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Understanding the potential link between environmental regulations and economic 

activities is crucial to both the regulated industries and policy makers. This 

dissertation explores three key questions in order to understand environmental 

regulations and their impacts. 1) How to measure environmental regulatory burden? 

2) What are the impacts of environmental regulations on competitiveness? 3) What 

are the determinants of regulatory stringency?  

The theory of the Pollution Haven Effect (PHE) predicts that tightening up 

environmental regulations will affect regulated industries’ competitiveness and trade 

flows. In the first part of this dissertation, I construct a measure from pollution 

abatement costs (PAC) to quantify the changes in regulatory stringency and 

empirically test PHE while controlling for firm dynamics and industry composition. 

Previous studies have used PAC as a measure for environmental regulations. I build a 

theory model to show that regulation-induced changes in abatement costs contain an 

extensive margin (i.e. cost change due to changes in industry composition) in addition 



 
 

to the intensive margin (i.e. cost change for a fixed set of firms). Results from 

decomposition analysis confirm that, compared to the intensive margin, overall 

changes in PAC underestimate changes in regulatory stringency and may further lead 

to overestimated PHE. I then use the two margins as separate explanatory variables to 

explain the US’s net imports from Canada, Mexico and the rest of the world. 

Estimation results indicate that PHE driven by the intensive margin is smaller than 

that estimated previously, which corrects the overestimation of using overall 

abatement costs. 

The second part of this dissertation empirically explores the determinants of 

regulatory stringency in the context of the US water pollution regulations. I argue that 

state regulators use facilities’ compliance performance to infer their abatement efforts 

and technology in order to implement the technology-based and water quality-based 

control of the National Pollutant Discharge Elimination System (NPDES) permits. 

Results from econometric analyses confirm that regulators make permitting decisions 

based on information inferred from compliance history as well as that discovered 

during inspection activities. Self-disclosed violations are regarded as a signal for 

cooperation (i.e. adequate abatement effort under technology constraint) and will be 

rewarded with relaxed future permits. Non-cooperating behaviors, such as absent 

monitoring reports, improper operation and maintenance as detected during 

inspections and violations that lead to high penalties will likely result in more 

stringent future limit. In addition, regulators will also modify the limit levels in 

response to local water quality. Taken together, these results indicate that the 



 
 

regulators aim to ensure a certain water quality standard by inducing higher 

abatement efforts within the constraint of best available technology. 
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Chapter 1: Introduction 

Environmental regulations aim to protect environmental quality and solve problems 

rising in the relationship between the environment and the economy. Environmental 

consequences of industrial and residential activities (e.g. pollution) are classic 

examples of negative externality where the costs are borne by the entire society. The 

fundamental theoretical foundation of environmental regulations lies in providing 

incentives for the economic agents to internalize the externality. In the US, 

environmental regulations cover almost all aspects of unintended environmental 

consequences, including reducing air and water pollution, controlling toxic releases, 

and conservation of natural resources, to name a few (US EPA, 2012a).  

One major concern of environmental regulations is that they may impose significant 

costs on the regulated firms and industries and harm their competitiveness in the 

domestic and global markets (Becker, 2005; Jaffe et al., 1995). For example, 

economic analyses on the impacts of environmental regulations suggest that 

regulations may slow employment, investment and productivity (Greenstone, 2002).  

These negative effects may further create an incentive for plants to strategically 

choose their locations across states and even relocate to developing countries with lax 

environmental regulations (Becker & Henderson, 2000; Ederington et al., 2005; Gray 

& Shadbegian, 2002) . It is crucial to understand whether or to what extent 

environmental regulations have undermined the competitiveness of the regulated 

industries in order to inform the scope and stringency of the regulations. Despite a 
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sizable literature in the past decade, the direction and magnitude of environmental 

regulations’ impacts on competitiveness have remained a debatable empirical 

question. The first objective of this dissertation is to provide empirical evidence for 

the hypothesis of the “Pollution Haven Effect” (PHE) (Copeland & Taylor, 2004), or 

the impacts of environmental regulations on international competitiveness. 

In order to correctly quantify the economic impacts, a crucial first step is to find an 

appropriate measure for changes in environmental regulatory stringency. Economists 

have been using the pollution abatement cost (PAC) as a proxy for regulatory 

stringency (e.g. Morgenstern, Pizer, & Shih, 1998). PAC involves the cost of 

purchasing, installing and operating equipment in order to prevent and reduce the 

level of pollution (U.S. Bureau of the Census, 1977). This measure is desirable for a 

number of reasons. First of all, PAC provides a comparable and consistent measure of 

regulatory stringency so that we can compare regulations across different industries 

and countries and over time. Secondly, PAC provides a quantitative and continuous 

measure which is able to capture the phase-in of many regulation programs. Finally, 

PAC captures the effect of enforcement and compliance of regulations. Stringency of 

a regulation depends on how much it is enforced, which is the actual burden on the 

regulated parties. The PAC measure is widely used by economists trying to quantify 

the economic impacts of environmental regulations (e.g. Ederington et al., 2005; 

Levinson & Taylor, 2008). In this dissertation, I examine whether PAC is an 

appropriate measure to evaluate the competitiveness implications of environmental 

regulations. Under the circumstances of firm-heterogeneity and industry composition 
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change, aggregate PAC may fail to fully capture the change in environmental 

regulatory stringency. 

Observing increasing abatement costs and potential loss of competitiveness, a natural 

question to ask is what should be the optimal level of regulation and what factors 

drive the change of regulatory stringency. For a command and control system, 

theoretical models show that the optimal regulatory strategy should be one that 

minimizes social costs given the regulated firms minimize private costs (Cohen, 

1999). Despite a great deal of theoretical endeavor, little empirical evidence exists on 

the determinants of regulatory stringency. A final objective of this dissertation is to 

explore the question of environmental standard setting and to provide empirical 

evidence in the context of the water pollution regulations in the US. 

To address the abovementioned issues, the remainder of this dissertation is organized 

as follows. In Chapter 2, I explore: 1) how to measure environmental regulations? 

and 2) what are the impacts of environmental regulations on international trade 

flows, or PHE? To answer the first question, I build a simple theory model to show 

that regulation-induced changes in abatement costs contain an extensive margin (cost 

change due to changes in industry composition) in addition to the intensive margin 

(cost increase for a fixed set of firms). Using abatement cost data from the US 

manufacturing industry, I perform a decomposition analysis to empirically identify 

these intensive margins, which more accurately represent the effects of regulation 

changes on abatement costs. The overall change in the aggregate abatement cost is 
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shown to under-measure the change in regulatory stringency. To explore the second 

question of the empirical validity of PHE, I use the intensive and extensive margins 

as separate explanatory variables to explain the US’s net imports from Canada, 

Mexico and the rest of the world. Estimation results indicate that PHE driven by the 

intensive margin is smaller than previously estimated. This demonstrates that using 

the intensive margin corrects the overestimation of PHE as in previous studies. 

In Chapter 3, I explore the determinants of regulatory stringency in the context of the 

National Pollutant Discharge Elimination System (NPDES) permit program under 

the Clean Water Act (CWA). I propose that the regulatory standards are determined 

by regulators’ perception of plants’ abatement effort and technology inferred from 

the past performance. Using data from the US chemical manufacturing industry, I 

find that the regulators (permitting authorities) are trying to decide an optimal limit to 

induce the highest effort under the capacity of best available technology. They 

further use past environmental performance, including different types of violations 

and enforcement actions, together with findings from inspection activities to infer the 

level of effort and technology capacity. Nevertheless, the ultimate goal of the 

NPDES program is to protect local water quality. The permitting decisions will 

therefore depend on the water-quality based control when the technology-based 

control is not sufficient to protect a water body for its designated use.  

Finally I summarize the findings of this dissertation and discuss contributions and 

policy implications in Chapter 4. 
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Chapter 2:  Firm heterogeneity, industry composition change 

and the Pollution Haven Effect  

2.1 Introduction 

Understanding the potential link between environmental regulations and economic 

activities is crucial to both the regulated industries and policy makers. There are 

concerns that stringent environmental regulations may impose significant costs and 

harm the regulated industries’ competitiveness in the global market (e.g. Jaffe et al., 

1995). The theory of “Pollution Haven Effect” (PHE) predicts that “tightening up of 

pollution regulation will, at the margin, have an effect on plant location decisions 

and trade flows”(Copeland & Taylor, 2004). The direction and magnitude of PHE 

remains an important empirical question. Previous studies that aim to empirically 

assess PHE have generated mixed results (Ederington et al., 2005; Jaffe et al., 1995; 

Levinson & Taylor, 2008). Notably, most of these studies have been using the 

pollution abatement cost (PAC) as a measure for regulatory stringency of 

environmental policies. However, industry-level PAC may fail to capture the full 

effect of regulation changes due to firm-heterogeneity and changes in the industry 

structure. In fact, various empirical papers as well as theoretical models have 

documented that firms are differentiated and may respond differently to changes in 

regulations (Heyes, 2009; Millimet et al., 2009). Environmental regulations may, 

among others, favor firms of different sizes, change entry conditions, and affect 

market competition. Industry level compliance costs may thus fail to fully capture the 
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change in regulatory stringency because the composition of the manufacturing 

industry has changed.  

My research aims to explore theoretically and empirically the effect of environmental 

regulations represented by PAC on international trade flows, controlling for the 

presence of firm-heterogeneity in abatement abilities and changes in the industry 

structure. To understand changes in environmental regulations, I setup a 

heterogeneous firm model which shows that regulation-induced changes in industry-

level abatement costs contain two components: an intensive margin (cost change for a 

fixed set of firms) and an extensive margin (cost change due to changes in industry 

composition led by firm entry and exit as well as expansion and shrinkage of existing 

firms). I further use decomposition analysis to empirically identify these intensive 

margin effects, which more accurately represent the effects of regulation changes on 

abatement costs, from the extensive margins.  

Using the abatement cost and output data from the US manufacturing sector at 4-digit 

Standard Industrial Classification (SIC) level for the period from 1977 to 1986, I 

show that the intensive margin effects differ substantially from the aggregated 

changes in PAC. These results indicate that aggregating industry-level PAC likely 

underestimates the full effects of changes in regulatory stringency of environmental 

policies. The impacts of environment regulations on trade flows are therefore 

overestimated when the undervalued regulation change is used as the explanatory 

variable in testing PHE. 



 7 

 

To re-examine PHE, I use the intensive and extensive margins of abatement costs as 

separate explanatory variables to explain changes in the US’s net imports from 

Canada, Mexico and the rest of the world. Results from fixed effects estimations 

suggest that abatement cost change at the intensive margin and the extensive margin 

may lead to different or even opposite PHE. Specifically, the intensive margin has a 

positive and statistically significant impact on net imports, which supports the PHE 

hypothesis. As the composition change is controlled for by including the extensive 

margin, the magnitude of PHE driven by the intensive margin is smaller than 

previously estimated, which corrects the overestimation as in previous studies. To the 

best of my knowledge, this study is the first to systematically study the effects of 

environmental regulations on trade flows while controlling for changes in industry 

structure. 

The remainder of this chapter is organized as follows. Section 2.2 reviews previous 

work on the economic impacts of environmental regulations, and explains why 

changes in industry structure may cause PAC to be an inaccurate measure of 

regulatory stringency. Section 2.3 describes a theoretical framework to show the 

existence and magnitude of the intensive and extensive margins of PAC. Section 2.4 

presents empirical evidence from decomposition analysis using the industry level 

data. I separate the intensive and extensive margins to empirically estimate PHE in 

Section 2.5 and conclude in Section 2.6. 
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2.2. Literature review 

2.2.1. The Pollution Haven Effect 

In addition to rising compliance cost, tightening up regulations may also lead to, 

among others, loss of employment, capital stock and final output (Greenstone, 2002). 

Firms may relocate to countries or regions with lax regulations to avoid extra costs 

associated with such regulations. Those unable to move may suffer from a 

competitive disadvantage compared with their global competitors. In either case we 

may expect to observe an increase in trade flows from the less regulated places to the 

more regulated regions (Copeland & Taylor, 2004).   

Pollution abatement expenditure per unit of output has been widely used as a measure 

of regulatory stringency in PHE literature (see for example Ederington & Minier, 

2003; Levinson & Taylor, 2008). The main reason for this popularity is due to the 

difficulty to compare regulatory stringency using specific constraints given various 

environmental standards that different firms and industries have to meet. The 

abatement cost provides a comprehensive and comparable measure of regulatory 

stringency across firms and industries.  In addition, the abatement cost captures not 

only changes in regulations per se but also the severity of enforcement of the 

regulations, as well as legal and political battles (Joshi et al., 2001). After all, the 

stringency of regulations is determined by the extent to which they are actually 

enforced. In addition, the abatement cost as a quantitative and continuous measure 

also captures the phase-in of many regulations over time and provides ease in 
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conducting statistical analyses. 

To date, there is a sizable literature that empirically examines the existence and 

magnitude of PHE by testing the impact of regulations on international trade flows. 

Copeland and Taylor (2004) provide an extensive survey of the trade and 

environment literature. Earlier research has examined the relationship between 

variations in trade flows and regulatory costs using cross sectional data, but most 

studies of this type find no supporting evidence of PHE (e.g. Grossman & Krueger, 

1993). Common with studies using cross-sectional data, these studies suffer from the 

endogeneity problem that arises as unobserved industry characteristics or government 

policy making affect trade flows and environmental costs at the same time. Under 

these circumstances, net imports and PAC are determined simultaneously, which may 

lead to insignificant or even counterintuitive results when testing PHE.  

Recent papers attempt to control for endogeneity by using either the instrumental 

variable or structural equation approach. Ederington and Minier (2003) model US net 

imports and environmental regulations as determined by a simultaneous equation 

system, where the level of environmental regulations in an industry as a function of 

trade flows, tariffs, and a vector of political-economy variables. In both equations, 

regulatory stringency is measured using PAC of 4-digit SIC industries from 1978 to 

1992. Controlling for both simultaneity and cross-equation correlations of 

disturbances in the model, their 3-stage least squares (3SLS) implementation yields a 

statistically significant and fairly large impact of environmental costs on trade flows.  
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Using environmental costs as a measure for the stringency of environmental 

regulations, Ederington et al (2005) discuss and empirically test a couple of potential 

reasons that have led to mixed results in the PHE literature. After controlling for the 

issues like regulation similarity, mobility, and relative importance of PAC, they find a 

significant effect of PAC on net imports for the following cases, 1) trade transactions 

between developed and developing countries, 2) industries with high pollution 

intensity, and 3) footloose industries, defined as industries with higher mobility and 

lower fixed costs. More recently, Levinson and Taylor (2008) develop a theoretical 

model of environmental costs and international trade, and demonstrate how 

unobserved heterogeneity, endogeneity, and aggregation issues prevent previous 

studies from detecting PHE. In their empirical analyses, the authors use weighted 

average of states’ characteristics as instruments for PAC in order to control for the 

issues identified in the theoretical model. Using data on PAC and US trade with 

Canada and Mexico for 130 manufacturing industries from 1977 to 1986, Levinson 

and Taylor (2008) find that industries facing increasing abatement costs experienced 

significant increases in net imports. Although briefly mentioning that using aggregate 

abatement cost may lead to a biased measure of regulation change, the authors make 

no effort to examine this issue in more detail. 

2.2.2. Impacts of environmental regulations on the industry structure 

By using the industry average PAC as a proxy for regulatory stringency to test the 

impacts of environmental regulations on international trade flows, the PHE literature 
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makes two implicit assumptions so that changes in PAC can fully reflect changes in 

regulatory stringency. Firstly, firms within an industry respond to changes in 

regulations in an identical way - they will use the same pollution control method and 

exert the same level of abatement efforts to meet the new regulation requirement in 

order to have the same level change of PAC. Secondly, it is implicitly assumed that 

there is no intra-industry reallocation in terms of production and market share, and 

thus each firm fully absorbs the impacts of regulation changes. However, these two 

assumptions may not be the case under many circumstances.  

With the availability of micro-level data since the 1990s, various empirical studies 

using plant or firm level data have demonstrated the existence of large and persistent 

productivity differences among firms in the same narrowly defined industry 

(Bartelsman & Doms, 2000; Melitz, 2003; Tybout, 2000). Not only firms are 

heterogeneous, they respond differently to changes in regulations which will result in 

a new equilibrium of the market structure. Millimet et al. (2009) provide an extensive 

discussion of theoretical studies analyzing the potential effect of environmental 

regulations on the market structure through changes in production costs. These 

models allow endogenous entry and exit, but assume identical/symmetric firms, and 

abstract from economies of scale and technological innovation. The universal 

conclusion is that under certain conditions, tighter regulation discourages entry, 

induces exit, and has a negative impact on the equilibrium number of active firms 

(e.g. Farzin, 2003; Lahiri & Ono, 2007; Requate, 2005). Focusing on market 

competition, Heyes (2000) finds that environmental regulations may favor large 
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firms, increase entry barriers and may encourage predatory behavior by incumbents. 

On the empirical side, a handful of papers have examined firm dynamics and changes 

in the industry structure following changes in environmental regulations. Dean et al. 

(2000) demonstrate that the greater stringency of environmental regulations 

discourages small business formations, but has no effect on the formation of large 

plants. Focusing on the attainment/non-attainment designation of the air quality 

regulation, Becker and Henderson (2000) find that the tougher regulation in the non-

attainment area favors the less regulated single-plant firms while creating an incentive 

for the larger plants to relocate to the attainment areas with less stringent regulations.   

Ollinger and Fernandez-Cornejo (1998) find greater sunk costs encourage firms to 

expand in order to bear the regulatory burden. Those unable to do so suffer a loss in 

profitability and are ultimately forced to exit the industry. In the same spirit, Snyder 

et al. (2003) examine the impacts of tighter regulations on chlorine-manufacturing 

plants and find that tightening up regulations accelerates plant closures, which further 

lead to a market share increase by cleaner firms. Using panels of plants from the 

Census of Manufactures, Gray and Shadbegian (2003; 2002) specifically examine 

differences in the impacts of regulations across different plants in the pulp and paper 

industry. Both papers provide direct evidence of significant heterogeneity across 

firms in productivity levels and their sensitivity to regulatory stringency. 

Findings from the above literature suggest that 1) firms are heterogeneous within 

even a very narrowly defined industry, and will respond to changes in regulations 
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differently, and 2) changes in environmental regulations together with firm-

heterogeneity may lead to intra-industry reallocation. In the following sections of this 

chapter, I develop a firm-heterogeneity model and show that tightening up 

environmental regulations will induce the heavily polluting, high abatement cost 

firms to contract or even exit the market, while the relatively low cost firms to stay in 

the market and expand. The asymmetric composition change within the industry 

prevents the industry level PAC from fully capturing effects of changes in the 

environmental regulatory stringency.  

2.3. A model of firm heterogeneity in abatement efficiency 

Consider a narrowly defined industry that consists of a continuum of heterogeneous 

firms. Each firm uses capital and labor to produce an intermediate output F and 

generates pollution Z as a joint output. Under the pressure of environmental 

regulations, each firm chooses a fraction of F for abatement activities in order to 

reduce the level of pollution. The setup of firms choosing a fraction of F for 

abatement closely follows Copeland and Taylor (2003). I expand the standard 

Copeland and Taylor model by adding firm-heterogeneity in abatement efficiency. 

