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 The recent increase in the number of wetland construction projects has led to 

numerous studies investigating the response of the macroinvertebrate community in 

wetlands.  Little is known, however, about the factors structuring these communities and 

how predation may shape community development.  Here, I analyze two years of 

macroinvertebrate community data collected from 9 constructed wetlands at the Jackson 

Lane Preserve on the Eastern Shore of Maryland.  Results suggest that abiotic factors 

may be less important than previously thought in structuring the macroinvertebrate 

community, and biotic factors such as predation may be more important.  I then 

investigate the role of two larval dytiscid beetles in structuring the primary consumer 

community.  These predators exert strong pressure on the community and, therefore, I 

conclude that predation is an important factor shaping freshwater communities in 



  

constructed wetlands.  I offer several suggestions for wetland management with the goal 

of constructing wetlands with high ecological value. 
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Chapter 1: Factors regulating the structure of macroinvertebrate 

predator and primary consumer communities in constructed 

wetlands 

 

Abstract 

 With the growing number of wetland construction projects, the importance of 

understanding how animal communities respond to these activities is imperative for 

informing future construction efforts.  Most studies focusing on the response of whole 

aquatic macroinvertebrate communities find no clear patterns with differing habitat 

characteristics.  Focusing analysis on smaller functional groups may lead to a better 

interpretation of the factors structuring these communities.  I used two years of 

biomonitoring data collected from 9 constructed wetlands on the Eastern Shore of 

Maryland to determine which and to what extent abiotic factors structure both the 

predator and primary consumer macroinvertebrate communities.  Both communities were 

found to be relatively homogenous throughout all of the wetlands, however, the primary 

consumers showed more of a response to habitat characteristics than the predators.  Biotic 

factors may be more important in structuring both predator and primary consumer 

communities in constructed wetlands, but more focused studies are needed to determine 

the extent to which these factors influence community structure. 
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Introduction 

 Growing awareness by the public of essential wetland functions such as support 

of biodiversity, improvement of water quality, and flood control is providing support for 

their restoration and construction (Brinson and Malvarez 2002, Zedler 2006).    

Biomonitoring of restoration and construction projects is important because success of 

wetland management is determined and reflected by the abundance and taxonomic 

composition or organisms that colonize and establish populations (Rader et al. 2001, 

Batzer et al. 2005).  Information derived from monitoring programs can then be used to 

identify the most effective strategies and inform future restoration and construction 

efforts. 

 Biomonitoring of macroinvertebrates is a popular way to evaluate the success of 

freshwater restoration projects.  Reasons for monitoring macroinvertebrates include their 

ubiquitous occurrence, high species richness, and compatibility with inexpensive 

sampling equipment (Bonada et al. 2006).  Further, macroinvertebrates play a crucial role 

in the functioning of wetland ecosystems as food for other organisms, predators of 

nuisance species, and decomposers of plant and animal material.  Knowledge about what 

taxa are present can serve as an indicator of ecosystem function (Sharitz and Batzer 

1999).   

 With the growing number of wetland construction projects (USEPA 2003), 

numerous studies have examined how aquatic macroinvertebrate communities respond to 

differing habitat gradients created by these activities (Spieles and Mitsch 2000, Tangen et 

al. 2003, Batzer et al. 2004, Balcombe et al. 2005, Villagren-Mella et al. 2006, Kratzer 

and Batzer 2007, Stewart and Downing 2008).  Abiotic habitat characteristics are likely 
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to exert a strong influence over macroinvertebrate community composition, however, the 

studies examining this assumption often find no clear relationship between composition 

and abiotic factors, or find that macroinvertebrates are ubiquitous across wetland 

complexes, despite large variation in water quality, hydrology, geomorphology, and plant 

communities (Tangen et al. 2003, Batzer et al. 2004, Kratzer and Batzer 2007).  One 

likely explanation is that no single abiotic factor will affect all macroinvertebrates equally 

because they are such a diverse group of organisms.  A study by McNeely et al. (2008) 

examined feeding group richness across water quality gradients.  They found that primary 

consumers responded to changing nutrient levels and turbidity in wetlands, but predators 

showed no response to these same variables.  Weak or undetectable effects of nutrient 

levels or turbidity on macroinvertebrate richness may occur if considering the whole 

macroinvertebrate community, when in fact these factors are very important in 

structuring certain groups (McNeely et al. 2008).  Therefore, focusing on smaller 

functional groups of macroinvertebrates may lead to a better interpretation of how abiotic 

factors structure the community, and thus how macroinvertebrates respond to the 

differing abiotic factors in constructed wetlands. 

 Primary consumers and predators are two broad classifications for wetland 

macroinvertebrates.  Primary consumers eat live vascular plants, detritus from dead 

plants, or algae (Batzer and Wissinger 1996).  Abiotic factors such a nutrient levels, 

dissolved oxygen levels, and pH are likely to affect these basal food resources, which 

may be reflected by the structure of the primary consumer community (Mizuno et al. 

1982, Campeau et al. 1994, Gabor et al. 1994, Batty and Younger 2007).  

Macroinvertebrate predators rely on other organisms for food, and may be affected by 
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these abiotic factors, however, few studies have examined relationships among abiotic 

factors and predators (Wilcox 2001).  Alternatively, biotic factors have been suggested as 

important controls on community composition in wetlands (Zimmer et al. 2000, Tangen 

et al. 2003), but are rarely considered in studies of macroinvertebrate communities in 

constructed wetlands. 

 I examined broad patterns in these two distinct functional groups in constructed 

freshwater wetlands to determine which and to what extent abiotic habitat characteristics 

were important in structuring these communities.  By doing this, I also determined how 

biotic factors may or may not be more important in structuring communities.  Nine 

constructed wetlands on the Eastern Shore of Maryland were monitored for physical, 

chemical, and biological conditions during years 2 and 3 post-construction.  Each wetland 

had unique physical characteristics and water chemistry and, therefore, together they 

provided a range of habitat conditions for macroinvertebrates.  Data collected from 

biomonitoring were analyzed with the following specific objectives in mind: 1)  to 

determine how taxa richness and density of predator and primary consumer communities 

vary seasonally (by month) and spatially (by wetland), 2) to determine what abiotic 

habitat characteristics explain these patterns, 3) to determine if wetland abiotic habitat 

characteristics or distance between sites explains community similarity for predators and 

primary consumers, and 4) to compare and contrast patterns in the predator communities 

with patterns in the primary consumer communities. 
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Methods 

Study Area 

 The Jackson Lane Restoration Site is located in the Choptank River watershed in 

Caroline County, Maryland (39°03’11.9’’N, 75°44’50.2’’W).  Aerial photography 

revealed that prior to conversion to agriculture in the 1970’s, this site consisted of several 

seasonal depressional wetlands.  In 2003, The Nature Conservancy, U.S. Fish & Wildlife 

Service, Maryland Department of the Environment, and the Natural Resource 

Conservation Service partnered to reconstruct approximately 30 wetland “cells” at this 

site.  Restoration activities began in August 2003 and included plugging drainage ditches 

and construction of 23 earthen ditch plugs.  Coarse woody debris was placed in the 

wetlands to provide microhabitat and straw was added to deter establishment of cattails, 

an invasive wetland plant.  The overall goal of the restoration was to recreate natural 

geomorphology and hydrology to provide suitable habitat for wetland plants, animals, 

and microorganisms.   

Sampling Methods  

 In 2005 and 2006, nine of the constructed wetlands (Figure 1) were sampled in 

March, April, May, June, July, and August, as long as they were not dry (in 2005, 

wetlands 10 and 11 were dry in August; in 2006, wetlands 10, 11 and 19 were dry in 

June, and wetland 10 was dry in August).  In each wetland during each sampling month, 

temperature (°C), pH, and specific conductivity (µS/cm) were measured using a handheld 

YSI Model 63 Probe (YSI Inc., Yellow Springs, Ohio) and dissolved oxygen (% and 

mg/L) was measured with a handheld YSI Model 55 Probe.   
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 Water samples were collected in acid washed bottles and returned in a cooler to 

the lab of Ken Staver at the Wye Research and Education Center.  Each sample was 

filtered through a 0.45 micron filter and analyzed for nitrogen (NH4-N, NO3-N, NO2-N, 

TN, TDN) and phosphorus (PO4-P, TP, TDP).  Nitrate analysis was performed on a higher 

pressure liquid chromatograph, and followed EPA Method 300 (USEPA 1979).  

Phosphorus in water samples was determined colorimetrically using a spectrophotometer 

following procedures outlined in Parsons et al. (1984).  All sample runs included blanks, as 

well as standards that spanned the range of sample values.   

 Physical characteristics such as depth at the center of the wetland and habitat 

types were determined for each wetland during each sampling month.  Approximate 

wetland size was calculated in GIS using GPS boundary data from Towson University, 

and modified by Dr. Doug Samson (The Nature Conservancy).  Hydroperiod was also 

determined by Dr. Doug Samson, by estimating the percent of sample dates (January 

2005 to February 2007) when the wetland water levels were at or above half the 

maximum level. 

 Macroinvertebrates were sampled using 20 sweeps of a 500μm D-net in each 

wetland during each sampling month.  The 20 sweeps were allocated by habitat type to 

obtain a representative sample of the macroinvertebrate community in the entire wetland.  

The habitat types considered were open water, vegetation, shallow edge, and coarse 

woody debris.  For instance, if a given wetland was approximately 50% open water, 30% 

coarse woody debris, and 20% shallow edge, 10, 6, and 4 sweeps, respectively, were 

allocated to each area.  A sweep consisted of using the D-net to disturb the bottom for 

approximately one meter, and then passing back through the disturbed area with the net 
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to capture dislodged macroinvertebrates.  All 20 sweeps were combined in a pan, passed 

through a 500μm sieve in the field, added to a 3.8 L sample jar and preserved in 80% 

ethyl alcohol.   

 Samples were returned to the lab, and washed to remove large debris and 

vegetation.  Each sample was subsampled in a manner that allowed the most effective 

means of obtaining community data.  For wetland bioassessment, the subsampling 

approach of using fixed counts of ≥ 200 individuals from a composite sample most 

effectively provides quality macroinvertebrate community data (King and Richardson 

2002).  A 7 x 7 square gridded tray was constructed (each square was 16cm2; Figure 2A) 

into which an entire sample was dumped and randomly distributed.  A single square was 

selected by using a random number generator in SAS (SAS v.9.1), and the sample debris 

from that square was removed and place into a sorting tray (Figure 2B).  Sample debris 

was sorted under a microscope, and all macroinvertebrates were removed and counted to 

reach a total of 300 individuals.   

 If a total of 300 macroinvertebrates was not reached after sorting the first square, 

a second randomly selected square was removed and sorted.  This process continued until 

at least 300 macroinvertebrates were removed.  In the case where a count of 300 was 

reached in the middle of sorting a given square, the remainder of that square was sorted 

to reach a total of > 300 macroinvertebrates.  In some instances, the entire sample was 

sorted and a count of 300 macroinvertebrates could not be reached.  Microcrustaceans 

(Subclass Copepoda, Order Cladocera, and Class Ostracoda) were only counted and 

removed from the first square, and were not included in the total count of 

macroinvertebrates because their high numbers would overwhelm macroinvertebrate 
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data.  Microcrustaceans were considered an important part of the primary consumer 

community however, and were included in the analysis.  All macroinvertebrates were 

identified to the lowest practical taxonomic level (genus in most cases) using local and 

regional keys.  Each taxon was classified as a predator or primary consumer according to 

the classification in Merritt et al. (2008).   

Data Analysis 

 Variation in taxa richness and density- For each month and each wetland, taxa 

richness and density of the predator and primary consumer communities were calculated.  

Taxa richness was calculated as the number of taxa in each sample.  Density was 

calculated by taking the count data for each taxon from the subsampled portion, 

multiplying to determine the total sample count, and dividing by the total area sampled.  

The total area sampled was approximately 6.0 m2 (each of 20 sweeps covered 0.3 m2 of 

wetland). 

 Preliminary analysis was done using two-way ANOVA to test for the effects of 

month and year and of wetland and year, on predator and primary consumer taxa richness 

and density.  Interactions of year with month and year with wetland were not significant, 

so data from 2005 and 2006 were combined for analysis.  This provided more replicates 

for each month and each wetland.  Wetland 10 was dry in August for both 2005 and 

2006, resulting in an incomplete factorial design.  Therefore, wetland 10 was not included 

in the analysis of predator and primary consumer taxa richness and density. 

 Separate two-way repeated measure ANOVA’s were used to test for the effect of 

month and wetland on taxa richness and density of predators and primary consumers 

(Proc Mixed SAS v.9.1).  Density data were log (n + 1) transformed before analysis to 
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meet the assumptions of normality and homogeneity of variances.  Fisher’s Least 

Significant Difference test (LSD test) was used to compare individual months or wetlands 

if the interaction term was not significant and the main effects were significant. 

 Abiotic factors- Linear regression analysis was used to determine the relationships 

between the measured abiotic habitat characteristics versus taxa richness and density of 

predators and primary consumers (Proc Reg SAS v.9.1).  Habitat characteristics included 

temperature, pH, dissolved oxygen (mg/L), specific conductivity, TN (total nitrogen), TP 

(total phosphorus), size, hydroperiod, depth, percent algae, percent coarse woody debris, 

and percent vegetation.  Other measured habitat characteristics were left out of analyses 

because of strong collinearity between % and mg/L dissolved oxygen, TN and NH4-N, 

TN and NO3-N, TN and NO2N, TN and TDN, TP and PO4-P, TP and TDP.  A 

relationship between the abiotic factor and the dependent variable (predator or primary 

consumer taxa richness or density) was considered significant at α = 0.05 and R2 ≥ 0.25.   

 Community similarity-To determine the degree that wetlands were similar in 

terms of their predator and primary consumer communities, the beta diversity, ßT, 

between each wetland pair was calculated.  Beta diversity measures the amount of taxa 

turnover, or taxa change along a habitat gradient.  A low value for ßT indicates high 

similarity between sites, and a high value indicates the number of taxa increases rapidly 

with additional sampling sites along a gradient, or low similarity between sites.  Beta 

diversity was calculated as, 

ßT = [g(H) + l(H)] / 2 ̄α      
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where g(H) is the number of taxa newly encountered along the habitat gradient, l(H) is 

the number of taxa lost along the habitat gradient, and   ̄α   is the average sample richness 

(Wilson and Shmida 1984).   

