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Antibiotic resistance is an increasing public health concern and few new drugs for 

bacterial pathogenesis have been obtained without addressing this resistance.  Quorum 

sensing (QS) is a newly-discovered system mediated by extracellular chemical signals 

known as “autoinducers”, which can coordinate population-scale changes in gene 

regulation when the number of cells reaches a “quorum” level.  The capability to intercept 

and rewire the biosynthesis pathway of autoinduer-2 (AI-2), a universal chemical signaling 

molecule, opens the door to discover novel antimicrobial drugs that are able to bypass the 

antibiotic resistance. 

In this research, chitosan-mediated in situ biomolecule assembly has been 

demonstrated as a facile approach to direct the assembly of biological components into a 

prefabricated, systematically controlled bio-microelectromechanical system (bioMEMS).  

Our bioMEMS device enables post-fabricated, signal-guided assembly of labile 

biomolecules such as proteins and DNA onto localized inorganic surfaces inside 

microfluidic channels with spatial and temporal programmability.  Particularly, the 

 



programmable assembly and enzymatic activity of the metabolic pathway enzyme Pfs, one 

of the two AI-2 synthases, have been demonstrated as an important step to reconstruct and 

interrogate the AI-2 synthesis pathway in the bioMEMS environment.  Additionally, the 

bioMEMS has been optimized for studies of metabolic pathway enzymes by implementing 

a novel packaging technique and an experimental strategy to improve the 

signal-to-background ratio of the site-specific enzymatic reactions in the bioMEMS device.  

I envision that the demonstrated technologies represent a key step in progress toward a 

bioMEMS technology suitable to support metabolic engineering research and 

development. 
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Chapter 1. Introduction 

1.1 Quorum sensing 

Antibiotic resistance of bacterial pathogens is a fast emerging global crisis and 

an understanding of the underlying resistance mechanisms is paramount for design 

and development of new therapeutic strategies (Kumar and Schweizer 2005).  

According to the Infectious Diseases Society of America (IDSA), 2 million people 

get bacterial infections each year, of which, 90,000 die.  “More than 70 percent of 

the bacteria that cause hospital-acquired infections are resistant to at least one of the 

antibiotics most commonly used to treat them” (Leeb 2004).  Traditional antibiotics 

target bacterial cell-wall synthesis, protein synthesis, DNA replication and repair, all 

of which ultimately lead to cell lysis , thus building up harsh selective pressure for 

bacteria to develop antibiotic-resistance and survive (Walsh 2000).  As few new 

drugs have been developed through extensive screening campaigns, pharmaceutical 

companies are executing a disturbing exodus from the antimicrobial therapeutic area 

(Projan and Youngman 2002).  Therefore, researchers have been directed to 

develop entirely new antibiotics based on novel bacterial targets so that less 

selective pressure is placed on the bacteria to develop antibiotic resistance. 

Quorum sensing (QS) is one of such novel targets.  Researchers have found 

that virulence genes are not expressed immediately upon infection when low 

bacteria numbers would be overwhelmed by the host’s immune system.  Instead, 

the bacteria monitor their cell number and density, waiting until there is a critical 

mass before expressing virulence genes (Swift et al. 1996).  This inter-cellular 
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bacterial signalling system is QS, which is mediated by extracellular chemical 

signals known as “autoinducers”.  As bacterial cells accumulate in number and 

density, secreted autoinducers accumulate in their immediate surroundings, and 

these autoinducers can coordinate population-scale changes in gene regulation when 

the number of cell reaches a “quorum” level (March and Bentley 2004). 

The capability to intercept and rewire this communication network may open a 

door to antimicrobial drug discovery.  For this reason, we have targeted the 

synthesis and sensing of a bacterial autoinducer-2 (AI-2), a “universal signal” for 

interspecies communication among bacteria (Xavier and Bassler 2003).  The 

metabolic pathway of AI-2 synthesis is schematically described in Figure 1-3.  The 

precursor S-adenosylhomocysteine (SAH) is hydrolysed by enzyme Pfs 

(S-adenosylhomocysteine nucleosidase) into S-ribosylhomocysteine (SRH) and 

adenine, then SRH is converted by enzyme LuxS (S-ribosylhomocysteinase) into 

4,5-dihydroxy-2,3-pentadendione (DPD) and homocysteine, and DPD finally 

stabilizes as AI-2 (Duerre 1962).  We aim to reconstruct the AI-2 synthesis pathway 

in microsystems and interrogate this man-made platform for novel therapeutics 

discovery. 
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Figure 1-1: The metabolic pathway of autoinducer-2 (AI-2) synthesis. 
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1.2 Lab-on-a-chip technology and biopolymer-based 

bioMEMS 

Microfluidics deals with a number of principles based on moving small 

quantities of liquids by gravity, pressure and electrokinetics through machined 

manifolds of channels with dimensions of 100 μm or less.  Since the first 

miniaturized gas chromatograph was realized on silicon wafer in 1979, incredible 

developments have emerged from this field, especially so during the last decade 

(Dittrich et al. 2006, Reyes et al. 2002).  The now widely accepted lab-on-a-chip 

(LOC) or micro total analysis systems (µ-TAS) go one step further and combine 

fluid movement with elements of processing, reacting, mixing, and fractionating of 

sample and reagents (Haber 2006).  To explore the huge potential of different 

applications in the field, a component-based microfluidic approach is much too slow 

and the R&D effort much too expensive.  Therefore, the community is now shifting 

from the “component-oriented solution” to an “integrated system approach” or in 

other words a “microfluidic platform approach” (Haeberle and Zengerle 2007).  In 

this approach, microfluidic unit operations are combined to build 

application-specific microfluidic systems (Thorsen et al. 2002). 

In my personal understanding, the term of microfluidics focuses more on the 

fluidic components and the manipulation of fluids, LOC and µ-TAS are more 

commonly used by analytical chemists to stress the applications of microfluidic 

systems, while bio-microelectromechanical systems (bio-MEMS) emphasizes more 

on the functionality of such microsystems.  MEMS devices built on 
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semiconductors convey electrical and optical signals and exhibit high throughput 

analysis.  Biological components such as nucleic acids, enzymes and antibodies 

exhibit molecular recognition capabilities for biosensing functions.  The integration 

of biology with MEMS (bioMEMS), especially with microfluidic systems, offers 

major advances in our ability to manipulate biomolecular systems (Andersson and 

van den Berg 2003, Andersson and van den Berg 2006, Atencia and Beebe 2005, 

Auroux et al. 2002, Beebe et al. 2002, Dittrich et al. 2006, Hong et al. 2006, Psaltis 

et al. 2006, Reyes, et al. 2002, Vilkner et al. 2004).  Compared to traditional 

biochemical processing, the microfluidic environment of bioMEMS provides 

unprecedented advantages for biochemical analysis because of the ability to work 

with smaller reagent volumes, shorter reaction times and parallel operation (Beebe, 

et al. 2002, Bilitewski et al. 2003, Hong, et al. 2006, Shim et al. 2003). 

Semiconductor-based devices are expensive due to the need of costly 

photolithographic equipments, the requirement of clean room access, and the 

time-consuming microfabrication processes.  Therefore, much research has been 

directed to fabricate cheap disposable devices for biological applications by using 

alternative polymeric materials such as polydimethylsiloxane (PDMS) (Chang et al. 

2003, Duffy et al. 1998, Jo et al. 2000, McDonald et al. 2000, Randall and Doyle 

2005) and soft lithographic techniques such as microcontact printing (Duffy, et al. 

1998, Jo, et al. 2000, McDonald, et al. 2000, Quist et al. 2005, Unger et al. 2000).  

However, this substitution of polymers for semiconductors poses new challenges in 

integrating multiple electrical and optical analysis capabilities with microfluidics, as 
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summarized in Figure 1-2. 

Additionally, the traditional integration of biological components into 

microfabricated devices has been aimed at creating biosensors that meld the 

molecular recognition capabilities of biology with the high throughput analytical 

capabilities of microelectronics.  The design flexibility of these devices is limited 

by the labile nature of these biological molecules that is incompatible with the 

lengthy and dry processing conditions often occurring in the device fabrication.   

This research pursues a biopolymer-based bioMEMS with more design 

flexibility.  The devices are first microfabricated, packaged and stored on the shelf.  

Biological elements are employed to programmably biofunctionalize the devices on 

demand for biological applications.  Therefore, the biofunctionalization marries the 

signal transduction and processing capabilities of sustainable MEMS devices with 

the molecular recognition and self-assembly capabilities of labile biology as in 

Figure 1-2.   

MEMS
• Convey electrical, 

optical signals
• Huge capability for 

data processing
• Long shelf time

Biology
• Convey ions, molecules
• Molecular recognition 

capability for biosensing 
functions

• Labile (not stable)

BioMEMS 
(Microfluidics)

Polymer-based (PDMS)
• Soft lithography
• Cheap and disposable
• Lack of electric/optical access

Biopolymer-based (Chitosan):
Biofunctionalization of bioMEMS on demand

Semiconductor-based
• Photolithography
• Expensive, time-consuming
• Electric/optical access

• Photolithography
• Electric/optical accesses

• Reusable after acid wash
• Low average-use cost  

Figure 1-2: Summary of bioMEMS and biopolymer-based bioMEMS that is 

biofunctionalized on demand after microfabrication.  

5 



1.3 Enzyme assembly in bioMEMS 

Miniaturized flow reactors used for enzyme assay offer a number of advantages 

over batch enzyme assay systems.  First, only small quantities of enzyme, substrate 

and cofactor are needed in microfluidics, thus reducing the cost of laboratory-scale 

investigations.  Second, in microreactors where the substrate and products flow out 

of the system, the problems of substrate inhibition and product inhibition 

encountered by some enzymes are avoided.  Moreover, enzyme immobilization 

allows enzyme reuse and often helps to increase enzyme stability (Cao 2005, Hickey 

et al. 2007). 

Conventional approaches of assembling enzymes in microreactors fall roughly 

into either the category of physical entrapment such as packed beads (Bilitewski, et 

al. 2003, Can Wang 2000, Ku et al. 2006, L'Hostis et al. 2000, Urban et al. 2006) or 

the broader category of surface immobilization (Bilitewski, et al. 2003, Chaki and 

Vijayamohanan 2002, Deng et al. 2006, Kisailus et al. 2006, Malpass et al. 2002, 

Niemeyer et al. 2003, Quist, et al. 2005).  Many of the surface immobilization 

approaches require surface modification followed by adsorption or covalent 

attachment (Mao et al. 2002, Qu et al. 2004, Yakovleva et al. 2002).  Standard 

chemistries such as formaldehyde or glutaraldehyde are used to crosslink enzymes 

to the modified surfaces (Hickey, et al. 2007, Honda et al. 2006, Li et al. 1999).  

Biotin-steptavidin chemistry is used to assemble steptavidin-linked enzymes onto 

biotinylated phospholipid bilayers coated inside PDMS microchannels and 

borosilicate microcapillary tubes (Mao, et al. 2002).  Another common surface 
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assembly approach employs porous polymer monoliths fabricated in capillaries and 

microchannels by photopolymerization (Hickey, et al. 2007, Logan et al. 2007, Ma 

et al. 2007, Peterson et al. 2002), where the monoliths are normally modified with 

azlactone functionalities to react readily with the amine and thiol groups of enzymes.  

Layer-by-layer self-assembly of charged polysaccharides has also been implemented 

to incorporate enzymes on colloidal particles (Caruso and Schuler 2000) or onto the 

wall surfaces of a microfluidic channel (Liu et al. 2006). 

Some researchers have investigated multiple steps enzymatic reactions in 

microdevices.  Mao and co-workers performed coupled set of chemical reactions 

by connecting microchannels with a reversibly attachable U-shaped plastic tube 

(Mao, et al. 2002).  Luckarift et al also connected individual microfluidic chips 

containing different types of enzymes in series to create a chemo-enzymatic 

synthesis system (Luckarift et al. 2007).  Of particular interest is the work from 

Logan et al who used porous polymer monoliths within microfluidic devices to 

perform spatially separated multienzymatic reactions (Logan, et al. 2007). 

In summary, microreactors provide the opportunity to reduce the cost of the 

investigation, only requiring microlitre amounts of substrate rather than the millilitre 

requirements of batch investigations and, in combination with enzyme 

immobilization, allow enzyme recycling, thereby further reducing the potential costs 

of the biocatalytic screening processes (Hickey, et al. 2007).  In this research, we 

study the biomolecule assembly in bioMEMS device, with a particular interest in 

enzyme assembly and activity study in a continuous microreactor in a microchannel. 
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1.4 Metabolic pathway in bioMEMS 

In this research, a unique biofunctionalization strategy has been implemented to 

assemble biomolecules at spatially selective sites in prepackaged bioMEMS devices.  

Specifically, the work focus on the programmable assembly and catalytic activity of 

the metabolic pathway enzyme, Pfs, in bioMEMS as an important step to reconstruct 

and interrogate the AI-2 synthesis pathway in the microfluidic environment.  A 

bioMEMS was designed and fabricated that incorporates multiple microfluidic 

channels with optical access, two electrodes underneath each of the channels, 

non-permanent leak-tight sealing and systematic control of fluidic transport and 

electric transduction.  The bioMEMS enables post-fabricated, signal-guided 

biofunctionalization of biomolecules such as model proteins, DNAs and metabolic 

pathway enzymes onto localized inorganic surface inside microfluidic channels. 

The overall picture of reconstructing the metabolic pathway of AI-2 synthesis 

within a microfluidic channel is shown in Figure 1-3, which consists of the two AI-2 

synthases, Pfs and LuxS, assembled onto the specific sites in a microfluidic channel.  

Precursor SAH introduced into the microchannel is enzymatically converted into 

SAH SRH DPD

Pfs LuxS

AI-2 synthesis enzymes

Autoinducer-2SAHSAH SRHSRH DPDDPD

Pfs LuxS

AI-2 synthesis enzymes

Autoinducer-2

 

Figure 1-3: BioMEMS platform to study quorum sensing. 
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SRH and the byproduct adenine by the assembled enzyme Pfs, then SRH is 

converted into DPD and the byproduct homocysteine by the assembled enzyme 

LuxS.  DPD stabilizes as AI-2.  The biofunctionalization process is mediated by 

chitosan, a polysaccharide that enables electrodeposition onto spatially selective 

inorganic surface and covalent conjugation of biomolecules onto chitosan’s primary 

amine groups.  The enzymes with engineered pentatyrosine pro-tag are assembled 

onto readily addressable sites inside completely packaged microfluidic channels 

either by electrodepositing enzyme-chitosan conjugates or by enzymatic in situ 

activation and assembly onto electrodeposited chitosan scaffolds. 

AI-2 is a small signal molecule that mediates interspecies bacterial cell-to-cell 

communication, or quorum sensing, which is involved in regulating many of the 

genes associated with bacterial pathogenesis (Balestrino et al. 2005, Barrios et al. 

2006, Ren et al. 2001, Sperandio et al. 2001, Sperandio et al. 2002, Zhu et al. 2002).  

Inhibition or knock-down of enzymes in this pathway represent new opportunities 

for antimicrobial drugs that target population phenotype as opposed to essential 

biological functions (Rasmussen et al. 2005, Rasmussen et al. 2005).  Therefore, 

the enzyme assembly strategy reported in this research provides a template toward 

rebuilding metabolic pathways in microfluidic environments for novel 

anti-microbial drug discovery. 
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1.5 Research goal and outline 

The overall goal of this research is to demonstrate the programmable assembly 

and the biological activity of biomolecules in prepackaged bioMEMS devices.  

This research represents an effort to integrate engineering principles and 

technologies with biological applications, as shown in the research outline in Figure 

1-4.  For this, Chapter 2 first discusses the bioMEMS devices for programmable 

biomolecule assembly and the unique, signal-guided biofunctionalization approach 

mediated with the polysaccharide chitosan.  Next, the model protein assembly and 

DNA hybridization in bioMEMS devices are demonstrated in Chapter 3.  In 

Chapter 4, the programmable assembly and activity of the metabolic pathway 

enzyme, Pfs, is demonstrated as an important step to reconstruct the AI-2 synthesis 

pathway in bioMEMS.  The design and packaging optimization of bioMEMS 

devices are further discussed for programmable enzyme assembly and activity in 

Chapter 5.  Finally, Chapter 6 summarizes conclusions and ongoing/future work. 

2.Signal-guided 
biofunctionalization

4. Pfs assembly 
and activity

5.BioMEMS upgrade 
and optimization

1.BioMEMS & control 
system development

Metabolic pathway 
reconstruction and 

interrogation in bioMEMS

3.Model protein 
assembly and 

DNA hybridization

Engineering

Biology2.Signal-guided 
biofunctionalization

4. Pfs assembly 
and activity

5.BioMEMS upgrade 
and optimization

1.BioMEMS & control 
system development

Metabolic pathway 
reconstruction and 

interrogation in bioMEMS

3.Model protein 
assembly and 

DNA hybridization

Engineering

Biology

 

Figure 1-4: Outline of this research that integrates engineering with biology. 
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Chapter 2. BioMEMS Devices, Control System 

and Chitosan as Soft-interconnect in 

BioMEMS 
 

Integration of engineering principles and technologies with biological 

applications is exemplified throughout this research.  This chapter first reviews the 

bioMEMS devices that have been developed for programmable biomolecule 

assembly and describes my contribution in the device development.  Next is the 

discussion of a bioMEMS control system that I built to control the pumping and 

selection of fluidic sources for biochemical applications that require multiple 

process in microsystems.  Finally, the chitosan-mediated, signal-guided 

biofunctionalization approach that was implemented in the following chapters is 

discussed for programmable assembly and activity of biomolecules in bioMEMS 

devices. 