Within each narrowly-defined industry, firms are differentiated only in their 

productivity in the abatement process, denoted by �. And the final output y is the 

level of output left after the abatement activity (Equation 2-1). 

� = �1 − ��	�
, �� 
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 = ��	, �; 	��																						�2 − 1�  
In practice, there are various sources that can lead to firm-heterogeneity in the 

abatement process and abatement costs. For example, large firms may have higher 

level of � and lower per unit abatement cost compared with small firms due to 

economies of scale, or because they can afford the cost of research and development 

for better abatement technologies. In addition, firms may be at different stages of a 

learning curve complying complex environmental regulations. The more experience a 

firm has in pollution control activities and dealing with regulations, the better they 

perform at choosing abatement technologies and using them more effectively. Firms 

may also be able to lower the transaction cost in the administrative process complying 

with a certain regulation as they become more experienced, e.g. the cost associated 

with applying for a water discharge permit is much higher for the first time than 

renewing one afterwards.  

Consider the properties of the pollution level 
 = ��	, �; 	��. Pollution is increasing 

and convex in potential output F, meaning the more a firm produces the higher level 

of pollution it will generate, and at a higher speed (�� > 0, ��� > 0�. On the other 

hand, the more a firm devotes the intermediate product to abatement activities, the 

lower level the pollution is left (�� < 0). An important feature of this model is 

�� < 0, which implies that a firm with higher abatement efficiency will have lower 

level of pollution, all else equal. Now assume pollution regulation is in the form of a 
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pollution tax1. Each firm chooses its output level and the input share for abatement in 

order to maximize its profit, which is equal to the revenue left after paying pollution 

tax, variable production cost and fixed cost. 

max�,� 			 �� − � ∗ � � �1 − �	, �; 	� − !� �1 − � − "																						�2 − 2� 
Optimal level of choice variables: 

�∗ = −������� + !���$
	 �∗ = 1 − ���� + !��� 						�2 − 3� 

Firms’ profits are increasing in abatement ability within a certain industry, as 

suggested by Equation 2-42. This is straightforward from the setup of the model---

because firms of the same industry are only differentiated in their ability to abate, 

different levels of pollution and thus compliance cost is the only factor that 

differentiates firms in the profitability.

 

 

&'∗&� = &'∗&� (�)�∗,�)�∗ = −���|�)�∗,�)�∗ > 0													�2 − 4� 
Assume that in a given industry, the spectrum of differentiated firms has abatement 

productivity within the range	� ∈ [�. , �/]. For the industry to be non-trivial, assume 

                                                 

1 Change of the tax to either a pollution cap or a standard will not change the results qualitatively. 
2 Equation 2-4 is obtained by the Envelope Theorem. 
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that the most abatement productive firm in the industry has a positive profit, i.e. there 

will exist at least one firm with	�/such that '�	�/� > 03. When an industry is in 

equilibrium, the least productive firm active in the industry has abatement 

productivity level �.	such that '�	�.� = 0. Thus	�.	is the zero-profit cutoff value of 

productivity, such that any firm that has productivity below this value will 

immediately exit. 

In the dynamic version of the model, a fraction of firms enter and exit the market 

randomly in each and every period. At the beginning of each period, there is a large 

pool of potential entrants with productivity level ranging � ∈ [�.2, �/] and each has a 

probability �3 of entering the market. Note that only the firms with productivity level 

above the cutoff value will actually enter the market and start production. For every 

existing firm, there is a probability of death �$  in every period, irrespective of its 

productivity, due to idiosyncratic shocks.  

In the steady state, a fraction �$ of the existing firms randomly exit the market every 

period. At the same time, there is a constant inflow of potential entrants with �>�.  to 

replace those exit. In the steady state equilibrium, the inflow equals the outflow 

(�3 = �$), so that the average productivity levels of entering and exiting firms are 

equal (Equation 2-5). This leads the average industry-level productivity to remain the 

same in each period. 

                                                 

3
 Positive profit is possible in equilibrium here because firms are differentiated within the industry. 
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4 �5����&�5∈6789�
= 4 �5����&�5∈6:58

														 �2 − 5� 

To examine the impacts of regulations on the industry dynamics, consider the case of 

tightening up environmental regulations, which raises compliance costs and reduces 

profits for all firms4. The reduction in profitability will thus raise the requirement on 

the abatement productivity to maintain a zero profit, as suggested by Equation 2-65.  

&�.&� = −���.����< > 0																	�2 − 6� 
Therefore, the increase in regulatory stringency results in a new zero-profit cutoff 

�.>	with	�.> > �.. Any existing firms with the productivity level below the new 

cutoff,  �. ≤ � < �.>, will be forced to shut down. It also raises the entry requirement 

in terms of abatement productivity, i.e. potential entrants with productivity level	�. ≤
� < �.>will no longer be able to enter and stay in the market. More stringent 

environmental regulation will therefore reallocate resources and the market share 

toward more abatement efficient producers by inducing only the more productive (in 

the abatement process) firms to survive and expand, the less productive firms to 

shrink and exit the market, and at the same time by allowing only the more abatement 

productive potential entrants to actually enter the market. The entry of more 

abatement-efficient firms and exit of less efficient firms thus cause an intra-industry 

                                                 

4 Profit is decreasing in environmental tax: 
@A∗
@8 = BA∗

B8 C�)�∗,�)�∗ = −� � �∗
3D�∗ , �∗; � < 0 

5 Equation 2-6 is obtained by total differentiating the zero-profit condition. 
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composition change, where resources are reallocated towards more abatement-

productive, low abatement cost firms.  

Now consider the following measure, the industry level PAC per unit of value added 

(Equation 2-7). As reviewed in Section 2.2, this ratio is widely used as a proxy of 

regulatory stringency in the empirical literature examining the impact of 

environmental regulations on international trade flows. Here PAC is measured as � 

times total production cost as each firm devotes a share � of their total inputs for 

abatement. Value added is by definition the value of output less the value of input.

   

 

E = F GHI	&��J�<F KHLL�J�< &� = F ��!� �1 − � &��J�<F ��� − !�	��J�< &� 																			�2 − 7� 
To see whether E  can actually reflect the changes of regulatory stringency, I will 

examine in further detail of the expression 
@N@8 , which is the change in PAC caused by 

a marginal change in environmental tax. The results in Equation 2-8 show that 

changes in the aggregate level PAC led by a change in the emission tax includes two 

components: 1) an intensive margin OP, i.e. the abatement cost change if all firms 

would survive and there were no composition change; and 2) the extensive margin 

O3 ∗ @�<@8 ,  which depends on how the cutoff productivity will change in response to 

the regulation change, and indicates the cost change due to firm entry and exit, and 

the resultant industry expansion and shrinkage (see Appendix A. for derivations). 
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&E&� = OP��, �, !�; �/, �.� � O3��, �, !�; �/, �.� &�.
&�

										�2 � 8� 

 

Figure 2-1. Intensive and extensive margins of abatement cost change 

The aggregate level abatement cost, which is a mix of the two margins, may 

understate the change in regulatory stringency if the extensive margin offsets some of 

the intensive margin effect. To see whether this is the case, take an increase in 

pollution tax for example. The PAC of each firm, and thus the industry-wide PAC, 

will rise due to increase in regulatory stringency (the intensive margin). At the same 

time, existing firms with low efficiency and high abatement cost will be forced to 

shut down. Similarly, potential entering firms with relatively low efficiency and high 

cost will no longer be able to enter the market (while as they were able to enter before 

the regulation change). At the same time, only the high efficiency, low abatement cost 

firms will survive and expand.  The extensive margin will therefore lead to a decrease 

in the average PAC in an industry as the market share is allocated to the more 
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abatement efficient and low abatement cost firms (Figure 2-1). Therefore, the 

industry level PAC does not rise as much as it should in order to reflect the actual 

change in regulations. The above analysis also implies that the existence of the 

extensive margin may cast doubts on the empirical results in the previous literature 

that uses the aggregate level PAC in testing PHE.  

2.4. Empirical evidence from decomposition analysis   

In this section, I use decomposition analysis to empirically identify these intensive 

margin effects, which more accurately represent the effects of changes in regulations 

on cost, from the extensive margin effects. The basic methodology of decomposition 

analysis is to separate the total change of an economic variable into the impacts of a 

couple of factors that affect the variable of interest, by allowing only one factor to 

change at a time while holding all others constant. To examine the change in the 

abatement cost, I decompose the aggregate cost change into the change for a fixed set 

of industries and that due to changes in the industry structure. In recent years, 

decomposition analysis has gained its popularity among energy and environment 

economists to analyze the change of the industrial energy intensity and pollution 

emissions (e.g. Ang & Zhang, 2000). The goal of decomposition in these studies is to 

separate the changes of the energy intensity or pollution reduction in each sector, 

those associated with the industry structure shift, and any technological progress (Ang 

& Zhang, 2000; Levinson, 2009; Selden et al., 1999).  
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2.4.1. Methodology 

For any aggregate n-digit SIC sector, the change in the abatement cost per unit of 

output can be decomposed into two changing factors: 1) cost intensity change at m-

digit SIC sub-industry level (with m>n, i.e. m-digit SIC is at a more disaggregated 

industry level), which corresponds to the intensive margin; and 2) change in the 

composition of industries, or the structure of the sector, which corresponds to the 

extensive margin6. Firms’ entry and exit will alter the relative importance of 

industries and lead to industry expansion and contraction. I use the share of value 

added7 to denote the relative importance of each industry.  

The goal of this analysis is to explain the change in PAC/value added (PAC/VA) in 

an n-digit SIC sector, k, which contains several m (m>n) digit SIC industries. The 

aggregate cost intensity is denoted as the weighted average of the cost intensity at the 

disaggregated industry level, using the share of value added as weights. Further let 

RST8 = UVWUVX denote the share of value added of a certain m-digit industry j in n-digit SIC 

industry at time t, where KHT = ∑ KHSS . And let	ES8 = ZV[WUVW  denote the PAC per unit 

in industry j at time t. The change in PAC/VA in aggregate industry k is ∑ RST8 ES8S −
∑ RST8D3ES8D3S . 

                                                 

6
 With firm-level data, the decomposition analysis can be applied at firm-to-industry level. I perform 

the decomposition at a more aggregated level (4-digit to 3-digit and 2-digit SIC level) due to data 
constraint. These results should be indicative of what is happening at a higher level of disaggregation. 
7 The two terms “share of value added” and “output share” are used interchangeably in the rest of the 
chapter to refer to the same concept. 
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The annual abatement cost change at the aggregated sector is represented by the 

difference between the weighted average of the sector’s cost intensities across two 

years. The relative importance of industries, which may be altered by firm entry/exit 

and industry expansion/shrinkage, is denoted by the share of value added. As shown 

in Equation 2-9, the total cost change D can then be decomposed additively to the 

intensive margin at before change output share, the extensive margin at before change 

abatement cost intensity, and an interaction term8.  

Total cost change:  

L = ∑ RS8 ∗ ES8 − ∑ RS8D3 ∗ ES8D3SS = L578 + L\:8 + L578\9]^85_7															�2 − 9�        
Intensive margin: L578 = ∑ RS8D3 ∗ aES8 − ES8D3b																																										�2 − 10�S  

Extensive margin: L\:8 = ∑ �RS8 − RS8D3� ∗ ES8D3		S 																																								�2 − 11�        
Interaction term: L578\9]^85_7 = ∑ �RS8 − RS8D3� ∗ �ES8 − ES8D3S �																		�2 − 12� 
The measure of intD calculates the intensive margin effect at before-change output 

shares by holding each industry’s share of value added constant at time t-1. As shown 

in Equation 2-10, it calculates what the PAC change would be if all 4-digit industries 

had produced last year’s output and generated the concurrent abatement costs.  By 

holding the relative contribution of each industry unchanged, intD  shows only the 

                                                 

8
 This decomposition is analogous to the product rule in calculus where &�R ∗ E� = R ∗ &E + E ∗&R + &R ∗ &E. 



 23 

 

intensive margin of changes in PAC, and is thus indicative of the direction and 

magnitude of the change in the environmental regulatory stringency.  

On the other hand, the extensive margin L\:8 shows the change in PAC/VA due to 

changes solely in output shares, and is calculated as the level of PAC that would have 

been if each industry had generated last year’s cost intensity, allowing only the 

industry composition (measured as share of value added) to change. It provides an 

answer to the question that if the abatement cost intensity of each industry remains 

the same as last period, what would be the aggregate cost intensity change due solely 

to the change industry mix.  

Finally, the last term is the interaction of the intensive and extensive margins. More 

specifically, the interaction is the difference between two “intensive” changes, 

evaluated at the before-change composition ∑ RS8D3�ES8−ES8D3�S  and the after-change 

composition ∑ RS8�ES8−ES8D3�S , respectively. This interaction term captures the 

dynamic effect of the cost intensity and the industry composition changing 

simultaneously. This dynamic effect is missing from the two static effects,extD and

intD , as they are both calculated using the before-change year as the base year. 

2.4.2. Data and descriptive statistics 

I perform the above decomposition analysis using the data from the survey of 

Pollution Abatement Costs and Expenditures (PACE) combined with the data on 

other industry characteristics from 1977 to 1986. The PACE survey is conducted by 
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the Bureau of Census, and draws from a probability sample of manufacturing 

firms/plants based on frames created from the previous years’ Census of 

Manufactures and Annual Survey of Manufactures (U.S. Bureau of the Census, 

1977). The PACE survey collects data on capital expenditures and operating costs 

related to pollution abatement. Pollution abatement operating costs (PAOC) contain 

depreciation, labor, materials and supplies, services and equipment leasing, and other 

costs related to operating and maintaining equipment for pollution treatment and 

prevention. Capital expenditures are used for purchasing and installing devices to 

abate pollutants through either end of line (EOL) technique or through changes in 

production process (CIPP). The survey results are published on the Current Industrial 

Reports, which report abatement capital expenditures and operating costs, and 

separately for different media (air, water, solid waste) as well as for hazardous/non-

hazardous pollutants (U.S. Bureau of the Census, 1977). For various reasons listed in 

Appendix B, I use only the operating costs in decomposition analysis as they are 

more reliable. In addition, the decomposition process requires the data to be a 

balanced panel. Missing values in PAC thus pose a major challenge. Assuming these 

data are missing at random, I interpolate the missing data using the average cost 

intensity at higher levels of aggregation. The process of data interpolation is 

described in Appendix C. 

Two issues may affect over time comparison of the abatement costs and expenditures. 

The PACE survey was conducted annually from 1977 to 1994 (except year 1987). 

After a redesign, the survey was continued to collect cost information in 1999, and 
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was redesigned and conducted again in 2005. Due to substantial changes made during 

the last two surveys, a historic comparison to earlier surveys was difficult9. Another 

issue relates to the definition of an industry. The Office of Management and Budget 

(OMB) updated SIC classification in 1987 and the SIC codes changed substantially. 

For all these reasons mentioned above, I use only the survey data up to year 1986 in 

this study to keep consistency. (More issues related to the PACE survey are discussed 

in Appendix B.)  

Besides the abatement cost information, data on other industry characteristics come 

from the NBER-CES Manufacturing Industry Database, which is a joint effort 

between the National Bureau of Economic Research (NBER) and the Center for 

Economic Studies (CES) at the U.S. Census Bureau. This database contains 

information on inputs, outputs, investment and productivity measures for all 4-digit 

manufacturing industries from 1958-1996, and are available in both SIC72 and SIC87 

versions (Bartelsman et al., 2000). This database was constructed using data from 

multiple official sources including mainly the Census of Manufactures (CM) and 

Annual Survey of Manufactures (ASM).  

Table 2-1 presents summary statistics for data used in the decomposition analyses. 

Variables of interest include PAOC, value added, PAOC per dollar of value added, 

and output share, of 4-digit SIC industries in 2-digit and 3-digit sectors, for the 345 4-

                                                 

9 “…these changes prevent direct comparisons to earlier surveys.” PACE 1999 report, introduction, 
page v. 
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digit SIC industries from 1977 to 198610. The absolute value of pollution abatement 

expenditures exhibit substantial variations across industries, which is mainly due to 

the sizes of the industries. After normalizing by the output level, the abatement cost 

intensity still varies substantially across industries. Tables 2-1 and 2-2 suggest per 

unit abatement cost over value added is 1.4% on average for the manufacturing 

industry, but range from 0.2% for the printing and publishing industries (SIC code 

27) to 6.6% of the primary metal industries (SIC code 33).  

Table 2-1. Summary statistics for 4-digit SIC industries, 1977-1986 

Variable Definition Mean Std. Dev. Obs. 
paoc_va4 pollution abatement cost/value added 0.014 0.071 3428 
paoc4 pollution abatement costs, 4-digit SIC, $1m 26.227 112.202 3428 
paoc3 pollution abatement costs, 3-digit SIC, $1m 84.731 176.106 3428 
paoc2 pollution abatement costs, 2-digit SIC, $1m 579.541 629.393 3428 
vadd4 value added, 4-digit SIC, $1m 2259.031 3417.656 3428 
vadd3 value added, 3-digit SIC, $1m 8240.804 7131.201 3428 
vadd2 value added, 2-digit SIC, $1m 58223.400 31331.070 3428 
weight3 share of value added of a 4-digit in 3-digit industry 0.344 0.313 3428 
weight2 share of value added of a 4-digit in 2-digit industry 0.050 0.090 3428 

 
 

Table 2-2. Average PAOC/VA for 2-digit SIC sectors, 1977-1986 

SIC code Industry 
PAOC/value added 
(sort from high to low) 

33 Primary metal industries 0.066 
29 Petroleum and coal products 0.036 
28 Chemical and allied products 0.030 
26 Paper and allied producs 0.020 
32 Stone, clay, glass products 0.013 
20 Food and kindred products 0.010 
24 Lumber and wood products 0.008 
21 Tobacco products 0.008 

                                                 

10 Excluding miscellaneous manufacturing industries (SIC 39). 
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22 Textile mill products 0.007 
34 Fabricated metal products 0.005 
30 Rubber, miscellaneous plastics products 0.005 
36 Electric, electronic equipment 0.005 
37 Transportation equipment 0.004 
25 Furniture and fixtures 0.003 
38 Instruments, related products 0.003 
35 Machinery, except electrical 0.003 
27 Printing and publishing 0.002 

 
 

Figure 2-2 shows PAC as a share of value added for the whole manufacturing sector 

from 1977 to 1986, and provides some evidence of the existence of the extensive 

margin effect. This graph follows Figure 2 in Levinson and Taylor (2008). I expand 

their graph by showing the trend at a more disaggregated industry (4-digit SIC) level. 

The top line plots PAC as a share of value added over time, holding the composition 

of 4-digit SIC industries fixed as in year 197711.  The top line is best interpreted as the 

intensive margin as it shows the impact of changes in regulations on a fixed set of 4-

digit industries. The second line from the top plots PAC/VA over time while holding 

the composition of 3-digit industries fixed at the base year 1977, and it suggests what 

PAC would have been if these industries and the share of each industry had remained 

unchanged. This second line thus represents the intensive margin at the 4-digit level 

plus the extensive margin among 4-digit industries (or the extensive margin within 3-

digit industries). Similarly, the third line from the top represents the intensive margin, 

plus the extensive margin within 3-digit industries and 2-digit industries. And finally, 

                                                 

11 More specifically, each point corresponds to weighted average PAC per unit of value added at 

different levels of aggregation, i.e.
1977

1977 t
j j

j industry

σ ϕ
∈
∑ , where t is the current year. 
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the line at the bottom plots PAC/VA for the whole manufacturing sector, and it is the 

sum of the intensive margin plus the extensive margin at all levels of aggregation.  

