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Heart disease is a leading cause of death in the United States and abroad.

Research interests arise in understanding the nature of the dynamics of the heart

and seeking methods to control and suppress arrhythmias. Simulation of the heart

electrical activity is a useful approach to study the heart because it yields some

quantities of interest that cannot practically be obtained in any other way. How-

ever, the complexity of the human heart leads to complicated mathematical mod-

els, and consequently, modeling arrhythmias of a whole heart with computers is

extremely data intensive and computational challenging.

In this dissertation, we introduce an analog VLSI design that simulates cardiac

electrical activities. The selected cardiac model is based on the Beeler-Reuter

equations and the continuous core-conductor model. The Beeler-Reuter equations

formulate the membrane ionic kinetics of ventricular cells, and the core-conductor

model describes the electrical signal conduction on cardiac tissues. We discuss



the design flows of mapping equations into circuits and present a set of circuit

blocks of basic mathematical function units. The transistor circuits for realizing

the ionic model of a single cell is introduced, and capacitors are used to calculate

time directives. A method of shifting the initial conditions of differential equations

to zero is discussed for saving the circuit which sets up the initial voltages of

the capacitors. We also introduce a method of implementing reaction-diffusion

systems using non-linear RC networks, and present the circuit which simulates the

reaction-diffusion process, i.e. the electrical propagation, of the heart.

Error analysis is carried out for the circuit-realized Beeler-Reuter model by com-

paring the simulated functions with the equation calculated values. The PSpice

simulation results show that the circuit created action potential is satisfactory. The

important reentry phenomena, the primary mechanism underlying fibrillation, is

presented, and an anatomical reentry in the 1-dimensional model and a functional

reentry (spiral wave) in the 2-dimensional model are successfully simulated in cir-

cuits.

The presented methods of implementing equations with analog VLSI circuit

contribute to the fundamentals for a novel technique of obtaining numerical solu-

tions and potential fast application-specified analog computational devices if the

circuits are fabricated on chips. Unlike computing with digital computers, which is

mainly a serial process and needs to discretize the space and the time domain for

finding numerical solutions of the discretization points one by one, computation

with analog VLSI relies on the physics of the electrical devices and takes advantage

of the integration properties of capacitors and, hence, computing in analog circuit

hardware is a parallel process and can be real-time, that is, the calculation time is

the time simulated by equations.
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Chapter 1

Introduction

1.1 Modeling Heart Electrical Activity

The heart is one of the most essential organs in our body. The heart working

together with the blood vessels transports blood in the body and maintains the

circulation of our life. In this system the heart works as a reliable rhythmic pump

and as a blood reservoir. The heartbeat is so critical to our life and any interruption

in the heartbeat for more than a few minutes can cause circulatory collapse and

death. Heart disease is a leading cause of death in the United States and abroad.

In 2002, a total of 696,947 people died of heart disease in the United States[1],

accounting for 29% of all U.S. deaths. In 2005, heart disease is projected to have

cost $393 billion, including health care services, medications, and lost productivity.

Therefore, great research interests have arisen around people in investigating the

factors that cause and sustain these life-threatening conditions.

The pumping mechanical activity is driven by electrical activity of the heart.

The study of cardiac electrical excitation is a necessary and important step for

understanding the heart’s electrophysiology and its mechanical deformation to as-
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Figure 1.1: Cross section of the heart [3].

sist investigating the methodologies of controlling and suppressing heart disease.

Shown in Figure 1.1 is a cross section of a heart. The heart is separated into

two similar structures, the right and left halves, which represents two functionally

different parts in the blood circulation system [2](pp. 98). The right half collects

the deoxygenated blood from the body and pumps it to the lungs. The left half

receives the oxygenated blood from the lungs and delivers it to the body. The

halves can be further divided into an upper and lower part, called atria and ven-

tricles respectively. The atria and ventricles are composed of walls surrounding a

cavity, which is normally filled with blood. The walls consist primarily of a muscle

structure, the myocardium 1. The contraction of the myocardium causes the blood

flow. The electrophysiology is tightly coupled with the pump function of the heart

1Myocardium is the muscular wall of the heart[4].
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by controlling the development of tension. The origin of the electrical activity of

the heart are the cardiac cells, which show electrical excitability like nerve cells.

The electrical excitation of a cardiac cell is tightly coupled with its mechanical con-

traction. The electrical excitation is propagated from a cell to neighboring cells

via gap junctions by intercellular transport of ions.

The study on live models for cardiac electrophysiology, though fruitful and

necessary, have only provided partial insights into the mechanisms of arrhythmia

formation and termination [5]. One reason for this is that all quantities of inter-

est cannot be measured in vivo. An experimental investigation can be limited by

coarse resolutions, hard data collection during the critical time following shocks,

easy damage to tissue, and difficult optical mapping for cells not on the surface. To

integrate and interpret the measurements, computational modeling of the system

can contribute greatly to our understanding of the heart. The simulation of the

heart yields information that cannot practically be obtained in any other way, and

makes it possible to predict prior unknown behavior through complex phenomena.

The simulation of the heart allows us to gain knowledge of the mechanisms of

heart failure, to simplify the development and validation of heart drugs and med-

ical devices, and to explore the side effects of a product. Modeling of the heart

is an interdisciplinary research activity that includes the areas of anatomy, elec-

trophysiology, excitation propagation, force development and mechanics as well

as the coupling of these areas [5]. In this dissertation, we focus on modeling the

electrophysiology of the heart. We introduce a novel methodology of simulation

which utilizes analog VLSI circuits to model electrical activities of the heart. Com-

pared to running simulation of a heart model on digital computers, the introduced

method can be implemented on analog hardware which is able to obtain simulation

3



results fast. We present a set of circuits components that are useful for implement-

ing basic mathematical expressions in membrane ionic models, and perform the

PSpice simulation for the VLSI circuits which realize the Beeler-Reuter equations.

1.2 Review of Mathematical Models for Cardiac

Cell Electrical Activity

A large number of mathematical models have been constructed to describe the

electrophysiological behavior of cardiac cells. External electrical stimulus to a car-

diac cell may lead to a changing membrane potential, known as anaction potential.

The models that describe action potentials and the ion transport across the cell

membrane are also referred to as ionic models. In the following an overview of car-

diac electrophysiological models are presented. The principles and the advances of

the models are discussed.

Most ionic models of cardiac cells are based on the Hodgkin-Huxley formalism

[6], which first reported a quantitative description of the active and passive elec-

trical behavior of the axon membrane of giant squids [7]. The model was built

in 1952, a work that resulted in a Noble Prize for the authors. It described the

electrophysiology of the axon membrane using a RC (Resistor-Capacitor) circuit,

in which the resistor is significantly nonlinear. The nonlinearities can be attributed

to the behavior of ionic channels [5]. Hodgkin and Huxley separated the membrane

current into three types of ionic current components: sodium ion flow INa, potas-

sium ion flow Ik and a small “leakage current” Il. The currents were characterized

as the product of conductances and the differences of the driving forces for ions,

namely chemical gradient and electrical gradient. The conductances for INa and Ik

4



are time- and voltage-dependent, and modeled by using gating variables, which are

formulated by first-order ODEs (Ordinary Differential Equations), and make the

whole model a system of degree-four differential equations, i.e. a time-dependent

membrane potential and three gate variables. The Hodgkin and Huxley model

described the way in which ionic currents vary with membrane potential and time.

Its structure forms a basis for almost all models of excitable membrane behavior.

The FitzHugh-Nagumo model reduces the Hodgkin-Huxley model from degree-

four differential equations to degree-two, for which phase plane analysis applies.

The FitzHugh-Nagumo model [8][9] was a modification of the van der Pol equation .

The Van der Pol equation was intended to represent the qualitative rather than the

quantative properties of a wide class of excitable-oscillatory systems using simple

algebraic form [10]. The resulted BVP model (B. van der Pol model) has two

variables of state, representing excitability and refractoriness, and its properties

can therefore be visualized on a phase plane. For example, Glaze utilized BVP

model to perform simulations for heart in [11]. The FitzHugh-Nagumo model

used a single mathematical processes to represent multiple channel properties and

did not target to model the accuracy and complexity of cellular processes. It

preserved the essential behavior of the membrane and is still used, due to its low

computational cost, as the excitability component in some models of cardiac action

potential propagation [12].

In 1962, Noble published the formulation applicable to Purkinje fibers of the

heart [13]. It is one of the first mathematical models of a cardiac cell. The Purk-

inje fibers differ from squid nerve in that depolarization decreases the potassium

permeability of the membrane. During large depolarization, this decrease is tran-

sient and the potassium permeability increases slowly during the passage of the

5



depolarizing current. By modifying the Hodgkin-Huxley equations to take account

of this behavior in potassium current, Noble described the long lasting action and

pacemaker potentials of the Purkinje fibers of the heart. A novel quality of this

model was the decomposition of the sodium and potassium currents as well as the

reconstruction of the pace-maker property for the cardiac cells. The Noble model

adopted all the gating variables from Hodgkin-Huxley, and was also a degree-four

differential system.

The next significant cardiac membrane model following Noble’s is the McAllister-

Noble-Tsien model published in 1975 [14]. By 1962, the theory of long-lasting

action potentials had developed much further than the experimental work and it

did not seem fruitful to explore further theoretical modifications due to the lack

of the quantitative information of the ionic currents as complete as that provided

by Hodgkin and Huxley in the case of squid nerve. The McAllister-Noble-Tsien

model, which was based on a wide range of experimental results for cardiac muscle

obtained using the voltage clamp technique, was not constructed until sufficient

experimental information was accumulated, about 10 years after the technique was

first successfully applied to cardiac membranes in 1964. The model formulated the

electrical activity of cardiac Purkinje fibers. In this model, the total ionic current

is broken down into nine discrete individual ionic fluxes. There are eleven gating

variables, among which nine are time-dependent and described by first-order dif-

ferential equations, and this makes the McAllister-Noble-Tsien model a degree-ten

ODE system.

The Beeler-Reuter model, published in 1977, is a pioneering effort to describe

the cardiac ventricular active potential [15]. This work incorporated the majority

of the experimental data of ventricular myocardial action potentials by using the
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voltage clamp method. The total ionic flux is divided into only four individual

ionic currents in the Beeler-Reuter model: a time-independent outward potassium

current, a inward sodium current, which is primarily responsible for the rapid

upstroke of the action potential, a slow inward calcium current, and a outward

time-dependent potassium current. The main contribution of the Beeler-Reuter

model is that it includes the intracellular calcium ion concentration, which plays

a dominant role in the creation of the myocardial action potential plateau. The

model contains eight coupled, first order, non-linear differential equations, which

are for the membrane potential, the intracellular calcium ion concentration, and

six gating variables for the various membrane conductances.

The experimental data used in the Beeler-Reuter model was subject to limita-

tions in available voltage clamp techniques and their application to multicellular

preparations of cardiac muscle [16]. These limitations were overcome with the

single-cell and single-channel recording techniques developed in the 1980s. The

Luo-Rudy I model [17], a system of degree-nine ODEs, was based on the data de-

rived from the new measurement techniques. The Luo-Rudy I model was published

in 1991, and described the electrophysiology of guinea pig ventricular cells. It is a

significant update of the Beeler-Reuter mammalian ventricular model. The model

reformulated the fast inward sodium current and the outward potassium currents,

and investigated the phenomena dominated by these currents. The slow inward

current developed in the Beeler-Reuter model, which is to support the plateau of

the action potential, was retained.

The Luo-Rudy I model was further developed in 1994 to become the Luo-

Rudy II model [18]. The phase-II model reformulated the slow calcium current,

and incorporated a more thorough description of the processes which regulate
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the intracellular calcium ion concentration and the movement of calcium ions.

This model is also based on experimental data of guinea pig ventricular cells from

single-cell and single-channel experiments. It provides a framework for future

development of models of the excitation-contraction coupling process in cardiac

cells. The model consists of eleven types of membrane currents and four types

of calcium currents that move to and from sarcoplasmic reticulum. There are six

gating variables and seven species of ion concentration formulated using differential

equations, which make the Luo-Rudy II model a system of degree-fourteen ODEs.

Reviews of more cardiac cell ionic models are available in [5][12][19]. While the

experimental methods are becoming more sophisticated to obtain data for con-

structing more accurate ionic models that take into account more ion flow mecha-

nisms, we adopt Beeler-Reuter’s ventricular cell model in our work for simulating

the action potential. The advantage lies in its less complex formulation, and hence

less simulation and hardware cost, while still keeping the description of the basics

of membrane ionic flows between the intra- and extracellular media.

1.3 Motivation for VLSI Implementation of Heart

Model

Computer simulation of cardiac tissues is extremely computationally intensive.

Combining the equations for transmembrane ion flows and binding processes pro-

duces a virtual cell as a complex nonlinear system of differential equations. We can

take a relatively simple electrophysiology model, say, Beeler-Reuter as an example.

The model describes a system of eight coupled, first order, non-linear differential

equations, which are for the membrane potential, the intracellular calcium ion
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concentration, and six activation or inactivation parameters for the various mem-

brane conductances. Considering a sheet of 2-dimensional cardiac tissue of 1 cm2,

assuming each cell is 100 µm× 100 µm in size, there are totally 104 cells in this

tissue and hence there are 8 × 104 coupled differential equations to represent the

virtual model. Furthermore, the demand of high spatial discretization and small

time-step sizes needed by the computational accuracy in turn requires the use of

huge memories and very fast processors. An approximate way to quantifying the

computational load is to estimate the number of floating point operations that

would be necessary to compute one heartbeat [20]. Suppose a heartbeat takes

about 1 s, and the time step of the computation is 0.01 ms and the space step

is 100 µm, then it would require some 1014 floating point operations to simulate

the cardiac electrical activity. This would take at least 30 hours of run-time on a

1GHz processor.

To handle the simulation request of huge memory and high computational

speed, many researchers have explored computing parallelism as the solver. In the

work presented in [21], the author, Pavarino, ran the simulation of the cardiac

reaction-diffusion system on two platforms. One platform employed an IBM SP

RS/6000 with Power 4 processors. The other consisted of an HP SuperDome 64000

with PA8700 processors. The work simulated a complete cardiac cycle (excitation-

recovery) in a slab of cardiac tissue of size 4×4×0.5 cm3 and mesh 400×400×50

using the Luo-Rudy I model as the membrane model and the Monodomain model

as the cardiac reaction-diffusion model. An adaptive algorithm was applied on the

time steps. To complete the simulation, the HP platform with 32 processors took

20 hours, and the IBM SP4 machine with 64 processors took about 2.5 hours.

However the performance does not scale up linearly as the number of parallel
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processors increases. Pormann [22] presented the results of computational speed-

up vs. the number of parallel computing nodes. A cluster of 180 dual-CPU nodes

was used to do the investigation. Each node contained two 200 MHz Power3 CPUs

and 1 GB of memory. The results showed that to calculate 1.0 ms of electrical

activity of a 290×290×290 grid, with 0.001 ms in time-step, it takes 5386 seconds

(1.5 hours) using 1 CPU. The speed-up degraded with the increase of node number.

For a cluster of 32 CPUs, instead of achieving 32 times faster in speed, there was

only a speed-up of 21.97 due to the overhead of the communications between the

CPUs.

In this dissertation, we present an alternate but novel approach to simulate

cardiac electrophysiology using analog VLSI circuits. As stated in the previous

sections, the complexity of the heart leads to tremendous complexity in computer

simulations. The complexity arises from the nonlinearities caused by the extremely

highly coupled differential equations. In order to solve the nonlinear system, time

is finely discretized and the three dimensions are well meshed. Computation is

carried out for each time step and spatial grid. The introduced analog VLSI of the

heart model can be made on chips which serve as processing devices. Computation

with analog hardware has the advantage of obtaining fast solutions for time-based

differential systems due to the differential nature of capacitor components, i.e.

the derivative of a capacitor’s voltage with respect to time is proportional to its

current. By using analog VLSI hardware, the simulation of the heart model can

be performed with great speed-up. In the situations that people are attacked by

heart diseases, time is very critical to save lives. The VLSI implementation of the

simulation allows the fast analysis of fatal heart behavior and, thus, may allow for

obtaining real-time cure.
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Compared to running simulation on digital computers, the simulation using

analog VLSI may require smaller hardware so that it is easy to carry it out. Digital

circuits operate based on the mathematics of Boolean logic. Their transistors work

as switches, and each wire represents a single bit with a value of either 0 or 1.

Analog circuits operate with continuous signals. Their primitives of computation

arise from the physics of the devices. One wire represents many bits, and hence

the amount of computation per a single transistor is usually higher than for digital

circuits. For example, an 8-bit current multiplier can be implemented with 8

transistors in analog circuits, whereas, digital implementation takes approximately

3000 transistors [23]. The area usage and power consumption demanded by an

analog system for a computation is also more efficient than a digital system in

general, because more wiring and communication overhead is required in digital

circuits due to the greater number of transistors [23]. Therefore, using analog VLSI

to perform the simulations for a heart model can lead to lower power dissipation,

and less area and devices than using the general-purpose CPUs or other dedicated

digital systems.

In this dissertation, we introduce a methodology of simulating cardiac electro-

physiology using analog VLSI circuits. We consider one of the most used detailed

membrane models in the literature, the Beeler-Reuter model, introduced in Section

1.2. The Beeler-Reuter model mathematically reconstructs the action potential of

a mammalian ventricular cell. There are four ion currents and six gating variables

described in this model. More details are provided in the next chapter. It is worth

mentioning that though the introduced work targets the ventricular model devel-

oped by Beeler-Reuter, the proposed methodology of VLSI implementation can

be applied to any other cell model and can be used for implementing almost any
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time-based differential system.

1.4 Contributions

In this work, we investigate how to design an analog VLSI system to simulate

a cardiac electrical activity model which is usually done using high-performance

computers. We present the design methodology and the circuit components of

implementing the mathematical model using VLSI. The ventricular myocardium

model of Beeler-Reuter is realized with VLSI circuits to demonstrate the feasibility

of simulating complex numerical models using analog circuits.

The main contributions of this work are:

• A design of an analog VLSI circuit that simulates the Beeler-Reuter’s cardiac

electrophysiology model.

• An RC circuit architecture that calculates reaction-diffusion equations, and

the application of the RC circuit architecture to model the electrical propa-

gation process on the heart.

• A method to transform the original formulas to mathematical expressions

that are suitable to realize by VLSI circuits.

• Schemes for quantitatively scaling the equations to adapt to the computa-

tional circuits which are restricted by device parameters and working regions.

• An approach to change the initial conditions of differential equation systems

to zero to save the elaborate hardware necessary to set the initial voltages of

integration capacitors.
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• A set of transistor circuit blocks that are useful for implementing basic math-

ematical expressions, especially the equations in membrane ionic models.

• A methodology for implementing time-based differential equations, numerical

models, and general reaction-diffusion systems using analog VLSI circuits

with special reference to differential equations describing the heart.

1.5 Organization of Dissertation

The dissertation is organized in five chapters.

Chapter 2 introduces the basics of cardiac electrophysiology related to this

work. It starts with presenting cellular physiology. A general description of cell

membrane is given, followed by the introduction of cardiac action potential and

its ionic mechanism. The formulation of the membrane ionic models is presented

next. Finally the ventricular myocardium model developed by Beeler-Reuter is

discussed in detail.

Chapter 3 first introduces the design flow of implementing the mathematical

formulas using analog VLSI circuits. The transformation of mathematical expres-

sions to forms that are feasible for circuit implementation is discussed. Then, the

scaling of the equation parameters and the shifting of initial conditions are pre-

sented, followed by the introduction of a set of transistor circuit blocks used for

realizing basic mathematical functions and specialized for implementing the car-

diac model. An analog VLSI design of the Beeler-Reuter model is given next. The

circuits for realizing four ionic currents and the action potential are introduced

and the implementation accuracies of the circuits are discussed.

Chapter 4 provides the circuit simulation of the electrical propagation in cardiac
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tissues. It starts with presenting the core-conductor model of the cardiac propa-

gation process, which is described by a reaction-diffusion equation. The method

of mapping a generalized reaction-diffusion system to an RC circuit is introduced

next. Then, the PSpice simulation of a transistor circuit for modeling a segment of

a 1-dimensional cardiac fiber is discussed. The reentry phenomena and the spiral

wave simulated by the introduced RC network are presented finally.

Chapter 5 concludes our work in this dissertation, and provides a discussion of

the future works at the end.
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Chapter 2

Heart Electrophysiology and Its

Mathematical Models

2.1 Introduction

The contraction of the heart is controlled by the cardiac electrical conduction

system. This system generates electrical impulses, known as action potentials, and

conducts them rapidly throughout the heart, stimulating the heart to contract and

pump blood. The creation of the electrical impulses is tightly related to the ionic

mechanisms of the cardiac cells.

Each cell in our body is surrounded by a thin membrane [24](pp. 3). A cell

membrane, also known as a plasma membrane or plasmalemma, is a selectively

permeable bilayer, which mediates the diffusion of ions and molecules into and out

of the cell and establishes different ion concentrations between the intra and extra-

cellular space. The established ion concentration gradient also leads to an electrical

potential difference, called the membrane potential, across the cell membrane due

to the charge of ions. The membrane potential is conventionally expressed as the
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Figure 2.1: Membrane potential Vm is the intracellular electrical potential with

respect to the extracellular media.

potential in the cell minus that on the exterior of the cell, and the extracellular

potential is taken as the ground, as illustrated in Figure 2.1. The membrane po-

tential is usually electrically negative when a cell is resting, i.e. when a cell does

not conduct any electrical signals. The membrane potential can be perturbed by

passing a positive current pulse from the exterior into the interior to charge a cell

and make it depolarized. Depolarization refers to the change in the membrane po-

tential to a more positive value [25][26](pp. 31). The larger the stimulating current

that passes into the cell, the larger is the change in the membrane potential. When

the applied current exceeds a certain strength, a threshold membrane potential is

reached, and this triggers the cell to fire an action potential, which is a much larger

response than the responses created from less stimulating currents.

The action potential created by a cardiac cell is described by models based on

the Hodgkin-Huxley formulation, and the Beeler-Reuter model is one of them, with

the latter being the one used in our work to simulate the cardiac action potential

with VLSI. The Beeler-Reuter model can be summarized with Figure 2.2, which

shows the dependence of the variables in the mathematical presentation. As we

will present in the last part of this chapter, the Beeler-Reuter model describes four

membrane ionic currents, six gating variables, and a varying calcium concentration,
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Figure 2.2: Variable dependence in the Beeler-Reuter model.

and formulates a nonlinear system of degree-eight, first order differential equations.

In the rest of the chapter, we will first introduce the cellular electrophysiology,

and explain membranes, ionic currents across membranes, and the cardiac action

potential. The mathematical models of ionic membranes are presented next. The

Hodgkin-Huxley model and the Beeler-Reuter model are described in detail finally.

2.2 Cellular Electrophysiology

2.2.1 Cell Membrane

A cellular membrane is a lipid bilayer, which separates a cell from its extracellular

environment [24](pp. 3). It serves as a permeable barrier that permits the selective

passage of molecules across the membrane at a controlled rate. This selective

permeability allows a cell to maintain an interior composition different from the

extracellular media.

The direction of net ion movement across the membrane depends on both the

chemical force caused by the concentration difference and the electrical force caused
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by the electrical potential difference. For a given type of ion A, the ion tends to

diffuse down the concentration gradient. Also, ion A tends to move from the

side with a higher electrical potential to the side with a lower electrical potential.

When the chemical and the electrical forces are equal in magnitude and opposite

in direction, no net movement of the ion occurs through the membrane, and the

ion is said to be in electrochemical equilibrium. The membrane potential that is

required to produce an electrical force that counterbalances the concentration force

is called the equilibrium potential or equivalently, the Nernst potential [26](pp. 22),

and can be calculated with the Nernst equation:

EA =
RT

zF
ln

(
[A]e
[A]i

)
, (2.1)

where EA is the equilibrium potential of ion A, R is the ideal gas constant (8.3

J
mol·K ), T is the absolute temperature in degrees K, z is the valence of the ion, F

is Faraday’s number, i.e., the charge of 1 mol of electrons (96,500 C/mol), [A]e is

the extracellular concentration of ion A, and [A]i is the intracellular concentration

of the ion. The polarity of the equilibrium potential is related to the direction of

a chemical force. A positive equilibrium potential indicates that the force caused

by the concentration gradient tends to make the ion flowing into the cell, and a

negative sign indicates the concentration force drives the ionic current out of the

cell. The magnitude of the equilibrium potential represents the strength of the

chemical force.

Ions in a cell are usually impacted by the same electrical potential, i.e., the

membrane potential, whereas different types of ions have various chemical poten-

tials due to different ion concentrations. Hence in most tissue, ions are not in

electrochemical equilibrium. Table 2.1 shows the typical ion concentrations of a

cardiac muscle cell, and the corresponding equilibrium potentials [24](pp. 3). For

18



Table 2.1: Typical ion concentrations and equilibrium potentials in cardiac cell

[24].

Intracellular Extracellular Equilibrium

Concentration (mM) Concentration (mM) Potential (mV)

Sodium(Na+) 10 145 +71

Potassium(K+) 140 4 -95

Calcium(Ca2+) 0.0001 1.5 +128

Na+ and Ca2+, the diffusion caused by the concentration gradient is inward, since

their intracellular concentrations are much less than the extracellular media. In

opposite, K+ tends to move outward in the effect of its concentration gradient. A

ventricular cardiac cell normally has an action potential that ranges from approxi-

mately -90 to 40 mV [27]. When the action potential of a ventricle is negative, the

electrical force is in the same direction as the concentration force of Na+ and Ca2+,

and this causes a net inward movement of Na+ and Ca2+. The chemical force on

K+, though in the opposite direction of the electrical force, has a larger magnitude,

known by comparing the magnitude of K+ equilibrium potential, 95 mV , with the

maximal absolute value of the membrane potential, 90 mV . Consequently, K+

shows a tendency of inward movement. When the action potential is positive, the

direction of the ionic currents can be deduced in a similar way. As a result, the

Na+ and Ca2+ flows are always inward and the K+ flow is always outward during

the period of a ventricular action potential.
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2.2.2 Ionic Mechanism of Action Potential

The permeability of the membrane is mediated through ion channels that act

as pathways for the passage of charged molecules. Ion channels are specialized

proteins embedded in the membrane that allow only desired ions to cross the

membrane [28][29]. Most ion channels are gated and are capable of flipping between

a conducting (open) and non-conducting (closed) state. The transition of the state

is a random event [25],and hence it is not possible to predict whether a given

channel is open or closed. However, the laws of probability allow people to make

certain predictions of the average behavior of a channel. The probability of being

open can be estimated by calculating the fraction of time a channel spends in the

open state during a period of time. The open probability can be regulated by

chemical or electrical signals, temperature, or mechanical force [30].

The ionic currents that occur through protein ion channels make possible the

important electrical activities based on the voltage changes of the membrane poten-

tial. The rapid movement of ions via ion channels sometimes can create electrical

currents that are large enough to produce rapid changes in the membrane poten-

tial. The rapidly changed membrane potentials are termed action potentials, and

can be created by a stimulating current that exceeds a certain strength. An inward

current pulse applied to a cell membrane causes the membrane potential to depo-

larize, and the size of the depolarization depends on the magnitude of the stimulus.

When the current pulse reaches above a certain value to make the membrane po-

tential exceed a threshold, the cell fires an action potential, a much larger response

with a different shape compared to the potential changes resulted from a smaller

stimulus. This is illustrated in Figure 2.3. Figure 2.3(a) shows four stimulating

pulses with different amplitudes. Figure 2.3(b) shows four time courses of chang-
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Figure 2.3: Responses of membrane potential to various stimulus. (a)Four stim-

ulating currents with different strength. (b)Corresponding membrane potentials

in response of the stimulus. An action potential is created when the membrane

potential is charged by the 4th stimulus to pass a threshold.

ing membrane potentials, each of which represents the response to the stimulus

of the same number in Figure 2.3(a). Among the stimulus, the number 4 current

impulse is the only one that is able to charge the membrane potential to reach the

threshold at around 60 mV and make an action potential.

A cardiac action potential pulse is the electrical activity of a individual cardiac

muscle cell. The cardiac action potential voltage differs in different portions in the

heart [31](chapter 6). This differentiation of the action potentials allows the dif-

ference in the electrical characteristics and functions of the varied types of cardiac

cells. The numerical simulation models of the myocardial action potential have

been reported for a few different locations on the heart: sinoatrial node, Purkinje

fiber, atrial myocardium and ventricular myocardium [14]-[18] [32]-[35].

Figure 2.4 shows a waveform of the action potential in a ventricular cell. The

21



Na+
- -

- -
Na+ K+

+ + 
K+

Ca2+ Ca2+ - -

- -+ + 

+ + 

+ + 
K+ K+

K+ K+

- -

- -
K+ K+

Figure 2.4: Phases of ventricular action potential and active ionic currents in each
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ventricular action potential has 5 phases [36][37][38], established due to the fast

changes in membrane permeability to certain ions, mainly to sodium, potassium,

and calcium, resulting from the opening and closing of the ion channels. Figure

2.4 summarizes the ionic channel currents that occur during each phase of the

ventricular action potential. The net movement direction of the ions depends on

the polarity of the intercellular potential with respect to the exterior, denoted with

“-” and “+” inside the cells in the figure, as well as the concentration differences

between the interior and exterior of the cell, indicated with different sizes of the

fonts for the ion names. The arrows represent the directions of the ion flows.

Phase 0 is the rapid depolarization phase. It arises from the sudden opening

of the sodium channels and the subsequent rapid influx of the sodium current.

The rapid opening of the activation gate is responsible for the large and abrupt

increase in the sodium conductance in the membrane. The activation gate refers
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to the gates that tend to open when the membrane potential becomes less nega-

tive. The sodium continues entering the cell when the channels are open and this

eventually reverse the polarity of the membrane potential. The inward sodium

flux finally stops and phase 0 is terminated due to the closure of the other type of

sodium gates, called inactivation gates, which are defined as the gates that tend

to close when the membrane potential becomes less negative. Phase 0 is followed

by a slight repolarization period, called phase 1. The repolarization results from

the outflow of potassium. After the repolarization, a plateau stage follows, known

as phase 2. At this stage, the calcium channels start to open and this allows an

influx of positive charge, Ca2+, under the influence of the inward electrochemical

potential for calcium. The inward flow of calcium and the outward flow of potas-

sium currents roughly cancel each other. The membrane potential then reaches the

steady plateau. After the plateau, the calcium channels close, and the potassium

current dominates and repolarizes the cell back to the resting potential, and this

makes up phase 3. In phase 4, the membrane potential stays in a constant level

of approximately -85 mV , a little more positive than the equilibrium potential

of potassium (refer to Table 2.1). Hence, the chemical force that favors the out

flow of potassium exceeds very slightly the electrical force that favors the influx

of potassium. Consequently there is a tiny outward potassium current during the

resting state of phase 4.