2.1 BioMEMS devices for biomolecule assembly 

The design and fabrication process of our bioMEMS device with packaging 

shown in Figure 2-1 was reported previously (Park et al. 2006).  Briefly, the bio

MEMS device features six identical microchannels evenly distributed on a 4” Pyrex 

wafer with two rectangular gold electrodes underneath each microchannel, one as 

working electrode and the other as counter electrode.  A chromium adhesion layer 

(100 Å) and then a gold layer (2000 Å) were first deposited onto a 4” Pyrex wafer, 

and rectangular gold electrode patterns (1 mm × 0.5 mm) were created by 
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photolithography.  SU-8 50 (MicroChem, Newton, MA) was patterned on the top 

of substrate and electrode surface to form structures which serve a dual function, 

namely (1) sidewalls for a microfluidic channel of 150 µm high and 500 µm wide, 

and (2) sharp “knife-edge” structures for reliable leak-tight sealing to a PDMS layer 

above. 

The wafer was sealed leak-tight by a 300-µm-thick top sealing PDMS layer 

spun on a sealing Plexiglas plate, and the SU-8/PDMS junction was compressed by 

two packaging Plexiglas plates with six pressure-adjustable compression bolts 

(1/4"-28) hexagonally spaced on the ring and six force tuneable socket screws 

Electrode Microchannel

Pyrex 
wafer

Sealing via 
for screw

500μm500μm

150μm

1mm

SU-8 
side wall

SU-8 
side wallChannel

Au

Pyrex 
Substrate

PDMS gasket

SU8/PDMS
compression seal

Top sealing plate

Pyrex

Compression 
bolts

(a) (b)

(c)

(d)
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Electrode Microchannel
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SU-8 
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Pyrex 
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side wall

SU-8 
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Figure 2-1: The bioMEMS device for biomolecule assembly. (a) Schematic of a 4” 

Pyrex wafer with 6 SU-8 microchannels with two electrodes underneath each 

microchannel. (b) 3-D drawing of a microchannel. (c) Non-permanent sealing of a 

microchannel by a PDMS gasket with pressure. (d) Assembled microfluidic device 

with electric and fluidic connections. 
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(4–40) between every two microchannels.  Fluidic connectors (NanoportTM 

Technologies, Portland, OR) and electric Pogo pins (Interconnect Devices, Kansas 

City, KS) were assembled through punched holes on the sealing PDMS and 

drilled-holes through the top sealing and packaging Plexiglas plates, and then 

connected to external pressure-driven aqueous transport, and electrical signal, 

correspondingly. 

My contribution to the development of this bioMEMS device is mainly in two 

aspects as shown in Figure 2-2.  First, the in-channel reservoirs with curved 

microchannels (point A A’, B B’) were replaced so that the fluid flow is 

smoothened and in-channel fluidic residue is minimized.  Second, the alignment of 

the bioMEMS wafer to external plastic tubing and has been improved and the 

interconnection reservoirs (point C C’, D D’) has been shrunken to minimize the 

dead volume within the interconnections.  Further improvements and new 

bioMEMS designs have been conducted and detailed in Section 5.2 for multi-step 

biochemical reactions in bioMEMS. 

A’

B’

C’

D’

A’

B’

C’

D’

A

B

C’

D’

A

B

C’

D’  

Figure 2-2: Improvements of the bioMEMS device by curving the microchannel 

(A A’, B B’) and shrinking the interconnection reservoirs (C C’, D D’). 
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2.2 BioMEMS system control technology 

The biomolecule assembly in bioMEMS of this research normally consists of a 

series of biochemical processes including preparation steps such as buffer rinsing, 

non-specific blocking and device biofunctionalization, and the intended biochemical 

reactions.  Repeated reactions are also conducted within the same device as our 

bioMEMS device has been demonstrated to be reusable.   

To better facilitate the multiple-step biochemical process in the bioMEMS 

device, a bioMEMS control system as shown in Figure 2-3 was built to 

systematically control the selections from multiple solution sources and the pumping 
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Figure 2-3: BioMEMS control system.  The control system controls the selections 

from multiple solution sources and the pumping flow rate into microfluidic channels. 
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into microfluidic channels.  The control system mainly consists of a peristaltic 

micropump (Masterflex1 pump drive, Cole-Palmer Instrument Co) with two 

cartridges in alternating directions on a 8-roller cartridge pump head (Masterflex 

pump head, Cole-Palmer Instrument Co) to achieve near pulseless combined output 

flow, a 6-to-1 solenoid valve (Bio-Chem Valve / Omnifit, NJ) with separate tubing 

(0.19 mm ID, Tygon1) to select solutions from multiple sources, a 1-to-2 isolation 

valve (Bio-Chem Valve / Omnifit, NJ) to direct the pumping either to waste 

collection or to the bioMEMS chip, and a LabView-based program which sends 

digital signals to control the selection of fluidic sources and the on/off switching of 

the pump, and sends analog signals to control the flow rate. 

The assembled bioMEMS control system is shown in Figure 2-4.  The system 
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Figure 2-4: BioMEMS control system.  The control system controls the selections 

from multiple solution sources and the pumping flow rate into microfluidic channels. 
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is capable of controlling the microfluidic flow rate in the range of 2.8–280 μL/min.  

Another LabView program was used to control electrodeposition process and to 

monitor the voltage of the applied electrical signal (2–3 V measured during the 

electrodeposition process).  A network simulation (VisSimTM 3.2, Design Science 

Inc.) showed that at 5 μL/min flow rate, the velocity inside the channel (cross 

section: 500 μm × 150 μm) is 1.1 mm/s. 
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2.3 Chitosan as soft interconnect in bioMEMS 

Chitosan is a linear β-1, 4-linked polysaccharide that is derived from the partial 

deacetylation of chitin, an abundant organic material found in the shells of crabs and 

some insects.  The unique structural feature of chitosan is the presence of the high 

content of primary amines at the C-2 position of the glucosamine residues.  These 

primary amines confer two important properties.  First, the solubility of chitosan is 

pH-responsive, as shown in Figure 2-5(a).  At low pH, the primary amine groups 
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Figure 2-5: Chitosan as the biointerfacial material in microfluidics. (a) Solubility of the 

polysaccharide chitosan is pH dependent. (b) Electrical signal-guided chitosan 

deposition at cathode surface where pH gradient is created by negative electrical 

potential. (c) Chitosan enables spatial/temporal biofunctionalization of bioMEMS 

device and immobilization of biomolecules in microfluidic channel. 
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are protonated, making chitosan soluble.  As the pH rises above chitosan’s pKa 

value of around 6.5, a particularly convenient range for biological applications, the 

amines become deprotonated, making chitosan insoluble.  By taking advantage of 

this controlled solubility, chitosan can be electrodeposited onto patterned electrodes 

guided by electrical signals with spatial and temporal control (Wu et al. 2002, Wu et 

al. 2003), as shown in Figure 2-5(b).   

Second, the abundant reactive amine groups on chitosan allow a range of 

chemistries to be employed to biofunctionalize chitosan or to cross-link the chitosan 

backbone to confer elasticity.  Therefore, chitosan is an ideal interfacial material 

between biological molecules and inorganic surfaces, and electrical signals have 

been applied in many applications to deposit chitosan for the assembly of nucleic 

acids, proteins, viruses and even cells onto patterned inorganic surface (Yi et al. 

2005, Yi et al. 2004, Yi et al. 2005).  Chitosan is recognized as a soft 

component–hard device interconnect for biofabrication (Yi et al. 2005) and a 

length-scale interconnect for the hierarchical assembly of nano-scale components 

into macro-scale systems (Payne and Raghavan 2007). 

In this research, chitosan is utilized as a programmable platform for 

biomolecule assembly in the microfluidic environment.  As shown in Figure 2-5(c), 

the electrodeposition of chitosan enables the biofunctionalization of the bioMEMS 

devices in Section 2.1 with temporal and spatial programmability.  Electric signal is 

applied to electrodeposit chitosan at specific sites in microchannels of prefabricated 

bioMEMS devices just before introducing and conjugating biomolecules for 
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biological applications.  The amine chemistry of chitosan enables the assembly of 

biomolecules onto the electrodeposited chitosan scaffold while retaining the 

biological activity of the assembled biomolecules. 

2.4 Summary 

In summary, microdevices have long shelf life and are normally microfabricated, 

packaged and stored until the need of biological applications arises.  Chitosan as an 

ideal biointerfacial material has been employed to programmably biofunctionalize 

the devices on demand for biological applications.  The biofunctionalization 

imparts the bioMEMS devices with the molecular recognition and self-assembly 

capabilities of labile biology.   

In the following chapters demonstrates biomolecule assembly onto specific sites 

in bioMEMS device, with a particular focus on the assembly and activity of the 

metabolic pathway enzyme Pfs in prepackaged bioMEMS.  Additionally, this 

research investigates the design optimization of bioMEMS devices and experimental 

strategy for studies of metabolic pathway enzyme. 
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Chapter 3. Programmable Model Protein 

Assembly and DNA Hybridization in 

BioMEMS 
 

This chapter reports facile in situ biomolecule assembly at readily addressable 

sites in microfluidic channels of prepackaged BioMEMS devices.  As mentioned in 

Section 2.3, chitosan’s pH responsive and chemically reactive properties allow 

electric signal-guided biomolecule assembly onto conductive inorganic surfaces 

from the aqueous environment, preserving the activity of the biomolecules.  The 

transparent and nonpermanently packaged bioMEMS device as mentioned in 

Section 2.1 allows for electrical signal-guided biomolecule assembly onto the 

patterned gold electrode sites within the microchannels.  In this chapter, we 

demonstrate that chitosan-mediated in situ biomolecule assembly is a simple 

approach to direct the assembly of biological components into prefabricated 

bioMEMS devices.  Specifically, the biomolecules were assembled onto patterned 

electrodes in microchannels with spatial and temporal programmability.  We 

believe that this strategy holds significant potential as a simple and generic 

biomolecule assembly approach for future applications in complex biomolecular or 

biosensing analyses as well as in sophisticated microfluidic networks. 

Section 3.1 demonstrates in situ green fluorescence protein (GFP) protein 

assembly onto a chitosan scaffold in a bioMEMS device by chemically activating 

the amine groups of chitosan with glutaraldehyde.  Section 3.2 demonstrates in situ 
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biochemical activation and protein assembly onto a chitosan scaffold in a bioMEMS 

device.  In both demonstrations, the assembled model protein GFP retained 

fluorescence and hence its 3-dimensional structure.  Section 3.3 demonstrates DNA 

hybridization onto electrodeposited chitosan scaffold by glutaraldehyde activation.  

3.1 Programmable GFP assembly via glutaraldehyde 

activation 

***This work was done together with Jung Jin Park.  Jin designed and fabricated 

the bioMEMS device, I designed and built the bioMEMS control system.  We worked 

together to conduct the experiment and analyze the results.*** 

3.1.1 Materials and methods 

Chitosan (minimum 85% deacetylated chitin; molecular weight 200,000 g/mol) 

from crab shells, phosphate buffered saline (PBS) (2.7 mM KCl, 137 mM NaCl, 1.5 

mM KH2PO4, 8.1 mM Na2HPO4, pH 7.5) and glutaraldehyde (grade I, 50% aqueous 

solution) were purchased from Sigma (St. Louis, MO).  Sodium hydroxide was 

purchased from J.T. Baker (Phillipsburg, NJ).  Bleach was purchased from James 

Austin Co. (Mars, PA).  De-ionized water (ddH2O, 18 MVcm, Milli-Q) and PBS 

(dissolved in de-ionized water) were autoclaved before use.  Chitosan solution was 

prepared by adding chitosan flakes in de-ionized water, with HCl added dropwise to 

maintain pH ~ 2, and mixing overnight.  The pH was then adjusted to 3.5 by adding 

1 M NaOH dropwise, and the chitosan solution was then filtered and stored at 48ºC.  

The bioMEMS device fabrication and packaging is discussed in Section 2.1.  To 
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avoid cross contamination between the several solutions, the bioMEMS control 

system in Section 2.2 is used to control the selection and pumping of different 

solution into the bioMEMS device. 

Programmable green fluorescent protein was assembled onto electrodeposited 

chitosan scaffold via glutaraldehyde activation of the amine groups of chitosan.  First, 

the experimental microchannel and all connecting tubing (0.02” ID, Tygon) were 

rinsed with de-ionized water at 50 µL/min flow rate for 30 min.  Chitosan (0.375% 

(w/w), pH 5) was pumped into the microfluidic system at 5 µL/min flow rate.  After 

the microchannel was completely filled with chitosan solution, the pump was stopped.  

The DC power supply (2400 SourceMeter, Keithley Instrument, Cleveland, OH) was 

then used to maintain negative bias voltage on the gold (working) electrode under 

constant current conditions of 3 A/m2 for 240 sec, while a second gold electrode served 

as the anode.  The chitosan solution was then drained from the system, and the 

deposited chitosan was neutralized with PBS (30 min at 5 µL/min flow rate).   

After draining the PBS buffer, glutaraldehyde solution (0.5 %) was introduced at 5 

µL/min flow rate for 30 min, followed by PBS buffer rinsing for 30 min.  GFP solution 

was then introduced into the microchannel for 15 min at 5 µL/min flow rate.  For in 

situ, real time observation on the test site, microfluidic system was placed under the 

microscope during whole process steps.  Finally, the microfluidic channel was rinsed 

at 5 μl/min PBS for 30 min.  For the negative control, we repeated the same processes 

on a separate channel except that no negative bias was applied (no chitosan 

electrodeposition).  ImageJ analysis software was used to analyze fluorescent 3-D 
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contour (National Institutes of Health). 

3.1.2 Results and discussion 

The programmable GFP assembly results onto electrodeposited chitosan scaffold 

via glutaraldehyde activation of the amine groups of chitosan are shown in Figure 3-1.  

For this, we first electrodeposited chitosan on to a gold electrode in a microfluidic 

channel followed by introduction of a 0.5% glutaraldehyde solution, an amine group 

reactive homobiofunctional cross-linker that activates chitosan for covalent coupling 

with amine groups on proteins.  As shown in Figure 3-1(a), no significant fluorescence 

appears up to this activation step, as expected.  Next, we introduced an aqueous 

solution of green fluorescent protein (GFP) into the microchannel.  Figure 3-1(b) 

illustrates that GFP reacts with and becomes conjugated onto the activated chitosan 

scaffold.  This result shows that electrodeposited chitosan enables post-fabrication, in 

situ assembly of proteins in microfluidic channels through series of simple standard 

chemical reactions all in aqueous environment.  Importantly, the assembled GFP 

retains the fluorescence, indicating that the structure of the protein is preserved 

throughout the assembly procedure. 

Figure 3-1(c) shows the results of a negative control experiment inside a new 

microchannel, which underwent the identical procedure as in the previous 

microchannel except that the electrode was not negatively biased for chitosan 

electrodeposition.  This result confirms that the in situ protein assembly requires 

electrodeposited chitosan as the covalent coupling scaffold.  Further, 3-D fluorescent 
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contour in Figure 3-1(e) shows uniform fluorescent intensity of GFP decorated chitosan 

film. 

Combined these results demonstrate in situ protein assembly in the microfluidic 

device, which could be further exploited for biochemical reactions or biosensing 

applications based on in situ assembled enzymes or antibodies at readily addressable, 

activated chitosan scaffold sites in microfluidic devices.  Particularly important to note 

is that the sequences of steps and electric signal-guided biomolecule assembly strategy 

allow all-aqueous environment for the protein assembly, preserving the biological 

activities. 
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Figure 3-1: Programmable assembly of green fluorescent protein (GFP) via 

glutaraldehyde activation of chitosan scaffold. Left: Schematic of protein assembly 

procedure. Right: Fluorescent photographs and intensity contour of protein assembly. 
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3.2 Programmable GFP assembly via in situ enzymatic 

activation 

***This work was done together with Angela Lewandowski.  Angie prepared the 

protein solution and other materials, I fabricated the bioMEMS devices.  We worked 

together to conduct the experiment and analyze the experimental results.*** 

 The GFP assembly in bioMEMS under flow in the previous section was done by 

glutaraldehyde activation of the amine groups on electrodeposited chitosan scaffold.  

In this section, we demonstrate the GFP assembly in bioMEMS under flow via in situ 

enzymatic activation of the genetically fused pentatyrosine pro-tag at its C-terminus.  

While both surface-assembly approaches enable spatial selectivity in bioMEMS 

devices, the assembly via enzymatic activation of fusion pro-tag enables orientational 

control of the assembled protein under mild experimental conditions (Lewandowski et 

al. 2006). 