 A distance matrix of the ßT values between all wetland pairs was created, and the 

program PHYLIP was used to cluster cells based on these distance measures using the 

UPGMA method (Felsenstein 2005).  Briefly, this method involves the following 

procedure.  The two most similar wetlands were combined to form a cluster, and then 

treated as a single “composite” wetland.  From among the new group of composite and 

single wetlands, the pair with the highest similarity was clustered.  This process was 

continued until all wetlands were included.  TreeView was used to create the actual 

cluster diagram, which displayed the results of the UPGMA clustering (Page 2001). 

 To determine differences in abiotic habitat characteristics between wetland pairs, 

distance matrices of temperature, pH, dissolved oxygen (mg/L), specific conductivity, 

TN, TP, size, depth, hydroperiod, percent algae, percent vegetation, and percent coarse 

woody debris were created by taking the difference between the values for each wetland 

pair.  Distance between each wetland pair was measured using ImageJ software, and 

these values were also placed into a distance matrix (Rasband 2007).  These values 

provided several habitat gradients for which to test the hypothesis that as wetlands 

become more different in terms of habitat, or the distance between them becomes greater, 

taxa turnover (ßT) will increase.  Linear regression analysis was used to test this 

hypothesis for both predators and primary consumers (Proc Reg SAS v.9.1).  

 Predator versus primary consumer communities- Results from objective 1 were 

used to compare broad patterns in the primary consumer community with broad patterns 
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in the predator community.  No statistical analysis was done for this objective, rather 

general conclusions based on observed patterns were made.  

Results 

Variation in taxa richness and density 

 Overall, 19,684 macroinvertebrates were sorted and identified in 2005, and 

18,862 were sorted and identified in 2006 (Appendix A- Table 1).  Representatives of 7 

insect orders and 41 insect families were found in the 9 Jackson Lane wetlands sampled.  

Additionally, freshwater snails (Gastropoda), annelid worms, nematodes, copepods, 

cladocera, and ostracods made up a portion of the macroinvertebrate community.  In 

total, 124 taxa were considered in the analysis, with 65 predator taxa and 59 primary 

consumer taxa.  A reference collection of these taxa has been created and stored in the 

Department of Entomology Insect Museum at the University of Maryland. 

 Predator communities - The interaction between month and wetland, and the main 

effect of wetland were not significant for predator taxa richness or predator density 

(Table 2).  However, the main effect of month was significant for predator taxa richness 

and predator density. 

 Fisher’s Least Significant Difference (LSD) test revealed significant differences 

in numbers of predator taxa between months (Figure 3A), with generally an increase in 

taxa with time.  Samples in July and August had significantly higher numbers of predator 

taxa than samples in March, April, May, and June, which averaged 41% fewer taxa.  

March had the lowest number of predator taxa (mean = 5.0), which was significantly 

lower than May, June, July, and August (mean = 10.6). 
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The majority of taxa found in March were present throughout the year, and new 

taxa were added each month (Figure 3B).  There was a trend of a greater density of 

predators as the season progressed from March through August (mean densities (# 

individuals / m2): March = 14.8, April = 26.4, May = 54.9, June = 155.3, July = 132.1, 

and August = 337.4).  A LSD test revealed significant differences between months, with 

August having the highest density, and March the lowest density (Figure 3C).   

 Primary consumers communities - For the taxa richness and density of the 

primary consumer community, the interaction between month and wetland was not 

significant, but the main effects of month and wetland were significant (Table 2).   Taxa 

richness was greatest for July and August, followed by March and June, averaging 14% 

fewer taxa, and April and May, averaging 25% fewer taxa (Figure 4A).  Some of the taxa 

present in March were present throughout the year, but several new taxa were added 

(Figure 4B).  April, May, and June had significantly higher densities of primary 

consumers (mean = 2111.5) than March, July, and August (mean = 628.9; Figure 4C). 

Wetlands 2, 6 and 17 had 25% more taxa than the wetlands with the fewest 

number of taxa, 11 and 19 (Figure 4D).  The average density of primary consumers in 

wetlands 7, 15, 17, and 19 (mean = 1997.4) was almost three times the average density 

found in wetlands 2, 3, 6, and 11 (mean = 728.9; Figure 4E).   

Abiotic factors 

 Habitat characteristics varied across months and across the wetlands at the site 

(Appendix B- Tables 3A, 3B, 3C).  Linear regression analysis of the measured habitat 

characteristics with taxa richness and density of predators and primary consumers 

revealed several significant relationships, although the maximum R2 value was 0.44 
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(Table 4).  There was a weak positive relationship between predator taxa richness and 

temperature (R2 = 0.37, p < 0.0001) and predator density and temperature (R2 = 0.44, p < 

0.0001; Figure 5A).  There was also a weak negative relationship between predator taxa 

richness and dissolved oxygen (R2 = 0.25, p < 0.0001), predator taxa richness and specific 

conductivity (R2 = 0.31, p < 0.0001), and predator density and dissolved oxygen (R2 = 

0.26, p < 0.0001).  Variation in dissolved oxygen and specific conductivity (Figures 5B, 

5C) explained 25% and 31% of the variation in predator taxa richness respectively.  

Dissolved oxygen explained 26% of the variation in predator density.   

No abiotic factors explained greater than 25% of the variation in the primary 

consumer communities (Table 4).  

Community similarity 

  Overall, the average ßT value across wetlands was higher for predator 

communities than for primary consumer communities (0.29 and 0.25, respectively).  For 

predator communities, values of ßT varied from 0.18 to 0.43 (Table 5).  The cluster 

dendogram (Figure 6A) showed wetlands 10 and 11 clustering together indicating 

community similarity, but these two clustered the furthest from the other wetlands.  

Wetlands 2 and 3 clustered, 6 and 7 clustered, and 15 and 17 clustered; this indicates 

similarity between these pairs.  Wetland 19 is similar to wetlands 6, 7, 15, and 17.   

 Results from the regression analysis of predator beta diversity with habitat 

gradients showed that only the gradient of vegetation coverage had a weak positive 

relationship with taxa turnover (R2 = 0.14,  p = 0.02; Table 6).  All other habitat gradients 

and distance between wetlands had no relationship to predator beta diversity (p > 0.05; 

Table 6).   
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 For the primary consumer community, values of ßT varied from 0.16 to 0.35 

(Table 5).  The cluster dendogram (Figure 6B) showed wetland 10 being the most 

dissimilar from all other wetlands.  Wetlands 11 and 19 clustered, 2, 6, and 17 clustered, 

and 3, 7, and 15 clustered.   

 Regression analysis of primary consumer beta diversity with habitat gradients and 

distance showed that primary consumer communities were related to gradients of pH  (R2 

= 0.20, p = 0.0065) and specific conductivity (R2 = 0.12, p = 0.037), though these 

regressions were not strong (Table 6).  All other habitat gradients and distance between 

wetlands had no relationship to primary consumer beta diversity (p > 0.05; Table 6).   

Predator versus primary consumer communities 

 The most notable pattern found was a peak in density of primary consumers in the 

months of April, May, and June (Figure 4C), and a subsequent peak in density of 

predators in June, July, and August (Figures 3C).  The second pattern worthy of 

discussion is a decrease in primary consumer richness from March to April (Figure 4A), 

and an increase in primary consumer density (Figure 4C). 

Discussion 

  Overall Macroinvertebrate Community - Two years post-construction, aquatic 

macroinvertebrates colonized all of the constructed wetlands at the Jackson Lane site, 

suggesting rapid ecological improvement.  This is consistent with previous studies that 

suggest macroinvertebrates are often the earliest colonizers of newly constructed 

wetlands (Batzer et al. 2005, Stewart and Downing 2008).   
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 Predator Communities – Taxa richness and density of the predator communities 

varied by month, but not by wetland.  Both taxa richness and density increased from 

March to August, but were not strongly correlated with any of the habitat characteristics.  

Throughout the Jackson Lane site, a total of 28 predator taxa were found in March, and 

the majority of these taxa were found in the wetlands throughout the year (Figure 3B).  

Each month, a few new predator taxa were found which resulted in the observed increase 

in taxa richness.  The pattern of a seasonal increase in taxa richness is common in 

freshwater systems, and wetlands with a longer hydroperiod tend to have more taxa 

(Brooks 2000, Williams 1996).  In these constructed wetlands, there was no relationship 

between hydroperiod and taxa richness.  This is likely because the wetlands were only 

sampled from March through August, even though some remained wet for the entire year.  

Continued sampling of the wetlands with a longer hydroperiod would have likely added 

more taxa, and thus resulted in more of a relationship between hydroperiod and taxa 

richness. 

 The predator taxa present during all months must be able to tolerate a wide range 

of habitat conditions, considering variables such as water temperature, dissolved oxygen, 

specific conductivity and depth vary greatly over the year (Figures 5A, 5B, 5C).  Though 

no strong correlations were found, there was a general trend of more taxa later in the year 

with increasing water temperatures, decreasing levels of dissolved oxygen, decreasing 

specific conductivity, and decreasing water levels.  The new taxa found later in the year 

may be more adapted for these habitat conditions.  For example, many of the later season 

predator taxa use atmospheric sources of oxygen for respiration, e.g., Dolichopodidae 
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(Diptera), Hydrophilidae, Dytiscidae, Gyrinidae (Coleoptera), and Nepidae, Naucoridae 

(Hemiptera) (Merritt et al. 2008).   

 The increase in density of predators through the season was related to the density 

of prey, or primary consumers.  There was a peak in density of primary consumers in the 

months of April, May, and June, and a subsequent peak in density of predators in June, 

July, and August.  Predator populations may initially be limited by the numbers of 

available prey, but as more prey are available in late spring, populations of predators may 

be able to grow, thus resulting in a greater density of predators.  Interactions between 

aquatic predators and primary consumers, however, are poorly understood in freshwater 

systems (Batzer and Wissinger 1996, Batzer 1998), and no causal relationship was 

established in this study.  The overall increase in density could be a result of both the 

increase in the number of taxa, and the ability of the predator populations to grow when 

food is abundant.  

 Primary Consumer Communities - Primary consumer taxa richness and density 

varied both by month and by wetland.  The highest taxa richness was found in July and 

August, similar to the predator community.  If primary consumers were sensitive to 

changes in habitat, the expectation would be that community composition would change 

completely as the wetlands became warmer, had lower dissolved oxygen, lower specific 

conductivity and lower water levels.  Most of the taxa present in March were present all 

year, and new taxa were added in the later months, resulting in greater taxa richness.  

Certain taxa, such as limnephilid and phyrganeid caddisflies complete the aquatic stage 

of their life cycle early in the season, and these taxa were absent from the wetlands by 

April.  This may have partially caused the decrease in taxa richness from March to May.  
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No relationships were found between the measured abiotic habitat characteristics and 

primary consumer taxa richness.  The seasonal changes in community composition could 

have resulted from the addition or removal of taxa with differing life histories or 

tolerances to wetland conditions in late summer.  Primary consumer taxa richness also 

varied by wetland.  Wetlands 2, 6, and 17 had the greatest number of primary consumer 

taxa for unknown reasons.  These wetlands varied in size, depth, and percent vegetation, 

yet contained similar numbers of primary consumer taxa. 

 Primary consumer density rapidly increased from March through June.  This 

could have resulted from low numbers of predators present early in the season allowing 

primary consumer populations to escape.  By June however, macroinvertebrate predators 

increased in numbers, and primary consumers decreased.  This pattern in the primary 

consumer community could be explained by differences in predator density or some other 

factor not considered in this study.    

 A second pattern did emerge from the primary consumer data.  In March, primary 

consumer richness was high, but density was low.  By April, richness had decreased, but 

density had increased.  This could have resulted from selective predation by early season 

predators.  Selective predation could have eliminated certain prey taxa from the 

community, while allowing other prey populations to escape predation and increase in 

density.  This would result in decreased taxa richness and an increased density.   

 Primary consumer density varied by wetland, with wetlands 7, 15, 17 and 19 

having the greatest density of primary consumers.  These wetlands were generally 

shallower and more vegetated than the other wetlands, however regression analysis did 

not show any of these abiotic habitat characteristics to be related with primary consumer 
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density.  Differences in primary consumer density could result from differences in 

predators in these wetlands, however, no significant differences were found in terms of 

macroinvertebrate predator communities in these wetlands.  One possible explanation for 

differences in primary consumer density in the Jackson Lane wetlands could be the effect 

of fish predation on primary consumers.  The effect of fish predation on 

macroinvertebrate communities has been examined and results suggest that fish may or 

may not preferentially feed on smaller aquatic invertebrates (Gilinsky 1984, Morin 1984).  

Fish were often present in some of the wetlands, though were difficult to detect during 

monthly macroinvertebrate sampling. 

 Similarity -  At the Jackson Lane site, nine constructed wetlands provided a range 

of habitat conditions in terms of temperature, pH, dissolved oxygen, specific 

conductivity, total nitrogen, total phosphorus, size, depth, hydroperiod, percent algae 

cover, percent vegetation cover, and percent containing coarse woody debris.  I expected 

to see higher taxa turnover in wetlands that were more different in terms of habitat, or 

located further apart on the landscape.   

 The predator cluster dendogram provides insight into which wetlands were more 

similar in terms of predator communities.  Several explanations exist for why certain 

wetland predator communities were clustered, however, there is no general explanation 

for the layout of this dendogram.  Wetlands 10 and 11 were clustered together and 

considered similar, or to have low taxa turnover.  This meant that wetlands 10 and 11 

shared many taxa, and there were few taxa found in 10 that were not in 11 (and vice 

versa).  These two wetlands were unique in that they generally had the shortest 

hydroperiod, and dried down before the other wetlands.  The predators found in wetlands 
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10 and 11 may have been taxa that were able to complete their life cycle before dry 

down, though more focused analysis of the communities is needed to determine if this is 

true.  The location of these wetlands at almost opposite ends of the landscape (Figure 1) 

suggests that distance was not important for the similarity of these predator communities.  

High similarity between wetlands 2 and 3 was likely due to the fact that they were in 

close proximity and connected during high water levels.  Wetlands 6 and 7 clustered but 

there were no clear reasons why their communities were similar.  Wetlands 6 and 7 were 

not located close to one another on the landscape, and the abiotic habitat characteristics 

between the two were extremely variable.  Wetland 6 was deep with very little 

vegetation, while wetland 7 was shallow, with almost 100% vegetation coverage.  

