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Abstract—Right Half Plane (RHP) zeros restrict the achievable closed loop performance independent of

controller design. A new characterization of all achievable closed loop setpoint/output transfer matrices is
provided in terms of “zero-directions”. The zero directions also give some insight into what forms of partial

decoupling are preferable.

INTRODUCTION

Through extensive studies by a number of researchers
during the last few years it has been established
rigorously that for both Single-Input-Single-Output
(SISO) and Multi-Input—Multi-Output (MIMO) sys-
tems RHP zeros limit the achievable closed loop
performance independent of the control system design.
RHP zeros are characteristics of the plant which can be
affected only by changes of the plant itself, for example
the selection of a different set of manipulated variables.
A thorough understanding of the effect of RHP zeros
on the achievable closed loop behavior can help the
design engineer avoid process options which have
inherently bad dynamic performance regardless of
how well the control system is designed.

Holt and Morari (1985) (referenced as H&M in the
following) have reviewed the different definitions of
zeros and have characterized for special cases how
MIMO zeros affect the achievable closed locp set-
point/output behavior. The reader is assumed to be
familiar with the definitions and results in this paper.
To a large extent we will retain the nomenclature
introduceu there. In this paper we will use the concept
of “zero-directions™ to characterize the achievable
transfer matrices in a convenient and very general
manner.

DEFINITIONS AND GENERAL DISCUSSION

The plant is described by the transfer matrix Gfs)
which satisfies the following assumptions: (1) G(s) is
square (n x n); (2) all RHP zeros zy, ..., z, are of
degree one: (3)no RHP polesare locatedatz, . . ., z,.
These assumptions are not restrictive for most prac-
tical situations and can be easily relaxed at the expense
of a more involved notation. A more general
treatment is suggested by the results of Zafiriou and
Morari (1985). -
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Definition 1

Let z; be a zero of G(s). The vector 4, (4, # 0)
satisfying A7 G(z;) = Qs called the direction of the zero
z;.

Note that G(z;) is of rank n — 1 because the zero was
assumed to be of degree one. 4, is the eigenvector of
G(z;)T associated with the eigenvalue zero. 4, is called
zero direction because for any system input with
frequency z; the output in the direction of 4; is
identically equal to zero.

Let H,; denote the transfer matrix between output o
and inputi. In particular, with respect to Fig. { A we can
define the following four relations

H, =C(+GC)™! (1)
Hy=-H, 2

H, = GC(I+GC)™' = GH,, (3)
Hy,=(U+GO) '=I-H,=1-GH,,. @)

Note that eqs (2)-(4) can be expressed in terms of the
plant G and the IMC-controller H,. It can be shown
{e.g. Callier and Desoer, 1982) that necessary and
sufficient conditions for the internal stability of the
system in Fig. 1A are

R1: H, stable
R2: (I - GH,)G stable.
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Let us investigate the consequences of the require-
ments Rl and R2 on the achievable closed loop
performance. Because of R1, H,, cannot cancel any
RHP zeros of G and they will appear unchanged in H,
(3). Furthermore from eq. (4) and definition | we find

ATH y(z) = AT (I = GH (z)) = i (5)

which implies that the magnitude of any disturbance d
entering along the zero direction A4; and passing
through to the output y is unaffected by feedback.
Thus RHP zeros affect both the achievable H,, and
H,,.

R2is implied by R1 if G is stable. If G is unstable, the
RHP poles of G have to be canceled by RHP zeros of (1
—GH,,) which imposes further restrictions on the
choice of H,, and thus indirectly on H,, and H,,. Thus
RHP poles also impose restrictions on the achievable
H, and H,,

Now consider the general feedback system shown in
Fig. 1B. For the disturbance behavior H,, it is irrel-
evant if the controller is implemented as one block C as
in Fig. 1A or as two blocks C, and C, as in Fig. 1B.
Thus H,, is restricted both by the RHP zeros and the
RHP poles of the system as discussed previously. The
situation is different for H,, as we will explain next.