The ionic concentrations, which largely influence the membrane potential, are

maintained by the active transport [5](pp. 161) [26](pp. 14) [39](chapter 15). The

active transport is also protein-mediated. In addition, this process allows ions

to move through membranes against an electrochemical potential, and hence it

requires energy. The concentration gradient of Na+ and K+ are maintained by a

23



Na+/K+ pump, an active transport that moves three Na+ ions out of and two

K+ ions into the cell with the consumption of an APT(Adenosine Triphosphate

- a type of chemical energy within cells) ([39](chapter 15). The Ca+ pump helps

maintain the concentration gradient of Ca+. There are two types of Ca+ pump

involved. One type transports Ca+ out of the cell. The other type transports

intercellular Ca+ into the sarcoplasmic reticulum(SR), an intercellular structure

that stores Ca+ ions. The release of Ca+ ions stored in a SR are triggered by

raised intracellular calcium resulting from transmembrane calcium influx [40].

2.3 Mathematical Description of Cardiac Elec-

trophysiology

The development of experimental technologies necessitates the detailed under-

standing of the electrical behavior of a cellular membrane. The experiments in-

clude the measurement of the voltages across membranes in different spatial posi-

tions, current flows, ion concentrations and opening states of single ion channels

[5] (pp.157). The commonly used measurement method is the voltage clamp tech-

nique, in which two electrodes are inserted into a cell to “clamp” voltage to a fixed

value and the current needed to maintain a desired voltage is measured. The quan-

tities obtained by the experiments are partly used to create mathematical models

of different levels of abstraction. The models allow the numerical simulation of the

electrophysiological behavior of cells, and assist the reconstruction of the measured

data and the further discovery of unknown phenomena.

In this section, We first introduce the voltage clam technique, and present the

mathematical formulation of the membrane models. The Hodgkin-Huxley model
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Figure 2.5: Measurement of ionic current using voltage clamp technique.

for squid axon and the ventricular myocardium model developed by Beeler-Reuter

are described next.

2.3.1 Voltage Clamp

The voltage clamp allows the measurement of ionic currents under the influence of

the membrane potential [41]. As shown in Figure 2.5, the voltage clamp technique

involves two electrodes that are placed inside a cell. One electrode, used to measure

the intercellular potential Vm, is connected to an amplifier. The other side of the

amplifier is connected to the exterior of the cell to take the extracellular potential

Vext. The measured potential feeds into a voltage clamp amplifier to compare with

a voltage to be maintained by the membrane potential, called a command voltage

Vc. The output of the voltage clamp amplifier, i.e. the amplified value of the

difference between Vm and Vc, controls a feedback current flowing into the cell to

make these two potentials the same. The feedback current I, which is injected into

the membrane through the other electrode, is then the mirror image of the current

generated by the cell membrane at the command voltage, that is, when Vm = Vc.

In order to measure currents of individual ions, other experimental procedures can
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be also involved, such as ion substitution, channel blockers, and specific clamp

protocols [41][42].

A wealth of new knowledge concerning ion channels resulted from the invention

of the patch clamp method, a refined version of the voltage clamp. In this tech-

nique, a glass pipette with a tip diameter of about 1 or 2 µm [2](pp. 42) is used

to form an exterior contact with a tiny area of a membrane. The contact is made

very tight, by applying a small suction, such that all the ions that flow through the

opening channels in the sealed patch of membrane flow into the pipette. If there is

only one ion channel in the patch, the resulting electrical current, measured with

an ultrasensitive electronic amplifier, is due to the opening and closing of the sin-

gle channel, and the measured value transits randomly between zero and a certain

non-zero value. The patch clamp method allows the study of a single ion channel

and gains further insight into the electrophysiology of membranes.

2.3.2 Ionic Membrane Models

Cell Membrane as Capacitor Circuit

The electrical behavior of a cell membrane can be approximated by a circuit with

a capacitor connected in parallel to current sources as illustrated in Figure 2.6(a)

[7]. From the equivalent circuit, the membrane current can be expressed mathe-

matically as the following equation:

Iext = Cm
dVm

dt
+ Iion, (2.2)

Iion =
N∑

i=1

Ii, (2.3)

where Iext is the membrane current (inwards current positive); Iion is the total

ionic current (outwards current positive); Vm is the membrane potential; Cm is the
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Figure 2.6: Equivalent circuits for Hodgkin-Huxley type of membrane models.

(a)Membrane is approximated by a circuit with a capacitor and ionic currents.

(b)Each ionic current represents a type of ionic flow and can be modeled as a

nonlinear resistor connected with a Nernst potential. RA = 1/(gAy).

membrane capacitance; and t is time. Iion characterizes the total transmembrane

currents caused by different ion flows. The component Iext represents the external

influence applied on the cell. If all the ionic currents flow into the membrane

capacitor, i.e. Iext = 0, equation (2.2) and (2.3) simulate the electrical activity of

an isolated cell. The permeability of the membrane for each type of ion varies along

the changes of the membrane potential, and reversely, the varying ionic currents

are attributed to the changing of the membrane potential. Next, we will discuss

the mathematical model for transmembrane ionic currents.

Mathematical Models of Ionic Channels

Almost all the ionic models of biological cells are inspired by the Hodgkin-Huxley

equations, which formulate in detail the ionic flows between the intracellular and

extracellular media. As suggested by Hodgkin and Huxley [7][42], the ionic perme-
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ability of the membrane can be expressed in terms of ionic conductances, whose val-

ues are determined by the number of opening channels, and thus can be modulated

by the membrane potentials. The flow of ion is dependent on the conductances of

the ion channels, and is also influenced by the ion concentration gradient and the

difference of the potential across the membrane. Therefore, an ionic current can

be expressed in terms of Ohm’s law:

IA = gA · y · (Vm − EA), (2.4)

where IA is the current associated to the ion A (mA/cm2); gA is the maximal

conductance of the corresponding ion channel (mS/cm2); y is a dimensionless

variable which represents the proportion of the ion channel in an open state (0 <

y < 1); Vm is the membrane potential (mV ); and EA is the equilibrium potential of

ion A (mV ), expressed by equation (2.1). Like in the Ohm’s law, an ionic current

is expressed as a voltage multiplied by a conductance. This can be illustrated by

Figure 2.6(b), in which RA is the equivalent conductance of the ion channel and

is described as the inverse of the product of gA and y. The voltage across RA

is Vm − EA. The sign of the calculated result from equation (2.4) indicates the

direction of the ionic current. A positive sign represents an outward flow, and a

negative sign represents an inward flow.

Ion channels can be governed by more than one gate [43]. A channel is only

fully open when all the gating variables reach the maximum values. Therefore, y

can be modeled as a product of serial gates:

y = y1y2...yM , (2.5)

where yi (i = 1 ∼ M) is the open proportion of the ith gate. The behavior of the

gates can present different properties, with some having more opening probability
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at higher Vm, called activation gates, and the others having more opening proba-

bility at lower Vm, called inactivation gates. A current flow is totally inhibited if

any one of the gates is fully closed.

The gating variable is controlled by a voltage-dependent gating mechanism for

most channels. The open or closed state of the gate is determined by the membrane

potential, but most of the gates do not respond instantaneously to the voltage. The

time-dependence of the gating variables is conveniently modeled by a first order

differential equation, as shown in the following, and its rate of change depends on

two coefficients, namely a gate opening rate and a gate closing rate:

dyi

dt
= αi(1− yi)− βiyi, (2.6)

where αi is the opening rate coefficient of the ith gate and βi is the closing rate

coefficient. For the voltage-dependent gating channels, these rates are controlled

by the membrane potential. In order to obtain the functions connecting αi and βi

with the membrane potential, experimental measurements have been carried out

and data processing is performed, as presented in the following.

When a cell is in the resting state, yi has a resting value given by:

yi0 =
αi0

(αi0 + βi0)
. (2.7)

The “0” in the variable names in the above equation denotes that these are the

values associated with the resting state. When the membrane potential is changed

suddenly, say, to V ′
m, αi and βi instantly take up the values related to the new

potential. Therefore, the changes of yi along the time can be expressed by the

analytical solution of equation (2.6), given in the following:

yi = yi∞ − (yi∞ − yi0)e
(− t

τi
)
, (2.8)
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where the time constant is:

τi = 1/(α′i + β′i), (2.9)

and the final value is:

yi∞ = α′i/(α
′
i + β′i). (2.10)

α′i and β′i are the opening and closing rates associated with the new membrane

potential V ′
m.

The time course of yi can be measured by recording the membrane currents

using the voltage clamp technique [42], and setting the command voltage to a step

function jumping from the resting membrane potential to V ′
m. The values of τi

and yi∞ can be obtained by drawing a smooth curve from the equation (2.8) to fit

the experimental data points. α′i and β′i can then be calculated from the following

relations which are derived from equation (2.9) and (2.10):

α′i =
yi∞
τi

, (2.11)

β′i =
(1− yi∞)

τi

. (2.12)

By changing the value of V ′
m, we can finally collect enough α′i and β′i data points at

different V ′
m to obtain the formulas which express αi and βi in terms of Vm. As we

will see later in the Hodgkin-Huxley and the Beeter-Reuler models, the formulas

are different for different types of gates.

The derivative of αi and βi using the above experimental method relies on the

assumption that V ′
m stays fixed when a gating variable is changed from its original

value to the value related to V ′
m. As in the time course of an action potential, the

membrane potential is always changing, violating this assumption in which case

the expressions of αi and βi for the dynamic process may not be exactly consistent

with the experimental results.
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Equation Set of Ionic Membrane Model

Putting together all the information introduced above, the ionic membrane model

is summarized as the following. The membrane potential is described as a capac-

itor charged by the ionic currents and an external current (a rewritten version of

equation (2.2)):

dVm

dt
= − 1

Cm

N∑

i=1

Ii +
Iext

Cm

, (2.13)

and each of Ii is formulated by (refer to equation (2.1) and (2.4))):

Ii = gi

Mi∏

j=1

yij(Vm − Ei) (i = 1 ∼ N), (2.14)

Ei =
RT

zF
ln

(
[Ci]e
[Ci]i

)
. (2.15)

The above equations assume there are N types of ionic currents, I1 ∼ IN , and

there are Mi number of gates, yi1 ∼ yiMi
controlling the ion channel of ion type i.

When the variation of ionic concentration is considered, additional equations are

required to describe the extracellular and intracellular concentration of ion i, [Ci]e

and [Ci]i [18][44][45]. The usage of the Nernst equation for the cases in which the

concentrations are changing is an approximation. The Nernst equation is satisfied

only for ions at electrochemical equilibrium, i.e., no net movement of the ion occurs

[26](pp. 22).

The opening portion of individual gates can by expressed by (refer to equation

(2.6)):

dyij

dt
= αij(1− yij)− βij · yij (j = 1 ∼ Mi), (2.16)

αij = Fij(Vm), (2.17)

βij = Gij(Vm), (2.18)

where Fij and Gij are functions of Vm, obtained from experiment as introduced
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Figure 2.7: Equivalent circuits for the squid axon model of Hodgkin & Huxley.

RNa = 1/(gNam
3h); RK = 1/(gKn4); and Rl = 1/gl.

previously.

The above set of equations describe the basic electrophysiological behavior of

a single cell.

Hodgkin-Huxley Model

The Hodgkin-Huxley model describes the dynamic electrophysiology of a giant

squid axon membrane from measurements of its electrical behavior using voltage

clamp [7]. The membrane is modeled as a circuit consisting of a capacitor, resistors,

and voltage sources, as illustrated in Figure 2.7. The membrane potential is still

defined with a first-order differential equation (refer to equation (2.13)):

dVm

dt
= − 1

Cm

Iion +
Iext

Cm

, (2.19)

with all the notations following the same meanings of those in equation (2.2). The

model splits the ionic current into three terms:

Iion = INa + IK + Il, (2.20)
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where INa is the voltage- and time-dependent sodium current, IK is the voltage-

and time-dependent potassium current, and Il is a voltage-dependent leakage cur-

rent made up by chloride and other ions. The currents are determined by the

conductances gNa, gK , and gl, respectively, as well as the difference between the

membrane potential and their equilibrium potentials:

INa = gNa(Vm − ENa) = gNam
3h(Vm − ENa), (2.21)

IK = gK(Vm − EK) = gKn4(Vm − EK), (2.22)

Il = gl(Vm − El) = gl(Vm − El), (2.23)

where gNa, gK , and gl are conductance constants, m, h, and n are gating variables,

and ENa, EK , and El are the Nernst potentials.

gNa and gK represent the maximal conductances for sodium and potassium

ions. The conductance for the leakage current Il is assumed to be a constant gl.

The values of these conductances are given by:

gNa = 120mS/cm2, gK = 36mS/cm2, gl = 0.3mS/cm2. (2.24)

The ionic concentrations are supposed to be invariant in the model, and this leads

to non-varying equilibrium potentials:

ENa = 55mV, EK = −72mV, El = −49.387mV. (2.25)

The gating variables m, h, and n are controlled by their opening and closing

rate coefficients, and described by the following equations:

dm

dt
= αm(1−m)− βm ·m, (2.26)

dh

dt
= αh(1− h)− βh · h, (2.27)

dn

dt
= αn(1− n)− βn · n, (2.28)
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Table 2.2: Units used in the Hodgkin-Huxley equations

Description Unit Description Unit

Currents µA/cm2 Potentials mV

Conductance mS/cm2 Time t ms

where the voltage-dependent rate coefficients, extracted by curve fitting the exper-

imental data [7], are given by:

αm =
0.1(Vm + 35)

(1− e−
Vm+35

10 )
, (2.29)

βm = 4e−
Vm+60

18 , (2.30)

αh = 0.07e−
Vm+60

20 , (2.31)

βh =
1

e−
Vm+30

10 + 1
, (2.32)

αn =
0.01(Vm + 50)

(1− e−
Vm+50

10 )
, (2.33)

βn = 0.125e−
V m+60

80 . (2.34)

The units used in the Hodgkin-Huxley equations are listed in Table 2.2.

The Hodgkin-Huxley formulation assumes that the conductances of ion chan-

nels are continuous and deterministic. The assumption arises from the limitation

of the experimental method, voltage clamp, which is at the cellular level and only

capable of measuring the macroscopic ionic currents resulting from a population

of channels. The model can not be used to describe the discrete ion channels

and their random opening and closing behaviors, which are later formulated by

Markov processes after the patch clamp technique was invented and studies of

single channels became possible[46].

The Hodgkin and Huxley model was the first to describe the way in which

individual ionic currents vary with membrane potential and time. Its structure
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forms a basis for almost all models of excitable membrane behavior.

2.3.3 Beeler-Reuter Model

Next, we focus on presenting the mathematical model used in our VLSI design

work, namely the Beeler-Reuter model. The employment of Beeler-Reuter’s model

in this work for simulating the action potential relies on its less complex formu-

lation, while still keeping the description of the basics of membrane ionic flows

between the intra- and extracellular media.

The Beeler-Reuter model was constructed to describe the electrophysiology of

a mammalian ventricular myocardium in 1977 [15], and incorporated the majority

of the experimental evidence achieved at that time by using the voltage-clamp

techniques. The model represented a numerical simulation of the ventricular action

potential, and described a system containing four types of ionic current and six

gating variables. The ion flux of the model includes: a time-independent outward

potassium current, IK1; a time-activated potassium outward current Ix1; a fast

voltage- and time-dependent inward current carried primarily by sodium, INa; and

a slow voltage- and time-dependent inward current, Is, carried mainly by calcium

ions. The formulation of the time and voltage dependence of the gating variables

in the Beeler-Reuter model follows the Hodgkin-Huxley equations.

The Beeler-Reuter model reproduces a typical ventricular myocardial action

potential as shown in Figure 2.8. The threshold of excitation is -60 mV (refer to

Figure 2.3(b)) [15]. During the rapid depolarization phase, the upstroke velocity

is 115 V/sec. The peak of the upstroke is about 30 mV . In the plateau phase

the potential reaches maximum 17 mV , and the positive potential lasts for 153

msec. The maximum rate of repolarization is about 11 V/sec. The duration of
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Figure 2.8: Simulated ventricular action potential using the Beeler-Reuter model.

the action potential, measured at the point where re-polarization is 90% complete,

is 285 msec. The resting potential is -84 mV .

Ionic currents in Beeler-Reuter Model

The formulation of the potassium current IK1 and Ix1 is based on the available ex-

perimental results in ventricular myocardium and follows the approach presented

by McAllister et al. in [14], which mathematically described the electrophysi-

ology of a Purkinje fiber. The experimental evidence indicates the presence of

two outward currents: a background current and a single time-activated current.

The background current, modeled as IK1, is determined only by the membrane

potential, and thus can be simply described by a function in terms of Vm. The

time-activated outward current, modeled as Ix1, is observed to show a non-linear,

rectifying, current-voltage relationship when fully activated. In order to charac-

terize this current, the Beeter-Reuler model adopted the formulation proposed by

McAllister et al., which is analogous to the linear case, as shown in the following:

Ix1 = Ix1 · x1, (2.35)
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where Ix1 is the maximum current Ix1 can reach, and x1 is a gating variable, formu-

lated by a first-order ODE like equation (2.6). Both IK1 and Ix1 are outward due

to the dominating outward chemical force caused by the much larger intracellular

potassium concentration compared to the extracelllar media.

The inward sodium current INa can be divided into two components [5](pp.

174), as described as follows:

INa = INaC + INaV . (2.36)

INaC represents the time independent component in the sodium current, and is to

reproduce the measured steady sodium leakage current. It is expressed as the fol-

lowing equation, which is very similar to equation (2.4), except that the membrane

conductance is not controlled by any gating variables in this case:

INaC = gNaC(Vm − ENa). (2.37)

The second component INaV is time- and voltage-dependent, and is responsible for

the fast upstroke of the action voltage. This sodium current is governed by three

types of gates, described as follows:

INaV = gNaV m3hj(Vm − ENa), (2.38)

where gNaV are the maximal conductance for the time-varying sodium current,

and m, h, and j are the three gating variables. This formula adopts the sodium

gating variable m determined for squid axon by Hodgkin & Huxley, to simulate the

rapid depolarization phase (refer to equation (2.21)). The re-polarization process,

in which the sodium current diminishes due to closing of the inactivation gates,

cannot be simulated with a single simple parameter for the ventricular action

potential. Therefore, two parameters, h and j, are introduced to describe the
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process. All these three gating variables are formulated using equation (2.8), with

different αi and βi. The Beeler-Reuter model assumes that the ionic concentration

of sodium keeps unchanged during the action potential, and hence the sodium

equilibrium potential ENa is a constant.

The slow inward calcium current in the Beeler-Reuter model is expressed by:

Is = gsdf(Vm − Es). (2.39)

When all the gates are fully open, Is is determined by the linear current-voltage

relation: gs(Vm − Es) [47][48], in which, gs defines the maximal conductance of

calcium, and Es is the equilibrium potential for calcium. In reality, only a fraction

of the ionic channels are open, and this is described by using the gating variables

d and f . Their time derivatives are functions of the membrane potential. Here we

adopt the original notations from [15], and d and f correspond to y1 and y2 in equa-

tion (2.5). Particular attention was given by Beeler-Reuter to model the calcium

equilibrium voltage, Es, by considering the change of calcium concentration inside

a cell. The formulation of the calcium concentration is a first approximation to

the experimental results obtained by Bassingthwaighte & Reuter in [49], in which

the interrelationship of clamped membrane potential, observed calcium current,

and the equilibrium potential were studied. The influx of calcium is modeled by

treating the calcium current as though it flows into a small distribution volume

within the cell, from which the calcium concentration is reduced exponentially by

an uptake mechanism. The equilibrium potential Es is then calculated from the

calcium concentration with the Nernst equation.
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Equations and Values that Define Beeler-Reuter Model

The time derivative of the membrane potential is defined as before:

dVm

dt
= − 1

Cm

Iion +
Iext

Cm

, (2.40)

but now,

Iion = IK1 + Ix1 + INa + Is, (2.41)

where IK1, Ix1, INa, and Is sum up to be the total ionic current Iion, and Iext is

an external current that can be used as a stimulus to trigger the action potential.

The membrane capacity Cm is set at 1 µF/cm2 in the model, which is a generally

accepted value for the capacity of biological membranes [15]. The unit of the

membrane potential, as well as other potentials used in the model, is set to mV .

The time t has a unit of ms.

Some of the equations of the ionic currents have been given previously. Here

we put these current equations together and provide the values of the constants

and the function expressions of some variables (the gating variables and Es are

given in equations (2.46)∼(2.60)).

IK1 = 0.35

[
4(e0.04(Vm+85) − 1)

e0.08(Vm+53) + e0.04(Vm+53)
+

0.2(Vm + 23)

1− e−0.04(Vm+23)

]
, (2.42)

Ix1 = Ix1x1 =
0.8(e0.04(Vm+77) − 1)

e0.04(Vm+35)
x1, (2.43)

INa = gNaC(Vm − ENa) + gNaV m3hj(Vm − ENa)

= (0.003 + 4m3hj)(Vm − 50), (2.44)

Is = gsdf(Vm − Es) = 0.09df(Vm − Es). (2.45)

Since the experimental results were measured on a space-clamped patch of mem-

brane of about one square centimeter, all ionic current in the above equations are

actually current densities, and have a unit µA/cm2.
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The six gating variables x1, m, h, j, d, and f are defined by a set of equations

similar to equation (2.6):

dz

dt
= αz(1− z)− βz · z, (2.46)

where z is x1, m, h, j, d, or f , and their opening and closing rate coefficients are

described by the following equations:

αx1 =
0.0005e0.083(Vm+50)

e0.057(Vm+50) + 1
, (2.47)

βx1 =
0.0013e−0.06(Vm+20)

e−0.04(Vm+20) + 1
, (2.48)

αm =
−(Vm + 47)

e−0.1(Vm+47) − 1
, (2.49)

βm = 40e−0.056(Vm+72), (2.50)

αh = 0.126e−0.25(Vm+77), (2.51)

βh =
1.7

e−0.082(Vm+22.5) + 1
, (2.52)

αj =
0.055e−0.25(Vm+78)

e−0.2(Vm+78) + 1
, (2.53)

βj =
0.3

e−0.1(Vm+32) + 1
, (2.54)

αd =
0.095e−0.01(Vm−5)

e−0.072(Vm−5) + 1
, (2.55)

βd =
0.07e−0.017(Vm+44)

e0.05(Vm+44) + 1
, (2.56)

αf =
0.012e−0.008(Vm+28)

e0.15(Vm+28) + 1
, (2.57)

βf =
0.0065e−0.02(Vm+30)

e−0.2(Vm+30) + 1
. (2.58)

The equations for calcium intercellular concentration [Ca]i and the equilibrium

potential Es are given here:

Es = −82.3− 13.0287 ln[Ca]i, (2.59)

d[Ca]i
dt

= −10−7Is + 0.07(10−7 − [Ca]i). (2.60)
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Table 2.3: Initial conditions for the Beeler-Reuter Model

Vm x1 m h j d f [Ca]i

(mV ) (mol/l)

−84 0.0088 0.01979 0.9464 0.937 0.003763 1 10−7

The unit of the calcium concentration is mol/l.

When a cardiac cell is resting, the differential system is at an equilibrium state,

and all the variables remain constant until the system is disturbed by a stimulus.

The values of the derivative variables at a resting membrane are taken as the initial

conditions for the differential equations. The initial values are obtained by setting

all the time derivative terms to be equal to zero, that is the variables are not

changing along the time. The initial conditions are listed in Table 2.3.

All the above equations are incorporated into the Beeler-Reuter model, which

numerically allows simulation of the action potential of mammalian ventricles. The

variable dependence in the equation set is illustrated in Figure 2.2. The model

formulates four ionic currents, IK1, Ix1, INa, and Is, and describes a degree-eight

system of first order differential equations, which are for the membrane potential,

Vm, six gating variables, x1, m, h, j, d, and f , and a varying calcium concentration,

[Ca]i.
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Chapter 3

VLSI Design of the Beeler-Reuter

Model

3.1 Overview

To achieve solutions to hard mathematical problems, numerical analysis is usu-

ally carried out, in which continuous problems are discretized and functions are

represented by a finite amount of data. For a given problem, the numerical anal-

ysis includes finding an iterative method that leads successive approximations to

converge to solutions, discretization of continuous domains with a finite number of

points, and the study of errors and numerical stability [50]. Software programming

is usually involved in implementing the algorithms of numerical computation. In

this chapter, we will present a very different technique for obtaining numerical

solutions of mathematical problems, that is using analog VLSI circuits.

The primitives of the analog VLSI implemented computation arise from the

physics of the devices, and their functioning greatly depends on the I − V char-

acteristics of the devices used, especially the transistors. Computing with VLSI
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Figure 3.1: Design flow of VLSI Realization.

takes advantage of the integration properties of capacitors, and thus the calcula-

tion of complex differential equations can be greatly sped up. The methodology

of the VLSI design process is illustrated in Figure 3.1. The design entry starts

from the original mathematical model, i.e. the Beeler-Reuter model in our case,

and splits the design flow into two paths. One is, shown on the left side of the

figure, the steps of reformulating the mathematical descriptions, and the other,

shown on the right side, is more directly related to the circuit designs, in which

the shaded oval is our final goal. Equation transformation (the left top oval) is the

process that changes equations to the formulas that are feasible for the realization

using circuits. The transformed equations next go through parameter scaling, a

step that scales the values of variables and parameters into proper ranges for the

circuit implementation. The scaling process needs the overall consideration of all

equations, and usually requires the guidance of the numerical information, which

can be achieved from the simulation of ideal component circuits (the right top

oval), and demands the acknowledgment of the restrictions of working ranges of
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the functional circuits (the right middle oval), which is reversely decided by the

scaling step for the requirement of the function types to be realized. The scaled

equations then undergo initial value shifting (the left bottom oval), in which ini-

tial conditions of the differential equations are altered to all zeros for alleviating

their complexity in the circuits. The reformulated equations are put into the final

implementing step, which takes the functional circuit units as building blocks and

the ideal component circuit as a rough blueprint.

In the rest of the chapter, we will first introduce the equation reformulation

techniques, namely, equation transformation, parameter scaling, and initial value

shifting, and then provide the resultant equations of the Beeler-Reuter model after

applying the reformulation process. The functional circuits that realize a set of

mathematical expressions are described next. The ideal component circuits and

the VLSI design of the Beeler-Reuter model are presented finally.

3.2 Model Reformulation

3.2.1 Transformation of Mathematical Description

It is not surprising that circuits are capable of doing mathematical calculations.

One simple example is we can perform an addition a + b using a circuit in which,

two current sources with values a and b are wired together with a third wire. The

result of a+b is then the current in the third wire. Benefited from Kirchhoff’s law,

linear operations, such as addition, subtraction, magnifying or diminishing with a

constant factor, can be easily realized by using currents as signal representatives.

Non-linear operations like multiplication and division are also possible using cir-

cuits. CMOS current multipliers have been published in [51]−[54], and multipliers
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taking voltage as signals are also reported in [55]−[57], as well as current/voltage

dividers [58][59]. Other operations such as exponentiation are also realizable with

circuits [60][61]. However, the abundance of mathematical function types is far be-

yond the availability of the implementation circuits, and thus most mathematical

operations do not have corresponding circuit realization. In addition, all sorts of

operations can be combined and nested, which make the circuit implementation

very difficult or even impossible. The complexities of employing circuits in func-

tion computation prompts the need for transforming the equations to other forms

that are feasible to be mapped into circuits.

Fortunately, for most equations in the Beeler-Reuter model, methods have been

found for circuit realization by straightforward means, which results in relatively

simple circuit topologies. There are only two equations which really need to be

transformed in the model, equations (2.42) and (2.49), as repeated in the following:

IK1 = 0.35

[
4(e0.04(Vm+85) − 1)

e0.08(Vm+53) + e0.04(Vm+53)
+

0.2(Vm + 23)

1− e−0.04(Vm+23)

]
, (3.1)

αm =
−(Vm + 47)

e−0.1(Vm+47) − 1
. (3.2)

Since the numerical range of Vm is about -90 mV to 40 mV [27], the above equa-

tions present zeros in the denominators in the working range of Vm; one is at

Vm = −23 mV , and the other is at Vm = −47 mV , and let us call them the

zero-denominator points. Note that the zeros in the denominators do not cause

poles because the corresponding numerators also have zeros at the same Vm. By

expanding the denominators using Tylor series around Vm = −23 mV for IK1 and

Vm = −47 mV for αm, the terms containing Vm can be canceled in the denomina-

tors and the numerators, and this makes the functions of IK1 and αm continuous
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at the zero-denominator points, i.e. we have:

lim
Vm⇒−23

IK1 = 2.82, (3.3)

lim
Vm⇒−47

αm = 10. (3.4)

However, the VLSL design of the equations of IK1 and αm are very challenging,

because the circuits have to handle the zero-divided-by-zero case, and there is no

circuit that can directly represent the equations as a whole. Hence, we intentionally

remove the zero-denominator points with the equation transformation process, in

which an equation is represented by a different equation that gives values very

close to those calculated from the original equations in a required working range,

and this will be explained the following.

The transformation is performed using the Matlab Curve Fitting Toolbox. Due

to the exponential tendency in the original data, we decide to let the fit equations

still contain exponential terms, and specify the type of fit to customize the equa-

tions that favor the implementation of using emitter-coupled pairs (refer to section

3.3.2). The fit curves are also shown in Figure 3.2 and 3.3, which indicate the fits

are quite successful because we nearly can not distinguish the fitted curves from

the original data. The resulting transformed equations are:

IK1 = 2.742 +
3.632

e−0.05966(Vm−32.77) + 1
− 5.879

e0.1177(Vm+88.23) + 1
(3.5)

for equation (3.1), and

αm = 109.7 + Vm − 62.92

e−0.05687(Vm+76.2089) + 1
(3.6)

for equation (3.2).