3.2.1 Materials and methods 

Tyrosinase from mushroom (1,530 Units/mg solid) was purchased from Sigma 

(St. Louis, MO).  Sodium hydroxide was purchased from J.T. Baker (Phillipsburg, 

NJ).  Acetone, hydrochloric acid, sulfuric acid, and glycerol were purchased from 

Fisher Chemical (Fair Lawn, NJ).  All other materials including chitosan, phosphate 

buffered saline (PBS), bleach, Sodium hydroxide and De-ionized water were 

purchased and prepared similarly as in Section 3.1.  The bioMEMS device 

fabrication and packaging is discussed in Section 2.1.  The bioMEMS control system 

25 



shown in Figure 2-3 was implemented to enhance control over different solutions and 

processes. 

The same device cleaning steps, chitosan electrodeposition, and PBS buffer 

neutralization steps were performed as described in Section 3.1.1.  After draining the 

PBS buffer, a PBS solution with (His)6-GFP-EK-(Tyr)5 (0.2 mg/mL) and tyrosinase 

(0.1 mg/mL or 166 Units/mL) was pumped at 5 µL/min over the deposited chitosan.  

As a control, a PBS solution with GFP but without tyrosinase was pumped at 5 µL/min 

flow rate over the deposited chitosan.  Between experiments the system was cleaned 

by rinsing with 1.4 M HCl and then concentrated bleach at 5 µL/min flow rate for 10 

min each, followed by thorough rinsing with de-ionized water at 50 µL/min flow rate 

for 30 min.  For real-time in situ fluorescence and observation, the microfluidic device 

was placed under a microscope (model 310, Carl Zeiss, Thornwood, NY) and a UV 

source (Zeiss HBO 100).  Fluorescence micrographs were acquired every minute from 

the microscope using a digital camera (Carl Zeiss AxioCam MRc5).  Finally, the 

system was washed with PBS (30 min at 5 µL/min flow rate).  ImageJ software 

(National Institutes of Health) was used to analyze the fluorescence intensity of the 

final fluorescence micrographs. 

3.2.2 Results and discussion 

The in situ enzymatic activation and assembly of GFP onto a selected electrode 

pattern within a completely packaged microfluidic device is shown in Figure 3-2.  For 

this, we fabricated a microfluidic device that features six identical microchannels 
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evenly distributed on a 4” Pyrex wafer; one microchannel is illustrated in Figure 3-2(a).  

We electro-assembled chitosan scaffold onto a selected gold electrode pattern within a 

microchannel by transporting chitosan solution into the channel, and then stopping the 

pump and applying negative bias to the electrode pattern as shown in Figure 3-2(b).  

Next, we continually pumped through the channel a PBS solution containing the target 

protein GFP and the activating enzyme tyrosinase to activate and assemble GFP onto 

the electro-assembled chitosan scaffold.  We observed the fluorescence profile of the 1 

mm × 0.5 mm assembly site (scaffold) in real time through an on-site fluorescence 

microscope. 

As illustrated in Figure 3-2(c), the fluorescence intensity of the assembly site 

gradually increased with time until reaching a maximum constant level.  Importantly, 

the fluorescence remained high even after thorough PBS buffer rinsing, indicating that 

GFP was covalently bound to the chitosan scaffold.  Next, we analyzed the 

fluorescence intensity of the final micrograph of the assembly site using ImageJ 

software, which illustrates that GFP assembled relatively uniformly onto the scaffold 

pattern.  These results demonstrate that (1) the target protein GFP assembled only onto 

the chitosan scaffold with high spatial selectivity, and uniformity, (2) the assembled 

GFP remained fluorescent after thorough rinsing, and (3) non-specific binding of GFP 

to other channel surfaces was minimal, as there was no significant fluorescence of the 

microchannel floor, ceiling, or walls. 
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Figure 3-2: Programmable assembly of green fluorescent protein (GFP) via in situ 

enzymatic activation. (a) A microfluidic device. (b) Schematic procedure. (c) 

Experiment: tyrosinase was added for in situ enzymatic activation thereby GFP was 

covalently assembled on chitosan scaffold. (d) Control: no tyrosinase was added for in 

situ enzymatic activation thereby no GFP was covalently assembled on chitosan 

scaffold.  

Next, we performed control experiments to examine nonspecific binding of 

unactivated GFP to the electro-assembled scaffold.  For this, we reused the same 

microchannel by removing the scaffold from the previous experiment with dilute 

hydrochloric acid.  We then reassembled the chitosan scaffold onto the electrode 

pattern, and then continually pumped through the channel a PBS solution containing 

only the target protein GFP (without the activating enzyme tyrosinase).  As illustrated 

in Figure 3-2(d), the fluorescence intensity of the assembly site gradually increased 
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with time until reaching a constant level.  However, the fluorescence decreased 

significantly upon PBS buffer rinsing, as illustrated by ImageJ software analysis of the 

final fluorescence micrograph (the surface plot represents the pixel intensity over the 

deposition area).  Further ImageJ analysis of the micrographs in Figure 3-2(c) and (d) 

suggests that the final level of GFP upon rinsing after tyrosinase treatment in Figure 

3-2(c) was about 92% (e.g., loss from the 60 min time point) and that the final level in 

Figure 3-2(d) (no tyrosinase) was ~25% of that in Figure 3-2(d).  These results indicate 

that the GFP without tyrosinase was loosely bound to the chitosan scaffold, and easily 

rinsed off, and confirm that activation of the pro-tag by tyrosinase is required for GFP 

assembly. 

We have demonstrated here, for the first time, in situ enzymatic activation, and 

assembly of a target protein onto a patterned scaffold within a microfluidic channel 

under flow.  The target protein GFP assembled covalently and uniformly in a spatially 

selective manner, and was not released upon further flow of buffer rinsing.  This is 

significant, as we are unaware of any reports demonstrating the spatially resolved 

enzymatically activated covalent assembly of proteins in microchannels under flow.  

Additionally, GFP is assembled predominately through its C-terminal pro-tag, and is in 

a specific orientation onto the patterned scaffold surface.  In contrast, our previous 

work with microfluidic channels the protein was covalently linked through its native 

amines to a glutaraldehyde-activated chitosan film surface and in no particular 

orientation (Park, et al. 2006).  Finally, assembly occurs in a completely fabricated and 

packaged device for reusability, and as mentioned before, occurs under mild 
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experimental conditions ideal for maintaining protein biological function: in aqueous 

solution, through enzymatic activation, and at neutral pH.  These unique advantages of 

our assembly strategy combined with the well-known advantages of microfluidic 

devices (i.e., rapid response time and small volumes of expensive reagents) make this 

particularly appealing for applications that necessitate microfluidic systems. 

In summary, Figure 3-2 demonstrates in situ enzymatic activation and assembly of 

the target protein GFP within a prefabricated and fully packaged bioMEMS device 

under flow.  Assembly is covalent and robust, spatially selective (only onto selected 

patterned scaffold surfaces), and occurs under mild experimental conditions.  

Importantly, our assembly approach is readily applicable to microfluidic systems.  

Combined, these advantages make our assembly approach appealing for a wide variety 

of bioMEMS applications that require facile device biofunctionalization.  
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3.3 DNA hybridization in bioMEMS 

3.3.1 Materials and Methods 

PerfectHyb Plus hybridization buffer, saline sodium citrate (SSC) buffer (20X 

concentrate, molecular biology grade), and Tris-EDTA (TE) buffer (100X concentrate) 

were all purchased from Sigma (St. Louis, MO).  Glacial acetic acid, MgCl2·6H2O 

(enzyme grade), and sodium borohydride powder (NaBH4) were purchased from 

Fisher Chemical (Fair Lawn, NJ).  All other materials including chitosan, 

glutaraldehyde, phosphate buffered saline (PBS), sodium hydroxide and de-ionized 

water were purchased and prepared similarly as in Section 3.1.  Unless otherwise 

noted, 1X SSC buffer with 0.1 M MgCl2 was used for equilibration and rinsing 

throughout this study.  To prepare this SSC buffer, the SSC buffer of 20X 

concentrate was first distilled with ddH2O.  After autoclaving, a solution of 

autoclaved 4 M MgCl2 was added to adjust the pH to 7.1.  All single-stranded DNA 

(ssDNA) molecules were purchased from Gene Probe Technologies, Inc. (Rockville, 

MD).  These DNAs are HPLC-purified and were used without further purification.  

The bioMEMS device fabrication and packaging are discussed in Section 2.1.  The 

bioMEMS control system shown in Figure 2-3 was implemented to enhance control 

over different solutions and processes. 

Schematic flow of DNA hybridization process on electrodeposited chitosan 

scaffold inside a microchannel is shown in Figure 3-3(a).  The same device cleaning 

steps, chitosan electrodeposition, and PBS buffer neutralization steps were performed 
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as described in Section 3.1.1 (Step 1).  After draining the PBS buffer, glutaraldehyde 

solution (0.5 %) was introduced at 5 μL/min flow rate for 30 min, followed by PBS 

buffer rinsing for 30 min (Step 2).  Next, probe ssDNA solution (20 μg/mL, 5’-amino) 

was introduced over the activated chitosan in the microchannel for 60 min at 5 μL/min 

flow rate, followed by PBS buffer rinsing for 30 min (Step 3).  NaBH4 solution, PBS 

buffer and hybridization buffer were then introduced into the microchannel in a 

sequence for 20 min, 30 min and 10 min, respectively. 

For the DNA hybridization, mismatch target ssDNA (0.5 μM in hybridization 

buffer, 5’-FITC) was first flowed over the assembled probe ssDNA on the 

electrodeposited chitosan scaffold in the microchannel for 30 min at 0.5 μL/min flow 
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Figure 3-3: DNA hybridization in bioMEMS. (a) Schematic procedure. (b) Fluorescent 

micrographs. 
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rate, followed by hybridization buffer conditioning for 10 min (Step 4).  Then match 

target ssDNA (0.5 μM in hybridization buffer, 5’-FITC) was introduced into the 

microchannel for 30 min at 0.5 μL/min flow rate, followed by hybridization buffer and 

PBS buffer rinsing for 10 min, respectively (Step 5).  For in situ, real time observation 

on the test site, the bioMEMS device was placed under the microscope during whole 

process steps.  ImageJ analysis software was used to analyze fluorescent 3-D contour. 

3.3.2 Results and discussion 

The experimental results of in situ probe ssDNA assembly onto electrodeposited 

chitosan scaffold and the subsequent DNA hybridization are shown in Figure 3-3.  

After chitosan electrodeposition (step 1) and glutaraldehyde activation (step 2), no 

significant fluorescence was observed as expected.  During the introduction of probe 

ssDNA, the amine groups at the 5’-end probe was assembled via glutaraldehyde onto 

the chitosan scaffold (Step 3), which shows very weak fluorescence due to the intrinsic 

fluorescence of the probe DNA in Figure 3-3(b) #3.  Next, an aqueous solution of 

mismatch target DNA was introduced into the microchannel (Step 4), up to which the 

assembly site shows no significant fluorescence, indicating that mismatch target 

ssDNA didn’t hybridize the probe ssDNA, as expected.  Finally, the match target 

ssDNA solution was introduced into the microchannel (Step 5).  As illustrated in 

Figure 3-3(b) #5, the match target ssDNA hybridizes with their complementary probe 

ssDNA assembled on the activated chitosan scaffold.  Figure 3-4 shows the sequential 

micrographs of DNA hybridization during the introduction of match target ssDNA into 
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Figure 3-4: DNA hybridization in bioMEMS: Sequential micrographs during 

introduction of match target ssDNA 

the microchannel.  The fluorescence signal on chitosan scaffold gradually increased in 

the first 10 minutes and then reached the plateau after 15 minutes, indicating sufficient 

match target ssDNA hybridized to the probe until the chitosan scaffold saturated. 

These results confirm that electrodeposited chitosan enables post-fabrication, 

spatially selective DNA hybridization in the microfluidic environment through a series 

of simple standard chemical reactions, all in an aqueous environment.  Signal-directed 

sequential assembly of DNA onto spatially selective assembly sites is demonstrated in 

our bioMEMS devices.  Importantly, probe DNA on the electrode retained its 

hybridization capacity throughout the assembly and hybridization procedures. 
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3.4 Conclusions 

In this chapter, we demonstrated the in situ biomolecule assembly as a simple and 

versatile approach to direct the assembly of biological components into prefabricated 

bioMEMS devices.  Our approach is based on electro-deposition of the 

aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive 

surfaces of bioMEMS devices followed by covalent assembly of biomolecules onto 

the surface of the electrodeposited chitosan scaffold.  In the first demonstration, GFP 

was in situ assembled onto chitosan scaffold in a bioMEMS device by chemically 

activating the amine groups of chitosan with glutaraldehyde.  Next, GFP was in situ 

assembled onto chitosan scaffold in a bioMEMS device by enzymatic activation of the 

genetically fused pentatyrosine pro-tag at the protein’s C-terminus.  Finally, DNA 

hybridization was demonstrated on chitosan scaffold by glutaraldehyde activation of 

the amine groups of chitosan for assembly of probe DNA.  Importantly, the 

biomolecules in all cases were assembled onto patterned electrodes in prepackaged 

microchannels with spatial and temporal programmability.  We believe that this 

strategy holds significant potential as a simple and generic biomolecule assembly 

approach for future applications in complex biomolecular or biosensing analyses as 

well as in sophisticated microfluidic networks. 

Our approach for biomolecule assembly in bioMEMS devices offers several 

unique advantageous capabilities.  First, the electric signal-guided nature of the 

chitosan assembly allows simple in situ assembly of biological molecules when and 

where it is needed, even long after the device is fully manufactured.  This capability 
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may allow biological components to be assembled into complex microfluidic networks 

(e.g. for high throughput drug screening) with greater ease than conventional assembly 

methods.  Second, biomolecules are assembled from the aqueous environment, thus 

preserving their biological activities through the assembly procedure.  Third, our 

approach is user friendly since the end-user, namely a biologist or a clinician, does not 

need complex robotic printing facilities or arduous chemical procedures to achieve 

selective biomolecule assembly.  Forth and finally, our technique offers generic, 

flexible strategies for different target biomolecules since a wide variety of conjugation 

schemes can be utilized for different biomolecules.  This is clearly demonstrated by 

the retained fluorescence of assembled GFP and the complementary reaction of target 

ssDNA onto the assembled ssDNA.  Combined, these advantages make our assembly 

approach appealing for a wide variety of bioMEMS and biosensing applications that 

require device biofunctionalization. 
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Chapter 4. Programmable Enzyme Assembly 

in Prepackaged BioMEMS 
 

This chapter reports a biofunctionalization strategy for the assembly of 

catalytically active enzymes within a completely packaged bioMEMS device, through 

the programmed generation of electrical signals at spatially and temporally defined 

sites.  The enzyme of a bacterial metabolic pathway, S-adenosylhomocysteine 

nucleosidase (Pfs), is genetically fused with a pentatyrosine “pro-tag” at its 

C-terminus.  Signal responsive assembly is based on covalent conjugation of Pfs to 

the aminopolysaccharide, chitosan, upon biochemical activation of the pro-tag, 

followed by electrodeposition of the enzyme–chitosan conjugate onto readily 

addressable sites in microfluidic channels.  Compared to traditional physical 

entrapment and surface immobilization approaches in microfluidic environments, our 

signal-guided electrochemical assembly is unique in that the enzymes are assembled 

under mild aqueous conditions with spatial and temporal programmability and 

orientational control.  Significantly, the chitosan-mediated enzyme assembly can be 

reversed, making the bioMEMS reusable for repeated assembly and catalytic activity.   

Additionally, the assembled enzymes retain catalytic activity over multiple days, 

demonstrating enhanced enzyme stability.  We envision that this assembly strategy 

can be applied to rebuild metabolic pathways in microfluidic environments for 

antimicrobial drug discovery. 
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4.1 Introduction 

As discussed in Section 1.3, the microfluidic environment of bioMEMS devices 

provides unprecedented advantages for enzyme analysis because of the ability to 

work with smaller reagent volumes, shorter reaction times, and the possibility of 

parallel operation.  Researchers have explored enzyme assembly approaches in 

microfabricated devices using either entrapment approaches such as packed beads or 

surface immobilization approaches.  However, robust and reproducible enzyme 

assembly within microfluidic devices remains challenging due to the labile nature of 

these biological molecules that is incompatible with the lengthy and dry processing 

conditions often encountered in the device fabrication. 

In this chapter, we report a chitosan-mediated biofunctionalization strategy for 

the assembly of catalytically active enzymes onto spatially and temporally 

programmed sites within completely packaged and systematically controlled 

bioMEMS devices.  Specifically, we report assembly of the bacterial metabolic 

pathway enzyme, S-adenosylhomocysteine nucleosidase (Pfs), and demonstrate that it 

retains catalytic activity for small molecule biosynthesis.  Pfs catalyzes the 

irreversible cleavage of S-adenosylhomocysteine (SAH) into S-ribosylhomocysteine 

(SRH) and adenine (Duerre 1962), and is a member of the autoinducer-2 (AI-2) 

biosynthesis pathway, a metabolic pathway found in many bacterial species (Federle 

and Bassler 2003).  As discussed in Section 1.1, AI-2 is a small cell-signaling 

molecule that serves as a quorum-sensing communicator, through which bacterial 

populations exhibit altered phenotype.  Therefore, the enzyme assembly strategy 
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reported here provides a template toward rebuilding and interrogating metabolic 

pathways in microfluidic environments for novel anti-microbial drug discovery.  

