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Dynamical Properties of TCP System with AQM Routers

Huigang Chen, John S. Baras, and Nelson X. Liu

Abstract

In this report we discuss the dynamics of heterogeneous TCP systems with propagation delays. Instead of
studying the local linearized TCP dynamics, we study the global stability conditions and obtain the stability regions.
Also we provide proof of periodic behavior of a single TCP connection when stability conditions are not met.

I. I NTRODUCTION

Today’s Internet traffic is mostly consisted of flows based on TCP which provides reliable transmission and
resilient performance in response to varying network conditions. TCP, as a window-based end-to-end control
scheme, adapts the sender’s transmission rate by the feedback information of the receiver. The sender exploits
the available network network by linearly increasing the window size and when a network congestion is detected
from either packet drop or ECN marking, the sender reduces the window by half. Using TCP fluid-flow model,
with such additive-increase-multiplicative-decrease window control algorithm, coupled with the AQM scheme in the
intermediate routers, we can formulate the network as a nonlinear delay feedback system. The dynamical behavior
of such system has been studied in [1], [2], [3], [4], [5], [6], and etc. Due to the nonlinearity of the system and the
existence of delay in the feedback, people either focus on the small signal linearized system in the neighborhood
of equilibrium state [5], or use Lyapunov-Razumikhin type theorems to analyze single source and single bottleneck
network [3], [4]. Recently people start to use powerful nonlinear stability analysis tools, such passivity theory and
ISS Small-Gain theorem, to obtain robust stability conditions for network flow control problems [7] [8], but it is
very difficult to apply these tools to the TCP systems since TCP is not an ISS system. This work tries to establish
global nonlinear stability conditions for a general AQM scheme and study the dynamical behavior of a simple
TCP system when the stability conditions are not met. The paper is organized as follows. Section II proves global
stability theorems for heterogeneous TCP systems. Section III proves the existence of periodic dynamics for a
single source and single bottleneck TCP system with delay. We conclude in Section IV.

II. GLOBAL STABILITY OF TCP SYSTEMS

We are considering here a network of TCP sources and links as in the Figure (1) withN sources andL
links. Packets from each sourcei flow at the rate ofri ∈ R

N through the linkj with the aggregated arrival rate
yj = [Rr]j ∈ R

L. And accordingly each link generates a penalty valuep j ∈ R
L from the arrival rate and its queue

size and sends the penalty value back to the sender. Then each sender adjusts its sending rate appropriately by the
aggregated penalty valueqi = [RT p]i ∈ R

N it receives. Here matrixR is the routing matrix and we assume it is
constant. Also another assumption here is that the aggregated penalty value is the summation of the penalty values
from related links rather than multiplication, which is a fine approximation when the penalty values are small.
Notice that the system is nonlinear, and we allow different delays in the routing matrix. In this study we wish to
establish conditions for global stability.

The system dynamics takes the form of the following,

ṙi(t) =
ri(t − τi)

ri(t)

(
1 − qi(t − τi)

d2
i

− 1
2
ri(t)2qi(t − τi)

)
, i = 1, . . . , N (1)

ṡj(t) = ((1 − pj)yj − cj)+s , pj = hj(sj), j = 1, . . . , L (2)

y = Rr, q = RTp

where cj is the link capacity at the linkj, and τi is the link delay seen by the sourcei. The above equations
describe the scenario in which the router drops the incoming packets by some schemes instead of just marking
them. First of all we transform Equation (2) into

ṗj = Hj(pj)((1 − pj)yj − cj), j = 1, . . . , L. (3)
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Fig. 1. Network of TCP system

Here Hj(pj) = h′
j(h

−1
j (pj)). Under some mild conditions, Equations (2) and (3) are equivalent. So we instead

study the dynamical system with state equations (1) and (3). The delay-free case can be solved by Lyapunov’s
direct method. Here “global” means the region whereri ≥ 0, i = 1, . . . , N , andpj ∈ [0, 1], j = 1, . . . , L. We begin
with a simple observation:

Lemma 1: The states of the dynamical system described by Equations (1) and (3) are uniformly bounded.
Proof: We only need to considerri’s. We designatecM = maxj=1,...,L cj . Without loss of generality suppose

there is at0 such thatri(t) < ri(t0) = 2cM , for all t < t0 andri is still increasing. Then

ṗj = Hj(pj)((1 − pj)yj − cj) ≥ Hj(pj)(1 − 2pj)cM , j ∈ Li

for all t at whichri(t) ≥ 2cM . Sopj peaks at least at1/2 and surpasses anyη, η ∈ (0, 1/2) in finite time tη. Thus
we have

ri(t) ≤ 2cM + max{ tη
d2

i

,
1
di

√
1 − η

η
} +

τi

d2
i

, ∀t

which completes the proof.
Proposition 1: If Hj is bounded away from0 for all j, the delay-free (τi = 0, i = 1, . . . , N ) TCP system

described by Equations (1) and (3) is globally asymptotically stable.
Proof: In the following proof, i is the index from1 to N and j is the index from1 to L. Let us define

displaced state variables̃ri = ri − r∗i and p̃j = pj − p∗j , wherer∗i and p∗j are the rate of theith source and the
dropping probability at thejth link in equilibrium state respectively. Also we designater̃ = [r̃1, . . . , r̃N ]T and
p̃ = [p̃1, . . . , p̃L]T . So the dynamical equations becomes

˙̃ri = −
(

1
2
r̃i + r̄i

)
qir̃i −

(
d−2

i +
1
2
r̄2
i

)
q̃i (4)

˙̃pj = Hj(pj)((1 − p̄j)ỹj − yj p̃j) (5)

We defineJj(·) as

Jj(u) �
{ ∫ u2

0 1/Hj(p̄j +
√

x)dx, u ≥ 0∫ u2

0 1/Hj(p̄j −
√

x)dx, u < 0
.

