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ABSTRACT

This paper presents a problem of optimal flow control for discrete-time M|M|1 queues,
where the decision-maker seeks to maximize the throughput subject to a bound on the av-
erage queue size. The problem is cast as a constrained Markov decision process and solved
via Lagrangian arguments. The optimal strategy is shown to be a threshold policy which
saturates the constraint. | The method of analysis proceeds through the discounted version of
the Lagrangian problems whose value functions are shown to be integer-concave. Dynamic

Programming and stochastic comparison ideas constitute the main ingredients of the solution.
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1. Introduction

Consider a synchronous communication channel between two entities, a transmitter and a
receiver, which are both equipped with buffers of infinite capacity. Information is formatted in
packets and time is slotted so that the duration of a time slot coincides with the transmission
time of a packet. Packet transmissions are initiated at the beginning of a slot. The channel
is assumed noisy in that a packet transmission may not be successful with probability 1 — p
in which case retransmission is attempted in the next slot. This scenario is repeated until
successful transmission occurs, at which time the packet is deleted from the transmitter’s
buffer. Packets arrive at the transmitter one at a time according to a Bernoulli sequence with
rate A, i.e., A is the probability that a packet will arrive in any time slot, and the transmission
failures are assumed independent from slot to slot, and independent of the arrival process.

As this system may experience congestion, it is desirable to take certain actions in order to
guarantee an expected performance level. One possible approach consists in restricting access
to the communication system, i.e., new packets which are about to enter the transmitter’s
buffer may be denied entrance on the basis of information reflecting system congestion. This
is often referred to as flow control and should be done on the basis of some performance
criterion [3]. Here, an approach similar to the one of Lazar [5] is adopted in that a flow
control strategy is sought that maximizes the channel throughput subject to a constraint on
the long-run average number of packets in the system.

Under the statistical assumptions given earlier, the uncontrolled system can be modelled
as a discrete-time M|M|1 queue, and the problem of finding good flow control schemes can
be cast as a Markov decision process (MDP) with constraint. Analysis shows that this con-
strained flow control problem admits a solution within the class of threshold policies which are
parametrized by an integer-valued threshold level L (= 0,1,...) and an acceptance probability
n (0 <7 < 1). A threshold policy (L,7n) has a simple structure in that at the beginning of each
time slot, a new packet is accepted (resp. rejected) if the buffer content is strictly below L
(resp. above L), while if there are ezactly L packets in the buffer, this new packet is accepted
(resp. rejected) with probability n (resp. 1 — 7).

Throughout the years, various problems of flow control (or control of arrivals) have been
studied in the context of simple queueing systems, and a good discussion of such work can

be found in the survey paper of Stidham [13]. It should be pointed out that previous papers
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dealt exclusively with continuous-time models, and that the concavity of the value function
for the single node situation could be obtained fairly easily through standard arguments.
Here, establishing the concavity of the value functions of interest turns out to be a much
more cumbersome task and constitutes the key technical contribution of this paper. This
difficulty can possibly be explained by the fact that multiple transitions can be realized,
a phenomenon which precludes use of the homogeneization technique for the discrete-time
situation [4]. Dynamic Programming and stochastic comparison ideas constitute the main

technical ingredients of the solution.

Amongst the models covered in Stidham’s survey paper, only the work of Lazar [5] for-
mulates the problem as a constrained problem. However, the approach taken here is different
from the one used by Lazar in that he considers a closed system from the onset with a fized
number of packets, while the work discussed here assumes an open system. Of course, both

approaches lead to similar results, as expected.

The paper is organized as follows. The model is described in Section 2 and the constrained
flow control problem is posed in Section 3, where the optimality results are summarized and the
necessary Lagrangian are briefly outlined. Section 4 is devoted to the study of the discounted
version of the Lagrangian problems, for which threshold policies are identified to be optimal.
The properties of threshold policies are discussed in Section 5, and used in Section 6 to find
the solution to the long-run version of the Lagrangian problems. A useful comparison result
is given in the Appendix.

A word on the notation: The set of real numbers is denoted by IR, while IV denotes the
set of all non-negative integers. For any z in IR, it is convenient to pose Z = 1 — z, and the

characteristic function of any set E is denoted simply by 1[E].

2. Model

In order to formally define a flow control model for discrete-time M|M|1 systems, start
with the sample space 0:= IV x ({0, 1}3)°°, and recursively define the information spaces
{IH,}& by Ho:=IN and Hy 4 :=H, x {0,1}* for all n =0, 1,....