The goodness of fit is evaluated with Sum of Squares Due to Error (SSE), R-

square, adjusted R-square, and Root Mean Squared Error (RMSE) [62], and Table
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Vm  [mV]

IK1 [�A/cm2]

Figure 3.2: Plot of transformed Ik1 equation and its original equation.

Vm  [mV]

αm

Figure 3.3: Plot of transformed αm equation and its original equation.

Table 3.1: Statistics of goodness of fit for equations (3.5) and (3.6)

Sum of Squares R-square Adjusted R-square Root Mean

Due to Error Squared Error

IK1 0.09225 0.9995 0.9995 0.02634

αm 5.621 1 1 0.2033
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3.1 lists the fit statistics for equation (3.5) and (3.6). SSE is defined as the sum

of squared residuals, which are the differences between the response values (the

original data) and the predicted values (fitted curves). A SSE closer to 0 indicates

the fit is more useful for prediction. R-square is the square of the correlation

between the response values and the predicted values, and adjusted R-square is

based on R-square and adjusted with the residual degree of freedom, which is

defined as the number of response values minus the number of fitted coefficients

estimated from the response values. Both R-square and adjusted R-square take

values between 0 and 1, and a value closer to 1 means a better fit for adjusted R-

square, but not always for R-square. RMSE, also known as the fit standard error,

is an estimate of the standard deviation of the random component in the data.

Like SSE, a RMSE closer to 0 indicates a fit that is more useful for prediction.

As shown in Table 3.1, the goodness of the fit for Ik1 and αm is quite satisfactory,

with adjusted R-square being 0.9995 for Ik1, and 1 for αm.

3.2.2 Parameter Scaling for VLSI Design

Parameter scaling is needed to linearly convert the values of variables and some

constants to be in the ranges that are feasible to be represented with electrical

signals in circuits. As introduced in chapter 2, the units utilized in the Beeler-

Reuter model are “small”, for instance, the unit for the membrane potential is mV ,

and the unit for currents is µA/cm2. Consequently, the values of variables in the

equations are normally big, for example, the values of membrane potential can be

up to about a hundred (here we care only the value, i.e. “a hundred”, not its unit

mV , because VLSI implementation models mathematical equations and ignores

their physics meanings, and this decides that VLSI can be also used to simulate
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non-electrical systems). Therefore, in order to describe such big numbers in the

VLSI circuits, parameter scaling is necessary to shrink the values. In addition, we

care only about the equations and the values of variables for circuit realization,

and ignore their physical meanings in the model, and thus the circuit design of the

cardiac cell model does not have to preserve the original electrical meanings of the

variables. For example, the calcium equilibrium potential Es does not have to be

voltage in the circuit, and can be represented with a VLSI current and scaled into

the normal magnitude of a current. Moreover, there are some variables, such as

ionic concentrations and gating variables, that are not electrical signals. Hence, in

order to represent these variables, parameter scaling is usually required to convert

their values.

As introduced in chapter 2, the cardiac cell model consists of a set of equations

that are inter-dependent, and no variables can be decided by a single formula.

Hence, the influence of parameter scaling can be divided into two parts, one is the

effect on the equation which defines the scaled variable, the other is the effect to

the equation(s) that takes the variable as an input. For the first case, variables can

appear as totally independent terms in equations, like equation (2.42)−(2.45) that

define ionic currents, equation (2.47)−(2.59) that describe gate opening/closing

rates, and equation (2.60) that expresses calcium equilibrium potential; or, the

variables can be defined in time derivative equations, like equation (2.40) which

defines Vm, equation (2.46) that formulates gating variables, and equation (2.60)

that describes the calcium concentration.

Let us abstract an equation that formulates a variable x to be:

x = F (z1, z2, ..zN), (3.7)

where zi (i = 1, 2...N) are the variables that are determining x through the function
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F . Suppose the equation that uses x (assuming there is only one equation that

takes x as an input) can be abstracted to be:

y = G(x, z1, z2, ..zN), (3.8)

where y is another variable, and G is a function that relies on variable x and zi.

After performing scaling x′ = kx, where k is a constant, equation (3.7) becomes:

x′ = k · F (z1, z2, ..zN) = F ′(z1, z2, ..zN), (3.9)

and the expression for y is changed to the following as a result of scaling x:

y = G(
x′

k
, z1, z2, ..zN) = G′(x′, z1, z2, ..zN). (3.10)

After scaling, reorganization, such as combining coefficients, is usually needed to

construct the equations to be friendly for circuit implementing.

The above scaling technique may sound quite simple, however, the parame-

ter scaling process for circuit design requires comprehensive consideration of all

variables, constant terms, and coefficients in the equations, and demands the ac-

knowledgment of the existence and limitations of available mathematical functions

in the form of circuits and apply the acknowledgment into scaling to fit the working

ranges of the circuits. To scale an equation set, like the Beeler-Reuter model, in

which more than twenty variables and equations are involved, a simulation of its

non-scaling ideal components with PSpice (or with Matlab SimuLink alternatively)

is usually necessary to carry out in order to achieve useful numerical ranges before

the actual scaling can be done.

The representatives of variables in circuits (either voltages or currents) are also

decided during the scaling process, because VLSI currents are normally small nu-

merically, for example in the magnitude of several 10−6 with unit A, and the values
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of voltages are big, for instance in the magnitude of a few decimals with unit V .

The electrical representatives of some variables may be pre-determined by their

appearances in equations, relying on the convenience of their VLSI implementa-

tion. For example, we select calcium concentration [Ca]i to be a current, because

it appears in a logarithms in equation (2.59) and logarithms can be realized using

a bipolar transistor whose base-emitter voltage is decided by the logarithm of its

collector current. Another example, the equations of the opening/closing gate ra-

tios (equations (2.47)−(2.58)) have many exponential terms whose powers contain

Vm, and this leads to the desirability to let Vm to be a voltage in circuits due to

the circuit realization of an exponential being, again, via bipolar transistors.

The above discussion of parameter scaling does not include the scaling for

time. Time scaling can be treated absolutely independent of the scaling of other

parameters, since it only affects the width of a signal on the time axis, and can

be easily adjusted by multiplying the capacitance values of all the capacitors that

realize time derivatives by a constant.

3.2.3 Initial Value Shifting

As introduced in chapter 2, the variable values associated with the resting state

of a membrane are taken as the initial conditions of the differential system, and

their values are listed in Table 2.3. This means that a reset mechanism is required

to set the initial states of the devices which implement the time derivative. In the

case that capacitors are used to realize the time derivative in differential equations,

the initial voltages across the capacitors need to be set. This requirement brings

complexity for circuits. It is necessary for the reset circuits to work as batteries to

provide desired voltages and currents for charging the capacitors at a reset stage,
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and also to be able to be switched off (or not influence) the capacitors when the

circuits are operating as an activated cell. Here we propose an initial value shifting

method to avoid the reset circuits. We shift the resting state of the differential

system to the origin and make the initial conditions all zeros while keeping the

same waveform of Vm created by the model.

In the Beeler-Reuter model, there are eight variables that are time dependent,

these being the membrane potential Vm (equation (2.40)), six gating variables, x1,

m, h, j, d, and f (equation (2.46)), and a varying calcium concentration, [Ca]i

(equation (2.60)). Their equations are special cases of:




b0
dx
dt

= b1 + b2x,

x(t = 0) = x0,
(3.11)

where b0 is a constant, b1 and b2 can be constants or variables that do not explicitly

depend on time. In the case of Vm, the second term on the right side b2x does not

exist, i.e. b2 = 0. The initial value shifting takes place by replacing x with x̂ + x0,

that is, setting x = x̂ + x0, equation (3.11) then becomes:




b0
dx̂
dt

= b1 + b2(x̂ + x0),

x̂(t = 0) = 0.
(3.12)

Equation (3.11) and (3.12) can be both mapped into the circuit depicted in

Figure 3.4, by setting different parameters. For simplicity of discussion, here we

ignore the scaling issue, and assume the parameters in the equation are suitable

for VLSI realization. In Figure 3.4 the capacitor C, with a capacitance of b0, is

charged by a current source b1 and a controlled output current from G1, whose

transconductance is equal to b2. The output current from G1 is b2(x + Va), where

x is the voltage across C and Va is a bias voltage. The linear voltage to voltage

converter E, serving as the output stage of the whole circuit, takes the input x and

52



C=b0

b1

G1 

a

x

b2(x+Va)

-Va

Gain= b2

E 

Gain= 1

x+Va

Figure 3.4: Initial value shifting for differential equations.

−Va and subtracts them to create the output. When Va is connected to ground,

i.e. Va = 0, the diagram represents equation (3.11) and the initial voltage of C is

required to be set to x0. The output of E is then x − 0 = x. Following equation

(3.12), the initial condition shifting process is performed by setting Va to x0 in the

circuit. The initial voltage of C then can be left to 0, with the output of E being

unchanged: x̂ + Va = (x− x0) + x0 = x.

The initial value shifting method takes the advantage of the circuit realization

of the linear transconductance and linear voltage converter, which have a pair

of input voltages whose difference linearly determines the output. It is worth

mentioning that the presented method is not limited to shifting the initial value

for the mathematical description with the form of equation (3.11). It can be

extended to more general situations as formulated with:

b0
dx

dt
= F (x) (x(t = 0) = x0). (3.13)

The equation after the initial value shifting is then written as:

b0
dx̂

dt
= F (x̂ + x0) (x̂(t = 0) = 0). (3.14)
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3.2.4 Reformulated Beeler-Reuter Equations for VLSI De-

sign

After applying equation transformation, parameter scaling, and capacitance initial

value shifting on the Beeler-Reuter model, the resulting equations can be mapped

directly into circuits. The new set of equations have one-to-one correspondence to

equations (2.40)−(2.60), with (2.42) and (2.49) being replaced by (3.5) and (3.6).

To avoid redundancy, we list in Table 3.2 only the equations that relate the new

variables, denoted with a single quotation mark, with the original variables. These

equations result from the parameter scaling and initial value shifting, and can be

taken into the original model equations (except replacing (2.42) and (2.49) with

(3.5) and (3.6)) to create a new set of equations, which are the ones we use for

VLSI design. The new equations represent a differential system that has all-zero

initial conditions. In Table 3.2, the second column shows the variable conversions,

and the third column lists the electrical representative of the variables in our VLSI

circuits.

3.3 Circuit Blocks of Function Units

In this section we will present the sub-circuits that implement the mathematical

functions needed by the Beeler-Reuter cardiac cell model. The determination

of the necessary functions is dependent on the mathematical description of the

original model formulations and also the parameter scaling process, in which the

electrical representatives of the signals are decided. The circuits of the function

units are summarized in Table 3.3, and most of them are based on existing circuit

architectures, with some being modified in order to obtain required functions or
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Table 3.2: Relations of original variables and the scaled and shifted variables, and

their electrical representative in circuits.

Variable Conversion Equation Circuit Representative

Vm = 100V ′
m Voltage

Iion (includes = 106I ′ion Current

IK1, Ix1, INa, and ICa)

z (includes x1, m, = 2× 105z′ Current

h, j, d, and f)

αx1 = 103α′x1 Current

βx1 = 103β′x1 Current

αm = 107α′m Current

βm = 107β′m Current

αh = 2× 105α′h Current

βh = 2× 105β′h Current

αj = 2× 104α′j Current

βj = 2× 104β′j Current

αd = 104α′d Current

βd = 104β′d Current

αf = 103α′f Current

βf = 103β′f Current

Es = 108E ′
s Current

[Ca]i =[Ca]′i Current
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Table 3.3: Summary of function circuits. Ci (i = 1, 2...N) are constant.

Function Description Circuit

Iout = C1Vin Linear voltage to current converter Figure 3.5(a)

Vout = Vin1 ± Vin2 Voltage adder/subtractor Figure 3.6

Vout = Vin Voltage buffer Figure 3.7

Iout = C1

eC2(Vin+C3)+1
Sigmoid function Figure 3.12

Iout = C1e
(C2Vin+C3) Exponential function Figure 3.13

Iout = C1eC2x

eC3(Vin+C4)+1
Exponentialized sigmoid function Figure 3.12, 3.13

Vout = C1 ln(C2Iin) Logarithm function Figure 3.14

Iout = Iin1Iin2

C1
Two inputs current multiplier Figure 3.15

Iout =
Iin1Iin2Iin3...Iin,N+1

C1C2...CN
Multiple inputs current multiplier Figure 3.17

achieve higher accuracy in the circuit realization of the mathematical expressions.

The working ranges of the circuits are discussed in terms of the accuracy the

circuit implementation of the functions can reach. A scheme for implementing big

capacitors with small capacitors using a NPN-based circuit is introduced at the end

of this section. For the readers that are familiar with VLSI circuits, this section

can be skipped to continue the reading from section 3.4, in which the circuits for

realizing the cardiac cell model are presented.

The circuits presented here are not limited by a particular fabrication process

and can be implemented by any BiCMOS technologies. For the technologies with

smaller feature sizes, VLSI circuits can be more densely integrated and are more

power efficient. For our heart model application, we give the first priority to

the accuracy of the circuit realization of mathematical functions, and hence we

prefer to using technologies with larger feature sizes, which have less high order
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effects introduced by short-channel MOS devices and thus are more feasible to

implement equations with their I-V characteristics. As an example, we select AMI

Semiconductor 1.5 µm ABN technology to realize the cardiac cell model. AMI 1.5

µm ABN process is a n-well CMOS process with two metal layers and two poly

layers. It provides an NPN option and also can be used to make capacitors with

PiP (poly2 over insulator over poly).

The presented VLSI circuit of the cardiac cell model is essentially MOSFET.

Many circuit blocks in our VLSI design use the voltage-controlled-current proper-

ties of MOS devices, and take advantage of the thin insulating layers under the

gates and the resulting good isolation MOS devices provide to the preceding and

the succeeding circuits. We select current to represent signals in most situations

as shown in Table 3.2, because current allows performing addition and subtrac-

tion simply, and can represent positive and negative numbers with large ranges

easily. This is opposite to voltages, whose magnitudes are limited by the dynamic

range of circuits, which is highly dependent on the supply voltages. Therefore,

most arithmetic circuit blocks presented take currents as input and output. Cur-

rents also can be consumed by capacitors for integration. NPN devices are used

in our application to realize exponential functions. It is worth mentioning that

the proposed circuits with NPN transistors do not depend on the reverse satura-

tion currents of the devices, and hence the circuits can be transmitted to other

fabrication technologies with minimal modification of the bipolar devices.

In the rest of this section, we will introduce the basic arithmetic function blocks

used in the VLSI design of the Beeler-Reuter model. The function circuits can be

organized into three categories: linear function circuits, exponential circuits, and

multipliers. Table 3.3 summaries the functions of the presented circuits.
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The following presentation will frequently use the equations that describe the

I − V characteristics of MOS and NPN transistors. To avoid verbosity, some

commonly used symbols and notational conventions are listed alphabetically below:

• Cox is the gate oxide capacitance per unit area.

• Ici (or Ic) is the collector current of NPN transistor Qi (i=1,2...).

• IMi is the drain-to-source current of transistor Mi (i=1,2...).

• Is0 is the reverse saturation current of a NPN transistor.

• Kni (or Kn, Kpi, Kp, K) is the fabrication-dependent parameter of NMOS

device Mi (i=1,2...): Kni = µnCox

2
Wi

Li
.

• µn (or µp) is the mobility of electrons (holes).

• Li (or L) is the gate length of transistor Mi (i=1,2...).

• λni (or λn, λpi, λp, λ) is the channel-length modulation parameter of NMOS

(or PMOS) transistor Mi (i=1,2...).

• Vgsi is the gate-source voltage of transistor Mi (i=1,2...).

• Vbei is the base-emitter voltage of NPN transistor Qi (i=1,2...).

• Vtni (or Vtpi, Vtn, Vtp, Vt)is the threshold voltage of NMOS (or PMOS) tran-

sistor Mi (i=1,2...).

• VT is the thermal voltage.

• Wi (or W ) is the gate width of transistor Mi (i=1,2...).
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3.3.1 Linear Function Circuits

With currents being signal representatives, the linear operations, such as addition,

subtraction, and multiplication with a constant, can be easily realized using current

mirrors and wire connections, governed by the Kirchhoff’s law. In the following, we

will introduce the circuits that perform linear operations based on voltage inputs

or (and) outputs.

Linear Voltage to Current Converter (VCC)

One of the techniques to realize a linear voltage to current converter (VCC) is

using differential pairs as shown in Figure 3.5(a) [63]. M1 and M2 are the NMOS

input stage, whose tail current I0 is provided by the current sink transistor M9.

The current distribution in the two input transistors M1 and M2 is controlled by

their gate voltages, and these two currents are transmitted to the output stage by

current mirrors that are composed of M3 − M8. The output Iout current is the

difference between the two currents passing through transistors M6 and M8. By

varying the sink current I0, and the amplification factors of the current mirrors,

the transconductance of the differential pair can be adjusted.

Assume that M1 and M2 are identical and both working in the saturation

region, neglecting the channel length modulation, the source currents of M1 and

M2 are expressed by:

IM1 = K(Vgs1 − Vt)
2 = K(∆V + Vgs2 − Vt)

2, (3.15)

IM2 = K(Vgs2 − Vt)
2, (3.16)

where ∆V is the difference between the two voltage inputs:

∆V = V+ − V− = Vgs1 − Vgs2. (3.17)
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Figure 3.5: CMOS differential pair works as a linear voltage to current converter.

(a)Differential pair circuit. (b)Altered differential pair that works as a linear re-

sistor.

From equations (3.15) and (3.16), we can derive the following equations by using

I0 = IM1 + IM2:

IM1 =
1

2


I0 + K∆V

√
2I0

K
−∆V 2


 , (3.18)

IM2 =
1

2


I0 −K∆V

√
2I0

K
−∆V 2


 . (3.19)

Therefore, the transconductance of the circuit is expressed by:

gm =
IM8 − IM6

∆V
= A

IM1 − IM2

∆V
= AK

√
2I0

K
−∆V 2, (3.20)

where A is the amplification factor of the current mirrors composed of M3−M8,

and M4 and M6. From equation (3.20), we can derive the range of ∆V for a given

linearity requirement on the transconductance by a Tylor series expansion of the

square root:

∆V 2 < η
4I0

K
, (3.21)
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where η is the maximum allowable transconductance difference in percentage, i.e.

η = max((gm0−gm)/gm0)∗100% where gm0 is the transconductance at ∆V = 0,and

gm is an arbitrary transconductance.

Ignoring the slight changes in I0 caused by the variation of Vds9, the non-

linearity of the transconductance relies on the term ∆V 2 in equation (3.20). Hence,

according to the equation, in order to achieve a good linearity of the transconduc-

tance, the magnitude of the differential input ∆V needs to be kept much smaller

than 2I0
K

, or at the same ∆V , I0 can be enlarged, under the restriction that all

transistors are still in the saturation region.

The circuit of the differential pair can be used to implement linear resistors, as

illustrated in Figure 3.5(b). The transistors and wires drawn with dotted lines are

newly added upon the circuit shown in Figure 3.5(a). The added transistors make

the circuit topology of the left side and the right side perfectly symmetrical, and

thus I+ = −I−. When V+ > V−, the current flowing into the V+ port is provided

by M6 and M8, and the current flowing out of the V− port is sourced from M10

and M11. The working condition of the circuit in Figure 3.5(b) is that the inputs

V+ and V− are within the range which makes the output transistors M6, M8, M10

and M11 working in the saturation region.

Linear Current to Voltage Converter (CVC)

The circuit of a linear current to voltage converter, shown in Figure 3.6, is proposed

in [64]. It is composed of two NMOS and two PMOS transistors. M1 and M2 are

identical in size. M3 and M4 are also identical in size, and are connected like a

current mirror. Va is a bias voltage, which determines the current in M1. When

the input current Iin is zero, the currents in all the transistors are the same, and

61



Vsgp

Vdd

Vout

Iin

I3

I1

I4

I2Va

Vb

M1 M2

M3 M4

Figure 3.6: Linear current to voltage converter.

thus Vout = Vb when there is no load drawing current from the output. Let us use

Vout0 to denote the output voltage associated with Iin = 0, and IQ to represent the

drain current flowing in M1 when Iin = 0.

If there is a small negative input current, Vb can be taken as nearly unchanged

due to the small current Iin. Since the current I4 is mirrored from I3, and I2 is

mirrored from I1, when the output does not take any current, the output voltage

Vout needs to increase significantly to cancel out the difference between I2 and I4

using the channel length modulation effect. As we will see in the following, the

change in the output voltage is almost linearly decided by the input current.

For the transistors M1 and M3, the following equations describe their currents:

I3 + Iin = I1, (3.22)

I1 = Kn × (Va − Vtn)2(1 + λnVb), (3.23)

I3 = Kp × (Vdd − Vb − Vtp)
2(1 + λp(Vdd − Vb)). (3.24)

Similarly the currents in M2 and M4 are expressed by the following equations:

I2 = I4, (3.25)
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I2 = Kn × (Va − Vtn)2(1 + λnVout), (3.26)

I4 = Kp × (Vdd − Vb − Vtp)
2(1 + λp(Vdd − Vout)). (3.27)

From equation (3.22)−(3.27), we can derive the relation of Vout vs. Iin as follows:

Iin = (Vb − Vout)
Kn(Va − Vtn)2(λn + λp + λnλpVdd)

1 + λp(Vdd − Vout)
. (3.28)

If we neglect the change of Vb caused by the small input Iin, that is, take Vb = Vout0,

and treat λp(Vdd−Vout) as much less than 1 and, thus, ignore it in the denominator

of equation (3.28), the change of the transimpedance, i.e. the relation of the change

of the output and the input, then becomes purely linear, which is expressed by:

∆Vout

Iin

= − 1

Kn(Va − Vtn)2(λn + λp + λnλpVdd)
(3.29)

' − 1

IQ(λn + λp)
, (3.30)

where ∆Vout is the change in Vout, caused by Iin and defined as: ∆Vout = Vout−Vout0.

The nonlinearity of the ∆Vout to Iin ratio comes from the terms λp(Vdd − Vout)

and Vb in equation (3.28). λp(Vdd − Vout) can cause a variance of the ∆Vout-to-Iin

ratio on the order of 1% assuming λp ' 0.01. Vb can be derived from equation

(3.22)−(3.24) and is determined by the following equation:

Kp× (Vdd−Vb−Vtp)
2(1+λp(Vdd−Vb))+ Iin = Kn× (Va−Vtn)2(1+λnVb). (3.31)

Take λn = λp ≈ 0 in equation (3.31), Vb is expressed by:

Vb = (Vdd − Vtp)− 1√
Kp

√
Kn(Va − Vtn)2 − Iin. (3.32)

According to equation (3.32), Iin needs to be small compared to Kn(Va − Vtn)2 in

order to diminish the dependence of Vb on Iin. Kn(Va−Vtn)2 can be approximated

as the current in M1 when Iin = 0, and hence the condition for a good linearity of
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the ∆Vout-to-Iin ratio is that Iin needs to be kept small compared to IQ, i.e. the

current of M1 when Iin = 0.

Vout0 usually varies with the selection of different sizes of the transistors for a

current to voltage converter (CVC), and the transistor sizes also decide the values

of the ∆Vout-to -Iin ratio. It is not easy to adjust the circuit to achieve both the

specified ∆Vout-to-Iin ratio and Vout0 with a restricted value. Therefore, in the

heart VLSI circuits, CVCs are employed in pairs, and this will be discussed in

section 3.3.2.

A working condition of the CVC circuit is that the output does not take any

current, due to the great sensitivity of the output voltage to the current changes

in M2 and M4. In order to provide a current to a succeeding circuit that utilizes

the linearly changed output voltage from a CVC, it is necessary to add a voltage

buffer to copy the output voltage and also to deliver a certain among of current.

The voltage buffer is introduced in the following.

Voltage Buffer

An ordinary CMOS voltage buffer [65], shown in Figure 3.7(a), is composed of

complementary source followers. On the input side, the current of M1 and M3 is

decided by the bias current In0 and Ip0, and In0 = Ip0. Because M2 is set identical

to M1, and M4 is to M3, the currents In0 and Ip0 are fully mirrored on the output

side if no output current is drawn, and hence Vout = Vin. The circuit has very low

voltage offset, with the voltage offset mainly due to transistor mismatch [66].

In the VLSI design of the heart model, the voltage buffer services as a stage that

isolates the next circuit block, which takes voltage as an input but also consumes

some amount of current depending on the input voltage, from the previous stage.
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Figure 3.7: Voltage buffer. (a)Traditional voltage buffer. (b)Proposed voltage

buffer for the heart implementation. (c)Another version of proposed voltage buffer,

modified for reducing drain-source voltage difference of M1 and M2.

For a circuit like the CVC presented in the previous section, its output voltage can

be easily distorted by its output current. Therefore, the buffer is required to take

no current from the previous stage, or equivalently the two bias currents In0 and Ip0

need to be matched very well in order to prohibit current flowing through the input

terminal. Since it is unavoidable for the non-ideal bias currents to vary a little bit

with the changing input voltage, the requirement of no input current is obtained

by letting the changes of In0 and Ip0 be in the same direction and also by the same

amount which brings much complexity to the transistor circuits. This makes the

ordinary voltage buffer presented in [65] not applicable to our implementation. In

order to achieve high enough input resistance, the gate of a NMOS device, which

does not draw any current, is selected as the input stage of the proposed buffer.

The topology of the circuit is depicted in figure 3.7(b). Transistors M3 − M6,

working in the saturation region, compose a cascode current mirror, which keeps

the currents going through M1 and M2 the same. The output transistor M2
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is identical to M1. When the effect of the drain-source voltage on the current

is ignored, the gate-source voltages are the same for M1 and M2 due to their

identical currents, and this results in Vout = Vin. Suppose the current required by

the next stage is much less than the current provided by M6, the influence of the

output current to the output voltage is then very small and can be neglected. This

assumption can be satisfied by selecting the parameters of M1 to let the current

in M6 much bigger than the required current output.

The I − V characteristics of M1 and M2 can be described as follows, with the

effect of their drain-source voltages taken into account:

IM1 = K(Vin − Vss − Vt)
2(1 + λVds1) (3.33)

= K(Vin − Vss − Vt)
2(1 + λVds2 + λ∆Vds),

IM2 = K(Vout − Vss − Vt)
2(1 + λVds2) (3.34)

= K(Vin + ∆Vout − Vss − Vt)
2(1 + λVds2),

where ∆Vout is the output error caused by the channel modulation effect, ∆Vout =

Vout − Vin, and ∆Vds is the difference of the drain-source voltages of M1 and M2

is ∆Vds = Vds1 − Vds2. Ignoring the current difference of IM1 and IM2 introduced

by the non-idealism of the current mirror, after combining equations (3.33) and

(3.34), and replacing Vds2 (i.e. Vgs2) with Vin − Vss, we express ∆Vout in terms of

∆Vds:

∆Vout = (Vin − Vss − Vt)(

√
1 +

λ∆Vds

1 + λ(Vin − Vss)
− 1), (3.35)

which can be expanded with Taylor approximation into:

∆Vout ' 1

2
(Vin − Vss − Vt)× λ∆Vds

1 + λ(Vin − Vss)
(3.36)

' 1

2
(Vin − Vss − Vt)× λ∆Vds.
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Figure 3.8: Voltage subtractor. (a)Maundy voltage subtractor. (b)Improved volt-

age subtractor.

Equation (3.36) expresses the voltage offset in the output in terms of the dif-

ference in the drain-source voltages of M1 and M2. The reduction of the average

of ∆Vds can efficiently minimize the voltage offset. Figure 3.7(c) shows another

version of the proposed voltage buffer, which efficiently reduces the magnitude of

∆Vds. The currents in the NMOS transistors M3 and M6 are the same as the

currents in M4 and M5, and, thus, the gate-source voltages of M3 and M6 are

equal. Therefore, the drain-source voltages of M1 and M2 are equal. Ibias is used

to constrain the currents in M1 and M2.

Voltage Subtractor and Adder

Figure 3.8(a) illustrates the idea of a voltage subtractor presented by Maundy in

[55], where the circuit is introduced to make low-voltage multipliers. The sizes M1

and M2 are equalized, and both transistors work in the saturation region. When

the channel length modulation effect is not considered, the following equations are
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satisfied:




IM1 = Kp(Vgs1 − Vtp)
2 = K(Vdd − V1 − Vtp)

2

IM2 = Kp(Vgs2 − Vtp)
2 = K(Vout − V2 − Vtp)

2

IM1 = IM2 = I

(3.37)

⇒ Vout = Vdd − V1 + V2. (3.38)

Hence this circuit operates like a subtractor. Multiples of this circuit can be cas-

caded to construct mathematical functions with mixed additions and subtractions

[55].

The performance of Maundy’s voltage subtractor is degraded due to the channel

length modulation effect. If the channel length modulation effect is taken into

account, the equations for M1 and M2 become the following:




IM1 = Kp(Vdd − V1 − Vtp)
2(1 + λp(Vdd − Vout)),

IM2 = Kp(Vout − V2 − Vtp)
2(1 + λpVout).

(3.39)

Assume there is a drop of amount ∆V1 on input V1, and input V2 stays unchanged.

With IM1 = IM2, according to equation (3.39), Vout does not increase the same

amount as V1 reduces, and the difference between the increase and that of the

ideal case is on the same order as λp or bigger, decided by the values of V1, V2, and

Vdd. We propose two methods to improve Maundy’s subtraction circuit, based on

considering the two transistors M1 and M2 separately. M1 is the key transistor

that decides the current of the circuit. In the non-ideal case, the output voltage

can influence the current. If M1 can be replaced by a perfect current source, and

the value of the current is independent of the output, the inaccuracy introduced

by the drain-source voltage of M1 can be eliminated. For M2, if a feedback circuit

can be added to control the drain voltage of M2 to make it follow Vout, the channel

length modulation effect caused by the changing Vds2 can be diminished.
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Figure 3.8(b) depicts the circuit of the improved voltage subtractor. In the

circuit, M1 and M2 serve the same functions as in Figure 3.8(a). Two current

mirrors are added to isolate the input V 1 from the output. The lower current

mirror is required to employ large size transistors to minimize the change of Vc

caused by the change of V1. Cascode current mirrors are also recommended to

reduce the channel modulation effect on the current. The transistors M3 − M5

consist of a feedback loop that makes Va follow Vout. M4 and M5, the same in

size, incorporate a subtraction circuit just like the one shown in Figure 3.8(a),

except NMOS transistors are used this time. Hence the following equation is

approximately satisfied following equation (3.38):

Vout − Vb ≈ Vbias − Vss = constant. (3.40)

According to the equation, when Vout changes, Vb changes in the same direction

with about an identical amount. If M3 is big in size, and the changed current

caused by V1 results in little change on Vgs3, then Va can be taken as following Vb.