 
Figure 2-2. Pollution abatement cost as a share of value added, 1977-1986 

The pattern in Figure 2-2 is indicative for the hypothesis that the aggregate level 

PACE data may understate the change in regulatory stringency due to the existence of 

the extensive margin. As regulatory stringency is gradually tightening up, the more 

polluting, high abatement cost firms and industries shrink while the lower cost firms 

and industries expand. Aggregate pollution abatement costs end up rising much less 

than what it should have been because the composition of industries has changed. 

2.4.3. Decomposition of the abatement cost intensity  

Using the methodology outlined in Section 2.4.1, I decompose the PAC change at the 
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2-digit SIC sectors using the production and abatement cost data from the 4-digit SIC 

industries. Table 2-3 presents the decomposition results at the 2-digit to 4-digit SIC 

level. I calculate the annual change of the weighted average PAC/VA compared to the 

previous year, using as weights of the share of value added of each 4-digit SIC 

industry in the 2-digit SIC sector. All changes are expressed as a percentage of the 

mean PAC/VA value in the previous year, which is presented in Column 1 of Table 

2-3. Columns 2 to 5 present the average of the overall change, intensive margins, 

extensive margins and the interaction term respectively.  

The interpretation of these results is straightforward from the methodology. Take the 

year 1981 for example. The pollution abatement cost as a share of value added 

increased about 4% for an average 2-digit SIC sector compared to 1977. It is 

premature to conclude that this change in PAC correctly proxies the magnitude of 

regulation changes. Actually the increase of PAC/VA should have been 10% if the 

mix of the industries is held the same as in the previous year. However, with the high 

PAC firms dropping out and industries shrinking, and the surviving firms and 

industries (together with the firms that just entered) have a cost advantage compared 

to those that exit. This change in the composition of industries leads to a 6% decrease 

(the extensive margin and interaction term together) in the observed sector-wise PAC. 

Thus the composition change offsets some of the intensive margin of the total 

abatement cost change, leading the total change to be underestimated. 

Table 2-3. Decomposition results for 2-digit SIC sectors (annual change), 1977-1986 

Year Mean 
paoc_va2 

Total 
change 

Intensive 
margin 

Extensive 
margin 

Interaction 
term 
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1977 0.0108 
    

1978 0.0118 8.75% 11.19% -1.64% -0.80% 
1979 0.0102 -13.58% -15.11% 3.45% -1.92% 
1980 0.0125 23.05% 26.62% -1.49% -2.08% 
1981 0.0130 4.04% 10.29% 0.06% -6.31% 
1982 0.0138 5.64% 12.65% 0.08% -7.09% 
1983 0.0152 10.15% 9.72% 1.30% -0.87% 
1984 0.0172 13.20% 20.08% -2.30% -4.58% 
1985 0.0175 1.96% 4.15% -0.45% -1.75% 
1986 0.0173 -1.44% 0.63% -1.00% -1.07% 

To further examine the variation of cost change across the 20 2-digit SIC industries, I 

present the decomposition results for each of those industries over years 1977 to 

1986. Table 2-4 presents the mean of changes of abatement cost intensity (weighted 

average PAC/VA) over the years 1977 to 1986 for each of the 2-digit SIC industries. 

Again, these numbers are all expressed as a share of the average PAOC/VA value of 

1.4% to facilitate understanding of the magnitude. Almost all industries experienced 

abatement cost increase over the study period and there exisit considrable variations 

among different industries, from 0.6% for the tobacco products industry (SIC 21) to 

more than 400% for the petroleum and coal industry (SIC 29). Again, I further 

decompose this cost change to the intensive, extensive margin and the interaction 

term using the 4-digit SIC data. If the industry composition had remained the same as 

in the year 1977, the weighted average of  PAC would have increased even more 

(Column 2).The extensive margin effect offsets some of the cost increase by altering 

the mix of industries. More likely than not, firms in the relatively highly polluting 

industries shut down or lose market share to their competitors as the environmental 

regulations are tightening up over the years.Therefore the overall industry structure 
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has shifted toward a cleaner mix of firms and industries. 

Table 2-4. Decomposition results by 2-digit SIC sectors, 1977-1986  

2 digit 
SIC code Total change Intensive 

margin 
Extensive 
margin 

Interaction 
term 

20 14.30% 17.30% 0.10% -3.10% 
21 0.60% 6.80% -2.00% -4.10% 
22 20.90% 25.40% -1.40% -3.10% 
24 23.00% 19.70% 0.30% 3.10% 
25 17.60% 16.90% -1.10% 1.80% 
26 18.30% 27.50% -4.00% -5.20% 
27 3.10% 2.70% 0.10% 0.30% 
28 34.10% 88.80% -27.10% -27.70% 
29 405.20% 491.70% -35.20% -51.30% 
30 16.60% 18.90% -0.20% -2.10% 
32 19.00% 26.00% -4.30% -2.70% 
33 117.00% 267.40% -43.70% -106.60% 
34 29.30% 27.80% 1.40% 0.10% 
35 9.50% 12.80% -1.30% -2.00% 
36 15.70% 17.80% -1.60% -0.50% 
37 21.60% 29.30% -2.30% -5.40% 
38 11.30% 12.70% -1.10% -0.30% 

Finally, I decompose the PAC change at each 3-digit SIC industry using the 

production and abatement cost data from the 4-digit SIC industries. Table 2-5 

presents the mean of decomposition results at this level, expressed as a percentage of 

average PAC/VA last year. The abatement cost change at the 3 to 4-digit level is 

smaller in magnitude for both the overall change and the decomposed intensive and 

extensive margins. These results are later used in the econometric analyses of PHE in 

Section 2.5. 

Table 2-5. Decomposition results at 3 to 4-digit SIC level, 1977-1986  

Year 
Mean 
pac_va2 

Overall 
change 

Intensive 
margin 

Extensive 
margin 

Interaction 
term 

Composition 
change = extensive 
+ interaction 
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1977 0.0108 
     

1978 0.0118 11.81% 12.14% -0.17% -0.16% -0.33% 

1979 0.0102 -9.51% -9.40% 0.62% -0.72% -0.10% 

1980 0.0125 15.62% 17.30% 0.23% -1.92% -1.69% 

1981 0.0130 5.07% 14.07% 0.09% -9.09% -9.00% 

1982 0.0138 3.16% 5.04% 9.20% -11.09% -1.89% 

1983 0.0152 6.04% 5.94% 0.65% -0.55% 0.10% 

1984 0.0172 4.86% 10.09% -0.43% -4.80% -5.23% 

1985 0.0175 8.95% 7.61% 4.23% -2.88% 1.35% 

1986 0.0173 1.34% 4.08% -1.05% -1.68% -2.74% 

2.5. A re-examination of the PHE 

2.5.1. Potential issues with previous studies on PHE 

The empirical studies on PHE seek to detect the effect of environmental regulations 

on the international trade and investment flows, using PAC as a measure of regulatory 

stringency. Results from the theoretical model and decomposition analyses earlier in 

this chapter suggest that changes in PAC contain an extensive margin caused by the 

firm dynamics and the industry composition change in addition to the commonly 

perceived intensive margin. Therefore the aggregate level PAC will likely 

underestimate the changes in regulatory stringency and lead to three econometric 

issues in estimating PHE. 

First of all, PHE in previous studies is estimated using PAC based on a truncated 

distribution that is conditional on firm survival and the realized industry composition. 

Aggregate PAC may fail to capture the full effect of changes in regulatory stringency 

if the composition has moved towards more abatement efficient and low abatement 
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cost firms and industries. This selection issue implies previous studies may under-

measure regulation change and may thus overestimate the true PHE. Secondly, the 

existence of the extensive margins becomes a source of nonrandom measurement 

error in the PAC variable as the aggregate PAC deviates from the intensive margin, 

which accurately reflect the changes in regulatory stringency. The measurement error 

issue may lead to biased and inconsistent estimates of PHE. Finally, international 

trade flows and the composition of firms and industries may be jointly determined, 

which leads to the potential problem of reverse causality in the PAC measure. Firms’ 

entry and exit as well as industries’ expansion and contraction can be partly the 

results of global (as well as domestic) competition. In fact, theories of international 

trade have suggested that industrial structures at different levels of aggregation will 

change during trade liberalization (e.g. Helpman, 1999; Melitz, 2003). By using the 

overall PAC as the explanatory variable, previous studies on PHE lump together the 

intensive changes in PAC and the composition change, which is subject to the reverse 

causality issue.  

2.5.2. Empirical strategy: separating intensive and extensive margins when 

estimating PHE 

To solve the above mentioned econometric problems, I separate the intensive margins 

and extensive margins in estimating PHE, where the intensive margins are used to 

capture the variation in regulatory stringency, and the extensive margin will control 

for any composition change caused by both environmental regulations and other types 
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of changes. More specifically, previous studies in the PHE literature generally 

examine the relationship between environmental regulation stringency and net 

imports, as shown in Equation 2-14, where NI denotes net trade flows, E58 =
�cd!/fc denotes PAC intensity, the Xs are measures of trade barriers, L8s are time 

dummies, and !5s are time-invariant industry fixed effects. The key assumption to 

obtain consistent estimate of g is h�∆E58> ∆j5k� = 0, ∀m, �.  However, endogeneity 

problems discussed in Section 2.5.1 may prevent consistent estimations.   

no58 = p58q + E58g + L8 + !5 + j58 																	�2 − 14� 
I will separate the intensive and extensive margins, and estimate the relationship in 

Equation 2-15, where all variables are defined the same except the three abatement 

cost measures12.  

  no58 = p58q + E�578�58g3 +E�\:8�58g$ + E�578\9]^85_7�58gr + L8 + !5 + j58 			�2 − 15�  
E�578�58 = E5ss + t ∆E�578�5�

8
�)ss  

E�\:8�58 = E5ss + t ∆E�\:8�5�
8

�)ss  

                                                 

12 An alternative way of estimating PHE while separating the intensive margins and extensive margins 
would be to first difference Equation 2-14, and use the first-differenced ∆E�578�, ∆E�\:8�, and ∆E�578\9]^85_7� as separate explanatory variables to substitute the overall PAC change. Theoretically 
first-difference (FD) and fixed effects (FE) estimations would generate similar results (with different 
standard errors when t>2). However, chapter 10.7.1 in Wooldridge (2010) suggests when strict 
exogeneity fails and only contemporaneous exogeneity holds, both FE and FD estimator have an 
“asymptotic bias”. In this case, FE estimators has an advantage over FD estimators with large T, as the 
bias in FE shrinks to zero at the rate 1/T while that in the FD estimator is independent of T. 
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E�578\9]^85_7�58 = E5ss + t ∆E�578\9]^85_7�5�
8

�)ss  

The intensive margin of PAC in Equation 2-15, E�578�58, is derived as the abatement 

cost measure in the year 1977 at the 3-digit SIC level plus the sum of all intensive 

changes (∆E�578�) within 3-digit SIC industries up to the year t. Each of the intensive 

changes (∆E�578�) is calculated at 4 to 3 digit SIC levels using the decomposition 

methodology described in Section 2.4. This variable thus measures the environmental 

regulation induced the abatement cost change for a fixed set of industries (fixed at the 

4-digit level in previous year), which is free of changes in the industry composition. 

The coefficient on the intensive margin, g3, measures the marginal impact of the 

abatement cost change at the intensive margin on trade flows. Estimates of g3will be 

unbiased and consistent since the selection issue, the measurement error and the 

reverse causality issue are now controlled by including the extensive margins. This 

model is identified as environmental regulations and abatement costs are changing 

sharply during the sample period while other factors affecting trade flows are only 

moving slowly. 

The extensive margins and interaction terms are obtained by adding the decomposed 

extensive changes and interaction terms to the base year PAC value. The two 

variables together indicate the changes in the abatement cost caused solely by 

changes in the industry composition at different levels, that is, the entry, exit, 

expansion and shrinkage of firms, as well as the resulted expansion and shrinkage of 
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industries. As the environmental regulation tightens, for example, resources and 

market shares are allocated towards the relatively high abatement-efficiency firms 

compared to the low efficiency ones. The coefficients g$ and gr thus measure the 

marginal impact on trade flows of potential changes in the industry composition.  

Note that the extensive margin in Equation 2-15 may still contain the reverse 

causality issue as discussed in Section 2.5.1. Nonetheless, by using the decomposed 

PAC, my empirical strategy improves in the following ways. First of all, the variable 

of interest when estimating PHE is the intensive margin, which captures the effect of 

the regulation change on PAC for a fixed set of firms/industries and serves as an 

accurate proxy for the regulation change. While previous studies suffer from the 

selection issue and the measure error, I ensure that the estimated coefficient on the 

intensive margin is an unbiased and consistent estimate of PHE by separating the 

intensive and extensive margins. Further, the reverse causality issue mentioned above 

provides an additional source of bias in previous studies that lump together the 

intensive and extensive margin effect. By separating these two effects, I ensure the 

estimate of  g3, the one we are more interested in, is consistent. In other words, the 

extensive margin serves as “quarantine” for the intensive margin effects.  

Other control variables in Equation 2-15 include trade barriers between the two 

trading partners: import tariffs and transportation costs. The international trade 

literature has suggested that these measures of trade barriers are major explanatory 

variables of the trade structure and volume. Previous studies in PHE have used trade 
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barriers in their estimates as well. Here import tariffs are calculated as import duties 

divided by custom values of imports. Transportation costs are derived as the freight 

and insurance as a fraction of the net import value, or mathematically equal to 

�Io		fcuvw − 	Hx	fcuvw�/	Hx	fcuvw. CIF and FAS are terms used in international 

trade contracts, standing for cost, insurance and freight, and free alongside 

respectively. 

2.5.3. Data and summary statistics 

Equations 2-14 and 2-15 will be estimated at the 3-digit SIC level using the US trade 

flows with Canada, Mexico and the rest of the world from 1977 to 1986. As before, 

the data on PAC are from the PACE survey and the data on industry characteristics 

are from the NBER-CES database. Measures of the intensive and extensive margins 

are calculated by decomposing PAC of the US manufacturing sector at the 3-digit to 

4-digit SIC levels. The US trade data including imports, exports, tariffs and 

transportation costs by the 4-digit SIC category are obtained from the Center for 

International Data at the University of California, Davis (Feenstra, 2002), and are 

further converted to the 1972 SIC classifications and aggregated to the 3-digit SIC 

levels. Table 2-5 provides definitions and summary statistics of these variables. 

Table 2-6. Summary statistics for 3-digit SIC industries, 1977-1986 

Variable Definition Mean Std. Dev. Obs. 
niw net imports/value of shipment, world 0.0368 0.1759 1133 
dep1can net imports/value of shipment, Canada 0.0041 0.0514 1133 
dep1mex net imports/value of shipment, Mexico -0.0012 0.0070 1133 
paoc_va3 PAC/value added 0.0116 0.0207 1133 
pac_int intensive margin 0.0129 0.0312 1133 
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pac_ext extensive margin 0.0095 0.0204 1133 
pac_rsd interaction term 0.0066 0.0271 1133 
tariff tariff/value of imports 0.0518 0.0395 1133 
transp transportation cost/value of imports 0.0637 0.0398 1133 

 

2.5.4. Estimation results and discussions 

Estimation results from Equation 2-14 and 2-15 are presented in Table 2-7, where I 

test PHE using the US net imports from Canada (Columns 1 to 3), Mexico (Columns 

4 to 6) and the rest of the world (Columns 7 to 9). For each of these regions, I 

estimate three specifications. The first one is the standard PHE specification as in 

Equation 2-14 using fixed effects, and is a replicate of  Equation 2-9 in Levinson and 

Taylor (2008) (L&T hereafter) using the interpolated data. The second specification is 

based on Equation 2-15 where intensive and extensive margins are included as 

separate explanatory variables. The coefficients of these two variables measures the 

marginal impact on trade flows of abatement cost change within the 3-digit SIC 

industries (the intensive margin) versus the impact of changes in the market structure 

(extensive margin and interaction term). In the third specification, I include both 

tariffs and transportation costs as measures for trade costs. 

For the first specification, the standard specification as in previous studies, the 

coefficients on PAC are positive and statistically significant as expected. Moving to 

the second specification, the estimated coefficients on the intensive margin are 

positive and statistically significant for all three regions. This result suggests that 

tightened environmental regulations reflected by higher abatement costs at the 
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intensive margins will significantly increase net imports, which supports the PHE 

hypotheses. Specifically, coefficients in Columns 2 and 4 implies that net imports 

from Canada and from Mexico scaled by value of shipment are expected to increase 

by 0.362 and 0.047 percentage-point respectively when PAC as a share of value 

added increases by 1 percentage-point. This effect is greater in magnitude though less 

significant when looking at the results from the rest of the world (Column 8). 

However, I do not find evidence that the composition change (represented by the sum 

of the extensive margin and the interaction term) will lead to an opposite PHE. The 

estimated coefficient on the variable of the composition change is not statistically 

different from zero. 

Control variables representing the cost of trade have the expected negative impact on 

the trade volume. Higher import tariffs will lead to statistically significant lower 

levels of net import volumes, which is consistent for all geographic regions and for all 

specifications. The effect of the transportation cost is unclear. I only find a 

statistically significant negative effect for the international trade between the US and 

the rest of the world as a whole. This may suggest the transportation cost is only one 

of the factors affecting the trade volume in general, but not for each and every 

country. There may be cases where other factors are the driving force of the trade 

structure and volume between the US and the foreign countries.  
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Table 2-7. Impact of environmental regulation on trade flows, 1977-1986 

 

Variables 
Canada Mexico The world 
Original Decom. Decom. Original Decom. Decom. Original Decom. Decom. 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

          
PAOC/VA, imputed 0.537**   0.076**   1.003**   
 (0.040)   (0.015)   (0.233)   
intensive margins  0.362** 0.362**  0.047** 0.047**  0.526* 0.519* 
  (0.047) (0.047)  (0.018) (0.018)  (0.277) (0.265) 
composition change  0.117 0.118  0.008 0.006  -0.140 -0.100 
  (0.073) (0.073)  (0.028) (0.027)  (0.430) (0.411) 
Tariffs -0.090* -0.084* -0.086* -0.070** -0.070** -0.067** -0.964** -0.949** -0.900** 
 (0.047) (0.046) (0.046) (0.017) (0.017) (0.017) (0.271) (0.270) (0.261) 
transportation cost   -0.013   0.026**   -0.826** 
   (0.017)   (0.006)   (0.094) 
Observations 1,133 1,133 1,133 1,133 1,133 1,133 1,133 1,133 1,133 
Number of SIC3 114 114 114 114 114 114 114 114 114 
R2 0.967 0.969 0.967 0.745 0.747 0.753 0.902 0.903 0.912 

 
Standard errors in parentheses 

** p<0.05, * p<0.10 
Notes: Dependent variable is net imports scaled by value of shipments. All specifications include year and 3-digit SIC level industry fixed effects. 