Let us assume now that a stabilizing controller C for
satisfactory disturbance response has been found. Let
us split C into two blocks C, and C, such that C, is
minimum phase and C, is stable. Then it is easy to see
that the only RHP zeros of the stabilized system GC, (I
+ GC,C,)~ ! are those of the plant G. Thus C; can be
designed without regard for the RHP poles of G and
H,, is restricted by the RHP zeros of G only.

In summary. the achievable disturbance response of
a system is restricted by the presence of the plant RHP
zeros and poles regardless of how complicated a
controller is used. If the Two-Degree-of-Freedom
controller shown in Fig. 1B is employed the achievable
setpoint response is restricted by the plant RHP zeros
only, For a more rigorous discussion the reader is
referred to Vidyasagar (1985).

CHARACTERIZATION OF ACHIEVABLE H

The foregoing discussion implies the following
theorem.

Theorem |

H,, is achievable by a set of controllers C,, C; and
C, such that the closed loop system is internally stable
ifand only if there exists a stable Q such that H,, = GQ.

Proof. The necessity tollows directly from R1. Fora
stable plant G, R1 is also sufficient for internal stability.
Indeed a controller yielding H,, is given by C, = Q(I
~GQ)~'. C, =Cy = 1. As discussed in the previous
section an unstable plant can be stabilized by C, and
(', without adding RHP zeros. C, can then be designed
tor the stabilized plant.

A direct test for the existence of a stable Q is
provided by the following theorem.

Theorem 2

There exists a stable Q and thus a set of stabilizing
controllers C, C, and Cj such that the setpoint/out-
put transfer matrix is H,, equal to a desired transter
matrix if and only if

ATH,(z)=0 (6)
for all RHP zeros z; of the plant G(s) where 4; is the
direction of the zero z;(AJG(z;) = 0).

Proof. See Appendix.

Before we discuss the implications of theorem 2 and
put it in relation to the results obtained by H&M, we
will illustrate it through an example.

Example 1. Consider the plant G, trom H&M

G = 1 1 1 ™
E T s+ 1+2s 2
which hasa z.. o at s = z = 1/2. The zero direction A
= (2, — 1) satisfies

. U N U
ATGg(2) = Ar[z 2] =0, (8)
We will use condition (6) to construct decoupled and
one-way decoupled H,'s for which stable Qs and
therefore stabilizing C’s exist. Trivially for the de-
coupled plant

-2s+1
25+ 1
H, = . 9
i 0 —-2s+1 ®)
2s+1

H,(z) =0 and therefore (6) is satistied. Let us
postulate

m 0 -
HET = —25+1 J (10)
_xl 5+1
and
[ —25+1
HT= | 41 (1)
L o !
where x, and x, are to be determined. We tind from (6)
2—-x,(z)=0 or x,(z)=2 (12)
2x,(z) =1 =0 or x,(z)=1. (13)

If we postulate x, and x, to be of the form fs/(2s + 1)
(with f a constant to be determined) so that there are
no steady state interactions, then we find from (12)

x,(z)=§=2

and Xy (s) = (14)

s+ 1

Similarly from (13)

(15)

xy{s) =
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As illustrated by the example, theorem 2 has the
following implications:

(1) 4;is a constant possibly complex vector. Equation
{6) requires that each column of H,, evaluated at
the plant zero z, has to be orthogonal to 4. For a
particular element of the input vector r the el-
ements of the output vector y cannot be selected
independently but have to satisfy the linear “in-
terpolation conditions” [eq. (6)]. The presence of
RHP plant zeros requires some relationship be-
tween the elements of a column of H,, but the
columns themselves can be selected independently
of each other.

By assumption, z; is a zero of G(s) of degree one.