As opposed to conventional approaches which have immobilized enzymes onto 

packed beads or on entire surfaces of microchannel walls, our biofunctionalization 

strategy assembles enzymes at a specific address within a microchannel through the 

programmed generation of electrical signals at spatially and temporally defined sites.  

First, the bioMEMS device in Figure 4-1(a) is prefabricated for multiple uses.  

Second, Pfs-chitosan conjugate solution is prepared by covalently conjugating Pfs to 

chitosan in solution upon tyrosinase activation of the pro-tag genetically fused at the 

enzyme’s C-terminus, as shown in Figure 4-1(b).  This conjugation step confers the 

pH-responsive properties of chitosan to the enzyme Pfs for one-step electro-assembly 

 

Figure 4-1: Schematic flow of programmable enzyme assembly in a prepackaged 

reusable bioMEMS device. (a) Prefabricated device, (b) enzyme-chitosan conjugation, 

(c) electrically programmed assembly of Pfs-chitosan conjugate, (d) enzymatic 

small-molecule reaction, (e) mild acid wash to remove biofunctionalization and reuse 

bioMEMS device.  
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onto the readily addressable sites within the microfluidic channels.  Third, the 

Pfs-chitosan conjugate is electrodeposited onto an assembly site inside a microfluidic 

channel by applying negatively biased electrical signals, as shown in Figure 4-1(c).  

With biofunctionalization complete, Figure 4-1(d) shows that the Pfs-catalyzed 

enzymatic reaction is performed by introducing the enzyme substrate SAH into the 

microchannel, which is then catalytically converted by the assembled Pfs into 

products SRH and adenine.  After the reaction, Figure 4-1(e) indicates that a mild 

acid wash removes the assembled Pfs-chitosan conjugate for reuse of the bioMEMS. 

The unique features of this work are that we employ localized electrical signals to 

guide the assembly of a biocatalytically-active enzyme at a specific electrode address 

within a completely packaged microfluidic channel.  This assembly approach is 

important because it allows device fabrication to be separated from 

biofunctionalization and enables the prefabricated bioMEMS to be repeatedly 

biofunctionalized for multiple uses. 
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4.2 Materials and methods 

4.2.1 Materials 

S-adenosylhomocysteine (SAH), bovine serum albumin (BSA), chitosan 

(minimum 85 % deacetylated chitin, molecular weight 200,000 g/mol) from crab 

shells, imidazole, isopropyl β-D-thiogalactopyranoside (IPTG), nickel sulfate, 

phosphate buffered saline (PBS) (2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 8.1 

mM Na2HPO4, pH 7.5), sodium cyanoborohydride, and tyrosinase from mushroom 

were purchased from Sigma (St. Louis, MO).  Tyrosinase was reported by the 

manufacturer to have an activity of 1,530 Units/mg solid.  LB (Luria broth) medium 

was purchased from Becton Dickinson (Cockeysville, MD).  Acetonitrile (HPLC 

grade), ampicillin sodium salt, chloroform, glycerol, sodium phosphate (monobasic), 

sodium phosphate (dibasic), and water (HPLC grade) were purchased from Fisher 

Chemical (Fair Lawn, NJ).  Hydrochloric acid and sodium chloride were purchased 

from J. T. Baker (Phillipsburg, NJ).  Non-fat dry milk was purchased from BioRad 

(Hercules, CA).  Bleach was purchased from James Austin Co. (Mars, PA).  

De-ionized water (ddH2O, 18 MΩ·cm, Milli-Q) and PBS (dissolved in de-ionized 

water) were autoclaved before use. 

4.2.2 Plasmid construction 

pTrcHis-Pfs-Tyr plasmid construction has been reported elsewhere (Fernandes et 

al. 2007).  Briefly, the plasmid was constructed by PCR amplification of pfs from E. 
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coli wild type strain W3110.  Following digestion, the PCR products were extracted 

by gel purification and inserted into pTrcHisC (Invitrogen).  DNA sequencing was 

performed to verify construct integrity.  The plasmid was transformed into E. coli 

DH5α (defective LuxS strain). 

4.2.3 Purification of (His)6-Pfs-(Tyr)5 

E. coli DH5α containing pTrcHis-Pfs-Tyr was cultured at 37oC and 250 rpm in 

LB medium supplemented with ampicillin at 50 μg/mL concentration.  When the 

OD600nm reached 0.5 – 0.6, IPTG was added to induce enzyme production at a final 

concentration of 1 mM IPTG.  After an additional 5 hr, the culture was centrifuged 

for 10 min at 10,000 g’s, and the cell pellet stored at – 20oC.  The thawed pellet was 

resuspended in PBS + 10 mM imidazole, pH 7.5, placed in an ice-water bath, and the 

cells lysed by sonication (Fisher Scientific Sonic Dismembrator 550).  The lysed 

cells were centrifuged for 10 min at 16,000 g to remove insoluble cell debris, and the 

supernatant filtered though 0.22 μm PES filter.  The enzyme was purified from the 

filtered soluble cell extract by immobilized metal-ion affinity chromatography 

(IMAC) using a 5 mL HisTrap chelating column (Amersham Biosciences).  Prior to 

loading the filtered extract, the column was charged with Ni2+ ions using 0.1 M NiSO4, 

washed with de-ionized water, and equilibrated with 3 column volumes (CVs) of 20 

mM sodium phosphate, 250 mM NaCl, 10 mM imidazole, pH 7.4.  After loading the 

filtered extract, the column was washed with 3 CVs of the previous buffer, washed 

again with 3 CVs of 20 mM sodium phosphate, 250 mM NaCl, 50 mM imidazole, pH 
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7.4, and the protein was eluted using 1.5 CVs of 20 mM sodium phosphate, 250 mM 

NaCl, 350 mM imidazole, pH 7.4.  All steps were performed at 2 mL/min (1 cm/min 

linear velocity).  The eluted sample was dialyzed overnight (16 hr) at 4oC into PBS.  

Purified protein concentration was determined with a UV/vis spectrophotometer (DU 

640, Beckman, Fullerton, CA) using UV light at 280nm wavelength.  The protein 

solution was mixed 2:1 with glycerol, aliquoted and stored at –80oC. 

4.2.4 Chitosan and Pfs-chitosan conjugate preparation 

Chitosan solution was prepared by adding chitosan flakes in de-ionized water, 

with HCl added dropwise to maintain pH ~ 2, and mixing overnight.  The pH was 

then adjusted to pH 4.8 by adding 1 M NaOH dropwise, and the chitosan solution was 

then filtered and stored at 4ºC. 

The conjugate was prepared by incubating (His)6-Pfs-(Tyr)5 (0.2 mg/mL), 

tyrosinase (0.1 mg/mL or 166 Units/mL), and chitosan (0.5 % (w/w)) in 50 mM 

sodium phosphate buffer (final pH of mixture 6.0) for 2 h at room temperature (23 – 

24 oC) and 250 rpm, followed by incubation in sodium cyanoborohydride (0.2 mg/mL) 

for 30 min at 250 rpm to stabilize Pfs-chitosan binding. 

4.2.5 BioMEMS device fabrication and packaging 

The fabrication process of our bioMEMS device with packaging was described in 

Section 2.1.  The bioMEMS device used in these experiments is shown in Figure 4-2.  

The solution selection and pumping is controlled by the bioMEMS control system as 

described in Section 2.2.  
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Figure 4-2: BioMEMS device for enzyme assembly. (a) Completely packaged 

bioMEMS system with electric connectors and fluidic inputs/outputs. (b) Color ink 

running through one microfluidic channel (left) and zoom-in view of one electrode at 

the bottom of the channel (right).  

4.2.6 One-step electrodeposition of enzyme-chitosan conjugate and sequential 

enzymatic reactions 

As shown in Table 4-1, the microchannel and all the connecting tubing were first 

rinsed with DI water at 50 μL/min flow rate for 30 min.  Then, Bovine Serum 

Albumin (BSA) solution (1 % (w/v) in PBS buffer) was pumped into the 

microchannel at 3 μL/min flow rate for 2 hours to block non-specific binding.  After 

PBS buffer rinsing at 3 μL/min flow rate for 30 min, Pfs-chitosan conjugate solution 

was pumped into the microchannel at 5 μL/min flow rate.  After the microchannel 

was completely filled, the pump was stopped and an electrical signal of constant 

current density 3 A/m2 was applied to maintain negative bias voltage on the gold 
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(working) electrode for 240 seconds, while a second gold electrode served as the 

anode (counter). 

The Pfs-chitosan conjugate solution was then drained from the system, and the 

electrodeposited Pfs-chitosan conjugate was washed with PBS buffer at 5 μL/min and 

then at 20 μL/min flow rates, each for 15 min.  Next, enzymatic reactions were 

performed by continuously pumping the SAH substrate solution (1 mM SAH in 50 

mM sodium phosphate buffer pH 7.2) for 2 hours at each flow rate.  During the 

second hour of each flow rate, samples were collected every 10 min for 3 min each.  

They were then extracted with chloroform and stored at -20oC before analyzing by 

HPLC. 

Table 4-1: Experimental procedure to demonstrate programmable assembly of a 

catalytically active enzyme and its reproducibility a

 

a The background colors of each step correspond to that in Figure 4-3. 
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4.2.7 Negative controls 

Several control experiments were run to evaluate the signal-directed assembly of 

the conjugate and free enzyme within the bioMEMS.  For control Set #1, the 

microchannel was incubated for 240 seconds with free Pfs solution (0.2 mg/mL) 

without chitosan (therefore no need of electrical bias) and without tyrosinase.  For 

control Set #2, an electrical signal of constant current density 3 A/m2 was first applied 

for 240 seconds to electrodeposit chitosan scaffold onto the assembly electrode, then 

the microchannel was filled with a 5% (w/v) milk-PBS solution to block non-specific 

binding of Pfs to chitosan and the channel surfaces.  Next, a solution of free Pfs 

solution (0.2 mg/mL) without tyrosinase was pumped into the microchannel at 5 

µL/min flow rate for 60 minutes.  For the corresponding experiment, a mixed 

solution of Pfs (0.2 mg/mL) and tyrosinase (0.1 mg/mL or 166 Units/mL) was 

pumped into the microchannel at 5 µL/min for 60 minutes to activate the pro-tag of 

Pfs in situ for its covalent assembly onto the electrodeposited chitosan scaffold.  For 

control Set #3, the process was similar to that shown in Table 4-1, except there was no 

electrical signal applied when incubating the microchannel with the same batch of 

Pfs-chitosan conjugate solution for 240 seconds.  Finally, enzymatic reactions were 

performed for all sets of controls and the corresponding experiments, and the 

downstream reaction products were collected and analyzed by HPLC. 

4.2.8 Analysis of enzymatic reaction products 

A Waters Spherisorb Silica column (250 × 4.6 mm) with 5 μm beads (80 Å pore) 
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was used in reversed-phase mode with 5 μL sample injection size and a mobile phase 

of 70:30 acetonitrile:water at 0.5 mL/min.  Conversion was calculated from elution 

data at 210 nm.  The HPLC system consisted of two Dynamax model SD-200 pumps 

(with 10 mL pump heads and mixing valve) and a Dynamax Absorbance Detector 

model UV-D II.  The conversion data was analyzed using Star 5.5 Chromatography 

Software (Rainin). 
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4.3 Results 

4.3.1 One-step electrodeposition of enzyme-chitosan conjugate and sequential 

enzymatic reactions 

We demonstrate assembly of Pfs enzyme onto a readily addressable site in a 

prefabricated and packaged microfluidic channel by one-step electrodeposition of 

Pfs-chitosan conjugate.  Additionally, we demonstrate retention of catalytic activity 

of the assembled Pfs, and robustness and stability of the assembled Pfs throughout 

repeated flow cycles over extended time.  For this, we first prepared the Pfs-chitosan 

conjugate solution by incubating chitosan (buffered to pH 6.0 by the addition of 

sodium phosphate buffer), tyrosinase, and the pro-tagged Pfs as in Figure 4-1(b).  

Tyrosinase activates the pro-tag to covalently conjugate Pfs to the chitosan in solution.  

Next, we electrodeposited Pfs-chitosan conjugate onto the patterned assembly site 

inside a microfluidic channel by filling the microchannel with Pfs-chitosan conjugate 

solution and then applying negatively biased electrical signals to the patterned 

electrode as in Figure 4-1(c).  This microchannel was previously incubated in BSA 

solution to block non-specific binding of Pfs to the channel surfaces.  Next, we 

continually transported through the microchannel a solution containing the substrate 

SAH, which was catalytically converted into reaction products SRH and adenine by 

the assembled Pfs as in Figure 4-1(d).  Finally, we performed HPLC analysis of the 

enzymatic reaction mixtures collected downstream. 
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As shown in Figure 4-3(a), Pfs-chitosan conjugate was first assembled onto the 

assembly site in the microchannel by applying negatively-biased electrical signals 

(day 1), and enzymatic reactions were performed by continuously pumping SAH 

solution through the channel in a cyclic manner between 3 μL/min and 22 μL/min, as 

shown in Figure 4-3(b) (day 2).  Reaction mixtures collected downstream were 

analyzed by HPLC.  Next, Pfs enzyme was disassembled by mild acid solution (day 

2), SAH was continuously pumped through the channel (day 3), and HPLC analysis 

was performed on the solutions collected downstream to demonstrate that Pfs enzyme 

was in fact completely disassembled and the device was cleaned for reuse.  With the 
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Figure 4-3: Programmable enzyme assembly, reproducibility after removal and 

robustness over time. (a) Schematic of programmable enzyme assembly, disassembly 

and reassembly and the corresponding enzymatic reactions. (b) Flow rates. (c) 

Reproducible catalytic activity after enzyme assembly, disassembly and re-assembly, 

and stability of assembled enzyme after 4 days. 
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acid wash completed, Pfs-chitosan conjugate from the same solution batch was 

re-assembled (day 3), and enzymatic reactions were performed at the same flow rates, 

as shown in Figure 4-3(b) (day 4), to demonstrate reproducible enzyme assembly and 

catalytic activity.  Finally, the assembled enzyme was left in PBS buffer for 4 days at 

room temperature (days 4 – 7) before the final cycle of enzymatic reactions were 

performed (day 8) to demonstrate the stability of the assembled enzyme with 

extended time. 

The HPLC analysis results in Figure 4-3(c) show the following behavior.  (1) By 

varying the flow rate in a cyclic manner between 3 μL/min (low flow rate) and 22 

μL/min (high flow rate), the SAH conversion correspondingly cycled between  46 ± 

4 % at the low flow rate and 12 ± 1 % at the high flow rate (day 2).  (2) After cleaning 

the channel with mild acid solution, there is no conversion (day 3), demonstrating that 

the assembled enzyme was in fact completely removed, and thus allowing for 

repeated biofunctionalization and reuse of the bioMEMS device.  (3) After 

re-assembly of Pfs enzyme, the SAH conversion recovered back to the cyclic 

behavior alternating between 46 ± 4 % and 12 ± 1 % (day 4), demonstrating 

reproducible enzyme assembly and catalytic activity.  (4) After leaving the enzyme 

in the microfluidic environment at room temperature for 4 days (days 4 – 7), the 

conversion cycled between 33 ± 2 % and 9 % (day 8).  Specifically, the 33 ± 2 % 

conversion represents > 70 % of the original conversion (46 ± 4 %), demonstrating the 

stability of the enzyme over extended time.  These results show that our model 

enzyme Pfs was successfully and robustly assembled onto readily addressable sites 
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within prefabricated and packaged microfluidic channels by one-step 

electrodeposition of the Pfs-chitosan conjugate.  Importantly, the assembled enzyme 

retained reproducible activity throughout the repeated flow cycles. 

Combined, these results demonstrate the reproducibility of enzyme catalytic 

activity, the spatial and temporal programmability of our enzyme assembly process, 

the robustness and stability of the assembled enzyme with time, and the reusability of 

the devices when using our electrochemical enzyme assembly process. 

4.3.2 Negative controls to examine non-specific binding and dead volume 

We next examined what portion, if any, of the SAH conversion in Figure 4-3(c) 

was a result of Pfs non-specifically assembled onto the microchannel surfaces and/or 

of solution-phase Pfs retained in the dead volume of the bioMEMS.  For this, we 

designed the following three sets of experiments as shown in Figure 4-4(a). 

The simplest experiment set #1 was designed to test the non-specific binding of 

free, unconjugated, solution-phase Pfs to the bioMEMS surfaces.  In the experiment, 

Pfs-chitosan conjugate was electrodeposited, as shown in Figure 4-3 (day 2), while 

the negative control was performed in the same microchannel after rinsing with acid 

solution.  The negative control only differed from the experiment in that the 

microchannel was incubated with Pfs solution without chitosan and without 

tyrosinase.  The HPLC analysis results in Figure 4-4(d) show that at 3 µL/min flow 

rate, there was 16 ± 3% conversion of SAH to SRH and adenine for the negative 

control, while there was 48 ± 2% conversion for the experiment on day 2 in Figure 
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4-3(c). 

Experiment set #2 was designed to compare the non-specific binding versus 

covalent binding of free Pfs to an already electrodeposited chitosan scaffold in the 

bioMEMS.  For this, we first applied electrical signals to electrodeposit chitosan 

scaffold onto the assembly electrode, then incubated the microchannel in milk 

solution to block non-specific binding of Pfs to chitosan and the channel surfaces.  

