¢<
Fringe modification

v

Boundary determination

v

Fringe order determination

v

Fringe order interpolation

v

Experiment parameter calculation

v

Results output

Figure 4.1 Flow chart of fringe centering method
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Fringe centering technique, also known as “fringe skeletonizing”, was developed for
the traditional manua fringe analysis, in which the fringe spacings are used to caculate
displacements or strains. Before the phase measurement techniques became available,
the fringe centering technique was the only processing tool available for the automatic
anaysis of interferograms. This class of techniques remains a vital element in the
repertoire of fringe analysis methods. The fringe centering method is the only viable
automatic fringe analysis technique for interferograms if only photographic records of the
interferograms are available or the experimental event is dynamic such as impact testing.
The flow chart of the fringe centering method is shown in Figure 4.1. The details of each

step are explained below.

4.1.1 Fringe centerline detection

In this method, only the integer fringe orders along the fringe centerlines are sought.
The process of fringe centerline detection is to find points representing the fringe
centerlines by eliminating all other parts of the fringes. There are two different methods
for extracting the fringe centerlines from the fringe patterns [8]~[12]. The first one
involves binarizing the fringe patterns and then skeletonizing the binary fringes; the other
method detects the local maxima or minima of fringe intensities in a gray-scale. The
peak detection methods are more sensitive to noise than their binary counterparts, but

they offer the prospect of higher resolution detection of the fringe centers.



4.1.1.1 Binarization

In the binarization process, the gray levels above or below a threshold value are
truncated to the maximum or zero intensity, respectively, to convert the image into a
binary intensity image [13]~[15]. The mean intensity of the fringe pattern can be chosen
as the binarization threshold. When the image has an uneven background, the image can
be segmented into small blocks and binarizing operation is applied to each block. After
binarization, the geometric centerline of the black fringe is regarded as the fringe
centerline. This assumption can give rise to a large error if the fringe intensity is

asymmetric. Because of this disadvantage, the fringe binary method is not widely used.

4112 Peak detection

Peak detection [16]~[24] means finding the local maxima or minima of the gray-scale
images. In this method, the whole image is subjected to a peak detection matrix and the
gray level of the pixels in the matrix is reduced to zero value if a peak does not exist and
to logica ‘1’ if a peak is found. Among many fringe centerline detection methods, a 5" 5

window pixel peak detection scheme is one of the easiest and most effective methods.

P22|Paz2| Poz | Piz2| P22

P21|Pa1| Po1r| Pia| P21 XY
P20|P10| Poo | Pio | P20 X
P2.a|Pa1a|Poa|Pra| P2 XY
P22|P12|Po2| Pi2| P22 Y

Figure 4.2 Pixel matrix of 5" 5 and directionsfor fringe peak detection
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The fringe peak detection uses two-dimensional pesk detection, locally performed
within a 5" 5 pixe matrix, as shown in Figure 4.2. With respect to the four directions
shown in the figure, the peak conditions are defined as follows:

For the X-direction,

PootPo.1tPo1 >P,o+P,  +P,, 4.1)
PootPo 1 tPoi >R +P P, 4.2)

For the Y-direction,

PotPiotPo>P,+P, ,+P_, (4.3)
PootPiotP o >R, +P i, R, (4.9

For the XY -direction,

PootP. . +P,>P,,+P, +P,, (4.5)
PotP.,+P,>P, ,+P _,+P, , (4.6)

For the -XY -direction,

PootP *P ., >P, ,+P, +P,, (4.7)
PotPu+P.,>P,,+P,+P,, (4.8)

When the peak conditions are satisfied for any of two or more directions, the object

point is recognized as a point on afringe skeleton.
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4.1.1.3 Fringethinning

In many cases, the fringe obtained from the image binary or the peak detection
schemes is usualy wider than the width of one pixel. Binary image thinning algorithms
[28]~[30] are required to further reduce the fringe width and thus to obtain a true fringe
centerline.  Among many proposed algorithms, Rosenfeld thinning algorithm and

Hilditch thinning algorithm are employed in this study.

4.1.1.4 Fringe centerline improvement

Fringe patterns uniquely define the displacement fields. Because of the noise, the
fringe centerlines obtained from above steps inevitably have undesired defects, such as
broken fringe centerlines, cross-connected fringe centerlines and fringe centerlines with
short branches. These defects must be eliminated before next processing. A series of
corresponding algorithms to cope with these fringe centerline defects are utilized in this
dissertation; these algorithms include automatic broken-line connection, automatic cross-
connection line seperation, short fringe branch elimination, manual fringe connection and
elimination, and so on [31].

Figure 4.3 shows an example of fringe centerline detection using binarization and
peak detection methods. (@) is the original experiment horizontal field fringe pattern of a
diametrical compression circular disc with a hole in the center; (b) is the fringe pattern
after low-pass filtering of (a); (c) is the image after binarizing; (d) is the fringe centerline
after thinning and (e) is the image after improving fringe centerlines; (f) is the overlap of

origina fringe pattern (a) and the fringe centerline pattern (e) where the color of the
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centerlines were changed to be white. It is evident that the fringe centerlines are well
recognized. Similarly, (g) through (j) are the results of using fringe peak detection

method.

(a) Origina fringe pattern (b) Low-passfiltering of (a)

g/

(c) Binarization of (b) (d) Thinning of ()
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(e) Fringe improvement of (d) (f) Overlap of (a) and (e)

() Fringe improvement of (h) () Overlap of (a) and (i)

Figure 4.3 Example of fringe centerline detection
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4.1.2 Semi-automatic fringe orders assignment

Fringe centerlines represent the contours of equal displacements; the fringe centerline
itself does not contain information of fringe orders. Therefore, fringe order assignment is
necessary for the whole-field fractiona fringe order calculation [11][12].

The adjacent fringe orders differ by -1 or 1 except in zones of local maxima and
minima. Based on this feature, a semi-automatic process to assign fringe orders has been
developed to achieve fringe ordering. This semi-automatic process requires a simple
human-computer interaction and the increasing or decreasing directions of some fringe
orders should be known. The later requirement can be provided through a judgment based
on the mechanical behavior of the testing specimen or the moving orientation of the

fringes when small phase change is added into the experiment system.

Figure 4.4 Example of semi-automatically fringe order assigning
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Figure 4.4 shows an example of the process. Suppose the order of a fringe located at
L; is 0 and the direction from L; to H; is known (increasing or decreasing). Then the
orders of the fringes spanned from L; to Hy can be determined. Now, fringe orders at the
fringes that contain Hy" and H2 are known; according to this information, fringe orders
from H, to L, can also be determined automatically. The same procedure can be used for
other segments except the circular fringe located in the center whose fringe order
determination requires a human judgment. The fringe order at L," is compared with the
fringe order at L; to double check whether the fringe orders are assigned correctly.
Finally, a constant fringe order can be added to al the fringes to reflect the rea fringe

orders.

4.1.3 Fractional fringe order calculation: fringe order interpolation

In the fringe centering method, only the integra fringe orders along the fringe
centerlines are determined. Interpolation is required to obtain fractiona fringe orders at

every pixel. The following sections describe the interpolation methods used in this study.

4131 1-Dinterpolation

The most widely used 1-D interpolation algorithm is cubic spline interpolation, and it
has been successfully applied to fringe order interpolations [9][12]. Cubic spline
interpolation requires the boundary conditions to be known, which is the most critical
limitation of this algorithm since the boundaries are often regions of interest. For this

reason, a segment-by-segment curve fitting interpolation algorithm is proposed to avoid

61



the requirements of boundary conditions. The proposed agorithm is based on a
continuous differentia of the first derivative (2nd order differential of displacement).
The proposed algorithm is illustrated in Figure 4.5. For an arbitrary point X, the

fringe order at point X can be calculated by:

X3- X éf (xl)(x' xz)(x - xs) +f(X2)(X- xl)(x' xs)
X;-X, &8 (X, - X)X, -X5) (X, - X)X, - X3)
+f(X3)(X' xl)(x' xz)l;I

(Xs' Xl)(xs' Xz) H

+ X- Xz éf(xz)(x' Xs)(x' X4) +f(X3)(X' Xz)(x' X4)
X3- X, & (Xy- X)X, - X,) (X3- X,)(X5- X,)
+f(X4)(X- Xz)(x' Xe,)l;I
(X4' Xz)(x4 - Xs) H

f(X)=

(4.9)

where X1, Xz, X3, X4 are the fringe centerline points and their fringe orders f( X;) are
known. It is obvious from equation (4.9) that the derivative of the fringe order is

continuous. Actually, the 2™ order differential of the fringe order is also continuous.

Figure 4.5 1-D interpolation
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4.1.3.2 Limitation of 1-D interpolation

The main disadvantage of 1-D interpolation is that interpolations along x-direction
and y-direction do not yield the exactly same results. This implies that 1-D interpolation
is not sufficient to describe the full-field experimental parameters. The error can be
expected when the derivatives are calculated along one direction using data obtained
from interpolation aong another direction (e.g., calculation of strain e in the x-direction
using the U-field displacement data that were obtained from the interpolation along y-

direction).

4.1.3.3 New approach: Improved 1-D inter polation

Instead of using the fixed Cartesian coordinates, the directions normal to the fringe
orientations can be used to improve the efficiency of 1-D interpolation. For example, the
interpolation along the virtual-lines in Figure 4.6 should yield better results for the points
along those lines simply because fringe orders change more rapidly along them. Once the
fractiona fringe orders are obtained at the points of the virtua lines, the virtual-lines can
be regarded as regular fringe centerlines. These lines are caled as “assistant fringes’;
although they are not real fringe centerlines, they are useful for the fringe order
interpolation.