Coefficients for regression constants and dummy variables are suppressed. 
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These results provide supporting evidence for my hypothesis that the intensive 

margin corrects the downward bias in using the overall PAC to measure regulatory 

stringency and thus leads to a more accurate estimate of PHE. The coefficients on the 

intensive margin variable are positive and statistically significant, which supports the 

PHE hypothesis that tightening up environmental regulations will lead to increased 

net imports. The magnitude of PHE is smaller for all three regions when using 

decomposed cost measures than using overall cost changes, which suggests that the 

overall abatement cost changes may underestimate the regulation changes and thus 

lead to overestimated PHE. On the other hand, the extensive component of PAC 

changes has a very different, or even opposite impact on international trade flows as 

opposed to that of the intensive margin. The change in industry mix is likely to lead 

to decreased net imports through the expansion of more abatement efficient, low 

abatement cost firms and industries, and shrinkage of the less efficient and high cost 

firms and industries. At the same time, other factors including other types of 

regulations, changes in trade conditions and demand side shocks may also affect the 

composition of industries. The results thus call into question earlier estimates of PHE 

that fail to account for the composition change.  

The lack of significance of the extensive margins and interaction terms here may 

suggest the composition change across the 4-digit SIC and within 3-digit SIC 

industries alone may not be significant enough to drive an opposite of PHE. It is 

interesting to explore whether the composition change at a finer level (e.g., within 4-

digit SIC industries and across firms) together with those at a more aggregate level 
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will have a significant impact on trade flows. In addition, the composition of 

industries may be affected by other factors than environmental regulations, such as 

other government policies or demand side shocks. 

Understanding the magnitude of the estimation results 

It may seem counterintuitive that the PHE is larger for Canada than that for Mexico---

that the coefficients on the abatement cost measures are larger. However, the trade 

volume between the US and Canada is much higher than that with Mexico. The 

volume of imports from and exports to Mexcio are on average $42.8 and $67.1 

million per year while imports and exports with Canada amount to $278.5 and $225.3 

million per year over the sample period13, which means we cannot simply compare 

the coefficients and conclude the magnitude of PHE. To get a sense of the magnitude 

of PHE, or how much trade volumes is changing in response to abatement cost 

change, I use the following elasticities as derived by L&T. Let y3 = g Nz{z denote the 

trade elasticity with respect to abatement costs if the change in trade volume comes 

entirely from imports. Similarly, y$ = g Nz|} denotes the elasticity if the change in trade 

comes entirely from exports. Let E denote PAC/VA, M denote imports, and X denote 

exports.  

y3 = g E}~z = �~�E E}~z − �p�E E}~z = y{N − y|N p}~z 											�2 − 16� 

                                                 

13
 Author’s calculation based on US trade data (Feenstra, 2002). 
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y$ = gE}p} = y{N ~zp} − y|N																																													�2 − 17� 
These two measures provide the upper and lower bound of how much the trade 

volume may change induced by the abatement cost change. I present the magnitude of 

the two elasticity measures in Table 2-8 and compare them with those in L&T. First 

of all, comparing results between Canada and Mexico suggest that the estimated PHE 

is of similar magnitude although the estimated coefficients differ by a large margin. 

Secondly, the elasticity measures further confirm that using the overall abatement 

cost change could overestimate PHE. Based on the elasticity measures, previous 

studies have overestimated PHE by a third on average. 

Table 2-8. Trade elasticities with respect to PAC 

 
Canada Mexico 

In L&T My result In L&T My result 

Trade elasticity 
with respect to 
abatement costs 

If the change in 
trade comes entirely 
from imports 

0.32 0.24 0.22 0.18 

If the change in 
trade comes entirely 
from exports 

0.45 0.32 0.17 0.11 

 

Robustness check 

One primary concern of interpreting the results involves using the interpolated 

abatement cost data (see Appendix C for more detail). To perform the data 

interpolation, I assume that the missing abatement cost data are missing at random. 

This assumption is not inconsistent with the fact that a major fraction of these missing 
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values are withheld to avoid disclosing operations of individual companies. T-tests of 

the original and the interpolated sample suggest that neither the mean nor the standard 

deviations of the variables are statistically different. To further explore whether the 

data interpolation affect estimation results, I compare estimation results obtained by 

using the original 3-digit SIC PAOC data with those obtained from the same 

specification but using 3-digit PAOC derived from aggregating 4-digit level 

interpolated data.  Results are presented in Table 2-9. Columns 1, 3 and 5 of Table 2-

9 present results of Equation 2-14 using the original 3-digit PAOC data, while 

Columns 2, 4 and 6 re-estimate the same specification using 3-digit SIC PAOC 

derived from aggregating 4-digit level interpolated data. The estimated coefficients 

using the interpolated data are not qualitatively different from the results obtained 

from the original data. Comparing these two sets of results suggest that the estimated 

coefficients of the PHE are robust to the replacement of the missing values with the 

interpolated data.  

Table 2-9. Robustness check for using imputed data 

Variables Canada Mexico World 
(1) (2) (3) (4) (5) (6) 

PAOC/VA 
0.544***  0.070***  0.928***  
(0.048)  (0.018)  (0.226)  

PAOC/VA, 
imputed 

 0.537***  0.076***  1.003*** 
 (0.040)  (0.015)  (0.233) 

Obs. 920 1,133 920 1,133 920 1,133 
Number of SIC3 114 114 114 114 114 114 
R2 0.970 0.967 0.765 0.745 0.906 0.902 

 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
Notes: Dependent variable is net imports scaled by shipments. All specifications include year 

and 3-digit SIC level industry fixed effects. Coefficients for other control variables, 
regression constants and dummy variables are suppressed. 
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2.6. Conclusion 

This chapter investigates the impacts of environmental regulations on PAC and 

international trade flows, controlling for firm dynamics and changes in the industrial 

structure. PAC is widely used as a measure for the regulatory intensity in empirical 

papers examining the impact of environmental regulations on trade flows. However, 

environmental regulations affect not only the cost of each firm/industry but also the 

composition of the industries. Using a heterogeneous-firm model, this chapter shows 

that the industry composition change may lead to an extensive margin effect of the 

regulation in addition to changes at the intensive margins. This may cast doubts on 

the previous empirical research on PHE as aggregate abatement costs will likely 

understate the changes in regulatory stringency. I conduct decomposition analysis to 

demonstrate the existence and the magnitude of the extensive margin at the 4-digit 

SIC industry level.  

Using the decomposition results at the 3-digit SIC industry level, I estimate a 

modified version of PHE that allows separate impacts of PAC at the intensive and 

extensive margins to re-examine the relationship between abatement costs and trade 

flows. By separating the composition change, the intensive margin corrects the 

downward bias by using the overall PAC as a measure of regulation change. Results 

from the fixed effects estimations suggest that the estimated PHE, represented by the 

coefficients on the intensive margin variable, is smaller than the values in previous 

studies. This confirms my hypothesis that the previous studies have overestimated 
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PHE by using the overall PAC measure.  

Analyses in the chapter suggest the needs for further research in understanding the 

economic impacts of environmental regulations. A natural extension would be to 

examine in further detail the extensive margin effects. Trade conditions can be used 

as instruments for the extensive margins in estimating PHE as trade theories have 

suggested that the trade liberalization will have an impact on trading partners’ 

industrial structure. It would also be interesting in the future work to take into account 

the role of innovation, which could simultaneously reduce abatement costs at the 

intensive margin and enhance the competitiveness of domestic firms and industries.  
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Chapter 3:  Determinants of the environmental standard setting: 

evidence from the NPDES program 

3.1. Introduction 

Environmental regulations and standards, together with effective enforcement actions 

to ensure compliance, are crucial to enhance environmental quality. The National 

Pollutant Discharge Elimination System (NPDES) permit program is the main device 

to implement the Clean Water Act (CWA), and has resulted in significant 

improvement of water quality over the past few decades (US EPA, Office of 

Wastewater Management, 2012). Under the NPDES program, all point sources that 

discharge pollutants into the waters of the US are required to obtain permits from the 

regulatory agencies. One major component of the NPDES permit is an effluent 

limitation that specifies the maximum allowable quantity or concentration of a certain 

pollutant at the discharge points. Currently there are two types of effluent limitations, 

including the technology-based effluent limitations (TBELs) developed from the 

federal effluent limit guidelines for specific industrial sectors and the water quality 

based effluent limitations (WQBELs) if TBELs are not sufficient to ensure the level 

of water quality for its designated use (US EPA, Office of Wastewater Management, 

2012). The TBELs require industrial plants to meet two technology-based standards, 

namely Best Conventional Pollutant Control Technology (BCT) for conventional 

pollutants and Best Available Technology Economically Achievable (BAT)  for toxic 
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and non-conventional pollutants (US EPA, 2010).  

Little is understood, however, about how regulators obtain knowledge about the 

regulated plants’ technology and then make permit setting decisions. EPA’s effluent 

guidelines specify a technology-based standard for each industrial sector while the 

regulated plants are free to choose the type of technology as long as the final results 

meet the required standard. In fact there is substantial heterogeneity across plants in 

the same industrial sector in terms of the technology choice (e.g. Section 4 in 

Millimet et al., 2009) and productivity (e.g. see Bartelsman & Doms 2000 for an 

extensive discussion). The permitting authority has limited information about the 

exact capacity of the best available technology implemented at the regulated plants. It 

is unclear to the regulator, for example, whether a violation is due to inadequate 

abatement effort or technology constraint. The absence of complete information may 

lead to a non-optimal standard level. On one hand, a standard level lower than the 

technology capacity fails to fully capture the benefit of the best available abatement 

technology. On the other hand, a standard level beyond the technology constraint will 

discourage compliance as it may be too costly to comply – the plant may find it 

optimal to just violate the standard and pay the penalty. This may be especially true 

when the penalty amount is constrained, which is the case for the water regulation in 

the US (e.g. Harrington, 1988; Heyes, 2000).  

In fact, there is a rich theoretical literature on what should be the optimal standards 

and how the standards should be determined (Cohen, 1999). There is little empirical 
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evidence, however, on how the regulatory standards are determined and what factors 

affect regulators’ decision making. In this chapter, I propose that the regulators use 

plants’ environmental performance in the past to infer the information about the 

technology and abatement effort and to inform permit setting decisions. Previous 

empirical studies on environmental regulations have suggested that regulators make 

inspection and enforcement decisions based on plants’ performance and compliance 

history (Helland 1998; Stafford 2002; Kleit et al. 1998). These studies find that 

regulators tend to target inspections and enforcement on the plants with poor past 

performance. But none of them have examined the standard setting. To examine how 

past performance may reveal abatement effort, theoretical models have indicated that 

self-reporting behavior can be used as a signal of cooperation and that the self-

reporting plants will perform better than the non-reporting plants (Innes 1999a; Innes 

2001). Empirical papers generally provide supporting evidence that the self-reporting 

plants have lower future violations (Toffel & Short, 2011). Regulators therefore 

reward self-reporting behaviors with less regulatory scrutiny (Stafford 2007; Innes 

and Sam 2008). For the NPDES program, regulated plants are required to report their 

discharge levels. In this chapter, I would like to examine whether these required self-

reports still provide useful information for the permit setting decisions. 

The question of the permit setting also has great implications for the examination of 

enforcement and compliance as compliance is defined as the actual discharge to the 

permitted level. There is a sizable empirical literature examining whether 

enforcement activities are effective at inducing better environmental performance 
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(Heyes, 2000). A common feature of these studies is to treat regulatory standards as 

fixed when examining how inspections and enforcement actions could bring 

compliance (see Stafford 2002, Shimshack and Ward 2005, 2008 for example). 

Regulatory standards used to define compliance status, however, is a choice variable 

of the regulator’s decision making process. The change of standards alone can change 

compliance status without any change in the actual discharge level.  

The NPDES program provides a good opportunity to explore the question of the 

permit setting. First of all, The NPDES permits are determined on a plant-by-plant 

basis and are required to be renewed at least every five years. At the time of the 

permit renewal, the permitting authority will review and adjust permitted limits (if 

necessary) to reflect changes in the production process and regulatory requirements 

(US EPA, 2010). These renewal events provide a great opportunity to examine the 

regulators’ permit setting decisions. Secondly, important technical and compliance 

information, such as production process, discharge level, compliance history and 

regulatory activities, is available to the permit writer as well as outside researchers 

through the EPA’s Permit Compliance System (PCS). We can therefore use these 

pieces of information to explore the determinants of the permit changes.  

Built on the theoretical framework of optimal standards (Cohen 1999; Malik 2007; 

Arguedas 2008), I propose that the regulatory standards are determined by regulators’ 

perception of plants’ abatement effort and technology inferred from the past 

performance. More specifically, cooperative behaviors like self-reported violations 
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are a signal of pollution control efforts under the temporary technology constraint 

while certain non-cooperative behaviors indicate inadequate abatement efforts. The 

regulators (permitting authorities) are trying to decide an optimal limit to induce the 

highest efforts under the technology capacity. Using the permit and compliance data 

of the chemical manufacturing industry from 1990 to 2010, I investigate the 

determinants of the permit setting by estimating a multinomial logit and an ordered 

logit model that explain the relationship between plants’ environmental performance 

and the level of effluent limits in their NPDES permits.  EPA’s PCS dataset provides 

the primary source for data on the NPDES regulation, enforcement, and plants 

discharge and compliance history. Estimation results suggest that the plants with 

cooperative behaviors are more likely to receive lenient limits while violations due to 

inadequate efforts will get punished. These results lend support to the hypothesis that 

regulators decide the standard level based on the information received from past 

compliance history and on their perception of plants’ abatement effort. To the best of 

my knowledge, this study is among the first empirically examining the permit setting 

decision in the context of the water pollution regulation. 

This chapter is organized as follows. Section 3.2 reviews the literature and introduces 

the background of the NPDES program in regulating the US water pollution. Section 

3.3 describes hypotheses, econometric models and data used. Section 3.4 presents 

estimation results. Section 3.5 concludes and discusses venues for the future research. 
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3.2. Literature review and background 

This section reviews the literature this study builds on and introduces the background 

of the NPDES program. After reviewing the theoretical models on the regulatory 

standard setting and noting the lack of empirical evidence (Section 3.2.1.A), I 

examine two branches of the literature related to the regulatory decision making, 

namely the determinants of inspections and enforcement actions based on the past 

performance (Section 3.2.1.B) and self-disclosure behavior as a signal of cooperation 

(Section 3.2.1.C). A final literature this study contributes to is the one on the 

effectiveness of enforcement at ensuring compliance (Section 3.2.1.D). The second 

part of this section describes the permit setting process and other requirements of the 

NPDES program. 

3.2.1. Literature review  

A. Regulatory standard setting 

This chapter is closely related to the study on the standard setting in environmental 

regulations. There has been a rich literature that theoretically examines optimal 

regulatory strategies (see Cohen 1999 for an extensive review). The typical setup of 

these models is a principle-agent model where that the regulators choose the 

regulatory standard, probability of inspection, and penalty levels in order to induce 

the compliance behavior. The standard result for an optimal policy is determined by 

the firm minimizing private cost (compliance cost) as well as regulator optimizing its 
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objective, for example, minimizing social costs as a sum of  regulatory cost, expected 

damage from pollution and firms’ compliance cost. The basic models have been 

further expanded in several ways, such as imposing costs of enforcement (Polinsky 

and Shavell 1992; Arguedas 2008),  allowing self-disclosing behavior (Malik 1993; 

Innes 1999), and moving to a dynamic setting with state-dependent enforcement 

strategies (Harford & Harrington, 1991; Harrington, 1988). 

A common feature of these models is that the final emission level is the only variable 

that the regulators care and used to determine compliance status. This is not the case, 

however, in the NPDES program, where complying with monitoring and reporting 

requirements is a major component of the regulation. In accordance with these 

requirements, Malik (2007) extends previous models by including an additional 

signal on the abatement effort that regulators would like to observe and make 

decision on. The additional signal can be obtained by the compliance inspection, 

which consists of examining the production and abatement process, reviewing 

records, verifying self-reports, and checking whether plants adopt the required 

procedures. By collecting information on efforts, the regulator can better assess 

whether a violation is due to inadequate abatement effort, or due to factors the firm 

are not able to control, like technology constraints. Malik (2007) concludes that in 

this case the optimal policy is more complex as it depends on both the final discharge 

level as well as the abatement effort revealed by the second signal. The results 

suggest that regulators are more likely to conduct investigations when the discharge 

level is in the middle range, or “gray area” as the author puts it, where the regulator 
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has limited information about the plants’ choice of effort. 

Noticing the distinction between effort and technology, Arguedas and Hamoudi 

(2004) analyze a model of optimal environmental policies where penalties will be 

contingent on the technology and the degree of violation. Firms will receive a more 

lenient regulation if it invests in better environmental technology. This arrangement 

could further save regulators’ inspection costs. Results from the theoretical model 

suggest that the regulator takes into account of technology constraint in the 

production and abatement process. Installing proper treatment equipment is taken by 

the regulator as a signal for cooperation as investing in better technology can save 

monitoring costs and reduce environmental damages.  

Despite the rich theoretical literature, empirical examination of standard setting in 

water pollution regulation is almost non-existence. One exception is Chakraborti and 

McConnell (2012), who empirically study the determination of NPDES permits for 

both industrial plants and public-owned treatment works (POTWs). Using a panel of 

permits for 100 plants in Maryland, Virginia and Pennsylvania, the authors find that 

permit level gets relaxed when downstream water quality improves. Although 

studying NPDES permit setting, Chakraborti and McConnell (2012) focus on ambient 

water quality as a determinant of the limit level and have not examined limit levels 

based on the interaction between the regulator and regulated plants.  

Instead of directly studying optimal limit, there are a handful of papers trying to draw 

implications by looking at how permit conditions will affect plants’ behavior. 
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Theories predict that the effect of stringency on compliance levels will depend on the 

slope of the marginal compliance cost function. Brännlund and Löfgren (1996), for 

example, find that different groups of plants will respond to limit changes differently 

as shadow prices differ. Empirical studies generally support the theoretical prediction 

that plants’ responses depend on abatement costs. Using three measures to measure 

the limit stringency, Earnhart (2007) finds that compliance cost increases with limit 

stringency as limit level more stringent than federal standard will increasingly 

undermine environmental performance measured by actual-to-limit discharge. Plants 

will perform better, on the other hand, if the limit level is more stringent than the 

sample period mean. This suggests that the plants are able to adjust to temporary 

fluctuations in the limit, although the adjustment is non-smooth. In addition, better 

abatement technology and treatment process is time-consuming to implement. 

Earnhart (2009) explores whether permit conditions will affect plants’ response to 

enforcement. The author finds no evidence that more stringent limit level will 

undermine the effectiveness of inspection and enforcement, in terms of relative 

discharge. There is some supporting evidence that permit modification, an indicator 

of a more cooperative relationship between the facility and the regulator, will 

improve the effectiveness of regulator intervention. 

B. Decision making of inspections and enforcement based on past performance 

This chapter aims to provide empirical evidence on optimal permit setting and 

explore factors that will affect the regulator’s decision making. I propose that the 
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regulators decide the permit level mainly based on their perception of technology and 

abatement effort inferred from plants’ past performance. For this reason, this chapter 

is related to a sizable literature on how regulatory activities are decided on plants’ 

performance history. Focusing on inspection and enforcement actions, these papers 

have not studied the decision on standard setting. 