Wetlands 15 and 17 were clustered as well.  These wetlands were in relatively close 

proximity, though did not connect, and did not share any common habitat characteristics.  

Wetland 15 had lower dissolved oxygen and specific conductivity and was much deeper 

than wetland 17.  Finally, wetland 19 was equally similar to wetlands 6, 7, 15, and 17.  

The clustering of these wetlands in terms of their predator communities suggests that 

predators are not regulated by abiotic habitat characteristics. 

 The clustering of primary consumers was quite different from the predators, but 

again, the abiotic habitat characteristics did not explain the layout of the dendogram.  

Wetland 10 had the shortest and most unpredictable hydroperiod, which may have caused 

the community in wetland 10 to be the most dissimilar from the other wetlands.  Distance 

also did not explain the clustering in the primary consumer dendogram. 

 The results of the regression analyses supported the interpretation of both the 

predator and primary consumer dendograms.  Regression of predator beta diversity with 
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the habitat gradients of distance from one another, temperature, pH, dissolved oxygen, 

specific conductivity, total nitrogen, total phosphorus, size, depth, hydroperiod, percent 

algae cover, percent vegetation cover, and percent containing coarse woody debris 

revealed that taxa turnover was not strongly related to any of these habitat features.  

There was a weak relationship with percent vegetation cover, but overall the predator 

community was remarkably similar in all of the wetlands.  At such a small scale, predator 

distributions may be less regulated by abiotic habitat characteristics and more regulated 

by biotic factors.  Many wetland predator taxa are highly mobile as adults, especially 

Odonates and Coleoptera, and, therefore, have the ability to disperse and readily colonize 

new habitats.  Dispersal to a “preferred” wetland in terms of abiotic habitat characteristics 

may not necessarily lead to successful colonization, if the density of predators in the 

preferred wetland is already high.  Competition for prey and antagonistic interactions 

between predators are common in freshwater wetlands (Van Buskirk 1989, Batzer and 

Wissinger 1996), and may be more important in structuring the community than specific 

habitat requirements.  This could explain the overall similarity of the predator community 

at the Jackson Lane Preserve.  This is also supported by the fact that densities of 

predators do not differ significantly among wetlands, which suggest that there may be 

some maximum carrying capacity in wetlands for predator populations.   

 The lack of mobility for some primary consumer taxa might cause taxa turnover 

to be greater than predators, and might lead to a relationship between beta diversity and 

differences in wetland habitat.  However, the overall primary consumer community was 

similar, and regression of primary consumer beta diversity with the habitat gradients 

revealed that taxa turnover was not strongly related to any of the habitat features or to 
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distance between wetlands.  There were weak positive correlations between pH and 

specific conductivity with beta diversity, meaning as pH or specific conductivity became 

more different between wetlands, so did the primary consumer community.  The 

distribution of primary consumers was more regulated by habitat characteristics than the 

predator communities, but abiotic habitat characteristics were a weak predictor overall.  

Biotic factors such as predation may be important for how the primary consumer 

communities are structured.   

 Summary - The predator communities in the wetlands at the Jackson Lane 

Preserve varied seasonally, but were generally similar among all of the wetlands.  There 

were no abiotic habitat characteristics that related strongly to the predator communities, 

suggesting that predators may have been regulated less by habitat characteristics and 

more by biotic interactions within wetlands.  Predator communities were found to be 

more similar in wetlands with similar amounts of vegetation cover, so this habitat 

characteristic could be important for predators.  A more quantitative analysis of how 

vegetation structure relates to predator communities could provide useful information for 

management of constructed wetlands.  The primary consumer community varied 

seasonally and spatially, but was not strongly related to habitat characteristics.  However, 

there was a general trend that primary consumer communities were more similar in 

wetlands exhibiting similar habitat characteristics, although no significant patterns 

emerged.  Patterns in the richness and density of predators and primary consumers 

suggested biotic interactions affected community structure, though no causal relationship 

was identified in this study.   
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 Overall, the lack of a relationship between abiotic factors and the predator and 

primary consumer community could be due to the scale at which this study was 

performed.  These wetlands are situated on approximately 80 ha, so their close proximity, 

occasional connectivity, and relatively high similarity in terms of habitat could explain 

the lack of significant relationships.  More focused studies are needed to address how 

predator and primary consumer communities are structured in freshwater wetlands, and 

experimental manipulations of communities could help establish the causal relationships 

lacking from this study.  An improved understanding of macroinvertebrate community 

structure and the effects of abiotic and biotic factors can contribute to management 

strategies aimed at enhancing wetland function (Stewart and Downing 2008).  
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Table 2    Analysis of variance table for taxa richness and density of predators 
and primary consumers.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effect df F p df F p
Wetland 7, 40 1.1 0.38 7, 40 1.25 0.3
Month 5, 40 13.28 <0.0001 5, 40 18.1 <0.0001
Wetland X Month 35, 40 0.78 0.77 35, 40 0.55 0.96

Effect df F p df F p
Wetland 7, 40 2.56 0.028 7, 40 2.51 0.019
Month 5, 40 3.7 0.0076 5, 40 9.29 0.0003
Wetland X Month 35, 40 0.4 0.99 35, 40 0.38 0.99

Taxa Richness Density

Predator 
Taxa Richness Density

Primary Consumer
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Table 4   Results from regression analysis of measured habitat characteristics with 
predator and primary consumer taxa richness and density.  Temp is in °C.  
DO is dissolved oxygen in mg/L.  SpC is specific conductivity in µS/cm.  
TN is total nitrogen in parts per million.  TP is total phosphorus in parts 
per million.  Size is approximate wetland acreage.  Hydro is hydroperiod.  
% Alg is percent of wetland covered by algae. % CWD is percent of 
wetland containing coarse woody debris.  % Veg is percent of wetland 
containing vegetation.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effect R2 p R2 p
Temp 0.37 <0.0001 0.44 <0.0001
pH 0.067 0.015 0.028 0.12
DO 0.25 <0.0001 0.26 <0.0001
SpC 0.31 <0.0001 0.092 0.004
TN 0.0009 0.78 0.066 0.016
TP 0.03 0.11 0.071 0.012
Size 0.0025 0.64 0.0003 0.88
Hydro 0.0057 0.49 0.0068 0.45
Depth 0.072 0.012 0.13 0.0005
% Alg 0.0073 0.43 0.0028 0.62
% CWD 0.026 0.14 0.011 0.34
% Veg 0.049 0.039 0.039 0.066

Effect R2 p R2 p
Temp 0.081 0.0071 0 0.96
pH 0.051 0.034 0.0038 0.57
DO 0.018 0.22 0.0072 0.43
SpC 0.0072 0.43 0.0025 0.65
TN 0.0022 0.66 0.031 0.099
TP 0.0025 0.65 0.0062 0.47
Size 0.0043 0.54 0.014 0.28
Hydro 0.041 0.059 0.0009 0.78
Depth 0.0015 0.72 0.0051 0.51
% Alg 0.021 0.18 0.09 0.0044
% CWD 0 1 0.027 0.12
% Veg 0.0084 0.4 0.023 0.16

Predator 
Taxa Richness Density

Primary Consumer
Taxa Richness Density
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Table 5    Values of ßT for predator and primary consumer communities for each 
wetland pair.  Top half of matrix contains values for primary consumer 
communities, and bottom half contains values for predator communities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 3 6 7 10 11 15 17 19

2 0.23 0.23 0.23 0.35 0.29 0.29 0.17 0.29

3 0.21 0.23 0.16 0.26 0.33 0.17 0.18 0.20
6 0.22 0.24 0.28 0.26 0.29 0.24 0.21 0.29

7 0.31 0.27 0.23 0.26 0.33 0.21 0.22 0.29

10 0.40 0.41 0.35 0.32 0.32 0.23 0.32 0.27

11 0.43 0.38 0.39 0.35 0.21 0.26 0.31 0.21

15 0.35 0.30 0.26 0.24 0.25 0.21 0.27 0.21

17 0.29 0.27 0.23 0.26 0.27 0.31 0.18 0.22

19 0.39 0.27 0.34 0.26 0.33 0.26 0.21 0.29

β 
Pr

ed
at

or

β Primary Consumer
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Table 6    Regression results of ßT for predators and primary consumers.  Distance is 
in meters.  Temp is in °C.  DO is dissolved oxygen in mg/L.  SpC is 
specific conductivity in µS/cm.  TN is total nitrogen in parts per million.  
TP is total phosphorus in parts per million.  Size is approximate wetland 
acreage.  Hydro is hydroperiod.  % Alg is percent of wetland covered by 
algae. % CWD is percent of wetland containing coarse woody debris.  % 
Veg is percent of wetland containing vegetation.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effect R2 p R2 p
Distance 0.0002 0.94 0.012 0.53
Temp 0.0005 0.9 0.0029 0.75
pH 0.054 0.18 0.2 0.0065
DO 0.0005 0.9 0.014 0.5
SpC 0.042 0.23 0.12 0.037
TN 0.0047 0.69 0.027 0.34
TP 0.0028 0.76 0.037 0.26
Size 0.049 0.2 0.035 0.28
Hydro 0.029 0.32 0.0085 0.59
Depth 0.061 0.15 0.0086 0.59
% Alg 0.025 0.36 0.062 0.14
% CWD 0.001 0.86 0.043 0.23
% Veg 0.14 0.023 0.023 0.38

β
Predator Primary Consumer
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Figure 1     Map of Jackson Lane Preserve, Caroline County, Maryland.  Arrows point 
to the location of the nine wetlands sampled in this study. 
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Figure 2     Illustrations of sample processing apparatuses: (A) Gridded tray used for 
subsampling, and (B) tray used for sorting. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. 

A. 



 

 29 
 

Figure 3     Predator community comparisons in relation to sample month: (A) 
Average number of predator taxa per month, (B) composition of predator 
taxa in relation to sampled month, and (C) density of predators per month.  
Bars in A and C represent means +/- SE.  Comparisons with different 
letters indicate significant LSD differences at α=0.05. 
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Figure 4     Primary consumer comparisons in relation to sample month or wetland:  
(A) Average number of primary consumer taxa per month, (B) 
composition of primary consumer taxa in relation to sampled month, (C) 
density of primary consumers per month, (D) average number of primary 
consumer taxa per wetland, and (E) density of primary consumers per 
wetland.  Bars in A, C, D, and E represent means +/- SE.  Comparisons 
with different letters indicate significant LSD differences at α=0.05. 
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Figure 4 (Continued) 
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Figure 5 Variation in: (A) temperature (°C), (B) dissolved oxygen (mg/L), and (C) 
specific conductivity (µS/cm) during sampling in 2005 and 2006.  Each 
line is an individual wetland in 2005 or 2006. 
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Figure 6     Cluster dendograms of: (A) predator communities, (B) primary consumer 
communities. 
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Chapter 2: Predation by larval Agabus (Coleoptera: Dytiscidae) on 

primary consumers in constructed freshwater wetlands 

 

Abstract 

 As temporary freshwater wetlands become inundated, the macroinvertebrate 

community develops under strong predation pressure from the first predators to arrive.  

These predators can have an important impact on the abundance and structure of the 

primary consumer community by the direct effect of prey consumption, particularly if 

they select one type of prey over another.  Larval dytiscid beetles (Coleoptera: 

Dytiscidae) are effective predators in temporary waters and are some of the first predators 

to arrive in recently inundated wetlands.  I determined the potential impact of two species 

of these beetles, Agabus punctatus and Agabus disintegratus, on the primary consumer 

communities in constructed wetlands on the Eastern Shore of Maryland and used 

laboratory experiments to examine: (1) their ability to consume three different prey 

populations (copepods, ostracods, and mosquito larvae), (2) if prey selection occurs, (3) 

beetle performance on different prey types, (4) behavioral components of the predator-

prey interaction, and (5) the potential for antagonistic interactions between predators.  

Results indicate that dytiscid beetle larvae do exert a strong predation force on the 

primary consumer community, and that when given a choice, mosquito larvae were 

selected over microcrustaceans.  Performance and behavioral components may be the 

reason for this selection, because beetle larvae grew larger and were better at capturing 

mosquito larvae.  Populations of beetles may be supported initially by high abundances of 
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microcrustaceans, but later switch to the preferred prey, mosquito larvae.  This could be 

important in the suppression of mosquito populations in constructed wetlands, so future 

construction efforts should consider techniques aimed at attracting and maintaining a 

diverse predator complex. 

Introduction 

 In temporary wetlands, the early season macroinvertebrate community consists of 

taxa with desiccation resistance (Wiggins et al. 1980, Wissinger and Gallagher 1999, 

Dietz-Brantley et al. 2002, Batzer et al. 2005) or those that are able to reach wetlands as 

soon as they become inundated, such as mosquitoes, midges, dragonflies, and beetles 

(Streever et al. 1996, Brown et al. 1997, Mitsch et al. 1998, Wrubleski 1999, Keiper and 

Walton 2000).  These animals are influenced trophically from below, but the top-down 

force of predation is considered to be the most important force in shaping wetland aquatic 

animal communities (Batzer and Sharitz 2006).  In temporary wetlands where fish are 

absent, the first invertebrate predators to arrive could have a significant impact on the 

primary consumer community due to direct effects of prey consumption, particularly if 

they select one prey type over another.   

 In the wetlands at the Jackson Lane Preserve (Caroline County, MD), one of the 

first predators found at the end of winter are larval predaceous diving beetles 

(Coleoptera: Dytiscidae; Appendix A- Table 1).  These beetles are the only invertebrate 

predators likely to have evolved to take advantage of the abundant prey available early in 

the spring (Higgins and Merritt 1999).  Larvae of dytiscid beetles are also considered to 

be very effective predators in temporary waters (Larson et al. 2000), and could impact the 

overall community if they exhibit selective feeding.  As these beetles hatch available prey 
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include microcrustaceans (e.g. ostracods, cladocerans, and copepods), and diptera larvae 

(e.g. culicids, chironomids), all of which have been suggested as prey for dytiscids in 

previous studies (James 1969, Friis 2003).  Efficient exploitation of available food 

resources by selection of prey is critical for the success of these larvae because they must 

complete development before the habitat dries or other larger predators arrive (Emlen 

1966).  Selection of prey could be driven by factors such as appropriate size ranges and 

availability, profitability, and ease of capture (Dicke et al. 1989).   

Determining if and why prey selection occurs could provide insight into how 

these predators impact the primary consumer community.  This impact may be 

diminished if antagonistic interactions between the predatory larvae are common.  