It is easy to see that sinceHj(u) > 0 for all j andu is defined on a compact set, those integrals are well defined,
continuously differentiable and positive definite.
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Next consider the candidate Lyapunov function

V (r̃, p̃) =
1
2
r̃T




d−2
1 + r̄2

1/2
. . .

d−2
N + r̄2

N/2



−1

r̃

+
1
2




1 − p̄1

. . .
1 − p̄L



−1

[J1(q̃1), . . . , JL(q̃L)]T . (6)

Take the derivative along the trajectory of the dynamical system, we get

V̇ =
N∑

i=1

(d−2
i + r̄2

i /2)
−1r̃i

˙̃ri +
L∑

j=1

(1 − p̄j)−1J̇j(q̃j)

=
N∑

i=1

(d−2
i + r̄2

i /2)
−1
(−(r̃i/2 + r̄i)qir̃

2
i − (d−2

i + r̄2
i /2)q̃ir̃i

)

+
N∑

j=1

(1 − p̄j)−1Hj(pj)−1p̃jHj(pj) ((1 − p̄j)ỹj − yj p̃j)

= −r̃T




r̃1/2+r̄1

d−2
1 +r̄2

1/2
q1

. ..
r̃N/2+r̄N

d−2
N +r̄2

N/2
qN


 r̃

− p̃T




y1

1−p̄1

. . .
yL

1−p̄L


 p̃ − q̃T r̃ + p̃T ỹ.

But
q̃T r̃ = p̃T Rr̃ = p̃T ỹ.

So

V̇ = −r̃Tdiag
[

r̃i/2 + r̄i

d−2
i + r̄2

i /2
qi

]
r̃ − p̃T diag

[
yj

1 − p̄j

]
p̃

From the fact that

r̃i/2 + r̄i = ri/2 + r̄i/2 ≥ r̄i/2

yj =
∑
i∈Lj

ri ≥ 0

qi =
∑
j∈Si

pj ≥ 0,

we know that the derivative ofV (r̃, q̃) is positive semidefinite and since the only invariant set is at the equilibrium,
so global asymptotic stability follows from Invariance Theorem.

Remark 1: The above Proposition considers the AIMD form of TCP. Actually by using similar Lyapunov
technique, one can prove that for the fluid-flow model of general TCP window update algorithm like:

Wk+1 =
{

Wk + aW−α
k , packet received

Wk − bW β
k , packet loss

global asymptotic stability still holds.
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Next we consider the case when there are no delays from the feedbacks of the penalty information, but there are
state delays in the rate dynamics, which is,

ṙi(t) =
ri(t − τi)

ri(t)

(
1 − qi(t)

d2
i

− 1
2
ri(t)2qi(t)

)
, i = 1, . . . , N (7)

ṡj(t) = ((1 − pj)yj − cj)+s , pj = hj(sj), j = 1, . . . , L (8)

y = Rr, q = RTp

Proposition 2: If Hj is bounded away from0 for all j, the TCP system described by Equations (7) and (3) is
globally asymptotically stable.

Proof: For any initial conditionsri(θi) = φi(θi), φi(θi) ≥ 0, θi ∈ [−τi, 0], andpj(0) = pj0, there is a solution
ri(t) andpj(t) for ∀t > 0.

Let us study a particular trajectory of such solution. Define functionsξ i : R
+ × R

+ → R
+ such that

ξi(x, t) �
{

ri(T − τi), T = maxr̃i(θ)=x,0≤θ≤t θ
r̄i, r̃i(θ) �= x, 0 ≤ θ ≤ t

,

and define functionsζi : R
+ × R

+ → R
+ such that

ζi(x, t) �
{

r̄i + x, ∃θ, st.0 ≤ θ ≤ t, r̃i(θ) = x
r̄i, r̃i(θ) �= x, 0 ≤ θ ≤ t

.

Observe that the discontinuity with regard tot in ξi(x, t) takes place only atx = r̃(t) and∂ξi(x, t)/∂t = 0 for all
otherx’s . So ∫ r̃(t)

0

∂ξi(x, t)
∂t

dx = 0

Consider the functionsWi(t)’s

Wi(t) =




1
2

∫ r̃i(t)2

0
ζi(

√
x,t)

ξi(
√

x,t)
dx, r̃ > 0

1
2

∫ r̃i(t)2

0
ζi(−√

x,t)
ξi(−√

x,t)
dx, r̃ < 0

.

First of all, the above integrals are well defined for allt, t ∈ (0,∞) since the integrands are nothing other than
ri(t)/ri(t − τi) or 1 and the integral can be written as

1
2

∫ r̃i(t)2

0

ζi(±
√

x, t)
ξi(±(

√
x, t)

dx

dt
dt

≤
∫ t

0

ri(t)
ri(t − τi)

ri(t − τi)
(

1 − qi

d2
i

− 1
2
r2
i qi

)
dt ≤ (1 + d−2

i )rM t

whererM is the upperbound of the rate. Second, sincer i(t) remains positive all the time soWi(t)’s are positive
definite functions. And the derivative ofWi(t)s are

Ẇi(t) = r̃i(t) ˙̃ri
ri(t)

ri(t − τi)
+

1
2

∫ r̃i(t)2

0

∂

∂t

ζi(±
√

x, t)
ξi(±

√
x, t)

dx

= −(r̃i/2 + r̄i)qir̃
2
i − (d−2

i + r̄2
i /2)q̃ir̃i

Therefore the positive definite function

V (t) =




d−2
1 + r̄2

1/2
. . .

d−2
N + r̄2

N/2



−1

[W1(t), . . . ,WN (t)]T

+
1
2




1 − p̄1

. . .
1 − p̄L



−1

[J1(q̃1), . . . , JL(q̃L)]T (9)
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has the derivative

V̇ (t) = −r̃Tdiag
[

r̃i/2 + r̄i

d−2
i + r̄2

i /2
qi

]
r̃ − p̃T diag

[
yj

1 − p̄j

]
p̃.

