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Chapter 1

Introduction

1.1 Background

Discrete dynamical systems arose as a means to simplify the study of

solutions of differential equations using cross sections to solutions. A discrete

topological dynamical system is a phase space Y together with a continuous

map f : Y → Y . These systems can still be very difficult to understand.

Symbolic dynamical systems, called shift spaces, arise when we make space

discrete as well as time. The points in a shift space are infinite sequences

(these can be bi-infinite, if f is a homeomorphism, or infinite only in one

direction, otherwise), which represent the itineraries of points in the original

dynamical system under f . Sometimes the system (Y, f) can be closely related

to a shift space which is easier to study. In particular, one important type of

shift space, the shifts of finite type, is strongly related to matrices, from which

invariants can be extracted. The notion of shift spaces can be generalized to

higher dimensions as well. In general, the points in a d-dimensional shift space

are infinite d-dimensional arrays, which correspond to bi-infinite sequences for
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d = 1.

Since this field’s beginning, other uses for shift spaces have been found.

For example, shift spaces give us schemes for data storage. In higher dimen-

sions, shift spaces are closely related to the study of tiling spaces which appear

in the study of quasi-crystals, percolation theory and statistical mechanics.

Natural coding questions arise in symbolic dynamics. For example, what

are necessary and sufficient conditions for the existence of various types of

codes between two shift spaces? More specifically, when is one a subsystem

of the other? When are they ‘the same’? When can one factor onto another?

What are the invariants under conjugacy? We will discuss results addressing

how two subshifts are related to one another, first discussing known results for

d = 1, and then considering whether these results extend to higher dimensions.

1.2 Definitions and Notation

We begin by making the ideas mentioned above more precise. Let A =

{0, 1, ..., N}, and let X[N ] = AZd
, d ∈ N. Give A the discrete topology, and

then give X[N ] the product topology. A point x ∈ X[N ] can be viewed as an

infinite d-dimensional array of symbols: for w ∈ Zd, let xw be the symbol in

location w.

For each v ∈ Zd, define a shift map σv : x 7→ y by yw = xv+w, and let
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σ be the Zd action {σv}v∈Zd . The system (X[N ], σ) is the full Zd N-shift. For

R ⊂ Zd, a configuration on R is some M ∈ AR. For x ∈ X[N ], denote the

configuration occurring at R by xR.

If X is a closed, shift invariant subset of X[N ], then (X, σ|X) is called a

Zd shift space, or subshift. Let AX be the symbol set of X. A configuration

M∈ AR is allowed in X if there is some x ∈ X such that xR = M. Then we

say that M occurs in x.

As mentioned before, the most important subshifts are the shifts of finite

type. A Zd subshift X is a shift of finite type (SFT) if it can be defined

by forbidding a finite set of configurations F = {F1, F2, ..., Fm} occurring in

(AX)Zd
. X is a one-step shift of finite type if a point x ∈ (AX)Zd

is allowed

in X whenever x{m,n} is allowed for all m,n ∈ Zd with ‖m − n‖ = 1, where

‖ · ‖ is the Euclidean norm on Rd. When d = 1, we may also define one-step

SFTs as the set of bi-infinite walks along a directed graph. Every SFT may

be recoded to be a one-step shift of finite type. We will assume that all shifts

of finite type are one-step.

Let X, Y be subshifts. A map φ : X → Y is a block code if it can be

locally defined. That is, if x 7→ y, then for all v ∈ Zd, yv depends on some

finite block configuration occurring in x, centered at v. The block codes from

X to Y are exactly the continuous, shift-commuting maps. If φ is one-to-one,
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then it is called an embedding. If φ is onto, it is called a factor code, or a

factor map. If φ is both one-to-one and onto, then it is a conjugacy. A subshift

X is a sofic shift if there exists a SFT Y and a factor code π : Y → X.

Let Λ(n) = {v = (v1, ..., vd) ∈ Zd : 0 ≤ vi < n}. An n-block is a

configuration on Λ(n). Let Bn(X) be the set of n-blocks allowed in X. Let

B(X) = ∪nBn(X).

The topological entropy of a d-dimensional subshift X is defined to be

h(X) = lim
n→∞

1

nd
log |Bn(X)|

1.3 Zd subshifts for d = 1

In order to discuss Z subshifts, we must introduce two definitions. A Z

subshift X is irreducible if given any two words u, v ∈ B(X), there is an r > 0

and a word w ∈ Br(X) such that uwv ∈ B(X). X is topologically mixing if

for any u, v ∈ B(X) there exists r0 > 0 such that for any r ≥ r0, there exists

w ∈ Br(X) such that uwv ∈ B(X).

Entropy is one of the most useful tools in symbolic dynamics. If X is

conjugate to Y , then h(X) = h(Y ). While entropy is not a complete invariant,

it does tell us a great deal. If X and Y are SFTs and X embeds into Y , then

it is easy to show that h(X) ≤ h(Y ). If X embeds into Y , Y is an irreducible

Z SFT, and h(X) = h(Y ), then X and Y are conjugate. So to consider the
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question of when a Z subshift X embeds properly into an irreducible Z SFT

Y (that is, X embeds into Y but is not conjugate to Y ), we only need to

consider the case where h(X) < h(Y ). For X to embed into Y , there also

needs to be a one-to-one shift commuting map from the periodic points of

X into the periodic points of Y . We denote this condition P (X) ↪→ P (Y ).