Next, we incubated the microchannel with a mixed solution of Pfs and tyrosinase to in 

situ activate the pro-tag of Pfs for its covalent assembly onto the electrodeposited 

chitosan scaffold, and finally we performed enzymatic reactions.  Following the 

 

Figure 4-4: Negative controls and corresponding experiments. (a) Preparation of 

assembly site surface. Green = pure chitosan, blue = Pfs-chitosan conjugate. (b) 

Enzymatic reactions. (c) Flow rates. (d) Enzymatic conversions. The * denotes a 

statistical difference (p < 0.01 in all cases).   
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same procedure, the negative control was performed in the same microchannel after 

rinsing with acid solution, except that no tyrosinase was added to the free Pfs solution.  

The HPLC results in Figure 4-4(d) show that at 3 µL/min flow rate, there was 17 ± 1% 

conversion of SAH to SRH and adenine for the negative control, while there was 97 ± 

2% conversion for the experiment.  The higher conversion in the experiment of set #2 

(97 ± 2%) compared to that of set #1 (48 ± 2%) might be due to the facts that in 

experiment set #1, (1) the Pfs molecules might be partially buried in the 

electrodeposited Pfs-chitosan matrix, making them less accessible to SAH substrate, 

and (2) Pfs molecules might be exposed to high pH during the electrodeposition. 

This work focus on the conjugate assembly (set #1) as more advantageous than in 

situ activation and assembly (set #2) in that this strategy will ultimately enable 

sequential assembly of multiple enzymes within the same microfluidic channel 

representing a metabolic pathway onto different assembly sites.  That is, each 

enzyme of the pathway can be conjugated to chitosan separately, and then each 

conjugate can be electrodeposited onto its own assembly site within a microchannel. 

We believe the most stringent control was in experiment set #3 that was designed 

to test the non-specific binding of Pfs-chitosan conjugate in bioMEMS without 

biasing the assembly electrode.  This was performed in a new microchannel and with 

a new batch of Pfs-chitosan conjugate solution.  Following the similar experimental 

procedure shown in Table 4-1, we first incubated the microchannel in BSA solution to 

block non-specific binding of Pfs to the channel surfaces.  Next, we performed the 

experiment by electrodepositing Pfs-chitosan conjugate onto the patterned assembly 
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site, and conducting enzymatic reactions by cycling the SAH flow rate between 3 

μL/min and 22 μL/min flow rates and analyzed the reaction products by HPLC.  

Following the same procedure, the negative control was performed in the same 

microchannel after rinsing with acid solution, except that no electrical signal was 

applied during Pfs-chitosan conjugate incubation.  The HPLC analysis of the 

enzymatic reaction products in Figure 4-4(d) shows that at 3 µL/min flow rate, there 

was 25 ± 3% conversion of SAH into SRH and adenine in the negative control, while 

there was 79 ± 4% conversion in the experiment.  At 22 µL/min flow rate there was 3 

± 1% conversion in the negative control and 19 ± 1% conversion in the experiment.  

The conversion difference at 3 µL/min flow rate in experiment set #1 (48 ± 2%) 

versus set #3 (79 ± 4%) might be because the experiment set #3 was performed within 

a different microchannel and with a new batch of Pfs-chitosan conjugate solution. 

4.3.3 Performance of enzyme assembled on electrodes 

In all three experimental sets shown in Figure 4-4, the results consistently yield 

3~6 times more conversion than the corresponding negative controls, which 

demonstrates that the majority of conversion resulted from catalytic reactions at the 

target electrode sites.  We confirmed that there was a significant statistical difference 

between the enzymatic conversion of the negative control and that of the experiment 

in each set by analyzing via single-factor ANOVA tests and multiple comparison tests 

(p < 0.01).  For set #3, this analysis was performed on conversions at both 3 and 22 

µL/min flow rates.  This is particularly striking because (1) the electrode site 
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comprises only 0.2 % of the total surface area within the bioMEMS device available 

for non-specific binding of the enzyme, and (2) the fluid volume above the electrode 

site comprises only 0.3 % of the total fluid volume in the bioMEMS available for 

trapping free, unattached, solution-phase enzyme.  In other words, these results 

demonstrated that the enzyme intentionally assembled on the electrode is far more (> 

103 = 3~6 / 0.2%) efficient than the enzyme at non-specific binding sites in the entire 

microchannel.  

We are currently optimizing our bioMEMS design to further minimize system 

dead volume, and are investigating alternative methods for blocking non-specific 

enzyme attachment.  Nonetheless, non-specific protein attachment and system dead 

volume are issues common in biofunctionalized bioMEMS systems due to the 

structural characteristics of enzymes and other proteins, the high surface area to 

volume ratio of the system, and the minimal mixing due to the laminar flow 

characteristics of the system (Beebe, et al. 2002, Holden et al. 2004, Ku, et al. 2006, 

Mao, et al. 2002). 

4.3.4 Enzyme stability and activity 

The experimental results in Figure 4-3(c) show that the assembled enzyme on the 

selected site in the microfluidic channel retained substantial catalytic activity for at 

least four days.  We further examined Pfs stability by comparing specific catalytic 

activities over 4 days of the surface-assembled Pfs-chitosan conjugate at the electrode 

in a microchannel to (1) unassembled Pfs-chitosan conjugate solution and to (2) free 
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and unconjugated Pfs solution (Table 4-2).   

For this, we reacted the Pfs solutions (1) and (2) with SAH on day 1 and then 

re-reacted the same Pfs solutions with fresh SAH on day 5.  The free Pfs-chitosan 

conjugate formed a suspension when it was mixed with SAH substrate (due to the 

higher pH of SAH solution). All reaction mixtures were analyzed by HPLC.  Shown 

in Table 4-2 are the specific activities of the experiments on day 1 and on day 5 after 

remaining 4 days at room temperature in PBS buffer, calculated as μmol SAH 

converted per min per mg Pfs.  For the case of the unassembled conjugate, we 

assumed that all of the initially available Pfs had conjugated to chitosan during the 

Table 4-2: Estimated specific catalytic activities of assembled Pfs-chitosan conjugate 

in microchannel, Pfs-chitosan conjugate suspension, and free unconjugated Pfs 

enzyme solution on day 1 and on day 5 after 4 days in PBS buffer at room 

temperature. 

b

a a

 

a The enzymatic reaction by the assembled Pfs-chitosan conjugate on spatially 
selected sites in a bioMEMS channel is heterogeneous.  Quantification of the 
specific activities is more difficult than that in homogeneous reactions and is the 
focus of ongoing research.  Assumptions were made to estimate the specific 
activities shown in the table, and more details are available in 6Appendix I: 
Estimation of enzyme specific activity. 
b Free Pfs-chitosan conjugate forms a suspension when it was mixed with SAH due to 
the higher pH of SAH solution. 
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conjugation reaction (as chitosan was added in excess of Pfs).  For the case of the 

assembled conjugate, the milligrams of Pfs assembled was estimated by 

electrodepositing Pfs-chitosan conjugate onto a microfabricated chip under the same 

conditions, then resolubilizing the conjugate with dilute hydrochloric acid and 

performing Western blot analysis.  Further information can be found in 6Appendix I. 

Table 4-2 shows that on the first day the specific activity of the assembled 

Pfs-chitosan conjugate is 1.8 µmol SAH/ min/ mg Pfs, while the specific activities of 

the unassembled conjugate suspension and the free unconjugated Pfs solution are 12 

µmol SAH/ min/ mg Pfs.  Both values are within the range of reported Pfs specific 

activities, which vary over 3 orders of magnitude (Duerre 1962, Ferro et al. 1976, 

Ragione et al. 1985).  The decrease in activity upon assembly is not surprising, given 

the steric hindrance effects of immobilized enzymes, and the diffusional limitations 

due to the minimal mixing associated with laminar flow in bioMEMS systems. 

However, Table 4-2 demonstrates that the activity of the assembled Pfs-chitosan 

conjugate is better retained with time, as shown by the % activities remaining after 4 

days incubation in PBS buffer at room temperature: 70 % remaining for the assembled 

conjugate, only 26 % remaining for the conjugate suspension, and only 13 % 

remaining for the free unconjugated enzyme.  We conclude that the assembled 

enzymes in our bioMEMS are more stable and resistant to environmental changes for 

better retention of catalytic activities with time than are the bulk free or 

chitosan-conjugated enzyme solutions.  Therefore, our approach allows for repeated 

use of the bioMEMS in continuous or intermittent processes.  This stability 
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advantage for surface-assembled enzyme over those in bulk solution is consistent to 

what has been observed in literature (Cao 2005). 

4.3.5 Transient response  

Using our current bioMEMS packaging system, we observed a time delay 

between changing the flow rate over the reaction site (assembled with Pfs enzyme) 

and measuring the corresponding change in SAH concentration at the sample 

collection point downstream.  To further understand the transient system response, 

we performed numerical modeling of the bioMEMS by simulating the mixing purely 

due to mass diffusion and laminar transport (Reynolds number = 0.1). 

The simulation result in Figure 4-5 shows that in the low flow rate case (3 μL/min) 

it takes 10 minutes for a concentration change at the reaction site to travel downstream 

and arrive at the sample collection site, and it takes 25 minutes for the concentration 

response at the sample collection site to reach 95% of the concentration change at the 

reaction site.  This is mainly due to dead volume (~20 μL) in the packaging between 

the microchannel and the external tubing.  This transient response of the bioMEMS 

justifies that we collected the samples for HPLC analysis only at the 2nd hour in each 

flow rate step after the concentration completely stabilized.   The response time of 

the current system design also partially explains the conversions in the control 

experiment as any enzyme in the dead volume contributes to the enzymatic 

conversion.  The minimization or elimination of dead volume is also under 

investigation and will be a focus of subsequent studies. 
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Figure 4-5: Simulation of the transient concentration response at sample collection 

point to the concentration change at reaction site. (a) At 3 μL/min flow rate (blue). (b) 

At 22 μL/min flow rate (purple). 
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4.4 Discussions 

4.4.1 Enzyme assembly and activity in bioMEMS 

Here we report an enzyme assembly strategy and demonstrate corresponding 

enzymatic activity based on electrodeposition of the enzyme-chitosan conjugate onto 

readily addressable electrode sites into a microchannel of a prefabricated and 

packaged bioMEMS device.  Specifically, we report assembly of Pfs enzyme, a 

member of the AI-2 biosynthesis pathway, which catalyzes the cleavage of SAH into 

SRH and adenine.  The significance of this result is that enzymes can be 

programmably assembled within a bioMEMS while maintaining their catalytic 

activity over time.  This provides the underpinnings for a viable bioMEMS 

technology platform to support metabolic engineering research and development for 

applications from elucidating biochemical reaction kinetics to discovering new drugs. 

Our enzyme assembly strategy described here offers several unique advantages 

over conventional techniques such as microcontact printing (Quist, et al. 2005) and 

self assembly layers (Chaki and Vijayamohanan 2002).  First, the enzymes 

conjugated to chitosan are covalently bonded, and the assembly of the 

enzyme-chitosan conjugate onto the patterned electrode in the microchannel can be 

programmed conveniently by electrical signals.  Second, the enzyme assembly is 

performed in mild aqueous conditions inside prefabricated and completely packaged 

bioMEMS devices, thus avoiding direct contact and complex facilities.    Third, we 

achieve temporal programmability since we are able to assemble the enzymes just 
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prior to using the enzyme for small molecule biocatalysis.  This is advantageous for 

biological components that have limited shelf life. 

4.4.2 Quantification 

While the purpose of this chapter was to demonstrate the assembly and activity of 

enzymes within the bioMEMS, quantification of the activity and comparison to 

alternatives is a natural and important question.  Such quantification is challenging 

and is the subject of ongoing research.  In the meantime, it is possible here to identify 

or estimate several semi-quantitative results of note. 

Figure 4-4(d) shows that some parasitic or background reaction occurs, 

presumably through non-specific enzyme assembly onto the microchannel 

surfaces13-25 or through any free, unattached, solution-phase enzyme.  Figure 4-4(d) 

also demonstrates that such conversion is significantly less, and statistically different 

compared to the conversion achieved by the electrodeposited enzyme-chitosan 

conjugate.  Additionally, the electrode, with only 0.5 mm2 area, represents only 0.2% 

of the total microenvironment surface (221 mm2), and the volume above the electrode 

site (0.075 µL) represents only 0.3% of the total microenvironment volume (23.9 µL).  

Therefore, the enzyme-activated electrode is > 3 orders of magnitude more efficient in 

executing the catalytic reaction than other areas of the microfluidic environment. 

In a meaningful sense, these quantitative results are already encouraging.  An 

overriding concern with microfluidics technology and applications is that the vastly 

enhanced surface/volume ratio cf. conventional chemical reactors may dramatically 
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alter pathways and kinetics, rendering microfluidic environments not viable.  For 

localized reaction sites in a bioMEMS, the concern takes two somewhat different but 

equally important forms: (1) will nonspecific binding at the large area of channel 

surface dominate over the small area of active electrode? and (2) will parasitic 

reaction of enzyme in the aqueous phase of the entire channel volume dominate over 

that at the electrode?  Results here show that the assembled enzyme on the small 

electrode can control the catalytic conversion of small molecules in the bioMEMS. 

4.4.3 Optimization 

There is ample opportunity to optimize conversion rates in our bioMEMS 

environments (Lewandowski et al. 2008).  One means is through process 

parameters such as flow rates, process time, concentrations, surface passivation, and 

pH.  Another is through device design, such as channel dimensions and geometry, 

reduction of dead volumes such as reservoirs, and new network designs which 

minimize cross-talk between enzyme assembly and subsequent catalytic conversion.  

With present conversion rates of 46 %, there is room to improve the efficiency of 

enzyme conversion at the electrode, and reduction of parasitic conversion pathways 

(non-specific binding at channel surfaces and/or reaction in aqueous volumes), 

control and specificity of reaction at the active electrode sites can be improved as 

well. 
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4.5 Conclusions 

This work demonstrates a chitosan-mediated biofunctionalization strategy for the 

assembly of catalytically active enzymes onto spatially and temporally programmed 

sites within a completely packaged and systematically controlled bioMEMS device.  

The HPLC analysis of downstream reaction mixtures demonstrates that the assembled 

enzymes are catalytically active, robust, and stable with time, and that our strategy is 

reproducible, allowing for multiple uses of bioMEMS devices. While further 

quantification is needed, the assembled enzyme at the small active electrode is much 

more effective overall in catalytic conversion of the SAH substrate than are parasitic 

channels associated with non-specific enzyme attachment to the channel surfaces or 

with solution-phase enzyme.  In any case, we report here for the first time the 

signal-guided assembly of catalytically active enzymes at localized sites which can be 

programmed both spatially and temporally within a prepackaged bioMEMS.  The 

demonstration of their catalytic activity represents a key step in progress toward a 

bioMEMS technology to support metabolic engineering research and development, 

where multi-step biochemical reactions are common and separation of these steps is 

highly desirable for understanding reaction details and modifying pathways and 

kinetics for various applications (e.g. drug discovery). 

This novel strategy of enzyme assembly was achieved through two unique 

techniques: (1) the covalent conjugation of the enzyme to chitosan in solution upon 

biochemical activation of a pro-tag and (2) the electrodeposition of the resulting 

enzyme-chitosan conjugate.  Because the assembly of biological elements is 
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signal-guided through the electrodeposition process, the active biology 

(enzyme-chitosan conjugate) can be introduced into prefabrication bioMEMS 

devices upon demand.   We anticipate that the methodology can be extended to 

multiple sites and with different enzymes to accommodate multi-step metabolic 

pathways (Jung and Stephanopoulos 2004), as would be valuable for replicating 

specific bacterial pathways and seeking new antimicrobial drugs that modify or 

suppress those pathways. 
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Chapter 5. BioMEMS Optimization for Enzyme 

Assembly and Activity 
 

Biological microelectromechanical systems (bioMEMS) provide an attractive 

approach to understanding and modifying enzymatic pathways by separating and 

interrogating individual reaction steps at localized sites in a microfluidic network.  

Chapter 4 has shown that electrodeposited chitosan enables immobilization of an 

enzyme at a specific site while maintaining its catalytic activity.  While promising as 

a methodology to replicate metabolic pathways and search for inhibitors as drug 

candidates, these investigations also revealed unintended (or parasitic) effects, 

including products generated by the enzyme either (1) in the homogeneous phase (in 

the liquid), or (2) nonspecifically bound to microchannel surfaces, i.e., in the 

heterogeneous phase.  Here we report on bioMEMS designs which significantly 

suppress these parasitic effects.   

To reduce homogeneous reactions we have developed a new packaging and 

assembly strategy which eliminates fluid reservoirs that are commonly used for 

fluidic interconnects with external tubing.  To suppress reactions by nonspecifically 

bound enzyme on microchannel walls we have implemented a cross-flow 

microfluidic network design so that enzyme flow for assembly and substrate/product 

flow for reaction share only the region where the enzyme is immobilized at the 

intended reaction site.  Our results show that the signal-to-background ratio of 

sequential enzymatic reactions increases from 0.72 to 1.28 by eliminating the 
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packaging reservoirs, and increases to 2.43 by separating the flow direction of 

enzymatic reaction from that of enzyme assembly step.  These techniques can be 

easily applied to versatile microfluidic devices to minimize parasitic reactions in 

sequential biochemical reactions. 