SinceV (t) is always non-negative and decreasing with time, solim t→∞ V (t) exists. From boundedness of the
trajectory,V (t) and V̇ (t) is bounded. Thus by applying Barbalat lemma,lim t→∞ V̇ (t) = 0. BecauseV̇ (t) is a
positive definite function of̃ri’s andp̃j ’s, so it follows that the dynamical system converges to its equilibrium state.

The previous theorem establishes that in the source dynamics, the delay term of the sending rate is not the cause of
instability. So we should study the effect of delayed feedback to the global stability. It is a very difficult problem
even in a single flow scenario. By using Lyapunov-Razumikhin type theorems, previous studies ( [4], [3]) gave
very narrow stability regions. This is because in the source dynamics the gain of the delayed term can be large and
the gain of the delay-free term can be small. Also Razumikhin type methods often give rather poor stability region
estimates for delay-dependent stability. Here we try to utilize a more sophiticated Lyapunov functional to obtain a
much better stability region estimates.

Due to complexity of the problem we face, we only present a single-flow scenario with a linear queue marking
function. Consider a TCP/AQM dynamics described as below,

ṙ =
1 − kq(t − τ)

τ2
− 1

2
r(t)2kq(t − τ),

q̇ = (r − C)+q ,

r andq are TCP rate and bottleneck queue size as usual andk is the slope of the marking function. By re-scaling
the timet = τs to normalize the delay, we get

˙̃r = − q̃(s − 1)
τq∗

− τ(r̃/2 + C)kq(s − 1)r̃(s)

˙̃q = τ r̃. (10)

Here we letr = r∗ + r̃ andq = q∗ + q̃, wherer∗ = C and q∗ = k−1(
(
1 + C2τ2/2

)−1) are equilibrium rate and
queue length respectively. We have the following result.

Theorem 1: SupposeτC 
 1, we can choosek to make the system (10) globally stable.
Proof: Local linear stability result in Lemma 2 tells us whenτC 
 1, we can choosek = 4C−3τ−3 to obtain

local stability. For simplicity, let us denoteψ(t) = [r̃(t), q̃(t)]T . Also denoteη as a2 × 2 matrix-valued function
with bounded variation on[−1, 0]:

η(s) =




[0 0; 0 0], s = −1
[0 − τ−1/q∗; 0 0], −1 < s < 0
[−τCkq∗ − τ−1/q∗; τ 0], s = 0

It is easy to see that the linearized version of (10) can be written as

ψ̇(t) =
∫ 0

−1
dη(θ)ψt(θ).

From [9], we can choose the following Lyapunov functional for (10),

V (ψ) = ψT (0)Y (0)ψ(0)

+ 2ψT (0)
∫ 0

−1

∫ 0

u
Y (−u + θ)dη(u)ψ(θ)dθ

+
∫ 0

−1

∫ 0

−h
dsψT (s)dηT (h)

×
∫ 0

−1

∫ 0

−1
Y (−s + h − u + θ)dη(u)ψ(θ)dθ (11)

It is known that if (10) is locally stable, we can findY ∈ C([−1, 1],R2×2) satisfiesẎ (0) + ˙Y T (0) = −W where
W is a positive definite matrix. HerėY (0) is defined asd+Y (0)/dt. ThenV (ψ) is positive definite ifY satisfies
additionally:
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(i) Y (t) is continuously differentiable fort �= 0.
(ii) Y (0) is symmetric andY (t) = Y T (−t).
(iii) Y (t) =

∫ 0
−1 dηT (s)Y (s + t).

Take the derivative ofV (ψ) we can show

V̇ ψ = −ψT (0)Wψ(0) − 2kτ(r̃(0)q(−1)/2 + q̃(−1)C)

× (r̃(0)q̃(0)Y12(0) + r̃(0)2Y11(0))

DenoteY (t) = [y1 y2; y3 y4]. From the conditions at whichY (t) has to satisfy we have[
ẏ1(t) ẏ2(t)
ẏ3(t) ẏ4(t)

]
=
[ −kCq∗τ τ

0 0

] [
y1(t) y2(t)
y3(t) y4(t)

]
+
[

0 0
− 1

τq∗ 0

] [
y1(1 − t) y2(1 − t)
y3(1 − t) y4(1 − t)

]
.

We can solve the above equation explicitly. By some calculation,y1(t) is the solution of the following fourth-
degree differential equation,

y
(4)
1 − k2C2τ2q∗2y(2)

1 − 1
q∗2

y1 = 0.

Given initial conditionẏ1(0) = −1/2, a solution of the above equation is

y1(t) =
1
2u

(u2 + kCτq∗u)e−ut − q∗−1eu(t−1)

u2 + kCτq∗u + q∗−1e−u

where

u =

√√√√k2C2τ2q∗2

2
+

√
k4C4τ4q∗4

4
+

1
q∗2

.

It is easy to see that whenτC 
 1, u =
√

2/(τC) and y1(t) = (1 − t)/2. We can also deduct the following
relations,

y3(1) +
1

τq∗
= y3(0),

and for Ẏ (0) + Ẏ T (0) = −W = −[W1 W2;W2 W4],


2ẏ(0) = −1,
−kCτq∗y2(0) + τy4(0) − (τq∗)−1y1(1) = W2,
−2(τq∗)−1y3(1) = W4.

So we can sety2(0) = y3(0) = τ−1q∗−1, and choosey4(0) properly so that

W =
[ −1 0

0 − 2
τ2q∗2

]
< 0.

Now V̇ (ψ) becomes

V̇ (ψ) = −r̃(0)2 − 2τ−2/q∗q̃(0)2 − 2kτ(r̃(0)q(−1)/2 + q̃(−1)C)

× (
2

τq∗
r̃(0)q̃(0) +

1
2
r̃(0)2).