Krieger proved that together these two conditions are also sufficient when Y

is mixing.

Theorem 1.1. (Embedding Theorem) [Kr 82] Let X be a Z SFT, and let

Y be a mixing Z SFT. Then there is a proper embedding of X into Y if and

only if h(X) < h(Y ) and P (X) ↪→ P (Y ).

We note that this theorem tells us that with some necessary restrictions

on periodic points, a mixing SFT Y essentially has every SFT of less entropy

as a subsystem.

Entropy is also closely tied to the existence of factor codes from X onto

Y . If X factors onto Y , then we know that h(X) ≥ h(Y ). There are counter-

examples which show that if X factors onto Y and h(X) = h(Y ), then X

and Y do not have to be conjugate. However, the existence of an entropy

preserving factor code from X onto Y is still a strong condition.

Definition 1.2. Let X be a SFT and let ϕ : X → Y be a factor code. A

diamond for ϕ is a pair of distinct points x, x′ ∈ X such that ϕ(x) = ϕ(x′)

6



and such that xi = x′i for all but finitely many i ∈ Z.

Theorem 1.3. [LM 95] Let X be an irreducible Z SFT and ϕ : X → Y a

factor code. Then the following are equivalent.

(1) ϕ is finite-to-one.

(2) ϕ has no diamonds.

(3) h(X) = h(Y ).

In the case where X and Y are irreducible and h(X) > h(Y ), Boyle

showed that there is a simple condition on periodic points that is equivalent

to the existence of a factor code. There must be a shift-commuting map taking

the periodic points of X into the periodic points of Y : i.e., if X has a periodic

point of least period n, then Y must have a point whose least period divides

n. This condition is denoted P (X) ↘ P (Y ).

Theorem 1.4. (Lower Entropy Factor Theorem) [Boy 83] Let X and Y

be irreducible Z SFTs with h(X) > h(Y ). Then there is a factor map from X

onto Y if and only if P (X) ↘ P (Y )

We are also interested in the question of when shift spaces can be used

to represent other dynamical systems.

Theorem 1.5. (Jewett-Krieger) Let T : X → X be a finite entropy ergodic

measure preserving transformation on a Lebesgue space (X,B, µ). Then T is
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measurably isomorphic to a strictly ergodic subshift with its invariant measure.

Taken together with Krieger’s Embedding Theorem, this tells us that all

traditional ergodic theory can be supported on the strictly ergodic subsystems

of a mixing SFT, given necessary restrictions on entropy.

These results demonstrate the rich theory surrounding Z SFTs and their

subsystems. Most of them rely on the SFT being mixing. Since all mixing

Z SFTs have approximately the same structure of subsystems, studying Z

subshifts from this point is particularly effective. For Z SFTs, various mixing

conditions are equivalent. For Zd SFTs with d > 1, this is no longer true.

Correspondingly, it turns out that for d > 1, mixing Zd SFTs are no longer

homogeneous with respect to coding properties and richness of subsystems.

1.4 Zd subshifts for d > 1

For d > 1, difficulties arise immediately. A basic question is the following:

given a finite set of forbidden configurations, can we determine if the SFT

determined by this set is non-empty? This is called the non-emptiness problem.

When d = 1, the answer is yes. In fact, it is well-known that a Z SFT is non-

empty if and only if it contains periodic points.

In 1961, Wang conjectured that there is a positive answer for d > 1

as well. Suppose we have a subshift whose alphabet is a set of square tiles

8



of equal size with variously colored edges (called Wang tiles). Two tiles can

be placed next to each other when their edge colors match. Such a space is

clearly a SFT, and in fact, any SFT will be conjugate to such a space. Since

any non-empty Z SFT has periodic points, it seems reasonable to approach

the non-emptiness problem in terms of the existence of periodic points. Wang

believed that given a set of Wang tiles, one can build out to larger and larger

squares, and eventually come to either a square that cannot be completed, or

a square that can tile the plane periodically.

Conjecture 1.6. (Wang) [W 61] Any set of tiles that tiles the plane can be

used to tile the plane periodically.

The conjecture was proved false by Berger [Be 66], who found a set of

(more than 20,000) tiles that can tile the plane aperiodically. Since that first

example, many sets of tiles which only tile the plane aperiodically have been

found. Thus Wang’s initial idea - that the question of whether a SFT is

nonempty is equivalent to the question of whether there are periodic points -

does not work.

It turns out that without imposing other conditions on the subshifts

under consideration, the answer to the first question is no; given a finite

set of forbidden configurations, the non-emptiness problem is undecidable.

By restricting their attention to specific classes of SFTs, Markley and Paul
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have avoided these problems [MP 81],[MP2 81], as have Kitchens and Schmidt

[KS 88],[KS 92]. We will not impose any such conditions on our SFTs, but we

will assume all the SFTs we work with are non-empty.