5.1 Introduction 

5.1.1 Motivation: enzymatic reactions and metabolic pathways in bioMEMS 

Microfluidic devices and polydimethylsiloxane (PDMS) soft lithography 

fabrication have reduced the size, reagent quantity, and cost of many standard 

biochemical analytical protocols, by handling nanoliter volumes (Janasek et al. 2006, 

Quake and Scherer 2000).  Biological micro-electromechanical systems (bioMEMS) 

are an important subset of these devices that are able to recreate biomolecular reaction 

pathways.  Of particular interest are pathways that play a critical role in the 

functionality and behavior of living cells.  Enzyme catalysis is central to many of 

these pathways, and accordingly it has been a major goal to develop means to isolate 

enzymes at specific locations in a microfluidic system, and confirm that their catalytic 

action is maintained in this artificial setting.  This would provide an attractive testbed 

for understanding the details of reaction pathways and kinetics, and for identifying 

means to modify pathways (e.g., for discovery of a drug that can significantly 

suppress, enhance, or modify the dominant pathway). 
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Our group has demonstrated bioMEMS technology that enables the 

programmable assembly of biomolecules on localized assembly sites in 

microchannels (Park, et al. 2006) using electrodeposition of the amine-rich 

polysaccharide chitosan to direct the assembly.  As discussed in Chapter 4, we 
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Figure 5-1: Parasitic reactions in microfluidics due to enzyme trapped in interconnect 

reservoirs and non-specifically bound on microchannel walls. (a) Pfs enzyme converts 

SAH substrate into products SRH and adenine. (b) Assembly of Pfs-chitosan 

conjugate onto a localized assembly electrode in a microchannel. (c) Sequential 

enzymatic reaction in continuous flow. (d) Parasitic reactions in reservoirs and on 

microchannel wall as well as programmable reactions on enzyme assembly site. 
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recently demonstrated that the metabolic pathway enzyme S-adenosylhomocysteine 

nucleosidase (Pfs) can be assembled in this way and that its catalytic action is retained 

in the microfluidic environment, shown by conversion of substrate 

S-adenosylhomocysteine (SAH) into products S-ribosylhomocysteine (SRH) and 

adenine, as illustrated in Figure 5-1 (a)-(c) (Luo et al. 2008).   

This reaction step is known to be one of two enzyme reaction steps by which 

bacteria produce autoinducer-2 (AI-2), a small cell-signaling molecule that serves as a 

quorum sensing communicator, through which bacterial populations exhibit altered 

phenotype.  Our ultimate goal is to use the bioMEMS environment as a testbed for 

discovery of molecules that inhibit quorum sensing.  These would be good 

candidates for a new type of antimicrobial drug that would work by interfering with 

bacterial communication rather than by killing bacteria, hopefully avoiding 

drug-resistant mutations that are too often generated by direct attack on the bacteria. 

5.1.2 Limitations and goals 

 While these results showed clear enzyme activity at the assembled active sites, it 

was accompanied by notable (∼15-30%) background (or “parasitic”) reaction that 

occurred elsewhere in the microfluidic system (signal/background, or S/B, =3-6X).  

This is not surprising, given that the surface area and volume at the reaction site 

comprised only ~0.2% of the total wall area and volume of the microfluidic system. 

The result indicates that the active site is >1000X more efficient than unintended 

(parasitic) sites in the microfluidic network.  These background signals appear in 
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control experiments and are not associated with the intended catalytic action at the 

enzyme assembly sites.  Accordingly we refer to these background reaction channels 

as “parasitic” in that they produce reactions that add to and interfere with efforts to 

localize reactions at the electrode sites. 

The purpose of the present work is to reduce two significant parasitic reaction 

mechanisms in our bioMEMS.  One is a homogeneous reaction mechanism, in that 

substrate and enzyme react while in the fluid phase.  It occurs because active enzyme 

is retained in reservoir areas where fluidic interconnects are made at the packaging 

level.  The other is a heterogeneous reaction mechanism, in which enzyme 

nonspecifically bound to microfluidic channel walls reacts with substrate impinging 

from the fluid phase.  These mechanisms are depicted schematically in Figure 5-1(d). 

5.1.3 Eliminating reservoir dead volume 

Connections between a bioMEMS device and external sources of fluids are 

essential to operate the device.  However, alignment of fluidic inputs/outputs (I/O’s) 

to the microchannels can be challenging.  A conventional approach is to design a 

larger fluidic reservoir as an interface between on-chip microfluidic channels and 

external fluidic connections at the packaging level, reducing the precision needed for 

alignment.  This approach has been used for tubing connection in microfluidics from 

individual microsystems (Bilitewski, et al. 2003, Han et al. 2005, Kim et al. 2007, 

Long et al. 2007) to large-scale integration (McDonald and Whitesides 2002, Thorsen, 

et al. 2002, Urban, et al. 2006).  However, in the case of more than one substrate was 
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sequentially introduced from the same input into the microchannel, which is almost 

unavoidable for multi-step biochemical reactions, the reservoirs are not readily 

flushed since their geometry leaves dead volume regions which entrap reactive 

biomolecules (e.g. enzymes) for extended periods of time, causing homogeneous 

parasitic reactions and altering the apparent conversion efficiency and time 

dependence of intended enzyme reaction steps (Ku, et al. 2006, Luo, et al. 2008). 

 To avoid the homogenous parasitic reactions in interconnect dead volume, we 

implemented a new packaging technique that involves fabricating aligners on soft 

lithography molds to improve the alignment capability for interfacing between 

in-plane microfluidic channels and external tubing.  Frederickson and Fan have 

reviewed the macro-scale packaging and assembly technology issues and their effect 

on microfluidic performance (Fredrickson and Fan 2004).  Our design eliminates the 

interconnection reservoirs by fabricating on-chip SU-8 aligner plugs, analogous to Si 

plugs made by DRIE (Gray et al. 2004), to guide microfluidic packaging connections.  

The relevant properties of PDMS which enable this technique are given elsewhere 

(McDonald and Whitesides 2002).  Here we show PDMS sealing around tubing 20% 

larger than the nominal hole diameter, building on the demonstration in the literature 

(Christensen et al. 2005).  We employ two rigid Plexiglas plates to clamp the 

PDMS-glass device, and stabilize the pogo pins on their electrode contacts, similar to 

the demonstration by Bhagat et al where rigid clamps were employed to mechanically 

stabilize the tubing (Bhagat et al. 2007).  We demonstrate that background 

biochemical activity is reduced by 33% in the new design. 
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5.1.4 Reducing impact of nonspecifically bound enzyme  

The presence of microfluidic channel walls with area far in excess of that of the 

intended enzyme reaction site is in intrinsic to the geometry of bioMEMS.  As 

indicated in Figure 5-1(d), however, our bioMEMS design employed a single channel 

to (1) first activate the enzyme to react with chitosan, and then deliver the 

enzyme-chitosan conjugate to be immobilized on the assembly site by electrical 

signal, and (2) subsequently to transport substrate to the active site and product away 

from it to a downstream collection point.  This configuration exposed substrate to 

nonspecifically bound enzyme through the full length of the channel prior to its 

collection. 

To reduce the contribution of enzyme nonspecifically bound on channel walls, we 

have implemented a cross-flow bioMEMS channel design.  The channel that carries 

the enzyme-chitosan conjugate for immobilization is orthogonal to a second channel 

that carries substrate and product downstream to an exhaust location for analysis of 

enzyme conversion rate.  Thus, substrate is exposed to enzyme only at the active site, 

suppressing the contribution of nonspecifically bound enzyme to measured 

conversion rates. 

 This experimental strategy utilizing cross-flow microchannels to separate flow 

directions for sequential biochemical reactions has been broadly used in DNA/protein 

separation (Long, et al. 2007), droplet formation (Tan et al. 2006) and enzymatic 

reaction (Bilitewski, et al. 2003), where the cross area is the focus point for sample 

manipulation or for reagent introduction.  In this work, we spatially assemble 
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metabolic enzyme Pfs at the intersection between two flow channels so that we can 

separate the flow direction for enzyme assembly from the subsequent flow direction 

for enzymatic reaction.  This design enhancement is an important advance toward 

our goal of reconstructing multiple metabolic pathway enzymes.  Spatially 

separating individual reaction steps in microfluidics allows for better understanding 

of reaction details and testing of molecules that can modify pathways and kinetics.  

In drug discovery, for example, a molecular species which inhibits a bacterial 

signaling pathway enzyme can be a candidate for an antimicrobial drug whose action 

is to interfere with cell signaling or quorum sensing.  By using a cross-flow design to 

separate flow directions, we significantly suppress non-specific heterogeneous 

reactions on microchannel walls and reduce the background signal by an additional 

50%.  Together bioMEMS design modifications for these two effects result in a 

combined enhancement of 3.38X in signal/background (from 0.72 to 2.43). 
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5.2 Detailed design, fabrication and packaging  

For this work we have employed a soft lithography molding approach (McDonald 

and Whitesides 2002) to the fabrication of the bioMEMS, in contrast to our previous 

work on enzyme reactions in bioMEMS (Luo, et al. 2008).  This accelerates 

development and testing of the concept, while removes some of the benefits of our 

earlier design (Park, et al. 2006). 

5.2.1 Packaging aligners to eliminate interconnection reservoirs 

To avoid homogeneous parasitic reaction in interconnect dead volume, minimal 

or no interconnection reservoir is desired.  To achieve this goal, we designed and 

fabricated packaging aligners using a soft lithography molding process.  As shown in 

Figure 5-2(a), packaging aligners of 500μm in diameter were patterned from a 

200μm-thick SU-8 layer on the top of the 150μm-thick SU-8 mold layer used to 

define the 500μm-wide microchannels.  A design offset of 1.07% was applied in the 

photomask to adjust the shrinkage ratio of PDMS (Lee and Lee 2008).  Figure 5-3(a) 

shows the fabricated prototype mold with packaging aligners.  

Three ways of PDMS curing and packaging have been explored to assemble the 

final device without interconnection reservoirs to external tubing.  In Figure 5-2(b), a 

sharpened coupler (fabricated in-house from a 25ga coupler, 0.020” OD) was used to 

punch through the 3mm-thick PDMS layer along the pits formed by the packaging 

aligners during the PDMS curing process.  Holes for electrical contact (0.1” diameter) 

were also punched in the PDMS before the microchannel side was wetted with 
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methanol and bonded to a glass slide (2x1”).  The whole device was then sandwiched 

with screws between two Plexiglas clamp plates, and with pogo pins inserted through 

holes in the top plate for electrical connection.  Finally, flat-end couplers of the same 

size were inserted into the punched holes and connected to external PE tubing 

(0.015”ID).  
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Figure 5-2: Eliminating interconnection reservoirs by aligners on prototype mold to 

guide microfluidic packaging. (a) Aligners on prototype mold. (b) Packaging way #1: 

punch holes via PDMS followed by coupler insertion. (c) Packaging way #2: punch 

holes via PDMS followed by tubing insertion. (d) Packaging way #3: align couplers 

for PDMS curing followed by coupler removal and tubing insertion. 
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Figure 5-2(c) shows the same strategy as Figure 5-2(b) except that the external 

tubing was directly inserted into the punched holes in PDMS.  In Figure 5-2(d), 

couplers with inner-diameter of 0.024” (20ga, 0.036” OD) were gently placed onto 

the aligners of 0.5mm OD and stabilized with a Plexiglas coupling holder during 

while the PDMS was cured.  Then the couplers were removed and external 

microbore PTFE tubing (0.022” ID, 0.042” OD) was inserted into the well-defined 

connection holes (0.036” OD).  Due to capillary action, couplers were normally 

filled with PDMS after curing, which was advantageous because it allowed a slug of 

PDMS to be removed, facilitating better sealing.  A packaged device following the 

procedure of Figure 5-2(d) is shown in Figure 5-3(b) with blue dye flowing through 

the cross channel.   
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500μm 500μm

FE tubing

 

Figure 5-3: Device and packaging. (a) Fabricated aligners on prototype mold. (b) 

Blue dye solution flowing through a packaged cross-channel without interconnection 

reservoirs.  PE tubing was inserted.  In experiment, enzyme solution flowed A C, 

substrate solution flowed B D. 
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 Finally, leak testing showed that all three strategies provide leak-tight sealing. 

The designs (b) and (c) in Figure 5-2 were predominantly used in our experiments 

since they minimized the dead volume between the coupler and tubing as well.   

5.2.2 Cross-channel design to separate sequential flow directions 

Cross channels (500μm-wide, 150μm-high) as shown in Figure 5-3 (b) were 

designed to separate the sequential flow direction of enzyme assembly (A C) from 

the flow direction of the subsequent enzymatic reaction (B D).  No on-chip valves 

were included for this test-of-concept design.  Parafilm was used to seal the 

connecting couplers/tubing that are not being used for a given experiment step to 

minimize the flow into these channels.  After enzyme assembly, PBS buffer was 

pumped into the top three ports of the device in Figure 5-3(b) to rinse the channels.  

In the following experiment, substrate was continuously pumped through the reaction 

site at the intersection for ~ 10 hours.  The serpentine channel connecting the bottom 

port was included to increase channel length in an efficient manner to prevent any 

enzyme from defusing back to the reaction site.  The packaging aligners described 

above were also included for this cross-channel design. 
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5.3 Experimental methods 

5.3.1 Materials 

S-adenosylhomocysteine (SAH), bovine serum albumin (BSA), chitosan 

(minimum 85 % deacetylated chitin, molecular weight 200,000 g/mol) from crab 

shells, imidazole, isopropyl β-D-thiogalactopyranoside (IPTG), nickel sulfate, 

phosphate buffered saline (PBS) (2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 8.1 

mM Na2HPO4, pH 7.5), sodium cyanoborohydride, and tyrosinase from mushroom 

were purchased from Sigma (St. Louis, MO).  Tyrosinase was reported by the 

manufacturer to have an activity of 1,530 Units/mg solid.  LB (Luria broth) medium 

was purchased from Becton Dickinson (Cockeysville, MD).  Acetonitrile (HPLC 

grade), ampicillin sodium salt, chloroform, glycerol, sodium phosphate (monobasic), 

sodium phosphate (dibasic), and water (HPLC grade) were purchased from Fisher 

Chemical (Fair Lawn, NJ).  Hydrochloric acid and sodium chloride were purchased 

from J. T. Baker (Phillipsburg, NJ).  Non-fat dry milk was purchased from BioRad 

(Hercules, CA).  Bleach was purchased from James Austin Co. (Mars, PA).  

De-ionized water (ddH2O, 18 MΩ·cm, Milli-Q) and PBS (dissolved in de-ionized 

water) were autoclaved before use. 

 Silicon wafers were purchased from University Wafer (South Boston, MA).  

Plain and frosted micro slides, Single-Use Syringes/BD Needle Combinations, 

Microcentrifuge tubes were purchased from VWR (West Chester, PA).  SU-8 

photoresist was purchase from MicroChem (Newton, MA).  Sylgard® 184 silicone 

77 



elastomer kit was purchased from Robert McKeown (Branchburg, NJ).  Steel 

couplers (25ga, 20ga) and PE tubing were purchased from Instech Laboratories 

(Plymouth Meeting, PA).  Microbore PTFE tubing was purchased from ColeParmer 

(Vernon Hills, Illinois).  Genie Plus syringe pumps were purchased from Kent 

Scientific (Torrington, CT). 

5.3.2 Pfs-chitosan conjugate preparation 

Chitosan, enzyme Pfs and Pfs-chitosan conjugate preparation procedures were 

reported elsewhere (Lewandowski, et al. 2006, Luo, et al. 2008).  Briefly, Chitosan 

solution was prepared by dissolving chitosan flakes in HCl solution at pH ~ 2 

overnight, then the pH was adjusted to pH 4.8 by adding 1 M NaOH dropwise before 

being filtered and stored at 4ºC.  Plasmid pTrcHis-Pfs-Tyr was first constructed by 

PCR amplification of pfs from E. coli wild type strain W3110.  Following digestion, 

the PCR products were extracted by gel purification and inserted into pTrcHisC 

(Invitrogen).  DNA sequencing was performed to verify construct integrity.  The 

plasmid was transformed into E. coli DH5α (defective luxS strain).  E. coli DH5α 

containing pTrcHis-Pfs-Tyr was cultured and enzyme production was induced before 

the cells were lysed by sonication.  Next, the enzyme was purified by ion-metal 

affinity chromatography (IMAC) before being mixed 2:1 with glycerol, divided into 

aliquots, and stored at -80oC.  The conjugate was prepared by incubating enzyme Pfs, 

tyrosinase, and chitosan in sodium phosphate buffer for 2 h at room temperature 

followed by incubation in sodium cyanoborohydride for 30 min to stabilize 
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Pfs-chitosan binding. 

5.3.3 Enzyme assembly and enzymatic reactions 

After leak-testing of the assembled microfluidic device, the microchannel and all 

the connecting tubing were rinsed with DI water at 50 μL/min flow rate for 30 minutes.  

Then, Bovine Serum Albumin (BSA) solution (1 % (w/v) in PBS buffer) was pumped 

into the microchannel at 3 μL/min flow rate for 2 hours to block non-specific binding.  