Supposeq is confined in the region[0,mCτ ], for any positive integerm. We can upperbound the above equation
by

V̇ (ψ) ≤
{

−r̃(0)2 − 2
τ2q∗2 q̃(0)2 + 4r̃(0)

Cτ ( r̃(0)
2 + 2q̃(0)

τq∗ ), r̃(0)(r̃(0)/2 + 2q̃(0)/(τq∗)) ≥ 0

−r̃(0)2 − 2
τ2q∗2 q̃(0)2 − (2mC + r̃(0)(m + 1/2))4r̃(0)

C2τ ( r̃(0)
2 + 2q̃(0)

τq∗ ), r̃(0)(r̃(0)/2 + 2q̃(0)/(τq∗)) ≤ 0.
(12)

We can observe from Figure 2 in Region I and Region III the upper condition of (12) is satisfied andV̇ (ψ)
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Fig. 2. Region ofV̇ (ψ) in (12)

becomes

V̇ (ψ) ≤ −r̃(0)2 − 2
τ2q∗2

q̃(0)2 +
4r̃(0)
Cτ

(
r̃(0)
2

+
2q̃(0)
τq∗

)

= −(1 − 2(Cτ)−1)r̃(0)2 − 2
τ2q∗2

q̃(0)2 +
4

τq∗2
r̃(0)q̃(0)

The last part of the above equation is strictly below zero whenψ is other than 0 if the condition

4
(

1 − 2
Cτ

)
2

q∗2
>

16
q∗4

holds. This is true from our assumptionCτ 
 1.
In Region II and Region IV of Figure 2, the maximum value ofV̇ (ψ) should be reached for̃r ≥ 0 (Region

II). This is because for everỹr and q̃ in Region IV, we can choose−r̃ and−q̃ in Region II so that the right
handside of (12) in the second situation is larger. This argument can be immediately verified from the existence of
the (2mC + r̃(0)(m + 1/2)) term. So now let us focus on Region II. The part which involvesq̃ is

− 2
τ2q∗2

q̃(0)2 − (2mC + r̃(0)(m + 1/2)))
8r̃(0)

C2τ2q∗)
q̃(0).

This reaches maximum in Region II atq̃(0) = 0. So we showed in Region II and IV we also have

V̇ (ψ) ≤ 0.

Therefore we conclude that in all regions of the state space, the derivative of the Lyapunov functional (11) is strictly
below 0 except when the trajectory is at the equilibrium state. Consequently global stability holds.

III. PERIODIC SOLUTION OF A SINGLE TCP CONNECTION

Now we study a single TCP source with the round-trip timeR and go through a bottleneck link with fixed
bandwidthC. The bottleneck router is implemented with some ECN marking scheme. We have the following
dynamics,

dr

dt
=

1 − f(q(t − τ))
τ2

r(t − τ)
r(t)

− 1
2
r(t)r(t − τ)f(q(t − τ))

dq

dt
= (r − C)+q (13)
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The functionf(q) ∈ C1(R, [0, 1]) is a nondecreasing marking function satisfying the following constraints

f(q) = 0 , for q ≤ 0

f(q) = 1 , for q ≥ B. (14)

From observations of simulations, we notice that dynamics (13) has periodic solutions when the delayτ is greater
than a certain value. Low [5] proved that the condition of stability of linearized version of (13). In this section, we
try to prove some properties of nonlinear dynamics, including boundedness and periodic behavior of the solution.

First of all, we want to derive the local behavior of the system (13) when the delayτ is near the boundary
of the stability region established from the linearized system. To begin with, we need to obtain the local stability
conditions with regard toτ . The linearized version of Equations (13) is

dr̃

dt
= −f ′(q∗)

(
1
τ2

+
1
2
r∗2
)

q̃(t − τ) − r∗f(q∗)r̃(t)

dq̃

dt
= r̃.

Here we letr = r∗ + r̃ andq = q∗ + q̃, wherer∗ = C andq∗ = f−1(
(
1 + C2R2/2

)−1) are equilibrium rate and
queue length respectively. Re-scale the timet = τs to normalize the delay, we get

dr̃

ds
= − f ′(q∗)

τf(q∗)
q̃(s − 1) − τf(q∗)Cr̃(s)

dq̃

ds
= τ r̃. (15)

The following lemma holds.
Lemma 2: Supposef ′(q∗) < 0.5006 and lettk, k = {0, 1} be the solutions of the following equation,

ω2
k

cos ωk
= f ′(q∗)(1 + t2kC

2/2), (16)

andω0, ω1 be respectively the first and the second smallest positiveω ∈ [0, π/2] satisfying

cos ω

ω2
f ′(q∗) +

ω4 tan2 ω

2f ′(q∗) cos ω
= 1. (17)

If t0 < τ < t1, then all the characteristic rootsλ(τ) of Equations (15) have negative real parts. There is an infinite
seriesτk, k = 0, 1, . . ., such that there are exactly 2 pure imaginary roots whenτ = τk. λ(τ) is differentiable at
τ = t1, andReλ′(t1) > 0. If f ′(q∗) > 0.5006, the system (15) is unstable for allτ . For τ > t1, there are precisely
two characteristic rootsλ of Equations (15) in the regionReλ > 0 and−π < Imλ < π.

