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Dynamical Properties of TCP System with AQM Routers
Huigang Chen, John S. Baras, and Nelson X. Liu

Abstract

In this report we discuss the dynamics of heterogeneous TCP systems with propagation delays. Instead of
studying the local linearized TCP dynamics, we study the global stability conditions and obtain the stability regions.
Also we provide proof of periodic behavior of a single TCP connection when stability conditions are not met.

I. INTRODUCTION

Today’s Internet traffic is mostly consisted of flows based on TCP which provides reliable transmission and
resilient performance in response to varying network conditions. TCP, as a window-based end-to-end control
scheme, adapts the sender’s transmission rate by the feedback information of the receiver. The sender exploi
the available network network by linearly increasing the window size and when a network congestion is detected
from either packet drop or ECN marking, the sender reduces the window by half. Using TCP fluid-flow model,
with such additive-increase-multiplicative-decrease window control algorithm, coupled with the AQM scheme in the
intermediate routers, we can formulate the network as a nonlinear delay feedback system. The dynamical behavic
of such system has been studied in [1], [2], [3], [4], [5], [6], and etc. Due to the nonlinearity of the system and the
existence of delay in the feedback, people either focus on the small signal linearized system in the neighborhoot
of equilibrium state [5], or use Lyapunov-Razumikhin type theorems to analyze single source and single bottleneck
network [3], [4]. Recently people start to use powerful nonlinear stability analysis tools, such passivity theory and
ISS Small-Gain theorem, to obtain robust stability conditions for network flow control problems [7] [8], but it is
very difficult to apply these tools to the TCP systems since TCP is not an ISS system. This work tries to establish
global nonlinear stability conditions for a general AQM scheme and study the dynamical behavior of a simple
TCP system when the stability conditions are not met. The paper is organized as follows. Section Il proves global
stability theorems for heterogeneous TCP systems. Section Il proves the existence of periodic dynamics for &
single source and single bottleneck TCP system with delay. We conclude in Section IV.

II. GLOBAL STABILITY OF TCPSYSTEMS

We are considering here a network of TCP sources and links as in the Figure (1)Nwi#tburces and.
links. Packets from each sourédlow at the rate ofr; € R through the linkj with the aggregated arrival rate
y; = [Rr]; € R”. And accordingly each link generates a penalty valye R” from the arrival rate and its queue
size and sends the penalty value back to the sender. Then each sender adjusts its sending rate appropriately by t
aggregated penalty valug = [RTp]; € RY it receives. Here matrixz is the routing matrix and we assume it is
constant. Also another assumption here is that the aggregated penalty value is the summation of the penalty value
from related links rather than multiplication, which is a fine approximation when the penalty values are small.
Notice that the system is nonlinear, and we allow different delays in the routing matrix. In this study we wish to
establish conditions for global stability.

The system dynamics takes the form of the following,

i) = rz‘(:i(—t)n) <l—qz‘;§—ﬂ) _%Ti(t)QQi(t_Ti)> i=1....N (1)
‘éj(t) = ((1 _pj)yj - Cj)erv b = hj(Sj), J = 17 e 7L (2)
y = Rr, ¢q=R"p

wherec; is the link capacity at the linki, andr; is the link delay seen by the sour¢eThe above equations
describe the scenario in which the router drops the incoming packets by some schemes instead of just markin
them. First of all we transform Equation (2) into

b = Hi)(1=p)y; —¢5), j=1,....L. @
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Fig. 1. Network of TCP system