After PBS buffer rinsing for 15 min at 5 μL/min flow rate, Pfs-chitosan conjugate 

solution was pumped at the same flow rate until the microchannel was completely 

filled before the pump was stopped.  For all the control experiments to test the 

background signals, no electrical signal was applied to the working electrode during 

incubation of 240 seconds, as shown in Figure 5-4.  The Pfs-chitosan conjugate 

solution was then drained from the system, and the electrodeposited Pfs-chitosan 

conjugate was washed with PBS buffer at 5 μL/min flow rate for 30 min.  Next, 

enzymatic reactions were performed by continuously pumping the SAH substrate 

solution (1 mM SAH in 50 mM sodium phosphate buffer, pH 7.2) for 2 h at 0.4, 1 and 

4μL/min flow rates by a Genie Plus syringe pump.  During the second hour at each 

flow rate, samples were collected every 20 min.  They were then extracted with 

chloroform and stored at -20oC before analyzing by HPLC. 

 For the experiments to test the overall conversion by site-specifically assembled 

enzyme and non-specifically assembled enzyme, an electrical signal of constant 

current density 3 A/m2 was applied to maintain negative bias voltage on the working 
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Figure 5-4: Minimize parasitic reactions by eliminating interconnection reservoirs and 

by separating sequential flow directions in cross channels.  To test the background 

signal by parasitic reactions, Pfs enzyme solution was introduced without 

electro-assembly followed by buffer rinsing, then enzymatic substrate SAH was 

introduced and products were collected downstream to be analyzed by HPLC. (a) 

Single channel with interconnection reservoirs. (b) Single channel without 

interconnection reservoirs. (c) Cross-channel without interconnection reservoirs. 

electrode for 240 seconds, while a second electrode served as the counter electrode.  

All other steps followed the same aforementioned procedure. 

5.3.4 Analysis of enzymatic reaction products  

A Waters Spherisorb Silica column (250 × 4.6 mm) with 5 μm beads (80 Å pore) 

was used in reversed-phase mode with 5 μL sample injection size and a mobile phase 

of 70:30 acetonitrile:water at 0.5 mL/min.  The HPLC system consisted of two 
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Dynamax model SD-200 pumps (with 10 mL pump heads and mixing valve) and a 

Dynamax Absorbance Detector model UV-D II, and data was analyzed using Star 5.5 

Chromatography Software (Rainin).  Conversion was calculated from elution data at 

210 nm absorbance. 
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5.4 Quantification and simulation of interconnect dead 

volume 

To better understand the degree to which interconnect dead volume affects the 

system response at a specific reaction site, we quantified and measured the changes in 

fluorescent dye intensity in the microchannel under flow, at a point 8.75 mm 

downstream of the interconnect point over the active electrode.  As shown in Figure 

5-5(a), the interconnect reservoir is 2 mm in diameter and 0.15 mm high, and the 

microchannel is 0.5 mm wide.  The upstream external tubing was first filled with dye 

solution (Cy5) before inserting into the PDMS device.  The dye solution was pumped 

into the microchannel at 1 μL/min flow rate by a syringe pump, and a fluorescent 

microscope simultaneously recorded the dye intensity over the electrode.  The 

microscope monitors the changes in relative intensity over the electrode in the 

microchannel.  The microscope images were converted into grayscale images and 

processed by ImageJ software (National Institutes of Health).  As a comparison, 

quantification was also performed for a microchannel of the same dimension without 

the interconnect reservoir as in Figure 5-5(b).   

The experimental results show that it takes about 50 sec for the dye solution to 

reach the electrodes.  The experimental curve in Figure 5-5(a, purple dashed line) 

shows that for a microchannel with interconnect reservoirs, it takes 61 sec for the dye 

intensity to increase from 10% to 90%.  In comparison, for a microchannel without 

interconnect reservoirs it only takes 32 sec for the dye intensity to increase from 10% 

to 90%, as shown in Figure 5-5(b, purple dashed line).   
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Finite element simulation was also performed to investigate the effects of the 

interconnection reservoirs on the system response at the same location as in the 

experimental quantification.  The simulation was performed using COMSOL 

Multi-Physics by modeling the switching of incoming flow into dye solution at the 
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Figure 5-5: Quantification and simulation of dye intensity change from the 

interconnect point.  Dye intensity was monitored over electrode patches 12mm 

downstream the microchannels.  (a) Dye intensity change from 10% to 90%for the 

interconnect with reservoir takes 61 sec in experiment (purple dashed line) and 75 sec 

in simulation (blue solid line).  (b) Dye intensity change from 10% to 90% for the 

interconnect without reservoir takes 32 sec in experiment (purple dashed line) and 25 

sec in simulation (blue solid line).  (c) The difference of intensity change in 

simulation from interconnects with and without reservoir 
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interconnection point, and by integrating the dye intensity over the electrode.  The 

simulation curves in Figure 5-5(a, blue solid line) shows that for a microchannel with 

an interconnection reservoir it takes 75 sec for the dye intensity to increase from 10% 

to 90%, while for a microchannel without an interconnection reservoir it only takes 25 

sec as shown in Figure 5-5(b, blue solid line).  Figure 5-5(c) is the intensity 

difference in the microchannels with and without reservoir over time in simulation, 

which shows that the intensity over this specific electrode site differs for more than 

100 sec before it reaches plateau with the maximum value 0.30.   

 Together, both the experimental quantification and the finite element simulation 

confirm that the system response (as measured downstream at the reaction site) has 

improved 2~3 times by eliminating the dead volume in interconnection reservoirs, 

therefore avoiding the homogenous parasitic reactions in the dead volume. 
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5.5 Quantification of parasitic reactions and overall 

analysis 

5.5.1 Enzyme reaction and controls 

To determine the benefit of the design changes detailed above which focus on 

microfluidics, we compared enzymatic conversions in these various designs to test the 

effects of parasitic reactions.  This is schematically indicated in Figure 5-4 for the 

cases of (1) single channel with interconnect reservoirs, (2) single channel without 

interconnect reservoirs and (3) cross channel without reservoirs.  The microchannels 

were first filled with Pfs enzyme solution, and then incubated in the enzyme solution 

in a static state for 4 min without applying an electrical signal to the assembly site (no 

electrodeposition).  Next, enzyme solution was drained from the microchannel, and 

buffer solution was introduced to rinse the channel.  Finally, enzymatic substrate 

SAH was introduced and the downstream solution was collected for HPLC analysis. 

The experimental results of parasitic reactions for the afore-mentioned three cases 

are shown in Figure 5-6.  In the case of single channel with reservoirs, the conversion 

of SAH into SRH and adenine was 44.5 ± 2.9%, 19.3 ± 0.4% and 5.0 ± 0.3% at 0.4 

μL/min, 1 μL/min and 4 μL/min flow rates, respectively.  In the case of single 

channel without reservoirs, the conversion was 29.7 ± 1.8%, 13.4 ± 0.7% and 4.1 ± 

0.3% at 0.4 μL/min, 1 μL/min and 4 μL/min flow rates, respectively.  In the case of 

cross channel without reservoirs, the conversion was 13.3 ± 0.2%, 6.8 ± 0.3% and 1.5 

± 0.2% at 0.4 μL/min, 1 μL/min and 4 μL/min flow rates, respectively.  
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Figure 5-6: Background signals (parasitic enzymatic conversion) at different flow 

rates.  Enzyme Pfs solution was introduced without electro-assembly followed by 

buffer rinsing, then enzymatic substrate SAH was introduced and products were 

collected downstream to be analyzed by HPLC. Legend: 1-ch_w/ res.: single channel 

with interconnection reservoirs (blue); 1-ch_No res.: single channel without 

interconnection reservoirs (pink); X-ch_No res.: cross-channel without 

interconnection reservoirs (red). 

 Combined, these results demonstrate that by eliminating the reservoirs, the 

background signal from homogeneous parasitic reactions in the dead volume of 

interconnects decreases by 33%.  By separating the flow directions with the cross 

channel configuration, the background signals from heterogeneous parasitic reactions 

on the microchannel walls further decreases by 63%.  The total decrease of 

background signal from the configuration of Figure 5-4(a) to that of Figure 5-4(c) is 

65~70% for the three flow rates tested. 
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5.5.2 Enzyme conversion signal/background 

To better understand the improvements realized by eliminating interconnect dead 

volume and separating the flow directions for sequential enzymatic reactions, 

site-specific heterogeneous enzymatic reactions on the assembly electrode were also 

performed side by side to compare with the control experiments.  The experiments 

differ from the control experiments only in that an electrical signal of 3A/m2 current 

density was applied to electrodeposit Pfs-chitosan conjugate onto the assembly 

electrodes during the 4-min incubation of enzyme solution in the channels.  The 

experiments were performed at 0.4 μL/min flow rate for all the three configurations 

shown in Figure 5-4.  The enzyme solution for all the experiments and controls was 

from the same batch, while the conjugate solution was made right before experiments.  

The background signal was taken from Figure 5-6 at the flow rate of 0.4μL/min.  

 The experiment results in Figure 5-7 show that in the case of the single channel 

with reservoirs, the site-specific conversion is 32.0 ± 1.6% and the background signal 

is as high as 44.5 ± 2.9% yielding a signal-to-background (S/B) ratio of 0.72.  For the 

single channel without reservoirs design, the site-specific conversion is 38.1 ± 0.6% 

while the background signal is 29.7 ± 1.8% with the S/B ratio of 1.28.  In the case of 

the cross channel without reservoirs design, the site-specific conversion is 32.3 ± 

3.5% while the background signal is as low as 13.4 ± 0.7% with the S/B ratio of 2.43.  

The cross hatched area in Fig. 7 (X-ch_No res) represents calculated missing reaction 

correction due to a slight reduction in electrode area upon alignment of intersection 

channels onto electrode (see 6Appendix II: Calculation of the missing enzymatic 
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Figure 5-7: Conversions by non-specifically bound or trapped enzyme (blue) and 

conversions by site-specifically assembled enzymes (red) at 0.4 μL/min flow rate.  

For the non-specific conversion, no electrical signal was applied to electrodeposit 

Pfs-chitosan conjugate.  For the total conversion, a electrical signal of 3A/m^2 

current density was applied for 4 minutes to electrodeposit Pfs-chitosan conjugate 

onto the assembly electrodes. 

conversion of intersection-channels).  Note, however, the electrode with only 0.75 

mm2 area represents only 1% of the total microchannel surface (77.15 mm2), and the 

volume above the electrode site (0.11 µL) represents only 2.5% of the total 

microenvironment volume (4.45 µL).  Therefore, the conversion on the 

enzyme-activated electrode is > 2 orders of magnitude faster per unit area than the 

background signal resulting from either parasitic mechanism. 

In summary, these results demonstrate that by utilizing our packaging and 

experimental strategies to minimize the parasitic reactions in interconnect dead 

volume and by non-specific binding on microchannel walls, we improve the 

signal-to-background ratio of sequential enzymatic reactions from 0.72 to 2.43. 
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5.6 Discussion 

Estimation of enzyme specific activity was reported previously in Section 4.3.4.  

The enzyme specific activity for the Pfs-chitosan conjugate assembled on the 

electrode in this chapter (0.35 µmol SAH/ min/ mg Pfs) is lower that what we 

estimated in the previous chapter (3.7 µmol SAH/ min/ mg Pfs).  The difference 

might be due to several reasons.  First, the enzyme solution used here was from a 

different batch prepared at different time, which might have different specific activity.  

Second, the bioMEMS device used here has a different configuration, which might 

result in different activity after enzyme assembly.  The device design in Figure 5-3 

consists of two counter electrodes besides the working electrode for enzyme assembly.  

During electrodeposition, this configuration might generate higher pH gradient at the 

working electrode surface, thereby deactivating the enzyme activity.  Nonetheless, 

the estimated specific activity is within the range of reported Pfs specific activities in 

the literature which vary over 3 orders of magnitude (Duerre 1962, Ferro, et al. 1976, 

Ragione, et al. 1985).  Importantly, given the enzyme specific activity and flow rate 

conditions, the purpose of suppressing parasitic reactions has been demonstrated by 

the decreasing background signal and increasing S/B ratio, as shown in Fig.6 and 

Fig.7, while the site-specific conversions remained at the same level.  

The use of chitosan as an intermediary interface allows for the programmable 

assembly of enzymes in a microfluidic network, making this bioMEMS platform both 

versatile and functional (Fernandes et al. 2004, Wu, et al. 2003).  By improving the 

ability to specify the site of the individual enzymatic reactions, these modifications 
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allow for the construction of the complex networks needed to simulate biologically 

relevant pathways.  In these networks, each enzymatic step would be catalyzing a 

specific reaction with known conversion efficiency.  The conversation rate of each 

step could be measured independently, and the conversion action would be 

attributable only the specifically bound enzyme, with minimal side-reactions. 

Advanced methods for reducing parasitic reactions can be further developed.  

Homogenous parasitic reactions could be addressed by the use of zero dead-volume 

interconnect designs to interface the microfluidic channel with the external pumping 

and fluid delivery.  By incorporating in-line valves for flow control, it is possible to 

envision purging flows which would flush the channel areas of any non-specifically 

bound enzyme.  Additionally, through stronger and longer chemical pretreatment of 

the microchannel walls than the BSA solution used here, it might be possible to 

further repel enzyme bounding and thereby eliminate heterogeneous parasitic 

reactions. 

5.7 Conclusions 

In summary, this work demonstrates a novel packaging technique to minimize 

the homogeneous parasitic reactions in the dead volume of packaging interconnects 

and an experimental strategy to minimize heterogeneous parasitic reactions due to 

non-specific binding on microchannel walls.  Our experiment and simulation 

results prove that the combined strategies of fabricating packaging aligners to avoid 

the interconnect reservoirs and separating flow directions for enzyme 

immobilization and the subsequent enzymatic reactions are efficient in minimizing 
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the background noise up to 70%.  These strategies increase the 

signal-to-background ratio from 0.72 to 2.43 for the given device design and enzyme 

activity.  These techniques can be easily applied to versatile microfluidic devices to 

minimize cross-contamination in sequential biochemical reactions. 
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Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

The overall goal of this research is to demonstrate the programmable assembly 

and the biological activity of biomolecules in prepackaged bioMEMS devices.  

Chitosan-mediated, signal-guided biofunctionalization approach was implemented 

throughout this research for programmable assembly and activity of biomolecules in 

bioMEMS devices.  Our approach is based on electro-deposition of the 

aminopolysaccharide chitosan scaffold as a stable thin film onto patterned 

conductive surfaces of bioMEMS devices followed by covalent assembly of 

biomolecules onto the surface of the electrodeposited chitosan scaffold. 

Our approach for biomolecule assembly in bioMEMS devices offers several 

unique capabilities.  First, the electric signal-guided nature of the chitosan 

assembly allows simple in situ assembly of biological molecules when and where it 

is needed, even long after the device is fully manufactured.  Second, biomolecules 

are assembled from the aqueous environment, thus preserving their biological 

activities through the assembly procedure.  Third and finally, our technique offers 

generic, flexible strategies for different target biomolecules since a wide variety of 

conjugation schemes can be utilized for different biomolecules.  Combined, these 

advantages make our assembly approach appealing for a wide variety of bioMEMS 

and biosensing applications that require device biofunctionalization. 

I have demonstrated the chitosan-mediated in situ biomolecule assembly as a 

simple approach to direct the assembly of biological components into prefabricated 
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bioMEMS devices.  In the first demonstration, GFP was in situ assembled onto 

chitosan scaffold in a bioMEMS device by chemically activating the amine groups 

of chitosan with glutaraldehyde.   Next, GFP was in situ assembled onto chitosan 

scaffold in a bioMEMS device by enzymatic activation of the genetically fused 

pentatyrosine pro-tag at the protein’s C-terminus.  Finally, DNA hybridization was 

demonstrated on chitosan scaffold by glutaraldehyde activation of the amine groups 

of chitosan for assembly of probe DNA.  Importantly, the biomolecules in all cases 

were assembled onto patterned electrodes in prepackaged microchannels with spatial 

and temporal programmability.  Because the assembly of biological elements is 

signal-guided through the electrodeposition process, the active biology can be 

introduced into prefabrication bioMEMS devices upon demand.  

Particularly, the programmable assembly and activity of a metabolic pathway 

enzyme have been demonstrated as an important step to reconstruct the AI-2 

synthesis pathway in bioMEMS environment.  The enzyme Pfs is genetically fused 

with a pentatyrosine “pro-tag” at its C-terminus.  Signal responsive assembly is 

based on covalent conjugation of Pfs to the aminopolysaccharide, chitosan, upon 

biochemical activation of the pro-tag, followed by electrodeposition of the 

enzyme–chitosan conjugate onto readily addressable sites in microfluidic channels.  

The work demonstrated that the assembled enzymes are catalytically active, robust, 

and stable with time, and that our strategy is reproducible, allowing for multiple uses 

of bioMEMS devices.  Compared to traditional physical entrapment and surface 

immobilization approaches in microfluidic environments, our signal-guided 
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electrochemical assembly is unique in that the enzymes are assembled under mild 

aqueous conditions with spatial and temporal programmability and orientational 

control.  We report here for the first time the signal-guided assembly of 

catalytically active enzymes at localized sites which can be programmed both 

spatially and temporally within a prepackaged bioMEMS.  The demonstration of 

their catalytic activity represents a key step in progress toward a bioMEMS 

technology to support metabolic engineering research and development, where 

multi-step biochemical reactions are common and separation of these steps is highly 

desirable for understanding reaction details and modifying pathways and kinetics for 

various applications (e.g. drug discovery). 