A paper by Gray and Deily (1996) is among the first empirical studies that use plant 

level data to examine the how regulators respond to compliance history in the US 

steel industry. Results from structural equation estimation show that regulators use 

plants’ compliance history in their decision making process, and that greater 

compliance leads to significantly less enforcement in the future. Helland (1998) 

obtains similar results by examining inspection, violation and self-reporting of pulp 

and paper plants in the US. The author finds that plants with a recent violation 

recently or with higher pollution levels are more likely to be inspected. Rather than 

studying the number of inspections, Rousseau (2007) examines the frequency of 

inspections on the textile industry in Belgium. Using firm-level inspection data from 

1991 to 2003, Rousseau (2007) estimates the time elapsed between inspections using 

a hazard model, where the hazard rate (length of time until inspection) is a function of 

variables denoting past inspection and past compliance status. Estimation results 

suggest that the likelihood of all types of inspections depend on previous inspection 

history and firms’ past performance, including past violations and complaints 

received. In addition to compliance and inspection history, the strategy for routine 
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inspection is also affected by firms’ production capacity. 

Previous studies have also examined the probability of inspections as determined by 

plants past environmental performance. Estimating the inspection and compliance 

simultaneously with a bivariate probit model, Stafford (2002) finds the probability of 

being inspected is higher if a plant was inspected or found in violation in the past 

year, or has higher probability of violation in the context of hazardous waste 

regulation in the US. The results suggest that the regulators target inspection 

resources towards plants that have had a poor environmental performance in the past 

and are suspects of being out of compliance. Hanna and Oliva (2010) have also 

concluded that lagged inspections, penalties, as well as emissions levels have a 

significant positive impact on the probability of inspection on air emissions. Eckert 

and Eckert (2010) explore response of inspection to past compliance even further by 

studying whether inspections are spatially correlated. The probability of inspection is 

modeled as a function of compliance history at own and neighboring sites. Results 

from probit estimations imply that regulatory and compliance history at neighboring 

sites also matters for regulator’s decision on inspection in addition to a plant’s own 

history.  

The above mentioned papers have all focused on inspection decision. Kleit et al. 

(1998), on the other hand, explore decision making on penalty issuance in the context 

of water pollution regulation in Louisiana. Using inspection data during a 13-month 

period from 1993 to 1994, the authors estimate a probit and a tobit model to study the 
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likelihood and severity of penalties respectively. Estimation results suggest that the 

occurrence of past violations tend to increase both the likelihood and the severity of 

penalties. In addition, both initial penalties and final penalties after appeals are higher 

for more serious violations, like discharge without a permit or illegal discharge. 

C. Information gathering through self-reports 

As reviewed below, the idea of regulator decision making based on perceived 

information about abatement technology and effort is illustrated in the literature on 

environmental self-reporting. These studies generally show that 1) self-reported 

violations contain rich information on effort, 2) self-reporting plants are performing 

better than the non-reporting plants, and 3) regulators will make decisions based on 

information contained in the self-reports. 

Regarding the first aspect, Helland (1998) is among the first to empirically examine 

self-reporting behavior as a signal of cooperation. The results that plants with recently 

detected violations are more likely to self-report suggest that violations are costly and 

time-consuming to correct. Instead, violating plants use self-reporting as a way to 

signal their abatement effort and to demonstrate their willingness to cooperate. In 

fact, Earnhart (2007) finds supporting evidence that adjustment in the abatement 

process is non-smooth and time-consuming by examining the response of relative 

discharge levels to changes in effluent limits. For the same reason of signaling effort 

to regulators, other empirical studies have found that plants are more likely to self-

disclose a violation if  they are inspected frequently (Stafford 2007), are recently 
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subjected to regulatory activities (inspections, detected violations and enforcement 

actions), and if the plants are provided with relief from punishment for self-disclosed 

violations (Short & Toffel, 2008). In the framework of Malik (2007), these results 

suggest that plants are trying to send the second signal on their own monitoring and 

abatement effort in order to decrease the gravity and frequency of future enforcement 

actions.  

Not only are these plants sending signals, the self-reporting plants have better 

environmental performance than the non-reporters. Theoretical models in Innes 

(1999) show that self-reporting plants will always engage in remediation effort 

whereas non-reporting firms only clean up when a violation is detected by the 

regulator. Furthermore, self-reporters do not engage in avoidance activities, defined 

as activities aimed to lower the risk of being detected and punished (Innes 2001). 

Toffel and Short (2011) provide empirical evidence that self-reporting is a reliable 

indicator of higher effort and better performance. By examining self-reporting and 

compliance behavior of air polluting plants, the authors find that self-disclosing plants 

have lower probability of violations later and are less likely to have accidental toxic 

releases. 

The regulators indeed receive the signals and make regulation decisions based on the 

information about abatement effort and cooperation sent through self-disclosure. 

Stafford (2007) finds that self-reporting is rewarded with a significantly lower 

probability of future inspections in the context of US hazardous waste regulation. 
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Studying enforcement and compliance of the Clean Air Act, Toffel and Short (2011) 

find significant reduction in both the probability and the number of inspections for 

plants that voluntarily disclosed a violation. The result that regulators shift 

enforcement resources away from these self-reporters indicates that signals are 

received and the regulators rely on this information to design their enforcement 

strategy. In addition to self-reports, participation in voluntary pollution reduction 

program (VPR) also reveals the abatement effort as it involves investment in self-

auditing and more efficient abatement technology. Innes and Sam (2008)  empirically 

examine plants’ participation in EPA’s 33/50 VPR, and concluded that VPR 

participation gets rewarded by the regulator in terms of less frequent inspections and 

enforcement actions. 

D. Environmental enforcement and compliance 

This chapter also contributes to the literature examining effectiveness of enforcement 

at inducing compliance and better environmental performances (Cohen, 1999; Heyes, 

2000). Despite the theoretical frameworks on optimal standard, regulatory standard is 

assumed to be fixed and exogenous in almost all of the empirical papers. Few studies 

have paid attention to the role regulatory standards play in the interaction between 

regulators and regulated plants. 

A number of papers have concluded that the threat of inspection is effective at 

inducing compliance. Laplante and Rilstone (1996), for example, examine the impact 

of inspection threat on water pollution discharge of the pulp and paper industry in 
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Quebec. The predicted probability (or the threat) of inspection, estimated as a 

function of plant characteristics and previous inspections, is found to have a strong 

negative impact on pollution levels. Telle (2009) adopts a similar approach to study 

the effect of inspection threats on both compliance decision and the levels of emission 

using a sample of Norwegian manufacturing plants. After controlling for unobserved 

plant heterogeneity, estimations results suggest that inspection threats have a 

substantial negative effect on violations, but the effects on emission levels are not 

clear. Eckert (2004) examines threat of inspection through warnings in the context of 

petroleum storage regulation in Canada. The author estimates a two-stage probit 

model of an inspection equation and a compliance equation, and finds that past 

warnings increase the probability of an inspection, which further decreases the 

probability of a violation. The results thus imply that warnings can deter future 

violations through the threat of stronger enforcement.  

Besides the threat of inspection, Shimshack and Ward (2005, 2008) find that the 

threat of penalties could significantly reduce violation as well as pollution levels, 

even for the complying plants. Using data from the pulp and paper industry for 1988-

1996, Shimshack and Ward (2005) find a two-third drop in state-level violation rate 

the year after a penalty. Notably, the deterrence impact on the non-sanctioned plants 

in the same state is almost as strong as the actual impact on the sanctioned plant. The 

authors further indicate that the substantial effect is obtained by the regulator's 

increased credibility to impose a penalty. Using a similar dataset, Shimshack and 

Ward (2008) find the complying plants (at every quantile of discharge level) will 
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reduce discharge level even further after observing a penalty on another plant in the 

same state in the past year.  

In all of the papers mentioned above, regulation standards are assumed to be fixed 

when assessing compliance. There are two problems with this assumption. First of all, 

environmental compliance is defined as actual discharge or emission level relative to 

the standard level. Compliance status will change as the standard level changes even 

if the actual performance is staying the same. For example, a previously violating 

plant may be categorized as in compliance if its NPDES permit gets relaxed while 

actual discharge level remains the same. Secondly, theoretical models on 

environmental enforcement and compliance indicate that the standard level can be 

determined jointly with probability of inspection and level of penalty in the 

regulator’s optimization problem (see for example Amacher and Malik 1996; 

Arguedas 2005). This chapter therefore contributes to the understanding of 

enforcement and compliance by incorporating permit setting into the regulator’s 

decision making process. 

3.2.2. Background of the NPDES program 

The NPDES permit program is the main tool under the Clean Water Act to control 

water pollution in the US. Under the NPDES program, all point sources, including 

industrial plants and POTWs, that discharge pollutant into the waters of the US have 

to obtain a permit. An NPDES permit is a license for discharge, which typically 

consists of wastewater effluent limitations as well as monitoring, record keeping, and 
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reporting requirements (US EPA, 2010). The current NPDES program requires two 

levels of control – the technology-based effluent limitations (TBELs) and water 

quality-based effluent limitations (WQBELs) if technology-based limits are not 

sufficient to provide protection of the water body (US EPA, Office of Wastewater 

Management, 2012). Following is a brief summary of the permitting and renewal 

process, as well as other NPDES requirements. For more details, please refer to 

EPA’s documents and a web-based NPDES permit writer training program (US EPA, 

2010; US EPA, Office of Wastewater Management, 2012). 

Chemical manufacturing plants, as well as other industrial facilities, are required to 

renew their NPDES permits at least once every five years. At the time of permit 

renewal, the permitting authorities (typically the states) will review and adjust the 

effluent limits, if necessary, for changes in production and abatement process, water 

quality standards, and other regulatory requirements.  

The NPDES permitting process starts from the facilities submitting a permit 

application. After verifying the completeness and accuracy of the application, the 

permit writers of the issuing authority start developing a permit on both technical and 

regulatory basis. The first major step in the development process is to establish 

TBELs based on federal effluent limitation guidelines (ELGs) for a specific industrial 

sector. The TBELs require industrial plants to meet two technology-based standards, 

namely BCT for conventional pollutants and BAT for toxic and non-conventional 

pollutants. CWA designated the following 5 pollutants as conventional pollutants:  
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biochemical oxygen demand (BOD), total suspended solids (TSS), pH, fecal 

coliform, and oil and grease (US EPA, Office of Wastewater Management, 2012). 

This dissertation studies the discharge of BOD from chemical plants. As BOD is 

defined as a conventional pollutant, only BCT is relevant for the discussion in the rest 

of this chapter. TBELs are performance-based pollutant controls with no specific 

technology required. Instead, the facility can choose any technology as long as final 

results meet the specific levels of performance (e.g. BCT) established in the CWA. 

The next step in the permitting process is to develop water quality based effluent 

limits. To develop WQBELs, the permit writer first identifies pollutants of concern 

and the applicable water quality standards (WQS), which are criteria for designated 

uses of specific water bodies as specified by the states. The permit writer then 

determines the need of WQBEL by characterizing the interaction between the 

effluents and receiving water using engineering models. WQBELs must be 

established if the discharged pollutants have “reasonable potential” to cause the state 

WQS to be violated. Chemical-specific limits (maximum daily and average monthly 

limits) for a facility are then calculated based on waste load allocation (WLA) 

developed by engineering models. Comparing the TBELs and WQBELs, the more 

stringent of the two will be decided as the final limit.  

The permitted plants are further required under the NPDES program to conduct their 

own monitoring and report the results to the permitting authority using the Discharge 

Monitoring Report (DMR), which is a standard form that facilitates data entry and 
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compliance review. The permitting authorities conduct compliance inspections 

occasionally to examine the monitoring process, verify the accuracy of the reports 

and make their own assessment about the compliance status. To ensure that the self-

reported monitoring results are accurate and reliable, appropriate self-monitoring and 

reporting requirements are also specified in the NPDES permit. Nonetheless, the 

plants have the flexibility to choose from a range of EPA-approved methods for 

analyzing the samples (US EPA, 2010). This creates the possibility for the plants to 

strategically use an analytical method for their benefit. 

3.3. Empirical methodology and data 

In this section, I propose three testable hypotheses on how the plants’ behavior will 

affect permit setting decisions based on previous literature on regulation and 

enforcement. I further present econometric models and data to perform the empirical 

analyses to test these hypotheses.  

3.3.1. Hypotheses 

The ultimate goal of the NPDES permits is to protect water quality for a water body’s 

designated use by controlling the end-of-pipe pollutant discharge. The regulated 

plants aims to minimize private costs consisted of abatement cost (positively 

correlated with abatement effort) and expected penalty once found in violation. The 

effort level is not observable to the regulator, while the discharge level is observable 

and verifiable during inspections. The objective of the permitting authority is to 
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minimize social costs consist of water pollution damage, enforcement costs and 

plants’ compliance costs by choosing a standard level and enforcement strategy. The 

derived optimal standard is a function of plants’ abatement effort given technology 

capacity as well as enforcement costs. Since neither the effort level nor the specific 

technology is observable to the regulator, the regulator will use information received 

from plants’ past performance to infer actual level of effort and technology.  

The first source of information about technology and effort is revealed from self-

reported numeric violation in the monthly DMRs, which is a requirement by the 

NPDES program. On one hand, the outcome that actual discharge exceeds the 

permitted level could be results of either technology constraint or lack of abatement 

effort. The regulators do not have enough information about which is the case by 

simply judging from the monitoring reports. Permitting decisions will likely depend 

on numeric violations together with other sources of information. On the other hand, 

the fact that a numeric violation is truthfully recorded and reported in the DMR 

reveals additional information about effort level. 

Although the program specifies certain monitoring and reporting requirements, a 

careful examination of the regulation suggests that plants have the flexibility to 

choose different methods analyzing the samples for reporting. Therefore, truthfully 

reporting numeric violation can be viewed as self-disclosing behavior to some extent. 

It may imply, for example, that the plant has already spent a reasonable amount of 

abatement effort but still fail to achieve the limit level specified in the permit due to 
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temporary technology constraint. As suggested by previous studies, adjustment in the 

abatement process is time-consuming, which causes the plants to choose self-

disclosure as a way to signal their abatement effort before a better result (e.g. lower 

level of discharge) can be observed. Self-reporting plants will later keep their promise 

and indeed perform better than the non-reporting plants (Earnhart, 2007; Helland, 

1998; Malik, 2007). Theoretical models suggest that self-reporting plants will always 

engage in efficient remediation and will not engage in avoidance behaviors (Innes 

1999; Innes 2001).  Empirical studies provided supporting evidence that self-

reporting plants are more likely to stay in compliance and less likely to have 

accidental toxic releases (Toffel & Short, 2011). Because federal regulations require 

the NPDES permits be developed based on best available technology, violations due 

to technology constraints suggest that the previous limit level might be too tight given 

the current technology and should be relaxed. The first hypothesis concerns whether 

self-reported violations reveal additional information and whether they are used by 

the regulators during the permitting process. 

Hypothesis 1: To the extent that the plants have the flexibility in analyzing samples 

for reporting purposes, truthfully reporting a violation can be viewed as a 

cooperating behavior and will lead to more lenient limit levels. 

The second source of information involves explicit non-cooperative behaviors, which 

can be detected electronically in EPA’s Permit Compliance System or during 

compliance inspections. First of all, there are certain monitoring and reporting 
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requirements specified in NPDES permits, for example, reporting using DMRs. 

Failure to submit DMRs or submitting DMRs with substantial missing data indicate at 

least inadequate abatement effort. These behaviors are not inconsistent with 

avoidance activities where the plants are trying to prevent serious violations from 

being discovered (Innes 2001). Secondly, one of the major objectives of inspections is 

to examine pollution control operation and maintenance (US EPA, Office of 

Enforcement and Compliance Assurance, 2007).  Improper operation and 

maintenance detected during inspections will be regarded by the regulator as lack of 

abatement effort. Although the exact level of technology capacity is not identified, 

these explicit non-cooperative behaviors imply that it is technically feasible to 

perform better given appropriate incentives. Therefore, violations resulted from 

inadequate abatement effort are expected to encourage tightening up regulatory 

stringency in addition to imposing enforcement actions. In fact, previous studies have 

shown that more stringent limit will induce higher effort within the technology 

constraint (Alberini et al., 2008; Earnhart, 2007). Furthermore, tighter permit is in 

effect an additional penalty - extra cost in order to achieve compliance status - which 

is expected to have a deterrence effect. These observations lead to the following 

hypothesis. 

Hypothesis 2: Violations due to inadequate abatement effort or avoidance activities 

(defined as activities to avoid being discovered) will lead to more stringent limit 

levels.  
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Finally, as the NPDES permit contains water quality-based control, I expect ambient 

water quality to have an impact on the permitted effluent levels. In fact, Chakraborti 

and McConnell (2012) have found that regulators in Maryland, Virginia and 

Pennsylvania respond to downstream water quality when writing permits for both 

POTWs and industrial facilities. Focusing on chemical manufacturing plants, I would 

like to test whether this is a common practice of permitting authorities in other states. 

In addition, the impact of other variables will also depend on water quality, which 

defines the bottom line of NPDES permits. The final level of effluent limits is 

determined by WQBELs if TBELs are not sufficient to protect the water body for its 

designated use. This implies that if a violation is serious enough to affect local water 

quality, it is expected that the limit level will be tightened no matter what are the 

reasons for the violation (either effort or technology related). 

Hypothesis 3: The regulator will relax (tighten) the limit level if downstream water 

quality is good (poor).  

3.3.2. Econometric models 

There are three outcomes of a permit renewal event:  a higher (relaxed), unchanged or 

lower (more stringent) limit, denoted by 0, 1, and 2 respectively. Define the 

probability that outcome j is chosen as 

�S = ��d�[� = �], � = 0,1,2 

These probabilities are modeled as a function of variables representing plants’ 
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environmental performance and regulatory activities in the past. I first estimate a 

multinomial logit (MNL) model, where the explanatory variables are outcome-

invariant while the coefficients vary across outcomes14(Cameron & Trivedi, 2005). 

More specifically, the probability of observing outcome j is 

�S = ��d�[� = �] = w��a�S + qS�b∑ w����T + qT��T∈{P,3,$} ,			� = 0,1,2 

I will also use an ordered logit (OL) model (Cameron & Trivedi, 2005). In the 

ordered logit model, outcome j will occur if the later variable �∗lies in between two 

thresholds, �SD3 < �5∗ ≤ �S. And the probability of observing outcome j is 

�S = ��d�[� = �] = ��d���SD3 < �5∗ ≤ �S�
= w��a�S + qS�b1 + w��a�S + qS�b − w��a�SD3 + qS�b1 + w��a�SD3 + qS�b,				 

� = 0,1,2 

The assumption for the OL model is that the odds across each two outcomes are 

proportional. If the data satisfy the proportional odds assumption, the ordered logit 

estimation is more efficient than the multinomial logit. Later when I present the 

results, I will test for the proportional odds assumption. The sign of the coefficients of 

                                                 

14 A conditional logit model, on the other hand, is one with alternative-specific regressors that vary 
across alternatives/outcomes. 
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the ordered logit model can be interpreted as determining whether or not the latent 

variable �∗ increases with the regressors. Both the MNL and OL models are 

estimated by maximizing the log likelihood function. 