Here H;(p;) = h}(h;l(pj)). Under some mild conditions, Equations (2) and (3) are equivalent. So we instead
study the dynamical system with state equations (1) and (3). The delay-free case can be solved by Lyapunov
direct method. Here “global” means the region wheye> 0,7 =1,..., N, andp; € [0,1], j = 1,..., L. We begin
with a simple observation:
Lemma 1. The states of the dynamical system described by Equations (1) and (3) are uniformly bounded.
Proof: We only need to consider;’'s. We designate,, = max;—; .z, ¢;. Without loss of generality suppose
there is aty such thatr;(t) < r;(to) = 2cpy, for all t < to andr; is still increasing. Then

pj = Hjp;)((1 = pj)y; — ;) = Hj(pj)(1 — 2pj)en, j€L;
for all t at whichr;(t) > 2c)s. Sop; peaks at least dt/2 and surpasses amy n € (0,1/2) in finite time¢,.. Thus

we have
()<2CM+max{d2, \/ } dz’ Yt

which completes the proof. [ |
Proposition 1: If H; is bounded away front for all j, the delay-free®; = 0, i = 1,...,N) TCP system
described by Equations (1) and (3) is globally asymptotically stable.
Proof: In the following proof,i is the index froml to N andj is the index froml to L. Let us define
displaced state variables = r; — r andp; = p; — P}, wherer} andp* are the rate of théth source and the

dropping probablllty at theth link in equilibrium state respectlvely Also we designate= [71,...,7x]7 and
p=[p1,...,pr]’. So the dynamical equations becomes
. 1 1.
5 o — | Zx = S 4
TZ <2’rl —"_ rl) QZTZ <d —"_ 2 ) ’L ( )
p; = Hjp)((1 —Dpj)¥; — y;ps) (5)

We defineJ;(-) as
fo 1/H;(p; + Vx)dx u=>0
Jj (u) = :
fo 1/H;(p; — \/_)dx, u <0

It is easy to see that sindé;(u) > 0 for all j andu is defined on a compact set, those integrals are well defined,
continuously differentiable and positive definite.



Next consider the candidate Lyapunov function
-1

dy? +72)2
V(i,p) = %fT 7
Ay’ +7%/2
_ -1
1 1—p
+ 5 [Jl(ql),...,JL(qL)]T. (6)
1—-pL
Take the derivative along the trajectory of the dynamical system, we get
N L
Vo= Y (d /) e+ Y (L= ) ()
i=1 j=1

= D @+ /2)7 (= (/2 + mi)ar] — (477 + 77 /2)@T)

N
+ Y (1 =) Hipy) ' piHy(ps) (1= )5 — vis)

j=1
71 /2471
d
= —i" 7
Tn/24TN
a2, 2N
Y1
—P1
A P—qT+p'y
yL
T—pL
But
¢'F=p R =p"y
So

From the fact that
Yji = Z ri 20
ieL;
¢ = ij >0,
JES:
we know that the derivative df (7, ¢) is positive semidefinite and since the only invariant set is at the equilibrium,
so global asymptotic stability follows from Invariance Theorem. [ |

Remark 1. The above Proposition considers the AIMD form of TCP. Actually by using similar Lyapunov
technique, one can prove that for the fluid-flow model of general TCP window update algorithm like:

Weor = Wy +aW, %, packet received
A Wy, — bW,f , packet loss

global asymptotic stability still holds.



Next we consider the case when there are no delays from the feedbacks of the penalty information, but there ar
state delays in the rate dynamics, which is,

() = ”(fi(‘t)”)(“d?“)—%mu)?qi(t)), i=1.. N @)
$i(t) = ((L—pjys—ci)d, pj=hils;), j=1,...,L (8)
y = Rr, ¢=R"p

Proposition 2: If H; is bounded away frond for all j, the TCP system described by Equations (7) and (3) is
globally asymptotically stable.
Proof: For any initial conditions-;(6;) = ¢;(6;), ¢:(0;) > 0, 6; € [—7;,0], andp;(0) = pjo, there is a solution
ri(t) andp;(t) for vt > 0.
Let us study a particular trajectory of such solution. Define functignsR™ x R™ — R* such that