Intraguild predation and cannibalism are common among predaceous aquatic 

invertebrates (Wissinger and McGrady 1993, Fincke 1994, Wissinger et al. 1996, 

Ilmonen and Suhonen 2006), have been observed in dytiscid beetle larvae (L. Culler, 

personal observation), and may also explain the overall patterns of macroinvertebrate 

community development in wetlands. 

 The goal of this study was to determine the potential impact of larval dytiscid 

beetles on the primary consumer community in constructed wetlands.  I used larvae of the 

two beetle predators present in March, Agabus punctatus Melsheimer and Agabus 

disintegratus Crotch (Coleoptera: Dytiscidae) (Figures 7A, 7B) and three prey taxa, 

ostacods (Podocopida: Notodromadidae), copepods (Cyclopoida: Cyclopidae), and 

mosquito larvae (Aedes albopictus; Diptera: Culicidae).  A series of laboratory 

experiments were conducted to address: 1) the ability of A. punctatus and A. disintegratus 

to consume the three different prey types, 2) prey selection by these predators, 3) the 
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performance of A. disintegratus larvae when fed exclusively on one prey type, 4) the 

behavioral interactions between A. punctatus and its prey, and 5) the frequency of 

cannibalism and intraguild predation within and between these species. 

 I predicted that larvae of both A. punctatus and A. disintegratus would be able to 

consume all three prey but that larvae would exhibit prey selection due to availability, 

profitability, or ease of capture.  Since both A. punctatus and A. disintegratus are found in 

similar abundance at the same time of year, I hypothesized that levels of cannibalism 

within species and intraguild predation between species would not differ.  Further, I 

predicted symmetric intraguild predation since larvae of both species are found in similar 

size ranges. 

Methods 

General Set-up 

 Beetle larvae were collected in the field from the Jackson Lane Preserve in March 

and April, 2008, and returned to the lab at least two days before the start of the 

experiments.  Each larva was placed in a 300 mL plastic cup containing water from the 

collection site and a variety of prey items so that feeding prior to the start of the 

experiment would not influence the results.  Beetle larvae were kept in a walk-in 

environmental chamber set to a temperature of 13°C, with alternating 10 hours of light 

and 14 hours of dark.  At least 24 hours prior to the start of each experiment, all beetle 

larvae were removed from the cups and held in 16 X 100 mm glass culture tubes without 

prey in order to standardize hunger levels. 

 Prey types used were ostracods, copepods, and mosquito larvae.  All three make 

up a portion of the primary consumer community in the wetlands where the beetles are 
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found.  Ostracods (Notodromadidae) and copepods (Cyclopidae) were collected in the 

field, and mosquito larvae (A. albopictus) were obtained from a colony at the Insect 

Transformation Facility, University of Maryland Biotechnology Institute in Rockville, 

Maryland.   

 Experimental microcosms for all experiments were prepared by adding 175 mL of 

filtered wetland water (13°C, pH = 5.6) and a 7 cm plastic aquarium plant (Tetra®- 

WaterWonders™ Decorative Plants) to a 300 mL plastic cup.  Prey were added to the 

cups and allowed to settle before the predators were introduced.  Predators were 

introduced after a 24 hour starvation period. 

Experiment 1 - Prey consumption 

 The prey consumption of A. punctatus and A. disintegratus individually and in 

different predator combinations was assessed in the lab.  The experiment was a 

randomized complete block (6 x 3 factorial) with predator combination (no larvae as 

control, one A. punctatus larva, one A. disintegratus larva, two A. punctatus larvae, two 

A. disintegratus larvae, or one of each A. punctatus and A. disintegratus) and prey type 

(ostracods, copepods, or mosquito larvae) as the factors.  Prey densities were 20 in the 

single predator treatments, and 40 in the double predator treatments.  Prey were not 

replaced.  Each treatment combination was replicated four times, and each replicate was 

blocked by location in the walk-in chamber.   

 Predators were allowed to interact with the prey for 24 hours, at which point 

predators were removed and the number of prey consumed was counted.  Dytiscid larvae 

are piercing-sucking predators with falcate mandibles and leave behind partially digested 

prey items that are easy to count.  A two-way ANOVA (Proc Mixed SAS v.9.1) was 
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conducted to test for effects of prey type and predator combination on the instantaneous 

prey mortality rate (m) calculated as: 

m = (ln No- ln Nf)/t, 

where Nf represents the final density of prey (adjusted for the number of prey lost due to 

natural mortality in the controls, and divided by two in the double predator treatments to 

estimate number of prey taken per predator), No represents the initial prey density (20 

individuals), and t is the duration in days of the experiment (Dodson 1975, Peckarsky 

2006).  The units of the parameter m are prey mortality per prey per predator per day, 

hereafter termed mortality rate (Peckarsky 2006). 

Experiment 2 - Prey selection 

 Feeding trials were set up to compare the consumption of mosquito larvae and 

microcrustaceans in the presence or absence of alternative prey, to determine which prey 

larval A. punctatus and A. disintegratus prefer.  The treatments consisted of prey ratios 

(mosquito larvae: microcrustaceans) of 30:0, 20:10, 10:20, or 0:30.  The 

microcrustaceans consisted of equal numbers of copepods and ostracods.  Each beetle 

species was tested individually and each experiment was replicated 5 times.  After 24 

hours, predators were removed and the numbers of prey consumed were counted.   

 Beetle larvae were expected to consume prey in the proportions that were offered 

if no selection was occurring.  For example, in the treatment with 30 mosquito larvae and 

0 microcrustaceans, the expected proportion of mosquito larvae consumed was 1.  In the 

treatment with 20 mosquito larvae and 10 microcrustaceans, the expected proportion of 

mosquito larvae consumed was 0.67.  A chi-square analysis was used to test for 

differences between expected proportions (Pe) and the observed results (Po) (Proc Freq 
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SAS v.9.1).  Selection was considered to have occurred if the observed numbers of each 

type of prey consumed differed significantly from the expected proportions. 

Experiment 3 - Performance of A. disintegratus  

 The performance of A. disintegratus when fed on different prey types was 

assessed by feeding larvae one type of prey (ostracods, copepods, or mosquito larvae) for 

9 days and measuring growth.  Initial size of individuals was obtained by photographing 

each beetle and measuring abdomen length using ImageJ software (Rasband 2007).  At 

the start of the experiment (day 0), each cup was stocked with 40 prey items.  At day 3 

and day 6, prey were restocked to the original density of 40 prey items, and the number 

of prey consumed was recorded.  A final photograph of each beetle was taken at day 9 to 

obtain a final measurement of abdomen size, and each beetle was dried and weighed on a 

microbalance.  Each prey type treatment was replicated 5 times.  A one-way ANOVA 

was used to test that initial sizes were equal across treatments (Proc Mixed SAS v.9.1).  

ANCOVA was used to test for the effect of prey type on the final size of the beetle 

larvae, with initial size as a covariate (Proc Mixed SAS v.9.1).  There was no relationship 

between final beetle size and total number of prey consumed, so the total number of prey 

consumed was left out of the analysis.  Dry weight and length were strongly related (R2 = 

0.78, p < 0.0001).  I used length as the measurement of final size.   

Experiment 4 - Prey capture 

 Behavioral trials were used to determine which components of the predator-prey 

interaction may be responsible for the observed patterns of selection (Peckarsky 2006).  

For each trial, I placed 20 prey items and one predator (A. punctatus) in a Petri dish and 
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observed predation events for 10 minutes.  Additional lab personnel helped with the 

observations.  Number of encounters (times a predator encountered prey), number of 

attacks (times a predator attempted or successfully grasped prey), and number of captures 

(times a predator successfully captured and consumed prey), were tallied for each 

predator.  Eight trials were run for each prey type, and a new larva was used for each 

trial.  Number of encounters, attacks per encounter, and captures per attack were 

compared among prey types using one-way ANOVA’s (Proc Mixed SAS v. 9.1).  

Encounter data were log transformed and capture data were log (n+1) transformed prior 

to analysis to meet the assumptions of normality and homogeneity of variances. 

Experiment 5 - Predator interactions 

 A randomized complete design with three predator levels (two A. punctatus larva, 

two A. disintegratus larva, or one of each A. punctatus and A. disintegratus) was used to 

measure cannibalism within A. punctatus and A. disintegratus and intraguild predation 

(IGP) between these species.  Each predator level was replicated eighteen times. 

 A random assortment of prey was added to each cup.  Predators were introduced, 

and every 24 hours, any occurrence of cannibalism or IGP was recorded.  The hypothesis 

that frequency of cannibalism and IGP did not differ was tested using a chi-squared test 

at two time periods, day 5 and day 18 (Proc Freq SAS v.9.1).  A second chi-squared test 

was performed to determine if IGP was symmetric (each species exhibited IGP on the 

other species equally) at these same time periods (Proc Freq SAS v.9.1).  Prey were not 

measured or replaced in this experiment. 
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Results 

Experiment 1 - Prey consumption 

  A two-way ANOVA showed a non-significant interaction between prey type and 

predator combination (df = 8, 42; F = 1.27; p = 0.29), but the main effects of prey type 

(df = 2, 42; F = 40.63; p < 0.0001) and predator combination (df = 4, 42; F = 2.85; p = 

0.036) were significant.  Mortality rate for mosquito larvae (mean = 1.21) was almost 

twice the mortality rate for copepods (mean = 0.66), and over four times the mortality 

rate for ostracods (mean = 0.28; Figure 8A).  There were significant differences in 

mortality rate due to predator type and number, with a trend of lower mortality rate in the 

double predator treatments (Figure 8B).  The combination of one of each A. disintegratus 

and A. punctatus resulted in the lowest prey mortality rate (mean = 0.52), and this was 

significantly different from both of the single predator treatments (mean = 0.85, mean = 

0.89 for A. disintegratus and A. punctatus, respectively). 

Experiment 2 - Prey selection 

  When beetle larvae were offered combinations of prey, the observed numbers of 

mosquito larvae consumed (Po) were higher than the expected proportions (Pe) in all 

treatments (Figure 9). These differences were significant in three out of four treatments.  

When offered 10 mosquito larvae (33%) and 20 microcrustaceans (66%), the proportions 

of prey taken that were mosquito larvae were 68% for A. disintegratus and 66% for A. 

punctatus.  A chi-square test revealed significant differences (χ2 = 30.0, p < 0.0001; and 

χ2 = 27.0, p < 0.0001 respectively).  When offered 20 mosquito larvae (66%) and 10 

microcrustaceans (33%), the proportions of prey taken that were mosquito larvae were 
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91% for A. disintegratus and 79% for A. punctatus.  While both of these proportions are 

higher than the proportion offered, a chi-square test revealed that the difference was only 

significant for A. disintegratus (χ2 = 11.3, p = 0.0008).   

Experiment 3 - Performance of A. disintegratus 

  At the start of the experiment, sizes of beetle larvae did not differ between 

treatments (ANOVA; df = 2, 12; F = 0.36; p = 0.71) but after 9 days of feeding, a 

analysis of covariance (with initial size as the covariate) showed a significant effect of 

prey type on the final size of beetle larvae (ANCOVA; df = 2; F = 8.22; p = 0.0066; 

Figure 10).  Beetles fed ostracods grew less than beetles fed copepods or mosquito larvae.  

For beetles fed copepods and mosquitoes, there was a significant difference in initial size 

and final size (p = 0.0001 and p = 0.0028 respectively; Figure 10), but there was no 

difference in initial and final size of beetles fed ostracods (p > 0.05).   

Experiment 4 - Prey capture 

 Ostracods were encountered more than twice as frequently in ten minutes (mean = 

17) than mosquitoes and copepods (7.1 and 6.7 encounters, respectively; ANOVA; df = 

2, 16; F = 10.13; p = 0.0014; Figure 11A).  Attacks per encounter did not differ 

significantly between prey types (ANOVA; df = 2, 16; F = 0.09; p = 0.92; Figure 11B).  

Finally, mosquito larvae had the highest captures per attack, with 30.3% of all attacks 

resulting in a capture, followed by copepods (16.1%) and then ostracods (5.3%), but the 

overall main effect of prey type on captures per attack was not significant (ANOVA; df = 

2, 16; F = 2.98; p = 0.079; Figure 11C). 
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Experiment 5 - Predator interactions 

  After 5 days, cannibalism occurred in 58% of trials with one predator species.  Of 

those, 57% were within A. punctatus, and 43% were within A. disintegratus.  Intraguild 

predation occurred in 67% of trials with two species.  A chi-square test revealed no 

significant difference in the frequency of cannibalism compared to IGP (χ2 = 1.4; p = 

0.50; Figure 12A).  By day 18, cannibalism in A. punctatus and intraguild predation 

occurred significantly more times than cannibalism in A. disintegratus (Fisher’s exact 

test; p = 0.0027; Figure 12A).  After 5 days, A. punctatus IGP on A. disintegratus was 

observed 5 times, and A. disintegratus IGP on A. punctatus was observed 7 times (Figure 

12B).  A chi-square test revealed no significant difference in the number of times each 

species consumed the other (χ2 = 0.5; p = 0.48).  After 18 days, IGP was completely 

symmetric between the two species (χ2 = 0.0; p = 1.0; Figure 12B).                                                              

Discussion 

Prey selection, performance, and behavior 

 Results from these experiments demonstrate that Agabus larvae could play a 

significant role in structuring the primary consumer community through consumption of 

prey and selection of prey.  Both species consumed all three of the prey types offered, but 

showed selection for mosquito larvae in all of the experiments.  Results indicate that both 

species of Agabus consumed more mosquito larvae than microcrustaceans in 24 hours, 

and that when offered a choice of prey, Agabus consumed proportionally more mosquito 

larvae than were offered.  I hypothesized that Agabus may exhibit this selection because 

feeding on mosquito larvae is more profitable (in terms of growth) than feeding on 

microcrustaceans, or because mosquito larvae are easier to capture, and thus less of an 
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energy investment.  Results from the third experiment showed that Agabus larvae reached 

a larger size when they were fed either mosquito larvae or copepods in comparison to 

ostracods.  The larvae that were fed ostracods did not change in size.  These results 

suggest that mosquito larvae or copepods could be more profitable in terms of nutritional 

components, or less energy (and thus less body mass) is required to attack and capture 

these types of prey. 

I also predicted differences in the ability to Agabus to attack and capture prey.  