As was previously discussed, in addition to topological mixing there are

other mixing conditions in higher dimensions. The Zd definition of topologi-

cally mixing is the following. A shift space X is topologically mixing if for all

finite subsets R1, R2 ⊂ Zd, there exists l > 0 such that for all v ∈ Zd with

d(R1, R2 + v) > l, and for all x1, x2 ∈ X there exists a point x ∈ X such that

xR1 = (x1)R1
and xR2+v = (x2)R2+v.

A SFT X has the uniform filling property (UFP) with filling length l > 0

if for all points x1, x2 ∈ X and all rectangles R ⊂ Zd there is a point x ∈ X

such that xR = (x1)R and xBl(R)c = (x2)Bl(R)c . Such subshifts are called square

mixing by Lightwood.

A SFT X is strongly irreducible if there exists an l ≥ 0 such that for all

x1, x2 ∈ X and all finite subsets R1, R2 ⊂ Zd with d(R1, R2) > l, there is an

x ∈ X such that xR1 = (x1)R1
and xR2 = (x2)R2 .

When d = 1, these three definitions all correspond to the definition of

mixing given in the last section. For d > 1, a strongly irreducible SFT has the

UFP, and a SFT with the UFP is topologically mixing. However, there are

examples of SFTs which are topologically mixing, but do not have the UFP.
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Currently there are no known examples of subshifts that have the UFP, but

are not strongly irreducible, but we expect that such examples exist.

As was mentioned earlier, a Z SFT X can be thought of as the edge shift

associated with a directed graph G. If A is the adjacency matrix for G, then all

the information about X is encoded in A. Many results about 1-dimensional

SFTs are proved using matrix arguments on A. Most of these proofs do not

extend to higher dimensions.

Many problems arise from these difficulties. For example, for d = 1 it is a

simple matter to calculate the entropy of SFTs and sofic shifts using matrices.

For d > 1, it is extremely difficult, if not impossible, to calculate entropy for

most examples.

However, there are some partial coding results. When we restrict the

class of subshifts we consider (most commonly by imposing a strong mixing

condition), progress can be made. Rosenthal has proved a Z2 analogue of the

Jewett-Krieger theorem.

Theorem 1.7. [R 88] Let (X,B, µ) be a Lebesgue space, and let S : X → X

and T : X → X be commuting measure preserving transformations generating

a free ergodic action on (X,B, µ). This Z2 action is measurably isomorphic to

a strictly ergodic Z2 subshift with its invariant measure.

We say that a dynamical system (Y, S) is a universal model if for every
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aperiodic, ergodic, and measure preserving Zd action (X,µ, T ) with h(X,µ, T ) <

h(Y, S), there exists an S-invariant borel probability measure ν such that

(X,µ, T ) and (Y, ν, S) are metrically isomorphic. Robinson and Sahin have

results showing that a certain class of Zd SFTs are universal models for er-

godic measure preserving Zd dynamical systems.

Theorem 1.8. [RS 01] Let (Y, S) be a Zd SFT with the UFP and with dense

periodic points. Then (Y, S) is a universal model.

When d = 2, the UFP implies dense periodic points, so we only need to

specify that the subshifts have the UFP.

We return to studying the way subsystems can relate to each other.

There are other partial results. Lightwood has extended Krieger’s embedding

theorem for another class of Zd SFTs.

Theorem 1.9. [L 03] For d ≥ 2, let X be a non-periodic Zd subshift, let Z

be a Zd finite-orbit SFT with the UFP, and suppose there is a homomorphism

X → Z. Then there exists an embedding X ↪→ Z if and only if h(X) < h(Y ).

Lightwood then defines a stronger mixing condition for Z2 SFTs called

square-filling-mixing. For this class of SFTs, he proves the following theorem.

Theorem 1.10. [L 04] Let X be a non-periodic Z2 subshift and let Z be a Z2

square-filling-mixing SFT. There exists an embedding X ↪→ Z if and only if
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h(X) < h(Z).

In chapter 2, we will discuss the subsystems of a Zd sofic shift with

positive entropy. When no further conditions are assumed, results are sparse.

We will prove the following.

Theorem 1.11. Let X be a SFT with h(X) > 0. Then there exists a family

of SFT subsystems of X whose entropies are dense in [0, h(X)].

Proposition 1.12. Let Y be a Zd sofic shift and ε > 0. Then Y has a SFT

cover, π : Z → Y such that h(Z) < h(Y ) + ε. Moreover the cover can be

chosen so that for every subsystem Z ′ of Z, h(Z ′) < h(πZ ′) + ε

Theorem 1.13. Let Y be a Zd sofic shift with h(Y ) > 0. Then there exists a

family of sofic subsystems whose entropies are dense in [0, h(Y )].

In chapter 3, we study the existence of factor maps from d-dimensional

SFTs to the full N -shift. We discuss a recent result of Johnson and Madden

for d > 1, and prove the following for d = 2.

Theorem 1.14. Let X be a corner gluing Z2 SFT, and suppose h(X) > logN .

Then there exists a factor map ϕ : X → X[N ].
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Chapter 2

Subsystem entropy for Zd sofic systems

2.1 Introduction

As we discussed in chapter 1, a Z SFT with positive entropy has a well

understood wealth of subsystems. The structure of the subsystems of Zd SFTs

for d > 1 is much less well understood. In the introduction, we gave some of

the results known for more special classes of subshifts. But when we simply

consider SFTs with positive entropy, very little is known.