An element w of Q is viewed as a sequence (z,wq,ws,...) with z in IN and w, in {0,1}3
for all n = 0,1,.... Each block component w,, is written in the form (%n,an,bs), with u,,

an and b, being all elements in {0,1}. An element h,, in IH, is uniquely associated with the
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sample w by hy:= (z,wo,...,wp—1) With ho: = z.

Let the sample w = (z,wo,wy,...) be realized. The initial queue size is set at . During
each time slot [n,n + 1), an = 1 (resp. @,=0) indicates that a customer (resp. no customer)
has arrived into the queue, b, = 1 (resp. 5,=0) encodes a successful (resp. unsuccessful)
completion of service in that slot, whereas control action u,, is selected at the beginning of
the time slot [n,n+1), with un=1 (resp. u,=0) for admitting (resp. rejecting) the incoming
customer during that slot. If z,, denotes the queue size at the beginning of the slot [n,n+1),

its successive values are determined through the recursion
Tntl = Ty + Unlpn — 1[zp 7# O)by n=0,1,...(2.1)
with zg: = z.

The coordinate mappings E, {U(n)}§°, {A(n)}& and {B(n)}$° are defined on the sam-
ple space O by posing E(w):= z, U(n,w):= un, A(n,w) := a, and B(n,w):= b, for n =
0,1,... and w in ), with the information mappings {H(n)}3® being given by H(n,w):=
(zywoswiy. . ywne1):= hy.

For each n = 0, 1,..., let IF,, be the o-field generated by the mapping H(n) on the sample
space (1. Clearly, IF,, C IF, 1, and with standard notation, IF: = V32 ,IF,, is simply the o-
field on 1 generated by the mappings E and {U(n), A(n), B(n)}3°. Thus, on the space (Q‘, IF),
the mappings E, {U(n)}, {A(n)}, {B(n)}s° and {H(n)}§ are all random variables (RV)
taking values in IV, {0,1}, {0, 1}, {0,1} and IH ,, respectively. The queue sizes {X(n)}3 are
IN-valued RV’s recursively defined by

 X(n+1) = X(n) + U(n)A(n) - 1[X(n) # 0]B(r) n=0,1,...(2.2)
with X(0):=E. Each RV X(n) is clearly IF,-measurable.

Since randomization is allowed, an admissible policy 7 is defined as any collection {m,}§
of mappings m,: IH, — [0, 1], with the interpretation that the potential arrival during the slot
[n,n + 1) is admitted (resp. rejected) with probability mn(hy) (resp. 1 — mn(hy)) whenever
the information A, is a,va.il;'«zble to the decision-maker. In the sequel, denote the collection of
all such admissible policies by P.

Let g(e) be a probability distribution on IV, and let A and u be fixed constants in (0, 1).
Given any policy 7 in P, there exists an unique probability measure P” on IF, with expectation

operator E™, satisfying the requirements (R1)-(R3) below, where
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(R1): For all z in IN,
P"[E = z]: = ¢(z),

(R2): For all @ and bin {0,1},
P7[A(n) = a, B(n) = b|IFn V o{U(n)}]: = (aA + aX) (bp + bi) n=0,1,...

(R3):
P™U(n) = 1|IF,): = mo(H(n)). n=0,1,...

This notation is specialized to PF and ET, respectively, when ¢(e) is the point mass distribution
at z in IV; it is plain that P7[4|X(0) = 2] = PI[A] for every A in IF. It readily follows from
(R1)-(R3) that under each probability measure P7,
(P1): The IN-valued RV E is independent of the sequences of RV’s {A(n)}$ and {B(n)}&,
(P2): The sequences {A(n)}&° and {B(n)}& of {0,1}-valued RV’s are mutually indepen-
dent Bernoulli sequences with parameters A and g, respectively, and

(P3): The transition probabilities take the form

P*[X(n + 1) = y|IF,] = p[X(n),y; mn(H(n))] - n=0,1,... (2.3)
where
plz, y;n): = 1Q'(2,y) + 7Q°(2,y) (24)
with
Q(z,y):= Pz +1A(n) — 1(z #0)B(n) =y], +=0,1 (2.5)

for all z and y in IN, and all % in [0,1].
The right-hand sides of (2.5) depend neither on n nor on the policy m owing to the assumptions

(R1)-(R3) made earlier. Throughout this paper, the RV E is assumed to have finite mean, i.e.,

©o
=0

zq(z) < oo.