Proof: The characteristic equation of Equation (15) is

∆(λ) = λ2 + τf(q∗)Cλ +
f ′(q∗)
f(q∗)

e−λ = 0. (18)

Suppose Equation (18) has pure imaginary rootsjω, then

τf(q∗)C = ω tan ω (19)(
f ′(q∗)
f(q∗)

)2

= ω4 + τ2f(q∗)2C2ω2. (20)

Substitute equality (19) into (20), we immediately get

f ′(q∗)
f(q∗)

=
ω2

cos ω
. (21)

Multiply this with (19) and after some calculations we obtain Equation (17). This indicates that the pure imaginary
roots of Equation (18) do not depend onf(q∗) whose value is decided by the delayτ . Further examination of the
signs of real and imaginary terms of the equation tells us that all possible positive pure imaginary roots of Equation
(18) can only lie in the intervals[2kπ, 2kπ + π/2], k = 0, 1, . . .. For sufficiently largek, the first term in the left



9

hand side of (17) can be small at2kπ and the second term is zero. So there is a smallest positive solution to the
equation (17) and we denote itω0. There is a sequence of positive pure imaginary roots{ωn}, ωn < ωn+1.

For eachωk, the value ofτ such that (19) and (20) hold can be easily deducted. Fort0 and t1 the result is
in Equation (16) and the rest is the same. We will show that at eachτ there are at most 2 pure imaginary roots
possible. Assume the contrary holds. Then there existω ′

1 and ω′
2 such that (20) and (21) both hold for someτ .

Therefore

cos ω′
1

sin2 ω′
1

=
1

τ2f(q∗)2C2
× f ′(q∗)

f(q∗)

=
cos ω′

2

sin2 ω′
2

.

Sincecos θ/ sin2 θ is monotone forθ ∈ [2kπ + π/2], soω′
1 = 2kπ + ω′

2. It is obviously not possible for anyk �= 0
by checking (20). Therefore at eachτ there are at most 2 conjugated pure imaginary roots.

By applying Theorem 13.9 of [10] we know that the necessary and sufficient condition that all roots of∆(λ)
reside to the left of the imaginary axis is

Cτf(q∗)2

f ′(q∗)
>

sin a

a
, (22)

where
cot a =

a

Cτf(q∗)
. (23)

It can be observed that for alla’s that satisfy (23), we only need to check the restriction of (22) fora ∈ [0, π],
sincesin a/a is a monotonically decreasing function. For convenience denoteb � Cτ , we have from (23)

b = a−1 cot a ±
√

a−2 cot2 a − 2

for a ∈ [0, θ] ⊂ [0, π/2] wherecot θ/θ = 2. Thus after some calculations (22) is the same as,

f ′(q∗)−1 >
cos2 a

a3 sin a

(
cot a

a
−
√

cot2 a

a2
− 2

)
(24)

for τ ≤ √
2/C and

f ′(q∗)−1 >
cos2 a

a3 sin a

(
cot a

a
+

√
cot2 a

a2
− 2

)
(25)

for τ ≥ √
2/C.

The right hand side is lower bounded away from0 for a ∈ [0, θ]. We calculated numerically its minimum as
1.9976 and we denote the delayτ at this moment asτ1 whose value isτ1 = 0.8355/C. Consequently there is an
upper bound equal toβ0 � 0.5006 for f ′(q∗) so that there exists stability region forτ . Therefore by properties of
a with regard toτ and Theorem 13.9 in [10] we obtain the stability region described in Figure 3. So we see that
if f ′(q∗) < β0, the system is stable at∀τ , τ ∈ [t0, t1] for somet0, t1.

It is easy to observe that there are no roots of (18) having the formλ = u + iπ. Otherwise the imaginary part
of (18) implies

u = −Cτf(q∗)/2,

and the real part of (18) becomes

0 = u2 − π2 + Cτf(q∗)u − f ′(q∗)
f(q∗)

e−u

= −1
4
C2τ2f(q∗)2 − π2 − f ′(q∗)

f(q∗)
e−u < 0.

This is a contradiction. Sinceω1 < π, applying Rouche’s theorem, it can be shown that there are two roots in the
region ofReλ > 0, −π < Imλ < π for ∀τ > t1.
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Fig. 3. Stability region of (15) with regard toτ andf ′(q∗)

Supposeλ = u + iv is the solution and denotew = 1/f(q∗). It follows,

u2 − v2 + Cτw−1u + f ′(q∗)we−u cos v = 0

2uv + Cτw−1v − f ′(q∗)we−u sin v = 0.

Differentiating the above equations with regard tow we get

(2u + Cτw−1 − f ′(q∗)we−u cos v)
du

dw

− (2v + f ′(q∗)we−u sin v)
dv

dw

=
Cτu

w2
− f ′(q∗)e−u cos v,

and

(2v + f ′(q∗)we−u sin v)
du

dw

+ (2u + Cτw−1 − f ′(q∗)we−u cos v)
dv

dw

=
Cτv

w2
+ f ′(q∗)e−u sin v,

From the Implicit Function Theorem,λ(τ0) is continuously differentiable with regard tow (equivalently with regard
to τ ) and from some calculations the sign ofReλ′(t0) is the same as the sign of

wf ′(q∗)2 + 2Cτv2w−2 + Cτf ′(q∗)vw−1 sin v

+ 2vf ′(q∗) sin v − f ′(q∗)τCw−1 cos v. (26)

But at τ = t1, v = ω1, using the relation (16) it follows

f ′(q∗)Cτw−1 cos v = vf ′(q∗) sin v.

Substituting this back to (26) we obtainReλ′(t1) > 0
Theorem 2: Equations (13) has a Hopf bifurcation att1, wheret1 is defined in Lemma 2.

Proof: According to [11] in order to prove Hopf bifurcation point it is sufficient to check the following two
conditions,

1) The linear equations (15) has a simple purely imaginary characteristic rootλ0 = iν0 �= 0 and all characteristic
rootsλj �= λ0, λ̄0, satisfyλj �= mλ0 for any integerm.

2) Reλ′(τ0) �= 0.

And from Lemma 2 both conditions are automatically satisfied.
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Theorem 2 can be interpreted as the local solution to Equations (13) whenτ is closely abovet 1 is periodic with
period close to2π/ω1. See [11] Theorem 11.1.1 for exact statement.