Quas and Trow proved that for a Zd SFT X with positive entropy, h(X)

is an accumulation point for the entropies of the SFT subsystems of X.

Theorem 2.1. [QT 00] Let X be a Zd SFT with h(X) > 0. Then for all

ε > 0, there exists a proper subsystem Y of X, also of finite type, such that

h(X)− ε < h(Y ) < h(X).

We prove that for any Zd SFT X of positive entropy the SFT subsystems

of X achieve dense entropies in [0, h(X)]. We show a similar result for sofic

shifts: given a Zd sofic shift Y of positive entropy, the sofic subsystems of Y

have entropies dense in [0, h(Y )]. We also construct a SFT cover with ε-close
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entropy, answering an old question of Weiss (see Question 2.6).

2.2 Shifts of finite type

In this section, we show that if X is a Zd SFT with positive topological

entropy, then there exist subsystems of X of finite type whose entropies are

dense in [0, h(X)]. We begin by constructing a convenient cover for X. For

simplicity, throughout this chapter, we will give arguments only for the case

d = 2. The proofs for d 6= 2 are similar.

Construction 2.2. Given a one-step Zd SFT X and N ∈ N, we construct a

certain Zd SFT Z = Z(N) and a shift-commuting surjection π : Z → X.

Without loss of generality, we may assume that X is a one-step SFT. We

begin by defining the alphabet of Z, AZ , to be the disjoint union of two copies

of the alphabet AX of X, where the letters from the first copy are colored red

and the letters from the second copy are colored green. Let Π : AZ → AX

be the map that forgets color. Define Z as follows: a point x ∈ (AZ)Z2

will be in Z if and only if there is an a ∈ Z2 such that xn is red for all

n ∈ M = {a + ((NZ × Z) ∪ (Z ×NZ))}, and xn is green for all n 6∈ M , and

if removing color from x gives us a point in X. Thus, we may view a point in

Z as a point in X with a gridlike color pattern imposed on it. Let Π define a

one-block code Z → X, denoted π. Then π is onto and everywhere N2−to−1.

15



Remark 2.3. Because π is finite-to-one, h(Z ′) = h(π(Z ′)) for any subsystem

Z ′ of Z. In particular, h(Z) = h(X).

Given any SFT X of positive entropy, and ε > 0, we use Construction

2.2 to find a family of subsystems of X with entropies ε-dense in [0, h(X)]. We

then approximate those subsystems with SFTs which will also be contained in

X. These SFTs will have entropy ε-dense in [0, h(X)].

ForM ⊂ Zd, define the border ofM , denoted ∂M , to be the set of v ∈M

such that there exists w in the complement of M such that ‖v −w‖ = 1.

Theorem 2.4. Let X be a SFT with h(X) > 0. Then there exists a family of

SFT subsystems of X whose entropies are dense in [0, h(X)].

Proof: Without loss of generality, we may assume that X is a one-step SFT.

Let α = |AX |, and let ε > 0. Choose l ∈ N such that log l − log(l − 1) < ε.

Since h(X) > 0, we can choose N large enough that at least one border of a

block in BN+1(X) has more than l allowable interiors, and such that

(i)
4N

(N + 1)2 logα <
ε

3
, (ii)

1

(N + 1)2 log l <
ε

3
, and (iii)

2

(N + 1)2 logN <
ε

3
.

For this N , construct Z = Z(N) and π : Z → X as in Construction 2.2. Let

B0
kN+1(Z) be the set of (kN + 1)-blocks allowed in Z for which the border

symbols are red.
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We now construct in Z a finite decreasing sequence of SFTs, {Zi}M
i=0.

Let Z0 = Z, and define Zi inductively from Zi−1 by disallowing one block of

B0
N+1(Zi−1) whose (red) border has more than l allowable interiors. We end

the sequence with ZM , which is the last possible subsystem constructed in

this manner. That is, for every B ∈ B0
N+1(ZM), ∂B has at most l allowable

interiors.

Claim: h(Zi−1)− h(Zi) < ε, for i = 1, 2, ...M

Every red border ∂B of some B ∈ B0
N+1(Zi−1) is also a border to some block

in B0
N+1(Zi). Thus the number of allowable interiors to ∂B in Zi is at least

( l−1
l

)× the number of allowable interiors to ∂B in Zi−1.

Given k, fix a choice of red symbols occurring in an element of B0
kN+1(Zi).

Consider how many ways the block can be completed by filling in the green

symbols:

∣∣∣∣ ways to complete block in Zi

∣∣∣∣ ≥ (
l−1

l

)k2∣∣∣∣ ways to complete block in

Zi−1

∣∣∣∣.

Thus |B0
kN+1(Zi)| ≥ ( l−1

l
)k2|B0

kN+1(Zi−1)|, and therefore
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h(Zi) = lim
k→∞

(
1

kN + 1

)2

log |B0
kN+1(Zi)|

≥ lim
k→∞

[
1

(kN + 1)2
log

(
l − 1

l

)k2

+
1

(kN + 1)2
log |B0

kN+1(Zi−1)|
]

=
1

N2
log

(
l − 1

l

)
+ h(Zi−1)

> h(Zi−1)− ε

This proves the claim.