Several subclasses of policies in P will be of interest in the sequel.

A policy 7 in P is said to be a Markov policy if there exists a family {g}§° of mappings
gn: IN — [0,1] such that 7, (H(n)) = gn(X(n)) P* —a.s. forall n =0, 1,... In the event g,=g
for all n = 0,1,..., the Markov policy 7 is called stationary and can be identified with the
mapping g itself. V



A policy 7 in P is said to be a pure (or non-randomized) policy if there exists a family
{fn}8° of mappings fn:H, — {0,1} such that m,(H(n)) = fn(H(n)) P™ — a.s. for all n =
0,1,... A pure Markov stationary policy 7 is thus fully characterized by a single mapping
fi:IN — {0,1}.

A stationary policy g is said to be of threshold type if there exists a pair (L,n), with L in
IN and 7 in [0, 1], such that

1 if z< L;
g9(z) = {n if z=1L; (2.6)
0 if z> L.

Such a threshold policy is denoted by (L,7), and by extension, the Markov stationary policy
g that admits every single customer, i.e., g(z) = 1 for all z in IN, is conveniently denoted by

(o0,1).

3. The optimal control problems

For any admissible policy 7 in P, pose

NIV ey o
T(7r):=hm1nf,,,n+ 1E tiop.l[X(t) # 0] (3.1)
and
: 1 oy
N(w)::llmsupnmE tgzoX(t). (3.2)

These quantities T'(r) and N(w) are readily interpreted as the throughput and the long-run

average queue size, respectively, when the policy r is used.

Given V > 0, the problem (Py) of interest is the constrained optimization problem
(Pv): Maximize T'(w) over Py
where

Pri={r€P:N(r) <V} (3.3)

If the constraint is satisfied when admitting every single customer, i.e., N((o0,1)) <V,
then Py = P and the constrained optimization problem (Py) reduces to an unconstrained

optimization problem with ¢rivialsolution (0o, 1) as shown in [6, Thm. 3.1] by simple stochastic

6



comparison arguments. On the other hand, if N ((00,1)) > V, the solution to the constrained

problem (Py) is no longer trivial and it is the main objective of this paper to identify its

structure. The main result is summarized in

Theorem 3.1 If N((c0,1)) > V, then there ezists a threshold policy (L*,n*) which solves
problem (Py) with N((L*,n*)) =V.

The proof of Theorem 3.1 is outlined in Section 6. The solution method for these con-
strained optimization problems uses Lagrangian arguments similar to the ones given in [2,10].

Here, the appropriate Lagrangian functional is defined for any admissible policy 7 in P to be

JY(r): = liminf,

L_E" Y wllX(1) # 0] - 7X (1) (3.4)

n+ t=0

with 4 > 0 denoting the Lagrange multiplier. The corresponding Lagrangian problem (LP7)

is then the unconstrained problem
(LP7): Maximize J7(r) over P.

Under (P1)-(P3), each unconstrained problem (LP7),~ > 0, can be viewed as a Markov
decision problem under the long-run average cost criterion, with state process {X(n)}, cost

per stage ¢7: IN — IR given by

(z):=pllz#0] — ~z (3.5)

for all z in IV, and information pattern {H(n)}3°. Although the information pattern H(n) is
richer than the standard state feedback information pattern {E,U(k), X(k+1),0 < k < n},

it is easy to see that the value functions for the corresponding discounted problems coincide.

If v > p, then ¢7(z) < 0 for all z in IN, and an elementary argument now shows that
J7((0,0)) = 0 > J7(x) for all x in P, whence the threshold policy (0,0) trivially solves the
Lagrangian problem (LP7). Therefore, only the case ¥ < u needs to be investigated and this

is done in the next section by considering the appropriate discounted problems.

4. The discounted problems



Let o > v > 0and 0 < 8 < 1 be held fixed throughout this section. The expected

B-discounted Lagrangian cost J g (m) associated with an admissible policy m in P is defined by

Fr)i= B3 B(X(0), (4.1)

t=0
and the corresponding discounted optimization problem (LP}) is then simply
(LPg): Maximize Jg(7) over P.