As a result, Va follows Vout, and the drain-source voltage effect of M2 is mitigated

by the feedback circuit comprised of M3−M5.

Another implementation of a voltage subtractor (or adder) is from [67], called

the pool circuit, which, as depicted in Figure 3.9, consists of two differential pairs.

The currents of M1 and M2 , derived with the same method for equation (3.23),

are described be the following equations:

IM1 =
1

2

(
IB1 + Kn∆V

√
2IB1

Kn

−∆V 2

)
, (3.41)

IM2 =
1

2

(
IB1 −Kn∆V

√
2IB1

Kn

−∆V 2

)
, (3.42)

where ∆V is the difference of the gate voltages of M1 and M2:

∆V = V1 − Vout. (3.43)
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Figure 3.9: Pool circuit works as voltage adder/subtractor.

Since M3 and M4 is connected as a current mirror, the current in M4 is forced to

equal that in M1. Therefore, the output current from the left differential pair is

the difference of the currents in M1 and M2:

I1 = IM4 − IM2 = IM1 − IM2 (3.44)

= Kn(V1 − Vout)

√
2IB1

Kn

− (V1 − Vout)2.

Similarly, I2 can be derived from the differential pair on the right side:

I2 = IM7 − IM5 = IM6 − IM5 (3.45)

= Kn(V2 − V3)

√
2IB2

Kn

− (V2 − V3)2.

If IB1 = IB2, with the use of the relation I1 = −I2, combining equations (3.44)

and (3.45) yields the expression for the output voltage in terms of V1, V2 and V3:

Vout = V1 + V2 − V3. (3.46)

Therefore, the pool circuit can be used as a subtractor with V1 or V2 being fixed,

or a adder with V3 being fixed. Compared to Maundy’s voltage subtractor/adder,

the pool circuit is more flexible to the inputs and can work alone as an operational
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Figure 3.10: Improved pool circuit.

unit, whereas Maundy’s circuit needs to be cascaded to cancel Vdd in equation

(3.38), and is limited by the saturation region of M1 and M2 in Figure 3.8 and

thus requires V1 > V2 + 2Vtp, derived from:





V1 > Vout + Vtp,

Vout − V2 > Vtp.
(3.47)

The linearity of the pool circuit is limited by the channel length modulation

effect, and the effect influences both the left side and the right side of the circuit.

We propose a new version of the pool circuit, shown in Figure 3.10, to alleviate the

channel length modulation effect. The wire connections among M3, M4, M7, and

M8 are changed to make the currents of M3 and M4 mirrored from the currents of

M7 and M8 separately. Hence, IM1 − IM2 = IM5 − IM6 is satisfied, and this leads

to the same expression of the output voltage as equation (3.46). The advantage

of the new circuit is that the right part of the circuit is totally independent of

the output. M3, M4, M7, and M8 can be applied with large size transistors to

minimize their source-gate voltage changes caused by the inputs, and make Vb and

Vc roughly equal.
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3.3.2 Exponential Functions

We select NPN transistors to implement the exponential functions needed in the

heart model. The exponential property of a NPN transistor comes from its I − V

characteristics in the forward-active region that can be described by:

Ic = Is0e
Vbe
VT , (3.48)

where Is0 is the reverse saturation current, and VT is the thermal voltage. In order

to obtain an exponential function, a voltage is taken as the input and connected

to the base of a NPN transistor. The current of the collector is then exponentially

decided by the base voltage. NPN transistors can also be used to calculate loga-

rithms, if the base-emitter voltage is taken as output when the collector current is

treated as the input.

Different from the gates of MOS transistors, NPN devices demand currents on

the bases. When the base serves as an input terminal, we can no long consider

the NPN well isolated from the preceding circuit and neglect its influence. In

addition, the base voltage needs to be controlled to be less than about 0.7 V to

avoid large current and high power consumption. These constraints add new design

requirements absent from MOS circuit designs. In the following, we will discuss

circuits based on NPN transistors. It is worth to mention that in our circuits, the

equations of the input-output relations of the function circuits are independent of

Is0. We use a single size for all NPN transistors and add compensation circuits to

cancel the Is0 terms in the equations. The advantage is that the function circuits

can be more easily exported to different technologies which may have variant device

parameters, and still keep the same input-output relationship.
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Figure 3.11: Emitter-coupled circuit.

Exponential Circuit Using Differential Pairs

The most frequently used exponential function in the Beeler-Reuter model has the

form:

F (x) =
C1

eC2(x+C3) + 1
, (3.49)

where C1, C2, C3 are constants. This equation is very similar to the current

expressions for the emitter-coupled pair circuit, shown in Figure 3.11. M1 provides

a current I0 whose value is decided by a bias voltage Vbias, and M2 and M3 serve

as active loads of Q1 and Q2. M4 and M5 copy the currents in Q1 and Q2 and

send them to the outputs. The transistors are matched on the left side and the

right side. The currents of Q1 and Q2 are described by the following equations:

Ic1 = Is0e
V+−Va

VT , (3.50)

Ic2 = Is0e
V−−Va

VT , (3.51)

I0 × αF = Ic1 + Ic2, (3.52)

where αF is defined by the transistor forward current gain βF and is approxi-

mately equal to 1: αF = βF

βF +1
' 1. Equation (3.50)−(3.52) leads to the following
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Figure 3.12: Circuit that implements equation (3.49).

expressions:

Ic1 =
I0

e
(−∆V

VT
)
+ 1

, (3.53)

Ic2 =
I0

e
(∆V

VT
)
+ 1

, (3.54)

where we take αF = 1, and ∆V is the difference of the two inputs ∆V = V+− V−.

The great similarity between equations (3.53) (3.54) and equation (3.49) in-

dicates that the emitter-coupled pair circuit can be used to provide the function

described in equation (3.49). The main task to adopt it arises from the differences

of the exponential powers in the equations, which require linear transformations

between x and ∆V . To solve the problem, linear modules introduced in section

3.3.1 are applied to perform the conversion, as illustrated in Figure 3.12. G1 and

G2 are identical voltage to current converters (VCC), whose transconductance is

g1. They can be implemented with the differential circuit introduced previously in

Figure 3.5. H1 and H2 are identical current to voltage converters (CVC), whose

transimpedance is h1. They can be realized with the circuit presented in section

3.3.1, Figure 3.6. The voltage Vb is expressed by the following equation:

Vb = Iah1 + bH1 = h1(x · g1 + bG1) + bH1 (3.55)

= x · g1h1 + bG1h1 + bH1,
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where bG1 and bH1 are the output offsets of G1 and H1 when their inputs are zero.

Similarly, Vc can be expressed by:

Vc = −C3g1h1 + bG1h1 + bH1. (3.56)

Two voltage buffers replicate Vb and Vc to be Vd and Ve and provide currents to the

bases of the NPN transistors in the emitter-coupled circuit. Following equations

(3.53) and (3.54), Iout can be expressed by:

Iout =
I0

e
− g1h1(x+C3)

VT + 1
, (3.57)

or

Iout =
I0

e
g1h1(x+C3)

VT + 1
, (3.58)

depending on which side of the emitter-coupled pair the current comes from. Let

I0 equal to C1, and g1h1

VT
equal to C2, the equation of Iout then becomes the same

as equation (3.49).

The advantages of using double VCCs and CVCs are the offsets in their outputs

can be canceled. From the other point of view, if only a single VCC and CVC are

used, the offset terms bG1h1 + bH1 in equation (3.55) will be required to implement

C3. This makes the design very challenging, because C2 and C3 in equation (3.49)

are, though independent of each other, now implemented to be determined by

the parameters of H1, and h1 and bH1 can not be adjusted independently in the

introduced CVC circuit.

Single Exponential Term

In this section, we introduce how we realize the circuit to calculate a single expo-

nential term, which can be described with the equation:

F (x) = C1e
(C2x+C3), (3.59)
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Figure 3.13: Circuit implementation of equation (3.60).

where C1, C2, C3 are constants. The above equation is equivalent to:

F (x) = C4e
C5(x+C6)

VT , (3.60)

where C4, C5, C6 are constants and restricted by:




C5

VT
= C2,

C4e
C5C6

VT = C1e
C3 .

(3.61)

The similarity between equation (3.60) and equation (3.48) allows the circuit imple-

mentation of equation (3.60) using the exponential properties of NPN transistors.

Looking at the circuit shown in Figure 3.13, G1 is a linear transconductance,

and H1 is a linear transimpedance. G1 and H1 convert the input Vin to Vb, which

can be expressed by:

Vb = Iah1 + bH1 = h1(Ving1 + bG1) + bH1 (3.62)

= Ving1h1 + bG1h1 + bH1,

where g1 and h1 are the transconductance and transimpedance of G1 and H1, and

bG1 and bH1 are their offsets when the inputs of G1 and H1 are zero. Suppose G2

and H2 are exactly the same as G1 and H1, taking Vin = Vbias into equation (3.62)

we then obtain the equation for Vc using the equation for Vb:

Vc = Vbiasg1h1 + bG1h1 + bH1. (3.63)
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The second pair of transconductor and transresistor G2 and H2 are used to cancel

the offset bG1h1 + bH1 as we will see soon.

Q1 and Iin compose a logarithm function, and the voltage Vd is decided by

the current Iin. Assuming the forward current gain βF of Q1 is large, so that the

current flowing into the base can be ignored and Iin ≈ Ic,Q1, Vd is then described

by the following formula, derived from equation (3.48):

Vd = VT ln
Iin

Is0

. (3.64)

A pool circuit, introduced in section 3.3.1, puts Vb, Vc, and Vd together following

equation (3.46), and yields an output voltage expressed by:

Ve = Vb − Vc + Vd. (3.65)

Replacing Vb, Vc, and Vd with equation (3.62), (3.63), and (3.64) generates:

Ve = (Vin − Vbias)g1h1 + VT ln
Iin

Is0

. (3.66)

Note that the offset in G1 and H1 are canceled by that of G2 and H2.

Ve is sent to the output transistor Q2 through a voltage buffer to control the

output current Iout. The voltage buffer, presented in section 3.3.1, reproduces the

voltage Ve in its output and provides current to the base of Q2. Hence the collector

current of Q2 can be described in terms of Ve using the I −V characteristics of an

NPN transistors:

Iout = Is0e
Ve
VT (3.67)

= Is0e
(Vin−Vbias)g1h1+VT ln

Iin
Is0

VT

= Iine
g1h1(Vin−Vbias)

VT .

Substitute Iin with C4, and substitute g1h1 with C5, Vbias with −C6, and Vin with

x in equation (3.67), we obtain the same expression as equation (3.60). Hence,
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the circuit in Figure 3.13 is a realization of equation (3.60). The circuit does not

require C5 to be positive, because Vin and −C6 can be connected to the negative

input terminal of G1, and thus in equation (3.67) there is an additional “-” sign

in front of g1h1 for this case. Parameter scaling is involved when C4 can not be

directly represented by Iin in a circuit.

The circuit is restricted by the base voltage of Q2, or equivalently Ve, with tak-

ing account of the power on Q2. Since the collector currents increase dramatically

with increasing base-emitter voltage, the current can be amazingly high when Ve

reaches above a certain value. To avoid this situation, Ve is normally constrained to

be under 0.7 V . The restriction can be expressed mathematically by the following

equation, using equation (3.66):

(Vin + C6)g1h1 + Vbe1 < 0.7, (3.68)

⇒ (Vin + C6)g1h1 < 0.7− Vbe1. (3.69)

The restriction can be satisfied by selecting proper C4 and C6 under the constraint

described by equation (3.61). Note the input voltage of the “V buffer” Ve is not

required to be higher than 0. When Ve < 0, the collector current of Q2 is nearly

(if not absolutely) 0.

The circuit of Figure 3.13 can be used to replace the I0 in Figure 3.12 to realize

functions of the form:

F (x) =
D1e

D2x

eD3(x+D4) + 1
, (3.70)

where D1 −D4 are constants.

Logarithm Function

The circuit that is used here to realize logarithm functions is depicted in Figure

3.14. The NPN transistors Q1 and Q2, connected like diodes, take Ix and Ic as
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Figure 3.14: Circuit implementation of logarithm function.

their collector currents, with Ic, a constant, working as a bias, and Ix being taken

as a variable. Va and Vb are determined by the base voltages and described by:

Va = VT ln
Ix

Is0

, (3.71)

Vb = VT ln
Ic

Is0

. (3.72)

The output current of the circuit Iout is controlled by Va and Vb through a linear

voltage to current converter G1 (refer to section 3.3.1), and is expressed with:

Iout = g1(Va − Vb) = g1VT ln Ix − g1VT ln Ic = g1VT ln
Ix

Ic

, (3.73)

where g1 is the transimpedance of G1. Therefore the circuit in Figure 3.14 is the

implementation of functions of the form:

F (x) = C1 ln C2x, (3.74)

where C1 and C2 are constants, if we let g1 = C1/VT and let Ic = 1/C2. Current

mirrors and parameter scaling can be used to handle the difference between C1

and g1VT .

3.3.3 Multipliers

Analogue multipliers are important building blocks in analog signal processing.

The literature [56] gives a review on the multiplier circuits that are based on the
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Gilbert cell. Those circuits take voltages as inputs, and output currents. In the

VLSI design of the heart model, because in most cases signals are represented

by currents (refer to Table 3.2) due to the easy manipulation of current signals

compared to voltage signals, we focus on current multipliers here. Various CMOS

current multiplier circuits have been published, with transistors operating in either

the subthreshold region or the strong inversion region [51]−[54]. Many of them,

like the circuits introduced in literature [51] and [52], are composed of both NMOS

and PMOS transistors and require their parameters to be equal, i.e. Kn = Kp

or (and) Vtn = Vtp. This restriction is usually not easy to satisfied because of

the limitation of fabrication technologies. In this section, we present a current

multiplier proposed by Tanno. After that, we will introduce a multiplier based on

bipolar transistors for implementing cascaded multiplications. A scheme of making

big capacitors based on the bipolar multiplier will be presented last.

Tanno Multiplier

The Tanno multiplier is developed based on the quarter square technique, which

is defined by:

Io = (Ix + Iy)
2 − (Ix − Iy)

2 = 4IxIy. (3.75)

The technique uses addition and subtraction operations, as well as squaring oper-

ations. The requirement decides that current-squaring circuits are needed in the

multiplier circuits.

The squaring circuit used by the Tanno multiplier is depicted in Figure 3.15(a)

[54]. The transistors work in the strong inversion region. M1 and M2 are identical,

and they incorporate the bias circuit, in which Vb is decided by the bias current

IB. M3 and M4 are also identical in size. The sources and gates of M1−M4 are
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Figure 3.15: Tanno current multiplier. (a)Basic block of Tanno multiplier.

(b)Tanno multiplier.

connected into a loop, and hence their gate-source voltages follow:

Vgs1 + Vgs2 = Vgs3 + Vgs4. (3.76)

Their gate-source voltages can be expressed in terms of their currents:

Vgs1 = Vgs2 =

√
IB

KM1

+ Vt, (3.77)

Vgsi =

√
Ii

KM3

+ Vt (i = 3, 4), (3.78)

where we assume the body-source voltages of the transistors are the same, so that

the threshold voltages are all equal to Vt. When KM1 = KM3, we have:

2
√

IB =
√

IM3 +
√

IM4. (3.79)

From Figure 3.15(a), the current in M3 is:

IM3 = Io = IM4 − Iin. (3.80)
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Combining equation (3.79) and (3.80) yields:

IM3 + IM4 = 2IB +
I2
in

8IB

, (3.81)

and thus:

Io =
(Iin − 4IB)2

16IB

. (3.82)

The sizes of M1 and M2 are not necessary to be the same as for M3 and M4.

Assume KM1 = mKM3, then Io of Figure 3.15(a) is described as:

Io =
(mIin − 4IB)2

16mIB

. (3.83)

The Tanno multiplier is composed of one bias block, four output blocks, and a

current adder/subtractor, as depicted in Figure 3.15(b). The current Ia, Ib, Ic, and

Id can be expressed by equation (3.83) with the replacement of Iin with 0, Ix + Iy,

Ix and Iy respectively. The output of the multiplier circuit is then described by

the following:

Iout = Ia + Ib − Ic − Id =
m

8
× IxIy

IB

. (3.84)

The current subtractor in Figure 3.15(b) can be realized with the circuit shown in

Figure 3.16, in which Iin1 and Iin2 are copied with current mirrors and changed

directions so that Iout is Iin1 − Iin2.

A limitation of the Tanno multiplier relies on the assumption that the threshold

voltages of M1−M4 are identical in Figure 3.15(a) so that the threshold voltage

Vt can be canceled out to obtain equation (3.79). This assumption may not be true

if the transistor bodies are not connected like in Figure 3.15(a), because Vc changes

along Iin, and this makes the source voltage of M3 vary and, thus, the threshold

voltage of M3 can be different from that of M1 due to the body effect. For the

AMI 1.5 µm ABN process we select for the VLSI design, the differentiation of Vt
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Figure 3.16: Current subtractor.

results from the connection of the bodies of all NMOS transistors to Vss, and hence

the threshold voltages of M1, M2, M3 and M4 are no long equalized. Therefore,

we use PMOS devices to build the Tanno multiplier in our circuit to tie the bodies

and the sources of PMOS transistor to n-wells for diminishing the body effect.

Compared to other current multipliers, the Tanno multiplier has relatively sim-

ple circuit topology. The Tanno multiplier has another advantage that its two

inputs are completely equivalent, i.e. its output current is identical to the result

obtained after switching Ix and Iy, ignoring the errors caused by transistor mis-

match. This is opposite to some multipliers, for example the Wiegerink Multiplier

[53], in which the product results differ after switching the input multiplicands

due to the non-symmetrical inputs caused by unavoidable high order effects of the

transistors.

The working ranges of the Tanno multiplier are restricted by the prerequisite

of the circuit that all transistors work in the saturation region. Taking the circuit

branch of M7 and M8 as an example, when Ix ≥ 0, we have:

IM7 + Ix = IM8 > Ix > 0. (3.85)
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The upper bound of the magnitude of the input current Ix is limited by the gate

voltage of M8, which needs to be lower than Vb to make M7 and M8 work in the

saturation region. Vb is given by Vb = 2Va = 2(
√

IB

mKM8
+ Vt). Therefore IM8 can

be bounded by:

IM8 = KM8(Vgs,M8 − Vt)
2

< KM8(Vb − Vt)
2 (3.86)

= KM8[2(

√
IB

mKM8

+ Vt)− Vt]
2

< KM8(2

√
IB

mKM8

)2

= 4
IB

m
. (3.87)

Combining equation (3.87) with (3.85), we have:

4
IB

m
> IM8 > Ix > 0

⇒ Ix <
4

m
IB (Ix ≥ 0). (3.88)

Similarly, when Ix < 0, we can derive that:

−Ix <
4

m
IB (Ix < 0). (3.89)

Putting the equations for Ix ≥ 0 and Ix < 0 together, and applying them to the

circuit branches of inputs Ix + Iy and Iy, we derive the working range of the inputs

of the Tanno multiplier as described below:





|Ix + Iy| < 4
m

IB,

|Ix| < 4
m

IB,

|Iy| < 4
m

IB.

(3.90)
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Figure 3.17: Multiplier based on NPN transistors.

Multipliers Based on Bipolar Devices

The Tanno multiplier perform the multiplication of two inputs. In the case that

the product of several variables is to be calculated, the multiplier can be cascaded.

However a cascaded multiplier has a problem of accumulating errors, and due to

the peripheral circuits necessary to duplicate currents in the inputs and sometimes

to inverse the current directions in the input or output, the extra circuits may

introduce further inaccuracies. An operation like the one presented in the Beeler-

Reuter model, m3hj (refer to the equations (2.44)), requires the multiplication to

be carried out four times, which results in a big complicated Tanno type of multi-

plier circuit, and this motivates us to find a circuit for easy cascaded multiplication.

We observe that the input variables of m3hj are all positive from their physical

meanings, and this inspires us to take advantage of the exponential property of

NPN transistors for realizing the cascaded multiplication, and the implemented

multiplier is the first quadrant multiplier.

In the example presented below there are three multiplicands: I1, I2 and I3,

which are all positive. The circuit implementation is illustrated in Figure 3.17.
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Q1 − Q5 are connected as diodes and their base voltages are decided by I1 − I3,

Ic1 and Ic2 in the logarithm relation described by:

Vbe,z = VT ln
Iz

Is0

(z is 1, 2, 3, c1 or c2, Iz > 0). (3.91)

Ic1 and Ic2 are constant bias currents. The pool circuits (refer to section 3.3.1

Figure 3.9) add I1, I2 and I3 together, and subtract Ic1 and Ic2 from the sum, i.e.

Vb is:

Vb = Va + Vbe3 − Vbe,c2 = (Vbe1 + Vbe2 − Vbe,c1) + Vbe3 − Vbe,c2. (3.92)

Note that the inputs of the pool circuits are the gates of MOS transistors, and,

thus, the effect of the pool circuit on Q1−Q5 can be treated as none. Therefore,

when Ic1 = Ic2, Q4 or Q5 can be saved with one NPN transistor driving two inputs

of the pool circuit due to the ignorable loading effect from the pool circuit.

The voltage buffer (refer to section 3.3.1) copies Vb to the output, and provides

current to the base of the output transistor Q6. The current of Q6 collector is

exponentially decided by the base-emitter voltage, and can be expressed in terms

of the input currents from equation (3.92):

Iout = Is0e
Vb
VT =

I1I2I3

Ic1Ic2

. (3.93)

The coefficient difference between Iout and the real product of I1 · I2 · I3 can be

easily fixed with parameter scaling and current mirrors.

For a general situation in which N +1 multiplicands are involved, the circuit in

Figure 3.17, specifying the case N = 2, can be extended by adding NPN transistors

and the pool circuits. For an operation with N+1 multiplicands, N+1 NPN devices

are needed to port the input currents I1 − IN+1, N NPN transistors are used to

host the constant currents Ic1 − IcN for canceling the Is0 terms in the equation of
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the product result, and N pool circuits are needed to perform the addition and

subtraction. If there are identical currents among Ic1−IcN , some bias NPN devices

can saved. For example, in Figure 3.17, if Ic1 = Ic2, Q5 can be saved by connecting

the base of Q4 to the second pool circuit. The circuit represents a mathematical

equation expressed as follows:

Iout =
I1I2I3...IN+1

Ic1Ic2...IcN

. (3.94)

Like other cascaded circuits, this type of multiplier circuit also has the issue of

accumulated errors. The magnitude of the error largely depends on the accuracy

of the linear addition/subtraction operation of the pool circuits. Fortunately, for

designing circuits of the Beeler-Reuter model, the errors can be kept well under

control. In the pool circuit shown in Figure 3.10, the error mainly comes from the

channel length modulation effect of M3 and M4. For the case that the swing of

the inputs is small, it is possible to reduce the difference of Vds3 and Vds4 to a very

small range. Due to the restriction of the physical meanings in the heart cell model,

the input currents of the multiplier can never reach the value of absolute zero and

usually have a relative range (i.e. the maximal value divided by their minimal

value) within 105. Hence, the input voltages of the pool circuits are normally

between 0.4V and 0.7V , corresponding to a range of current changing between ×1

and ×105. Therefore, the fluctuation of the inputs are within 0.3V , which can be

treated small for reducing the channel length modulation effect.

Shrinking Current with Bipolar-Based Circuit

Current mirrors are probably the most popular current amplifying/shrinking cir-

cuits. They work based on the linear dependence of the drain-source currents of

MOS transistors on the W :L ratio, or the linear dependence of the collector cur-
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Figure 3.18: Current amplifier/shrinker based on bipolar transistors.

rents of NPN transistors on the size of their emitters. However, current mirrors

may take big layout areas. In the case that a current needs to be shrunk by 104

times, it is impractical to build a current mirror circuit composed of transistors

with one having a W :L ratio of 104 times of another. Then, cascaded current

mirrors are needed for this case. In the following, we propose a new approach to

implement current amplifiers/shrinkers, and it is based on bipolar transistors.

The circuit is depicted in Figure 3.18, in which, the dotted area is a multiplier

circuit like the one shown in Figure 3.17, except in this circuit only two multipli-

cands Iin and In1 are illustrated, and In1 is fixed. The lower half of the circuit,

based on PNP transistors, works just the same way as the upper half except work-

ing compensatively for the case Iin < 0. When Iin > 0, Iin goes through Qn1, which

decides the voltage Va, and Qp1 does not take any current. Hence the voltages on

the bases of the output transistors Qn4 and Qp4 are:




Vbe,n4 = Va + Vbe,n2 − Vbe,n3,

Vbe,p4 = Va + Vbe,p2 − Vbe,p3.
(3.95)

If the selection of the currents In1, In2, Ip1 and Ip1 makes |Vbe,n2 − Vbe,n3| < |Va|
and |Vbe,p2 − Vbe,p3| < |Va|, the voltages on the bases of the output transistors Qn4
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and Qp4 are then both positive in equation (3.95). Therefore Qn4 creates a non-

zero collector current, while Qp4 is in the cut-off region and conducts no current.

Similarly, when Iin < 0, Iin goes through Qp1 alternatively, and the output current

Iout is delivered by Qp4 while Qn4 is cut off. Therefore the collector currents in Qn4

and Qp4 are expressed by:

Ic,n4 =





IinIn1

In2
(Iin ≥ 0),

0 (Iin < 0).
(3.96)

Ic,p4 =





0 (Iin ≥ 0),

IinIp1

Ip2
(Iin < 0).

(3.97)

The current mirrors on the right reverse the direction of Ic,n4 and Ic,p4, and

send the currents to the output:

Iout = kIin, (3.98)

where the amplification factor k is decided by k = In1

In2
= Ip1

Ip2
.

The proposed current amplifier/shrinker circuit can be used to magnify ca-

pacitances in our VLSI heart circuits. Capacitors serve as integration devices in

our VLSI design, and their voltages are the outputs that drive the inputs of the

succeeding circuits. Since the inputs of the succeeding circuits are gates of MOS

transistors and take no currents, we can build the integration circuits with smaller

capacitors using the current shrinker circuits and still keep the waveforms of the

voltages across the capacitors. This will be introduced in section 3.4.7.

3.4 VLSI Design of Beeler-Reuter Model

In this section, we are going to present the VLSI circuit for implementing the

Beeler-Reuter model. The mathematical description of the model for VLSI realiza-
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Figure 3.19: Top-level circuit diagram of the Beeler-Reuter model.

tion was summarized in section 3.2.4. The circuit building blocks of mathematical

functions need for the cardiac cell model have all been introduced in section 3.3.

A top level block diagram for realizing the cardiac cell model is shown in Figure

3.19, and it is mapped from the equations that describe the membrane potential

Vm with the initial condition shifting process (refer to section 3.2.3), i.e. equations

(2.40) and (2.41), which are combined and rewritten as follows:

Cm
dVm

dt
= −(IK1 + Ix1 + INa + Is) + Iext. (3.99)

In the diagram in Figure 3.19, the membrane capacitor Cm is charged by five

current sources, an external current Iext which serves as the stimulus to activate

the cardiac cell model, and four ionic channel currents, IK1, Ix1, INa, and Is. E

is used to shift the resting initial voltage of the capacitor to zero, and Vm0 is

the original initial condition of Vm. Note that the positive input terminal of E,

connected with one side of the capacitor, does not take any current and, hence,

E does not contribute any current to charge the capacitor. The ionic current

modules are nonlinearly controlled by the membrane potential Vm and do not

draw any currents at their inputs.

Figure 3.20 provides more details for the four ionic currents. IK1, having the

simplest formulation among the four, is determined only by Vm, and thus can be

described by a voltage-controlled current source, as shown in Figure 3.20(a). Ix1
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Figure 3.20: Diagrams of ionic current modules: (a)IK1, (b)Ix1, (c)INa, (d)Is.

can be separated into two parts as stated in equation (2.43): the Vm dependent Ix1,

and a potential- and time-dependent gating variable x1. Hence, Ix1 can be modeled

as the product of Ix1 and x1, as illustrated in Figure 3.20(b). The diagram for INa

is shown in Figure 3.20(c), in which gating variable m is cubed and multiplied by

the gating variables h and j, and the product, amplified by a factor of gNaV and

then added with the constant sodium conductance gNaC , is multiplied with the

output of the linear transconductance G whose output current is linearly decided

by Vm − ENa; this implements equation (2.44). The diagram for Is is shown in

Figure 3.20(d). As described in equation (2.45), Is is the product of a constant

transmembrane conductance gs, two gating variables d and f , and the difference

of Vm and the calcium equilibrium potential Es. The resulting Is is duplicated into

two copies in Figure 3.20(d), with one being the output to charge the membrane

capacitor Cm, and the other feeding back to control the generation of Es.
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Figure 3.21: IK1 module is composed of a constant current source and two sigmoid-

function circuits. Refer to Appendix A, schematics page Sch-2 to Sch-4 for tran-

sistor circuits.

Next we will introduce how the ionic currents are implemented with transistor

circuits using the function blocks presented in section 3.3, and explain the structure

of each ionic current module based on Figure 3.20. In the rest of the presentation,

we use the notations with a single quotation mark to represent the variables as-

sociated with reformulated equations. The simulation results of the VLSI circuits

are also provided in the following sections.

3.4.1 Time-Independent Potassium Current IK1

The description of IK1 is given in equation (3.5), and is rewritten as follows after

the variables are scaled:

I ′K1 = 2.742× 10−6 +
3.632× 10−6

e−5.966(V ′m−0.3277) + 1
− 5.879× 10−6

e11.77(V ′m+0.8823) + 1
. (3.100)

Following equation (3.100), the overall diagram for modeling IK1 can be depicted

in Figure 3.21, where the constant current source I0 represents the first term on

the right side of the equation, and the two sigmoid sub-circuits implement the two

terms containing exponentials in the equation. The sigmoid functions are realized
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Figure 3.22: Ideal and simulated curves: IK1 vs. Vm.

using the coupled-emitter circuit shown in Figure 3.12. The current to current

converter F is a current mirror and is used to switch the direction of the output

current of the top sigmoid block in Figure 3.21. The complete transistor circuits

for ionic current IK1 are provided in Appendix A, schematics page Sch-2 to Sch-4.