Now consider ZM . There are at most α4N red border configurations on

blocks inB0
N+1(ZM), and each border has at most l interiors, giving |BN+1(ZM)| ≤

α4N lN2. Thus

h(ZM) ≤ 1

(N + 1)2
log |BN+1(ZM)|

≤ 1

(N + 1)2
logα4N +

1

(N + 1)2
log l +

1

(N + 1)2
logN2

< ε

Consequently, the entropies h(ZM), ..., h(Z0) are ε-dense in [0, h(Z)] = [0, h(X)].

Now the natural subsystems ofX to consider are the subsystems {Xi}M
i=0,

where Xi = π(Zi). As noted earlier, h(Xi) = h(Zi). So there exist (sofic)

subsystems of X whose entropies are ε-dense in [0, h(X)]. For any subsystem

X ′ ⊂ X, there exists a decreasing sequence of shifts of finite type {Ri} such
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that
⋂∞

i=1Ri = X ′. Since X is a SFT, eventually the Xi will be contained in X.

As the entropy function is upper semicontinuous on subshifts, limi→∞ h(Ri) =

h(X ′). Thus there are SFT subsystems of X whose entropies are ε-dense in

[0, h(X)]. Let ε→ 0, and the proof is complete. �

From the construction of the SFT subsystems of X, it is clear that we

cannot guarantee them to be mixing. One might hope that the dense entropies

could be acheived by SFTs with strong mixing properties. However, Quas and

Sahin have constructed a topologically mixing Z2 SFT X which shows that

this is sometimes impossible.

Example [QS 03] There is a topologically mixing Z2 SFT X and a

number h0 such that:

• 0 < h0 < h(X)

• If Y ⊂ X is a SFT which has the UFP, then h(Y ) ≤ h0.

• For any ergodic σ-invariant weakly mixing measure µ, hµ(X) ≤ h0

2.3 Sofic Shifts

In this section we turn our attention to Zd sofic shifts of positive entropy.

We quote two old (though unpublished) questions of Weiss:

Question 2.5. Does a Zd sofic shift have an equal entropy Zd SFT cover?
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Question 2.6. Does a Zd sofic shift have a Zd SFT cover with ε-close entropy?

(Smorodinsky also considered such questions around 1990).

Coven and Paul showed in [CP 75] that when d = 1, the answer to Ques-

tion 2.5 is yes. For d > 1, the question is still open. We will answer Question

2.6 in the affirmative with the next proposition, using methods similar to those

used in Construction 2.2.

Proposition 2.7. Suppose Y is a Zd sofic shift and ε > 0. Then Y has a

SFT cover, π : Z → Y such that h(Z) < h(Y ) + ε. Moreover the cover can be

chosen so that for every subsystem Z ′ of Z, h(Z ′) < h(πZ ′) + ε

Proof: Since Y is sofic, there exists a SFT X and a continuous shift-commuting

surjection φ : X → Y . Without loss of generality, we may assume that X and

Y have disjoint alphabets, that X is a one-step SFT, and that φ is a 1-block

code. Given N ∈ N, construct a new SFT Z = Z(N) as follows: The alphabet

of Z is the union of the alphabets of X and Y . For every allowable (N + 1)-

block in X, replace the interior symbols by their images under φ, and leave the

border symbols as they are. Let B0
N+1(Z) be the set of such blocks. Construct

a point in Z by laying these blocks together so they overlap on the corners.

That is, z ∈ (AZ)Z2
will be in Z if the following conditions hold: For some

a ∈ Z2, zn is a symbol from AX for any n ∈M = a+((NZ×Z)∪ (Z×NZ)).
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Otherwise, zn is a symbol from AY . Also, zn+Λ(N+1) ∈ B0
N+1(Z), for all

n ∈ (a + (NZ×NZ)).

Clearly, Z is a SFT. Define π : Z → Y by the one-block map which sends

symbols fromAX to their images under φ, and symbols fromAY to themselves.

First, we observe that π is well-defined: For any block B in B0
N+1(Z), there

exists a block B′ in BN+1(X) with the same border, and such that when we

replace the interior symbols of B′ with their images under φ, we get B. For

each B ∈ B0
N+1(Z), make a single choice of such an X-block. Since X is

a 1-step shift of finite type, this defines a map ψ : Z → X. For z ∈ Z,

π(z) = φ(ψ(z)) ∈ Y . Thus π is well-defined.

Next we observe that π is also onto: Let y ∈ Y . Since φ is onto, there

exists x ∈ X such that φ(x) = y. Given this x, leave the symbols in (Z ×

NZ) ∪ (NZ×Z) as they are, and replace all other symbols with their images

under φ. This yields a point z ∈ Z such that π(z) = φ(x) = y.

We now show that when N is large, h(Z) < h(Y ) + ε. Let α = |AX |.