Since at most one arrival can be admitted in each time slot, the pathwise bound X(n) < E+n

holds for all n = 0,1,... and yields the estimate

E7™(S
B+ []+ 7B

< oo. (4.2)

The bound (4.2) being independent of the policy = in P, the quantity Jg () is thus well-defined
and unsformly bounded over P. |

As customary with the Dynamic Programming methodology, the 8-discounted cost-to-go

associated with any policy m in P is the mapping J i ‘"IN — IR defined by

Jg" ()= B [2_: B (X(2))] (4.3a)

for all z in IN, while the corresponding value function Vf;’ :IN — IR is given by

Vg (z):= :telg Jg'" () (4.3b)

Let the RV’s A and B be generic elements in {A(n)}$® and {B(n)}§°, respectively, and
for all z in IV, define the IN-valued RV’s A°(z) and A'{z) by

A'(z)=z+iA- 1z #0|B, i=0,1L (4.4)

For any mapping f: IN — IR, define the mapping Tgf: IN — IR by

(T31)@) = @) + 8 gpax, fnBU (4 @) + 7B (4° )]} (45
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for all z in IN. Here, for each ¢ = 0,1, E[f(A*(z))]:= E” [f(A"(z))] for all 7 in P owing to
(2.3)-(2.5), with

1) = Af(1) +2f(0) if z=0 a
E[f(A'(z))] = {Xﬂ'f(x- 1)+ A+ A5)f(z) + Maf(z+1) if z>1 (4.6e)

and

B ={ [ s it 230 (4s)

For future reference, for any mapping f: IN — IR, pose

_ [ (1) - f(0) if z=0;
1@ = {10 Ve~ )+ nre s - 1) it 231 (%)

and observe that
E[f(A(2))] - E[f(A°(2))] = A V f(=2) (4.8)
for all z in IN.

The backward induction of Dynamic Programming produces the sequence {V;*}§° of map-

L 1 el 1 'L n = 0 1 . 4.9
ﬂ ﬂ ﬂ L ¢ ( )

with V@:= ¢7. The cost ¢7 being bounded above by u — v, the discounted problem (LFPg)
is covered by Assumption P of Bertsekas [1, pp. 251]. The following theorem is now readily
obtained by specializing results from Section 6.4 of Bertsekas [1].

Theorem 4.1 The value function V; satisfies the Dynamic Programming equation
1 — 1y
Vi =TgVg (4.10)
and is obtained as the pointwise limst
lim, V§i(z) =V, (=) (4.11)

for all z in IN. Moreover, the Markov stationary policy g* in P defined by

1 if vVj(z)>0;
¢*(z) = { arbitrary in [0,1] if VVj(2)=0; (4.12)
0 if VV[;7 (z) <0.



is optimal for problem (LPy).

The value iteration method implicit in Theorem 4.1 constitutes a powerful tool for further
characterizing the structure of the optimal policy. Some insights are already obtained through

Lemma 4.2 below. Pose L7: = max{l € IN: p — ~l > 0}, and observe that L” > 1.

Lemma 4.2 For the discounted problem (LPj), an optimal Markov stationary policy g* can
always be chosen so that g*(z) = 0 for all z > L.

Proof. Define the IF,,-stopping time 7 by

e {inf{ k>0: X(k)= L"} if the set is non-empty;

4,13
oo otherwise ( )

with the obvious interpretation that 7 is the first passage time into the state L7. For any

admissible policy = in P, pose Bj(z):= EJ[8"] and

137 (2):= EX[Y Bt (X(0)] = BX[S " A1lr > e (X (1)

t=0

for all z in IN. Since an optimal stationary policy exists by Theorem 4.1, a simple argument
based on the strong Markov property readily shows that the value function V; satisfies the

relation

V3 () = max{I3* () + V] (L") B} (=)} (4.14)

for all z in IN, with the maximization being taken over all stationary policies g in P.

Now, from any arbitrary stationary policy ¢ in P, construct from it a new policy § which

generates actions according to

-y, [g(z) f 0<z<L7;
-"(”)"{o if z> L. (4.15)

Since V(L") > Jg (©9)(L7) > ¢7(L") > 0, Lemma 4.2 will now be established by showing
that I7"/(z) < Ig’a(z) and Bj(z) < Bg (z) for all z in IN.