‘ N ri(T — 1), T =max; (0)= x,0<0§t9
Sile, 1) = { 7, F0)£2,0<0<t

and define functiong; : R™ x R™ — R™ such that

‘ a | Ttz 30,5t0<60 <t 7(0) =2
Gi(,1t) —{ i, F(0) £ 2,0 <0<t

Observe that the discontinuity with regarditin &;(x,t) takes place only at = 7(¢) and9¢;(x,t)/0t = 0 for all
otherz’s . So

Consider the function$V;(t)’s
ol e T
Wilt) = q 1 prior £0720 .
2 fo &(—

First of all, the above integrals are well defined for @lk
ri(t)/ri(t — ;) or 1 and the integral can be written as

1 /W Gy, t) do
0

m
=)

(0,00) since the integrands are nothing other than

2 &i(x£(x,t) di
/O %Ti(t—ﬁ) <1 d—?qz' ; riq > dt < (1+4d; ?)rat

wherer,, is the upperbound of the rate. Second, singg) remains positive all the time si@/;(¢)'s are positive
definite functions. And the derivative 6¥;(t)s are

) = i) 7 8 G(+va, 1)
wilt) = T’(t)r’n(t—n) + 2/0 AT
= —(Fi/2 +7)qir} — (d;° + 77 /2)diT
Therefore the positive definite function
[ dy? +73/2 ] -
Vi) = [ .

1—pm

4 % (@), Jr(@)]” 9
1-pL



has the derivative

. T . Ti/2+ T . T, Yj _
t) = —71d e = 5Td j '
V(t) 7 diag [di_2+?:i2/2q}r p- diag [1_}]9
SinceV(t) is always non-negative and decreasing with timelisg_.. V() exists. From boundedness of the
trajectory, V(t) and V (¢) is bounded. Thus by applying Barbalat lemniiay;_., V() = 0. BecauseV/(t) is a
positive definite function of;’s andp;’s, so it follows that the dynamical system converges to its equilibrium state.
[ |
The previous theorem establishes that in the source dynamics, the delay term of the sending rate is not the cause
instability. So we should study the effect of delayed feedback to the global stability. It is a very difficult problem
even in a single flow scenario. By using Lyapunov-Razumikhin type theorems, previous studies ( [4], [3]) gave
very narrow stability regions. This is because in the source dynamics the gain of the delayed term can be large an
the gain of the delay-free term can be small. Also Razumikhin type methods often give rather poor stability region
estimates for delay-dependent stability. Here we try to utilize a more sophiticated Lyapunov functional to obtain a
much better stability region estimates.
Due to complexity of the problem we face, we only present a single-flow scenario with a linear queue marking
function. Consider a TCP/AQM dynamics described as below,
1—kq(t—1 1
= 7.(2 S 5"”@)2/“1(75 -7),
q = (’I” - C)(—;v
r andq are TCP rate and bottleneck queue size as usuakadadhe slope of the marking function. By re-scaling
the timet = 7s to normalize the delay, we get
: G(s —1
Fo= —q(siq*) — 7(7/2 + C)kq(s — 1)(s)
T
g = 77 (10)

Here we letr = 7* + 7 andq = ¢* + ¢, wherer* = C and¢* = k' ((1 + 0272/2)_1) are equilibrium rate and
queue length respectively. We have the following result.
Theorem 1. SupposerC' > 1, we can choosé to make the system (10) globally stable.
Proof: Local linear stability result in Lemma 2 tells us whe@' > 1, we can choosé = 4C 3773 to obtain
local stability. For simplicity, let us denoté(t) = [7(¢), §(t)]7. Also denoten as a2 x 2 matrix-valued function
with bounded variation ofi-1, 0:

0 0;0 0], s=—1
n(s)=<¢ [0—7"1/¢*0 0], —1<s<0
[—T7Ckq* — T_l/q*;T 0, s=0

It is easy to see that the linearized version of (10) can be written as

60 = [ anoyo)
From [9], we can choose the following Lyapunov functional for (10),
V) = ¢y
bt / / w4 0)dn(u) b (6)d0

/ / dsi™ (s)dn™ (1)
—1J-n
0 0
/ / V(=5 + h— -+ 0)dn(u)(8)d6 (11)
—-1J-1
It is known that if (10) is locally stable, we can fifd € C([—1,1], R?*2) satisfiesY (0) + Y7(0) = —W where

W is a positive definite matrix. Her# (0) is defined asi*Y (0)/dt. ThenV (v) is positive definite ifY” satisfies
additionally:



(i) Y (¢) is continuously differentiable for # 0.
(i) Y(0) is symmetric and’ (t) = YT (—t).
(i) Y(t) = [ dnT(s)Y (s +1).