To prove the existence of global periodic solution is equivalent to prove the invariant solution under an infinite
dimensional operator. The basic idea is to use Schauder Fixed Point Theorem. To avoid trivial constant solution,
certain criterion called ejectivity ( [11], [12]) has to be checked.

Definition 1: SupposeX is a Banach space,U is a subset ofX, and x is a given point inU . Given a map
A : U \ {x} → X, the pointx ∈ U is said to be anejective point ofA if there is an open neighborhoodG ⊆ X
of x such that for everyy ∈ G ∩ U , y �= x, there is an integerm = m(y) such thatAmy /∈ G ∩ U .

Periodic solution for infinite dimensional problems is studied by examining the mapping of a closed convex set,
usually a cone, its boundedness and ejectivity under such mapping. So we list some useful tools (Theorem 3 and
Theorem 4 for convenience [11].

For anyM > 0, denoteSM = {x ∈ X : |x| = M}, andBM = {x ∈ X : |x| < M}.
Theorem 3: If K is a closed convex set inX, A : K \ {0} → K is completely continuous,0 ∈ K is an ejective

point of A, and there is anM > 0 such thatAx = λx, x ∈ K ∩ SM implies λ < 1, thenA has a fixed point in
K ∩ BM \ {0} if either K is infinite dimensional or0 is an extreme point ofK.

SupposeL : C → R
n is linear and continuous,f : C → R

n is completely continuous together with a continuous
derivativef ′ andf(0) = 0, f ′(0) = 0. Consider two equations

ẋ(t) = Lxt + f(xt)

ẏ(t) = Lyt (27)

For any characteristic rootλ of the above equation, there is a decomposition ofC as C = Pλ ⊕ Qλ, wherePλ

and Qλ are invariant under the solution operatorTL(t) of the above equation,TL(t)φ = yt(φ), φ ∈ C. Let the
projection operators defined by the decomposition ofC be πλ, I − πλ with the range ofπλ equal toPλ. Now we
have the following conditions [12] to check the ejective point.

Theorem 4: Suppose the following conditions are fulfilled:

(i) There is a characteristic rootλ of Equation (27) satisfyingReλ > 0.
(ii) There is a closed convex setK ⊆ C, 0 ∈ K, andδ > 0, such that

v = v(δ) � inf{|πλφ| : φ ∈ K, |φ| = δ} > 0

(iii) There is a continuous functionτ : K \ {0} → [α,∞], 0 ≤ α such that the map defined by

Aφ = xτ(φ)(φ), φ ∈ K \ {0}
takesK \ {0} into K and is completely continuous.

(iv) Given G ⊂ C open,0 ∈ G, there is a neighborhoodV of 0 such thatxt(·;φ) ∈ G, if φ ∈ V ∩ K, and
0 ≤ t ≤ τ(φ).

Then0 is an ejective point ofA.
In next two lemmas we prove the boundedness of rater(t) and queue sizeq(t). Note that the functionf(q) is

only a marking function, so it is not trivial to showq(t) is bounded.
Lemma 3: DenoteC1 > C as the solution to

τ2C
(
C1(1 − (Cτ)−1) − C

)2
2C1

= B,

andC2 as the solution to
C2

2 − C2

2C2
τ = 2.

Let CM = max{C1, C2, C/(1 − (Cτ)−1)}. Then for any initial conditions, there exists a finite timetM such that
∀t > tM , r(t) of Equation (13) is less thanCM .

Proof: Suppose at some timet1, r(t1) = CM . Due to the continuity ofr(t), we can define

t0 � sup{t0|r(t0) ≤ C, t0 < t1}
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andr(t0) = C. We note that from (13),
dr

dt
≤ r(t − τ)

τ2r(t)

which is equivalent to
dr2

dt
≤ 2

r(t − τ)
τ2

.

So it follows,

r(t)2 − C2 ≤ 2
τ2

∫ t

t0

r(s − τ)ds

≤ 2
τ2

CM (t − t0).

Thus the time the trajectory takes fromt0 to t1 is lower bounded by

t1 − t0 ≥ C2
M − C2

2CM
τ2

It can be easily shown that sinceCM ≥ C2, t − t0 ≥ 2τ .
In addition, we know that∀t ∈ [t0 + τ, t1],

dr(t)
dt

≤ CM

τ2C
. (28)

It follows that r(t1 − τ) ≥ CM

(
1 − (Cτ)−1

)
. In real applications, since there are always more than one packet

flowing in the network, soCτ >> 1. Therefore the lower bound ofr(t1− τ) is always positive. We want to obtain
the following lower bound for the bottleneck queue size at timet1 − τ :

q(t1 − τ) ≥
∫ t1−τ

t0+τ
(r(s) − C)ds.

Sincer(t) is a continuous function with upper bounded first derivative (28), it turns out that the lower bound for
q(t1 − τ) is (

CM

(
1 − 1

Cτ

)− C
)2

2CM/(τ2C)
.

From our assumption we know that the above expression is no less thanB and the marking functionf(B) = 1.
So we have

r(t1)
t

=
r(t1 − τ)
τ2r(t1)

(
1 − (1 +

τ2r(t1)2

2
)f(q(t1 − τ))

)

= −r(t1 − τ)
τ2r(t1)

τ2r(t1)2

2
< 0.

Therefore the rater(t) can not increase beyondCM .
The previous proof applies to the situations wherer(t) < CM , for t ∈ [t0 − τ, t0]. In general case, from previous

deduction we know that the queue size will reachB if the rater(t) exceedsCM after rising fromC. It will remain
aboveB until the rater(t) falls belowC. But there is a delayτ from the queue to the sender. Consequently the
rater(t) will stay belowC for the period of at leasttau to return back toC. Therefore there always exists a time
tM such thatr(tM ) = C, r(t) < CM ,∀t ∈ [tM − τ, tM ] and the upper bound applies after timetM .