If 0 < z < L7, the probability measures P¢ and PZ coincide on the o-field IF;, whence

I;%(z) = Ig’a(:c) and Bj(z) = Bg(x). For z > L7, pose Z(t) = 1|r > t]X(¢t) forallt = 0,1,....
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The reader will now check from the very definition of § and from the proof of Theorem A.2 in

the Appendix that
({Z(®)}8°, P2) <ut ({Z(8)}5°, PY). (4.16)

Moreover, for t = 0,1,..., the relations 1{r > t] = f(Z(1),...,2Z(t)) and 1|7 > t]c7(X(t)) =
—~h(Z(1),...,Z(t)) take place both P¢-a.s. and Pf-a.s., with monotone non-decreasing map-
pings f,h: IN* — IR. It is now immediate from (4.16) that (r, P#) <. (7, P?), or equivalently,
that (87, P¢) <, (87, P?) and that

(U[r > £]e”(X(2)), ) <a¢ (1l7 > t]e”(X(2)), PE)

for all ¢ = 0,1,... The inequalities Bj(z) < Bg(z) and I"?(z) < Ig’a(z) are now readily
obtained. |

By virtue of Lemma 4.2, the Dynamic Programming equation (4.10) reduces to
V3 (2) = ¢'(2) + BE[V; (4%(2))] | (4.17)
for all z > L7, and easy algebraic manipulations yield
VI(L7+1) - V(L") <. (4.18)

The value iteration method of Theorem 4.1 is now used to establish the integer-concavity
of the value function Vﬂ"’ by showing the concavity of each one of the iterates {V;*}§° given by
(4.9). Surprisingly enough, this turns out to be a non-trivial task as several situations need to
be discussed separately. The difficulty seems to stem from the fact that multiple transitions
are possible here owing to the discrete nature of the time parameter. This is in contrast with
the continuous-time version of this problem for which concavity of the value function is more

readily obtained through some of the arguments of [13].

The next result shows in what sense integer-concavity is preserved under the backward
induction of Dynamic Programming. It will be convenient to say that a mapping f: IV — IR
satisfies the property (Az), ¢ = 1,...,4, if

(A1): f is integer-concave with 0 < f(1) — f(0) < n— 1,
(A2): f is integer-concave with 4 — v < f(1) — f(0) < 1,
(A3): f is integer-concave with f(2) — f(1) < —v,
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(A4): f is integer-concave with f(2) — f(1) > —1~.

Theorem 4.3 (i) Suppose A+ pu < 1. If f satisfies (A2), so does Tgf. (ii) Suppose A+pu > 1
and p? < . If f satisfies (A1) and (A3), so does T f. (iii) Suppose A+u > 1 and 1<X<p
If f satisfies (A2) and (A4), so does Tgf. (iv) Suppose A+ p > 1 and X < % < u Iff
satisfies (A1) with Vf(1) < O, then T f satisfies (A1) and (A3). If f satisfies (A1) and (A3)
with (1) > 0, then T]f satisfies (A1) and (A4). If f satisfies either (A1) and (A4) with
V(1) =0, or (A2) and (A4) (whence V(1) > O necessarily), then T f satisfies either (A1)
and (A4), or (A2) and (A4).

A complete discussion of this key result can be found in [6, Appendix II]. It is noteworthy

that concavity alone does not propagate under the induction argument and that additional

growth conditions are needed.
Theorem 4.4 The value function V; 18 integer-concave, with

. ﬂA _V’j

1— ,BA B (1) = V;(O) < V;(l) and V;(L"’ + 1) < V;(L‘Y). (4.19)

Proof. The argument is standard and inductively uses Theorem 4.3 on the successive iterates
{Vé‘}8° . This is made possible by observing that the Oth iterate Vﬂo is the conca.vé mapping ¢
which satisfies ¢7(1) — ¢7(0) = ¢ — 7 and ¢7(2) — ¢7(1) = —~. The reader will now check that
each one of the four situations discussed in Theorem 4.3 applies to yield the integer-concavity
of VP with 0 < VP(1) = Vp(0) < 1foralln=1,2,....

In the limit, by Theorem 4.1, the value function V; is thus integer-concave with 0 <
Vg (1) = V4 (0) < 1. Consequently, 7V,/(0) > 0 and ¢*(0) = 1 is an optimal action by (4.12),
whence Vﬁ'7 (0)=p [/\V[;’ (1) + :\V[;’ (0)] by virtue of the Dynamic Programming equation (4.10).
The first part of (4.19) now follows from the fact that V(1) > J3 ’(O’O)(I) > p—~ >0, while
the second part is nothing but (4.18). O
Theorem 4.5 For every0 < B < 1, there exists a threshold policy (L}, 1) which solves problem
(LPJ), where the optimal threshold value L} satisfies the relation 0 < Ly < L.