The simulation result of implementing equation (3.100) using transistor circuits

is shown in Figure 3.22. The x-axis is the membrane potential Vm, whose value

ranges from -90 mV to 50 mV during an action potential. The solid line depicts the

ideal IK1 vs. Vm curve, i.e. calculated directly from equation (2.42), and the dashed

line is the simulated IK1 which is scaled back to the original magnitude (the scaling

equation is provided in Table 3.2, IK1 = 106I ′K1) in order to be compared with the

ideal values. We adopt the average signal-to-error ratio (SER) and R-square as the

metrics to evaluate how close the circuit realization is to the original equations.

The definition of the signal-to-error ratio follows the signal-to-noise ratio, which

describes the power ratio of a given transmitted signal to the background noise,
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and it is formulated as the following:

SER =
1

N

N∑

i=1

10 log
E2

i

(Ei −Oi)
2 (Unit: dB), (3.101)

where Ei are the expected values, i.e. the values calculated from the mathematical

model, and Oi are the observed value, i.e. the circuit simulation results. R-square

is a statistic that measures how similar the waveforms of data sets are to each other

[68], and is also called the square of the multiple correlation coefficient. R-square

is defined as:

R-square = 1−
∑N

i=1(Ei −Oi)
2

∑N
i=1(Ei − Ō)2

, (3.102)

where Ei and Oi have the same meaning of those in equation (3.101), and Ō is the

mean over the N observed values. R-square takes any value between 0 and 1, and

a value closer to 1 indicates higher similarity between two data sets. The average

SER for realizing the function of IK1 with VLSI circuits is 36.0 dB. The R-square

between the ideal data and the simulated data for IK1 is 0.9966.

3.4.2 Gating Variables

Gating variables are described by first-order differential equations, which are given

in equation (2.46) and are rewritten in the following:

dz

dt
= αz − (αz + βz)z, (3.103)

where z is one of the gating variables, x1, m, h, j, d, or f . The six gating

variables of the Beeler-Reuter model can be implemented with a circuit of the

same structure, as illustrated in Figure 3.23, with different parameters. In the

diagram shown in Figure 3.23, α Function and β Function are two black boxes

that model the opening and closing rates of the gating variable, and their VLSI
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Figure 3.23: Detailed structure of gating variable circuits x1, m, h, j, d, and f .

circuits are all different as they depend on the equations of the opening and closing

rates (provided in equations (2.47)-(2.58)). The α Function and the β Function

are controlled by voltage V ′
m, i.e. the scaled membrane potential Vm, and create

output currents α′z and β′z. The α Function has two identical outputs, with one,

joined with β′z at point a, going to the upper multiplier, and the other alone feeding

into the lower multiplier. The products of the multipliers, in the form of currents,

are subtracted and charge the capacitor Cz. The voltage of the capacitor Vz is

connected to a linear transconductor G, whose negative terminal is connected to a

constant voltage Vbias, which is used to shift the initial voltage of the capacitor Cz

as introduced in 3.2.3. The output current of G is replicated into two copies, and

one copy is the output which is sent to the succeeding circuits in the cardiac cell

system, and the other copy serves as another multiplicand of the upper multiplier.

Here we use z′, α′z and β′z to indicate the variables after being scaled, to distinguish

them from the original ones denoted with z, αz and βz.
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In Figure 3.23 the voltage across the capacitors is described by:

Cz
dVz

dt
= I2 − I1. (3.104)

Using the relation of Vz and z′ and the description of the input/output of the

multipliers (refer to section 3.3.3 equation (3.84)) provided as follows:

z′ = (Vz − Vbias) · g, (3.105)

I1 = (α′z + β′z)z
′m0, (3.106)

I2 = α′zd0m0, (3.107)

where g is the transconductance of G, d0 is a constant current, and m0 is a constant

factor of the multipliers. We therefore obtain the following equations:

Cz

g

dz′

dt
= α′zd0m0 − (α′z + β′z)z

′m0,

⇒ dz′

dt
= α′z

d0m0g

Cz

− (α′z + β′z)
z′m0g

Cz

. (3.108)

Suppose the scaling factor for αz and βz is Aαz, and the scaling factor for z is

Az, we have:





z = Azz
′,

αz = Aαzα
′
z,

βz = Aαzβ
′
z.

(3.109)

Taking the above scaling equations into equation (3.103), we derive the following:

Az
dz′

dt
= Aαzα

′
z − Aαz(α

′
z + β′z)Azz

′,

⇒ dz′

dt
=

Aαz

Az

α′z − Aαz(α
′
z + β′z)z

′. (3.110)

96



Table 3.4: Vbias for initial conditions of gating variable capacitors (unit: V ).

Gating variable x1 m h j d f

Vbias -0.0044 -0.00989 -0.4732 -0.468 -0.00188 -0.5

Comparing equation (3.108) with (3.110) yields the expression for the relation

between the scaling factors and the constant parameters of the circuit:

Az =
1

d0

, (3.111)

Aαz =
m0g

Cz

. (3.112)

The selection of the scaling factors and the circuit parameters are restricted by

the realization circuit of G (refer to section 3.3.1). The range of variation of Vz is

required to be small enough in order to achieve high linearity in the transconductor

G. In our VLSI design, the variation of the differential input of G is constrained

to be within 0.5 V in the circuit. The constant current source d0 is selected to

be 5 µA, and, hence, z is scaled down by a factor of 2 × 105 (refer to Table 3.2

for the scaling of z ). m0 and g are set to 105 and 10−5 respectively. The scaling

factor of αz and βz is determined by their original maximum values, which, after

being scaled, are restricted to be within the working ranges of the multipliers. The

maximum magnitude of αz and βz are different for for different gating variables,

ranging from 10−3 to 102 , and this decides different values of the capacitance Cz

in the circuit. The scaling factors of αz (and βz) are given in Table 3.2 for the

six gating variables in the Beeler-Reuter model, and the corresponding Cz will be

provided in section 3.4.7, discussed together with the time scale.

In Figure 3.23, the negative input terminal of G is connected to a non-zero

voltage Vbias to shift the initial voltage of Cz to be zero, as introduced in section

3.2.3. The magnitude of Vbias is decided by the original initial condition of the
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gating variable, provided in Table 2.3, and the ratio of the capacitor voltage Vz

to the original gating variable z. Table 3.4 lists the values of Vbias for the gating

variables in the cardiac cell model, which make Vz(t = 0) = 0.

The transistor circuits of realizing the gating variables of the Beeler-Reuter

model are provided in Appendix A, and will be mentioned in the following sections

when presenting corresponding ionic currents.

3.4.3 Time-Dependent Potassium Current Ix1

Opening/Closing Rate of x1

The circuit for realizing gating variable x1 has been introduced in the previous

section and given in Figure 3.23. Here we only present the black boxes α Function

and β Function in the x1 circuit. The mathematical descriptions of αx1 and βx1

are provided in equations (2.47) and (2.48). They are rewritten as follows:

α′x1 =
2.012× 10−3e8.3(V ′m−0.5)

e5.7(V ′m+0.5) + 1
, (3.113)

β′x1 =
8.67× 10−5e−6(V ′m+0.9)

e−4(V ′m+0.2) + 1
, (3.114)

where V ′
m, α′x1 and β′x1 are the membrane potential Vm, the opening rate αx1 and

the closing rate βx1 after being scaled. Here we reorganize the constant coefficients

in the equations for easier circuit design. For instance, in the original equation

of α′x1 (2.47), the coefficient 0.0005 and the exponential with a constant power

e0.083×50 is re-organized as follows:

0.0005× e0.083×50 = 0.0005× e(+0.083×100)e(0.083×50−0.083×100) = 2.012× e(−0.083×50).

(3.115)

It is the term 2.012× 10−3e(−8.3×0.5) in equation (3.113) after being scaled. Equa-

tions (3.113) and (3.114), very similar to exponential-sigmoid equation (3.70), can
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Figure 3.24: Ideal and simulated opening and closing rate of x1. (a)αx1, (b)βx1.

be implemented with the emitter-coupled pairs combined with a single exponential

circuit block introduced in section 3.3.2. The block diagram of the exponential-

sigmoid circuit is shown in Figure 3.12, with I0 being replaced with the output

current created by the circuit depicted in Figure 3.13. The transistor circuits for

α′x1 and β′x1 are given in Appendix A, schematics page Sch-6 and Sch-7. The

simulation results of the transistor circuits are shown in Figure 3.24(a), for αx1,

and 3.24(b), for βx1. In both figures, the solid curves depict the ideal relations of

the opening/closing rates vs. Vm, calculated from equations (2.47) and (2.48), and

the dashed curves are the simulated results of the implementing circuits (schemat-

ics page Sch-6 and Sch-7 in Appendix A) after being scaled back to the original

magnitude for comparison (refer to Table 3.2 for the scaling of αx1 and βx1). The

average SER (signal-to-error ratio) for the circuit realization of αx1 is 15 dB, and

is 20.5 dB for βx1, and the corresponding R-square is 0.9907 for αx1 and 0.9978 for

βx1.
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Figure 3.25: Ideal and simulated curves: Ix1 vs. Vm.

Maximum Current of Time-dependent Potassium Channel: Ix1

As depicted in Figure 3.20(b), Ix1 is the product of x1 and Ix1. The expression

for Ix1, given in equation (2.43), is transformed with the Matlab Curve Fitting

Toolbox for easier circuit realization, and is rewritten as follows after scaling the

variables:

Ix1
′
= 4.264× 10−6 − 50× 10−6

e4.345(V ′m+1.31) + 1
, (3.116)

where we select the scale factor of Ix1 to be 106, i.e. Ix1 = 106 · Ix1
′
. Following

equation (3.116), Ix1
′
is realized in a VLSI circuit with a constant current source

and the sigmoid-function circuit illustrated in Figure 3.12. The transistor circuit

for Ix1
′

is in Appendix A, schematics page Sch-8. The PSpice simulated Ix1
′

vs. V ′
m, after being scaled back, is shown in Figure 3.25 with the dashed line,

compared with the ideal Ix1 vs. Vm curve of equation (2.43) depicted with the

solid line in the same Figure. The average SER (signal-to-error ratio) for the

circuit implementation of Ix1 is 27.7 dB, and the R-square between the ideal and

the simulated data is 0.9886.
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Figure 3.26: PMOS current multiplier based on Tanno multiplier.

Multiplier for Ix1 · x1

Ix1 is multiplied with the gating variable x1 to generate the final potassium current

Ix1, as illustrated in the diagram in Figure 3.20(b), and described by equation

(2.43). After the scaling and initial value shifting processes (provided in Table

3.2), equation (2.43) is changed to the following:

I ′x1 = 2× 105Ix1
′
x1′. (3.117)

The multiplier is based on the Tanno circuit, as introduced in section 3.3.3, with

some modification to adapt it to our application. The transistor circuit of the

multiplier is depicted in Figure 3.26, which is composed of a quarter squarer,

shown as the unshaded area in Figure 3.26, and a current subtractor, shown in the

shaded area in the figure. Different upper-rail voltages are applied for these two

parts of the circuit because of the constraints from the usage of the inputs and

the output of the multiplier module. These constraints follow from the fact that

the input currents, coming from current mirrors of the previous stage, restrict the
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Figure 3.27: Simulation results of modified Tanno multiplier.

voltages on the inputs to make the output transistors of the current mirrors work

in the saturation region. Since the voltages at the inputs are decided by the input

transistors Mxy1, Mx1, and My1, the sourcing PMOS transistors of the current

mirrors have very small working ranges in the saturation region if the previous

stage and the quarter squarer are powered by the same upper-rail supply voltages.

Hence, ground is employed instead of Vdd to serve as the upper rail voltage for

the quarter squarer circuit. For the output of the multiplier, the output voltage,

determined by the succeeding circuit, is limited to around 0 for our application, and

thus the current subtractor remains powered by Vdd. Different from the original

Tanno multiplier, PMOS transistors are used alternatively, and cascode structures

are employed in the bias block Mb2 and Mb3, and in the current subtractor to

mitigate the channel modulation effect. The complete circuit of this multiplier

with transistor parameters is provided in Appendix A, schematics page Sch-9.

The PSpice simulation result of the modified Tanno current multiplier is shown in

Figure 3.27.
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Table 3.5: Equations of the opening and closing rate variables for INa.

Variable Reformulated Equation Sig-to-Err R-Square

Ratio (dB)

α′m 1.097× 10−5 + V ′
m × 10−5 − 6.292×10−6

e−5.687(V ′m+0.762089)+1
25.9 0.9989

β′m 1.096× 10−5e−0.05690(V ′m+0.9) 17.0 0.9943

α′h 1.625× 10−5e−25(V ′m+0.9) -54.5 0.8776

β′h
8.5×10−6

e−0.082(V ′m+0.225)+1
39.8 0.9999

α′j
5.53×10−5e−25(V ′m+0.78)

e−2(V ′m+0.78)+1
-52.0 0.9972

β′j
1.5×10−5

e−10(V ′m+0.32)+1
28.2 0.9995

3.4.4 Time-Dependent Inward Sodium Current INa

Opening/Closing Rates of Sodium Gating Variables

There are three gating variables for the fast sodium current, m, h, and j. Their

realization circuits, illustrated in Figure 3.23, have been presented in section 3.4.2.

Hence, we will only introduce the circuit implementing the black boxes for the

opening and closing rate variables next.

The original equations for the opening and closing rates are provided in equa-

tions (2.49)−(2.54), which are rewritten in Table 3.5 to take into account the refor-

mulation processes as described in section 3.2. The third and the fourth columns

of Table 3.5 list the SER (signal-to-error ratio) and R-square of the PSpice sim-

ulated results for the transistor circuit realization of the opening and closing rate

variables vs. the values given from the equations, and this will be discussed after

the simulation results are presented.

α′m is realized following its expression shown in Table 3.5 by a constant current

source for the first term in the expression, a linear voltage to current converter for
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the second term, and a sigmoid-function circuit for the third term. The differential

circuit introduced in section 3.3.1, Figure 3.5, is adopted to realize the linear

voltage to current converter. The sigmoid-function circuit is shown in Figure 3.12

and presented in section 3.3.2. The detailed transistor circuit for implementing αm

is provided in Appendix A, schematics page Sch-11. The PSpice simulation results

of the circuit for αm compared with the ideal values calculated from the equation

are shown in Figure 3.28(a). β′m is implemented with the single exponential circuit

depicted in Figure 3.13 according to the expression of β′m given in Table 3.5, and

its transistor circuit is presented in Appendix A, schematics page Sch-12. The

circuit simulation results for βm are shown in Figure 3.28(b).

The expression for α′h in Table 3.5 contains a single exponential term, and thus

can be modeled with the exponential circuit illustrated in Figure 3.13. The circuit

for realizing the sigmoid function for β′h is depicted in Figure 3.12. The transis-

tor circuits for implementing αh and βh are provided in Appendix A, schematics

page Sch-13 and Sch-14, and their PSpice simulation results are shown in Figure

3.28(c) and (d) respectively with the dashed curves, compared with the ideal values

depicted with the solid curves.

The circuit for realizing α′j uses the sigmoid circuit in Figure 3.12, but with

replacement of I0 with the output current of the single exponential circuit shown

in Figure 3.13, whose value is exponentially decided by the input voltage. The

equation of β′j is realized, again, with the sigmoid-function circuit illustrated in

Figure 3.12. The transistor circuits for implementing αj and βj are provided

in Appendix A, schematics page Sch-15 and Sch-16. The curves of the circuit

simulated and ideal values of αj and βj vs. V m are shown in Figure 3.28(e) and

(f).
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Figure 3.28: Ideal and simulated opening and closing rates of gating variables for

INa. (a)αm. (b)βm. (c)αh. (d)βh. (e)αj. (f)βj.
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All circuits for the sodium opening and closing rates show high R-square values

as listed in Table 3.5, which indicate good correlation between the ideal and the

simulated results. Most circuits show good average SER, except αh and αj. The

low SER of αh and αj is because that, in a large range of the working region of

Vm, αh and αj are nearly zero, and this can be seen in Figure 3.28(c) and 3.28(e).

According to the definition of SER, i.e. equation (3.101), when the expected value

Ei tends to be zero and the observed value Oi is not as close to zero as Ei, the

SER then becomes negative and indicates a big difference between the expected

results and the observed value. The ideal value of αh drops fast from around 3 at

Vm = −90 mV to about 10−5 at Vm = −50 mV and reaches the order of 10−15 with

increasing Vm. Similarly αj drops from around 0.09 at Vm = −90 mV to the order

of 10−16 with increasing Vm. We observe that in the equation of gating variable

h (or j), that is equation (3.103), when αh (or αj) is close to zero, βh (or βj) has

high enough value to keep the term βz · z dominating the right side of the equation

(if z is not zero). Therefore we assume the close-to-zero values of αh and αj are

not as important as their larger values. Thus we ignore the big SERs of αh and αj

for the close-to-zero values. Recalculating the average SERs for αh in the range

Vm = [−90,−60] mV and for αj in the range Vm = [−90,−50] mV , where their

values are not so close to zero, the circuit implementation for αh and αj presents

a SER of 10.7 dB and 14.3 dB for each.

Sodium Current INa

The equation for implementing sodium current INa is from equation (2.44) and is

given as follows:

I ′Na = 1.28× 1023m′3h′j′(V ′
m − 0.5) + 3× 10−7(V ′

m − 0.5), (3.118)

106



Vm’

Q1

Q2
Q3

Q4

Ic1

Q5

Ic2 Vdd

m’3h’j’

Q6

F 

G1 G2 
×

Ena’ INa’

Gain=g1 Gain=g2

Gain=f

NPN Based 
Multiplier

Ena’
a

Vin  Iout
m’

Vin  Iout
h’

Vin  Iout
j’

Vin Vout
V BufferMulti-

Input
Pool 

Circuit

Vm’
Vh’
V j’

Vout

Vc1
Vc2

Figure 3.29: Circuit diagram of INa. Refer to Appendix A, schematics page Sch-10

for transistor circuits.

where I ′Na is the scaled sodium current, V ′
m is the scaled membrane potential,

and m′, h′, and j′ are the scaled gating variables. The scaling factors are listed

in Table 3.2. Following this equation, Figure 3.29 provides more details of the

implementation circuit for INa. The three modules on the left top corner model

the gating variables m′, h′, and j′ and can be realized with the circuit structure

introduced in Figure 3.23. G1 and G2 are linear transconductors, with gains

of g1 = 5µ and g2 = 0.3µ, respectively, and realize V ′
m − E ′

Na with different

amplification factors, where E ′
Na is, according to equation (3.118), 0.5 V . The

shaded area is a NPN-based multi-input multiplier that implements m′3h′j′. The

output of the NPN-based multiplier is then multiplied with the output current

created by G1, and the product is added to the output of G2 to achieve the final

I ′Na.

In the NPN-based multiplier depicted in Figure 3.29, Q1, Q2, Q3 take the

output currents from the gating variable modules and convert them into voltages.
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Figure 3.30: Circuit of a multi-input adder/subtractor for INa module. Refer to

Appendix A, schematics page Sch-17 for transistor circuits.

Q4 and Q5 provide biasing voltages. V-Buffer and Q6 transfer voltage back to

current. F serves to change the direction of the output current from the multiplier

and has a gain f = 1. Different from Figure 3.17, which uses cascaded pool circuits

as the adder/subtractor (refer to section 3.3.1), this NPN-based multiplier for INa

is based on the pool circuit shown in Figure 3.9 which is expanded for multiple

inputs as illustrated in Figure 3.30. Diff 1 corresponds to the differential circuit

on the left side of the pool circuit in Figure 3.9. Diff 2 to Diff 5, with each being

equivalent to the differential circuit on the right side of the pool circuit in Figure

3.9, are identical and are all connected to the output point Vout. Vout is connected

to the input of V-Buffer as shown in Figure 3.29, which does not draw any current

(refer to Figure 3.7(b) for V-Buffer). Hence, we have I1 = −(I2 + I3 + I4 + I5).

The expression of I1 follows equation (3.44), and Ii (i = 2, 3, 4, 5) follow equation

(3.45). If the non-linear terms (V1 − Vout)
2 and (V2 − V3)

2 in equations (3.44) and
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(3.45) are ignored, the currents can be linearly added to yield the output expression

for Figure 3.30:




I1 = Kn(V1 − Vout)
√

2IB1

Kn
,

I2,D2 + I2,D3 + I2,D4 + I2,D5 = Kn(V2,D2 − V3,D2 + V2,D3

−V3,D3 + V2,D4 − V2,D4 + V2,D5 − V3,D5)
√

2IB2

Kn
,

I1 = −(I2,D2 + I2,D3 + I2,D4 + I2,D5),

(3.119)

⇒ Vout = V1 + (V2,D2 − V3,D2 + V2,D3 − V3,D3 + V2,D4

− V2,D4 + V2,D5 − V3,D5), (3.120)

where, in order to make the symbols agree with those in equation (3.45), we use

I2,Di (i = 2, 3, 4, 5) to represent current Ii from Diff i, and use V2,Di and V3,Di

(i = 2, 3, 4, 5) to represent the voltages of the positive and negative terminals of

Diff i. Following equation (3.120), the output Vout in Figure 3.30 is described by:

Vout = 3V ′
m + V ′

h + V ′
j − (3Vc1 + Vc2), (3.121)

where Vm′ , Vh′ , Vj′ , Vc1, and Vc2 are the emitter-base voltages of Q1−Q5 in Figure

3.29. The output of the NPN-based multiplier is then expressed by:

IQ6 =
m′3h′j′

(Ic1)3 · Ic2

. (3.122)

The detailed transistor circuits of the INa diagram in Figure 3.29 is provided

in Appendix A, schematics page Sch-10.

3.4.5 Time-Dependent Slow Inward Calcium Current Is

Opening/Closing Rates of Calcium Gating Variables

There are two gating variables for the calcium current Is: d and f . They are

realized by the gating variable circuit provided in Figure 3.23. The equations for
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the opening and closing rates of gating variable d are rewritten from equations

(2.54) and (2.55) as follows:

α′d =
2.456× 10−5e−(V ′m+0.9)

e−7.2(V ′m−0.05) + 1
, (3.123)

β′d =
1.48× 10−5e−1.7(V ′m+0.9)

e5(V ′m+0.44) + 1
, (3.124)

where, again, we use single quotations to distinguish the scaled variables from

the original ones where the scaling factors are provided in Table 3.2. Here we

re-organize the constant coefficients of the equations for easier circuit design. For

example, 0.095e[−0.01×(−5)] in the original equation (2.54) is converted as follows:

0.095e[−0.01×(−5)] = 0.095 · e+(0.01×95) · e(0.01×5−0.01×95) = 2.456× 10−5e(−0.01×90),

(3.125)

and it is rewritten as 2.456×10−5e(−0.9) in equation (3.123). Similarly, the equations

of αf and βf are rewritten by re-organizing the constant coefficients as follows from

equation (2.56) and (2.57):

α′f =
1.97× 10−5e−0.8(V ′m+0.9)

e15(V ′m+0.28) + 1
, (3.126)

β′f =
2.16× 10−5e−2(V ′m+0.9)

e−20(V ′m+0.3) + 1
. (3.127)

Equations (3.123) to (3.127) are all (3.70)-type of equations, and, thus, can

be implemented with the sigmoid-function circuit shown in Figure 3.12, with I0

being substituted by the exponential circuit provided in Figure 3.13. The tran-

sistor circuits for realizing equations (3.123)-(3.127)are provided in Appendix A,

schematics page Sch-20 to Sch-23. Figure 3.31(a)(b) shows the simulation results

of the implementation circuits for αd and βd and also the curves of the ideal cases,

calculated directly from equations (2.54) and (2.55). The SER (signal-to-error ra-

tio) of the circuit realization for αd is 37 dB, and 26.8 dB for βd, and the R-square

110



Vm [mV]

αα ααd
 
(V

m
)

ββ ββd
 
(V

m
)

Vm [mV]

(a) (b)

Vm [mV]

αα ααf
 
(V

m
)

Vm [mV]

(c) (d)

ββ ββf
 
(V

m
)

Figure 3.31: Ideal and simulated opening and closing rate variables for Is. (a)αd.
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for transistor circuits.

for αd and βd are 1.0000 and 0.9933, respectively. The simulated results and the

ideal values for αf and βf are shown in Figure 3.31(c)(d). The SER of αf is 28.7

dB, and the SER of βf is 22.4 dB. The R-square for αf and βf are 0.9998 and

0.9990, respectively.

Calcium Current Is

Equations (3.128) to (3.130) provide the reformulated equations for the calcium

current Is after the scaling and initial condition shifting processes (refer to section

3.2.2 and 3.2.3, and Table 3.2) are performed on the original equations of the

Beeler-Reuter model (2.45), (2.59), and (2.60):

I ′s = 3.6× 105d′f ′(V ′
m − E ′

s × 104), (3.128)

E ′
s = −8.23× 10−7 − 1.30287× 10−7 ln[Ca]′i, (3.129)

d[Ca]′i
dt

= −0.1I ′s + 0.07(10−7 − [Ca]′i). (3.130)

The diagram for implementing Is is illustrated in Figure 3.32. The d′ and f ′

modules on the left consist of the gating variable circuit depicted in Figure 3.23.
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The voltage V ′
m is linearly converted by the same scale factor as E ′

s by G4, subtracts

E ′
s at node b, and then feeds the current into an NPN-based multiplier. The NPN-

based multiplier follows the same design strategy presented in section 3.3.3, and a

similar multiplier has been introduced as when we discussed the multiplier circuit

for INa. Therefore, we do not repeat the details for the NPN-based multiplier

for Is here; its transistor circuit can be found in Appendix A, schematics page

Sch-26. The calcium equilibrium potential E ′
s is created at node b by the circuit

illustrated in the shaded area of Figure 3.32, i.e. the Es Block. I ′s is generated by

a NPN-based multiplier, which takes the scaled d′, f ′ and V ′
m − E ′

s as the inputs,

and delivers its output current, i.e. I ′s, to F1 and F2. F1 and F2 duplicate I ′s and

sends one copy via F2 to charge the membrane capacitor in the succeeding circuit

and the other via F1 as a feedback to the Es block.

In the Es Block in Figure 3.32, a capacitor C and a linear transconductor G1

with a transconductance g1 construct the derivative function for equation (3.130).

The voltage across the capacitor Vc, is described by the following equation:

C
dVc

dt
= −I ′s − Vc × g1, (3.131)

where Vc has the relation with [Ca′] that can be expressed by the following equation

using g2, the gain of G2:

Vc =
[Ca]′i
g2

+ Vb, (3.132)

where Vb is the bias voltage on the negative terminal of G2. Taking equation

(3.132) into (3.131) creates:

C

g2

d[Ca]′i
dt

= −I ′s + g1 × (−Vb − [Ca]′i
g2

). (3.133)

Equation (3.133) can be equivalent with equation (3.130) by selecting proper values

of the circuit parameters. In our VLSI design, g1 is set to 7µ, g2 is set to 10µ, Vb is
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-0.01 V , and C is 0.1 µF . The transistor circuit for implementing equation (3.130)

is shown in Appendix A, schematics page Sch-24. [Ca]′i, generated by G2, is sent

to a logarithm circuit, shown in the oval in Figure 3.32, which implements equation

(3.129). The same as the logarithm circuit introduced in Figure 3.14, the logarithm

circuit for Es is composed of two NPN transistors Q1 and Q2, a constant current

sources Ic1, and a linear transconductor G3 with a gain g3 = 5µ. The logarithm

circuit together with Ic2 realize equation (3.129). The two bias currents Ic1 and

Ic2 are set to 10µA and 0.674µA, respectively. The detailed transistor circuit for

creating Es is also provided in page Sch-24 in Appendix A.

3.4.6 Action Potential Vm

Putting the circuits of the ionic currents presented in the previous sections together,

the VLSI circuit that imitates the behavior of a membrane potential is established

as shown in the block diagram in Figure 3.19 and in the schematics page Sch-

1 in appendix A. More than three thousand transistors are used to build the

full circuit for modeling the electrical activity of a single cardiac cell. When the

external stimulating source sends a current impulse of 20 µA for a duration of

about 0.003 second, the circuit creates an action potential across the capacitor Cm

and the waveform is shown with the dashed line in Figure 3.33. The simulation

results, after being scaled back to the original magnitude, indicate that the circuit-

generated Vm has a resting potential of about -84.7 mV , a peak of the upstroke

of 47.7 mV , and a re-polarization duration (measured at 90% of re-polarization

completion) of 300 ms. The results are compared with the ideal Vm which is

calculated from the original Beeler-Reuter equations and depicted with the solid

line in Figure 3.33. At the same amount of stimulus (compared with the de-scaled
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Figure 3.33: Ideal and simulated action potential.

stimulus), the ideal action potential has a resting potential of -83.0 mV , the peak

of the upstroke of 41.7 mV , and a re-polarization duration of 287 ms.

The waveforms of the ionic currents IK1, Ix1, INa, and Is during an action

potential are provided in Figure 3.34, with solid curves representing the ideal

ionic currents and the dashed curves depicting the simulated values of the VLSI

circuits. IK1 and Ix1 are outward currents and responsible for discharging the

membrane capacitance. Their maximum values are about 5.0 µA/cm2 and 1.5

µA/cm2 respectively. INa and Is are inward currents (being negative), which charge

the membrane capacitance. The magnitude of Is is on the same order as IK1 and

Ix1, which is about 4.3 µA/cm2. INa, responsible for creating the steep upstroke at

the start of an action potential, has a very big magnitude compared to the other

ionic currents, which is around 140 µA/cm2. INa is almost zero most of the time,

except in the spike in the upstroke phase of an action potential. This is because

most of the time, either the activation gating variable m or the inactivation gating

variables h and j are closed, and only in the upstroke phase when m transits

to open and h and j start to close, there is a narrow time period that all the
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gating variables are open to allow the passage of the sodium ions. This property

of sodium channel decides the un-excitability of a cardiac cell for another action

potential when it is still in the first action potential and the gating variables m, h

and j have not flipped back to the state of a resting cell. This will be discussed

again in chapter 4, when reentry and refractory period are introduced.