Figure 4.7 shows an example of 1-D interpolation. The fringe pattern represents a
vertical displacement of a plate with a hole subjected to a uniform tension. The results

clearly indicate effective performance of the improved 1-D interpolation.
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(@) (b) (©) (d) (€)

(a) V-fidd fringe; (b)Fringe centerlines; (c) X-direction interpolation;

(d) Y-direction interpolation; (€)lmproved X-direction interpolation

Figure 4.7 Example of improved 1-D inter polation
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4.1.3.4 Proposed 2-D interpolation approach: tile-by-tile inter polation

Since fringe pattern is a 2-D image, a 2-D fringe order interpolation seems more
atractive. For smple and uniform fringe patterns, a global 2-D polynomial interpolation
can be used. However, for the real engineering problems, the 2-D interpolation should be
based on tile-by-tile processing. To use a proper number of fringe centerlines, the size of
the tile should be adjusted according to the fringe density. After the 2-D polynomia
interpolation within every tile is conducted, the displacement data at the edge of adjacent
tile are compared and smoothly connected. Figure 4.8 shows the result of the fringes in
Figure 4.7, obtained by using the 2-D interpolation.

Currently, 2-D interpolation is still in somewhat immature state, more development

efforts are need to complete the 2-D interpolation.

Figure 4.8 Example of 2-D interpolation
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4.1.4 Fringeorder gradient or strain calculation

Fringe order gradient or strain can be calculated using the interpolation function,
namely differentiating the polynomia function used in interpolation. Figure 4.9 shows an
U-field example of a tensile specimen with a hole. The theoretical stress (also strain)
concentration factor at the top point of the hole is 3.0, and the fringe centering method

gives 3.08.

() Fringe pattern (b) Strain distribution

Figure 4.9 Example of strain calculation

4.2 Overall limitations of fringe centering method

Compared with automatic fringe analysis methods (such as Fourier transform and
phase shifting techniques), the fringe centering method uses only the fringe centerlines
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for the processing. Because interpolation is employed to determine the fractiona fringe
orders, the strain calculation is simple with the fringe centering method. Figure 4.10
illustrates an example of using the fringe centering method to process the thermally
induced vertical displacement fringe pattern of a solder ball interconnection in an

electronic packaging component; 1-D interpolation is used in this example.

. N g -
(&) Origina Fringe pattern (b) Image filtering

-/ /\mﬁ_

,_——-—'—"'_"_"-\__

)

(c) Fringe centerlines detection  (d) Fringe centerlines improvement

1

(e) Fringe orders assignment (f) Displacement field
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-

| o
(g) Strain fidld

Figure 4.10 Example of fringe analysis using fringe centering method

Despite its advantages, applications of the fringe centering method are cumbered with

some limitations. They include:

(1)

(2)

3)

(4)

The fringe centerline location should be accurately determined; otherwise, the
strain calculation might produce a significant error. Unfortunately, accurate
locating of the fringe centerlines is often difficult for the fringe patterns with
noise.

Semi-automatic fringe order assignment requires some knowledge on fringe
orders.  With a complex loading and/or geometry, fringe orders can be
ambiguous.

The interpolation is implemented based on the fringe centerlines; however, in
many cases, the number of fringe centerlines available for accurate interpolation
is often insufficient.

For many engineering problems, the most important areas are near the

geometrical boundaries. However, the fringe centerlines are not usually
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available at the boundaries or very close to the boundaries. The gradient at the
boundaries can be erroneous depending upon a choice of interpolation function.
To improve the accuracy of fringe centerline locations, sub-pixel operations through
magnifying the original fringe image can be adopted. This involves an interpolation of
the image.
Another effective solution to the above limitations is using optical/digital fringe
multiplication (O/DFM) technique [25]. The O/DFM method uses a series of phase-
shifted fringe images. The method provides multiplied fringe centerlines with high

accuracy. An added benefit isits ability of automatic fringe ordering.

4.3 New hybrid O/DFM fringe centering method for multiple images

A hybrid method combining the optical/digital fringe multiplication (O/DFM) method
[25] and the fringe centerline method is proposed to cope with the limitations of the

fringe centering method.

4.3.1 Optical/digital Fringe multiplication (O/DFM)

In O/DFM, a series of n shifted patterns are utilized [25]. These shifted patterns are
sharpened and combined into a single contour map, which exhibits n time as many
fringes as the original pattern.

Figure 4.11 shows a schematic illustration of O/DFM for n = 2. The O/DFM
algorithm subtracts the intensities at each point, as illustrated in (b). Then it inverts the

negative portions by talking absolute values, as illustrated in (c). The agorithm proceeds

by truncating the data near |I,| = 0and binarizing by assigning intensities of zero and one
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to points below and above the truncation value, respectively. The result is graphed in (d).
The result is a sharpened contour map that has twice as many contour lines as the number
of fringes in the initial pattern. The sharpened contours occur at the crossing points of
the complementary graphs, where the intensities of the complementary patterns are equal.
Note that any noise or other factor that affects the two patterns equally has no influence
on the locations of the crossing points. (e) illustrates a fringe multiplication of 6.

Figure 4.12 shows an example of the O/DFM method for n = 4 on awhole field basis,
where the fringes represent the same fringe pattern in Figure 4.10. Compared with the
conventional fringe centerline detection shown in Figure 4.10 (c), the O/DFM offers
much higher qudity of the fringe centerlines (Figure 4.12 d) and fringe centerline
improvement is not required. In addition, the fringe orders can be assigned

automatically.

x
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Figure 4.11 Schematic illustration of O/DFM
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(a) Theinitia fringe patterns  (b) O/DFM subtraction pattern

(c) Sharpened contours (d) Fringe centerlines

(e) Displacement field (f) Strain field

Figure 4.12 Example of O/DFM
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4.3.2 Hybrid approach

The O/DFM method overcomes severa limitations of the fringe centering method.
The combination of the O/DFM and the fringe centering method makes the semi-
automatic fringe analysis more effective. In the hybrid approach, the O/DFM method is
first employed to obtain the accurate high-quality fringe centerlines. Then the fringe
interpolation proceeds to obtain fractional fringe orders at every pixel. Besides noise
reduction, the fringe orders can be determined automatically using the phase shifting
algorithm described before. The displacement interpolation can be performed with
higher fiddlity because of the enhanced displacement sendtivity (i.e, more fringe
contours).

Figure 4.13 shows the results of the fringes in Figure 4.9, processed by the hybrid

O/DFM fringe centering method. The strain concentration factor of 2.98 was achieved.

(a) Fringe patterns (b) Strain distribution

Figure 4.13 Example of strain calculation
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4.3.3 Advantages and disadvantages of hybrid semi-automatic analysis

4.33.1 Comparisonswith automatic analysis method

Compared with automatic fringe analysis methods (i.e., Fourier transform method and
phase shifting method), the hybrid semi-automatic method has the following advantages:
(1) The hybrid approach does not require that the intensities of fringe patterns should
be cosinusoidal.
(2) The hybrid approach uses fringe order interpolation for the displacement and
strain calculations; the effect of the noiseis much smaller.
(3) The hybrid approach is suitable for problems containing geometrical as well as

material discontinuities.

The only disadvantage of hybrid approach is that interpolation agorithm is required.

4.3.3.2 Comparisonswith conventional fringe centering analysis method
Compared with the conventiona fringe centering method, the hybrid semi-automatic
approach has the following advantages:

(1) Fringe centerline detection is less sensitive to the noise; the fringe centerline

location is determined more accurately.

(2) The number of fringes is multiplied; this increases accuracy in fringe order

interpolation.
(3) Fringe orders can be assigned automatically.

The disadvantage of the hybrid method is that it requires more than one image.
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5. SOFTWARE DEVELOPMENT

Software design and development are important portions of this dissertation. The
software is developed using Microsoft Visual C++ 6.0 and Microsoft Visua Studio .Net.
The software is based on Windows Graphic User Interface (GUI) and can be executed on
Microsoft Windows 9X/NT/2K/XP operating systems.

Figure 5.1 shows the main architecture of the fringe analysis software schematically.
The software includes the general digital image processing algorithms and al the
algorithms discussed in this dissertation. The main features of the software include but

not limited to:

(1) General features

Create, open, close, save image or images
= |mage preview

»  Print and print preview

= Undo and redo

= Cut, copy and paste

= Status and tool bars

Display setup
(2) Generd Image processing
= Adjust color and balance color

=  Process multiple images simultaneousy
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= Genera drawing tools: line, ellipse, rectangular, eraser, etc.
= Resizeimage

= Cropimage

= Rotate image

= Zoom inand out

= Create user-defined color palette

Create and copy boundary
(3) Pre-processing: image filtering
= Spatial neighborhood-averaging filter
= Spatia median filter
= FFT and DFT low-pass filters
= FFT and DFT high-passfilters
= Sdf-adaptivefilters

(4) Automatic fringe analysis

General Fourier transform

= Carrier Fourier transform

= Conventiona phase-shifting algorithms (automatic frame detection)

= Random phase-shifting algorithm

= Four kinds of advanced phase-unwrapping algorithms (sequentia filling,
minimum spanning tree, PCG least-squares iteration and cellular-automata)

= Displacement field smoothing

= Strain calculation with different differential gaps

= Shear strain calculation
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(5) Semi-automatic fringe analysis

Image binarization

Fringe peak detection

O/DFM and O/DFM2

Automatic fringe thinning

Automatic and semi-automatic fringe improvement techniques
Automatic fringe searching

Semi-automatic and automatic fringe order assignment
1-D cubic spline interpolation

1-D segment-by-segment curve fitting interpolation
Improved 1-D interpolation: assistant fringes selection
Global 2-D interpolation

Tile-by-tile 2-D interpolation

Strain calculation with refinement

Shear strain calculation

(6) Post-processing: display and output

Display in gray-scale or color scale

Section display

Isoline display

2-D in-plane deformation display

3-D display (rotation and hiding)

Data and image compression and decompression

Data and image storage
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= Datainterface with other software
= Image and result printing
= Report creation
(7) Other features
=  On-lineHep
= Tip of theday
= Operation hint
= Fringes smulations (more than 10 kinds of mechanics experiments)
= Pixd value plotting
= Software demo

= Standard windows application software installation

The software is menu-driven and mouse-driven. Figure 5.2 illustrates some screen

captures of the software.
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6. APPLICATION I: OUT-OF-PLANE SHAPE AND WARPAGE

MEASUREMENT

Applications to shape determination and warpage measurement are presented.
Different experiment methods and fringe processing techniques are employed based on
the specific requirements for each measurement. Among these applications, a new
infrared diffraction interferometer is proposed for out-of-plane co-planarity measurement

of high density solder bump pattern.