Proof. Integer-concavity of V' implies 7V to be monotone decreasing, whence the quantity
VV; changes sign at most once, from positive to negative, as a consequence of (4.19). There-

fore, there exists a level Lg, with 0 < Lg < L7, such that vVﬂ"(:z:) >0for0<z< Lz and
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VVg (z) < 0 for all > L]. The threshold policy (Lj, 1) is then clearly optimal by Theorem
4.1. 0

5. Properties of threshold policies

For each threshold policy (L,7) with L in IN and 0 < 5 < 1, the sequence {X(n)}3 is
a time-homogeneous Markov chain with state space IN under the probability measure P(L»),
This chain has a single ergodic set, namely, {0,1,...,L}ifn =0o0r {0,1,...,L+1}if0 < 5 < 1,
with all the other states being transient. Consequently, the Markov chain {X(n)}§° admits
under P(&") a unique invariant measure, which is denoted by IP(Z) with corresponding
expectation operator IE(E:), As pointed out in [6, Sec. 5], routine calculations yield closed-

form expressions for this invariant measure JP(E:),

Let X denote a generic IN-valued random variable. For any mapping d : IN — IR, the
quantity E(L’”)d(X) is always finite since IP(L:") has finite support. Furthermore, the first
passage time to the set of ergodic states being a.s. finite under the threshold policy (L, 7), the
queue sizes {X(n)}$° satisfy the inequality

X(n)<EV(L+1) PEM_gs. - n=0,1,...(5.1)

The next result is now immediate from standard properties of Markov chains.

Lemma 5.1 If the mapping d: IN — IR is monotone and the RV d(E) is integrable, then the
RV’s {d(X(n))}$ are uniformly integrable under P{L) | and the convergence

lim,,

- i 1 ‘i d(X(2)) = EFMd(X) P _ g.5.(5.2)

takes place, independently of the initial distribution, both P(I'") —a.s. and in L*(Q, IF, P(L:n)),

The next lemma will be useful in proving the main result of Section 6. The obtained

results are also applicable to various situations discussed in the companion papers [7,8].

Lemma 5.2 For any mapping d: IN — IR and any threshold policy (L,n), there always ezist
a scalar J and a mapping h: IN — IR such that

h(z) +J = d(2) + (L, 1) (z) E[(A' ()] + (L, 7) () E[A(4°(2))] (5.3)
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for all z in IN. The quantity J is given by
. 1 “
J =limp—— E;Lm)[; d(X()] = EEMd(X), (5.4)

whereas the mapping h: IN — IR is unique up to an additive constant, and under the constraint

k(L) =0, is given by
h(z) = Ea(cL’")[Tz_:l d(x ()] - EEMrg (5.5)

for all z in IN. Here 7 is the IF, -stopping time defined by (4.18) but with L instead of L7.

The proof of Lemma 5.2 is by now standard and is omitted for sake of brevity. The
interested reader is invited to consult the monograph by Ross {11] or the work by Shwartz
and Makowski [12] for a typical discussion. Crucial to the argument is the fact that the chain
{X(n)}§° reduces to a finite-state Markov chain under PLE for every z in IN.

It is clear from (5.4) and Lemma 5.1 that the equality J7((L,n)) = T((L,n)) —vN((L,7))
holds, with T'((L,n)) = plP&"[X # 0] and N((L,n)) = EEMX for every L in IN and
0 < n < 1. The following properties are obtained by routine inspection.

Lemma 5.3 For every L in IN, the mappings n — T'((L,n)) and n — N((L,n)) are continu-
ously differentiable and strictly monotone increasing on the interval [0, 1], whence the quantities
T((L,0)) and N((L,0)) increase as L increases.

Lemma 5.4 For each v > 0, the mapping L — J7((L,0)) is unimodal, with the global maxi-

mum being achieved at at most two adjacent levels.

6. The long-run average problems

The value L of Theorem 4.5 is independent of the policy 7 and of the discount factor S,

and this makes it possible to solve the long-run average problem (LP") by standard Tauberian
arguments applied to the discounted problem (LP;’). This result, proved in [6, Thm. 6.1}, is
now summarized.
Theorem 6.1 For each ¥ > 0, there always ezists a threshold policy (L%,n3%), with 0 <
L% < L7, which solves the long-run average problem (LP") and yields the optimal cost J7 as
J1 = ]E(L:l"':r)c"(X). Ifp—~<0,ie., L7 =0, then necessarilyny = 0 and J7 = 0, while if
p—~>0,ie., L7 >0, then n can always be chosen to be 1.
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For each ~ > 0, the search for an optimal policy can therefore be restricted to the class
of all pure threshold policies with threshold below level L™ + 1, and the optimal cost J7 of
problem (LP") can simply be written as

T = v = (L’O) 2}
J OSIIJ%aL)SHJ ((L,0)) zrfleai)\trlE (X). (6.1)
The results on threshold policies obtained in Section 5 can be used to identify the optimal

threshold policy through (6.1). This idea is now exploited to produce a stronger result which

is essential to solving the constrained problem (Py).