Lemma 4: We defineqM as

B + (CM − C)τ + 2
(

CM

C
− ln

CM

C
− 1
)

whereCM is the same as in Lemma 3. Then∀t, t > tM , wheretM is also defined in Lemma 3,q(t) < qM .
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Proof: From Lemma 3 we know that∀t, t > tM , r(t) < CM . We only consider this range oft in this proof.
Supposeq(t0) = B. We know that fort > t0 + τ ,

dr(t)
dt

= −r(t)r(t − τ)
2

until for somet1 such thatr(t1) = C. Sincer(t0) > C as we showed in the previous proof, it follows,

dr(t)
dt

≤ −r(t)C
2

.

So,
r(t) ≤ CMe−C(t−t0−τ)/2,

and
t1 − t0 − τ ≤ 2

C
ln

CM

C

Therefore the traffic accumulation at the bottleneck queue fromt0 + τ to t1 is upper-bounded by∫ t1

t0+τ
(CMe−C(t−t0−τ)/2 − C)dt

≤ 2
(

CM

C
− ln

CM

C
− 1
)

(29)

The traffic accumulation fromt0 to t0 + τ is upper-bounded by(CM −C)τ . Combine this and (29) we obtain the
claim of this lemma.

Consider Equations (13), letC0 = C([−τ, 0], R)×R and denote elements inC0 by ψ = (φ, a), φ ∈ C([−τ, 0], R),
a ∈ R. For anyψ ∈ C0, Equations (13) has a unique solutionxt(ψ), xt = (r̃t, q̃(t − R)), throughψ at zero. Let
K = {ψ = (φ, a) ∈ C0 : 0 ≤ a < ∞, 0 = φ(−τ) ≥ φ(θ),−R ≤ θ ≤ 0}.

Lemma 5: Suppose marking functionf(q) satisfies conditions (14), then there exists a continuous function
T1 : K \ 0 → (τ,∞), such that

xT1(ψ)(ψ) ∈ −K � {−ψ : ψ ∈ K}.
And there exists a continuous functionT2 : −K \ 0 → (2τ,∞), such that

xT2(−ψ)(−ψ) ∈ K
Proof: If the functionT1 exists, and from Equations (13) we see that the solutionxt(ψ) is transversal to the

q̃-axis att = T1(ψ), so it immediately follows thatT1(ψ) is continuous from the continuity of the solution with
respect to the initial conditions. So we will prove the existence of the functionT1. The functionT2 can be proved
in a similar way. To study the behavior of the solution of Equations (13)x(ψ) for ψ ∈ K, we analyze its curve in
the (r̃, q̃)-plane. Denote

Γ = {(r, q) ∈ R
2 :

1 − f(q)
τ2

=
1
2
r2f(q)}.

Because of the properties off(q), Γ is a curve that starts at(−C,B − q∗), passes(0, 0), and converges to−q∗

when r̃ → ∞ in the (r̃, q̃)-plane.
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Fig. 4. Trajectory of Periodic Solution of Equations (13)
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Supposex(0) = ψ(0) is aboveΓ. Denotet1 � min{t|x(t) ∈ Γ, t > 0}. We will show t1 is finite. As long as
x(t) remains aboveΓ, ˙̃r(t) = r(t − τ)r(t)−1

(
(1 − f(q(t − τ)))τ−2 − r(t)2f(q(t − τ))/2

)
< 0, and ˙̃q(t − τ) =

r̃(t − τ) < 0. If x(t) never intersectsΓ, we have ˙̃q(t − τ) = r̃(t − τ) < r̃(0) < 0,∀t > τ . This is obviously not
possible. So it follows thatt1 is finite. Also since˙̃r(t1) = 0, and ˙̃q(t1 − τ) = r̃(t1 − τ) < 0, so t1 > τ .

For t > t1, and r̃(t) < 0, we have ˙̃r(t) > 0 and ˙̃q(t − τ) < 0. If the trajectory ofxt intersectsΓ before it
intersects thẽq-axis, we know that at the intersection the trajectory must be vertical to ther̃-axis, so at that instance
˙̃q > 0, which is contradictory.xt cannot passes(0, 0) since local stability condition forbids this. Sox t does not
cross thẽq-axis in the second quadrant of(r̃, q̃)-plane.

Next we showxt will hit r̃-axis in finite time. If not so, thanks to the monotonicity ofr̃(t) and q̃(t) as well as
the boundedness of the third quadrant,xt will converge to a certain(r̂, q̂). That means the system (13) has another
equilibrium state other than(0, 0) in the (r̃, q̃)-plane, which is impossible. Sõr(t) will become positive in finite
time. We denotet2 � min{t|r̃(t) = 0, t > t1} andT1(ψ) = t2 + τ , thenT1(ψ) is continuous andxT1(ψ)(ψ) ∈ −K.

Similarly denotet3 � min{t|x(t) ∈ Γ, t > t2} and we can show thatt3 is finite. This is becausedq̃/dt is strictly
positive for t ∈ [t2 + τ, t3]. Use the same reasoning as before it can be shown thatx t can not first cross thẽq-axis
in the fourth quadrant fort > t3. It is left to be shown thatxt reaches̃q-axis in the first quadrant in finite time.
Here we can utilize the actual boundedness ofq̃ shown in Lemma 4 and monotonicities ofr̃ and q̃ in the first
quadrant to prove this. Therefore there exits a finitet4 such thatx(t4) belongs toq̃-axis andT2(ψ) � t4 + τ is
continuous andxT2(ψ)(ψ) ∈ K.

For anyψ ∈ K \ {0}, defineA : K \ {0} → K by

Aψ = xT1(ψ)+T2(xT1(ψ)(ψ))(ψ).