6.1 Infrared diffraction interferometer for co-planarity measurement

of high density solder bump pattern

An IR diffraction interferometer is proposed for co-planarity measurement of high-
density solder bump patterns. The method utilizes long wavelength (I = 10.6 nm),
coherent infrared laser light, which serves to reduce the apparent roughness of test
objects, and enables the regularly spaced solder bump arrays to produce well-defined
diffracted wavefronts. A single diffracted wavefront is isolated by an optical system and
directed to interfere with a reference wavefront to produce a whole-field map of bump
topography. An optical configuration similar to classical Fizeau interferometry is
implemented to prove the concept. Digital moiré fringe processing techniques are used in

the experiment data anaysis.
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6.1.1 Introduction

The ability to accurately monitor bump co-planarity is critical to the prevention of
non-wetting of chip level, high density solder interconnects during assembly. Bump co-
planarity has traditionally been measured through existing methods developed for
topographical mapping. These include projection moiré, shadow moiré and white light
surface profilometers [102]~[106]. The first two methods can map arelatively large area
on a whole-field basis, but their application to high-density bump co-planarity has been
limited due to inherent limitations in spatia resolution. The white light surface
profilometer is a scanning, point-measurement technique that provides high-resolution
measurements of surface topography. With sophisticated algorithms and automation
techniques, the point-wise profilometer data can be stitched together to generate a map of
surface topography. However, this method does not naturally generate a quick turn and
real time map of surface topography as provided by whole-field measurement techniques.

This research work proposes a new method to cope with the above limitations;
namely, a whole-field interferometric method to measure the co-planarity of high-density
bump patterns.  The method utilizes coherent, infrared (IR) laser light source of long
wavelength (I = 10.6 nm) (1) to relax the surface roughness limitations of visible light
interferometers, and (2) to enable the regularly spaced solder bump arrays to produce
well-defined diffracted wavefronts. In the proposed scheme, a single diffracted
wavefront is isolated and it is directed to interfere with a reference wavefront to produce
a whole-field map of bump topography. The principles of the method and selected

examples are described.
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6.1.1.1 Shifting to alonger wavelength

By shifting to a longer wavelength, a surface, which typically acts to diffusely scatter
a collimated visble light beam, may become specular. This has been the precise
motivation for developing long IR light interferometric systems to measure the
topography of non-specular surfaces [107]~[112].

Based on a bi-directiona reflectance distribution function (BRDF), the specular
component dlge:, Which is responsible for the sharp mirror-like reflection generated by a

Gaussian, isotropically rough surface, can be expressed as [113]~[115]

|F| e S, (6.1)
where F represents the Fresnd reflectivity, S is a geometrical shadowing function and I;
is the incident radiance. The function g, which depends on the rms surface roughness s,
isgiven by

g= ?ps COSQO (6.2)

where Q is the angle of incidence, and | is the wavelength of light. According to
equation (6.1), the specular component increases as the value of g decreases. The
influence of surface roughness on specularity is then captured by the “apparent”

roughness factor:

o = 4ps cosQ

: | (6.3)

The factor, s cosQ, represents the projection of the rms surface roughness into the

incident light direction.
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A surface therefore appears rough or smooth to an incident light wave depending
upon whether the apparent roughness is large or small. It is interesting to note that all
surfaces appear smooth as the incident light approaches grazing angles, that is, as Q
approaches 90°. Alternatively, for a given degree of surface roughness and a fixed angle
of incidence, specular reflection can be increased by lowering the ratio s/l , i.e.,, by an
increase in the wavelength of the light source.

In the proposed approach, a | = 10.6 nm light beam, generated by a CO, laser,
reduces the apparent surface roughness of the test sasmple by a factor of 20 at normal
incidence (Q = 0°), compared with a wavelength in the middle of the visible spectrum
(green light with 0.5 mm). The surfaces defined by the solder bump aray and underlying
substrate, appear optically rough to visible light, yet produce specular reflections when
illuminated by the longer wavelength IR radiation. In addition, the long wavelength light
can interact with the regularly spaced arrays to produce well-defined diffracted
wavefronts. These two features, namely the converson of a diffusive surface to a
specular surface and the diffraction phenomenon associated with it, form the basis of the

proposed method.

6.1.1.2 Problemsassociated with classical IR interferometry

Traditiona IR interferometry in the literature has been implemented using the optical
configurations of classca two-beam interfferometry; namely, Twyman/Green
interferometry [108]~[110] and Fizeau interferometry [111][112]. In both configurations
(Figure 6.1), a beam splitter directs one-haf of the incident light onto the specimen

surface along a direction virtually normal to its surface, while the other half is reflected
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by an opticaly flat reference surface. The wavefront from the specimen (k) interferes
with the wavefront from the reference mirror (k;). The resulting interference pattern is
then viewed upon the surface of interest to produce a contour map of the z coordinate of
the specimen surface.

In Fizeau interferometry (Figure 6.1 b), the reference path and the active path are
identical, whereas the active path is perpendicular to the reference path in T/G
interferometry (Figure 6.1 a). Consequently, the Fizeau interferometer is much easier to
tune. This feature is especialy advantageous to an IR optical system inasmuch as the IR
light is not visible during normal operation [111][112]. With the configuration shown in
Figure 6.1 b, fringes are usually visible on the monitor with small or no adjustment after
the specimen is aligned to be pardlel to the optica flat through a smple visual

inspection.

Laser

Beam expander

_ Collimating lens

Beam Imaging
splitter &S

Specimen

Camera

path ﬁ
A%

|
| 7% # | Reference mirror

Reference path

() Twyman/Green interferometry
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Beam expander <f ™ Imaging lens

Collimating
lens

Optical flat

Specimen

(b) Fizeau interferometry

Figure 6.1 Optical configuration of classical interferometry

When the substrate and high-density solder bump pattern are normally illuminated by
the long IR light, a complex light field is generated. The situation can be best described
by the combined effect of two separate sets of uniform structures, as illustrated
schematically in Figure 6.2; the solder bump array and the uniform spacing of the
exposed underlying substrate. These two periodic structures behave like separate
diffraction gratings since each surface has different reflectivity; a phase-type grating

(solder bump; referred to as bump grating) and an amplitude-type grating (uniform
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spacing; referred to as substrate grating). The wavefront profile of the specular 0" order

diffraction is thus affected by the reflectance and topography of both arrays.

Incidence beam

RRRRRN

Reflection from
solder bump

Reflection from
substrate surface

Y
Substrate Copper pad

Figure 6.2 Schematic illustration of reflection from the bump arraysand the

underlying spaces

In general, the surface of the substrate is not flat and it is different from the top
surface profile of the bump array. Thus, the 0" diffraction order from the substrate
grating produces a warped wavefront, which interferes with the 0" diffraction order
generated by the bump grating and produces a wavefront that is confounded and un-
interpretable. Consequently, the optica configuration of classca two-beam
interferometry requiring normal illumination and specular reflection cannot be used to
map the top surface of the bump profile. The wavefront from the bump array must be

isolated, and the following optical configuration is proposed to achieve the condition.
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6.1.2 Infrared diffraction Fizeau interferometry

6.1.2.1 Basic concept

When an amplitude grating is illuminated by a collimated beam, most of the
diffracted radiation is concentrated along the direction of specular reflection, or the O™
order direction, from the surface norma [116]. Consequently, the influence of the
substrate grating, which acts as an inefficient amplitude grating, will diminish drastically

if adiffraction order other than the 0" order is viewed.

Optical Incidence
Bump array flat beam

Ya

Wavefront of m-th AR coating
diffraction order

Figure 6.3 Basic concept of IR diffraction interferometry

The basic principle of the proposed method is illustrated in Figure 6.3. A collimated
IR beam illuminates a partially reflective optical flat placed near the specimen. One side
of the optical flat is coated with an anti-reflection coating to avoid ghost patterns. A
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portion of the collimated beam is reflected from the uncoated surface of the optical flat
and the transmitted beam is diffracted from the specimen surface. In the set up, the
specimen is tilted in such a way that a particular diffraction order becomes parallel to the
reference beam. The diffracted wavefront interferes with the reference beam to produce
an interference pattern.

From the grating equation with and with respect to proper sign conventions [117],
snqg,, =- siny +m|B (6.4

where y is the tilt angle, m is the diffraction order, p is the pitch of the bump array and
Om is the angle of the m" diffraction order. The incident angle and the diffraction angle
are measured with respect to the axis perpendicular to the plane of bump array.

The condition that a diffracted wavefront becomes paralel to the reference wavefront
can be achieved when the mi" diffraction order has an angle of diffraction identical to the
tilt angle; i.e, gn = y. From equation (6.4), the condition provides the tilt angle

requirement as

el 6

Y Y

When the tilt angle satisfies the above condition, the " order beam will now be directed
back aong the incident axis, which is coincident with the planar reference beam
generated by the optical reference fla. The 0™ order beam (containing the un-wanted

substrate reflection) now makes an angle of 2y with respect to the incident axis and is

therefore completely diverted from the interference path.

89



As the diffraction order increases, the intensity of the diffracted wavefront decreases
rapidly. Conseguently, the high orders are not desired in practice. Considering the first

order diffraction, the required tilt angle becomes

qeel 0

y =sin oo (6.5)¢
(%]

The required tilt angle for various bump pitches is plotted in Figure 6.4. The plot
clearly shows that the shallow first order diffraction angles result across the domain of
typical bump pitch values. Only a few degrees of specimen tilt angle are required in

order to obtain a spatialy filtered interference pattern.

35
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Figure 6.4 Required tilt angle for different bump pitches when thefirst diffraction

order isused
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6.1.2.2 Governing equation

The analysis used to determine the difference in optical path lengths follows the
approach of Refs. [118]. Figure 6.5 illustrates details. Consider any point P on an
idealized bump surface (i.e., perfectly uniform array with an equal bump height). If the
bump surface deviates from the ideal position, point P moves to a new location P¢ where
W and U are the out-of-plane (planarity) and in-plane (irregular pitch) components of

deviation, respectively.