Theorem 8.2 For each threshold value L in IN, there always ezists y(L) > 0, with LX) >,

80 that any admissible policy m in P given by

1 if X(n) < L;
mn(H(n)) = { arbitrary in [0,1] if X(n) = L; (6.2)
] if X(n)>1L

solves the long-run average problem (LP”(L)).
The following result will be useful in the proof of Theorem 6.2.

Lemma 6.3 Let the pair (h,J) obtained in Lemma 5.2. If the sequence {d(X(n))}& is uni-
formly integrable under P(EM), then the convergence

lim,,n—i—l{E(L”')[h(X(n +1))] - E(L"')[h(E)]} =0 (6.3)

takes place.

A proof of Theorem 6.2. For each L in IN, pose

 T((L,1) - T((ZL,0)
D)= (@ D) = N(T,0)

(6.4)

It is plain that ~(L) > 0 owing to Lemma 5.3. and that (6.4) is equivalent to JY(E)((L,1)) =
J(E)((L,0)). It then follows from Lemma 5.4 and (6.1) that

J1E((L, 1)) = JTB)((L,0)) = max J7H)((1,0)) = I, (6.5)
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and both policies (L,1) and (L, 0) solve problem (LPY(L)). To prove Theorem 6.2, i.e., that
any policy 7 of the form (6.2) is optimal for problem (LP'V(L)), it only remains to show that
JY(E) (1) = J(L), Note that the policies (L,1) and (L,0) are clearly among these policies.

Take the mapping d = ¢?(L) in Lemma 5.2, and let (hiy J;) be the corresponding solution
to the Poisson equation (5.4) associated with the threshold policy (L, ), ¢ =0, 1, when hy(L) =
ho(L) = 0. Therelation (6.5) yields J; = Jo = J7(L), whereas direct inspection of (5.5) reveals
hi(z) = ho(z) for all z # L by the very definition of the stopping time 7. The condition
hi(L) = ho(L) = O immediately implies that hy = ho =:h. Consequently, the Poisson
equations associated with the two policies (L, 1) and (L, 0) must coincide, with E[h(Al(L))] =
E[h(A°(L))], and must be of the form

h(z) + I = 8 (2) 4 p(a) E[h(A1 (2))] + P(R) E[R(A°(2))] (6.6)

for all z in IV, where

) 1 if 0<z< L
p(z) = { arbitrary in [0,1] if z = L;
0 if > L.

Under the policy = in P defined by (6.2), a standard argument based on (6.6) leads to

the relation
Jr) — Eﬂ' Z c"I(L) ) + T{E”[h( (n+1))]-E™ [h(E)]} n=20,1,...(6.7)

By the very form (6.2) assumed for m and the definition of 7, it is easy to see that for any

0 < 5 < 1, both probability measures P(L'") and P™ coincide on IF, . As a result,
1
im,——{ E" —E"[R(B)]; = 6.8
i Blb(x(n + 1)) - EE)} =0 (6.

upon invoking Lemma 6.3. The relation J ”’(L)(7r) = J7(L) is now obtained by taking the limit
in (6.7) and making use of (6.8). _ O
A proof of Theorem 3.1. It should be clear from Theorems 5.1 and 6.2 that any threshold
policy (L,n), with 7 arbitrary in [0,1], yields (3.1)-(3.2) as limits and solves problem (LP")
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for some (L) > 0. As discussed in [9], in order to solve problem (Py), it only remains to find

a threshold policy that saturates the constraint.

Since N((0,0)) = 0, Lemma 5.3 readily implies the existence and uniqueness of the pair
(L*,n*) such that N((L*,n*)) =V if N((c0,1)) > V. The optimal threshold and bias values
L* and 7* are uniquely defined by solving E(t"DX =V,0<np<1land L=0,1,.... d
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Appendix

A comparison result

The notion of stochastic ordering is useful for comparing the performance of various poli-
cies. This is achieved through a stochastic comparison result for the underlying queue size
process. The reader is invited to consult the monograph by Stoyan [14] for further information

on stochastic orderings.