Agabus had more encounters with ostracods; this is likely because ostracods made no 

attempt to avoid the beetle larvae, while the copepods and mosquito larvae seemed to 

detect the predators and stay on the other side of the Petri dish.  Despite the difference in 

encounter rate, all three prey types were attacked in equal proportions, suggesting that the 

beetle larvae do not discriminate between prey types prior to attack.  However, once 

attacked, many of the ostracods were rejected, thus leading to a greater capture rate of the 

mosquito larvae and copepods.  Handling time of the prey was not considered in this 

study, though this could play a role in the number of prey items the predator was able to 

consume in the 10 minute period, and should be considered in future experiments 

(Holling 1961). 

Cannibalism and intraguild predation 

 In the first experiment, I set up treatments with two predators to determine if 

cannibalism and intraguild predation occur, and how this might affect rate of prey 

consumption.  I observed both cannibalism and intraguild predation but did not have the 

ability to quantify this because the experiment was run for such a short period of time.  

Overall, treatments with two predators consumed a lower number of prey per predator 
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than predators in the single predator treatments, regardless of if cannibalism or intraguild 

predation occurred.  To quantify the occurrence of these antagonistic interactions 

between predators, I ran the fifth experiment to measure the number of times cannibalism 

and intraguild predation occurred, and to determine if one species was dominant in 

intraguild predation events.  Because the species are of similar size and occur in similar 

abundances, I predicted equal levels of these interactions across predator combinations.  

After 5 days, there were no differences in the levels of cannibalism or intraguild 

predation, but by day 18, cannibalism in A. punctatus and intraguild predation occurred 

significantly more times than cannibalism in A. disintegratus.  This is consistent with the 

observation that A. punctatus was slightly more aggressive than A. disintegratus when in 

pursuit of prey (L. Culler, personal observation). 

Impact on primary consumer community 

 Both species of beetle larvae were able to consumer up to 20 prey items in 24 

hours.  This could translate into a significant impact on the overall abundance of primary 

consumers in the wetlands considering the densities of beetle larvae reached up to 164 

individuals per meter2 on 10 March 2008 (DiPietro and Culler, unpublished data).  

Because I observed prey selection in my experiments, these beetles may alter primary 

consumer community structure if they consume a greater proportion of one type of prey 

than is available in the environment.  These beetles do occur in high densities, so 

antagonistic interactions may dampen the effect on the prey community through 

cannibalism or intraguild predation, or because behavioral modifications due to the 

presence of other predators affect foraging behavior and thus indirectly affect prey 

consumption (Wissinger and McGrady 1993, Finke and Denno 2002, Finke and Denno 
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2005).  Future studies should address: (1) the ability of these predators to consume 

different prey in the field, (2) if selection of prey occurs within natural prey communities, 

and, (3) how the density of predators may influence the ability to consume and suppress 

prey populations. 

Conservation Biological Control? 

 The results of this study are relevant to the field of conservation biological 

control, which is defined as the manipulation of agricultural habitats to favor the natural 

enemies of pests, as to conserve biodiversity and reduce pest problems (Barbosa 1998).  

The habitat studied here is not considered agricultural, though parallels can be drawn 

because native wetland predators can effectively suppress mosquito populations through 

predation or by deterring mosquito oviposition (Batzer and Wissinger 1996).  Therefore, 

wetland management strategies aimed at maintaining predator complexes or encouraging 

colonization by native wetland predators could help to reduce pest problems.   

 An abundant and diverse prey community may be important in attracting and 

supporting wetland predators that may be able to later switch to preferred prey.  In the 

system studied here, the high abundance of microcrustaceans as beetle larvae hatch 

(Chapter 1) could be important in supporting and maintaining Agabus populations, even 

if preferred mosquito prey are not yet present.  As mosquitoes become available, Agabus 

beetles may switch to this preferred prey, and thus contribute to suppression of this pest.  

This is consistent with a previous suggestion that Agabus may be effective predators of 

mosquito larvae, as their activity at low water temperatures corresponded to when 

mosquito larvae were hatching (James 1964).       
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 Complexity is another factor which may be important to consider when managing, 

constructing, or restoring wetlands.  Studies in terrestrial and agricultural systems show 

that multiple predator species may be more effective at suppressing prey in complex 

vegetated habitats because intraguild predation and other antagonistic interactions are 

diminished (Finke and Denno 2002).  In wetlands, habitat management strategies could 

be developed that would support a predator complex in which antagonistic interactions 

would be minimized, so that suppression of pest species is maximized.  These strategies 

could include constructing complex habitats consisting of a diverse assemblage of 

wetland plants, microtopographical features, and coarse woody debris.  Including 

complexity may also attract a greater number of predators by virtue of providing more 

habitats for a greater number of species that may be able to contribute to suppression of 

prey populations.  Some studies have indicated that vegetation and structural 

heterogeneity generally increases diversity and abundance of macroinvertebrates, 

including predators (Shrewsbury and Raupp 2006, Mogi 2007).  While I attempted to 

find such relationships from my analyses in Chapter 1, the lack of any relationship could 

be due to the fact that all of the wetlands constructed at the Jackson Lane site are 

relatively complex, compared to other constructed wetlands which are structurally 

simple.   

 Future studies should address questions concerning predator complexes in 

constructed wetlands and how complexity affects the ability of predators to suppress 

prey.  One possible area of important research is how the presence of fish in constructed 

wetlands may enhance suppression of prey, or lead to antagonistic interactions such as 

intraguild predation and thus dampen predator effects on prey.  Studies have 
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demonstrated both positive, negative, or no correlation between the presence of predatory 

fishes and species richness, densities or biomass of macroinvertebrates (Thorp and 

Bergey 1981, Crowder and Cooper 1982, Bohanan and Johnson 1983, Gillinsky 1984, 

Morin 1984, Mallory et al. 1994, Hanson and Riggs 1995, Pierce and Hinrichs 1997, 

Batzer et al. 2000, Baber et al. 2004).  If fish preferentially feed on larger aquatic 

invertebrates, including many predator taxa, prey populations may be able to escape 

predation pressure and increase in abundance.  Alternatively, fish may prefer to feed on 

smaller prey items and thus contribute to further suppression of prey populations.  The 

trophic importance of fish in wetlands is poorly understood (Batzer 1998), so feeding 

studies of fish that are commonly found in constructed wetlands may contribute to an 

understanding of how adding or excluding fish during restoration and construction of 

wetlands may impact the prey community.   

 Few studies have addressed the issue of how complexity in constructed wetlands 

impacts predator abundance and diversity, as well as the interaction between prey and 

predators.  As stated above, complexity is generally thought to increase diversity and 

dampen negative predator-predator interactions, both of which could be important if the 

goal of any project is to maintain a predator complex that is capable of suppressing prey 

pest populations.  Studies examining how adding complexity in restored or constructed 

wetlands affects predator complexes could yield important knowledge that could help to 

inform future wetland restoration and construction projects.  
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Summary 

 The results of this study reveal that larval dytiscid beetles have the potential to 

exert a strong influence on community structure in constructed wetlands by virtue of prey 

consumption.  These beetles also show selection of mosquito larvae, and, therefore, likely 

contribute to natural suppression of mosquitoes in constructed wetlands.  While 

macroinvertebrates are not recommended for inundative biological control due to 

problems with production, storage, and release, continued study of predator ecology may 

yield clues for development of mosquito control tools using macroinvertebrates (Mogi 

2007).  For now, wetland management for control of pest species should focus on 

constructing wetlands with high ecological value that function like natural wetlands. 
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Figure 7 Pictures of beetle species used: (A) Agabus punctatus, and (B) Agabus 
disintegratus. 
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Figure 8     Instantaneous prey mortality rate, m, for: (A) each prey type (Cop = 
Copepods; Mos = Mosquito larvae; Ost = Ostracods), and (B) each 
predator combination (D = one A. disintegratus; P = one A. punctatus; DD 
= two A. disintegratus; PP = two A. punctatus; DP= one each of A. 
disintegratus and A. punctatus).  Bars represent means +/- SE.  
Comparisons with different letters indicate significant LSD differences at 
α=0.05. 
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Figure 9     Percentages of prey consumed (observed) that were mosquito larvae 
compared to percentages that were offered (expected) in: (a) A. 
disintegratus and (b) A. punctatus.  Bars represent means of 5 
observations. 
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Figure 10   Abdominal length of beetles at day 0 (Initial) and day 9 (Final).  Bars 
represent mean +/- SE.   
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Figure 11   (A) Number of encounters with each prey type in 10 minutes, (B) number 
of attacks per encounter of each prey type in 10 minutes, and (C) number 
of captures per attack of each prey type in 10 minutes.  Cop = Copepods; 
Mos = Mosquito larvae; Ost = Ostracods.  Bars represent means +/- SE.  
Different letters indicate significant differences at α=0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. 

B. 

C. 

0

5

10

15

20

25

Cop Mos Ost

# 
en

co
un

te
rs

 ..

b

aa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

# 
at

ta
ck

s p
er

 e
nc

ou
nt

er
 ..

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Cop Mos Ost

Prey Type

# 
ca

pt
ur

es
 p

er
 a

tt
ac

k .
.



 

 56 
 

Figure 12   Occurrences of cannibalism or IGP after 5 and 18 days: (A) for different 
predator combinations (PP = two A. punctatus; DD = two A. disintegratus; 
DP= one each of A. disintegratus and A. punctatus), and (B) by predator 
species (PD = A. punctatus IGP on A. disintegratus; DP = A. disintegratus  
IGP on A. punctatus).  Bars represent means and significant differences 
are indicated with an asterisk (α=0.05). 
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Appendix A 
 

 

Raw Macroinvertebrate Data 

 

Table 1 The following table contains the count data used for 
analysis of the macroinvertebrate communities.  FG stands 
for the functional group that each taxon was classified as. 
PR = predator, PC = primary consumer, P* = predator as 
larvae, primary consumer as adult (considered separate in 
analysis), and UN=unknown (not used in analysis).  The 
numbers across the top refer to the wetland, and the 
numbers in the table are counts from each subsample. 
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(Table 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 4

Odonata
Coenagrionidae 

NIF PR 1 1
Libellulidae

Libellula sp. PR 1 1
Plathemis sp. PR 1

Hemiptera
Corixidae 

Hesperocorixa PC 2 6 2 1 2
Sigara sp. PC 1

Notonectidae
Buenoa sp. PR 3
Notonecta sp. PR 1

Coleoptera
Dytiscidae

Agabus  sp. PR 9 140 31 17 4 9 19 102 67
Dytiscus  sp. PR 1 1
Hydroporinae PR 1 13 1 9 5 5
Hydroporus sp. PR 1 1
Laccophilus sp. PR 1
Uvarus sp. PR 1

Hydrophilidae
Berosus sp. P* 1 2
Enochrus sp. P* 1 1
Paracymus sp. P* 1
Tropisternus sp. P* 1

Noteridae
Hydrocanthus PR 2

Trichoptera
Limnephilidae

Limnephilus  sp. PC 3 1 7 11 4 20 1
Lepidoptera

Pyralidae
NIF PC 1 1 1 1 1

Diptera
Ceratopogonidae

Bezzia  sp. PR 3 6 1
Culicoides  sp. PR 3 1 16 1 1

Chironomidae
Chironomini PC 1 2 3
Orthocladinae PC 34 34 38 117 20 8 14 18 127

MARCH 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Tanypodinae PR 2 17
Tanytarsini PC 3 2

Culicidae
Aedes  sp. PC 1

Sciaridae
NIF UN 1 3 2

Sciomyzidae
NIF PR 4

Stratiomyidae
NIF PC 1 3

Tabanidae
NIF PR 1
Tabanus  sp. PR 1 2

Tipulidae
Tipula  sp. PC 8 3 1

Gastropoda
Physidae

NIF PC 16 1 37 1 58 23 24 16
Planorbidae

NIF PC 1
Ancylidae

NIF PC 1 1 1
Annelida/Nematoda

NIF UN 14 1 16 65 20 1 64
Copepoda

NIF PC 47 16 14 39 1 5 11 15 2
Ostracoda

NIF PC 4 1
Cladocera

NIF PC 12 5 103 6 33 61 45

MARCH 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 3

Odonata
Aeshnidae

NIF PR 1
Coenagrionidae 

NIF PR 1 1 4 8
Lestidae

Lestes sp. PR 5 1 1 2
Libellulidae

Libellula sp. PR 1
Plathemis sp. PR 1
NIF PR 1

Hemiptera
Corixidae 

NIF UN 112 64 59 9 15 2 16 103 13
Coleoptera

Dytiscidae
Acilius sp. PR 1
Agabus  sp. PR 7 92 27 21 87 22 48 43 43
Dytiscus  sp. PR 2 3
Hydroporinae PR 3 7 1 10 15 21 11 3 9
Hydrovatus sp. PR 1 1
Laccophilus sp. PR 1 1
Uvarus sp. PR 1

Hydrophilidae
Berosus sp. P* 1 1 1
Enochrus sp. P* 1 2 41 2 3 9
Hydrochara sp. P* 1 1
Tropisternus sp. P* 3 2 8 1 3 10 16

Noteridae
Hydrocanthus PR 1 1

Lepidoptera
Pyralidae

NIF PC 1 1 1
Diptera

Ceratopogonidae
Bezzia  sp. PR 7 6 1 1 5
Culicoides  sp. PR 7 6

Chironomidae
Chironomini PC 98 16 2 44 21 14 14 11 8
Orthocladinae PC 7 72 62 50 72 22 128 49 118
Tanypodinae PR 3 2 1 1 10
Tanytarsini PC 1

APRIL 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Culicidae

Aedes  sp. PC 3
Ephydridae

NIF PC 3
Sciomyzidae

NIF PR 3 3
Tabanidae

Crysops  sp. PR 2
Tabanus  sp. PR 1 2 1

Tipulidae
Tipula  sp. PC 2 1 1

Gastropoda
Physidae

NIF PC 15 1 30 6 42 72 50 12
Planorbidae

NIF PC 32
Ancylidae

NIF PC 2
Viviparidae

NIF PC 1
Annelida/Nematoda

NIF UN 17 29 131 150 42
Copepoda

NIF PC 65 19 26 15 16 6 6 14 77
Ostracoda

NIF PC 23 8 1
Cladocera

NIF PC 127 159 48 167 438 51 128 45 283

APRIL 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 1

Odonata
Lestidae

Lestes sp. PR 5 5 5 1 2 1
Libellulidae

Libellula sp. PR 1
NIF PR 1

Hemiptera
Belostomatidae

Belostoma sp. PR 2
Corixidae 

NIF UN 16 116 20 80 19 58 13 45 17
Gerridae

Trepobates sp. PR 1
Mesovelidae

Mesovelia sp. PR 1 2
Notonectidae

Notonecta sp. PR 11 3 30 2 4
Coleoptera

Dytiscidae
Agabus  sp. PR 1 1 7 1
Coptotomus  sp. PR 10 1 1 22 1
Dytiscus  sp. PR 1 2 1
Hydroporinae PR 2 22 1
Hydrovatus sp. PR 2
Laccophilus sp. PR 9 1 3
Thermonectus PR 2