3.4.7 Discussions

Experimental Data of Beeler-Reuter Model

We have evaluated how close the VLSI realization is to the original equations in the

Beeler-Reuter model using the average signal-to-error ratio (SER) and R-square for

Vm-dependent equations. In this section, we will discuss the correlation between

the experimental data from which the cardiac cell model is extracted and the

equations of the model, and compare the correlation to that between the equation

and the PSpice simulated results, as illustrated in Figure 3.35. The comparison of

the data and the equations is difficult and sometimes not possible due to missing

details in literature. The mathematical equations of the model are mostly based

on multiple results of experiments carried out by different researchers, and can

be adjusted from the original data with re-scaling or shifting along axis by Beeler

and Reuter to simulate the ventricle, whereas the information of how the different

data is combined to obtain the formulas and how the equations are re-scaled and

shifted are not mentioned in [15]. In addition, most experimental data is provided

by graphs rather than numbers, and this brings more difficulties to make numerical

comparison of the data and the models. Hence, we do not provide full comparison

of the data and the Beeler-Reuter model, and only present two examples to roughly

show how close the resulted equations in the model are to the original experimental
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Figure 3.35: Comparison among experimental data, extracted equations, and cir-

cuit simulation results.

data, and also how close the equations are to simulation of the presented VLSI

design.

In the first example, we discuss the formulation of IK1. The formula of IK1 in

the Beeler-Reuter model is converted from the equation used by McAllister etc. in

[14], whose parameters were selected to give a current vs. voltage diagram similar

to the experimental data published in [69]. The data points, totally 15, are shown

graphically in [69], and we measured them with a ruler for their values and re-draw

the data in Figure 3.36. The final equation of IK1 in the Beeler-Reuter model has

been re-scaled and shifted from McAllister’s equation and this information is not

published, and, thus, we scale and shift the equation of IK1 (2.42) by the following

formula to let the resulted equation give a best fit to the experimental data:

ĨK1 = a1FK1(a3Vm + a4) + a2, (3.134)

where ĨK1 is the potassium current after being re-scaled and shifted for matching

the data points, function FK1(Vm) is the right side of equation (2.42) for IK1, and

a1, a2, a3, and a4 are constants for scaling and shifting the X and Y axis. a1,

a2, a3, and a4 are decided to let equation (3.134) best fit the experimental data,

and the resulting ĨK1 curve is illustrated in Figure 3.36. Compared to Figure 3.22,
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Figure 3.36: Experimental data [14] (dots) and its fitting curve of steady-state

current-voltage relation of outward current in purkinje fibers.

which shows the IK1 curve calculated from the equation and the PSpice simulated

IK1 curve, the data points in Figure 3.36 are more scattered around the equation

curve than the simulated results. The average signal-to-error ratio (SER) of the

experimental data and the curve of equation (3.134) in Figure 3.36 is 23.1 dB, and

the R-square is 0.9490, showing worse correlation compared to the SER and the

R-square of the Beeler-Reuter equation calculated curve and the PSpice simulated

curve of Figure 3.22, 36.0 dB and 0.9966.

In the second example, we discuss the experimental data for obtaining the

equations of the gate opening/closing rates (αd and βd) of the gating variable d

(equations (2.55) and (2.56)). The equations of αd and βd are decided by the

measurement results of the time constant τd and the steady value d∞ at different

command voltage steps (refer to chapter 2 section 2.3.2). The relation between αd
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Figure 3.37: [48] (a) Steady-state activation d∞ of calcium current Is; data ob-

tained from five cow ventricular trabeculae superfused with solution containing

0.2(◦), 0.45(×) or 1.8 mM CaCl2 (• ? 24). (b) Rate constant for decay 1/τd,

measured with solution containing 0.2(¦), 0.45(×) or 1.8 mM CaCl2 (•).

and βd, and τd and d∞ is formulated as, rewritten from equations (2.9) and (2.10):

τd = 1/(αd + βd), (3.135)

d∞ = αd/(αd + βd). (3.136)

The τd and d∞ curves used for defining the equations of αd and βd in the Beeler-

Reuter model represent a collection of experimental results published in [47], [48],

and [70]-[73]. Here, in Figure 3.37 [48], we show one set of the data measured

by Reuter and Scholz. Figure 3.37 depicts τ−1
d in (a) and normalized d∞ in (b)

in a semi-logarithm scale. Different symbols represent different samples in three

solutions with different calcium concentration. We get the equation data of τd

and d∞ from equations (3.135) and (3.136) from the mathematical description of

αd and βd in the Beeler-Reuter model, and then compare the calculated values

to the experimental data. Again, the values of the experimental data is obtained
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by measuring the data points in the graphs with a ruler. The SER of the experi-

mental data and calculated values is 13.5 dB for d∞ and 13.2 dB for τd, and the

corresponding R-square is 0.8800 and 0.7115. The equation calculated τd and d∞

are also compared to those obtained from the PSpice simulation. Again equations

(3.135) and (3.136) are used to achieve simulated data of τd and d∞ from the sim-

ulated αd and βd values (simulation curves are shown in Figure 3.31(a)(b)). The

SER of the simulated data and the calculated values is 40.4 dB for d∞ and 38.2

dB for τd, and the corresponding R-square is 0.9999 and 0.9986.

In the above two examples, we showed the experimental data for IK1, τd and

d∞, and numerically estimated how close the data is to the extracted mathematical

model by computing the average signal-to-error ratio and the R-square coefficient.

The correlation metrics were compared with those derived from evaluating the

similarity between the model and the PSpice simulated results. The comparison

shows that the transistor circuits’ simulated data has higher correlation to the

model than the experimental data. Hence, we conclude the accuracy of the VLSI

design of the Beeler-Reuter model is satisfactory.

Time Scale and Capacitors

There are eight capacitors in the VLSI cardiac cell model: one is for the membrane

capacitance, one is for the differential equation of the calcium concentration, and

the rest are for the gating variables x1, m, h, j, d, and f . The magnitude of

the capacitance is decided by the original equations in the Beeler-Reuter model

and also variable scaling factors (when ignoring time scaling). Take the membrane

capacitance Cm as an example, it is defined in equation (2.40) and related to Vm

and the ionic currents. Since Vm is numerically shrunk by a factor of 100 (ignoring
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Table 3.6: Capacitances in the VLSI realization of Beeler-Reuter model (unit: F ).

Schematics Vm Ix1 INa Is

Cap Name Cm Cx1 Cm Ch Cj Cd Cf C[Ca]i

Cap in F 10−7 10−6 10−10 5× 10−9 5× 10−8 10−6 10−7 10−7

the unit) in the VLSI realization and Iion is reduced by a factor of 106 (refer to

Table 3.2), according to equation (2.40), Cm needs to be 104 times smaller than

the original needed value 1 F in order to balance the right and the left sides of the

equation, and, thus, in the circuit, the capacitance of Cm is 0.1 mF . Note that the

units of variables employed by the cardiac cell model do not influence the variable

scaling and are ignored, and only the values of the variables matter.

Time can be scaled easily by increasing or decreasing the capacitors with a

same factor. When the capacitors are enlarged, it takes longer time to charge

the capacitors, and, thus, the waveforms of the variables on the time axis are ex-

panded. Vise versa, reduced capacitances spend less time to be charged and make

the waveforms narrower. The Beeler-Reuter model uses ms as its time unit, and

an action potential lasts for about 300 time units (300 ms). Therefore, when the

model is mapped into the circuit, which is based on the second as the time unit, the

duration of an action potential becomes 300 s. In order to make the circuit’ gen-

erated waveforms consistent with those generated from the Beeler-Reuter model,

the capacitance of the eight capacitors for implementing the Beeler-Reuter model

in VLSI are shrunk by 1000 times. All the simulation results shown previously are

with the scaled capacitors. The values of the capacitors are summarized in Table

3.6.

The VLSI circuits of the Beeler-Reuter model presented previously are able to
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be realized on-chip, except for the capacitors. As shown in Table 3.6, the sizes of

the capacitors range from 100 pF to 1 µF . A capacitance as big as 1 µF is hard to

be realized on a chip. In the following we will discuss the methods for implement-

ing big capacitors with smaller capacitors to solve this issue. Capacitor multipliers

have been proposed for increasing the capacitances of compensation capacitors in

[74]-[76]. However their schemes are not applicable to our circuit design of the

heart model as next discussed. The compensation capacitors are used to introduce

poles and are small, and, thus, the capacitor multiplication factors which are less

than hundreds are sufficient to make on-chip compensation capacitors. In the VLSI

design of the heart model, as provided in Table 3.6, the capacitance can be as high

as 1 µF , and this requires a multiplication factor of at least 104. Different from the

compensation capacitors, the capacitors in the heart model are used as integration

devices, and, hence, demand higher accuracy and also bi-direction. The additional

requirement of accuracy and bi-direction brings more difficulties in using the pub-

lished capacitor multiplication techniques. Capacitor multiplication schemes can

be divided into two categories: voltage-mode and current-mode. Voltage-mode,

working the same way as amplifying Miller capacitance, can not be used in our

case, because it amplifies the voltage signal with the same factor as the capacitor,

which makes a voltage signal too high to be supplied by the power sources. The

current-mode method amplifies capacitance by decreasing the capacitor currents.

For example, if a capacitor is 1 µF and its maximum input current is 1 µA, the

capacitor can be substituted with a capacitor 106 smaller by shrinking the current

by a factor of 106, i.e. the maximum input current becomes 1 pA, with the time

scale unchanged. A difficulty of implementing this method is the current shrinker.

Implemented with current mirrors, a current reduction factor of 106 means not only

123



C
k

1
k

Iin

Ic=Iin / k

Vc
C

Iin

Vc
Succeeding

Circuit 
Succeeding

Circuit 

Figure 3.38: Current amplifier/shrinker circuit used for amplifying capacitance.

transistors of very big sizes in a cascaded circuit topology, but also tremendous

challenge in designing circuits with accuracies to pA because high-order effects of

transistors can easily overwhelm the tiny currents.

Here we propose a capacitor amplification circuit that can be used in the VLSI

heart model. The circuit is based on current-mode, and has been mentioned in sec-

tion 3.3.3 when we introduce the bipolar-based shrinking-current circuit provided

in Figure 3.18. A diagram is given in Figure 3.38 to show how a current shrinker

can be used to magnify the capacitance in our application. On the left side of the

figure, the capacitor C serves as an integration device and its voltage, simulating

a derivative variable in the heart model, drives a succeeding circuit which does

not draw any current from the capacitor (connecting to the gates of MOS transis-

tors). This circuit can be implemented with a capacitor k times smaller by using

a current shrinker of factor 1
k

(refer to Figure 3.18 for the current shrinker circuit),

illustrated on the right side of Figure 3.38, while the capacitor voltage Vc remains

the same for driving the succeeding circuit.

In the following example, we show the simulation results of the presented circuit

for magnifying the capacitance for 104 times. Since the present educational VLSI

MOSIS runs, using AMI 1.5 µm ABN technology, do not support PNP transistors,

the PNP devices in the current shrinker shown in Figure 3.18 are replaced with

NPNs. The circuit is modified accordingly and redrawn in Figure 3.39, in which Qpi
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Figure 3.39: Current amplifier/shrinker circuit using NPN transistors.

(i = 1, 2, 3, 4) are the NPN transistors and they keep the names of PNP transistors

used in Figure 3.18. A voltage-to-voltage converter E is added to convert the

output voltage of Pool Circuit2 Vb to Vc, and Vc = Vb1 + Vb2 − Vb, where Vb1 and

Vb2 are constant voltages. Note that in order to use NPN transistors, E needs to

be added, which introduces more errors. Hence, if PNP is available, the original

circuit shown in Figure 3.18 is preferred. The circuit in Figure 3.39 works the same

way as the circuit in Figure 3.18. When Iin > 0, Qn1 and Qn4 are activated, Qp1

and Qp4 are cut off, and the output current Iout is supplied by Qn4. When Iin < 0,

Qp1 and Qp4 are activated, Qn1 and Qn4 are cut off, and the output current Iout is

supplied by Qp4.

We set the circuit parameters to let Iout = 10−4Iin, and build the circuits

like the ones shown in Figure 3.38 without “Succeeding circuit”. The original

capacitance is C = 1µF , and with the current shrinker, the integration function can

be implemented with a capacitor 104 smaller, i.e. C/k = 100pF . The waveforms

of the capacitor voltage are shown in Figure 3.40(a), with the solid line being the

voltage across capacitor C, and the dashed line being the voltage across capacitor
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Figure 3.40: Simulation results of using current shrinker circuit to amplify capac-

itance. (a)Voltages of original capacitor and amplified capacitor. (b)Currents of

original capacitor and amplified capacitor.

C/k. The currents going into the capacitors are shown in Figure 3.40(b), where

the solid curve is the current of capacitor C (i.e. Iin) minimized by a factor of

104 in order to be compared with the current in C/k, and the dashed curve is the

current of capacitor C/k. Here we adopt the current running through the capacitor

of the gating variable x1 during an action potential as the input current Iin. The

difference between the ideal Iout (i.e. Iin/104) and simulated Iout is caused by

error sources such as the Early effect of the NPN transistors, and the non-idealism

of the voltage adders, i.e. the pool circuits, voltage buffers, and the voltage-to-

voltage converter E. More accurate voltage adders can be used to reduce the error

and improve the linearity between Iin and Iout. Figure 3.41 shows a scheme to

mitigate the Early effect by using the cascode structure. The figure depicts only

the upper half of the circuit in Figure 3.39 for improvement, and the lower half

can be modified the same way. The shaded areas are newly added. Qn5 and Qn6,

together with Qn1 and Qn4 incorporate the cascode structure, which reduces the
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Figure 3.41: Cascode structure can be used to minimize the Early effect on Qn4

and improve the accuracy of Iout.

impact of the Early effect on the output current.

The presented capacitor amplification circuit is limited by the leakage current

of the bipolar transistors. When a current is shrunk to be too small, the leakage

current dominates the overall output current of the current shrinker and breaks

the linear relationship between Iin and Iout. Hence, bipolar devices with low leak-

age currents are desirable for implementing the proposed capacitor amplification

method.

Note it is possible to implement the circuit in Figure 3.18 with all NPN and

PNP transistors being replaced by NMOS and PMOS transistors that work in the

subthreshold region. The current in a subthreshold MOS transistor is given by

[77]:

IDS = I0e
(kVGB/VT )(e(−VSB/VT ) − e(−VDB/VT )) (3.137)

= I0e
(kVGB/VT )[e(−VSB/VT )(1− e(−VDS/VT ))], (3.138)

where I0 is the subthreshold current-scaling parameter, k is the subthreshold ex-

ponential coefficient, and VT is the thermal voltage. When VDS > 5VT , the term
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e(−VDS/VT ) can be ignored, and the above equation can be rewritten to:

IDS = I0e
(−VSB/VT )e(kVGB/VT ) (3.139)

= I0e
(kVSB−VSB)/VT e(kVGS/VT ). (3.140)

When VSB is a constant, the current IDS is only exponentially dependent on the

gate-source voltage VGS, which makes the I-V properties of subthreshold MOS

devices very similar to bipolar transistors. Therefore, the capacitor amplification

circuit in Figure 3.18 can work the same way when its bipolar devices are replaced

by MOS transistors by connecting the gate, source and drain of MOS devices

where the base, emitter and collector of the NPN devices originally are connected

respectively, and connecting the body to Vss. With MOS transistors, the currents

of the input and output terminals, and the bias currents In1, In2, Ip1, and Ip2 in

the circuit in Figure 3.18 have to be restricted within proper ranges to necessitate

the subthreshold conditions of the replacing MOS transistors.

In the VLSI design of the cardiac cell model, the integration capacitors can be

further minimized by shrinking the time scale. The current VLSI circuit is able to

function properly as a cardiac cell with a time scale shrunk by up to 1000 times

of the current time scale, that is, the generated action potential has a duration of

about 300 µs after the time is scaled, and the capacitances are 1000 times smaller

of the values listed in Table 3.6. For further shrinking the time scale, analysis of

the high frequency operation of the VLSI circuit needs to be done, and this is one

of the future works.

Impact of Parameter Variations on Design

In this section, we analyze the threshold voltage variation sensitivity of the follow-

ing circuits: linear voltage to current converters, linear current to voltage convert-
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ers, voltage buffers, and the pool circuits. These circuits are the building blocks of

sigmoid functions and exponential functions, which, due to their exponential prop-

erties, are considered to be very sensitive to the fluctuation of circuit parameters.

Due to the imperfect control of fabrication processes, chips often display varia-

tions in transistor characteristics, such as the threshold voltage and drain currents

[78][79]. Variabilities are roughly classified into two types [80]. One is chip-to-chip

variability, which results from factors such as processing temperature and equip-

ment properties. The other is within-chip fluctuations, which is caused by random

factors, such as the spatial distribution of dopant and channel length variation. In

the following discussion, we focus on the impact of within-chip threshold voltage

variation on our VLSI design for the heart model. We consider that the thresh-

old voltage is one of the most critical parameters that influences the accuracies

of circuit realization of mathematical equations, because many output vs. input

equations introduced in section 3.3 are dependent on the threshold voltage, and,

current mirrors, one of the most often used circuit structures, require the proper

match of the threshold voltages of the transistors at the input and output stages.

The Monte Carlo statistical tool provided by PSpice is used to investigate the

threshold voltage variation sensitivity of the heart model circuits. The Monte Carlo

analysis varies device parameters randomly and independently within a specified

tolerance and performs multiple runs of analysis (DC, AC, or transient). In our

simulation, the tolerance of the threshold voltage is determined from 62 sets of

test data (MOSIS run numbers T18K to T1CL) [81] from different fabrication

runs for the AMI Semiconductor 1.5 µm ABN technology. Figure 3.42 shows the

histogram of the NMOS threshold voltage and the Gaussian fitting curve for this

experimentally determined data. The mean of the Gaussian curve is 0.53788 V ,
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sured from 62 sets of data (AMI 1.5 µm technology).

and the standard deviation σ is 0.017 V . Therefore, the variation for our purpose

is taken to be 0.017/0.53788 ' 3.2%. Note that this is a chip-to-chip variation, so

we need to modify it to get the within-chip variation. The within-chip variation is

estimated from the chip-to-chip variation in a way presented in the following.

It was reported in [80] that in a 0.35 µm process, the variation of the saturation

current within a wafer is 3%, and its variation within 58 lots is 15%. Since a wafer

holds many chips, we assume that the within-chip variation does not exceed the

variation over a single wafer, and the lot-to-lot variation is equivalent to the chip-

to-chip variation. Then the ratio of the chip-to-chip variation to the within-chip

variation for the saturation current is higher by a factor of %15:%3 = 5. Since

the saturation current is dependent on the threshold voltage through a square law,

thus, the saturation current variation is worse than the threshold voltage. Also,

by considering that the within-chip component of the variability becomes larger

when the process scales down [80], we estimate that the within-chip variation of

the threshold voltage for AMI 1.5 µm technology is lower than one fifth of the
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Table 3.7: Monte Carlo analysis of threshold voltage variation on circuits

Circuit Function Figure Number σ Variation

Voltage-Current Converter Figure 3.5(a) 0.12 µA 2.1 %

Current-Voltage Converter #1 Figure 3.6 0.265 V 140%

Current-Voltage Converter #2 Figure 3.44(a) 1.3 mV 0.1 %

Voltage Buffer Figure 3.7 1.5 mV 0.2%

Pool Circuit Figure 3.9 3.9 mV 1.0%

Iin [µµµµA]

V
ou

t 
[V

]

Figure 3.43: Monte Carlo analysis of Current-Voltage Converter #1 (Figure 3.6).
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chip-to-chip variation, that is 3.2%/5 ' 0.6%. Therefore, 0.6% is taken as the

tolerance of the threshold voltage in our simulation, and we use the Gaussian as

the distribution type.

The results of the Monte Carlo analysis of the threshold voltage variation on

the heart model circuits are provided in Table 3.7. The first column lists the

circuit functions. All the circuits have been introduced in section 3.3, except

the Current-Voltage Converter #2, which will be introduced shortly. The second

column shows the figure numbers of the circuits. The third and the fourth columns

are average standard deviations and average variations in percentage of circuit

outputs caused by the fluctuation of the threshold voltage. The results given in

Table 3.7 correspond to the Monte Carlo analysis of 20 PSpice runs.

As we can see from Table 3.7, most circuits we analyzed presented small varia-

tions, except Current-Voltage Converter #1 introduced in section 3.3.1. As shown

in Figure 3.6, the linear Vout vs. Iin relationship relies on the channel modulation

effect. That is, when there is a small input current, the current difference caused

in M2 and M4 are canceled by the shifting of the output voltage. Due to the

high sensitivity of Vout to current changes at the output stage, the implemented

transimpedance is high, and the proper functioning of the linear current to voltage

converter demands that M1 and M2, and M3 and M4 match very well. The mis-

match introduced by the threshold voltage fluctuation severely shifts the output

voltage as shown in Figure 3.43, hence, this presented circuit can not tolerate the

variance of the threshold voltage we specify.

Figure 3.44(a) shows a proposed alternative linear current to voltage converter.

It is the same as the input stage circuit of a bi-directional current mirror. By using

equations of the saturation currents on both transistors as the following (under the
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Figure 3.44: Proposed linear current to voltage converter. (a) Circuit of linear

current to voltage converter. (b) Monte Carlo analysis: 20 runs.

no load DC conditions, for which it is used):




I1 = Kp × (Vdd − Vout − |Vtp|)2,

I2 = Kn × (Vout − Vss − Vtn)2,

I1 + Iin = I2,

(3.141)

we derive a second order polynomial equation that contains the output voltage and

the input current:

A · V 2
out + B · Vout + C − Iin = 0, (3.142)

where 



A = Kn −Kp,

B = −2 · (Kp(Vdd − |Vtp)|+ Kn(Vss + Vtn)),

C = Kp(Vdd − |Vtp|)2 + Kn(Vss + Vtn)2.

(3.143)

When Kn is close to Kp, Vout can be approximated by the linear term of a Taylor

series expansion to give a linear function of Iin. Then the change of Vout to Iin

ratio is expressed by:

∆Vout

Iin

= − 1

2 · (Kp(Vdd − |Vtp|) + Kn(Vss + Vtn))
, (3.144)
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which is constant in terms of Iin. The offset can be obtained from equation (3.142)

by setting Iin = 0:

Vout|Iin=0 =
Kp(Vdd − |Vtp|)2 + Kn(Vss + Vtn)2

2 · (Kp(Vdd − |Vtp|) + Kn(Vss + Vtn))
. (3.145)

Figure 3.44(b) shows the simulation results of Vout vs. Iin for the proposed linear

current to voltage converter with the transistor parameters being set to WM1:LM1=

16µ:8µ and WM2:LM2=6.4µ:32µ. Its numerical results of the Monte Carlo analysis

are provided in Table 3.7 in the row for Current-Voltage Converter #2.

By using the Monte Carlo analysis results shown in Table 3.7, we are able to

estimate the deviation of the outputs of sigmoid function circuits and NPN expo-

nential function circuits. The circuit structure of sigmoid functions is illustrated

in Figure 3.12. Similar to how we obtained the equations (3.55) and (3.56) for Vb

and Vc (i.e. Vd and Ve when the threshold voltage variation is not considered), we

re-derive the equations of Vd and Ve by taking into account the variation of the

threshold voltage as follows:

Vd = Vb + ∆Vbuf1 = (Iah1 + bH1 + ∆VH1) + ∆Vbuf1 (3.146)

= (x · g1 + bG1 + ∆IG1)h1 + bH1 + ∆VH1 + ∆Vbuf1

= Vd0 + h1∆IG1 + ∆VH1 + ∆Vbuf1,

where g1, h1, bG1, and bH1, have the same meanings as for equation (3.55), and,

thus, are the transconductance and transimpedance of G1 and H1, and the output

offsets of G1 and H1, Vd0 is the original Vd (equal to Vb) expressed by equation

(3.55), and ∆IG1, ∆VH1, and ∆Vbuf1 are the random differences of the outputs of

G1, H1, and V Buffer1 caused by the threshold voltage fluctuation. The equation

for Ve is re-derived in the same way:

Ve = Ve0 + h1∆IG2 + ∆VH2 + ∆Vbuf2. (3.147)
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Figure 3.45: Difference of Iout in sigmoid function circuit caused by variation of

the threshold voltage. ∆Vrandom/VT = 0.3.

where Ve0 is the original Ve (equal to Vc) expressed by equation (3.56), and ∆IG2,

∆VH2, and ∆Vbuf2 are the random differences of the outputs of G2, H2, and V

Buffer2.

Due to the random variation at the inputs of the Emitter Coupled Pair in Figure

3.12, Vd and Ve, the output vs. the input curve has a horizontal shift ∆Vrandom,

which causes a non-deterministic difference of the output value ∆Iout, as illustrated

in Figure 3.45. From equations (3.146) and (3.147), ∆Vrandom is expressed by:

∆Vrandom = (h1∆IG1 + ∆VH1 + ∆Vbuf1)− (h1∆IG2 + ∆VH2 + ∆Vbuf2). (3.148)

By taking ∆Vrandom into the equation of the emitter coupled pair, which is rewritten

here from equations (3.53) and (3.54)

Iout =
I0

e
(±∆V

VT
)
+ 1

, (3.149)

where ∆V is Vd−Ve in this case, we can estimate the upper bound of the percentage

difference |∆Iout/Iout| in terms of ∆Vrandom/VT . The maximum |∆Iout/Iout| occurs,

as seen from Figure 3.45, when the deterministic parts of the emitter coupled pair
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inputs are equal, i.e. Vd0 = Ve0. Therefore, we have:

max(|∆Iout

Iout

|) = |( I0

e0 + 1
− I0

e
(0+

±∆Vrandom
VT

)
+ 1

)÷ I0

e0 + 1
|

= |1− 2

e
(
±∆Vrandom

VT
)
+ 1

| ' |∆Vrandom

2VT

|, (3.150)

where we replace e±(∆Vrandom/VT ) by its linear Taylor approximation 1±∆Vrandom/VT ,

assuming |∆Vrandom/VT | < 1. By using the data of the standard deviation in Table

3.7 (here we use Current-Voltage converter#2) and the slope of the line in Figure

3.44(b) for h1, we can estimate the magnitude of ∆Vrandom from equation (3.148):

|∆Vrandom| ≤ 2×(8500×0.12µ+1.3m+1.5m) ' 7.64mV . Hence, the upper bound

of the percentage difference max(|∆Iout

Iout
|) is about 7.64mV/2VT = 14.7%. Figure

3.45 shows a normalized sigmoid curve in the case when ∆Vrandom/VT = −0.3. The

corresponding output difference is 15%. We still use R-square and signal-to-noise

ratio (SER) to evaluate how close the shifted curve is to the original curve. The

R-square and SER for the curves in Figure 3.45 are 0.9903 and 22.8 dB respectively.

Using the same analysis methods as presented above, we can derive the equation

for the percentage difference of the output of our NPN exponential circuit shown in

Figure 3.13. The equation for the base-emitter voltage of Q2 is, by taking account

of the threshold voltage variation, expressed as follows:

Vbe,Q2 = Vb − Vc + Vd + ∆Vbuf + ∆Vpool

= (Vb0 + h1∆IG1 + ∆VH1)− (Vc0 + h1∆IG2 + ∆VH2) + Vd + ∆Vbuf + ∆Vpool

= Vbe,Q2,0 + (h1∆IG1 + ∆VH1)− (h1∆IG2 + ∆VH2) + ∆Vbuf + ∆Vpool

= Vbe,Q2,0 + ∆Vrandom, (3.151)

where ∆IG1, ∆IG2, ∆VH1, ∆VH2, ∆Vbuf , and ∆Vpool are the random variation

of the outputs of G1, G2, H1, H2, V Buffer, and Pool Circuit caused by the

136



fluctuation of the threshold voltage, and Vbe,Q2,0 is the base-emitter voltage of

Q2 when the threshold voltage fluctuation is 0. By using the data in Table 3.7

and Figure 3.44(b), we estimate the magnitude of ∆Vrandom to be: |∆Vrandom| ≤
2× (8500× 0.12µ + 1.3m) + 3.9m + 1.5m = 10.0mV .

The output percentage difference caused by ∆Vrandom is derived as follows:

|∆Iout

Iout

| = |(Is0e
Vbe,Q2,0

VT − Is0e
Vbe,Q2

VT )÷ Is0e
Vbe,Q2,0

VT |

= |1− Is0e
Vbe,Q2

VT

Is0e
Vbe,Q2,0

VT

|

= |1− e∆Vrandom| ' |∆Vrandom

VT

|, (3.152)

where we also use Taylor expansion to approximate the exponential term e∆Vrandom '
1+∆Vrandom. By using the ∆Vrandom value estimated previously, the percentage dif-

ference can be obtained from equation (3.152), which is about ∆Vrandom

VT
= 38.5%.

The corresponding R-square of the original exponential curve and the random

shifted curve is 0.8689, and SER is 9.1 dB.

As analyzed above, the output percentage differences caused by the threshold

voltage randomness of the MOS transistors in sigmoid function circuits and NPN

exponential circuits are highly dependent on the thermal voltage VT . By increasing

VT , the percentage difference can be reduced. Despite of the fact that VT can

not be adjusted manually, we can increase the numerators of equations (3.150)

and (3.152) by factors of integers by changing the circuit structures of the emitter

coupled pair, and the NPN transistor circuitries in the exponential function circuit.

Figure 3.46(a) shows the new emitter coupled pair, modified for enhancing circuit

immunity to device parameter changes. This circuit, compared with the one in

Figure 3.11, uses two levels of cascode NPN devices. The equations of the output
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Figure 3.46: (a)Modified emitter coupled pair using cascode NPN devices;

(b)Cascode NPN structure used in exponential function circuit.

currents are changed from equations (3.53) and (3.54) to:

Ic1 =
I0

e
(− ∆V

2VT
)
+ 1

, (3.153)

Ic2 =
I0

e
( ∆V
2VT

)
+ 1

, (3.154)

which are equivalent to the expressions for the case when VT is magnified by

two times for the original emitter coupled circuit. The modification for the NPN

exponential function circuit is shown in Figure 3.46(b). Cascode-connected Q1a

and Q1b replace the Q1 in Figure 3.13, and Q2a and Q2b replace the Q2. The

expression of Iout in Figure 3.13 then becomes:

Iout = Iine
g1h1(Vin−Vbias)

2VT .