Let P! and P? be two probability measures defined on IF, with expectation operators E!
and E?, respectively. If Y is an IR"-valued RV defined on ({1, IF'), then the RV (¥, P?) is said
to be stochastically larger than (Y, P!) if and only if E*[f(Y)] < E?[f(Y)] for all increasing
functions f:IR™ — IR for which these expectations exist; this is customarily denoted by

(Y, PY) <, (Y, P2).
This notion extends naturally to sequences of IR-valued RV’s defined on (Q2,IF). The
sequence ({Y (¢)}$°, P2) is said to be stochastically larger than ({Y (t)}5°, P') if and only if
(Y (0),Y(1),...,Y(n)), P!) <u ((Y(0),Y(1),...,Y(n)), P? n=0,1,...(A1)
This is denoted simply by ({Y (¢)}°, P) <s ({Y (£)}&°, P?) and amounts to
Ef(Y(0),Y(1),...,Y(n))] < E*[f(Y(0),Y(1),...,Y(n))] n=0,1,...(A2)

for all increasing functions f: IR**! — IR for which the expectations exist [14, Thm. 4.1.2,
pp. 61].

While the relation (A.2) is usually hard to verify directly in practice, sufficient conditions

are available in the literature. One such condition, due to Veinott [14, pp. 29|, is given below
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for easy reference. Throughout the discussion, the IR"*!-valued RV (Y (0),...,Y (n)) and the
element (yo,...,yn) of IR®*! are denoted by Y (™) and y(™), respectively.

Lemma A.1 Let {Y (t)}5° be a sequence of IR-valued RV’s on (0, IF). If
(Y (0), P!) <.t (Y (0), P?) (A.3a)
and for every a in IR,
PUY (n+1) > oY (™ = 2™ < PYY (n+ 1) > oY (M) = y(™)] n=0,1,...(A.3b)

whenever 2(™) < y(") componentwise in IN"t1, then ({Y (£)}, P1) <ot ({Y (£)}$, P?).
Here, this result is used as follows. For every admissible policy = in P, introduce the

sequence {#,}5° of mappings #,: IN"*! — [0, 1] defined by
fn(z(™):= PT[U(R) = 1X(™ = 2(M] = E"[r\ (H("))|X™ = 2(™]  n=0,1,.., (Ad)
for all z(®) in IN"+1,
Theorem A.2 Consider two admissible policies w! and w2 in P. If the relations
#L(2) < #2(y™) n=0,1,...(A5aq)

hold for all (™ < y(™ with z,, = y,, and if
A (2("1,0) < a+ itk (v, 1) n=0,1,...(AS5b)

kolds for all z(n=1) < y(n=1) then ({X(£)}$°, P™') <.: ({X(t)}3, P™).
Proof. Since the probability distribution of E is independent of the policy, the relation (A.3a)
trivially holds. It suffices to show that the conditions (A.5) imply (A.3b).

Routine calculations first imply via (2.3)-(2.5) that for every policy 7 in P,

1 if z,>a+1;
B+ Apdn(z(M) if z,=a+1;
P™[X(n+1) > a|X™ = z(™] = { \g#,(z(™) if 2,=a>0; n=0,1,...(A.6)
Adtn (2(M) if z, =a=0;
0, if 0<z,<0a

for all a in IN and z(™ in IN"*1, If a > 0, 0 < AR, (z(""1),a) < G+ Apf,(y(*V,a+1) <1
for all z("=1) and y(*~1) in IR™, and (A.3b) thus holds whenever z(™) < y(™) with 0 < z,, < y,
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for any two arbitrary policies in P. For the policies 7! and m2% considered here, it is now plain
that (A.5) and (A.6) combine to yield (A.3b) whenever z(® < y(™), and the conclusion now

follows from Lemma A.1. |

Theorem A.3 Consider two admissible policies 7' and w2 in P. If there ezists a sequence

{fn}& of mappings fn:IN — [0,1] such that
TL(hn) < fa(zn) < 72 (hy) n=0,1,...(A.7q)
for all hy, tn IH,, with
Afn(0) < B+ Aufn(1), n=0,1,... (A7)

then ({X(£)}8° P™') <ot ({X(8)}5° P™).

Proof. It is plain from (A.4) and (A.7) that for all (") and y(™ in IN*+1, #1(2(™) < fu(z,),
#2(y™) > falyn), Aih(a("~1,0) < Afn(0) and A+Au#t? (y(*1),1) > B+Apfa(1). Condition
(A.5) is now easily justified, and the result follows from Theorem A.2. O
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