There are at most α4N possible borders for blocks in B0
N+1(Z). Therefore,

|B0
N+1(Z)| ≤ α4N |BN+1(Y )|. Thus we have the following inequalities:
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h(Z) ≤ 1

(N + 1)2
log |BN+1(Z)|

≤ 4N

(N + 1)2
logα+

1

(N + 1)2
log |BN+1(Y )|

< h(Y ) + ε

for large enough N .

The final claim holds by a similar argument. �

In the case where d = 1, it is well known that Theorem 2.4 is true if X

is only assumed to be sofic. For d > 1 and X sofic, we are only able to show

the existence of a family of sofic subsystems of X with dense entropies.

Theorem 2.8. Let Y be a Zd sofic shift with h(Y ) > 0. Then there exists a

family of sofic subsystems whose entropies are dense in [0, h(Y )].

Proof: Let ε > 0. Construct the SFT cover Z of Y as in Proposition 2.7.

Then by Theorem 2.4, there exists a family of SFT subsystems of Z with

entropies dense in [0, h(Z)]. The images of these subsystems under π are sofic

subsystems of Y with entropies ε-dense in [0, h(Y )]. Letting ε→ 0 completes

the proof. �

The next corollary follows immediately from this theorem.

Corollary 2.9. Let Y be a Zd sofic shift, and let a ∈ [0, h(Y )]. Then there is

a subsystem X ⊂ Y such that h(X) = a.
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Proof: Using Theorem 2.8 recursively, we can find a decreasing sequence of

subsystems of Y , Xi, whose entropies approach a. If we let Y =
⋂∞

i=1Xi, then

h(Y ) = a. �

Proposition 2.10. Suppose φ : X � Y , X is a Zd SFT and Y is a Zd sofic

shift. Given ε > 0 and a subsystem Y ′ ⊂ Y , there is a subsystem X ′ ⊂ X such

that φ : X ′ � Y ′ and h(X ′) < h(Y ′) + ε. If Y ′ is sofic, then X ′ can be chosen

to be sofic.

Proof: Construct the SFT Z and π : Z � Y as in the proof of 2.7. Given a

subsystem Y ′ ⊂ Y , let Z ′ = π−1(Y ′). Define X ′ = ψ(Z ′), where ψ : Z → X is

the function defined in the proof of Proposition 2.7. Then φ : X ′ � Y ′, and

since ψ is finite-to-one, h(X ′) = h(Z ′). Then h(X ′) < h(Y ′) + ε. To prove

the last statement of the Proposition, note that because Y ′ and Z are sofic, it

follows that Z ′ is sofic, and therefore, X ′ is sofic. �

Remark 2.11. In the case d = 1, if Y ′ is sofic and transitive, then X ′ can be

chosen sofic such that π : X ′ → Y ′ is bounded-to-1. This can easily be deduced

from [MPW].
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Chapter 3

Corner gluing SFTs of sufficient entropy factor onto the full

N -shift

3.1 Introduction

In this chapter, we prove that if a Z2 SFT X satisfies a mixing property

called corner gluing and has entropy greater than logN , then X factors onto

the full N -shift. This answers a question posed by Johnson and Madden in

[JM 05]. We will first give some background for this problem and discuss some

previous results.

We consider the question of when a Zd SFT can factor onto the full

N -shift. When d = 1, this question has been completely answered.

Theorem 3.1. If X is a Z SFT with h(X) ≥ log n, then X factors onto X[n].

The proof of Theorem 3.1 for h(X) > log n relies on marker arguments

that do not extend to d > 1. In the equal entropy case, the proof is an

argument using eigenvectors and state splitting which relies very heavily on

matrix-based state splitting for Z SFTs, and as previously discussed, such

matrix arguments also do not extend to higher dimensions.
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As is often the case, the situation becomes much more difficult for d > 1,

and there are only partial results. We would like to extend Theorem 3.1,

but we must impose further conditions on X to get a similar result. One

such condition is the corner condition. Let c = (1, 1, ..., 1) ∈ Zd. Define a

d-dimensional corner to be C = {a ∈ {0, 1}d : a 6= c} where c is called the

corner position.

Definition 3.2. Let X be a SFT. X has corner condition N if, for every

corner C ∈ AC, there are at least N allowable choices for the corner position

c.

For d ≥ 1, this is a sufficient condition for factoring onto the N -shift.

In fact, when d = 1, h(X) ≥ logN if and only if X is conjugate to an SFT

satisfying corner condition N . However, when d > 1, while this condition

certainly implies h(X) ≥ logN , the converse is not true.

In [JM 05], Johnson and Madden defined a new mixing condition called

corner gluing. For k = (k1, k2, ..., kd) ∈ Nd, let Rk = {(a1, a2, ..., ad) ∈ Zd : 0 ≤

ai < ki for 1 ≤ i ≤ d}.

Definition 3.3. A Zd SFT X is corner gluing if there exists a gluing constant

g > 0 such that given any two finite subsets E1, E2 ⊂ Z2 as defined below

and allowable configurations C1 and C2 on these subsets, there exists a point
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E1

E2

g

g

Figure 3.1: corner gluing

x ∈ X with xE1 = C1 and xE2 = C2. E1 = Rk + gc for some k ∈ Nd and

E2 = (Rk′ − (k′ − k− gc))\Rk+gc for some k′ ∈ Nd with k′ > k + c.