Assume that H,, is selected to be diagonal, ie.

completely decoupled. Then according to the

theorem the degree of z; in H,, has to be at least

equal to the number of nonzero entries in 4,

Usually this number is larger than one, generally

equal to n. Thus, requiring a decoupled response

generally leads to the introduction of RHP zeros
not originally present in the plant G(s). This is the
price to be paid for decoupling (Desoer and

Giindes, 1986).

(3) The zero z, is “pinned” to the outputs correspond-
ing to nonzero entries in 4, (Bristol, 1980; H&M, p.
67): The zero has to affect at least one of these
outputs and it cannot affect any of the outputs
corresponding to zero entries in 4.

2

—

Example 2 (from H&M). The system

1 -s+1 =—-s+1
— 16
s+2{_ 1 2 :' (1e)

hasa zeroats = I with the direction A7 = (1. 0). It
can only affect the first output of H,, ie. it is
“pinned” to the first output.

Theorem 14 (from H&M. rephrased): Assume that
the kth element 4, of the zero direction 4, is
nonzero. Then it is possible to obtain perfect
control on all outputs j # k with the remaining
output exhibiting no steady state offset.

Gylsi =

(4

=

This and the next result follow trivially from
theorem 2 of this paper.

(5) Theorem 16 (from H&M, rephrased): Assume that
G(s) has a single zero z and that the kth element 7,
of the zero direction 4 is nonzero. Then H,, can be
chosen of the form

1 0 - 0 0 0
0 1 . 0 0 0
H = Bis  Bus Bi-is —s+z Puis
T stz os+z ©os+z stz stz
0 0 : 0 0 1
Lo 0 0 0 0

2427
where
24,
B,= ——2 forj#k (18§
Ax
The interaction terms will be insignificant if

2 > 4,(Vj # k), i.e when the zero is aligned predomi-
nantly with output k. If for some j, 4; > 4, then the zero
is aligned predominantly with output j. It can be
pushed to output k only at the cost of generating
significant interactions (large f’s).

As a demonstration of the alignment effect recall
example 1 with the zero aligned with the first output
[4" = (2, = 1)]. As shown by H&M, pushing the zero
to the second output [eq. (10)] leads to an ISE of four
while aligning the zero with the first output [eq. (11)] is
much more favourable (ISE = 1). Thus, if one way
decoupling is contemplated the zero direction should
be used as a guideline.

CONCLUSION

The zero directions have been shown to be a
convenient tool to judge the feasibility of alternate
forms of decouplers. Though generically all kinds of
decouplers are almost always feasible, they might not
be advisable in terms of performance. If a zero
direction is aligned predominantly with one output,
the best overall performance for the MIMO system is
achieved when this alignment is preserved in the closed
loop transfer matrix,
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APPENDIX: PROOF OF THEOREM 2

Assume there exists a stable Q such that H,, = GQ. Then
ATH (z) = A7GQ(z) = 0.
Find the partial fraction expansion of G™*.

Gs)™ ! = LR‘+ P(s) (A1)
s—2z

where R, is the matrix of residuals and P(s) is a remainder
term with no poles at s = z, Postmultiply both sides of eq.
{Al) by G(s)

I= ——l— R;G(s) + P(s)G(s). (A2)
§—2Z

Because the LHS of eq. (A2) is the identity the RHS must not
have a pole at s = z,. P(s)G(s) does not have a pole at s = z;

and therefore it must be that
RG(z)=0. (A3)

Because z, is of degree one, G(z;) is of rank (n — 1). Hence R; is
of rank 1 and as a result of definition 1, the rows of R, are
multiples of ).,T. Therefore }.,TH,,(z‘) = 0 implies

RHp(z) = 0. (A4)
Now postmultiply both sides of eq. (Al) by H,,.

1
Q=G" lH,, = ey RiH ,(s) + P(s)H 4(s). (AS5)
2

P(s)H ,(s) does not have a pole at s = z. Hence eq. (A4)
implies that Q does not have a pole at s = z,.