� = u��� = ∑ ∑ �5Su��5SS∈{P,3,$}�5)3 . 

In addition to estimating the coefficients, it is also interesting to interpret the 

estimation results in terms of marginal effects on the predicted probabilities of a 

change in the explanatory variables, calculated as  
B��WB:� = �5SaqS − q̅5b with q̅5 =

∑ �5�q��  for continuous variables, and 
���W�:� = ��d�[� = �|�, �5 = 1] − ��d�[� =

�|	�, �5 = 0] for dummy variables. 

3.3.3. Data and variables 

My sample consists of 303 major chemical manufacturing plants (SIC code 28) for 

the time period from 1990 to 201015 (see Figure 3-1 for a map of these plants). The 

chemical manufacturing industry is one of the most water polluting industries in 

terms of conventional pollutants like BOD and TSS. “Major” industrial facilities are 

determined based on specific criteria developed by EPA or the states, and generally 

depends on the significance of the discharger's impact on the environment (US EPA, 

2012b). I focus on major facilities because they discharge the majority of wastewater 

from this industry. Plant-level data on effluent limits, pollutant discharge level, 

                                                 

15 There are 416 major chemical manufacturing plants, with only 303 plants with numeric limitations 
on BOD in their NPDES permits over the sample period. 
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compliance history, inspections and enforcement actions come from EPA’s Permit 

Compliance System (PCS). The PCS also contains information on permit issuance 

and expiration date, which is used to identify permit renewal events. This study 

examines effluent limits on BOD, which are the most common pollutant in this 

industry and one of the five conventional pollutants EPA is focusing on. The 

corresponding ambient water quality is measured by dissolved oxygen (DO). Data on 

water quality come from EPA’s Storage and Retrieval (STORET) data warehouse, 

US Geological Survey (USGS) National Water Information System (NWIS) and state 

regulatory agencies in the case where data are not available from the other two 

sources.  

 

Figure 3-1. Map of major chemical manufacturing plants in the U.S. 
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The dependent variable: permit renewal outcome 

The dependent variable is the outcome of a permit renewal event, whether and to 

what direction the effluent limits specified in the NPDES permit will change.  

� = �0,								�"	Ĝ − Ĝ D3 < 01,								�"	Ĝ − Ĝ D3 = 02,								�"	Ĝ − Ĝ D3 > 0 

Ĝ  is the limit level for a specific discharge point of a plant in cycle c, and is measured 

as pounds per day (lb/day) for either daily or a 30-day average. According to the 

NPDES program, these numeric limitations are expressed as mass limitations unless 

the guideline allows or requires concentration limitations. For most of the effluent 

guidelines, the numeric standards are expressed in terms of mass and are based on 

some measure of the level of production at the facility. For example, if the effluent 

guideline is expressed as 5 pounds of pollutants per 1000lb of raw materials, the 

calculated limits will be 50 pounds per day for a plant that uses 10,000 pounds of raw 

material a day.   

One data issue involves multiple limit levels for a specific discharge point at a plant 

within a cycle, which is most likely due to tiered limits. Tiered permit limits are 

defined as limits that only apply to the discharge when a certain threshold (e.g., 

production level), specific circumstance (e.g., batch discharge), or timeframe (e.g., 

after 6 months) triggers their use (US EPA 2012). About 15% of all permits in the 

Chemical Manufacturing industry (SIC28) are tiered limits. In this study, I keep only 
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the lowest limit level for the case of tiered limits to avoid double counting of permit 

change. The calculated dependent variable would be the change of the lowest tier 

across cycles. 

Explanatory variables 

The dependent variable, permit renewal outcome, is modeled as a function of 

variables describing past performance and regulatory activities. Summary statistics 

are presented in Table 3-1. 

A. Numeric violations 

I include the number of self-reported numeric violations in the past three years as 

explanatory variables to examine the impact of numeric violations and any 

information revealed on the permitting decision.  A numeric violation is identified if 

the actual discharge reported in DMR exceeds the permitted effluent limits. Plants are 

required to monitor, record, and report their pollutant discharge in the monthly 

DMRs. The submitted DMRs containing monitoring results are electronically 

compared with the effluent limits and other requirement specified in the NPDES 

permit in EPA’s system to decide compliance status. Although the monthly DMR is a 

requirement by the NPDES program, the plants have the flexibility to choose from a 

range of EPA-approved methods for analyzing the samples (US EPA, 2010). Plants 

may therefore have the incentive and possibility to strategically choose an analytical 

method for their benefit. To this extent, truthfully reporting numeric violations may 

still be regarded as a cooperating behavior by the regulators and may lead to more 
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lenient future permits. Nevertheless, numeric violations in DMRs provide regulators 

just one source of information as these violations could be results of either inadequate 

abatement effort or technology constraints. Final permitting decisions will depend on 

self-reported numeric violations together with other sources of information such as 

those from inspection activities.   

B. Absent DMRs 

Failure to submit DMRs or missing important data entries in the DMR can be a 

violation that reaches the level of significant non-compliance (SNC) classification 

(US EPA 2012, CWA/NPDES Compliance Status). Absent DMRs classified as SNC 

will typically trigger a review by the regulator to further collect information, to 

determine compliance status, and to determine the need for a permit modification. 

Absent DMRs could therefore affect permit setting decisions to both directions. On 

one hand, absent monitoring reports may imply that the plant is trying to hide 

performance and other important information from being discovered by the regulator, 

which is a non-cooperating behavior. If this is the case, the permit level will be 

tightened as stated in Hypothesis 2. On the other hand, absent DMR consists of very 

limited information while final permitting decisions will depend on more 

comprehensive information. There will be reviews conducted by the regulators after 

absent DMR violation to find out more information about the plant’s performance and 

monitoring and reporting process.  

C. Past Inspection and inspection results 
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The third factor that may affect permit level is inspection. NPDES permits are 

expected to be tightened up if non-cooperative behaviors or lack of abatement effort 

are detected during inspections (Hypothesis 2). Besides determining compliance 

status with permit conditions, one of the main objectives of inspection is to obtain 

information about abatement effort, for example, to examine operation and 

monitoring process and to verify the accuracy of the self-submitted DMRs (UA EPA, 

2004). Although the exact level of maximum feasible effort is highly costly to 

identify, the lack of appropriate maintenance and abatement effort is relatively easy 

for the inspector to discover. Inspections could be either sampling or non-sampling 

inspections. During sampling inspections, the inspector will take representative 

samples in order to decide compliance status with discharge limits and verify the self-

submitted reports as well. During non-sampling inspections, such as compliance 

evaluation inspections, the inspection will review documents and visually examine 

facilities, effluents and receiving waters to verify whether the permitted facility is in 

compliance with operational requirements and effluent limits. 

Violations detected during inspections, or “single event violations” are also included 

in the model. The most frequent single event violations are 1) violation detected 

during inspection 2) improper operation, maintenance, monitoring or sampling, 3) 

unauthorized discharge or by-pass, 4) late or inaccurate DMRs. These are indicators 

of insufficient effort in the abatement process (improper operation and unauthorized 

discharge), not cooperating with regulators (unauthorized discharge and late DMRs), 

and even trying to avoid being discovered of a violation (not submitting DMRs). 
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These violations are related with the lack abatement effort rather than technology 

constraint of a plant. In this case, it is expected that the regulator will use a tighter 

permit to prompt higher abatement effort from these plants (Hypothesis 2). In 

addition, when a violation is found during inspection, the inspector is able to collect 

related information about the violation in order to decide the cause, e.g. whether it is 

technology or effort related.  

D. Past enforcement actions 

A fourth factor that regulators use to obtain information when deciding the permit 

renewal is the enforcement history. Enforcement actions are expected to be followed 

with tighter NPDES permits if they indicate serious violations that harm the local 

water quality (Hypothesis 3). Enforcement actions occur when violations (of any 

type, e.g. violations of discharge limits, violations related to operation and 

maintenance, unauthorized discharge, other reporting violations) are found, either 

through self-reporting or inspection. The types of actions include monetary penalties 

and non-monetary enforcement actions, for example, notice of violations and 

administrative orders that require the plants to correct the violations. In the 

estimation, I separate monetary penalties from non-monetary enforcement actions16. 

For penalty I include in the estimation both a dummy indicator and the natural 

logarithm of the dollar amount of penalty in the past three years. I expect the dollar 

amount of penalty to have an impact on permit levels as it reveals both the severity of 

                                                 

16 A complete list of formal and informal enforcement actions can be found in EPA’s data dictionary 
(US EPA, 2012b).  
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violations (the extent of deviation from compliance) and regulator’s ability to use 

monetary sanctions as an enforcement tool. When a regulator is capable to levy 

penalty without constraint, the regulator is less likely to change the permit level as an 

additional enforcement tool. 

E. Water Quality 

The final set of variables that may affect permit level is ambient water quality. The 

corresponding ambient water quality measure for BOD discharge is dissolved oxygen 

(DO). Higher level of DO generally indicates better water quality, as insufficient 

oxygen dissolved in the water will harm aquatic lives like fish. Low levels of DO are 

expected to be associated with tightened permits if the regulators do respond to local 

water quality. In addition, the impact of other variables will also depend on water 

quality as the final level of effluent limits is determined by WQBELs if TBELs are 

not sufficient to protect the water body for its designated use. This implies that if a 

serious violation will lead to tighter permit no matter what are the reasons for the 

violation (either effort or technology related). 

Data on ambient water quality is obtained from three sources 1) EPA’s Storage and 

Retrieval (STORET) data warehouse, 2) USGS National Water Information System 

(NWIS), and 3) state’s department of environmental quality in states where water 

quality data is not available in the previous two sources (e.g., Texas, Louisiana and 

Illinois). Water quality data is then matched with manufacturing plants using 

ArcMap®. I find the nearest one or two monitoring stations with DO data to a plant on 
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ArcMap®, and retrieve the water quality data from the station(s). A majority of the 

missing data results from 1) failure to identify a nearby monitoring station; or 2) the 

sample periods of the NPDES permits and the observations from monitoring stations 

do not overlap or have limited overlap. 

F. Other control variables 

To control for unobserved heterogeneity in plant characteristics, I include in the 

estimation a dummy variable indicating whether a plant belongs to a multi-plant or 

single-plant firm. The status of a multi-plant firm may affect permitting decisions in 

two aspects. Compared with single-plant firms, multi-plant firms may be heavy 

emitters as they are generally larger in size and have higher production capacity. 

Plants belong to the multi-plant firms may become the target of state regulators and 

draw more regulatory scrutiny. On the other hand, the multi-plant firms may be have 

more experience complying with regulations, more likely to afford to hire experts or 

consultants dealing with regulatory issues, and may have larger bargaining power 

compared with those smaller, single-plant firms. 

Because of missing values in the water quality data, I include watershed fixed effects 

together with time fixed effects to control for water quality as an alternative. The 

watershed fixed effects would capture any time invariant watershed-specific 

heterogeneity. Watersheds are identified using the USGS Hydrologic Unit Code 

(HUCs) at the region level, which is the highest level of HUCs.  

In addition, to control for unobserved heterogeneity of regulators (e.g. tougher 
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regulators may be more likely to levy a penalty and lower the limit level at the same 

time), I use state fixed effects as a measure for general regulatory stringency and 

other state characteristics. In most cases, the states are the permitting authorities - 

they issue permits, conduct compliance and monitoring activities, and take 

enforcement actions - while EPA only plays an oversight role17. State fixed effects 

would capture unobserved heterogeneity in terms of toughness across different state 

regulators. I have also included presidential administration fixed effects to control for 

any political and economy-wide factors that could affect state regulators decision 

making. 

Table 3-1. Summary statistics of explanatory variables 

Variable Description Obs. Mean Std. dev. 

numviol:1 Dummy variable equal to 1 if plant had 1 self-
reported numeric violation in the past 3 years 

840 0.074 0.262 

numviol:2 Dummy variable equal to 1 if plant had 2 self-
reported numeric violation in the past 3 years 

840 0.031 0.173 

numviol:>=3 Dummy variable equal to 1 if plant had 3 or 
more self-reported numeric violation in the 
past 3 years 

840 0.037 0.189 

d_absent Dummy variable equal to 1 if plant had absent 
DMRs in the past 3 years 

840 0.121 0.327 

d_singviol Dummy variable equal to 1 if plant had a 
violation detected during inspection in the past 
3 years 

840 0.052 0.223 

insp: 2-3 Dummy variable equal to 1 if plant was 
inspected 2 or 3 times in the past 3 years 

840 0.429 0.495 

insp: 4-9 Dummy variable equal to 1 if plant was 
inspected 4 to 9 times in the past 3 years 

840 0.367 0.482 

insp:>=10 Dummy variable equal to 1 if plant was 840 0.067 0.250 

                                                 

17 There are 46 states that have the permitting authority. Idaho, Massachusetts, New Hampshire, New 
Mexico, and DC and all territories (excluding US Virgin Island) do not have NPDES program 
authorizations (US EPA, 2010). 
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inspected10 times or more in the past 3 years 

EA:1 Dummy variable equal to 1 if plant received 1 
enforcement action in the past 3 years 

840 0.121 0.327 

EA:>=2 Dummy variable equal to 1 if plant received 2 
or more enforcement action in the past 3 years 

840 0.082 0.275 

d_pen Dummy variable equal to 1 if plant received 
penalty in the past 3 years 

840 0.083 0.277 

ln(penalty) Natural log of the dollar amount of penalty 840 0.786 2.648 

DO <= 5mg/L Spline for level of dissolved oxygen <= 5mg/L 179 4.966 0.258 

DO > 5mg/L Spline for level of dissolved oxygen > 5mg/L 179 3.170 1.695 

d_multi Dummy variable equal to 1 if a plant belongs 
to a multi-plant firm 

840 0.660 0.474 

 

3.4. Empirical results 

Tables 3-2 and 3-3 present results from MNL and OL regressions of NPDES permit 

renewal outcomes respectively. In both tables, Model 1 contains all explanatory 

variables except the water quality variable and is estimated using the full sample, 

Model 2 includes additionally state and administration fixed effects, and Model 3 

includes watershed and administration fixed effects. Model 4 and Model 5 contain 

water quality as an additional explanatory variable and are estimated using the 

subsample that has water quality data. Model 5 contains additionally state and 

administration fixed effects. For each of these specifications, I presented both the 

estimated coefficients and marginal effects. The marginal effects reported here are 

average marginal effects, or sample means of the marginal effects at different points 

of observation (Bartus, 2005). Average marginal effect (AME) is more suitable than 

the marginal effect at the mean (MEM) for my case as the several of the explanatory 
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variables are dummy variables that indicate different levels of a single categorical 

variable. For the dummy variables, the reported AMEs imply that the average change 

in predicted probability of a permit renewal outcome if the dummy variable changes 

from 0 to 1.  I further tested for proportional odds in order to implement the ordered 

logit model. The null hypothesis of proportional odds is rejected using the full sample 

but I fail to reject the null for the subsample with water quality data at 10% 

significance level.  

3.4.1. Numeric violations  

As the plants have the flexibility to choose different methods in analyzing discharge 

samples, they are able to choose one that result in no or fewer numeric violations. To 

this extent, self-reported numeric violations may be viewed as an indicator of 

pollution control effort under technology constraint. Further, such cooperating 

behavior is hypothesized to lead to more lenient NPDES permits. To quantify the 

impact of past numeric violations, I include in the regression dummies for different 

levels of accumulated number of violations in the three years preceding the permit 

renewal event. The dummies for zero violations are omitted as the base group, and the 

results on other dummies indicate effects relative to the no violation case. An 

alternative way is to include a continuous variable denoting number of violations. 

Nevertheless, including dummies for different ranges allows for possible non-

linearity in the effect of violations on permit setting decisions. 

In the first three models (Column 1 to 6), the effect of numeric violations do not have 
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a significant impact on permit change. Once water quality is controlled for (Column 7 

to 10), reporting two or more numeric violations makes it significantly more likely for 

a plant to receive a more relaxed permit, and less likely to receive a tighter permit. 

The results indicate that although DMRs are required, truthfully reporting numeric 

violations is still regarded by the regulator as a compliance effort. It is an indicator 

that the plants have already adopted best pollution control technology and have spent 

adequate abatement effort but still fail to reach the limit level due to technology 

constraint. This implies that the current NPDES limit is more stringent than required 

by the best available technology and is thus more likely to be relaxed in the future. In 

addition, plants may choose to use self-disclosure to send a signal of cooperation as 

adjustment in treatment technology and process is time-consuming (Earnhart, 2007; 

Helland, 1998). In this case, the regulator is more likely to relax the permit as a 

reward for the cooperation with the belief that the plants will adjust the abatement 

process as promised given enough time. This result lends support for Hypothesis 1, 

and is in accordance with the conclusions in previous studies that self-disclosure 

behavior is rewarded with less inspection and enforcement (Stafford 2007; Toffel and 

Short 2011).  This finding suggests that self-reporting plants are rewarded with less 

stringent performance standard in addition to relaxed regulatory scrutiny. 

Nevertheless, the fact that actual discharge exceeds the permitted level could be 

results of either inadequate effort or technology constraints. Permitting decisions will 

depend on reported numeric violations together with other sources of information. 
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3.4.2. Absent DMRs 

Absent DMRs is a type of significant non-compliance that will trigger a compliance 

review by the regulator. To examine the effect of absent DMR on permitting 

decisions, I use a dummy variable indicating whether there has been such a violation 

in the three years preceding a permit renewal event. I find little supporting evidence 

for the hypothesis that absent monitoring reports will lead to tighter limit as they 

imply plants are hiding information from the regulator. Regression results from the 

MNL model show that absent DMR makes it more possible to both a more relaxed 

and a more tightened limit in the next cycle when water quality and state fixed effects 

are taken into account (Model 1-5). This result is best explained by the case where the 

regulators do not acquire enough information from missing monitoring reports per se. 

As mentioned in Section 3.3.3., absent DMRs will trigger reviews by the regulator to 

further investigate the facility and the cause of missing reports. The permit setting 

decision will depend on additional information obtained from the review process 

following absent DMRs or a more extensive inspection process. 

3.4.3. Inspections and inspection results  

A. Inspections  

Inspection is an information gathering process for the regulators, with a focus on 

abatement operation and maintenance in addition to verifying final discharge level. 

Compared to receiving zero or one inspection, plants that received two or more 
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inspections in the past three years are significantly less likely to receive a relaxed 

limit and more likely to receive a tighter permit, with different bins of the inspection 

variable having similar effects in terms of magnitude. This effect is consistent across 

almost all specifications in the lower equation, and for both the MNL and OL models. 

This result can be explained together with the objective of inspections and what 

previous studies have found about inspection. First of all, previous studies suggested 

that regulators target suspicious plants for inspection, especially those with a poor 

environmental performance (see for example Gray and Deily 1996; Stafford 2002). 