With the same methods, we can connect more than two NPN transistors in cascode,

with the limitation being that of power supply voltages. As a result, the output

percentage difference caused by circuit parameter variation, expressed by equations

(3.150) and (3.152), can be reduced by the number of the cascode-connected NPN

transistors.

138



Chapter 4

Propagation of Electrical Activity

in Cardiac Tissue

4.1 Introduction

The specialized excitatory and conductive cardiac muscles are capable of conduct-

ing electrical signals, i.e. action potentials, throughout the heart, and incorporate

an excitatory and transmission system which is tightly coupled with the mechanical

activity and responsible for the contraction and relaxation of the heart muscle.

Cardiac cells are typically cylindrical, 30-100 µm long and with radius 8-20 µm

[36][38]. They connect end to end to form elongated fibers, which are arranged in

parallel to construct fibrous bundles. The two ends of a cardiac cell are separated

from their neighbors by intercalated disks, the membranes that separate adjacent

cells in cardiac tissues. The conduction of electrical signals from one cell to the

next cell depends on gap junctions (nexi), very permeable pathways present in the

intercalated disks, allowing relatively free diffusion of ions and thus the passage of

the electrical signals. Gap junctions exist in the borders between cells connected
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longitudinally, and they are sparse or absent in the borders between cardiac fibers

that lie side by side. Therefore, current flows more easily in the direction along

the longer axis than the transverse directions [82].

Two different approaches of modeling the spread of the electrical activity have

been developed by treating cardiac tissues as either a discrete system of coupled

cells, or a continuous medium, called cellular automata and core-conductor models

respectively [5][83]. The cellular automata is a highly abstract model, in which a

discrete network representing the spatial structure of cardiac tissue is constructed,

with each node (a cardiac cell) taking one of a finite set of states at each moment.

The state of each node evolves according to deterministic rules and is decided

by the last states of this node and its neighbors. Because of the simplicities of

the cellular automata model, it is capable of efficiently simulating the excitation

propagation throughout the whole heart. However, the model is not related to

cellular electrophysiology and, thus, can not describe biophysical details of cel-

lular excitability [83]. The weakness of the automata model is overcome by the

core-conductor model, also known as excitable dynamics equations, which, by com-

bining the models of cardiac ionic membranes, describes the cardiac propagation

behaviors using coupled PDE-ODE (partial differential equation - ordinary differ-

ential equation) equations. The core-conductor models incorporate the greatest

amount of present knowledge about the ionic basis for the action potential, and

thus become dominant computational approaches to study wave phenomena in

cardiac tissue for today.

In this chapter, we will present how to obtain the numerical results of the partial

differential equation of the cardiac propagation model using VLSI circuits. The

propagation model belongs to a special category of partial differential equation,
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namely reaction-diffusion equations. The circuit mapping of the generalized form

of reaction-diffusion equation is introduced, and we then show the circuit setup for

simulating the electrical propagation over a small piece of ventricular muscle using

simplified spatial configuration of the cardiac muscle. The modeling of the cardiac

cell structure details, such as the orientation of cardiac fibers, cellular geometry,

and the anatomic structure of the heart, are beyond our efforts. Hence, here we

do not intend to construct a circuit to simulate the electrical propagation over the

whole heart, but propose a methodology of calculating reaction-diffusion equations

with analog circuits, especially for the cardiac system.

In the rest of the chapter, we will first introduce the model of 1-dimensional

cable theory and its extended multi-dimensional equations which describe the prop-

agation of cardiac electrical activity using partial differential equations. Next we

will present the circuit mapping of reaction-diffusion systems, a methodology of

computing reaction-diffusion equations with circuits. It is worth to mention that

the proposed methodology is also applicable to the reaction-diffusion systems that

are irrelevant to electrical phenomenons, such as population model of genetics

[84][85], model of morphogenesis [86], and model of the Belousov-Zhabotinsky re-

action [87][88]. The simulation of a VLSI circuit and an ideal component circuit

that implement cardiac propagation is provided finally.

4.2 Electrical Propagation Model of the Heart

The core-conductor class of models are evolved from the cable theory [89][90],

which was developed more than a century ago by Kelvin in [91] to describe the

transmission of an electrical telegraph. The cable equations were first modified

to apply in the biological sciences in 1879 by Hermann [89][92] for analysis of
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Figure 4.1: 1-Dimensional cable model for cardiac tissue. (a)A 6-cell cardiac muscle

fiber (top) and its representative (bottom) in cable model - a continuous media

that does not consider the boundaries of cells. (b)Circuit diagram of cable model.

nerves. Since then such models have been proven successful in studies of electrical

propagation in nerves [7]-[9] and cardiac muscle [12][82][83] up to today.

4.2.1 1-Dimension Cable Model in Cardiac tissue

The 1-dimensional cable model prototypes a single fiber and characterizes the

electrical propagation over a bundle of parallel muscle fibers [31]. The cable model

is a continuous model that does not consider the boundaries of cells, as illustrated

in Figure 4.1(a). In the top of Figure 4.1(a) shows a portion of a cardiac fiber that

contain 6 cells, and in the bottom of the figure is the representative of the fiber in

the cable model, a continuous and uniform cylindric medium.

Consider a segment of cardiac fiber in the cable model (let us call it a cardiac

cable to distinguish it from a real cardiac fiber which has cell-to-cell connections),

as shown in Figure 4.1(b). There are three elements of currents in the cardiac

cable: 1) the ionic current, denoted with Iq in the figure, that flows between the

intrcellular space (the cable) and the extracellular space (the ground); 2) Ip, the
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current of the membrane capacitor C; 3) Iin and Iout, the current flowing through

the resistance caused by gap junctions and cytoplasm 1. Ip and Iq can be expressed

by the membrane current per unit (cable surface) area Im and the ionic current

per unit area Iion multiplied with the cable surface area of the membrane segment:

Ip = C
∂Vm

∂t
= 2πa∆x · Cm

∂Vm

∂t
, (4.1)

Iq = 2πa∆x · Iion, (4.2)

where a is the radius of the cable, ∆x is the length of the small segment of cardiac

cable, and 2πa∆x is the lateral area of the cable. Iin and Iout can be formulated

using Ohm’s law:

Iin = ∆Vin/R = ∆Vin/(
ρ∆x

πa2
), (4.3)

Iout = ∆Vout/R = ∆Vout/(
ρ∆x

πa2
), (4.4)

where R is the resistance of the cable segment which is determined by the resistivity

ρ times the length ∆x and divided by the area of the cross section πa2. Putting

equations (4.1)− (4.4) together by Kirchhoff’s current law, which is formulated as:

∑
I = Iin − Iout − Ip − Iq = 0 ⇒ Iin − Iout = Ip + Iq, (4.5)

we derive:

πa2

ρ

∆Vin

∆x
− πa2

ρ

∆Vout

∆x
= 2πa∆xCm

∂Vm

∂t
+ 2πa∆xIion. (4.6)

By letting ∆x → 0, equation (4.6) becomes a continuous differential equation:

a

2ρ

∂2Vm

∂x2
= Cm

∂Vm

∂t
+ Iion. (4.7)

1Cytoplasm is the fluid enclosed by a cell membrane and filled with dispersed particles and

organelles [2](pp. 10-12).
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Replacing resistivity ρ by the conductivity d = 1/ρ, and representing a/2 by the

inverse of the surface-to-volume ratio β = (2πa∆x/πa2∆x) = 2/a, we obtain the

cable model of 1-dimensional cardiac fiber, written as:

d

β

∂2Vm

∂x2
= Cm

∂Vm

∂t
+ Iion, (4.8)

which is:

1

β
∇ · (d∇Vm) = Cm

∂Vm

∂t
+ Iion. (4.9)

Assumption of Cable Model

The basis of the cable model is that it treats a cardiac fiber as 1-dimensional and

reduces the problem to a single spatial dimension [93]. 1-dimension is only in the

sense that the current and voltage potentials are uniformly distributed across any

cross section perpendicular to the longitudinal direction of the cable [94].

The resistance shown in Figure 4.1(b) corresponds to the average resistance

of the intracellular space, which in reality is composed of cytoplasmic and gap

junctional resistances [95][96]. This model, called the continuous model, therefore

considers the cardiac tissue as a medium with continuous diffusive properties and

is only capable of preserving macroscopic details [90]. The gap junctions, which

are relatively discrete due to their short length but sizable resistance compared to

cytoplasmic [31], introduce jumps in the voltage patterns among cardiac cells, and

this can be modeled by a variation of the original cable model, in which, the gap

junctions are represented by a change in resistance [97]-[99].

The presented model assumes that the resistivity of the extracellular media is

negligible and can be treated as isopotential, and only considers the propagation

of electrical signals within the cells by taking the extracellular space as grounded

as shown in Figure 4.1. This assumption relies on the experimental observation
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that the extracellular medium has a much higher conductivity compared to the

intracellular medium (a typical factor of 8 is reported in the longitudinal direction

in [100]).

4.2.2 Multi-Dimensional Cardiac Propagation Model

The multi-dimensional cardiac propagation model is extended from equation (4.9)

and takes into account the anisotropic electrical properties of cardiac media. This

type of equation is also called an excitable dynamics equation and is formulated

with a reaction-diffusion equation as given below [5]:

∇ · (Di∇Vm) = β(Cm
∂Vm

∂t
+ Iion), (4.10)

where Vm, β, Cm and Iion, the same as in equation (4.8), are the membrane poten-

tial, the surface-to-volume ratio, the membrane capacitance, and the transmem-

brane current per unit area. Di is the intracellular conductivity tensor, which

incorporates the conduction properties of the intracellular space. Di is a single

variable d in equation (4.8) for the 1-dimensional case, and for 2-dimensional and

3-dimensional cases, it is expressed by:



dγγ dγδ

dδγ dδδ


 , (4.11)

and



dγγ dγδ dγε

dδγ dδδ dδε

dεγ dεδ dεε




, (4.12)

respectively, where γ, δ, and ε are three axes in the selected Cartesian coordinate

system. When the cardiac fibers are considered as parallel and straight, it is
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mathematically convenient to adopt the Cartesian coordinate system and align it

with the principal axes of Di to make Di a diagonal matrix. When modeled cardiac

tissues are curved or rotated, Di generally cannot be diagonalized by selecting the

axes [36].

The most commonly applied boundary condition for equation (4.10) is a no-

flux, or Neumann condition, expressed as:

(Di∇Vm) · ~n = 0, (4.13)

where ~n is the normal vector to the boundary. The no-flux condition, also known

as sealed boundary condition, defines no current flows into or out of the edge of a

piece of cardiac muscle (including intracellular and extracellular space), and can

represent naturally the outer surface of the heart.

4.2.3 Summary of Cardiac Propagation Model

The present quantitative description of electrical signal propagation in cardiac tis-

sue is based on two classical models. They are the Hodgkin-Huxley model, which

describes the active membrane properties using the kinetics of the ionic currents,

and the cable equation of Kelvin, which relates the current and voltage along

a continuous one-dimensional structure [90]. For the propagation model we se-

lect for VLSI implementation, the Beeler-Reuter model, which has been designed

with VLSI circuits as introduced in chapter 3, is chosen to describe the mem-

brane excitable properties and the non-linear ionic currents, and the continuous

core-conductor model expressed by equation (4.10) is employed to formulate the

electrical activities transmitted in the intracellular space.

Put all the equations together for our propagation model, equation (4.10),

replacing equation (2.40), becomes the top level of formulation, with its boundary
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Figure 4.2: Simplified structure of cardiac tissue and its continuous representative

in cable-model.

condition being represented by equation (4.13). All the other equations in the

Beeler-Reuter model, from (2.41) to (2.60) are still valid. Note that in equation

(4.10), the propagation term ∇ · (Di∇Vm) substitutes Iext in the equation (2.40).

As explained in chapter 2, Iext represents the external influence applied on a cell

and can be used as a stimulus to trigger the action potential. Therefore, in the

propagation model, it is the current transmitted along the myocardium fiber that

activate a cardiac cell to create an action potential.

For the circuit implementation, we simplify the structure of cardiac fibers to

be as in the left side of Figure 4.2, where we assume all the muscle fibers are

parallel and straight by ignoring the curved shapes of the heart muscles and the

different orientations between different cardiac fibers. Therefore, the intracellular

conductivity tensor Di can be made a diagonal matrix by properly selecting the

coordinates. On the right side of Figure 4.2 is the representative of the cardiac

muscle in the cable-theory-based model, which is a continuous medium that does

not differentiate the boundaries of individual cells. As illustrated in Figure 4.2,

we select the Cartesian coordinate system and assume that x and y, orthogonal

to each other, are both transversal to the fiber axis; and z is parallel to the fiber

longitudinal direction. Expanding the nabla operator on the diagonalized Di,

147



equation (4.10) becomes equation (4.14):

dx
∂2Vm

∂x2
+ dy

∂2Vm

∂y2
+ dz

∂2Vm

∂z2
= β(Cm

∂Vm

∂t
+ Iion), (4.14)

where dx, dy and dz are the conductivity in the direction x, y and z respectively,

all assumed to be constant.

In section 4.3, we will show the circuit simulation of the electrical propaga-

tion over the cardiac tissues based on equation (4.14). We will only present the

simulation for 1-dimensional and 2-dimensional propagation, due to the lack of

the transillumination imaging techniques [101] needed for the visualization of 3-

dimensional propagation. The propagation over 3-dimensional cardiac tissues can

be realized by circuits using the same methodology, which will be described in

section 4.3.1.

4.3 Modeling Propagation of Cardiac Active Po-

tential with VLSI

Core-conductor models involve the fewest simplifying assumptions and incorpo-

rate the greatest amount of present knowledge about the ionic basis for the action

potential, and, thus, are widely used for the study of cardiology. Since the 1950s,

core-conductor models have been descretized to divide a continuous fiber model

into segments to allow the studies of propagation with circuits and later with

high-speed computers [20]-[22][37][102]. However, the ionic-membrane-based car-

diac cell model described by the reaction-diffusion equation (4.10) (and equation

(4.14)), can substantially increase the complexity to obtain a numerical solution

with computers [96]. Equation (4.10) formulates a special coupled PDE-ODE (par-

tial differential equation - ordinary differential equation) system, with the PDE
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formulating the propagation and the ODE presenting the membrane ionic mecha-

nism. In the heart model, the ODE system and the PDE system, though coupled

through the voltage and current, are independent of each other. At any point in

the space, the activation of Vm, or the generation of the action potential, relies

on the spatial conduction of electrical signals described by the PDE to transmit

the stimulating current, whereas, the shape of the action potential at that point

is totally decided by the ODE equations. The ODE system determines the sole

dependance of the gating variables and ionic concentrations on Vm at each spa-

tial point, and, thus, their boundary conditions are not available. Because of the

complexity of the problem, computation with digital computers is very expensive

and challenging. The rapid upstroke in an action potential of a ventricular cell

can require the time discretization on the order of 0.01 ms [103], and the steep

wave front in space may require the space discretization on the order of 0.1 mm.

This means to simulate 1 s of the heart beat on a uniformly grided 3-dimentional

tissue of size 1 cm3, there are 1011 unknown Vm. If the Beeler-Reuter model (a

degree-eight ODE system) is used to formulate the membrane ionic mechanism,

there are 8× 1011 unknown values coupled together through time and space. The

tremendous complexity in computation with digital computers promotes the use

of analog circuits to perform the calculation.

Simulating propagation with circuits can be traced back to Schmitt’s circuit of

the electronic neural network implementation [104], and the active pulse transmis-

sion line constructed by Nagumo etc. [9][105]. Nagumo etc. used a capacitor, a

tunnel diode, and an inductor to simulate the ionic behavior of a segment of an

animal nerve axon; the segments are coupled with resistors to construct an active

transmission line. The purpose of segmenting the continuous propagation model
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for circuit implementation is just the same as meshing numerical regions for find-

ing solutions with computers, which is to use a finite number of data to present a

continuous space.

Despite the great similarity of the circuit implementation and the presented

cable model (both are nonlinear RC networks), the proposed methodology of circuit

computation is valid for calculating not only the electrical propagation models for

cardiac tissue, but also applicable to other reaction-diffusion systems in biology,

physics, chemistry, etc [84]-[88].

4.3.1 Computation of Discretized Reaction-Diffusion Equa-

tion with Circuits in Cartesian Coordinates

The partial differential equation for a general reaction-diffusion system is formu-

lated as [87][106][107]:

∇ · (Aj∇uj) = bj
∂uj

∂t
+ fj(u1, ..., uM), (j = 1, 2, ...M), (4.15)

where uj are characteristics of the diffusion medium, bj are constants, fj, rep-

resenting the reaction in the reaction-diffusion system, are functions of uj, and

Aj are diffusion tensors. The presented set of partial differential equations (4.15)

describe a system that has M diffusion variables, which, with each being time-

and space-dependent, are coupled together to make the system cooperative by the

reaction functions fj. We use Cartesian coordinates and consider only the case

when the diffusion tensors are fixed, i.e., they do not change with the space axis,

and all Aj are isotropic. Hence, the Cartesian coordinates can be selected to make
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Figure 4.3: Using an RC network to implement reaction-diffusion systems.

Aj diagonal matrices which are expressed as:



ajx 0 0

0 ajy 0

0 0 ajz




, (4.16)

where ajx, ajy, and ajz, are the diffusion coefficients for the directions x, y and z. In

the following discussion, we will show how the RC network shown in Figure 4.3 can

be used to implement the reaction-diffusion system formulated by equations (4.15)

(and (4.16)) after (4.15) is discretized. Note that the circuit shown in Figure 4.3

is to realize one of the equation set formulated by (4.15). To represent the whole

system, M of the same RC circuit with different parameters are needed, and all

circuits are coupled together through the current sources I0 in Figure 4.3. The

following discussion is for the jth equation in the reaction-diffusion system.

Equation (4.15) can be rewritten by expanding the nabla operation as follows:

ajx
∂2uj

∂x2
+ ajy

∂2uj

∂y2
+ ajz

∂2uj

∂z2
= bj

∂uj

∂t
+ fj. (4.17)

The partial differential equation (4.17) can be discretized spatially by letting ∂i (i
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is x, y, or z) transition to segments ∆i with non-zero lengths, and the equation

then is changed to:

(ajx
∆ujx+

∆x2
− ajx

∆ujx−
∆x2

) + (ajy
∆ujy+

∆y2
− ajy

∆ujy−
∆y2

)

+(ajz
∆ujz+

∆z2
− ajz

∆ujz−
∆z2

) = bj
∂uj

∂t
+ fj, (4.18)

where ∆uji+ and ∆uji− (i is x, y, or z) are the changes of uj in the positive and

negative i direction. Equation (4.18) becomes equation (4.17) when the ∆i (i is x,

y, or z) tend to be 0.

Let us now consider the 3-dimensional RC network shown in Figure 4.3, in

which each node is joined to ground through a capacitor C and a current source

I0, and distributed nodes are bridged with resistors. At node a, from Kirchhoff’s

current law, the sum of the currents that flow into the point is 0, and, hence, the

following equation is fulfilled:

(Ix+ − Ix−) + (Iy+ − Iy−) + (Iz+ − Iz−) = Ic + I0, (4.19)

where Ic is the capacitor current, and Ii (i is x+, x−, y+, y−, z+, or z−.) are

the currents in the six directions as illustrated in Figure 4.3. By using Ohm’s law

and the I-V property of the capacitor, equation (4.19) becomes:

(
∆Vx+

Rx

− ∆Vx−
Rx

) + (
∆Vy+

Ry

− ∆Vy−
Ry

)

+(
∆Vz+

Rz

− ∆Vz−
Rz

) = C
∂Va

∂t
+ I0, (4.20)

where ∆Vi+ and ∆Vi− (i is x, y, or z) are the voltage differences in the positive

and negative direction i, and Ri (i is x, y, or z) are the resistance in direction i.

There is a great similarity between equations (4.18) and (4.20), and thus, (4.20)

can be made the same as (4.18) by letting the circuit parameters satisfy:

Rx =
∆x2

ajx

, (4.21)
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Ry =
∆y2

ajy

, (4.22)

Rz =
∆z2

ajz

, (4.23)

C = bj, (4.24)

I0 = fj. (4.25)

Note that I0 is normally variable due to the dependence of fj on u1, u2, ..., uM .

Since equation (4.18) comes from (4.15), the RC circuit shown in Figure 4.3 with

parameters selected following equation (4.21)-(4.25) describes the same reaction-

diffusion system as equation (4.15) when ∆i → 0 (i = x, y, or z).

Equations (4.21)-(4.25) is not a unique solution for mapping a reaction-diffusion

system into the RC circuit in Figure 4.3. Multiplying by a constant on both sides

of equation (4.15) creates another equation that describes exactly the same system.

Hence the circuit mapping equations provided by (4.21)-(4.25) can be expanded

to be the following:





RiC = (∆i)2 × bj

aji
,

RiI0 = (∆i)2 × fj

aji
,

(i = x, y, or z). (4.26)

The 3-dimensional RC network shown in Figure 4.3 can be changed to implement

reaction-diffusion systems of 1-dimension or 2-dimension by removing the parts

of the circuit in the direction(s) that does not exist in the corresponding system

as shown in Figure 4.4. Figure 4.4(a) illustrates a 1-dimensional RC circuit with

3 discretized non-ground nodes. Figure 4.4(b) depicts the RC circuit for a 2-

dimensional case, and there are 4 nodes in the figure. Figure 4.4(a) and (b) describe

the reaction-diffusion systems formulated with:

ajx
∂2uj

∂x2
= bj

∂uj

∂t
+ fj, (4.27)
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Figure 4.4: Using an RC network to implement reaction-diffusion systems in the

case of (a) 1-dimensional, (b) 2-dimensional.

and

ajx
∂2uj

∂x2
+ ajy

∂2uj

∂y2
= bj

∂uj

∂t
+ fj, (4.28)

with the circuit parameters being still restricted by equation (4.26).

The feasibility of using a circuit to represent a reaction-diffusion system re-

lies on the fact that an RC network is also a reaction-diffusion system, and all

reaction-diffusion systems actually describe scenarios of the same nature, which is

the movement of a certain physical substance over a particular media through a

diffusion process. The boundary conditions are similar for most reaction-diffusion

systems. Two common boundary conditions are a) the no-flux condition, a situa-

tion where substances can not move across the boundary, and b) the fix amount

condition, which reflects the situation when the substance amount is fixed by ex-

ternal conditions [107].

The proposed circuit mapping methodology is limited by the requirement that

the space is uniformly gridded for individual directions. The limitation arises from
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the derivation of equation (4.20), where the resistances Ri (i is x, y, or z) are

constants and do not change by varying positions. Due to the relation between Ri

and ∆i (i is x, y, or z) defined by equation (4.26), ∆i needs to be fixed too. The

grid sizes of different directions, however, do not need to be equal, i.e. Rx, Ry, and

Rz can be different.

4.3.2 Transistor Circuit Simulation of 1-Dimensional Car-

diac Propagation

The normal pattern of propagation in the heart, from the sinoatrial node, through

the atrium, to the atrioventricular node, to the bundle of His to the ventricular

muscle, is an essentially 1-dimensional sequence [83]. Thus the simulation of a

1-dimensional propagation system, i.e. a single cardiac fiber, gains the knowledge

of normal cardiac activity and is helpful to understand the electrical system of the

whole heart. A 1-dimensional cardiac model is simpler than a multi-dimensional

one and is usually constructed by fewer discretized nodes and, thus, consumes

less computational resources and time to simulate. Hence it is widely used by

researchers to obtain prototyping results. In this section we show the simulation

of the 1-dimensional cardiac propagation using an RC circuit.

Figure 4.5 illustrates the circuit setup for simulating the electrical signal propa-

gation with a 1-dimensional model following the method presented in the previous

section, and, in this case, there is only one diffusion variable, i.e. M = 1 in

equation (4.15). Each pair of the membrane capacitor Cmi and the ionic cur-

rent Ii (i = 1, 2...N) composes a single ionic membrane model that represents a

segment of the cardiac fiber. N identical segments are connected with resisters

(R1 = R2 = ... = RN−1) in series to construct a 1-dimensional model of the heart
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Figure 4.5: Circuit of 1-dimensional cardiac propagation.

muscle. On the left of Figure 4.5, the current source Istimulus is an external stimulus

and is responsible to create a current to trigger the activation of the first cardiac

segment consisting of Cm1 and I1. The excitation is then passed down through the

coupling resistors to the entire chain until it reaches the last node N . The circuit,

without any current flowing into node N from its right side, is naturally consistent

with the no-flux boundary condition of the cardiac propagation model, formulated

by equation (4.13).

The differential equation of the 1-dimensional propagation system is modified

from equation (4.14) by making dx = 0 and dy = 0. For the other coefficients in

equation (4.14), we use the values used by Bray and Wikswo in [108] in our propa-

gation model. The surface-to-volume ratio β takes 3000 cm−1, dz = 1.863 mS/cm,

and Cm = 1µF/cm2. Iion is defined by the Beeler-Reuter model provided in equa-

tion (2.41)- (2.60). Equation (4.14) then is rewritten as:

6.21× 10−8∂2V ′
m

∂z2
= 10−7∂V ′

m

∂t
+ I ′ion, (4.29)

where we, again, scale down the magnitude of the membrane potential by 100, the

same way as we did in chapter 3, and use scaled V ′
m to distinguish it from the

original variable Vm, I ′ion is scaled Iion by a factor of 106.

The circuit parameters of the RC implementation for equation (4.29) are se-
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lected following equation (4.26). ∆x is set to 600 µm, that is, two adjacent nodes

in Figure 4.5 represent a section of 1-dimensional cardiac tissue with 600µm in

length. Following the equations in (4.26), the circuit parameters - the resisters,

the capacitors and the current sources in Figure 4.5, are set as follows:





Ri = 5.76× 104 Ω,

Cmi = 0.1 µF, (i = 1, 2...N),

Ii = I ′ion,

(4.30)

Note that the initial conditions of the reaction diffusion equation can be also shifted

to zeros with the method presented in section 3.2.3, for which equation (4.29) stays

unchanged after the initial value shifting process.

The circuit in Figure 4.5 is realized with VLSI by replacing each node with

the implementation circuit of the Beeler-Reuter model presented in chapter 3 (the

top level circuit diagram is shown in Figure 3.19) and substituting the resisters

with their VLSI realization. The implementation of resistors with VLSI devices

has been introduced in section 3.3.1 and shown in Figure 3.5(b). As the action

potential is in the range of [−85 mV, 50 mV ], the membrane voltage on each node

V ′
mi (i = 1, 2...N) is in the range of [0 V, 1.35 V ] after being scaled and shifted

for the initial conditions. Hence, the transistor-implemented resisters are required

to have linear V -I properties when inputs V+ and V− are independently changing

within [0 V, 1.35 V ]. The resistor circuit, being non-ideal two-terminal devices, can

experience current differences in two terminals, that is the current flowing into V+

is different from the current flowing out of V− due to the impact from the exter-

nal circuits. This happens when the currents in the output transistors in Figure

3.5(b) do not mirror properly the currents decided by the input stage. Hence,

good current mirrors are important to ensure the resistor properties of the circuit,
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Figure 4.6: PSpice simulation results of 1-dimensional cardiac propagation con-

structed by transistor circuit.

and, thus, cascode current mirrors are employed for our heart implementation. In

addition, making the output transistors still working in the saturation region when

applied with input voltages (which are also the voltages at the outputs) is another

key point to necessitate I+ = −I−. The transistor circuit of implementing the

resistors Ri = 5.76×104 Ω (i = 1, 2...N) is provided in the schematics page Sch-32

in appendix A.

In our transistor simulation circuit, totally 20 nodes are established, i.e. N = 20

in Figure 4.5. The stimulation Istimulus is set to give a square pulse (impulse) of

2.2 mA for 0.1 ms starting at 10 ms. The corresponding simulation results of

the 1-dimensional model are shown in Figure 4.6. The z axis indicates the node

number, from 1 to 20. The first node is excited at t = 10 ms, and its extremely

high upstroke is because of the external stimulus. The excitation is propagated

down to the other nodes, and the last (20th) node is excited at about t = 70 ms.
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4.3.3 2-Dimensional Cardiac Propagation: Spiral Reentry

In this section, we will provide the circuit simulation for 2-dimensional cardiac

propagation and present the phenomenon of reentry spiral that can be visualized

only in 2-dimensional or 3-dimensional models of the heart. The spiral waves are

life threatening because they can lead to abnormal rapid heart beat, that is not

controlled by the pace maker of the heart, and then to ventricular fibrillation, an

arrhythmia2 leading to sudden cardiac death.

Though our heart muscles are thick enough that the electrical propagation over

the heart is a 3-dimensional process, we treat the problem as 2-dimensional as do

most studies of spatial patterns of electrical activity in the heart [107]. We will

still adopt equation (4.14) in our simulation modified for the 2-dimensional case.

The VLSI circuit realization is similar to the 1-dimensional case presented in the

previous section, both using the implementation circuit of the Beeler-Reuter model

discussed in chapter 3 and the same transistor circuit for resisters, and, thus, will

not be repeated here. Due to the extremely expensive time cost in simulating the

VLSI circuits with PSpice for the propagation model (for instance, the simulation

of Figure 4.5 with N = 20 took 20 hours for modeling 0.6 s of the heart electrical

activity), the simulation of the transistor circuits to demonstrate a 2-dimensional

spiral wave is unaffordable. Since we have showed the validity of using VLSI

circuits to model the cardiac propagation by applying it in the 1-dimensional case,

in the following simulation, we no long adopt transistor circuits and take use of

ideal component circuits to avoid the overwhelming simulation time demanded by

the transistor heart model.

2Arrhythmia is a group of conditions in which the muscle contraction of the heart is irregular,

faster, or slower than normal [26].
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Reentry and Refractory Period

Under certain circumstances, a cardiac impulse may re-excite some portion of the

heart through which it had passed previously. This phenomenon is called reentry

[26], which is believed to be the primary mechanism underlying the tachycardia,

an abnormal fast cardiac rhythm, and fibrillation, a state where cardiac muscles

undergo an irregular type of contraction without proper coordination [109]-[115].