Actual Ideal Incidence
configuration configuration beam

————————————

Figure 6.5 Changes of optical path length when point P movesto P¢

In the figure, a plane wavefront transmitted through the optical flat is incident upon

the bump surface at y. The optical path from the light source is the same for every ray in
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the incident beam. The change of path length (DOPL) with respect to the incident beam,
caused by the movement of the point, is analyzed in the figure, with the result

DOPL (X,y) =2W(x,y)cosy +2U(x,y)siny (6.6)
where DOPL represents the fringe order N at each point in the interference pattern by

DOPL (X,
N(X, y) = # )

In a well manufactured bump array, variations in a bump pitch are usualy negligible
(U»0). Assuming for the moment that we can neglect the in-plane term,

2U(x,y)siny , the out-of-plane position, W, can be expressed as

W(x,y) = N(x,y) (6.7)

2cosy
Equation (6.7) is identica to the governing equation of classical Fizeau

interferometry with a small inclined angle of illumination y. Using equation (6.5)¢ the

governing equation of the IR diffraction Fizeau interferometry can be written as

I

W(x,y) =

2,1

— N (x,y) (6.8)
&l 0

&2

.2
The above equation defines a contour interval as | / 2 /1- gezlp? displacement per
a

fringe order. For typical bump pitch values ranging from 150 to 500 nm,

1- éezl—g » 1and the contour interval remains virtually constant as IE =5.3mm.
Pg
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The bump pitch was assumed uniform in the derivation of equation (6.8) was derived.
In reality, the bump pitch may be dightly irregular due to inherent manufacturing
variability.

If the bump pitch is irregular, the shape of the diffracted wavefront (and thus the
fringe order) is influenced by perturbations in the bump pitch as well as the bump surface
topography. Recalling equation (6.6), the apparent fringe order N¢can be defined as

_ DOPL(X,Y) _ 2W(x,y)cosy +2U(x,y)siny

NEXx,y) | |

(6.9)

Using equation (6.5), the W position can be expressed as

W(x,y) = 21Nﬂ(x y)- mU(x,y) = N(x,y)  (6.10)
aml o | P % aml 6
2 1- - 2, 1- -
€2p 5 €2p 5
Therefore
Ngx, y)- N(x,y):%U(x,y) (6.11)

Equation (6.11) defines an error in reading a fringe order, caused by the irregular
bump pitch. The error increases linearly as the local bump pitch irregularity as well as
the diffraction order increases. In a typical manufacturing environment, the bump pitch
deviation of 0.5% is acceptable (e.g., 1.0 mm deviation for 200 mm pitch), which will
disturb the fringe order only by 1/200, or a co-planarity error of less than 0.03 nm when
the first order diffraction (m = 1) is used. For this reason, equations (6.7) and (6.8) are

regarded as the governing equations of the proposed technique.
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6.1.2.3 Optical configuration

The complete optical setup is illustrated in Figure 6.6. An air-cooled all-auminum
CO; laser (Synrad: Model 48-1) was used as a coherent light source. It produced a highly
stable TEMq single mode. The laser emitted a vertically polarized light with the central

output wavelength of 10.6 nm.

Camera
Pinhole
iilperture\I Imaging lens
n= 0 2 3
Optical , . .
f|a|:; First diffraction
order Reference beam
|f
> <t
ik
Beam Beam CO,laser
B ) : : splitter expander
Bump Collimating
array lens

Figure 6.6 Optical configuration of IR diffraction interferometry

The laser beam was first expanded by a plano-convex lens. A beam splitter directed
the light to a collimating lens, which also served as a field lens. An optica flat was
placed next to the collimating lens. The two interfering beams were collected by an
imaging system. The imaging system consisted of an imaging lens and an IR CCD
camera (Electrophysics: Model PV-320). All the optical elements described above were

fabricated from ZnSe.
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All surfaces except one side of the optical flat were coated with anti-reflection
coating. ZnSe has a refractive index of 2.4208 at | = 10.6 mm, which yields reflectivity
of about 17% at normal incidence. This high reflectivity of the uncoated surface is an
added advantage, which can accommodate surfaces with a wide range of reflectivity
while maintaining good fringe contrast [111].

An aperture plate was placed at the foca plane of the field lens (or collimating lens)
to isolate the two interfering beams. It was accomplished by the following simple
procedure:

(Step1l)  Adjust the optical flat and the specimen to make them parallel to each

other

(Step2)  Arrange the aperture so that the reference beam and the O™ order

diffraction from the specimen pass through the aperture, and

(Step 3)  Tilt the specimen slowly with respect to the axis normal to its surface

until a new fringe pattern is observed.

Representative fringe patterns obtained from the above procedure are shown in Figure
6.7. The images in (a) and (b) represent an interference pattern obtained from the O™
order diffraction (Steps 1 and 2) and the first order diffraction (Step 3), respectively. The
images clearly demonstrate the effect mentioned in the previous section; i.e., that in
image (a) the wavefront from the bump array is combined with the wavefront from the

substrate to produce a very complex and uninterpretable 0" order wavefront.
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Figure 6.7 Fringe patterns obtained from (a) the conventional IR Fizeau

interferometry and (b) the proposed method

6.1.3 Co-planarity of flip-chip package bump pattern

It is a standard practice to manufacture high density solder bumps directly onto an
organic substrate. The bumping process on the substrate is achieved through a low cost
reflow process. The proposed method was implemented to measure co-planarity of a
bump array on a flip-chip substrate. The cross-sectional view of the specimen is smilar
to the one shown in Figure 6.2 and the pitch of the array was 200 nm.

The fringe patterns produced by the proposed method are shown in Figure 6.8. A
series of four fringe-shifted interferograms was recorded with sequentia changes of

phase by a constant increment of p/2. This was accomplished by a successive movement

of the optical flat in the direction normal to the specimen by EBCIOTy A high precision

motorized stage was employed to achieve the desired fringe shifting accuracy.
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@0 (b) p/2

©p (d) 3p/2

Figure 6.8 Four phase-shifted images obtained from a flip-chip bump arrayson an

organic substrate

The four phase-shifted fringe patterns were analyzed by using digital fringe image
random phase shifting technique introduced in previous chapter. The real phase shift

amounts are detected to be 0, 93°, 179° and 283°, respectively; sequentia filling
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unwrapping algorithm is employed to get the full-filed phase map. The maps of the
wrapped phase and unwrapped phase are shown in Figure 6.9 and the resultant 3-D map
is shown in Figure 6.10. The deviations along the two lines are also plotted in Figure
6.11. The maximum deviation was seen in the line AA’ and its magnitude was
approximately 7 nm. Considering a typical bump height of 60 nm, it was a significant

deviation, which must be known before assembly process.

(a) wrapped phase (b) unwrapped phase

Figure 6.9 Results of fringe processing
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Figure 6.10 Three dimensional representation of bump co-planarity
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6.1.4 Summary

An IR diffraction interferometer technique has been proposed for co-planarity
measurement of high-density solder bump patterns. The method utilized coherent IR
laser light of long wavelength (I = 10.6 mm). The long wavelength served to reduce the
apparent roughness of the solder bump and substrate surfaces, and thus increased
specular reflection significantly.  This roughness reduction enabled the high-density
bump arrays to produce well-defined diffracted wavefronts. A single diffracted
wavefront was isolated by an optical system and it was directed to interfere with a
reference wavefront to produce a whole-field map of bump topography. An optical
configuration sSimilar to a classica Fizeau interferometer was implemented to
successfully document the topographical map of a solder bump array. The method was
proven effective for co-planarity measurement of high-density bump arrays. Digital
fringe image processing techniques, specifically, phase shifting technique and random
phase shifting technique, provide the robust tool to automatically obtain the out-of-plane

shape ad warpage for the co-planarity measurement.

6.2 Warpage measurement of electronic packaging components

Electronic packaging is progressing toward integrating more devices with more
functions into a smaller confined space, while requiring a high level of rdiability. New
electronic components, materials, fabrication processes and configurations are emerging
to achieve these goals. From the structural point of view, efforts are being made to stack

as many layers of materials as possible within a confined space. These layers consist of
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different materias, such as, Cu, Al, silicon, polymers, ceramics, and solder. The materials
possess different mechanical, thermal, and hygroscopic properties. After combinations of
these materids are laminated, each materia will exhibit a unique behavior under the
variation of mechanical, thermal, and hygroscopic loading. Warpage is a globa effect of
interfacial  stress and displacement.  Accumulated interfacial stress and relative
displacement will eventually delaminate and fall the structure.  Warpage can also mis-
registration and non-contact between a component and its substrate. For high-density
interconnection, such as flip-chip (FC), chip scale packaging (CSP), and ball grid array
(BGA), maintaining a flat surface to achieve high solder connection yield is vitaly
important [120].

Photomechanics is taking a leadership role for the warpage measurement of electronic
packaging components.  The general experimental techniques for out-of-plane
displacement measurement include Twyman-Green interferometry [3][121][122], Fizeau
interferometry, far infrared Fizeau interferometry [111][112], shadow moiré [123]~[127]
and projection moiré [120]. Among these methods, Twyman-Green interferometry and
shadow moiré are the most widely used techniques; their typical sensitivities are 0.316

mm and 25 mm respectively.

6.2.1 Warpage measurement using Twyman-Green interferometry

The optical configuration of Twyman-Green interferometry was introduced in Figure
6.1 (8). The interference pattern is a contour map of the z coordinate of the specimen
surface, where the contour interval is half of the wavelength of the laser light. The

governing equation is
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W(x,y)==N(x,y) (6.12)

L
2
where W is the out-of-plane displacement, N is the fringe order and | is the wavelength
of the laser light.