Next, the regulators are paying more attention finding out effort level rather than 

measuring end result during the inspections. One of the major objectives of inspection 

is to examine abatement operation, monitoring and reporting processes besides 

verifying the discharge level. With these two points in mind, the estimation results are 

best explained by the scenario where the regulator’s suspicion of violating plants is 

confirmed during inspections.  The suspects of violations - plants with frequent (two 

or more) inspections - are found not spending enough abatement effort. Consistent 

with Hypothesis 2, observing inadequate effort during inspections encourages the 

regulators to tighten up the permitted level in order to prompt a higher abatement 

effort from the plants. Having just one inspection, on the other hand, is probably the 

result of the EPA requirement that major plants should be inspected at least every two 

years, and may have less to do with the plants’ performance. The results further 

justify regulators’ strategic use of limited inspection resource by targeting plants with 

poor performance. 
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B. Violations detected during inspection 

Non-cooperative behaviors discovered during inspections are indicators of inadequate 

effort and are hypothesized to result in more stringent future permit. Once water 

quality is controlled for, violations detected during inspection (i.e. single event 

violation) will significantly increase the probability of tightening up the permit level 

in both the MNL and OL models (Columns 7 to 10 in Table 3-3 and Columns 4 to 5 

in Table 3-4 for the lower equation). This result provides supporting evidence for 

Hypothesis 2. As regulators observe improper operation and inadequate pollution 

control effort, they tend to use tighter permit to induce higher level of effort. The lack 

of adequate effort indicates that it is technically feasible for the plant to achieve a 

better performance level given appropriate incentive. 

For predicting a higher permit in the MNL model, however, having a single event 

violation makes it more likely to relax the permit (Column 7 to 10 in Table 3-3 for the 

higher equation). This seemingly counterintuitive result nevertheless confirms that 

inspection is an information-gathering process. The permitting decision will depend 

on information revealed during the inspection process in addition to the compliance 

status. In addition, these results should be considered together with the effect of 

enforcement actions. Regulator’s first response to a violation should be various forms 

of enforcement actions, e.g. notice of violations, administrative orders, and penalties. 

When the lack of effort observed during inspection does not reach the level of a 

violation, it is an indicator that the limit level might be too relaxed. As the regulators 
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are not able to take enforcement actions in this case (no violation is identified), they 

have lower incentive to further relax the permit level. This explains why detected 

violations, compared to no violations, seem to encourage relaxing the permit level.  

These results together provide supporting evidence for Hypothesis 2. Both the 

procedure and findings of an inspection serve as an information-gathering process 

which will update the regulator’s previous assumptions. Common types of detected 

violations include improper operation and monitoring, late or inaccurate DMRs, as 

well as unauthorized discharge. As these detected violations are more effort-related 

(rather than technology related), the regulators tend to use tighter permit to induce 

higher level of effort if they decide that it is technically feasible for the plant to 

achieve a better performance level given appropriate incentive. On the other hand, a 

tighter permit also serves as an additional source of punishment as it implies higher 

cost to achieve compliance status. When inadequate effort is identified during 

inspections, regulators may change permit level as an alternative method to encourage 

abatement effort. 

3.4.4. Monetary and non-monetary enforcement actions  

Enforcement actions are correlated with violations, and are expected to affect permit 

setting decisions only if they reveal additional information about the violation, for 

example, the severity or the degree of water quality damage. In general, I find little 

evidence that past non-monetary enforcement actions will affect permit setting 

decisions. In both MNL and OL models, when not including water quality variable, 
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past enforcement actions (excluding penalties) generally have no significant impact 

on permit change. When water quality is controlled for, one enforcement action 

makes it more (less) possible for a tighter (relaxed) permit, but two or more 

enforcement actions have no additional effect if state FE is also controlled for (Model 

5). Non-monetary enforcement is typically in the form of notice of violations or 

administrative orders, which require facilities to correct non-compliance behaviors 

and results. The lack of significance on these variables seems to suggest that the 

plants are able to meet the correction requirements within a short period of time. The 

regulators therefore have no further incentive to revise the permit. 

I find supporting evidence that previous penalties have an impact on limit levels of 

NPDES permits as it reveals the severity of violations and regulator’s ability to use 

penalty as an enforcement tool. Results from the MNL model indicate that large 

amount of penalty discourage permit change to either direction. The dummy variable 

for past penalty alone indicates that a plant is more likely to have a relaxed permit if it 

had penalties before (Model 1-1 to Model 1-4), while there is no significant effect 

once state FE is controlled for (Model 1-5). In addition, this positive effect of penalty 

diminishes and eventually leads to the opposite if the amount of penalty is large 

enough, as suggested by the negative coefficients and marginal effects on the natural 

logarithm of the penalty amount. The turning point for Model 1-4 is around $1100, 

which indicates that an increase in penalty will less likely lead to a relaxed limit if the 

penalty amount is greater than $1100. The effects of past penalties are consistent 

across different specifications in the MNL model, though it is only marginally 
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significant in the OL model. This result lends support to the hypothesis that the 

regulators are targeting the highly severe violations that may harm local water 

quality, as monetary penalty per se is an indicator of severe violation and the amount 

of penalty is positively correlated with the severity of the violation.  

The results in the MNL model in predicting a tighter permit may seem counter-

intuitive  – past penalties would discourage a tighter permit, and the larger the penalty 

amount, the stronger the effect. In the OL model, the amount of penalty encourage 

tightening up the permit (Model 2-4), but this effect becomes insignificant once the 

state FE is also controlled for (Model 2-5). These results suggest that simply having a 

penalty makes it no more likely to receive a more stringent permit. A large amount of 

penalty, however, would discourage permit change to either direction and will more 

likely keep the permit level unchanged. This is consistent with the hypothesis that 

regulators have less incentive to tighten permit level if they are able to use penalty as 

an enforcement tool. On the other hand, the regulators have higher incentive to revise 

the permit level as an additional enforcement if the ability of levying penalty is 

restricted. In addition, these findings are not inconsistent with Hypotheses 1 and 2. 

Highly severe violations (and thus high penalty) are more likely the combined results 

of both insufficient technology and inadequate abatement effort. When making 

permitting decisions, the regulators have no incentive to relax the limit level as the 

plant should be spending more abatement effort. On the other hand, the regulators are 

reluctant to tighten up the limit either because of the temporary technology constraint. 

As suggested by Earnhart (2007), regulations more stringent than a certain level can 
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undermine environmental performance. In this case, the best strategy is to keep the 

current permit level, while hoping the penalty alone will have the desired deterrence 

effect and encourage the plant to spend more abatement effort. 

3.4.5. Water quality  

I expect that the permitting authority will respond to local water quality when making 

permit setting decisions (Hypothesis 3). I use a spline for water quality with a knot at 

DO equal to 5mg/L as the effect may be different across different level of DO. DO 

level below 5mg/L is considered a distressed condition for aqua life. In the MNL 

model, neither of the spline terms for the level of DO have a significant impact on 

predicting relaxing the limit. In predicting a lower/tighter limit, a marginal 

improvement in water quality when DO smaller than 5mg/L will make it more likely 

to tighten the limit in the MNL model, while a marginal improvement beyond 5mg/L 

will discourage tighter permit in both the MNL and OL models (when state dummies 

are included). These results are consistent with the hypothesis that the regulator aims 

to protect local water quality: the permits are more likely tightened up when DO level 

is low (e.g. water quality is poor below 5mg/L) even though the quality may be 

improving. Once the water quality improve beyond the critical condition of 5mg/L, a 

plant is more likely to receive a relaxed permit as expected in Hypothesis 3. These 

results suggest that state regulators in general do respond to local water quality when 

determining NPDES permit levels, consistent with findings in Chakraborti and 

McConnell (2012).  
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The results with water quality should be explained with caution for the following 

issues. First of all, data on monitored dissolved oxygen are limited. One of the 

reasons is failure to identify a nearby monitoring station from all possible sources 

including STORET, USGS and the state regulatory agencies. Table 3-4 presents 

number of plants matched and unmatched with a nearby water quality stations by 

state.  In addition, the matched monitoring stations may have limited years of 

observation. For example, the matched monitoring station of a plant with NPDES 

permit from 1990 to 2010 may have water quality data only from 2003 to 2007. 

Figure 3-2 presents the frequency of plant-by-year observations matched and 

unmatched with water quality data. Finally, there are cases where one plant is 

matched with multiple monitoring stations to obtain more years of observation. There 

may be inconsistency across these data since stations from different sources may use 

different methods to monitor the level of dissolved oxygen. 

Summary statistics for the two sub-samples with and without water quality data is 

presented in Table 3-6, together with results from t-test for equality of sample means. 

To examine the impact of missing water quality data, I performed a chow-test and 

failed to reject the null that there is no structural change across the two sub-samples at 

predicting permit levels (the p-value for the test statistic �$�30� is 0.708). 

3.4.6. Multi-plant status 

Multi-plant firms, compared to single plant firms, are significantly more likely to 

receive a tightened limit and less likely to receive a relaxed limit in both the MNL 
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and OL models. This is consistent with the hypothesis that regulators may target 

multi-plant firms as they are typically heavy dischargers of the water pollutants. In 

addition, this result could imply that multi-plant firms are more experienced at 

complying with the NPDES regulation and have more bargaining power when 

applying for NPDES permits. Therefore they have already obtained the most 

favorable condition at earlier rounds of permitting less likely to receive permit 

relaxed even further. 
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Table 3-2. Multinomial logit results: permit level change 

 

Equation Variables 

Model 1-1 Model 1-2 Model 1-3 Model 1-4 Model 1-5 

coef. marginal 
effect 

coef. marginal 
effect 

coef. marginal 
effect 

coef. marginal 
effect 

coef. marginal 
effect 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Higher d_absent -0.049 0.023 0.297 0.068 0.211 0.054 0.482 0.058** 1.876* 0.159*** 
  (0.290) (0.045) (0.332) (0.048) (0.322) (0.049) (0.714) (0.024) (1.102) (0.030) 
 numviol:1 0.506 0.103* 0.638* 0.113* 0.605* 0.110* -1.795 -0.161*** -1.883 -0.151*** 
  (0.334) (0.060) (0.383) (0.058) (0.363) (0.060) (1.138) (0.012) (1.216) (0.013) 
 numviol:2 0.208 0.071 0.386 0.099 0.484 0.110 0.378 0.150*** 0.549 0.164*** 
  (0.506) (0.087) (0.558) (0.086) (0.542) (0.092) (0.749) (0.029) (0.946) (0.027) 
 numviol:>=3 -0.642 -0.034 -0.393 0.009 -0.522 -0.008 -0.444 0.033 1.079 0.254*** 
  (0.528) (0.067) (0.611) (0.078) (0.566) (0.074) (0.837) (0.026) (1.162) (0.035) 
 d_singviol 1.810*** 0.301*** 1.307** 0.175** 1.236** 0.184** 2.288* 0.131*** 2.276 0.123*** 
  (0.466) (0.090) (0.513) (0.078) (0.499) (0.083) (1.357) (0.038) (1.555) (0.037) 
 insp: 2-3 0.316 -0.016 -0.145 -0.056 -0.039 -0.045 0.040 -0.104*** -0.067 -0.097*** 
  (0.299) (0.042) (0.363) (0.042) (0.347) (0.043) (0.779) (0.022) (0.985) (0.024) 
 insp: 4-9 0.559* -0.008 0.186 -0.041 0.353 -0.012 0.209 -0.085*** 0.054 -0.087*** 
  (0.311) (0.045) (0.424) (0.049) (0.393) (0.052) (0.808) (0.021) (1.092) (0.023) 
 insp:>=10 0.549 0.060 1.267* 0.092 0.852 0.072 -0.149 -0.092*** -0.696 -0.098** 
  (0.423) (0.074) (0.668) (0.104) (0.540) (0.091) (1.486) (0.032) (2.670) (0.038) 
 EA:1 0.005 -0.020 -0.166 -0.042 -0.128 -0.035 0.510 -0.008 -0.511 -0.097*** 
  (0.319) (0.041) (0.361) (0.037) (0.349) (0.039) (0.914) (0.024) (1.038) (0.017) 
 EA:>=2 -0.031 0.012 -0.241 -0.023 -0.171 -0.008 0.495 0.109*** -0.102 -0.011 
  (0.360) (0.052) (0.418) (0.045) (0.390) (0.048) (0.920) (0.033) (1.176) (0.026) 
 d_pen 4.352** 0.666*** 5.044** 0.652*** 4.985** 0.685*** 8.056 0.546*** 9.088 0.260 
  (2.004) (0.175) (2.265) (0.125) (2.102) (0.112) (5.690) (0.155) (6.291) (0.172) 
 penalty amount, log -0.436** -0.058** -0.499** -0.061** -0.486** -0.064** -0.840 -0.085*** -0.890 -0.057*** 
  (0.214) (0.028) (0.242) (0.028) (0.224) (0.028) (0.630) (0.016) (0.694) (0.014) 
 DO level <=5       0.784 0.046 1.601 0.118** 
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        (1.602) (0.052) (2.086) (0.053) 
 DO level >5       -0.005 -0.007* 0.027 0.008 
        (0.140) (0.004) (0.228) (0.005) 

 
dummy for multi-
plant firms 

      -1.085** -0.146*** -0.808 -0.096*** 

        (0.459) (0.010) (0.584) (0.012) 
Lower d_absent -0.442* -0.092* -0.356 -0.092* -0.296 -0.077 0.237 0.012 1.214 0.069** 
  (0.264) (0.050) (0.291) (0.051) (0.284) (0.053) (0.663) (0.028) (0.949) (0.032) 
 numviol:1 -0.184 -0.080 -0.217 -0.092 -0.150 -0.079 -0.507 -0.024 -0.439 0.006 
  (0.328) (0.061) (0.354) (0.059) (0.345) (0.061) (0.641) (0.026) (0.707) (0.026) 
 numviol:2 -0.506 -0.120 -0.591 -0.139* -0.412 -0.118 -1.373 -0.248*** -1.588 -0.262*** 
  (0.493) (0.086) (0.524) (0.081) (0.507) (0.084) (0.980) (0.020) (1.008) (0.018) 
 numviol:>=3 -1.106** -0.183** -1.060* -0.172** -1.174** -0.188** -2.176* -0.295*** -2.018 -0.312*** 
  (0.486) (0.074) (0.556) (0.082) (0.524) (0.074) (1.157) (0.017) (1.258) (0.014) 
 d_singviol 0.638 -0.062 0.420 -0.031 0.370 -0.037 2.324* 0.235*** 2.059 0.190*** 
  (0.469) (0.078) (0.500) (0.080) (0.492) (0.081) (1.317) (0.040) (1.356) (0.042) 
 insp: 2-3 0.880*** 0.170*** 0.541* 0.121* 0.561* 0.121* 1.872* 0.326*** 1.491 0.263*** 
  (0.265) (0.059) (0.308) (0.063) (0.297) (0.062) (1.132) (0.047) (1.243) (0.049) 
 insp: 4-9 1.196*** 0.227*** 0.913** 0.179** 0.832** 0.155** 1.809 0.319*** 1.559 0.268*** 
  (0.273) (0.062) (0.355) (0.073) (0.336) (0.072) (1.159) (0.042) (1.305) (0.047) 
 insp:>=10 0.365 0.036 1.071* 0.108 0.697 0.077 1.121 0.245*** 0.499 0.136* 
  (0.402) (0.089) (0.566) (0.113) (0.484) (0.104) (1.634) (0.068) (2.213) (0.081) 
 EA:1 0.279 0.064 0.302 0.076 0.254 0.064 1.034 0.183*** 0.711 0.170*** 
  (0.254) (0.054) (0.283) (0.055) (0.276) (0.055) (0.780) (0.031) (0.871) (0.033) 
 EA:>=2 -0.244 -0.051 -0.112 -0.007 -0.228 -0.036 -0.354 -0.104*** -0.015 0.004 
  (0.317) (0.061) (0.372) (0.068) (0.351) (0.065) (0.949) (0.032) (1.117) (0.040) 
 d_pen 1.132 -0.268* 0.831 -0.281*** 0.801 -0.299*** 5.995 -0.078 8.190 0.198 
  (1.835) (0.146) (1.970) (0.107) (1.905) (0.097) (5.210) (0.154) (6.080) (0.173) 
 penalty amount, log -0.114 0.006 -0.069 0.021 -0.067 0.020 -0.565 -0.059*** -0.798 -0.092*** 
  (0.190) (0.037) (0.205) (0.037) (0.197) (0.037) (0.561) (0.020) (0.667) (0.022) 
 DO level <=5       1.015 0.155** 1.200 0.122* 
        (1.639) (0.071) (1.714) (0.067) 
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 DO level >5       0.096 0.020*** -0.074 -0.016** 
        (0.116) (0.005) (0.176) (0.006) 

 
dummy for multi-
plant firms 

      -0.323 0.013 -0.083 0.037** 

        (0.398) (0.016) (0.510) (0.018) 
 Observations 840 840 840 840 840 840 179 179 179 179 
 log likelihood -847.0  -749.5  -790.5  -168.3  -143.5  
 χ² 71.95  267.10  185.10  41.36  90.93  
 p> χ² 0.000  0.000  0.000  0.081  0.047  
 Pseudo R2 0.041  0.151  0.105  0.109  0.241  
 president FE   yes  yes    yes  
 state FE   yes      yes  
 watershed FE     yes      

 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
Notes: Dependent variable is permit level change. 
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Table 3-3. Ordered logit results: marginal effects of permit level change 