Additionally, this research has investigated the design optimization of 

bioMEMS devices and experimental strategy for studies of metabolic pathway 

enzyme.  A novel packaging technique is demonstrated to minimize the 

homogeneous parasitic reactions in the dead volume of packaging interconnects and 

an experimental strategy to minimize heterogeneous parasitic reactions due to 

non-specific binding on microchannel walls.  The previous investigations of 

enzyme assembly in bioMEMS have revealed some unintended (or parasitic) effects 

including products generated by the enzyme either (1) in the homogeneous phase (in 

the liquid), or (2) nonspecifically bound to microchannel surfaces.  To reduce 

homogeneous reactions, a new packaging and assembly strategy has been developed 

to eliminate fluid reservoirs that are commonly used for fluidic interconnect with 

external tubing.  To suppress reactions by nonspecifically bound enzyme on 
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microchannel walls, a cross-flow microfluidic network design has been implemented 

so that enzyme flow for assembly and substrate/product for reaction share only the 

region where the enzyme is immobilized at the intended reaction site.  Our 

experiment and simulation results show that the signal-to-background ratio of 

sequential enzymatic reactions increases from 0.72 to 1.28 by eliminating the 

packaging reservoirs, and increases to 2.43 by separating the flow direction of 

enzymatic reaction from that of enzyme assembly step.  These techniques can be 

easily applied to versatile microfluidic devices to minimize parasitic reactions in 

sequential biochemical reactions. 

 In summary, this work demonstrated the facile assembly and the biological 

activity of biomolecules in prepackaged bioMEMS devices with spatial and 

temporal programmability.  Importantly, the biofunctionalization of bioMEMS 

device provides a novel approach for assembly of nano-bio-components in the 

microfluidic environment while retaining the biological activities of the assembled 

species.  The advancement of the device design can be readily applied to benefit 

sequential biochemical reactions in bioMEMS devices.  More importantly, the 

demonstration of a bacterial pathway enzyme assembly and the catalytic activity 

represents a key step toward reconstructing and investigating a quorum sensing 

pathway in the microfluidic environment, which provides a versatile platform to 

screen for antimicrobial drug candidates that promises to overcome the antibiotic 

resistance of bacteria.  
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6.2 Future work 

This research is part of our entire research project of creating an in vitro AI-2 

biosynthesis pathway in microsystem to screen inhibitors of AI-2 synthases Pfs and 

LuxS as antimicrobial drug candidates.  The future work after this research has 

been envisioned as shown to the right side of Figure 6-1. 

The biofunctionalization strategy demonstrated in this research for 

programmable biomolecule assembly in bioMEMS provides a versatile template for 

reconstructing the quorum sensing pathway.  The demonstrated enzymatic reaction 

of converting SAH into SRH and adenine represents the first of the two-step AI-2 

synthesis pathway in bioMEMS.  The next crucial goal of this research is to 

complete constructing the AI-2 synthesis pathway in our bioMEMS, which is to 

assemble both enzymes Pfs and LuxS separately in microfluidic channel.   

Inhibition or knock-down of enzymes in this pathway represents opportunities 

for new antimicrobial drugs that expected to either intercept or rewire the QS 

communication network.  Several Pfs inhibitors have been reported recently 
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Figure 6-1: Roadmap of this research and future work. 
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(Cornell et al. 1996, Lee et al. 2003, Shim, et al. 2003, Singh et al. 2005, Singh et al. 

2006).  Therefore, the subsequent important goal is to use the demonstrated 

template to screen for inhibitors of the AI-2 biosynthesis enzymes, of which Pfs turn 

out to be more stable and can be initiated as a first try. 

While assembly of the AI-2 synthases at separate localized assembly sites in 

bioMEMS provides the platform to study the individual enzymes Pfs and LuxS in a 

well-controlled manner, coupling the Pfs and LuxS as a nanofactory and the 

assembly of the so-formed complex onto chitosan scaffold in bioMEMS stabilizes 

the more fragile enzyme LuxS.  Therefore, another parallel research is being 

investigated to assemble the AI-2 synthesis nanofactory and study biofilm formation 

in the bioMEMS environment. 

Currently, the enzymatic reaction products are collected and analyzed with 

HPLC to measure the enzymatic conversion.  A very desirable alterative detection 

cf. ex situ HPLC analysis is to build an in situ sensor to quantify the enzymatic 

conversion in real time.  Research is underway to develop a reactive substrate 

downstream of the enzymatic reaction site to measure the enzymatic conversion 

products by in situ surface enhanced Raman spectrometry (SERS). 

Finally, because of the intrinsic laminar flow in microfluidics, the enzymatic 

conversion efficiency is limited by the slow diffusion of substrate to and products 

off the assembled enzymes on the assembly site on the microchannel floor parallel to 

the flow stream.  To improve the conversion efficiency, we are currently exploring 

the assembly of enzyme onto vertical, permeable chitosan membrane structure such 
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that each of substrate molecules in the perpendicular flow stream might interact with 

the assembled enzymes on the membrane. 
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Appendices 
 

Appendix I Estimation of enzyme specific activity 

 This appendix presents supplementary information to Section 4.3.4 regarding the 

estimation of enzyme specific activity. 

Materials 

Mouse anti-polyhistidine and goat anti-mouse IgG conjugated to alkaline 

phosphatase were purchased from Sigma (St. Louis, MO).  Glacial acetic acid, Tris 

base, acrylamide, Bis-acrylamide, methanol, and MgCl2·6H2O were purchased from 

Fisher Chemical (Fair Lawn, NJ).  Sodium dodecyl sulfate (SDS), glycine, non-fat 

dry milk, and Tween 20 were purchased from BioRad (Hercules, CA). 

Chip fabrication 

The microfabrication process for the chips was reported previously (Yi, et al. 

2004).  Briefly, 4˝ diameter silicon wafers were coated with 1 μm silicon nitride 

film, followed by deposition of 50 Å chromium film, and finally, deposition of 2000 

Å gold film.  The patterns were created by photolithography, and the photoresist 

removed using acetone.  The chips contain two upper gold rectangular patterns (6 

mm long × 3 mm wide).  The left upper pattern was where the alligator clip was 

attached.  The upper patterns are each linked by gold lines to two lower gold 

rectangular patterns.  The left lower gold pattern was were assembly took place, 

and two patterned areas were investigated: 8 mm long × 0.5 mm wide (4 mm2), and 

8 mm long × 4 mm wide (32mm2). 
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Pfs-chitosan conjugation, chip assembly, and disassembly 

First, the chip was incubated in 1 % (w/v) BSA – PBS for 2 h, rinsed with 

de-ionized water, and set aside.  The conjugate was prepared as described 

previously (see Materials and Methods section), and deposited onto the left gold 

electrode pattern by dipping the chip into the conjugate until the pattern was 

submerged and applying negative bias to the pattern (4 min at 3 A/m2).  This was 

done by connecting the cathode and anode (nickel chromium wire) using alligator 

clips to a DC power supply (Keithley 2400 SourceMeter).  After deposition, the 

chip was rinsed with de-ionized water, and washed with gentle shaking 3 × 5 min in 

5 mL each of PBS buffer.  The deposited conjugate was then resolubilized by 

washing the chip in 2 % (v/v) acetic acid.  Next, the resolubilized conjugate 

samples were analyzed via Western blot. 

SDS-PAGE and Western blot analysis 

Sample buffer (0.0625 M Tris-HCl, pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 

5% (v/v) β-mercaptoethanol, 0.025% (w/v) bromophenol blue) was mixed with the 

resolubilized conjugate samples 1:1 (v:v), and these mixtures were then heated at 92 

– 95 oC for 10 minutes.  Proteins were separated by SDS polyacrylamide gel 

electrophoresis using 12.5% acrylamide gels at 180 V for 1 hour using the BioRad 

Mini Protean 3 system, and blotted onto BioRad nitrocellulose membranes using a 

BioRad Trans-Blot semi-dry transfer cell and Bjerrum-Schafer-Nielsen transfer 

buffer (48 mM Tris, 39 mM glycine, 20% (v/v) methanol, 0.0375% (w/v) SDS) for 

30 minutes at 15 V.  Unbound membrane sites were blocked using 5% (w/v) 
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non-fat dry milk in 20 mM Tris-HCl, pH 7.5, 500 mM NaCl.  The membrane was 

first incubated for 2 hours at room temperature in mouse monoclonal 

anti-polyhistidine at 1:4,000 dilution.  The membrane was then incubated at room 

temperature for 1 hour in goat anti-mouse IgG conjugated to alkaline phosphatase at 

1:4,000 dilution.  Both antibodies were diluted in 20 mM Tris-HCl, pH 7.5, 500 

mM NaCl, 1% (w/v) non-fat dry milk, 0.05% (v/v) Tween 20.  Membranes were 

developed colorimetrically using Roche NBT/BCIP stock diluted 1:50 (v:v) in 0.1 M 

Tris-HCl, pH 9.5, 0.1 M NaCl, 0.05 M MgCl2. 

Estimations of Pfs specific activity 

Pfs-chitosan conjugate was prepared and electrodeposited onto different 

electrode areas of microfabricated chips.  Each deposited conjugate was 

resolubilized with dilute acid, and finally analyzed via Western blot.  By comparing 

the Western blot band intensities of the resolubilized conjugate samples with that of 

a known quantity of purified Pfs standard, the mg Pfs in each sample (i.e. mg Pfs 

attached on each chip) was estimated.  The mg Pfs attached was plotted against 

assembly area to generate a linear fit, which was extrapolated to 0.5 mm2, the 

assembly (electrode) area inside the microchannel, to estimate the mg Pfs attached 

to the electrode inside the microchannel. The µmol SAH converted per minute was 

calculated from the % SAH conversion at 3 µL/min averaged over all reaction 

samples (3 µL/min × 3 min collection time = 9 µL reaction sample volume). 
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Appendix II Calculation of the missing enzymatic conversion 

of intersection-channels 

This appendix presents supplementary information to Section 5.5.2 with the 

effort to calculate the missing enzymatic conversion of intersection-channels. 

In the original design of Figure 5-3, the working electrode’s exposed area (0.75 

mm2) in the 500μm cross-channel design was designed to match the exposed area in 

the 500μm single-channel design, as shown in Figure S-1.  The actual catalysis 

area for enzymatic conversion in the cross-channel design is affected by two factors.  

First, the vertical channel in Figure S-2(a) was filled with Pfs-chitosan conjugate 

solution before assembly of Pfs enzyme.  During the 4-min electrodeposition time, 

the Pfs-chitosan conjugate had diffused only slightly into the horizontal side 

channels.  Therefore, only the Pfs enzyme within the diffusion distance was 

available for electrodeposition in the horizontal direction as in Figure S-2(a).  

Second, during continuous pumping of SAH into the horizontal channel as in Figure 

S-2(b), SAH diffused out of the flow stream to encounter assembled enzyme in the 

CE

WE 
Exposed area: 

0.75mm2

(a) CE

WE
Exposed area: 

0.75mm2

(b)
Channel width: 
0.5mm

Channel width: 
0.5mm

Figure S-1: Working electrodes (WE) were fabricated to match the exposed surface 

area in both (a) single-channel and (b) cross-channel. 
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vertical side channels.  The reaction products (SRH + adenine) then diffused back 

to the flow stream in the horizontal channel.  Therefore, the enzymatic reaction in 

the vertical side channel is not as efficient as that in the flow stream in the horizontal 

channel.  As a result, the missing enzymatic conversion of intersection-channels 

needs to be calculated to compare with the conversion in the single-channel. 

The normalization was performed first by estimating the diffusion of 

Pfs-chitosan conjugate to the Pfs_diff area as in Figure S-2(c) during 

electrodeposition.  Next, the diffusion of enzymatic substrate to the SAH_diff area 

during continuous reaction was simulated to determine the conversion efficiency in 

the SAH_diff area.  The sum of these lateral areas, and the central electrode area, 

gives the nominal active catalytic area in the cross-channel design.  Finally, a 

curve-fitting relationship between the conversion and active catalytic area was 
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Figure S-2: Factors that affect the enzymatic conversion in the cross-channel.  (a) 

Enzyme is only available within the diffusion distance for electrodeposition in the 

horizontal side channel due to the low diffusivity of Pfs-chitosan conjugate.  (b) The 

enzymatic reaction in the vertical side channel, which mainly depends on the diffusison 

of reaction substrate and products back and forth to the flow stream in the horizontal 

channel, is not as efficient as that in the central cross area.  (c) Enlargement of the 

nominal active area including Pfs_diff area, SAH_diff area and the central cross area. 
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obtained to yield the conversion on the 0.75mm2 active catalytic area in 

cross-channel. 

Estimation of diffusion of Pfs-chitosan conjugate during electrodeposition 

Diffusivity generally scales inversely with molecular weight (MW).  Although 

the diffusivity of the Pfs-chitosan is not available, we can easily make an 

approximate estimation.  It is reported that the diffusivity of chitosan with MW of 

223 kDa is 4.3x10-8 cm2/s at pH 4.3 (Tsaih and Chen 1999).  The diffusivity of 

proteins varies between 10-6 and 10-8 cm2/s for lysozyme (MW: 14 kDa) and 

4.4x10-8 cm2/s for TMV virus (MW: 50,000 kDa) (Malkiel 1952), (Brune and Kim 

1993).  It is reasonable to assume Pfs (MW: 45 kDa (Bose and Momany 2001)) has 

diffusivity in the range of 10-7 cm2/s.  In the Pfs-chitosan conjugate solution, the 

weight ratio of Pfs to chitosan is 0.04% (see Materials and Methods section).  

Therefore, the diffusivity of chitosan dominates the diffusivity of Pfs-chitosan 

conjugate, thus yielding an approximate diffusivity of 4x10-8 cm2/s. 

The diffusion distance of Pfs-chitosan conjugate in 10 minutes (3 min to 

introduce conjugate solution, 4 min for electrodeposition, then 3 min to drain) is 

calculated to be 48 μm on each side.  Therefore, the ratio of the two Pfs_diff areas 

to cross-area is 2x48x500 μm2 / 500x500 μm2 = 0.192. 

Simulation of SAH diffusion during the continuous enzymatic reaction 

As shown in Figure S-3, Pfs enzyme covers the entire exposed surface area of 

the working electrode in the vertical channel.  Using the Wilke-Chang correlation, 

the diffusivities of SAH and adenine were calculated to be 3.42x10-6 cm2/s and 
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Figure S-3: Simulation of SAH diffusion during enzymatic reaction.   The vertical 

channel is filled with buffer (turquoise blue).  SAH (purple) in the horizontal channel 

diffuses out of the flow stream into the vertical side channels and is converted by 

assembled Pfs in side channels.  Reaction products SRH and adenine diffuse back to 

flow stream into the horizontal channel.  Simulation result shows that conversion in 

vertical side channels equals to 45% of conversion in horizontal flow stream. 

4.13x10-6 cm2/s, respectively.  Finite element simulation using COMSOL 

Multi-Physics (COMSOL) was performed to investigate the diffusion of reaction 

substrate SAH molecules from the horizontal flow stream into the vertical side 

channel during the enzymatic reaction. 

The surface reaction is diffusion transport limited (Gervais and Jensen 2006) for 

Damköhler number Da >> 1 and kon = 9.149x106 1/Ms, so we assume all substrate 

reaching the active enzyme surface is converted into products.  During the 

enzymatic reaction, the two ends of vertical channel were sealed leak-tight with 

parafilm to stagnate the lateral flow.  Simulation results show that the flux through 
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the two SAH_diff areas (2 x 0.125 mm2) is 44.6% of the flux through the central 

cross-area (0.25 mm2).  Therefore, the ratio of the two SAH_diff areas to the 

central cross area is 0.446. 

The ratio of 0.192 due to enzyme diffusion during enzyme assembly and the 

ratio of 0.446 due to substrate diffusion during enzymatic reaction are from 

processes on orthogonal axes.  Therefore, the total nominal active area is 0.25 mm2 

x (1 + 0.192 + 0.446) = 0.411 mm2. 

Normalization of conversion in cross-channel 

Based on the nominal active catalysis area in the cross-channel, estimated to be 

0.411 mm2, the normalization of conversion was performed as follows.  Step 1, in 

the case of diffusion limited, we assume all reaction substrate reaching the enzyme 

is instantly converted into products.  The relationship between the conversion and 

catalysis area was established with simulation in COMSOL software (blue 
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Figure S-4: Normalization of enzymatic conversion.  See the text for details.
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line/diamonds, Figure S-4).  Step 2, polynomial curve fitting of this relationship 

was obtained (black line), and the conversion of 0.411 mm2 active catalysis area was 

calculated to be 47.0% (blue squares).  Step 3, the ratio of actual conversion from 

experiment (23.4%, purple star) to the afore-calculated conversion (47.0%) was 

determined to be 0.497 by this 0.411mm2 active area.  Step 4, the entire fitted curve 

was scaled by the ratio of 0.497 (purple line/squares) to compensate factors that 

slow down the conversion but were not considered in the simulation of the 

conversion-catalysis area relationship.  Step 5, the normalized conversion on a 0.75 

mm2 active area in a cross-channel was obtained from the purple curve to be 32.3% 

(green circle). 
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