Figure 6.12 shows an example of warpage measurement of a tape-automated bonding
(TAB) package using Twyman-Green interferometry. In this experiment, a series of 10
frame phase shifted fringe images were captured randomly (a). The random phase
shifting algorithm was employed to obtain the wrapped phase (b). After unwrapping
using the sequentia filling method, the unwrapped phase map was obtained (c). It is
worth noting that the defects in the origina fringe patterns (a) were masked, which can be
seen from the wrapped phase map (b); these defects were automatically corrected using

non-linear interpolations after the unwrapping. The 3-D warpage was shown in (d)

(a) Fringe image patterns
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(b) wrapped phase (c) unwrapped phase
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(d) 3-D warpage

Figure 6.12 War page measur ement of a TAB package
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6.2.2 Warpage measurement using shadow moiré method

Figure 6.13 illustrates the basic concepts of shadow moiré [117]. The specimen is
prepared by spraying it with a matte white paint. A linear reference grating of pitch g is
fixed adjacent to the surface. A light source illuminates the grating and specimen, and
the observer or camera receives the light that is scattered in its direction by the matte
specimen. The explanation of shadow moiré assumes that the shadow of the reference
grating is also a grating; the superposition of the shadow grating and reference grating
forms a moiré pattern. From the cross-sectional view of Figure 6.13, the governing

equation of shadow moiré can be obtained as

_ g
W(x,y) = e+t N(x.y) (6.13)

where W is the out-of-plane displacement, N is the fringe order, g is the pitch of the
reference grating, a and b are the angles of incoming and outgoing rays, respectively.
The frequency of the grating used in shadow moiré is usualy less than 40 lines'/mm
(corresponding pitch is 0.025 mm/line), thus its sengitivity is much lower than Twyman-
Green interferometry.  This relative low sendtivity makes shadow moiré for
measurement of relatively large warpage. Figure 6.14 shows another example of 3-D
surface measurement of a quarter coin. This measurement cannot be implemented by
usng Twyman-Green interferometry because its sengitivity is too high for this surface
measurement. The random phase shifting and the PCG iterative phase unwrapping

algorithm were employed for the fringe analyses in this example.
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Figure 6.13 Principle of shadow moiré method

(a) Fringe patterns (b) Wrapped phase
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(c) Unwrapped phase (d) 3-D shape

Figure 6.14 Surface measurement of a quarter coin

Figure 6.15 shows an example of warpage measurement of a plastic bal grid array
(PBGA) package using shadow moiré. In this experiment, a series of four frame phase
shifted fringe images were captured (a). The random phase shifting agorithm was
employed to obtain the wrapped phase (b). After unwrapping using the minimum
spanning tree method, the unwrapped phase map was obtained (c). The 3-D warpage was

shown in (d).

(a) Fringe patterns (b) wrapped phase
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Figure 6.15 War page measur ement of a PBGA package

6.2.3 Warpage measurement using far infrared Fizeau interferometry (FIFI)

The optical configuration of Fizeau interferometry was introduced in Figure 6.1 (b).
Similar to Twyman-Green interferometry, the reflection beam from the specimen and the
reflection beam from the optical flat meet again and they are collected by the camera.
The interference pattern seen by the camera is the contour map of separation between the
warped wavefront k, and the plane wavefront k;. The interference pattern is a contour

map of the z coordinate of the specimen surface, the governing equation is

W(x,y)= N(x,y) (6.14)

2cos
where W is the out-of-plane warpage or displacement, N is the fringe order and | is the
wavelength of the laser light.

By employing a far infrared light with a very long wavelength (10.6 nm), the surface

that are regarded as rough under visible light can be tested.
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Figure 6.16 shows an example of warpage measurement of a flip-chip plastic ball grid
array (FC-PBGA) package using far infrared Fizeau interferometry (FIFI) [6]. In this
package, a square chip (12 mm” 12 mm) was mounted on a substrate (12 mm” 12 mm).
The package was virtually flat at the underfill curing temperatures, however, the large
mismatch in CTE caused the package to bend as the temperature decreased. The fringe
patterns obtained at 150°C, 100°C and room temperature are shown in (a)-(c). The laser
wavelength is 10.6 nm, therefore the contour interval is 5.3 mm per fringe order. The
fringes were analyzed using the fringe centering method. The fringe centerline is shown
in (d); the 2D and 3D warpage maps at room temperature are shown in (e) and (f),
respectively. Figure 6.16 (f) reveals a significant bending in both chip and substrate.
Irregularities shown in the substrate are not caused by optical noise. Instead, they

represent the heterogeneous deformation of the multi-ply glass/epoxy composite.

(a) 150°C (b) 100°C
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Figure 6.16 War page measurement of a FC-PBGA package

110



7. APPLICATION Il: IN-PLANE DISPLACEMENT AND STRAIN

MEASUREMENT

In this chapter, Applications of in-plane displacement and strain measurement are
presented. Among these applications, an inverse method to determine elastic constants is

anew method and it is described in details.

7.1 Inverse method to determine elastic constants using circular disc

and moiré interferometry

An inverse method using a circular disc in diametrical compression is proposed and
used for simultaneous determination of two elastic constants, E and n, from a single
displacement map. Moairé interferometry combined with the phase-shifting technique
provides a full-fiddd displacement field. An over-deterministic approach using the
nonlinear least squares method is implemented to fit the experimentally determined
displacements to the theoretical solution. An implementation guideline is provided
consdering the effects of accidental rigid-body motions, random noise and imperfect

position of the origin. Accuracy of the proposed method is verified experimentally.

7.1.1 Introduction

A circular disc in diametrical compression is an experimental configuration that is

easy to machine and load. With the well-established theoretical displacement fields
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[128]~[132], a classical coefficient inverse approach can be implemented to determine
material constants and/or applied load from the experimentally determined displacement
fields [133][134].

Moiré interferometry measures in-plane displacements, U and V. The method is
characterized by a list of excelent qualities, including full-field technique, high
measurement sensitivity, high spatial resolution and high signal-to-noise ratio [135]. The
data are received as whole-field interference fringe patterns, or contour maps, of the
displacement fields. Because of the high sensitivity and abundance of data, reliable strain
distributions—normal strains and shear strains—can be extracted from the patterns.

For most practica applications, where the analyses are designed to investigate
specific characteristics of the structure, quantitative results are extracted only at
designated locations - at points, or along lines in the specimen - and whole-field andyss
techniques are not employed. In the original attempts of the inverse approach using
moiré fringes [133][134], only a limited number of displacement data were utilized for
the andyses. The fullfield displacement information had not been utilized completely.
The full-field data are used advantageoudly in the current work

In this dissertation, an inverse approach is proposed to determine two elastic
constants from the whole-field displacement information provided by a moiré pattern.
With the aid of a digital image processing scheme, displacement information is obtained
at every point, which allows use of an over-deterministic analysis by the nonlinear least
square method. Young's modulus and Poisson’s ratio are determined simultaneously

from a single moiré fringe pattern.
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7.1.2 Background

7121 Moiréinterferometry with phase shifting
Moiré interferometry has matured rapidly to emerge as an invaluable tool, utilized by
many industrial and scientific applications [135][136]. In the method, a high-frequency
cross-line grating on the specimen, initialy of frequency fs deforms together with the
specimen.  Two mutually coherent beams of laser light form a virtual reference grating,
which interacts with the deformed specimen grating to produce a moiré fringe pattern.
The principle of moiré interferometry is depicted schematically in Figure 7.1. The moiré
patterns are contour maps of the U or V displacement fields, i.e., the displacements in the
x and y directions, respectively, of each point in the specimen grating. The relationships,
for every x,y point in the field of view, are
U(y) = 5 Ny(x,Y)
13 (7.0
V(x,y) =2—]¢3Ny(x,y)
In routine practice of moiré interferometry, fs = 1200 linessmm. In the fringe

patterns, the contour interval is 1/2fs, which is 0.417 nm displacement per fringe order.
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Figure 7.1 Schematic diagram of moir € interferometry

As stated in previous chapter, the phase shifting method utilizes a series of phase-
shifted digital images to determine the phase at every point in the moiré pattern.
Recdlling it here, with succesive phase shifts of D = p/2, one can obtain the intensity

distributions of four phase-shifted images as

1 (x.v)+1 (x éx +i33_°@i: .
L (x,y) =1, (x,y) +1,( ,y)cosgf( Y) Coa 0,123 (7.2)

where [; is the intensity at a point (or pixel) in the moiré pattern, I, is the mean intensity,

| is the intensity modulation amplitude, f is the angular phase information of the moiré
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pattern, and (x,y) represents all the points in the x-y plane of the object and the moiré
pattern. Then, using the well-established phase shifting algorithm introduced previoudly,

the phase can be expressed in asimple form as

f(xy)= arctané_:zg:z;: :z(())((;//)) ] (7.3)

[y nid

After the unwrapping process, the phase f represents the fringe order N at each point

f(x, . . ,
of the pattern by N(x,y)= % . Then the whole-field displacement can be obtained

with equation (7.1).

7.1.2.2 Displacement fields of circular discin diametrical compression

A circular disc in diametrical compression is shown schematically in Figure 7.2.
Using the approach of Timoshenko and Goodier [138], the in-plane displacement

components for the plane stress condition can be expressed as

ux ziAx +£Bx
'15 E (7.4)
n
Uy :EAy +EBy
where
ux and uy : theoretical in-plane displacement components,
E : Young' s modulus,
n : Poisson’sratio,
P é 1. 1. XU

A =-— +q,)- —9ni2q, )- —9ni{20, )- —, 7.5

. ptgql 0;)- 5 sn(2q,)- S sn(2a;) = (7.5)
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P& 1. 1. :
B, =Egql+q2)+59n(2q1)+59n(2q2)- x4 (7.6)

RH
P é 1 1 y
A, =- E§2|n(r2/rl)+§cos(2ql)- Ecos(Zqz)- %E (7.7)
Pél 1 yu
=- — %-cod?2q,)- =cos2q,)+ 2L+ 7.
By ot 82 COS( ql) 2COS( q2)+ RH (7.8)
2@ x 0
= = 7.9
q, = tan Ry: (7.9
2@ x 0
= = 7.1
g, =tan gR+yB (7.10)
n=yx*+(R-yyf (7.11)
r,= X2+(R+y)2 (712)
P: load,

t : thickness, and

R : radius.