Haliplidae
Peltodytes sp. PC 2

Hydrophilidae
Berosus sp. P* 3 9 1 4 3 3 5 3
Enochrus sp. P* 3 3 4 4
Hydrochara sp. P* 3 2 2 1 1
Hydrophilius sp. P* 1 1
Tropisternus sp. P* 1 7 5 10 2 2

Noteridae
Hydrocanthus PR 3

Trichoptera
Hydroptilidae

Oxyethira  sp. PC 1
Diptera

Ceratopogonidae
Bezzia  sp. PR 1
Culicoides  sp. PR 5 3

MAY 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Chironomidae

Chironomini PC 101 45 21 5 1 51 3 3 4
Orthocladinae PC 51 18 14 23 6 40 6 5 8
Tanypodinae PR 10 1 5 6 1 27 3 1 3

Sciomyzidae
NIF PR 1

Tabanidae
Tabanus  sp. PR 2 1

Gastropoda
Physidae

NIF PC 115 85 242 155 346 14 265 185 243
Planorbidae

NIF PC 15
Annelida/Nematoda

NIF UN 1 27 11 40 2
Copepoda

NIF PC 8 10 80 39 100 32 47 23 107
Ostracoda

NIF PC 21 8
Cladocera

NIF PC 50 10 212 81 149 182 181 34 63

MAY 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 4 1 2

Caenidae
Caenis sp. PC 2 2

Odonata
Aeshnidae

Anax junius PR 6
NIF PR 1 6

Coenagrionidae 
NIF PR 1 7 5 16 3 8 2 6 19

Libellulidae
NIF PR 2 4 3 2 7 4

Hemiptera
Belostomatidae

Belostoma sp. PR 1
Corixidae 

Hesperocorixa PC 3 1 1 6
Sigara sp. PC 1
NIF UN 4 5 2

Mesovelidae
Mesovelia sp. PR 1

Nepidae
Ranatra  sp. PR 1

Notonectidae
Notonecta sp. PR 2 1 1 1 3 1

Veliidae
Microvelia sp. PR 1

Coleoptera
Dytiscidae

Agabus  sp. PR 1
Coptotomus  sp. PR 1 1
Cybister sp. PR 1
Hydroporinae PR 1 1 1 1

Haliplidae
Peltodytes sp. PC 1

Hydrophilidae
Berosus sp. P* 1 1 1 1 5 1 1
Enochrus sp. P* 1 1
Tropisternus sp. P* 1 7 4 3

Noteridae
Hydrocanthus PR 1

Trichoptera
Hydroptilidae

Oxyethira  sp. PC 1

JUNE 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Diptera

Ceratopogonidae
Bezzia  sp. PR 16 14 9 29 9 26 11 16 18
Culicoides  sp. PR 4 4 2 5 2 4

Chaoboridae
Chaoborus  sp. PR 1 1

Chironomidae
Chironomini PC 116 14 38 45 5 207 12 5
Orthocladinae PC 21 17 14 5 107 1 38 30 40
Tanypodinae PR 12 10 31 6 11 11 30 44 11
Tanytarsini PC 1

Stratiomyidae
NIF PC 1 3 1 1

Tabanidae
Tabanus  sp. PR 1

Gastropoda
Physidae

NIF PC 75 241 175 185 170 164 175 228
Planorbidae

NIF PC 16 8 5
Ancylidae

NIF PC 3 17 1
Viviparidae

NIF PC 1
Annelida/Nematoda

NIF UN 45 12 0 31 1
Copepoda

NIF PC 20 50 25 54 50 50 101 19
Ostracoda

NIF PC 8
Cladocera

NIF PC 2 161 34 133 75 93 170 226 100

JUNE 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 1 3 1 1 1 7

Caenidae
Caenis sp. PC 9 1 1 2

Odonata
Aeshnidae

Anax junius PR 1 1
Boyeria vinosa PR 1
NIF PR 3 4

Coenagrionidae 
Enallagma sp. PR
NIF PR 6 9 5 12 2 2 6 19 5

Libellulidae
Erythemis sp. PR 1 3 11 4
Sympetrum sp. PR 12
Tramea sp. PR 3
NIF PR 11 6 2 7

Hemiptera
Belostomatidae

Belostoma sp. PR 1 1 3 2 1 3
Corixidae 

Hesperocorixa PC 7 1 2 1
Hydrometridae

Hydrometra sp. PR 1
Mesovelidae

Mesovelia sp. PR 8 2 3 2 1 6 8
Naucoridae

NIF PR 1
Nepidae

Ranatra  sp. PR 1 1
Notonectidae

Buenoa sp. PR 12 6
Notonecta sp. PR 1 3 4 1

Veliidae
Microvelia sp. PR 2

Coleoptera
Dytiscidae

Acilius sp. PR 5
Coptotomus  sp. PR 1 1
Cybister sp. PR 1
Hydroporinae PR 5 5 14 10 1
Hydrovatus sp. PR 1
Laccophilus sp. PR 4 97 2 16
Thermonectus PR 3

JULY 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Uvarus sp. PR 14 2

Haliplidae
Peltodytes sp. PC 2

Hydrophilidae
Anacaena  sp. P* 1
Berosus sp. P* 7 3
Enochrus sp. P* 1 10 1 2
Hydrochara sp. P* 1 1
Paracymus sp. P* 1
Tropisternus sp. P* 5 1 1 30 1 20

Noteridae
Hydrocanthus PR 2 1 4 10 9 6 6 5

Trichoptera
Hydroptilidae

Oxyethira  sp. PC 2 1 1
Lepidoptera

Pyralidae
NIF PC 4 1 1 2 2

Diptera
Ceratopogonidae

Bezzia  sp. PR 47 39 39 12 40 51 29 26
Culicoides  sp. PR 3 8 26 6 9

Chironomidae
Chironomini PC 92 21 12 2 19 4 36 26 5
Orthocladinae PC 20 31 25 13 13 62 43
Tanypodinae PR 30 8 44 7 117 1 105 90 4
Tanytarsini PC 1

Culicidae
Aedes  sp. PC 7 3 2 8
Anopheles  sp. PC 1 4 3
Culex  sp. PC 6

Dolichopodidae
NIF PR 1

Ephydridae
NIF PC 1

Sciomyzidae
NIF PR 1

Stratiomyidae
NIF PC 2 1

Tabanidae
Tabanus  sp. PR 2 1 2 1 2

Gastropoda
Physidae

NIF PC 35 149 42 63 16 1 11 72 94
Planorbidae

JULY 2005
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Taxa FG 2 3 6 7 10 11 15 17 19
NIF PC 2 1 1 2

Ancylidae
NIF PC 3 1 3 6

Viviparidae
NIF PC

Annelida/Nematoda
NIF UN 34 8 110 140 56 11 8 26

Copepoda
NIF PC 1 6 1 1 9

Ostracoda
NIF PC 61

Cladocera
NIF PC 8 38 11 3 24 57 4

JULY 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 6 19 1 1 1

Caenidae
Caenis sp. PC 16 3 1 11

Odonata
Aeshnidae

Anax junius PR 3 2 2
NIF PR 8 4 7

Coenagrionidae 
Enallagma sp. PR 7
NIF PR 29 18 6 34 29

Libellulidae
Erythemis sp. PR 1
Libellula sp. PR 6 10 24 30 7
Tramea sp. PR 3
NIF PR 15 15

Hemiptera
Belostomatidae

Belostoma sp. PR 4 1 1 1 2 1 2
Corixidae 

Hesperocorixa PC 2 9 1 5
Sigara sp. PC 2
NIF UN 2

Mesovelidae
Mesovelia sp. PR 20 3 2 17 6 31 12

Notonectidae
Buenoa sp. PR 4 11 7
Notonecta sp. PR 2 25 3 3 4 2

Veliidae
Microvelia sp. PR 2 1 1 19

Coleoptera
Dytiscidae

Coptotomus  sp. PR 1 2
Dytiscus  sp. PR 1
Graphoderus sp. PR 1
Hydroporinae PR 1
Uvarus sp. PR 1

Gyrinidae
Dineutus sp. PR 1

Haliplidae
Peltodytes sp. PC 1 1

Hydrophilidae
Berosus sp. P* 1
Hydrobius sp. P* 1

AUGUST 2005
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Tropisternus sp. P* 3 1 2 6 4

Noteridae
Hydrocanthus PR 14 1 36 13 2

Trichoptera
Hydroptilidae

Oxyethira  sp. PC 2
Lepidoptera

Pyralidae
NIF PC 6 7 1 1

Diptera
Ceratopogonidae

Bezzia  sp. PR 55 2 40 54 13 10 66
Chironomidae

Chironomini PC 47 12 68 56 67 20 12
Orthocladinae PC 49 50 51
Tanypodinae PR 22 21 56 87 85 61 86

Culicidae
Aedes  sp. PC 3 5 3 13 1
Anopheles  sp. PC 1
Culex  sp. PC 9

Stratiomyidae
NIF PC 1 2

Tabanidae
Crysops  sp. PR 1
Tabanus  sp. PR 1 1

Gastropoda
Physidae

NIF PC 10 64 54 16 38 14 35
Planorbidae

NIF PC 3 2
Ancylidae

NIF PC 1
Annelida/Nematoda

NIF UN 14 46 0 78
Copepoda

NIF PC 5 18 6
Cladocera

NIF PC 3 5 12 30 9 12

AUGUST 2005
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Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 1 1

Caenidae
Caenis sp. PC 2

Odonata
Coenagrionidae 

NIF PR 1 2
Libellulidae

Libellula sp. PR 1
Sympetrum sp. PR 1
NIF PR 4

Hemiptera
Corixidae 

Hesperocorixa PC 1 4 3 3 3
NIF UN 1

Coleoptera
Dytiscidae

Agabus  sp. PR 2 17 60 42
Copelatus sp. PR 1
Coptotomus  sp. PR 1
Hydroporinae PR 6 9 23 9
Hydroporus sp. PR 2
Laccornis  sp. PR 1
Liodessus sp. PR 2
Neoporus sp. PR 1
Rhantus  sp. PR 1
Uvarus sp. PR 1 1

Hydrophilidae
Berosus sp. P* 2 1 2 2
Enochrus sp. P* 1 2
Paracymus sp. P* 2
Tropisternus sp. P* 1 3

Noteridae
Hydrocanthus PR 1
Suphisellus sp. PR 1 2

Trichoptera
Phryganeidae

Agrypnia  sp. PC 1
Lepidoptera

Pyralidae
NIF PC 1 2 1

Diptera
Ceratopogonidae

Atrichopogon  sp. PC 3

MARCH 2006
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(Table 1 Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa FG 2 3 6 7 10 11 15 17 19
Bezzia  sp. PR 10 1
Culicoides  sp. PR 9 1 2 1

Chaoboridae
Chaoborus  sp. PR 3

Chironomidae
Chironomini PC 8 1 4
Orthocladinae PC 9 33 167 74 46 175 3
Tanypodinae PR 15 1 2
Tanytarsini PC 74 3 1

Dolichopodidae
NIF PR 1

Ephydridae
NIF PC 1 1

Sciaridae
NIF UN 1

Tabanidae
NIF PR 1
Tabanus  sp. PR 1

Tipulidae
NIF PC 5

Gastropoda
Physidae

NIF PC 1 10 9 4 2
Planorbidae

NIF PC 15
Ancylidae

NIF PC 10 1
Viviparidae

NIF PC 5 9
Annelida/Nematoda

NIF UN 172 0 47 183 21 36 295
Copepoda

NIF PC 13 18 18 66 16 49 74
Ostracoda

NIF PC 4 4 2
Cladocera

NIF PC 16 53 7 67

MARCH 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 3

Caenidae
Caenis sp. PC 7

Odonata
Aeshnidae

NIF PR 1
Coenagrionidae 

NIF PR 1 1
Libellulidae

Erythemis sp. PR 3
Plathemis sp. PR 1 1 1
NIF PR 6

Hemiptera
Corixidae 

Hesperocorixa PC 1
NIF UN 3 4 47 5

Notonectidae
NIF PR 3

Coleoptera
Dytiscidae

Agabus  sp. PR 12 35
Copelatus sp. PR 1
Coptotomus  sp. PR 1
Hydroporinae PR 3 29 7
Hydrovatus sp. PR 2
Liodessus sp. PR 18 2
Neoporus sp. PR 1
Uvarus sp. PR 2 1 1

Haliplidae
Haliplus sp. PC 1 1

Hydrophilidae
Enochrus sp. P* 1 5
Tropisternus sp. P* 8

Noteridae
Hydrocanthus PR 2 1

Trichoptera
Phryganeidae

Agrypnia  sp. PC 1
Ptilostomis  sp. PC 1

Diptera
Ceratopogonidae

Bezzia  sp. PR 14 1 6 2 5
Culicoides  sp. PR 9 4 19 2 5 6 22

APRIL 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Chironomidae

Chironomini PC 9 5 4 1 37 2
Orthocladinae PC 22 25 86 23 18 51 49
Tanypodinae PR 23 6 8
Tanytarsini PC 223 4 2

Ephydridae
NIF PC 2

Tabanidae
Crysops  sp. PR 1 1 1
Tabanus  sp. PR 1

Tipulidae
NIF PC 2

Gastropoda
Physidae

NIF PC 13 47 166 6
Annelida/Nematoda

NIF UN 6 280 186 420 307 191 164 242
Copepoda

NIF PC 24 33 81 165 70 94 105
Ostracoda

NIF PC 2 10 14 1 6
Cladocera

NIF PC 1 6 37 165 300 102 67 194

APRIL 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Caenidae
Caenis sp. PC 3 4