The tachycardia and fibrilation can be in the ventricle or the atria, and especially

the ventricular fibrillation is most severe and is the most common cause of sudden

cardiac death which is responsible for about 1 out of 6 deaths in the Western world

[116]. Therefore, the dynamics of the reentry waves, the mechanisms of remedy

methods and drug therapies are of interest in understanding sudden cardiac death

in patients.

Reentry is tightly related to the refractory period. During much of the action

potential, the membrane is unable to fire a second action potential, no matter

how strong an external stimulus is applied to the cell. The state in which a

membrane is unexcitable is called the absolute refractory period. The refractory

state occurs because a large fraction of the sodium channels is inactivated and

cannot be reopened until the membrane is repolarized [26]. This can be seen in

Figure 3.34(c), which shows the sodium current INa is most of the time around

zero because of the closed channels, except at the overshoot of the action potential.

Figure 4.7 illustrates the membrane potential when stimulated within and out of

the refractory period with a second stimulus. The thick line depicts a normal

action potential, activated by a stimulus occurring at t = 100 ms with a strength

0.3 mA/cm2 for 0.1 ms. A second stimulation, the same strength, is applied at

t = 200 ms, t = 300 ms, t = 350 ms, and t = 380 ms separately, and these do
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Figure 4.7: Action potential applied with a second stimulus at different moment:

(1) t = 200 ms, (2) t = 300 ms, (3) t = 350 ms, (4) t = 380 ms, (5) t = 400 ms,

(6) t = 410 ms, and (7) t = 420 ms. Stimulus strength: 300 mA/cm2 for 0.1 ms.

not cause a second action potential, as depicted by the dotted curves (1) to (4),

because the stimulations happens during the refractory period. The curves (5) to

(7) correspond to the stimulations, the same strength as the first one, applied at

t = 400 ms, t = 410 ms and t = 420 ms respectively, and the waveforms show

that the activated action potentials are more and more like normal ones as the

stimulation is more and more postponed.

There are two types of reentry: anatomical reentry and functional reentry.

Functional reentry involves waves circulating around refractory cardiac tissue, and

this will be discussed further with our 2-dimensional propagation simulation in the

next section, where we show a spiral wave, the form of reentrant pattern being

in 2-dimension. Here we explain reentry with an example of anatomical reentry,

in which a conduction obstacle is involved. The example [26] is shown in Figure

4.8. In each of the two panels, a single bundle of cardiac fibers splits into two

branches, 1 and 2, and they are connected again by bundle 3. Normally, as shown
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Figure 4.8: Example of reentry. (a) Action potential travels normally. (b) Reentry

is caused by a unidirectional block.

in Figure 4.8(a), an action potential moving down travels in each branch 1 and 2,

and then enters bundle 3 from both sides. The wave from the left side can not

proceed further because the tissues on the right side are just activated by the wave

from branch 2 and thus are absolutely refractory. The wave from the right side

can not travel farther either for the same reason. Figure 4.8(b) shows the same

bundle structure except having a unidirectional block, depicted with the dark area

in branch 2. An action potential travels down branch 1 normally but is blocked

in branch 2. The wave transmitted from the left side then is able to propagate

to the right side and splits to travel both upwards and downwards. If when the

wave penetrates the unidirectional block from the bottom, the upper portion of

branch 2 has exited its refractory period and becomes excitable again; the wave

can continue to travel up to where it originally comes from and also to branch

1 again, and this causes a reentry. The presented anatomical reentry example is

simulated with PSpice using the 1-dimensional propagation model. A modified

transistor circuit of the VLSI implementation of resistors is employed to simulate

the unidirectional block. The circuit setup and the PSpice simulation results are

provided in Appendix B.
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Figure 4.9: Circuit for 2-dimensional cardiac propagation.

Circuit Simulation of a Spiral Wave

The circuit setup for 2-dimensional cardiac propagation is illustrated in Figure

4.9. A 31 × 31 array is shown constructed with each node being composed of a

membrane capacitor and a non-linear ionic current (not depicted here) as shown in

Figure 4.4(b). Resistors are connected in between each two adjacent nodes, which

are also not shown in Figure 4.9. The nodes are identified with their positions

defined by the x axis and y axis, with integer points in the intervals x ∈ [0, 30],

y ∈ [0, 30]. Equation (4.31) is the mathematical description of the 2-dimensional

propagation system we are trying to model using the circuit in Figure 4.9, and it

is modified for two space dimensions and rewritten as:

6.21× 10−9(
∂2V ′

m

∂x2
+

∂2V ′
m

∂y2
) = 10−7∂V ′

m

∂t
+ I ′ion, (4.31)

where V ′
m and I ′ion are scaled membrane potential and ionic current. Here we still

use the values used by Bray and Wikswo in [108] for the surface-to-volume ratio

β = 3000 cm−1, the conductances dx = dy = 0.186 mS/cm, and the membrane ca-

pacitance Cm = 1µF/cm2. Discretizing equation (4.31) by meshing the continuous

spatial domain into grids, this differential equation can be mapped into the RC

network shown in Figure 4.9 by setting proper values for the resistors, capacitors,

163



and the ionic currents in the figure; this has been introduced in section 4.3.1. We

set the grids in the x and y direction to be ∆x = ∆y = 160 µm. The circuit pa-

rameters are selected under the restriction of equation (4.26), and are summarized

in equation (4.32):





Rx = Ry = 4.1× 104 Ω,

C = 0.1 µF,

I0 = I ′ion,

(4.32)

where Rx and Ry are resistances between nodes in the x and y directions, C is

node capacitance, and I0 is the ionic current of each node (refer to Figure 4.4 for

the names of circuit components). Here we still use the Beeler-Reuter model to

formulate the ionic current, provided in equation (2.41)-(2.60).

In order to activate the 2-dimensional RC network and create action potentials,

external stimulus is needed to be applied to the circuit. The stimulating elements

are configured for generating a spiral reentry wave on the RC circuit and can be

divided into two groups, as illustrated in Figure 4.9. The first group of stimulating

current sources Istimulus,1 are connected to the nodes at y = 0 (x ∈ [0, 30]), and

they all fire a pulse at time t = 10 ms, which creates a plane action potential wave

that propagates in the increasing y direction. The second group of stimulating

currents Istimulus,2, connected to x = 30 and y ∈ [0, 10], send an impulse at time

t = 335 ms. This combination triggers a spiral wave as we will see soon. Istimulus,2,

8 mA in magnitude and lasting for 0.1 ms, is set stronger than Istimulus,1, 6.2 mA

of the same duration, in order to successfully re-activate the elements that exit the

refractory period a short while ago.

The simulation results are provided in Figure 4.10. The x axis and the y

axis are the same as in Figure 4.9, and the z axis is the membrane potential.
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As shown in Figure 4.10(a), at t = 10 ms, the first group of stimulus triggers

the components at an edge of the array. After 30 ms, that is at t = 40 ms,

the generated action potential is transmitted to the nodes at y = 16, and this is

depicted in Figure 4.10(b). At t = 300 ms, shown in Figure 4.10(c), the action

potentials have been propagated to every node in the array and the components

close to the origins (at y = 0) are largely repolarized, i.e. back to resting potential.

At t = 335 ms, the second group of stimulus trigger the circuit as illustrated in

Figure 4.10(d), and this situation is known to happen in the heart when a group

of cells fires abnormally [37]. At this moment, many components have not been

fully repolarized from the last action potential. Figure 4.10(e) shows that 10 ms

later, the action potential wave triggered by the second stimulation is propagated

to the neighborhood. Note that a part of the region where the second stimulus

fires is still in the refractory state due to the recent passage of the plane action

potential wave. Therefore, at the beginning the second wave can only propagate in

the decreasing x direction to where the components become excitable. Soon more

components exit the refractory period of the first action potential and recover the

ability to be activated, the second wave can enter this region, propagating in the

y direction first, and then going in the positive x direction. This is illustrated in

Figure 4.10(f)(g)(h). The wave propagates in the negative y direction as shown

in Figure 4.10(i)(j), when the components where the second wave originates exit

the refractory period and fire a third action potential, giving a reentrant action

potential. This process can continue, forming a rotating spiral wave pattern.
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Figure 4.10: A spiral wave in 2-dimension cardiac model.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we have presented analog VLSI circuits which simulate the

electrical activities of the heart in chapter 3 and 4. The VLSI design of the heart

model is based on the Beeler-Reuter model, describing the ionic membrane mech-

anism of ventricular cells, along with the continuous cardiac propagation model

which evolved from cable theory. In order to implement the mathematical de-

scriptions of the heart model in a VLSI circuit, we reformulate the Beeler-Reuter

equations, and discretize the reaction-diffusion equation of the propagation model.

The PSpice simulation of the transistor circuit of a cardiac cell and a segment of

1-dimensional cardiac fiber has been carried out, and the circuit simulated action

potential has been discussed.

In chapter 2, we presented a review for the kinetics of the membrane ionic cur-

rents and provided the equations of the Beeler-Reuter model. The Beeler-Reuter

model describes a degree-eight first order ordinary differential system, and for-

mulates the membrane potential, four ionic currents, six gating variables, and a
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varying calcium concentration. The time-based differential system is realized using

the integration properties of capacitors and nonlinearities of MOS and NPN tran-

sistors, presented in chapter 3. The circuit simulated action potential of a cardiac

cell showed satisfactory accuracy compared with the action potential calculated

from the original equations in the Beeler-Reuter model.

In chapter 4, we discussed the cardiac propagation model, a partial differential

equation that describes the variation of the membrane potential in space. The

space-dependent partial differential equation is realized with a non-linear RC net-

work. The propagation of the cardiac electrical activity has been simulated in

1-dimensional model with a transistor circuit. The important reentry phenomena

and the spiral wave have been simulated successfully with a 2-dimensional model.

It is worth to emphasize that we have proposed a design flow and a set of

steps for constructing analog VLSI circuits to calculate mathematical equations (in

chapter 3), and this methodology can be applicable to systems other than the heart.

We have introduced equation reformulation schemes to change a mathematical

description for easier circuit realization; this uses the Matlab Curve Fitting Toolbox

to transform equations to expressions that can be simulated by simpler circuits, a

parameter scaling procedure to convert numerical ranges of variables to the feasible

working region of circuit currents and voltages, and an initial value shifting scheme

to change the initial conditions of differential equations to zero. We have designed

a set of transistor circuit blocks of mathematical function units, implemented a

time-based ordinary differential system (for a cardiac cell), and proposed the circuit

structure to map reaction-diffusion systems. All the introduced methods contribute

to the fundamentals for a novel technique of obtaining numerical solutions by

analog VLSI circuits. Analog circuits realized on hardware have the potential
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for fast computation due to their convenient and parallel calculation method for

differentiation compared to the iterative method used by digital computers, and

this makes it possible to produce application-specialized fast analog processing

elements.

5.2 Future Work

This work can be seen as a first step towards the development of a full electrical

conduction system of the entire heart using analog VLSI circuits. To construct a

complete cardiac electrical system with circuits, more work is necessary. Listed

below are several additional aspects that need to be studied.

• Power Characterization

Power efficiency is an important issue in terms of the satisfactory battery span in

portable electronics. In the case of VLSI implementation of the heart model, the

potential applications, such as portable cardiac processing devices, implantable

medical electronics, etc., all demand low power dissipation. To simulate the whole

heart, millions of spatial nodes may be needed, and, thus, when a full heart model

is realized in silicon and membrane ionic mechanism details are implemented for

each node, power consumption can become critical to necessitate the proper func-

tioning of the whole system. Therefore, the power consumption of the VLSI heart

model needs to be characterized and minimized, and low power techniques (such

as decreasing the biasing currents, simplifying the circuit topologies to reduce the

number of transistors, changing the working region of transistors, lowering the sup-

ply voltages, changing fabrication technology etc.) are desirable to be incorporated

into the circuit design.
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• Integration of Capacitors

We have shown in chapter 3 that the maximum capacitor (1 µF ) used in the VLSI

design of heart model can be realized by a capacitor 104 times smaller, that is 100

pF . Taking the selected AMI 1.5 µm IC process as an example, in which the avail-

able capacitor option PiP (poly2 over poly) is about 600 aF/µm2, a capacitance of

100 pF needs a silicon area of about 408× 408 µm2. Thus, the required capacitor

area is still very large, and further study is needed to find smaller VLSI elements

that calculate integrals. One way is to improve the presented capacitance ampli-

fication schemes specified for the VLSI cardiac circuit (refer to chapter 3 section

3.4.7). As mentioned in section 3.4.7, minimizing the leakage currents of bipolar

devices can reduce the limitation on the capacitor amplification factor. Shrinking

the time scale is another way to avoid large capacitance, and this needs the investi-

gation of high-frequency performance of the VLSI heart circuits of this dissertation.

Also, switched-capacitor circuits [117](pp. 417) could be investigated for a possible

method of magnifying capacitances, in which clock-controlled switches are used to

mediate charging currents. Developing new semiconductor technology for higher

capacitivity, and inventing novel integration devices to replace area-consuming ca-

pacitors could be other directions for solving the problem.

• Enhancement with Heterogeneous Membrane Properties

The presented VLSI heart model only simulates the electrical activities of the ven-

tricular cells. The variation of the action potential generated at different portions

of the heart needs to be investigated, and the development of new circuits are

needed to generate these variable action potentials. The current VLSI design can

be extended to include the controlabilities for adjusting the action potential for
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different types of cardiac cells. Due to the great similarities of the action poten-

tials at various kinds of cardiac cells (such as ventricle, atrial, sinus node, Purkinje

fibers, etc.) and the same ionic basis of all the models, it is possible to implement

the action potentials of different cells with similar circuits for changing gating

opening/closing rates and channel ionic properties. A control mechanism added

in the circuit implementation may be able to let the same circuit simulate various

types of action potentials. In addition, the added control circuit can also serve as

a handler to tune the system for simulating cardiac response in various conditions

such as drug effects, emotions regulation, etc.

• Error Analysis of Implementing the Continuous Excitation Propagation Model

The same as for all the numerical method, the circuit implementation of discretized

reaction-diffusion system suffers with discretization errors. The spatial discretiza-

tion may introduce errors in the action potentials and influence the propagation

of the action potential in space, and the wave conduction velocity is a typical and

easily recognizable indicator for coarse discretization [38]. The effects of spatial

segmentation in the continuous model of the cardiac excitation propagation have

been discussed in previous research works [38][100]. Similar analysis of the seg-

mentation errors introduced by finite space steps on the circuit implementation

can be carried out in our heart model by taking account the continuous nature

of the time domain in the VLSI heart simulation. Furthermore, as mentioned in

chapter 4 section 4.2.1, the continuous cable model takes the intracellular space as

a medium with continuous diffusive properties and does not consider the discrete

properties of the gap junctions. Therefore, a study on how close the circuit imple-

mented excitation propagation model is to reality is necessary to provide a helpful

guidance for creating more accurate VLSI heart models.
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• Real 3-dimensional - Adaption to Heart Natural Topology

Though the heart can be simplified by 1-dimensional (for the specialized exci-

tatory and conductive system from the sinus node to the Purkinje fibers) and

2-dimensional (for the atrial and ventricular walls) models, the heart has a 3-

dimensional topology, with curved and rotated muscle fibers and non-zero thickness

of the atrial and ventricular walls, and, thus, 3-dimensional models are unavoidable

to describe more accurately the complicated structure of the heart. However, in the

VLSI implementation of the heart model, 3-dimension means huge entangled wire

connections and densely occupied circuits, because the 3-dimensional network has

to be projected to 2-dimension surface due to the 2-dimension nature of the cur-

rent VLSI technology; this provokes the need for new semiconductor techniques for

implementing heart circuits. The concepts for 3-D VLSI [118] and flexible (bend-

able) transistors [119] are possible directions to implement real 3-dimensional heart

models with circuits. The study of the detailed anatomic structure of the heart

and the orientation of the cardiac fibers is necessary to incorporate into the VLSI

implementation. Irregular meshing for simulating the complex geometry of the

cardiac muscle is also desirable to be investigated.

5.2.1 More - Application Perspectives

Up to now, we have been concentrating on the simulations of the cellular ionic

mechanisms and the resulting electrophysiological activities in the normal heart.

The eventual purpose of modeling the cardiac electrical behavior is to understand

the cardiac physical phenomena and the mechanisms of heart failure, and apply this

knowledge to biomedical research to contribute to the development of therapeutic

strategies, drugs and medical devices. Therefore, the capability of simulating ab-
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normal activities in the heart and the inclusion of other interactions with the heart

electrical behaviors are imperative to make the VLSI heart model more thorough

and, hence, beneficial for real life cardiology. In the following, we give an overview

on what else can be included in the circuit cardiac simulation.

• Models for Diseased Cardiac Tissues

Acute ischemia in cardiac muscles can critically impair the mechanical and electri-

cal behavior of the heart and facilitate the development of reentry waves, cardiac

arrhythmias, and ventricular fibrillation [26][120]. The enhancement of the model

to be able to handle ischemia cardiac tissues necessitates the simulation of the

abnormal electrophysiological properties in the heart caused by ischemia. Sophis-

ticated models that include the formulation of K+ concentrations, ATP-sensitive

K+ channels, and effects of pH are needed to simulate this kind of diseased cardiac

cells [121]. The relative previous work can be found in [120][122] for the simulation

of ischemia in the heart. It is even more exciting to model the mutated cardiac cells

and inherited heart disorders. Such cell models provide us insight into the genetic

bases of arrhythmias and heart diseases. [123] is an example of using simulation

to study the action potential changes in mutated cardiac tissue.

• Arrhythmias and Their Underlying Mechanisms

In this work we only simulated reentry waves, which is the most common mech-

anism of arrhythmia and plays a crucial role in the initiation of ventricular fib-

rillation, the most severe arrhythmia. The simulation of the progression and sus-

tainment of ventricular fibrillation is not performed in this work but is important

to gain knowledge of the dynamics of ventricular fibrillation and invent efficient
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treatment. Besides, to enrich our understanding of the arrhythmia caused by reen-

try (i.e. abnormal impulse conduction), more precise cardiac conduction models

may be favorable to extract more information from the simulation. One aspect

of improving the model is to include the discrete properties of gap junctions and

their dynamic resistances. Gap junctions are clusters of intercellular channels,

which exhibit several conductance states [124], in which the probability of a chan-

nel being in the open state is determined by the transjunction voltage. Hence, the

conductivity of gap junctions changes during the transmission process of electrical

signals. [99] is a previous work that studied the influence of varying gap junction

resistance on the electrical propagation in cardiac tissues.

Furthermore, there are two other basic mechanisms causing arrhythmias. Un-

like reentry-caused arrhythmias, which result from abnormal impulse conduction,

these two are both related to abnormal impulse generation, which arises from

abnormal automaticity or triggered activity [121]. Automaticity refers to the abil-

ity of the heart to initiate its own beat, and it allows the heart to beat even

when it is removed from the body [26]. Suppressed automaticity can lead to si-

nus node dysfunction, and enhanced automaticity can result in arrhythmias [125].

Triggered activity is the spontaneous multiple depolarization triggered by early

afterdepolarizaiton (EAD) and delayed afterdepolarizaiton (DAD). Previous works

that simulate abnormal automaticity and triggered activity have been reported

[126]-[128].

• Medication and Treatment

It is important to include medication and other methods of treatment in the sim-

ulation model in order to study the side effects of medicines and validate new

medical devices. Therefore, to include the drug effects on the ionic channels and
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to model implantable electronic devices are necessary for research of investigating

cures for heart diseases. The anti-arrhythmic drugs are divided into four classes

according to the Vaughan-Williams classification [129], and most of the drugs work

by regulating the ionic channels and adjusting the depolarization or repolarization

process. There have been literatures that formulate the equations for drug effects

[130]-[132] and they can be easily added to the circuit simulation by the VLSI

implementation schemes presented in chapter 3. Implantable devices for heart

diseases include artificial pacemakers and implantable cardioverter/defibrillators

(ICD). Artificial pacemakers sense the heartbeat and send electrical charge when

the heartbeat is slower than a threshold for triggering more heartbeat. ICD works

in a similar way, but it “actions” when detecting heart rate being too fast and

delivers an electrical shock to return the rhythm to normal. Therefore, the im-

plantable devices can also modify the heart electrical behavior and need to be

included in appropriate simulations.

• Electrocardiogram

An electrocardiogram (ECG) is a graphic produced by recording the electrical

voltage on the surface of the body generated by the small cardiac currents caused by

an impulse that spreads into the tissues surrounding the heart [2]. Since abnormal

electrical activity of the heart alters the shapes of the waves in an ECG, an ECG is

the prime clinical tool for the diagnosis of cardiovascular diseases. The capability

of constructing the ECG associated with the simulated arrhythmias would enable

us to link between the electrical activities inside the heart and the measurement on

the surface of the body and would assist in better understanding of the mechanisms

underlying the heart diseases observed clinically. Previous works such as [133] and

[134] have proposed methods of modeling ECG in simulations.
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• Coupling with Nervous Regulation and Mechanical Systems

So far we have been discussing the electrical activity of the heart alone. It is obvious

that the heart, being embedded in the body, can be also influenced by other parts

of the body. The automaticity of the heart can be regulated by extrinsic factors

such as temperature, oxygen tension in the blood, nervous control, hormones, etc.

There have been researches carried out to formulate mathematical models for the

control of heart rate by autonomic nervous system [135]-[137]. In addition, the

heart rate can be also increased by the mechanical stretch of the right atrial wall

[2]. The mechanical behaviors are tightly coupled with the electrical system in the

heart. On one hand, the electrical activity causes the mechanical contraction of the

heart; on the other hand, the mechanics influences the electrical behavior by the

mechano-electric feedback. The study of the electrical and mechanical components

together allows us to expand the exploration from the cardiac electrophysiology

to the full functioning of the heart, and the cardiovascular physiology and the

circulatory system. The mathematical models that describe the cardiac mechanics

have been studied by researchers and the simulation of the electro-mechanical

coupling have been performed. The related literatures are [5][138][139].
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Appendix A

Transistor Circuits of

Beeler-Reuter Model

Implementation

In Appendix A, we provide the complete transistor circuits for implementing the

Beeler-Reuter model. The circuit schematics are divided into six categories, as

listed in Table A.1: Vm, the top level circuit; IK1, Ix1, INa, and Is, the circuits for

creating four ionic currents; and Miscellaneous circuits. The block diagrams of

the circuits and their simulation results have been presented in chapter 3, section

3.4.

The schematics of the cardiac cell VLSI design are shown hierarchically in a top-

down manner, i.e. an upper level of circuit is presented first, and its sub-circuits

are provided later. The legends related to the hierarchy are illustrated in Figure

A.1. Figure A.1(a) is a hierarchic module, whose module name and the schematics

page number of its transistor implementation are provided below the icon. In a

schematics of a module, the input and output terminals, bearing the same names
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Vin     Vout

V-Buffer
pp. Sch-27

Vin Vout VbiasVbias

(a) (b) (c)

Figure A.1: Legends for hierarchical schematics.

as shown in its the module block, are represented by the symbols shown in Figure

A.1(b). To help organize the schematics circuits, on-page connectors, depicted in

Figure A.1(c), are used to make wire connections without drawing wires among

the nodes that are distributed far away to each other in the same schematic page.

The schematics’ contents are summarized in Table A.1. In each schematic, the

schematic’s page number is shown in the middle below the circuit, and a brief

description is provided in the right bottom corner of each page.
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Table A.1: List of schematics

Category Description Schematics Page

Vm Top level of circuit for Vm Sch-1

Top level diagram for IK1 Sch-2

IK1 Sigmoid circuit 1 for IK1 Sch-3

Sigmoid circuit 2 for IK1 Sch-4

Top level diagram for Ix1 Sch-5

Ix1 αx1, and βx1 Sch-6, 7

Ix1 Sch-8

Multiplier for IK1 Sch-9

Top level diagram for INa Sch-10

INa αm, βm, αh, βh, αj, and βj Sch-11 to Sch-16

Multi-input multiplier for INa Sch-17

2-input multiplier and transconductor for INa Sch-18

Top level diagram for Is Sch-19

αd, βd, αf , and βf Sch-20 to Sch-23

Is [Ca]i and Es Sch-24

Transconductors for Is Sch-25

3-input multiplier for Is Sch-26

NPN, Vbias, V-Buffer, Transconductor G1 Sch-27

Transconductors G2, G3, G4, and G5 Sch-28

Miscellaneous Transconductor G6, and pool circuit 1 & 2 Sch-29

Tanno multiplier 1 Sch-30

Tanno multiplier 2 and current duplicator Sch-31

Resistor Sch-32
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Appendix B

PSpice Simulation of Anatomical

Reentry Using Unidirectional

Block

In Appendix B, we present a 1-dimensional circuit that simulates the anatomical

reentry phenomena presented in section 4.3.3. The triangular structure of the

reentry cardiac tissues, shown in Figure 4.8, is to be modeled by a circuit ring,

which is similar to that in Figure 4.5, except the first node and the last node is

connected with a special resistor that models a unidirectional block. The simplified

diagram of the circuit is illustrated in Figure B.1, where the ring represents a 1-

dimensional RC circuit (refer to Figure 4.5) composed of 120 nodes, starting from

node #1 at x = 0, y = 1, with the node ID number arranged in the increasing

order in the direction of anti-clockwise, and #1, #31, #61, and #91 are the four

nodes that are on the x or y axis. There is a unidirectional block between node

#1 and #120, which blocks the electrical propagation from node #1 to #120 and

only allows the passage of signals in the opposite direction. We have presented
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x

y

Stimulate
node #1

#1 [0,1]

#31 [1,0]#61 [0,-1]

#91 [-1,0]

Action potential 
propagation direction

Uni-directional 
block

Figure B.1: A circuit ring composed of 120 node for modeling anatomical reentry.

in detail in section 4.3.2 the construction of an RC circuit to model the reaction-

diffusion system of the cardiac propagation, and all circuit parameters in the ring

circuit follow section 4.3.2, and, thus, we will not repeat the circuit configuration

here. In the following discussion, we focus on the introduction of implementing

the unidirectional block and show the simulation results of the anatomical reentry.

Constant resistors can be realized with VLSI devices using the differential pair

circuit shown in Figure 3.5(b), as introduced in section 3.3.1. On the top of

Figure B.2, (a1) depicts a simplified version of the transistor-implemented resistor

presented in section 3.3.1, where R+ and R− are the two terminals of the equivalent

resistor. The block is the differential pair circuit, whose voltage inputs V+ and V−

and current outputs I+ and I− are connected like in Figure B.2 (and Figure 3.5(b))

for a normal resistor. The relation of the resistor currents vs. the difference of the

input voltages of the resistor (we call it a symmetric resistor) is shown in Figure

B.2(a2).

There are two candidate circuits for implementing the unidirectional block,

and both are based on a differential circuit. The first candidate is shown in Figure

B.2(b1), in which the terminal I− does not connect to R− and hence there is no
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Figure B.2: Implementation of bidirectional and unidirectional resistors using a

modified differential pair circuit.

current allowed at the R− terminal, while the R+ terminal remains the same as for

(a1). Since the I-V properties of the resistor implementation in (b1) is different in

two terminals, we call it a non-symmetric resistor. This non-symmetric resistor

does not influence the external circuit connected with R−, but affects the circuit

connected to R+. Therefore, a signal can pass from R− to R+, but not from R+ to

R−. Figure B.2(c1) shows the second circuit that realizes the unidirectional block,

where the currents sourced from I+ and I− are “cut” to leave a half of the I-V

branch by adding a NMOS and a PMOS current mirror; and this is shown in its

I-V curves in Figure B.2(c2). Due to the “halved” I-V properties of this resistor,

we call the resister a half-symmetric resistor. A half-symmetric resistor operates

like a normal resistor when V+ > V−, and when V+ < V− it shows no conductivity.

If a non-symmetric resistor is employed in our ring circuit, it leads to large

re-polarizing current (caused by big voltage difference across the resistor) that

rapidly discharges the membrane and distorts the action potential when the cardiac

node at one side of the resistor is activated and the node at the other side can

not be due to the isolation effect of the non-symmetric resistor. Therefore, in
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the simulation of the anatomic reentry, we adopt the half-symmetric resistor to

implement the unidirectional block. Since an excited membrane potential is higher

than the resting potential, the properties of the half-symmetric resistor necessitate

the propagation of the active potential in one direction but not the other. An

external stimulus is applied to excite the ring of the 1-dimensional cardiac tissue.

It sends a square pulse of current to node #1 at time t = 10 ms, with 2 mA in

the amplitude, and 0.1 ms of duration. Ideal components are used to construct

all the nodes for saving the longitude simulation time. The simulation results are

provided in Figure B.3. At t = 11 ms, shown in Figure B.3(a), the first node is just

activated by the stimulus. In (b), at t = 180 ms, the action potential is propagated

over about a half of the circle. Note that the propagation is anti-clockwise due to

the existence of the unidirectional block between #1 and #120. At t = 380 ms,

all nodes on the ring have been activated at lease once, and the action potential

is transmitted back to node #1 and creates a reentry wave around there; this is

shown in Figure B.3(c). Figure B.3(d) and (e) show that the reentry wave is passed

further down to other nodes. The big notch on the voltage potential contour at

the positive x and y quarter is due to the shorter duration of the newly reentered

action potential (at nodes number ≥ 1) compared to the first action potential of

the same node. This results from the not-fully-recovered refractory state of the

nodes when the second action potential is activated. This can be seen clearly in

Figure B.4, which we will discuss shortly. In Figure B.3(f), at t = 780 ms, a

third circulation of the action potential starts. The reentry wave will turn around

and around and never stop, and it is responsible for many clinical arrhythmias

(disturbances of cardiac rhythm) [26].

Figure B.4 illustrates the membrane potential of node #1 changed by time.
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t = 11 ms t = 180 ms

t = 380 ms t = 460 ms

t = 560 ms t = 780 ms
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Figure B.3: Reentry wave caused by unidirectional block in 1-dimensional model.
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Figure B.4: The time-course of the membrane potential of node #1.

A full action potential is generated at t = 10 ms when the stimulus sends a

current impulse to the node. The second action potential, occurring at about

t = 360 ms, is much smaller than the first one due to its activation being too

close to the repolarization stage of the first action potential, and consequently its

magnitude is degraded by the refractory period of the first action potential. The

third action potential is a full action potential again, and it happens at t = 730 ms.

The excitation of node #1 will continue on and on, and the shape of each action

potential depends on how well the node is recovered from the previous action

potential.
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