Theoretical displacement fields calculated from equation (7.4) are illustrated in
Figure 7.2 (b) and (c) in the form of contour maps, or moiré fringe patterns. The
diameter and thickness of the disc were 25.4 mm and 3.17 mm, respectively. The applied

load was 1800 N and the elastic constants for aluminum (E = 70 GPa, n = 0.33) were

used for the calculations.
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Figure 7.2 (a) Schematic diagram of a circular discin compression, and (b) U and

(c) V displacement fields obtained from a theor etical solution
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7.1.3 Over-deterministic inver se approach

7.1.3.1 Displacement fields of circular discin diametrical compression

Equation (7.4) shows that E and n are coupled non-linearly. Therefore, E and n can
be obtained smultaneoudly using either the U or the V displacement field. Thisis avery
important advantage of the proposed approach. Numerous simple optical schemes are
available for two-beam moiré interferometry (single field).

Then which field should be used? Further investigation of equations (7.5) to (7.8)
reveals that A, and By are sSmilar in magnitude but By is generaly much smaller than A,
Consequently, the V field displacements are much more sensitive to E than n.

The theoretical displacement fields of Figure 7.2 were utilized to investigate the
sengtivity of displacement fields to eéastic constants. The displacement fields were
caculated for various combinations of E and n; each variation was +25%. The U
displacements along the horizontal centerline (OA in Figure 7.2 b) and the corresponding
V displacements aong the vertical centerline (OB in Figure 7.2 c) are plotted in Figure
7.3 (a) and (b), respectively. The displacements were normalized by the displacement of
the reference case at point A.

The plots clearly indicate that the U displacements are uniquely defined for different
combinations of E and n, whereas the V displacements are virtualy insensitive to n.
Only U displacements can be used for simultaneous measurement of both constants. In
the following anayses, the term “displacement” represents the U displacements for

samplicity.
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Figure 7.3 Sengitivity of displacement fieldsto elastic constants, E and n.
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7.1.3.2 Nonlinear least squares analysis

The least-squares method has been used in a regression analysis [139]~[142]. The
basic assumption that underlies this approach is that there are always differences between
experimental results and theoretical values. Their relationship can be expressed as

u(x,y) =U(x,y) +e(x,y) +e(x,y) (7.13)
where u and U are the theoretical and experimentally-measured displacements at each
point (x,y), respectively, and e; is the systematic displacement error and € is the random
noise. Under an idealized condition where e; and e are negligible, E and n can be
obtained using two arbitrary points in the U displacement field. In practice, the errors are
not negligible and this is the rationale of the least-squares approach to fit the
experimentally determined displacements to the theoretical solution.

There are two types of random noise. One is random electrical noise introduced by
the CCD camera and image grabber used for imaging and digital image processing. The
other is defects or imperfections of the specimen grating.

In practice, it is difficult to control accidental rigid-body motions of the specimen
while applying external loads. Systematic errors are associated with these rigid-body
motions. When studying deformations, we are interested in only relative displacements
and the rigid-body displacements are inconsequential. For the proposed approach,
however, absolute displacements are required and displacements altered by rigid-body
motions must be considered.

Rigid-body trandation in the x direction changes the fringe order of every point in the
U field by a congtant, while rigid-body trandation in the y or z direction does not affect

the U displacements. Rigid-body in-plane rotation (about the z axis) alters the apparent
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U displacements and it changes the fringe order by a linear function of y. Although out-
of-plane rigid-body rotation about the x axis does not alter the fringe pattern, out-of-plane
rigid-body rotation about the axis parallél to the grating lines (about the y axis) causes a
foreshortening effect of the specimen grating [135]. This effect produces an apparent
compressive strain of the specimen and thus apparent U displacement, which changes the
fringe order by alinear function of x.

Considering the above and using equation (7.1), the error function of least squares

method can be expressed as
S 0
S:_al-uX+E(NX+dO+d1x+dzy)+er%
= : ) (7.14)
Y1 &l .0 n_. o 1 /.. 0]
=ai-c=A +=B, z+—(N, +d, +dx+dy|+ey
Al g™ TEDG 2fs(  + dx + ) b

where N! is the fringe order at the point i in the fringe pattern; u! is the corresponding
theoretical displacement; M is the number of points used in the calculation; d, is the
fringe order change caused by the rigid body translation in the x direction; (dx) is the

fringe order change caused by the out-of-plane rigid-body rotation about the y axis; and

(dzy) is the fringe order change caused by the in-plane rigid body trandlation about the z

axis. d, and d, arefringe gradients, expressed as fringes per mm. Let

a=1adb=" (7.15)
E E
Then
Y N i’
S=a (- (aA} +bB} )+ (N} +d, +dx+d,y)+e,y (7.16)
i=lT 2fs g
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The least squares criterion for the five independent variables requires

\—hl =L s R Rs R R R R s I es R s R RNes | ,NU
—_ — —_
— _ — =
H y o
~ = = =, - —_
N—' - X - X s — .IX (V\J
1 ~———
/A.\ /@ ~ Oa - s a — Moa _1|_.
— - 0__ o] F
2@ L0 L fmSN Noprs O
- _ o« _ .’ N w _ .
& & 8Bovo 1_;7|_ AR
1 1 mwge
—_ —_ o
_ — ’ -
/Xu\ /Xu\ .IVA — b
_x - X - /v|A\ =<
A m ZMoa M Moa ﬂ. M/m .
T 7 Mol = So(Q T
So(Q I So(Q I e ...IM Nou-l- N 8
(%) (7] ~ — _ o -
1_;?|_ & Bovo 8 & 1_.m/|_S
' PV Bl
- X - X N ~
X >
< o = s T s w
Moa A Moa W Nl Oa = Oa =
~ " » YO+ ) Mol
8 e 3l ol ol
N Blow _ 8 9 _ &
' Bowow Bowo
- -
- xS =
N m .BX — X
e —
g~ ian Moa - ~ . ~— . 0 i e i e e e DN e e e e e £
hA\ — — » So(Q =o(D = = =< S
- Moa - MA_ 1) 1) = = — % S—— ~——
So(Q I 1_...I 1_...I <= = z - _ X
N N _— < o = =
o - o o o .IAHX .lan Moa I} < . )
— —
0 T I I I lnml /\a LMol So(@l So(T
o - o~ - - =] .FMO - 52" 2"
%_aS_b %id %7d %id — _x X = v . Dy oS ol
= == = = = _ = < T = 1_~/|_1_~/|_ mWCGel_.m/l_ — |5
e e e e ettt e A~ R .
%) iAx =  so@T < < e s @C.IC il .wnw.CIC. o
T . 1_ o So@ T So(Q T I
e O o Sy ol
B ° = AN N c Q dO dl dZ
e B L N
— O @ @ @ D D D D D <D D D @ <D @ .

(7.18)

122



Thevauesof a, b, dy, d; and d, can be determined by solving equation (7.18), and E and

n from equation (7.15).

7.1.4 Technical considerationsfor implementation

Two technical issues arise when the proposed method is implemented: (1) the
optimum number of data points for least-squares calculation and (2) the effect of the
geometric center of the disc. A computer simulation was conducted to address these

i SSUES.

7.1.4.1 Systematic error and random noise

The fringe patterns shown in Figure 7.2 were modified again to incorporate the
systematic errors and the random noise. First, the maximum value of d, was estimated to
be 0.25 fringe order. This systematic error occurs when a zero fringe order is assigned to
the center point of the fringe pattern, and d, = 0.25fringe order is a very conservative
estimate.

The maximum value d, was chosen as 3.94 x 102 fringes per mm, which is
equivalent to 1.0 fringe order change across the vertical diametric centerline (BB’). A
moiré interferometer is usually equipped for adjustment of in-plane rotation, and the 1.0
fringe order difference across the diameter is readily discernable during adjustment.

Thevalue of d, isdirectly related to the accidental out-of-plane rotation. In practice,
the angle is determined by observing the spot of light reflected back to the source [135].

The magnitude of d, can be determined by
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d=-f 29 0 (7.19)
*&FL g

where FL is the focal length of the collimating lens and d is the movement of the spot of
light at the focal plane of the imaging lens. Considering a collimating lens with FL = 6”
(150 mm) and d = 1 mm, d, becomes 5.33 x 107 fringes per mm. The resultant U field

fringe pattern with the above systematic noiseis shown in Figure 7.4 (a).

@ (b)

Figure 7.4 (a) Theoretical fringe patternswith systematic errors caused by rigid-
body displacements, and (b) the corresponding fringe patterns after adding random

noise with a maximum variance of 0.25 fringe.
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The fringe pattern was then modified with random noise, which was specified as

e =——ran() (7.20)

where N™ is the maximum variance of the random error in fringe order and ran() was
random numbers ranging from —1 to 1. The results of these modifications are illustrated
in Figure 7.4 (b) for N™ =0.25. The size of the digita fringe image is 1000 pixels by

1000 pixels, which isatypical resolution provided by a 1-inch format CCD camera.

7.1.4.2 Optimum number of data points

It is desired to use al the points on the specimen for the nonlinear least-squares
calculation because more data points can suppress random noise better and thus make the
variables converge faster and more accurately. However, the theoretical solution is based
on a point load, whereas the rea experimental loading is applied over a smal area
(distributed load). The theoretical displacements near the loading area can be different
from the experimental data because of the different loading condition and plastic
deformations.  In addition, the specimen grating along the free-edges can be damaged
during replication, which can disturb the displacements along the free-edges. For these
reasons, the points located in the central part of the specimen were used for least-squares
caculation, as illustrated in Figure 7.5. The following simulation was conducted to

determine the minimum number of data points that provides sufficient accuracy
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Figure 7.5 Schematic diagram of the areas used in the nonlinear least squares

calculation.