Odonata
Coenagrionidae 

NIF PR 2 2
Lestidae

Lestes sp. PR 8 2 1
Libellulidae

Erythemis sp. PR 3
Sympetrum sp. PR 8
NIF PR 2 4 1

Hemiptera
Corixidae 

NIF UN 3 2 94 29 4
Notonectidae

Notonecta sp. PR 4
Coleoptera

Dytiscidae
Agabus  sp. PR 2 4
Coptotomus  sp. PR 2 1
Hydroporinae PR 1 2 43 4 2
Laccophilus sp. PR 1
Uvarus sp. PR 8

Haliplidae
Peltodytes sp. PC 2 1

Hydrophilidae
Berosus sp. P* 2 1 16 1 2 23 8 2
Enochrus sp. P* 1 2 14 1
Tropisternus sp. P* 1 2 2 3

Diptera
Ceratopogonidae

Bezzia  sp. PR 4 7
Culicoides  sp. PR 3 3 5 15 3 2 1 1

Chironomidae
Chironomini PC 14 14 3 2 2 1
Orthocladinae PC 20 59 34 106 8 54 11 16
Tanypodinae PR 10 2 11 3 2 3 2
Tanytarsini PC 76 9 2 1 3

Culicidae
Aedes  sp. PC 1 2

Dolichopodidae
NIF PR 1

Sciomyzidae
NIF PR 2 1

MAY 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Tabanidae

Crysops  sp. PR 1
NIF PR 1

Gastropoda
Physidae

NIF PC 12 45 24 114 115 28
Planorbidae

NIF PC 7 71 3
Ancylidae

NIF PC 1 1 3
Viviparidae

NIF PC 1
Annelida/Nematoda

NIF UN 192 204 176 442 165 59 2 314
Copepoda

NIF PC 11 12 76 68 3 12 271
Ostracoda

NIF PC 2 29 102 137
Cladocera

NIF PC 8 28 79 28 19 47 106

MAY 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 1 1 3

Caenidae
Caenis sp. PC 18 1 10

Odonata
Coenagrionidae 

Enallagma sp. PR 7
NIF PR 1 1 13 2 9

Lestidae
Lestes sp. PR 1

Libellulidae
Miathyria PR 1
Sympetrum sp. PR 1
Tramea sp. PR 2
Plathemis sp. PR 2
NIF PR 13

Hemiptera
Belostomatidae

Belostoma sp. PR 2 1
Corixidae 

Hesperocorixa PC 1
NIF UN 1 3

Nepidae
Ranatra  sp. PR 1

Coleoptera
Dytiscidae

Copelatus sp. PR 1
Hydroporinae PR 1 1
Hydroporus sp. PR 2
Hydrovatus sp. PR 4
Hygrotus sp. PR 1
Ilybius sp. PR 1
Neoporus sp. PR 2
Uvarus sp. PR 2 1

Haliplidae
Haliplus sp. PC 1

Hydrophilidae
Berosus sp. P* 1 2 4 3 2
Enochrus sp. P* 1 5 3
Hydrochus sp. P* 2
Tropisternus sp. P* 2 2 3 1 4

Noteridae
Suphisellus sp. PR 1 1 16

JUNE 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Diptera

Ceratopogonidae
Bezzia  sp. PR 11 6 33 14 10 54
Culicoides  sp. PR 27 10 1 1 31

Chironomidae
Chironomini PC 5 24 14 1 5
Orthocladinae PC 7 7 40 11
Tanypodinae PR 17 12 46 11 16 8
Tanytarsini PC 76 46 8 11

Tabanidae
Crysops  sp. PR 1 1

Gastropoda
Physidae

NIF PC 2 22 126 63 62
Planorbidae

NIF PC 14 1 86 118 36
Ancylidae

NIF PC 26
Viviparidae

NIF PC 2
Annelida/Nematoda

NIF UN 152 143 103 282 85 233
Copepoda

NIF PC 24 8 13 56 19
Ostracoda

NIF PC 1 2 12 78 6
Cladocera

NIF PC 40 4 92 36 34

JUNE 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 5 16 14 35 5 16

Caenidae
Caenis sp. PC 40 5

Odonata
Aeshnidae

NIF PR 1
Coenagrionidae 

Enallagma sp. PR 13
NIF PR 6 8 5 3

Lestidae
Lestes sp. PR 1 1 2

Libellulidae
Libellula sp. PR 3
Pachydiplax sp. PR 1 1
NIF PR 2 3

Hemiptera
Belostomatidae

Belostoma sp. PR 2 2 3 1 1
Corixidae 

NIF UN 13 4 4 21 2 2
Mesovelidae

Mesovelia sp. PR 1 1
Coleoptera

Dytiscidae
Agabus  sp. PR 1
Coptotomus  sp. PR 2 3 8 1
Hydroporinae PR 1 1 4 9 11 15 12
Hydrovatus sp. PR 2
Laccophilus sp. PR 1 4 3
Liodessus sp. PR 1 6
Neoporus sp. PR 1 1
Rhantus  sp. PR 1
Uvarus sp. PR 1

Hydrophilidae
Berosus sp. P* 1 6 1 46 6
Enochrus sp. P* 1 4 8 4
Paracymus sp. P* 1
Tropisternus sp. P* 10 10 2 3 4

Noteridae
Hydrocanthus PR 1 4 3 3 25 15
Suphisellus sp. PR 9 2 3

Trichoptera
Leptoceridae

JULY 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Oecitis  sp. PR 2

Diptera
Ceratopogonidae

Bezzia  sp. PR 15 21 1 1 28
Culicoides  sp. PR 10 6 5 7 4

Chaoboridae
Chaoborus  sp. PR 3 3 12 1

Chironomidae
Chironomini PC 8 5 1 110 2
Orthocladinae PC 13 70 60 15 4 32 47
Tanypodinae PR 31 58 1 3 31
Tanytarsini PC 148 45 30 5 4

Culicidae
Anopheles  sp. PC 1
Culex  sp. PC 7 3 12
Uranotaenia  sp. PC 1 3 7

Tipulidae
Limonia  sp. PC 1
Tipula  sp. PC 1

Gastropoda
Physidae

NIF PC 2 3 93 88 18 36
Planorbidae

NIF PC 5 3 9 65 27
Ancylidae

NIF PC 1 5
Viviparidae

NIF PC 44
Annelida/Nematoda

NIF UN 29 74 7 93 60 98 39
Copepoda

NIF PC 9 13 1 11 9 34 18
Ostracoda

NIF PC 1 5
Cladocera

NIF PC 30 56 45 2 77 164

JULY 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Ephemeroptera

Baetidae
Callibaetis sp. PC 3 9 25 4 4 3 11 10

Caenidae
Caenis sp. PC 88 1 3 1 1 2 4

Odonata
Aeshnidae

Anax junius PR 1 2 1
Aeshna sp. PR 1
NIF PR 1

Coenagrionidae 
Enallagma sp. PR 5
NIF PR 4 7 8 1 5 2 13

Libellulidae
Erythemis sp. PR 9 3 12 8
Libellula sp. PR 6
Sympetrum sp. PR 18 11
Tramea sp. PR 1 2
Pachydiplax sp. PR 10 5 22
NIF PR 6

Hemiptera
Belostomatidae

Belostoma sp. PR 1 2 1 4
Corixidae 

Hesperocorixa PC 7
NIF UN 7

Gerridae
Trepobates sp. PR 1

Mesovelidae
Mesovelia sp. PR 6 3 6 1 1 6

Notonectidae
Buenoa sp. PR 5 5 2
Notonecta sp. PR 6 2 8

Coleoptera
Dytiscidae

Copelatus sp. PR 1
Coptotomus  sp. PR 1
Cybister sp. PR 1 1
Graphoderus sp. PR 1
Hydroporinae PR 4 2 6 5 1
Neoporus sp. PR 1
Uvarus sp. PR 1 2

Elmidae
Dubiraphia sp. PC 1

Haliplidae

AUGUST 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
Haliplus sp. PC 1
Peltodytes sp. PC 1

Hydrophilidae
Berosus sp. P* 1 4 1
Enochrus sp. P* 1 3
Hydrochara sp. P* 1
Hydrophilius sp. P* 1
Laccobius sp. P* 1
Tropisternus sp. P* 4 2 5 2 5 3

Noteridae
Hydrocanthus PR 2 13 9 36 8 3 4

Trichoptera
Hydroptilidae

Oxyethira  sp. PC 2
Leptoceridae

Oecitis  sp. PR 10
Lepidoptera

Pyralidae
NIF PC 3

Diptera
Ceratopogonidae

Atrichopogon  sp. PC 1
Bezzia  sp. PR 6 10 30 3 6 31
Culicoides  sp. PR 6 3 6 5 3 13 16

Chaoboridae
Chaoborus  sp. PR 1 1 3 5

Chironomidae
Chironomini PC 5 68 151 1 2 5
Orthocladinae PC 4 45 66 69 73 41 77
Tanypodinae PR 46 1 72 31 1 80 59 26
Tanytarsini PC 103 16 7 3

Culicidae
Anopheles  sp. PC 1
Culex  sp. PC 20 6 8 1
Uranotaenia  sp. PC 10 13 2 2 3

Dolichopodidae
NIF PR 1

Tipulidae
Tipula  sp. PC 1

Gastropoda
Physidae

NIF PC 3 6 33 30 33 70
Planorbidae

NIF PC 20 34 111 117 5
Ancylidae

AUGUST 2006
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Taxa FG 2 3 6 7 10 11 15 17 19
NIF PC 3 6

Annelida/Nematoda
NIF UN 11 63 19 28 43 3 5 6

Copepoda
NIF PC 2 2 2 5 9

Ostracoda
NIF PC 2 3 2 2 3

Cladocera
NIF PC 32 20 20 23 22 15 5 111

AUGUST 2006
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Appendix B 
 

 

Habitat Characteristics   

 

Table 3A Data collected with handheld YSI probes in 2005 and 2006. 
Temp. is water temperature in °C. DO is dissolved oxygen.  
SpC is specific conductivity in µS/cm. 

 
Table 3B  Water chemistry data for 2005 and 2006.  All values are in 

parts per million. 
 
Table 3C  Habitat characteristics of each wetland.  Size was 

approximated in GIS using GPS boundary data from 
Towson University, and modified by  Doug Samson.  
Values represent maximum area in acres.  CWD added 
refers to if coarse woody debris was added during the time 
of construction.  CWD amount refers to a subjective 
assessment by Doug Samson of the amount of coarse 
woody debris added (L= low, M= medium, and H= high).  
Straw Type refers to the type of straw added at the time of 
construction.  Hydro is the hydroperiod estimate by the 
percent of sample dates (Jan. 2005 to Feb. 2007) when the 
cell water level was at or above half the maximum level. % 
Alg, % CWD, and % Veg are the percent of wetland 
containing an algae mat, coarse woody debris or vegetation. 
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(Table 3A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 3 6 7 10 11 15 17 19
Temp. 4.26 4.44 4.34 4.7 5.3 4.42 5.01 5.23 8.95

pH 7.32 7.31 7.21 7.41 7.30 4.43 7.29 7.52 7.52
DO (mg/L) 8.79 8.46 8.94 8.1 8.7 7.32 8.18 8.8 9.6

DO (%) . . . . . . . . .
SpC 87 75 58 75 88 60 69 100 98

Temp. 14 13.6 15.3 13.6 13.9 11.8 13.3 14.1 15.4
pH 6.82 6.97 6.94 7.01 7.01 4.49 6.85 7.18 6.96

DO (mg/L) 7.68 7.86 7.22 6.59 7.55 3.97 6.9 9.39 8.26
DO (%) 74.5 76.1 71.1 62.2 73.1 37.2 66.3 92.3 87.2

SpC 54.7 59.5 61.1 57.2 57.6 18.9 46.9 31.9 27.2
Temp. 19 24.35 22.8 17.4 26.15 18.15 20.05 21.75 27.3

pH 7.13 7.20 7.01 6.86 7.22 5.15 6.98 7.14 6.99
DO (mg/L) 6.59 5.98 6.76 2.55 10.87 2.64 7.79 5.78 9.1

DO (%) 73.5 68 78.1 28 129 29.5 84.6 69.1 108.8
SpC 65.9 76 58.5 71.1 53.6 35.6 59.2 71.8 43.1

Temp. 27.6 31.4 30.6 26.4 29.7 26.6 27.5 28.1 30.4
pH 6.65 6.89 6.90 6.53 6.53 4.84 6.39 6.56 6.52

DO (mg/L) 3.24 5.43 6.77 2.63 9.21 1.42 3.53 2.82 5.31
DO (%) 39.2 75.3 90.5 31.5 125.8 18.5 47.1 35.5 73.6

SpC 60.5 73.2 59.1 58.5 69 40.6 63.9 72 58.2
Temp. 29.7 35.4 34.8 27.7 32.9 29.6 29.2 29.2 33.3

pH 7.12 7.18 7.20 6.36 6.86 6.17 6.77 7.20 7.08
DO (mg/L) 5.11 9.12 7.31 4.3 7.6 2.74 3.74 5.04 6.15

DO (%) 68.4 133.5 102.2 55.3 104 37.4 50.4 68.2 87.4
SpC 66.2 46.7 48.5 28.5 57.2 34.3 40.4 66.6 43.7

Temp. 27 27.4 28.2 24.9 . . 26.1 26.8 26.1
pH 6.80 6.83 6.87 6.13 . . 6.50 6.97 6.38

DO (mg/L) 3.12 5.81 4.69 1.07 . . 1.46 2.27 1.31
DO (%) 38.6 72.8 60.2 13.7 . . 15.3 28 15.4

SpC 58.8 49.9 64.6 43.9 . . 58.6 64.4 61.6
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(Table 3A Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 3 6 7 10 11 15 17 19
Temp. 8.7 11.1 11.7 9.8 13.1 9.6 9.7 9.6 12.3

pH 6.96 7.24 7.28 7.33 7.38 4.90 7.29 8.53 7.74
DO (mg/L) 12.77 14.54 13.94 11.38 13.37 11.05 13.57 15.87 15.22

DO (%) 109.2 131.5 126.9 98 134.2 97.3 120.4 138.7 141.5
SpC 74.4 89.8 72.8 84.6 82.8 42.7 89.1 89.7 104.7

Temp. 13.2 14 14.8 12.2 13.6 15.3 14.2 14.4 14.5
pH 7.12 6.68 7.23 7.36 6.57 5.32 7.42 7.26 7.12

DO (mg/L) 9.65 11.8 10.65 7.58 10.46 8.33 4.51 11.81 9.77
DO (%) 93.1 116 106.8 51.6 99.5 83.1 45.4 114.3 99.9

SpC 94 115 84.6 93 100.2 46.8 45.7 104.4 128.6
Temp. 15.9 18.7 21.7 14.8 16.3 15.9 15.4 14 18.3

pH 7.43 7.10 7.32 7.24 6.77 5.05 6.82 7.29 7.39
DO (mg/L) 7.88 8.24 8.12 6.65 4.36 5.4 11.97 28.2 9.05

DO (%) 81.4 88.9 100.5 62.8 42.5 58.4 111.5 25.7 96.9
SpC 95 91.8 83.9 73.2 72.6 47.2 81.1 87.5 82.6

Temp. 27.1 26.5 30.4 28.4 . . 26 25.6 .
pH 7.08 6.84 6.88 6.74 . . 6.60 7.03 .