  Model 2-1 Model 2-2 Model 2-3 Model 2-4 Model 2-5 
Equation Variables marginal effect marginal effect marginal effect marginal effect marginal effect 
  (1) (2) (3) (4) (5) 
Higher d_absent 0.044 0.056 0.039 -0.001 -0.029* 
  (0.035) (0.037) (0.036) (0.016) (0.017) 
 numviol:1 0.078 0.089* 0.076 -0.044*** -0.056*** 
  (0.048) (0.050) (0.048) (0.014) (0.014) 
 numviol:2 0.095 0.107 0.097 0.237*** 0.250*** 
  (0.074) (0.075) (0.073) (0.030) (0.029) 
 numviol:>=3 0.065 0.062 0.072 0.222*** 0.319*** 
  (0.061) (0.061) (0.062) (0.031) (0.034) 
 d_singviol 0.182** 0.124* 0.126* -0.057*** -0.049** 
  (0.077) (0.072) (0.073) (0.020) (0.022) 
 insp: 2-3 -0.064** -0.055* -0.052* -0.150*** -0.093***  
  (0.026) (0.030) (0.030) (0.014) (0.018) 
 insp: 4-9 -0.084*** -0.073** -0.056* -0.120*** -0.090*** 
  (0.025) (0.033) (0.033) (0.014) (0.018) 
 insp:>=10 0.017 0.017 0.003 -0.084*** -0.059* 
  (0.048) (0.065) (0.055) (0.022) (0.033) 
 EA:1 -0.037 -0.049* -0.036 -0.069*** -0.099*** 
  (0.028) (0.028) (0.029) (0.014) (0.013) 
 EA:>=2 0.032 -0.004 0.023 0.115*** 0.021 
  (0.043) (0.041) (0.043) (0.027) (0.024) 
 d_pen 0.395 0.454 0.494* 0.301** 0.178 
  (0.323) (0.302) (0.281) (0.153) (0.155) 
 penalty amount, log -0.029 -0.034 -0.037 -0.033*** -0.020* 
  (0.023) (0.024) (0.023) (0.011) (0.012) 
 DO level <=5    -0.015 -0.005 
     (0.018) (0.019) 
 DO level >5    -0.011*** 0.011*** 
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     (0.003) (0.004) 
 dummy for multi-plant firms    -0.053*** -0.055***  
     (0.009) (0.011) 
Lower d_absent -0.061 -0.073* -0.053 0.001 0.043 
  (0.043) (0.042) (0.044) (0.024) (0.027) 
 numviol:1 -0.099* -0.108** -0.095* 0.070*** 0.088*** 
  (0.051) (0.049) (0.051) (0.025) (0.026) 
 numviol:2 -0.115 -0.123* -0.116* -0.220***  -0.225*** 
  (0.071) (0.068) (0.070) (0.017) (0.016) 
 numviol:>=3 -0.084 -0.078 -0.090 -0.211*** -0.262*** 
  (0.067) (0.067) (0.066) (0.018) (0.015) 
 d_singviol -0.190*** -0.139** -0.144** 0.095** 0.077* 
  (0.054) (0.061) (0.062) (0.039) (0.039) 
 insp: 2-3 0.096** 0.079 0.076 0.197*** 0.124*** 
  (0.046) (0.050) (0.050) (0.027) (0.030) 
 insp: 4-9 0.133*** 0.111* 0.086 0.184*** 0.132*** 
  (0.049) (0.060) (0.059) (0.028) (0.033) 
 insp:>=10 -0.024 -0.024 -0.005 0.151*** 0.096 
  (0.067) (0.086) (0.079) (0.050) (0.063) 
 EA:1 0.060 0.077 0.058 0.116*** 0.171*** 
  (0.050) (0.051) (0.051) (0.029) (0.030) 
 EA:>=2 -0.045 0.006 -0.033 -0.132*** -0.028 
  (0.055) (0.061) (0.057) (0.024) (0.031) 
 d_pen -0.308** -0.325*** -0.342*** -0.257*** -0.181* 
  (0.128) (0.107) (0.095) (0.073) (0.109) 
 penalty amount, log 0.043 0.049 0.054 0.047*** 0.028* 
  (0.034) (0.034) (0.034) (0.016) (0.017) 
 DO level <=5    0.021 0.007 
     (0.026) (0.027) 
 DO level >5    0.015*** -0.016*** 
     (0.004) (0.006) 
 dummy for multi-plant firms    0.074*** 0.075*** 
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     (0.015) (0.017) 
 Observations 840 840 840 179 179 
 log likelihood -865.7 -833.3 -846.8 -180.5 -172.7 
 χ² 34.54 99.35 72.50 16.84 32.50 
 p> χ² 0.001 0.000 0.000 0.328 0.589 
 Pseudo R2 0.020 0.056 0.041 0.045 0.086 
 president FE  yes yes  yes 
 state FE  yes   yes 
 watershed FE   yes   

 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
Notes: Dependent variable is permit level change. 
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Table 3-4. Number of chemical plants with and without a nearby monitoring station, 
categorized by states 

 

State Number of 
matched plants 

Number of 
unmatched plants 

   AL 12 4 
AR 1 1 
CA 1 0 
CT 0 4 
DE 4 1 
FL 3 0 
GA 4 1 
IA  1 2 
IL  2 11 
IN 1 5 
KY 6 5 
LA 54 1 
MD 2 0 
MI 1 1 
MO 1 3 
MS 0 4 
NC 14 0 
NE 1 0 
NJ 11 0 
NY 9 3 
OH 10 0 
OK 0 1 
PA 6 1 
PR 0 4 
RI 0 2 
SC 19 0 
TN 2 5 
TX 42 20 
VA 1 7 
WA 1 0 
WV 16 0 
Total 225 86 
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Figure 3-2. Number of NPDES permits matched vs. unmatched with water quality data 

 

Table 3-5. Summary statistics for the sub-samples with and without water quality data 

 

Variable 
Mean of subsample 1 
(n=664) 

Mean of subsample 2 
(n=176) 

p-value for  
H0: diff = 0 

numviol:1 0.068 0.095 0.265 

numviol:2 0.021 0.067 0.020 

numviol:>=3 0.029 0.067 0.055 

d_absent 0.124 0.112 0.647 

d_singviol 0.050 0.061 0.563 

insp: 2-3 0.392 0.564 0.000 

insp: 4-9 0.375 0.335 0.319 

insp:>=10 0.077 0.028 0.002 

EA:1 0.130 0.089 0.105 

EA:>=2 0.086 0.067 0.377 

d_pen 0.079 0.101 0.379 

ln_penalty 0.756 0.897 0.538 

d_multi 0.678 0.592 0.038 
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3.5. Conclusion 

3.5.1. Summary and main contributions  

This chapter explores determinants of NPDES permit setting in the context of US 

chemical manufacturing industry. I argue that the regulatory standards are determined 

by regulators’ perception of plants’ abatement effort and technology inferred from 

past performance. Using data on permitting, enforcement and compliance of the 

chemical industry from 1990 to 2010, I model and estimate the change in limit level 

as a function of plants past performance and regulatory activities received. Estimation 

results support the hypothesis that the regulators use plants’ past performance to 

obtain information on abatement effort and technology when making regulatory 

decisions. More specifically, I find that self-disclosed violations are regarded as a 

signal for cooperation (adequate abatement effort under technology constraint) and 

will be rewarded with relaxed future permit. Inspection is an information-gathering 

process and provides information not otherwise available for the permitting decision. 

Inadequate abatement effort detected during inspections (e.g. improper operation and 

maintenance) will lead to more stringent future limit as it is technically feasible. The 

regulators are hesitant about their decisions in the case of violations due to the 

combination of inadequate effort and insufficient technology (e.g. violations that lead 

to high penalties). In addition, the permitting decision will also depend on regulator’s 

ability to use enforcement tools. As tighter permits can be used as an additional tool 

to encourage higher abatement effort, the regulators are less likely to change the limit 
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if they are capable of using the usual enforcement tools like penalties without 

constraint.  I have also found supporting evidence that the permitting authorities do 

respond to local water quality. These results, however, should be explained with 

caution as data on water quality are limited. 

This chapter contributes to the literature on environmental regulatory standard setting 

by providing the first empirical evidence on factors that affect standard setting 

decisions – the tradeoff between technology constraint and pollution control effort – 

in the context of water pollution regulation. Setting and enforcing performance 

standards are an integral strategy from the regulator’s point of view. Findings from 

this chapter confirm that regulators adjust not only enforcement strategy but also 

performance standards in response to facilities’ compliance history. This implies for 

the plants that maintaining a good environmental performance may have the 

additional benefit of relaxed permit in addition to reduced scrutiny as found in 

previous studies.  Finally, as compliance status is defined as actual performance 

relative to the standard, this chapter also contributes to the understanding of 

enforcement and compliance by internalizing the decision making on standard setting.  

3.5.2. Future research  

This study can be extended in a number of ways. First of all, this chapter examines 

the relationship between permit setting and compliance history only for the chemical 

manufacturing industry and only for one pollutant. It is interesting to explore whether 

similar relationship holds for a broader set of industries and other pollutants. In 
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addition, a natural follow-up question to ask is whether the regulators make 

permitting and inspection decisions simultaneously or sequentially. A structural 

equation estimation of permit setting, inspection and enforcement actions can be used 

to examine the joint decision of standard setting and enforcement strategies. The 

results of this study suggest regulators will tighten the NPDES permit to prompt a 

higher level of abatement effort if inadequate effort is observed. Following the result, 

it will be interesting to test whether a tightening up of the permit will indeed have the 

desired effect and lead to greater abatement effort by the regulated plants. Finally, it 

is also worth exploring how to strategically use a combination of permitting and 

enforcement to provide an incentive for adoption of cleaner technology in addition to 

higher abatement effort. Better technology would relax the current technology 

constraint and lead to more efficient pollution reduction. 
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Chapter 4: Concluding remarks 

The implementation of environmental regulations has led to substantial improvement 

of environmental quality in the nation for the past few decades. Affected businesses 

and political groups, on the other hand, argue that these regulations impose significant 

costs and lead to loss of productivity and competitiveness. The heated debate on 

environmental regulations has focused on tradeoff between protecting the 

environment and reducing the regulatory burdens for the regulated firms and 

industries. However, it is not possible to reach a consensus or even a common ground 

for discussion without defining a proper measure for such regulatory burden and 

quantifying the economic impact of regulations. Regulators face the tradeoff between 

environmental quality and cost/technology feasibility when determining an exact 

level of regulatory stringency. It is crucial to understand the factors regulators take 

into account when facing these tradeoffs and making regulation decisions. This 

dissertation aims to contribute to this debate by defining a more accurate measure of 

regulatory stringency, quantifying the competitiveness impact of environmental 

regulations, and exploring factors affecting regulatory decision making.  

In the first part of Chapter 2, I examine whether PAC provides a good measure of 

regulatory burdens on affected industries. I construct a heterogeneous firm model to 

show that regulation-induced changes in industry-level abatement costs contain both 

an intensive margin and an extensive margin. I apply decomposition analysis to 

identify the magnitude of the intensive margin and extensive margin effects. Results 
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from the analysis confirm that the intensive margin more accurately represents the 

direction and magnitude of regulation changes, while overall abatement cost change 

tends to underestimate changes in regulatory stringency. 

Beyond the issue of measurement, I quantify the competitiveness impacts of 

environmental regulations in the second part of Chapter 2.  The impact of regulation 

on trade flows is likely to be overestimated if the undervalued regulation change is 

used as the explanatory variable in testing PHE. To address this issue, I use the 

intensive and extensive margins as separate explanatory variables to explain changes 

in the US net imports from Canada, Mexico and the rest of the world. Results from 

fixed effects estimations suggest that abatement cost changes on the intensive margin 

and the extensive margin may lead to different or even opposite of PHE. The PHE led 

by intensive margins is much smaller than previously estimated, which suggests that 

the overestimation is corrected by using the intensive margin as a measure of 

regulation. 

Do regulators take into account cost and technology feasibility at all when trying to 

protect the local environment? In Chapter 3 of the dissertation, I explore regulatory 

decision making in the context of the NPDES permit program of the water pollution 

regulation. The NPDES program requires both a technology-based and a water 

quality-based effluent limitation in order to protect local water quality. Results from 

empirical analyses confirm that regulators use facility’s compliance history to infer 

their technology capacity and abatement effort. More specifically, I find that 
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abatement effort under technology constraint as reflected by self-disclosure behavior 

is regarded as a cooperating behavior and will be rewarded by relaxed limit levels in 

the future. On the other hand, inadequate pollution control effort such as improper 

operation and maintenance will result in more stringent future NPDES permit. 

Estimation results in this dissertation also support the hypothesis that permitting 

authorities in the US do respond to water quality when making permitting decisions.  

This dissertation contributes to the understanding of the economic impacts of 

environmental regulations in the following ways. First of all, I identify a more 

accurate measure for changes in regulatory stringency that is derived from facilities’ 

PAC. This measure controls for industry composition change caused by firm-

heterogeneity in technology and differentiated response to regulation. A proper 

measure of regulatory stringency forms the basis for evaluating any economic impact 

of regulations on the affected industries. Secondly, I correct the overestimation of 

PHE in previous studies by using the more accurate measure of regulation change. 

Environmental regulations do harm manufacturing industries’ competitiveness to the 

extent that tighter regulations will lead to increased net imports, but the negative 

impact is not as bad as previously thought if we take into account the changes in 

market structure. Finally, this dissertation is the first to systematically study the 

effects of regulation on trade flows while controlling for changes in industry 

structure. By using the intensive margin and composition change as separate 

explanatory variables to explain trade flows, I differentiate the impacts of regulation 

caused by increasing regulatory burden on a fixed set of firms/industries from those 
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caused by change in composition. 

By studying the NPDES permit program, this dissertation contributes to the literature 

on environmental regulatory decision making. Previous studies on environmental 

regulations have focused on the determinants of inspections and enforcement 

activities. To the best of my knowledge, this study provides the first empirical 

evidence of factors affecting regulatory standard setting in the context of water 

pollution regulations. Results from econometric analyses suggest that regulators aim 

to protect water quality by inducing higher abatement effort within technology 

constraint, on which the information is inferred from facilities’ compliance behavior. 

Chapter 3 of the dissertation implies that the tradeoff between the level of 

environmental protection effort and technology feasibility is the main consideration 

for determining the stringency of water regulation. Finally, setting and enforcing 

performance standards are an integral strategy from the regulator’s point of view. 

Findings from Chapter 3 confirm that regulators adjust not only enforcement strategy 

but also performance standards in response to facilities’ compliance history. 
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Appendices 

Appendix A. Derivation of the intensive and extensive margins 

The industry level PAC intensity can be written as  

E = F GHI	&��J�<F KHLL�J�< &� = F ��!� �1 − � &��J�<F ��� − !�	��J�< &� = nL																										�H − 1� 
The impact of an environmental tax change is 

&E&� = &n&� 1L − nL$ &L&� 																																																																									�H − 2� 
where  

&n&� = 4 &GHIh&� &��J
�<

− GHIh|�)�< &�.&� = �3 − I3 &�.&� 																	 �H − 3�				 

&L&� = 4 &�� − !� 11 − ��&� &��J
�<

− ��� − !� �1 − � C�)�< &�.&�
= �$ − I$ &�.&� 																																																															�H − 4�				 

Equations (A-3) and (A-4) are obtained using the Leibniz integral rule and assuming 

that �/ does not change with respect to regulation. Note that the terms 

�3, �$, I3, I$, L are functions of model parameters��, �, !�; �/ , �.�, where �.is the 

before change cutoff value. However, the second terms of (A-3) and (A-4) depend on 
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how the cutoff value will change in response to the changes in regulation. Now plug 

&n &�⁄  and &L &�⁄  back into &E &�⁄ , and we have 

&E&� = &n&� 1L − nL$ &L&� = ��3L − n�$L$ � − �I3L + nI$L$ � &�.&�
= OP��, �, !�; �/ , �.� − O3��, �, !�; �/ , �.� &�.&� 											�H − 5� 

where the first part is the aggregate cost change for a fixed set firms as if the cutoff 

values remained the same, and the second part denotes abatement cost change that 

depends on firm dynamics and the change of the cutoff abatement productivity. 

Appendix B. Discussion of the PACE survey  

As described in Section 2.4.1, the PACE survey collects data on costs related to 

pollution treatment, prevention and other activities from manufacturing facilities. It 

thus provides the single most comprehensive source of abatement costs and 

expenditures (U.S. Bureau of the Census, 1977). This information on compliance cost 

is crucial for the purpose of examining the economic impact of environmental 

regulations. Therefore data from the PACE survey have been widely used by 

economists in analyzing firms’ response to regulations (decisions on location and 

size) as well as the impact of regulations on investment, employment and productivity 

at industry level. 

Overtime, however, the researchers using the PACE data have identified several 

issues of the PACE survey related to whether it accurately collects and measures 
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pollution-related expenditures. Main issues include, firstly, that not all pollution 

related costs are captured by the PACE survey and the data may under-estimate true 

compliance cost (Morgenstern et al., 1998). Expenditures spent on changes in 

production process or input substitution may serve the dual purposes of abatement 

and profit-generating, and it is difficult for the facility accountant/manager to record 

this cost as abatement cost. In addition, additional constraint imposed by 

environmental regulation may reduce productivity of other (non-abatement) inputs or 

overall productivity  (Gray & Shadbegian, 2002; Jorgenson & Wilcoxen, 1990;  

Levinson, 1996) . However, when firm heterogeneity is accounted for using fixed 

effects estimations, the magnitude of underestimation becomes negligible or even to 

the opposite. This is because the unobserved firm heterogeneity in productivity will 

generate different estimates of costs (Morgenstern et al., 1998). Secondly, facilities 

lack appropriate baseline against which to compare cost (Berman & Bui, 2001; Jaffe 

et al., 1995; A. Levinson, 1996). The accurate cost data should compare the actual 

scenario with the counterfactual by measuring the costs above and beyond the amount 

a plant would have spent in the absence of pollution control effort. The PACE reports 

mentioned in their introduction section that telephone conversations and interviews 

with survey respondents indicate that in many instances estimating the baseline and 

the incremental costs related to pollution control is very difficult.  

I use only operating costs in this study because the above mentioned concerns are 

more severe for capital expenditures. The PACE survey reports the baseline issue as a 

major limitation of the data and therefore warns users to explain the CIPP data with 
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caution (U.S. Bureau of the Census, 1977). In addition, capital expenditures are for 

new investment during the survey year instead of annualized costs (Levinson & 

Taylor, 2008). Focusing on a single year’s capital expenditure can be problematic as 

it only reflects one-time purchasing expenditures and installation costs. However, the 

effects of environmental regulations usually last several years after they are first 

enacted. Therefore the capital expenditures occurred for the purpose of complying 

with regulations should be allocated over the years instead of counting them as a one-

time cost. Lastly, there are considerable missing values for capital expenditures in the 

published survey results at the 4-digit SIC industry level. A major part of these 

missing values are withheld to avoid disclosing operations of individual companies. 

Considerable information is lost due to the missing values, which makes comparisons 

over time less robust. Therefore, I use only operating costs for which the missing data 

issue is much less severe. 

Appendix C. Dealing with missing values in PAOC data  

Missing values in the pollution abatement cost measures pose a major challenge for 

the decomposition analyses. We need a balanced panel in order to obtain consistent 

output shares and abatement cost intensities to calculate the differences. To deal with 

the missing values, I proceed in the following 2 steps. 

I have a total of 17 years of data (1977 to 1994, except 1987) for the pollution 

abatement costs. I first dropped any 4-digit industry that has missing PAOC data for 9 

or more years. By doing so, I dropped about 20% of the total data (1496 out of 7616). 
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Any industry with missing PAOC less than 8 year will remain in the data (80.36%), 

where the missing data will be interpolated. Next I dropped two 2-digit SIC sectors, 

Leather and leather products (31) and Miscellaneous manufacturing industries 

(SIC39), because the majority of them are missing values. In other words, the 4-digit 

industries within these 2 sectors have very limited data in the PACE survey. The 

second step is to interpolate the missing values of PAOC. The basic idea is to assign 

those 4-digit industries the average abatement cost intensity of an average industry 

within the same 3-digit or 2-digit sector. Now there are a total of 5831 observations in 

the dataset, but only 4873 of them have the abatement cost measure, with 958 missing 

values. I calculate the average abatement cost intensity (PAC/value added) at 3-digit 

and 2-digit SIC levels, where the PAOC data are not missing at these higher levels of 

aggregation. Any missing 4-digit SIC abatement cost data is first replaced by the 4-

digit value added multiplied by the 3-digit average cost intensity. Any remaining 

missing values are further replaced by multiplying the 2-digit average cost intensity. 

At the end, 956 of the 958 missing 4-digit PAOC observations are interpolated. The 

remaining 2 missing values are because the PAOC data is missing at even 2-digit 

level (SIC21, tobacco products in 1981). These interpolated PAOC data are used in 

the decomposition analyses in Section 2.4 and PHE estimation in Section 2.5. The 

original and the interpolated PAC data are not statistically different according to 

classical t test. Finally, I restrict the sample period from 1977 to 1986 for the reasons 

mentioned in Section 2.4.2 and Appendix B. 
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