We need to prove the Condition (iv) of Theorem 4. We only show the mappingT1 here, and due to symmetry,
the proof ofT2 is the same.

Lemma 6: If G is a given open subset ofR2, 0 ∈ G, there exists a neighborhoodV of 0 in C such that
xt(·;ψ) ∈ G, for anyψ ∈ V ∩ K, ψ �= 0, and anyt, 0 ≤ t ≤ T1(ψ).

Proof: Because the vector field of (13) is continuous, and(0, 0) is the equilibrium point of the equations, we
only need to prove thatxt(·;ψ) ∈ G, for 0 ≤ t ≤ t2(ψ) as t2(ψ) defined in Lemma 5 (̃r(t2) = 0). Suppose the
claim of this lemma is not true, we will later show a contradiction. Assume there exists a sequenceψn ∈ K \ {0},
n = 1, 2, . . ., ψ → 0, asn → ∞, such that there is aτn, 0 < τn < t2(ψ) + τ , |r̃(τn)| = M , or |q̃(τn)| = N , for
some given positiveM,N .

From smoothness ofΓ, we know for any smallε, there is a constantα, such thatmax{|r̃(t)|, 0 ≤ t ≤ t2(ψ)} =
|r̃(t1)| ≤ αq̃(0), for any q̃(0) < ε. Then consider the period from the trajectory crossing ther̃-axis to t2, we have

dr̃

dt
=

r(t − τ)
τ2r(t)

(
1 − (1 + τ2r(t)2/2)f(q(t − τ))

)
≥ 1 − δ

τ2

(
−τ2Cf(q∗)r̃ − β

f(q∗)
q̃(t − τ)

)
≥ −Cf(q∗)(1 − δ)r̃

for some positive constantδ < 1, andβ. The last inequality is due to the negativity ofq̃(t − τ) in the region we
consider. Therefore, we get the upper bound of|q̃(t2 − τ)| as∫ ∞

0
αq̃(0)e−Cf(q∗)tdt =

αq̃(0)
Cf(q∗)(1 − δ)

.

So the upper bound of|q(t2)| is justα(τ + (Cf(q∗)(1− δ))−1)q̃(0) for small enough̃q(0). Using this we get after
some calculations fort2 ≤ t ≤ t2 + τ

dr̃

dt
≤ γα(τ + (Cf(q∗)(1 − δ))−1)

τ2f(q∗)
q̃(0)

for some positive constantγ. So we can give an upper bound of|r̃(t2 + τ)| as

γα(τ + (Cf(q∗)(1 − δ))−1)
τf(q∗)

q̃(0).
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Therefore, we proved for sufficiently small̃q(0), for any t ∈ [0, T1(ψ)], |xt(·;ψ)| never hits the boundary of
{(x, y) : x ∈ [0,M ], y ∈ [0, N ]}, for any positiveM , N . That is equivalent to the argument of this lemma.

Lemma 7: For anyτ > t1 and positive rootsλ defined in Lemma 2,inf{|πλφ| : φ ∈ K, |φ| = δ} > 0 for any
δ > 0.

Proof: It follows from Lemma 2 that there is a characteristic rootλ with positive real part whenτ > τ0.
Then the transposed equations of Equations (15) are

du(t)
dt

= τCf(q∗)u(t) − τv(t)

dv(t)
dt

=
f ′(q∗)
τf(q∗)

u(t + 1),

and the bilinear form is

< ζ,ψ >= bφ(0) + ξ(0)a − f ′(q∗)
τf(q∗)

∫ 0

−1
ξ(θ + 1)φ(θ)dθ

where ζ = (ξ, b), b ∈ R, ξ ∈ C([0, 1], R) and ψ = (a, φ), φ ∈ C([−1, 0], R), a ∈ R. Since for anyφ ∈ C,
πλφ = Ψλ < Ξλ, φ > whereΨλ andΞλ are the bases of generalized eigenspace of Equations (15) and its adjoint
respectively. So it is sufficient to check< Ξλ, φ >. It can be shown that the basis of the solutions to the transposed
equations for projectionπ is

ζi(s) = (−e−λis,−(Cf(q∗) + λiτ
−1)e−λis), i = 1, 2.

Considerλ = µ + iν, where as proved in Lemma 2,µ > 0 and 0 ≤ ν < π. The real and imaginary parts of
< ζ,ψ > are

Re < ζ,ψ > = −(Cf(q∗) + µτ−1)φ(0) − a

+
f ′(q∗)
τf(q∗)

∫ 0

−1
e−µ(θ+1) cos ν(θ + 1)φ(θ)dθ

Im < ζ,ψ > = −ντ−1φ(0)

+
f ′(q∗)
τf(q∗)

∫ 0

−1
e−µ(θ+1) sin ν(θ + 1)φ(θ)dθ.

If there is a sequenceψn = (φn, an) ∈ ∂B(1) ∩ K such thatπλψn → ∞ asn → ∞, thenIm < ζ,ψn >→ 0. But
from the form ofIm < ζ,ψn > we know this is true only when|φn()̇| → 0. This together withRe < ζ,ψn >→ 0
indicatesan → 0 asn → ∞. Soψn → 0 asn → ∞ which contradicts the assumption. Therefore the second claim
also holds.

From Lemma 3 and 4, and based on the fact that the solution continuously depends on initial conditions, we get
the mapA : K \ {0} → K defined above is completely continuous. Also it is obvious from boundedness of the
solution that there is a constantM > 0, such that ifAψ = νψ, ψ ∈ K \ {0}, |ψ| = M , thenν < 1. Together with
the results in Lemma 5, 6, and 7, applying Theorems 3 and 4, we conclude

Theorem 5: If marking function f(q) satisfies Conditions (14) andτ > t1 where t1 is given in Lemma 2,
Equation (13) has a non-constant periodic solution.
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