The fringe pattern of Figure 7.4 (a) was first used to determine a and b with various
values of m. The maximum value of m was limited to “1” to avoid the points that are
close to the loading areas and disc edges. All five variables converged within a few

iterations and the values remained the same regardless of m. In order to evaluate the
effect of random noise, five different sets of fringe patterns with N™ =0.25 were
generated. The results with various values of m are plotted in Figure 7.6, where the
values of a and b are normalized by those obtained from the fringe pattern of Figure 7.4
(@. The values of a and b converged within +1% at m = 0.6. In typical moiré patterns,
N™ does not exceed 0.25 fringe order and it is reasonable to assume that m = 0.6 will be

sufficient for accurate determination of a and b, which corresponds to 90,000 data points

when the digital fringe image has a resolution of 1000 pixels by 1000 pixels.
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Figure 7.6 Effect of calculation area on a and b.
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7.1.4.3 Effect of geometric center of thedisc

It is difficult to locate the exact location of the origin in the digital fringe patterns.
This aso produces a systematic error in the experimentally determined displacement

fields. Mathematicaly, the error, e,,, can be expressed as

e =U(X,y)- U(X- X0, ¥~ ¥o) (7.21)
where x, and y, arethe x and y coordinates of an incorrect origin. It isimportant to note
that this error is different from that caused by the horizontal rigid-body trandation (d,).
The d, changes the fringe order uniformly and thus the relative displacement between
any two points in the field remains unchanged. However, the change in fringe order
produced by e, varies from point to point and the relative displacement changes with
X, andy,.

A computer simulation was conducted to illustrate the effect of e,. In the
simulation, the position of origin was intentionally moved to a point of (0.02R, 0.02R)
and the values of a and b were determined with m greater than 0.6. The results are
shown in Figure 7.7. The values of a and b were underestimated significantly and
converged slowly as mincreased. Another smulation with an origin of (- 0.02R, - 0.02R)
was aso conducted and the results were virtually identical to the plot shown in Figure

7.7. The smulation indicates that only the correct location of the origin can provide

stable outputs as mincrease from 0.6 to 1.0.
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The x,andy, can be consdered as variables in the nonlinear |east-squares
algorithm. Unlike other systematic errors, however, they are coupled with the material
constants non-linearly. This would affect the stable convergence of the constants.
Instead, a simple solution using a concept of minimum variance is proposed to find the
correct location of the origin.

Recalling the analysis shown in the previous section, the values of a and b converge
and remain unchanged if a region with m > 0.6 is used for calculation in spite of the
random noise. In other words, the variance in a and b for m greater 0.6 should provide
minimum variance if the correct origin is used in the calculation.

This approach can be expressed mathematically as

ek =y 2 K _ OU
Var:%@é_gaAag {22y (7.22)
Si:le a %] i=1 b gH
where
é—iéKa
K= (7.23)
h=L30b
K- i

.ﬂ

and K is the number of areas with m > 0.6 used for the calculation, a;, and b, are the
values calculated from equation (7.18) for the i-th calculation area. A point with the
minimum variances of a and b is selected as the origin, and the E and n are determined

from:

(7.24)

>S5
1
| o |
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7.1.5 Experimental verification

A moiré experiment was conducted to verify the proposed method. The specimen
was a circular disc, shown schematicaly in Figure 7.8 (a); it was made of 6061-T6
auminum aloy. The diameter was 25.4 mm and the thickness was 3.17 mm. Two
gpherical indents with a radius of 3.2 mm were made and the load was transferred
through steel balls to ensure accurate alignment of diametrical compression. A general-
purpose compression loading fixture was utilized for the experiment. As shown
schematicaly in Figure 7.8 (b), the compressive displacements were achieved by driving
the lower wedge to the left. The load was measured with an accuracy of 0.01 N by an
electrical load cell. Figure 7.8 (c) and (d) show the photos of the real experiment setup.

The U field fringe patterns at 1800 N are shown in Figure 7.9; (a)-(d) is a series of
four phase-shifted fringe patterns for this load level; () and (f) are the corresponding
wrapped and unwrapped phase maps. The fringe patterns at a higher load level (2200 N)
are shown in Figure 7.10.

The proposed agorithm was implemented with these fringe patterns. First, the
geometric center of the image was marked as an initial location of the origin. Then the
area of possible locations of the true origin was selected as 0.04R by 0.04R (n = 0.04 in
Fig. 4), which corresponded to an area of 20 pixels by 20 pixels in the digital fringe
patterns. The values of a and b were calculated for each point within the area by
eguation (7.18) using m > 0.6 with an interval of m=0.1. The variances were calculated
by equation (7.22) and the point that produced the minimum variance was chosen as the

true origin.
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The results obtained using the correct origin are plotted in Figure 7.11 for m > 0.6,
where a, and b, were normalized by a andb, respectively. The material constants

were evaluated by equation (7.24) and the results are summarized in Table 7.1. The

results agree well with the values of the handbook [143], which confirms the validity of

the proposed method.
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(d)

Figure 7.8 (a) Schematic diagram of the specimen; (b) Schematic diagram of
compression loading fixture used in the moir é experiments; (c) Photo of the

experiment setup and (d) the specimen loaded in the loading fixture.
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©p (d) 3p/2

(e) wrapped phase map (f) unwrapped phase map

Figure 7.9 U field fringe patterns obtained at 1800 N; (a)-(d) four phase-shifted

moir € patterns; (e) and (f) phase maps before and after unwrapping process.
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©p (d) 3p/2

(e) wrapped phase map (f) unwrapped phase map

Figure 7.10 U field fringe patterns obtained at 2200 N; (a)-(d) four phase-shifted

moir € patterns; (e) and (f) phase maps before and after unwrapping process.
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Figure 7.11 Values of a and b obtained from thefringe patternsin Fig. 7.8 and 7.9.
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Table 7.1 Experimental results

E (GPa) n
1800 N 70.4+1.1 0.32+0.01
2200 N 69.7+1.1 0.31+0.01
Handbook [143] 69.7 0.33

7.1.6 Discussion

The proposed method utilizes only the U field fringe pattern to determine the two
elastic constants. A variety of simple optical configurations of two-beam moiré
interferometry can be employed. Rigid-body displacements induced by practical loading

systems cannot be avoided. To account for these effects, the magnitudes of d, and d,

were 3.94 x 102 and 5.33 x 102 fringes per mm, respectively. These displacement
gradients are equivalent to only 17 and 22 micro strain, which are negligible for most
deformation analyses. Together with the unavoidable random noise, however, it was
demonstrated that these small displacement gradients could produce significant
uncertainties in the dagtic constants. With the high accuracy provided by moiré
interferometry and with the over-deterministic approach, the proposed algorithm handles
the rigid-body motions effectively. The use of simple optical configurations to record a
single displacement field, together with the powerful agorithm that is capable of
handling the accidental rigid-body displacements, provides a practicdl method for

advanced engineering materials.
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7.1.7 Summary

An inverse method has been proposed to determine the elastic constants E and n. The
method is based on the theoretical displacement of a circular disc in diametrical
compression. High sensitivity moiré interferometry combined with the phase-shifting
technique provides the experimental data in the form of a full-field displacement map.
An over-deterministic approach using the nonlinear least squares method is implemented
to fit the experimentally determined displacements to the theoretical solution.

A computer simulation was conducted to investigate the effect of systematic errors
and random noise encountered in implementing the proposed method. The optimum
number of data points for least-squares calculation was determined as 0.36R* of the
number of pixelsin theimage. It was found that the results were sensitive to the location
of the geometric center, and a ssimple procedure using minimum variance was utilized to
identify the correct origin.

A moiré experiment was conducted to verify the proposed method experimentally.
With only one moiré field, two elastic constants, E and n, were determined

simultaneoudy with high accuracy.
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7.2 In-plane deformation and strain measurement of electronic

packaging components

Moiré interferometry is the most widely used experimental technique for thermal
deformation analyses of electronic packaging [144]~[153]. The typica senstivity of
moiré interferometry is 0.417mm. As the components and structures are made smaller
and smaller, microscopic moiré interferometry, which can provide higher resolution and

sensitivity, has also become important.

7.2.1 In-plane deformation measurement using moir € interferometry

Moiré interferometry uses a high frequency diffraction grating. Because of the defect
and imperfection of the high-frequency specimen grating, the fringe images obtained
from moiré interferometry usualy contain much more noise than those obtained in out-
of-plane displacement measurement methods.

Figure 7.12 shows the experiment results of the deformations of a plastic quad flat
package (PQFP) due the therma loading and hygroscopic swelling [154]. PQFP is a
plastic encapsulated microcircuit which consists of a silicon chip, a metal support or
leadframe, wires than electrically attach the chip’s circuits to the leadframe, and a plastic
epoxy encapsulating material, or mold compound, to protect the chip and the wire
interconnects. The mold compound is a composite material made of an epoxy matrix that
encompasses silica fillers, stress relief agents, flame-retardants, and many other additives.
In spite of many advantages, one important disadvantage of PEMSs is that the polymeric
mold compound absorbs moisture when exposed to a humid environment due to the
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polymer-water affinity action. The goa of the experiment in Figure 7.12 was to
investigate the effect of hygroscopic swelling on the package and to compare it with that

of thermal expansion.
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(a) Fringe patterns generated due to thermal loading DT = -60°C
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(b) Fringe patterns generated due to hygroscopic swelling under a virtual saturation state

at %85RH

Figure 7.12 Mair é fringe pattern of PQFP package with hygroscopic and thermal

deformations

Figure 7.13 shows the deformed configuration. It is obvious that hygroscopic

swelling brings much more deformation than a thermal loading (DT = -60°C), thus
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hygroscopic swelling must be considered for accurate reliability assessment when PQFP
packages are subjected to environments where the relative humidity fluctuates. It is aso
worth noting that the deformed shape due to hygroscopic swelling is convex whereas the

deformed shape due to heating is concave (convex for cooling).
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(a) Deformed shape due to hygroscopic swelling

U deﬁormed

Deformed

(b) Deformed shape due to thermal loading (cooling)

Figure 7.13 2-D deformations

(Deformations are magnified with same magnification)
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7.2.2 In-plane deformation and strain measurement using microscopic moiré
interferometry

Microelectronics devices contain many very tiny electronic components within an
active dlicon chip, such as transistors, capacitors, resistors, etc. A silicon chip requires
protection from the environment as well as electrical and mechanical connections to the
surrounding components. The various conducting and insulating materias involved in
the devices have different coefficients of therma expansions (CTEs). When electrical
power is applied, the device is subjected to a temperature excursion and each material
expands a a different rate. This nonuniform CTE produces thermally induced
mechanical stresses within the device assembly.