When we find such a rectangular configuration containing E1 and E2,

we say we are gluing E1 to E2. We refer to the configurations needed to glue

them together as gluing strips.

Using this mixing property, Johnson and Madden were able to make

some progress in the case that the entropy of X is strictly greater than logN

[JM 05].

Theorem 3.4. Let X be a corner gluing Zd SFT with h(X) > logN . Then

X is the finite-to-one factor of a SFT X that maps onto the full N-shift.

They first note that if X is a SFT satisfying the above conditions, then

for sufficiently large M , the higher power shift XM will have corner condition

NMd
(with respect to the natural alphabet provided by M -blocks from X).
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They then construct a SFT X based on the M -blocks of X, and use the corner

condition on XM to show that X factors onto the full N -shift.

They then posed the question of whether the extension X is necessary.

We prove that, at least for the case where d = 2, it is not. We expect this

theorem will work for Zd SFTs with d > 2 with some modest elaboration of

the proof.

Theorem 3.5. Let X be a corner gluing Z2 SFT, and suppose h(X) > logN .

Then there exists a factor map ϕ : X → X[N ].

3.2 Proof of Theorem 3.5

We begin the proof of Theorem 3.5 with a lemma that constructs a

marker square M that is aperiodic for low periods. For R ⊂ Rd and v ∈

Zd \ {0}, a configuration C on R is said to be v-periodic if for every pair

w,w + v ∈ R ∩ Zd we have Cw = Cw+v.

Lemma 3.6. Let X be a corner gluing Z2 SFT with h(X) > 0, and let g be

the gluing constant. Then for f, c ∈ N, if F ∈ Bf (X), then there exists a

square configuration M ∈ B(X) as in figure 2, such that M is not v-periodic

whenever ‖v‖∞ < c.

Proof. Choose some Q0 ∈ Bc(X). Consider the v ∈ Z2 such that ‖v‖∞ < c
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F F

F F

Figure 3.2: marker square M

and Q0 is v-periodic. Enumerate these as v1,v2, ...,vp.

Let i ≥ 1. Let l0 = c. Assume that Qi−1 ∈ Bl(X), for some l ∈ N

occurring with lower left corner at the origin, is not vj-periodic for j ≤ i− 1.

Let vi = (a, b). By symmetry, we may assume a ≥ 0. The block Qi−1 will be

the corner of the block Qi, as pictured in Figure 3.3, according to the following

cases: (i) a, b > 0, (ii) a = 0, b > 0, (iii) a > 0, b = 0, and (iv) a > 0, b < 0.

Consider case (i). Choose k ∈ N large enough that ka, kb > l + g

and suppose α is the symbol occurring at the lower left corner of Qi−1. Since

h(X) > 0, there is some β ∈ AX with β 6= α. ExtendQi−1 to an L-shape shown

by the dashed lines in Figure 3.3(i), then glue the symbol β in at position kvi.

Extend the resulting rectangle to a square Qi. Qi is not vi-periodic because

vi-periodicity would imply α = β. As Qi has Qi−1 as a subblock, it is not

vj-periodic for j < i − 1 either. For the remaining three cases, though the

picture changes, the argument remains the same (see Figure 3.3 (ii),(iii),(iv)).
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vk

Qi-1

(iv)

vkQi-1

(ii)

vk

(iii)(i)

>g

>g

Qi-1

kv

Qi-1

Figure 3.3: construction of Qi

The construction of Qi is the same, based on the corresponding figures. End

this process with Q = Qp. Then Q will not be v-periodic for ‖v‖∞ < c.
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F F

Q

(i) (ii)

Figure 3.4: construction of M - step 1

Construct M beginning with F as follows. Extend F to an L-shaped

configuration as in Figure 3.4(i). Then glue in Q as in Figure 3.4(ii), where

the shaded region is the gluing region of width g necessary in the definition of

corner gluing.

Extend this configuration to another L-shaped configuration, represented

in Figure 3.5(i) with dashed lines. Choose some rectangle extension of F of the

form seen in Figure 3.5(ii). Glue this rectangle to the L shaped configuration,

to form a configuration as in Figure 3.5(iii).
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(iii)

(ii)

(i)

F

Q

F

F

Q

F

Figure 3.5: construction of M - step 2

Next, extend this rectangle to another L shape as in Figure 3.6(i), and

choose some rectangle as in Figure 3.6(ii) with an F at the right and left ends.

Glue these configurations together to form the square in Figure 3.6(iii). Take

M to be the subblock with an F at each corner. �
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F F

F

Q

F

(i)

(ii)

(iii)

Q

F F

F F

Figure 3.6: construction of M - step 3

With this lemma, we are ready to prove Theorem 3.5, using methods

similar to those used by Johnson and Madden in their proof of Proposition

3.4.