DO (mg/L) 1.44 0.09 0.007 2.14 . . 0.92 0.08 .
DO (%) 17.2 1.1 0.9 27 . . 7.9 1.9 .

SpC 110.5 111.6 98.8 75.8 . . 104.7 100.8 .
Temp. 27 29.2 27.8 25.5 29.7 25.2 26.5 26.6 27.6

pH 6.92 6.95 6.85 6.91 6.86 4.54 6.59 6.71 6.82
DO (mg/L) 3.58 0.86 1.03 1.27 5.49 0.18 0.82 1.27 6.97

DO (%) 44.7 8.8 13.4 15.6 72.8 3.4 10.4 16 88.8
SpC 54.8 70.2 70 95.3 78.1 46 58.9 69.3 71.3

Temp. 27.4 31.5 29.2 24.8 . 28.9 24.8 26.6 26.6
pH 7.01 7.16 6.84 6.40 . 4.90 6.50 6.57 6.03

DO (mg/L) 6.83 7.42 3.15 2.39 . 6.77 1.25 2.55 2.31
DO (%) 83.7 96.6 37.1 30.1 . 87.6 16.1 30.5 31

SpC 53 54.9 64.5 . 27.4 54.6 54.8 33.5
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(Table 3B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 3 6 7 10 11 15 17 19
NH4-N 0.008 0.007 0.007 0.005 0.008 0.001 0.004 0.004 0.005
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.002 0.011 0.003 0.044 0.007 0.020 0.009 0.028 0.007

Cl 6.4 4.9 3.9 2.9 5.2 3.8 4.5 5.0 5.7
SO4 4.0 3.7 2.8 2.3 3.8 4.3 2.6 3.3 5.0
TN 2.1 1.0 1.2 1.6 1.9 0.9 1.1 1.1 1.4
TP 0.182 0.073 0.073 0.144 0.180 0.059 0.079 0.097 0.099

TDN 1.0 0.9 1.1 1.3 1.1 0.8 1.0 0.9 1.1
TDP 0.029 0.038 0.029 0.092 0.048 0.036 0.045 0.056 0.045

NH4-N 0.014 0.010 0.006 0.007 0.014 0.001 0.004 0.006 0.007
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.004 0.008 0.006 0.048 0.016 0.054 0.052 0.029 0.013

Cl 3.0 2.8 3.2 1.2 2.3 1.9 1.9 2.6 2.7
SO4 1.5 1.3 1.5 0.7 1.2 0.8 0.9 1.3 0.9
TN 1.0 0.9 1.0 1.1 0.9 1.3 0.9 0.9 1.0
TP 0.055 0.057 0.053 0.108 0.061 0.107 0.108 0.075 0.056

TDN 0.9 1.0 0.9 1.2 0.9 1.3 0.9 0.9 1.0
TDP 0.038 0.040 0.039 0.095 0.051 0.101 0.094 0.063 0.046

NH4-N 0.015 0.014 0.012 0.050 0.024 0.126 0.016 0.014 0.009
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.001 0.004 0.003 0.215 0.035 0.149 0.112 0.055 0.041

Cl 2.9 3.6 3.8 2.4 3.2 2.8 2.4 3.0 5.0
SO4 1.5 1.4 1.4 0.7 0.6 0.8 0.8 1.1 0.7
TN 1.8 2.1 2.1 4.4 4.1 2.2 2.4 2.5 4.4
TP 0.072 0.117 0.108 0.644 0.292 0.246 0.278 0.237 0.364

TDN 1.6 1.8 1.9 3.6 3.7 2.0 2.2 2.1 3.5
TDP 0.051 0.076 0.082 0.412 0.219 0.223 0.248 0.178 0.206

NH4-N 0.007 0.009 0.006 0.013 0.018 0.001 0.011 0.015 0.007
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.002 0.014 0.002 0.138 0.031 0.125 0.133 0.054 0.034

Cl 3.0 3.0 2.4 1.7 2.1 2.5 1.6 2.1 1.6
SO4 1.3 1.5 1.3 0.1 0.9 0.8 0.9 0.9 0.1
TN 2.4 2.4 2.1 4.0 3.9 2.3 2.3 2.7 3.7
TP 0.124 0.130 0.092 0.353 0.293 0.195 0.274 0.249 0.235

TDN 2.8 2.4 2.0 3.8 2.9 2.3 2.2 2.3 3.5
TDP 0.046 0.095 0.070 0.296 0.129 0.158 0.245 0.150 0.203
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(Table 3B Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 3 6 7 10 11 15 17 19
NH4-N 0.013 0.011 0.010 0.005 0.029 0.012 0.011 0.018 0.008
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.004 0.010 0.002 0.018 0.006 0.463 0.011 0.129 0.113

Cl 1.9 1.8 2.3 0.2 1.6 1.7 1.1 1.3 0.5
SO4 0.5 1.0 0.7 0.4 0.4 0.9 0.6 0.4 0.4
TN 2.0 2.1 1.9 2.6 3.6 1.4 2.4 2.1 1.7
TP 0.105 0.184 0.083 0.349 0.275 0.688 0.219 0.300 0.249

TDN 1.6 1.5 1.4 1.4 2.1 1.0 1.5 1.4 1.5
TDP 0.046 0.062 0.040 0.077 0.072 0.548 0.077 0.204 0.202

NH4-N 0.021 0.015 0.034 0.005 . . 0.012 0.018 0.033
NO3-N 0.01 0.01 0.01 0.01 . . 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 . . 0.001 0.001 0.001
PO4-P 0.004 0.004 0.005 0.037 . . 0.006 0.018 0.042

Cl 1.3 1.1 2.2 0.2 . . 0.3 0.7 0.4
SO4 0.5 1.0 0.7 0.1 . . 0.4 0.4 0.4
TN 3.0 3.1 3.2 3.5 . . 2.7 2.6 4.7
TP 0.196 0.240 0.227 0.308 . . 0.173 0.310 0.493

TDN 1.9 1.6 2.1 2.0 . . 1.7 1.8 2.1
TDP 0.043 0.056 0.067 0.100 . . 0.062 0.099 0.117
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(Table 3B Continued) 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 3 6 7 10 11 15 17 19
NH4-N 0.011 0.017 0.011 0.007 0.006 0.001 0.010 0.009 0.008
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.001 0.001 0.001 0.003 0.001 0.017 0.004 0.006 0.001

Cl 5.8 6.8 5.6 3.9 5.9 4.4 7.4 5.7 6.6
SO4 2.7 4.2 2.5 1.6 2.9 1.6 3.6 3.5 2.1
TN 1.8 1.3 1.2 1.5 1.5 0.9 1.0 1.0 1.3
TP 0.124 0.096 0.065 0.097 0.165 0.066 0.044 0.048 0.054

TDN 1.0 0.9 1.0 1.2 1.1 0.9 0.9 0.9 1.1
TDP 0.023 0.028 0.023 0.035 0.039 0.061 0.033 0.035 0.033

NH4-N 0.013 0.233 0.015 0.015 0.027 0.015 0.009 0.013 0.042
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.004 0.182 0.001 0.003 0.030 0.017 0.074 0.007 0.001

Cl 9.7 5.6 6.8 5.6 6.3 6.0 6.7 8.6 7.4
SO4 4.9 1.1 2.6 1.0 2.5 1.2 3.4 1.2 2.9
TN 2.7 15.8 2.2 2.2 5.3 2.6 2.5 5.2 3.5
TP 0.302 1.468 0.111 0.063 0.865 0.231 0.319 0.685 0.263

TDN 1.6 3.5 1.6 2.1 2.1 1.7 1.9 2.0 2.0
TDP 0.061 0.256 0.030 0.045 0.085 0.077 0.155 0.054 0.031

NH4-N 0.023 0.018 0.034 0.008 0.009 0.001 0.008 0.007 0.007
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.001 0.010 0.003 0.025 0.012 0.057 0.007 0.107 0.003

Cl 6.7 5.8 6.3 3.1 3.1 4.5 6.4 4.3 4.3
SO4 2.3 4.2 2.3 0.7 1.0 0.8 2.3 2.1 0.8
TN 2.0 2.6 2.9 3.2 10.2 1.9 2.8 2.0 2.7
TP 0.095 0.244 0.174 0.205 0.899 0.170 0.233 0.280 0.097

TDN 1.7 1.7 2.4 2.7 3.0 1.5 1.8 1.6 2.4
TDP 0.040 0.078 0.065 0.104 0.088 0.101 0.072 0.182 0.066

NH4-N 0.205 0.028 0.324 3.527 . . 0.006 0.024 .
NO3-N 0.01 0.01 0.01 0.01 . . 0.01 0.01 .
NO2-N 0.001 0.001 0.001 0.001 . . 0.001 0.001 .
PO4-P 0.008 0.006 0.006 0.035 . . 0.001 0.053 .

Cl 9.2 9.3 9.3 6.6 . . 9.9 8.1 .
SO4 1.8 3.8 1.6 1.1 . . 2.0 2.0 .
TN 3.6 12.4 6.3 18.1 . . 4.8 6.0 .
TP 0.166 1.247 0.474 1.337 . . 0.435 0.863 .

TDN 3.2 3.2 3.3 12.6 . . 2.8 2.6 .
TDP 0.085 0.089 0.084 0.309 . . 0.082 0.171 .
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(Table 3B Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 3 6 7 10 11 15 17 19
NH4-N 0.019 0.025 0.019 0.017 0.084 0.041 0.007 0.020 0.015
NO3-N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
PO4-P 0.020 0.190 0.141 0.266 0.475 0.316 0.238 0.460 0.219

Cl 2.5 2.7 2.7 1.9 2.8 2.7 2.5 2.2 2.7
SO4 1.5 0.9 1.0 0.7 0.5 0.6 0.6 0.6 0.7
TN 1.9 1.5 1.7 2.1 3.3 2.3 1.4 2.0 1.7
TP 0.181 0.343 0.301 0.701 1.093 0.384 0.397 0.783 0.384

TDN 1.2 1.2 1.2 1.3 1.7 1.8 1.0 1.3 1.3
TDP 0.075 0.258 0.209 0.330 0.598 0.321 0.307 0.536 0.283

NH4-N 0.020 0.018 0.012 0.021 . 0.009 0.011 0.125 0.027
NO3-N 0.01 0.01 0.01 0.01 . 0.01 0.01 0.01 0.01
NO2-N 0.001 0.001 0.001 0.001 . 0.001 0.001 0.001 0.001
PO4-P 0.001 0.031 0.081 0.033 . 0.059 0.035 0.144 0.043

Cl 1.8 1.1 2.1 0.4 . 2.0 2.7 1.4 0.2
SO4 0.5 0.4 0.6 0.1 . 0.5 0.3 0.3 0.3
TN 2.7 3.0 2.6 4.2 . 2.8 2.8 3.4 3.3
TP 0.195 0.300 0.264 0.261 . 0.229 0.237 0.391 0.227

TDN 1.7 2.5 2.0 3.2 . 1.8 2.0 2.2 2.7
TDP 0.055 0.134 0.164 0.115 . 0.124 0.114 0.218 0.132

2006
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(Table 3C) 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

2 3 6 7 10 11 15 17 19
Size 9.1 2.1 1.4 2.7 1.4 4.7 2.9 1.9 0.8

CWD added Y Y Y N Y N Y Y N
CWD amount L H M L L L M L L
Straw Type wheat barley barley barley wheat wheat wheat none wheat

HydroPeriod 94.0 68.8 60.0 65.3 57.1 62.0 78.0 74.0 64.6

% Alg 0 0 0 0 0 0 0 0 0
% CWD 5 15 10 0 10 0 10 5 0
% Veg 25 50 30 95 85 90 55 90 95
% Alg 0 0 0 0 0 0 0 0 0

% CWD 5 15 10 0 10 0 10 5 0
% Veg 25 30 30 95 100 80 40 60 60
% Alg 0 20 0 0 60 0 10 0 0

% CWD 5 30 10 0 10 0 10 5 0
% Veg 15 40 30 90 100 50 60 50 70
% Alg 0 15 0 0 70 0 15 25 0

% CWD 5 15 10 0 10 0 10 5 0
% Veg 20 40 50 95 100 60 80 70 90
% Alg 0 0 0 0 25 0 0 0 0

% CWD 5 15 10 0 10 0 10 5 0
% Veg 80 45 40 95 100 50 95 95 90
% Alg 0 0 0 0 . . 0 0 0

% CWD 5 15 10 0 . . 10 5 0
% Veg 80 60 40 100 . . 100 95 20

% Alg 0 0 0 0 0 0 0 10 0
% CWD 5 30 10 0 10 0 10 5 0
% Veg 20 60 10 80 75 60 70 20 90
% Alg 0 0 0 0 0 0 0 10 0

% CWD 5 30 10 0 10 0 10 5 0
% Veg 20 40 30 90 65 60 100 35 30
% Alg 0 0 0 0 20 0 0 20 0

% CWD 5 30 10 0 10 0 10 5 0
% Veg 20 50 30 90 100 60 90 50 30
% Alg 0 0 0 0 . . 0 0 .

% CWD 5 30 10 0 . . 10 5 .
% Veg 30 50 40 100 . . 100 50 .
% Alg 0 0 0 0 0 0 0 0 0

% CWD 5 30 10 0 10 0 10 5 0
% Veg 20 25 30 90 90 50 90 50 30
% Alg 0 0 0 0 . 0 0 0 0

% CWD 5 30 10 0 . 0 10 5 0
% Veg 30 40 40 100 . 50 90 60 90
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