As the components and structures involved in high-end microelectronics devices are
made smaller, the thermal gradient increases and the strain concentrations become more
serious. Hence, there is a continuoudly increasing activity in experimental analysis, both
for specific studies and for guidance of numerical analyses. Moiré interferometry and
microscopic moiré interferometry are the leading methods for experimental analyses [2]~
[4][121][155].

One of severa purposes of a chip carrier is to provide conducting paths between the
extremely compact circuits on the chip and the more widely spaced terminas on the
PCB. The micro via technology enabled the industry to produce laminate substrates with
a high density, and fine pitch conductors, caled surface laminar circuit (SLC), as
required for advanced assemblies. Extensive research and development efforts have been
and are being made to perfect the underfill process for the high-density organic

substrates, and to develop optimum underfill materials for the larger silicon devices. An
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important trend in newly developed underfill materials is its increased Y oung's modulus,
which increases the coupling between the silicon chip and the substrate. This high degree
of coupling transfers the CTE mismatch-induced-loading to the build-up layers of the
substrate. Figure 7.14 (a) shows the schematic diagram of the flip-chip assembly on a
high-density substrate used in reference [156] to quantify the thermal-mechanica
deformations of the microstructures within the build-up layers. Microscopic moiré
interferometry [157] was employed in the experiment. Two specimen configurations
were andyzed to study the deformations induced by the subsequent manufacturing
process. a bare substrate and a flip-chip package. In the assembly, a slicon chip was
attached to a high-density substrate by solder bumps and the gap between the solder

bumps was filled with an underfill [156].

Sectioned Plane

Underfill
Substrate %1 25 mm

Solder Mask

SLL ﬁuf jtm—mo um
Metal Via

(a) (b)

Figure 7.14 Schematic diagram of the flip-chip assembly on a high-density substrate

(a) before and (b) after specimen prepar ation
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The specimens were cut and ground to expose the desired microstructures as
illustrated schematicaly in Figure 7.14 (b), where the inset depicts the detaled
microstructures within the build-up layer. The specimen grating was replicated at 92°C
and the fringes were recorded at room temperature of 22°C. Therefore, the thermal
loading is DT = -70°C.

The displacement fields for a small region containing the microstructures were
recorded by microscopic moiré interferometry. The region is marked by a dashed box in
Figure 7.15; it is approximately 500 mm by 375 mm. The resultant fringe patterns are
shown in Figure 7.16 (a) for the bare substrate and in Figure 7.16 (b) for the flip-chip
assembly. O/DFM was employed to produce a displacement contour interval of 52

nm/fringe.

Underfill

—
" DNP

Figure 7.15 Micrographs of the region of interest.
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Figure 7.16 Microscopic U and V displacement fields of (a) the bare substrate and

(b) the flip-chip assembly.

To investigate the effect of the chip and underfill, the deformations of the solder and
metal via were anadyzed using hybrid semi-automatic fringe processing technique. The
deformed shape of the solder and the metal via in the substrate and the flip-chip assembly
are plotted in Figure 7.17 and Figure 7.18, respectively. The deformed shapes were
exaggerated with same magnification in both figures. It is evident that deformations of
the solder and the metal via increased significantly after the chip was assembled to the

substrate.
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() Undeformed shape (b) Deformed shape

Figure 7.17 Defor mations of the solder and the metal via in substrate.

() Undeformed shape (b) Deformed shape

Figure 7.18 Defor mations of the solder and the metal via in Flip-chip assembly.

The normal strain e, strain distributions are plotted in Figure 7.19. Compared with
the dtrain field in substrate, strain concentration happens in flip-chip assembly. The

maximum strain in assembly is about three times of the maximum strain the substrate.
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Figure 7.19 Strain gy distributionsin the solder and the metal via.

7.2.3 Coefficient of thermal expansion (CTE) measurement using moiré

interferometry

Because coefficient of thermal expansion (CTE) mismatch can reduce the reliability
of electronic packaging systems by causing localized stress, CTE measurement is
important for optimizing the packaging design. Real-time moiré interferometry has been
successfully used to measure the CTE of the electronic packaging components [158].

Mathematicaly, CTE can be calculated by
a=— (7.25)

where a is CTE, De is the strain change due to a temperature change of DT. Apparently,
CTE measurement is actually athermal strain measurement.

Figure 7.20 and Figure 7.21 show some fringe patterns for the CTE measurement of
the printed circuit board (PCB) and the module in a PBGA package. Compared with

manual method which selects severa lines across the specimen for the CTE calculation,
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computer-aided fringe analysis can caculate the whole-field CTEs and the average CTE
can be regarded as the specimen’s CTE. Table 7.2 shows the results of CTEs of PCB and

module.

(8 Uat60°C (b) V at 60 °C

(c) U a 100 °C (d) V at 100 °C

Figure 7.20 CTE measurement of PCB.
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(c) U a 100 °C

(d) V a 100 °C

Figure 7.21 CTE measurement of module.

Table 7.2 Results of CTE measurement at 60~100 °C

CTE: X direction

CTE: Y direction

(Ppm/°C) (Ppm/°C)
PCB 18.0 17.5
Module 6.8 6.7
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8. CONCLUSIONS

8.1 Conclusions

Photomechanics methods produce fringe patterns, which generally provide the full
field information of displacement field. Traditionadly, the fringe patterns have been
anayzed manually for experiment analyses. As digital image processing has become
more accessible, computer-aided automatic fringe pattern analyses have become
practical. Although numerous image-processing algorithms have been developed to
complement interferometric measurement techniques, their extensions to general fringe
analyses have been limited because of inherent optica noise encountered in the modern
photomechanics techniques. To enhance the applications of photomechanics methods to
advanced engineering problems, a robust general-purpose computer-aided fringe anaysis
tool was developed in this dissertation.

The major contributions made in this dissertation include:

(1) Complete survey and investigation on the existing fringe image processing
schemes; the most appropriate image processing schemes and their limitations
were identified.

(2) Development of self-adaptive fringe filtering algorithm. This agorithm is a
gpatial low-pass filtering.  Unlike the conventiona digital image filtering, the
filter window in this algorithm is selected in a self-adaptive manner; it considers

not only the orientations of the local fringes but also the loca fringe densities.
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3)

(4)

(5)

This adgorithm is very effective for suppressing and reducing noise without
blurring and losing useful fringe information.

Quantitative evaluation of the automatic fringe anaysis techniques. Fourier
transform technique and phase shifting technique. Although the techniques are
widely used, the evaluation shows that neither of the two techniques can handle
discontinuities effectively.  The investigation also shows that these two
techniques are effective for determining fractiona fringe orders, but should not
be used for calculation of fringe gradient.

Development of enhanced random phase shifting algorithm. The conventional
phase shifting algorithm requires pre-determined or known phase shift amounts.
The random phase shifting algorithm is a least squares iteration procedure; it can
detect the phase shift amounts and the full-field phase distributions
automatically and simultaneoudy. Using the random phase shifting algorithm,
the phase shift amounts can be any random vaues; thus an accurate phase
shifting devices are not required in the experiment.

Development of semi-automatic fringe order assignment and interpolation. A
series of agorithms for fringe order assignment and interpolation are proposed
and implemented, which include semi-automatic fringe order assignment, 1-D
segment-by-segment curve fitting interpolation, improved 1-D fringe order
interpolation considering fringe orientation, and 2-D tile-by-tile interpolation.
These agorithms make the existing fringe centering technique practica and

increase applicability of the fringe centering technique significantly.
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(6)

(7)

(8)

(9)

Development of hybrid O/DFM (Optical/digital fringe multiplication) fringe
centering technique. This hybrid technique combines the advantages of the
O/DFM, the phase shifting technique and the fringe centering technique. The
hybrid O/DFM fringe centering technique is a very effective semi-automatic
processing technique and it can be employed to obtain full-field fractiona fringe
orders (displacements) and their gradients (strains) accurately.

Development of a Windows GUI-based expert system (software) for
interferogram fringe analysis and processing. The software system includes the
generd digital image processing agorithms and al the agorithms introduced in
this dissertation.

Application using infrared diffraction interferometer for the co-planarity
measurement of high-density solder bump patterns. The method utilizes long
wavelength (I 2 10.6 nm), coherent infrared laser light, which serves to reduce
the apparent roughness of test objects, and enables the regularly spaced solder
bump arrays to produce well-defined diffracted wavefronts. The expert system
was utilized to produce afull-field surface topography map.

Development of an inverse method to determine elastic constants using circular
disc and moiré interferometry. This inverse method uses a circular disc in
diametrical compression to smultaneously determine the two elastic constants,
E and n, from a single displacement map. Moiré interferometry combined with
the phase-shifting technique provides a full-field displacement field. An over-
deterministic agpproach using the nonlinear least squares method is implemented
to fit the experimentally determined displacements to the theoretical solution.
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(10) Applications of photomechanics and computer-aided digital fringe processing to
electronic packaging. The computer-aided fringe processing techniques have
been successfully applied to obtain the out-of-plane shape and warpage, in-plane
deformation and strain of various electronic and microelectronic packaging

components.

8.2 Futurework

This dissertation work presents a variety of robust computer-aided fringe anaysis
techniques for the general—purpose photomechanics fringe analysis. The expert system
can be used to obtain whole field fringe orders (usually, displacements) with high
accuracy automatically; however, the gradient calculation is very sensitive to noise and
very small change of fringe orders can result in large gradient variation. Therefore, the
whole-field gradient calculation is usuadly a quditative analysis.  Fortunately, the
engineering problems usualy require a quantitative analysis at one single point, along
one single line or in one small area. With user’s judgment, such a quantitative analysis is
possible in the expert system; nevertheless, more work is required to achieve quantitative
analysis of fringe order gradients automatically.

A least squares inverse approach was developed in this dissertation to determine the
elastic constants using whole-field displacement information; a similar approach can be
extended to measure the residual stresses using moiré hole drilling method. Moiré
interferometry combined with computer-aided fringe analysis can provide whole-field

displacement information around the moiré hole, an over-deterministic least sguares
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approach can then be employed to obtain the orientations and magnitudes of the residual
stresses. This future work will provide a new way for residua stress measurement with

high accuracy.
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