Proof of Theorem 3.5. By Theorem 2.4, there is a proper subsystem Y of finite

type in X with h(Y ) > logN . Choose some square configuration F that is

forbidden in Y , and call its side length f . Construct a square configuration M

using F as in Lemma 3.6 for c = 2(f + g). Denote the side length of M by m.
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G

G

MM

M

Figure 3.7: configuration L

Now consider a configuration L of the form seen in Figure 3.7, where

the blocks labeled G can be filled in with any configuration of the appropriate

size allowed in Y (we think of these as ‘good’ blocks), and the shaded regions

are the necessary gluing strips. By the inside corner of L, we mean the upper

right corner of the block M in the lower left corner of L.

MG

G G

Figure 3.8: configuration C

Glue a block C of the type in Figure 3.8 to L to get a block D of the

type in Figure 3.9. Such a block C will be called a follower of L. We do not
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control the symbols in the gluing strips, but all G configurations of the correct

size will appear in follower blocks for some choice of gluing strip configuration.

Let l be the side length of the central block G in D, and J = l+ 2g+m; then

C ∈ BJ(X). Each L has at least |Bl(Y )| followers and because h(Y ) > logN ,

we have |Bl(Y )| > NJ2
for large enough l. For each L, partition its followers

into NJ2
nonempty sets, P (L)1, P (L)2, ..., P (L)NJ2 , depending only on the

follower’s central G block.

MGM

GG G

G MM

Figure 3.9: configuration D

Claim: Let x ∈ X. If blocks D and D′ of the form in 3.9 occur at different

places in x, then their follower portions, C and C ′, do not overlap.

Proof of claim. Without loss of generality, assume D occurs with lower left

corner at the origin, and D′ occurs with lower left corner at v. Suppose C and

C ′ do overlap. Recall that M is not v-periodic whenever ‖v‖∞ < c. Therefore,

‖v‖∞ ≥ c because the lower left corner M ’s cannot overlap too much. But
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the lower left corner M of D′ cannot overlap too much with any other M in D

either, and we are assuming that C and C ′ overlap. Therefore ‖v‖∞ ≤ J − c.

Now since M was constructed with an F at each corner and c = 2(f + g),

at least one subblock F of D′ must occur entirely in a ‘good ’ block G of D.

However these blocks were chosen from the blocks allowed in Y , and so cannot

contain F as a subblock. Thus C and C ′ cannot overlap. �

Consider the J-blocks of X[N ]. Enumerate them as E1, E2, ..., ENJ2 . Now

we are ready to construct a factor map ϕ : X → X[N ]. We will define ϕ so

that it essentially maps blocks from P (L)i to Ei for each configuration L and

i = 1, 2, ..., NJ2
.

We make this precise as follows. For x ∈ X, suppose a configuration D

as in Figure 3.9 occurs in xΛ(2J−1)+v−Jc, the 2J − 1-block centered at v, and

xv is in the follower portion of D. By the claim, xv occurs in the follower

portion of no other such block D′. Therefore, there exist unique u,w ∈ Z2

such that v = u + w, where L has its inside corner at u, and 0 < wi ≤ J for

i = 1, 2. If xv occurs in C ∈ P (L)j, then we define ϕ(x)v to be the symbol

from coordinate w of Ej. If xv is not in a follower, then ϕ(x)v = 0.

Claim: ϕ is onto.

Proof of claim. Let E ∈ BkJ(X[N ]) be as in Figure 3.10. Choose a configuration

R of the form shown in Figure 3.11. Consider the configuration L in the lower
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E

EEE

E

(0,0)

(0,1)

(k,k)

(1,0) (k,0)

E(0,k)

Figure 3.10: E ∈ BkJ(X[N ])

left corner of R.

M M

M

GG

G

G

M

G

M

M

G

MG MGM

Figure 3.11: configuration R
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If E(0,0) = Ei, then choose a configuration B(0,0) ∈ P (L)i as in Figure

3.12(i) to glue to L. This new block B(0,0) together with R forms two new

L configurations as shown in 3.12(ii). One will be above B(0,0) and one will

be to the right of it. Glue in followers of each L from the partition elements

corresponding to E(1,0) and E(0,1). Continuing in this manner, complete a block

B ∈ BkJ(X) as in Figure 3.12 that maps to E under the block map. �
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G M

G G
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G
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M

(iii)

M

G G

G M

G

G

G G

MG

(i)

=(i,j)B G G

G

G M

G

G G

M

G

(ii)

G

M

M

G

M

M

M

MG MG

G

G G

G M

G

M

M

G

G G

G M

G G

G M

M

G

G M

G G

G M

Figure 3.12: B ∈ BkJ(X)

Johnson and Madden give the following example of a Z2 SFT X, defined

by the matrices below, that is corner gluing with h(X) > log 2, but does not
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have corner condition 2 [JM 05]. Theorem 3.4 tells us only that X is the finite-

to-one factor of a SFT that factors onto the full shift, and they ask whether

X itself can factor onto X[2]. Theorem 3.5 tells us that it does.

Ah =



1 1 1 1

1 1 1 0

1 1 0 1

1 0 1 0


Av =



1 1 1 1

1 0 1 0

1 0 0 1

1 0 0 0


A number of open questions remain. The first, of course, is the question

of whether Theorem 3.5 extends to d > 2. As stated above, we believe that it

should. Then we would like to generalize Theorem 3.5 to SFTs X with entropy

greater than logN which are not corner gluing. It is still unknown whether

this is possible.
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