Take the derivative o/ (¢)) we can show

Vi = =0T (OW(0) — 2k7(7(0)g(~1)/2 + 4(~1)C)

x (7(0)4(0)Y12(0) 4 7(0)*Y31(0))

DenoteY (t) = [y1  y2;ys wa]. From the conditions at whicl'(¢) has to satisfy we have
0] [u-n ma-n]

i e A el R I | R

We can solve the above equation explicitly. By some calculatjafy,) is the solution of the following fourth-

degree differential equation,
4) E20212%2 (2 _ L -0

Y q Y 72 y1 =0

Given initial conditiony;(0) = —1/2, a solution of the above equation is

() 1 (u? + kCrqru)e v — g Leu(t=1)
I =59, u? + kCrq u + g*~le v

where
B k2027.2q*2 N ]C4C4T4q*4 N 1
U = 2 1 e
It is easy to see that whenC' > 1, u = /2/(7C) andy;(t) = (1 — t)/2. We can also deduct the following
relations, )
y3(1) + — = y3(0),
Tq
and forY (0) + Y7(0) = =W = —[W;  Wa; Wa W),
29(0) = -1,
—kCOTq*y2(0) + 794 (0) — (7¢*) "'y1 (1) = W,
—2(7’q*)71y3(1) = Wjy.
So we can sepz(0) = y3(0) = 7-1¢*~!, and choosey,(0) properly so that
-1 0
W:|: 0 _7—23*2:|<0.

Now V() becomes
V(y) =

<

—7(0)* = 2r72/¢*4(0)* — 2k7(7(0)q(~1)/2 + 4(~1)C)
2 . 1. 5

Tq*r(O)q(O) + 57“(0) ).

Supposg; is confined in the regiofd, mC'7], for any positive integem. We can upperbound the above equation

by
7(0)(7(0)/2 +2q(0)/(r¢")) = 0

RO, OO 20/ ) 20

iy < { TTOP = =02 + R + 2,
"L 70 - a0 - @mC +7O)(m + 1/2) F

We can observe from Figure 2 in Region | and Region Il the upper condition of (12) is satisfiedf@m)j




Fig. 2. Region ofV/ (1) in (12)

becomes
. B 2 47(0) ,7(0 2q¢(0
V) < #0P — ma? + OO 200,
— (2T 0~ 0 + 00

The last part of the above equation is strictly below zero whdgs other than 0 if the condition

4(1 2 2 - 16
Cr q*Q q*4

holds. This is true from our assumpti@nr > 1.

In Region Il and Region IV of Figure 2, the maximum value Xb(@z)) should be reached faf > 0 (Region
I). This is because for every and ¢ in Region IV, we can choose+ and —g in Region Il so that the right
handside of (12) in the second situation is larger. This argument can be immediately verified from the existence of
the (2mC + 7(0)(m + 1/2)) term. So now let us focus on Region Il. The part which involges

2 _ 87(0)
0~ (2mC + 70)(m + 1/2)) 50
This reaches maximum in Region Il 40) = 0. So we showed in Region Il and IV we also have

V(y) <0.

Therefore we conclude that in all regions of the state space, the derivative of the Lyapunov functional (11) is strictly
below 0 except when the trajectory is at the equilibrium state. Consequently global stability holds. |

[Il. PERIODIC SOLUTION OF A SINGLE TCP CONNECTION

Now we study a single TCP source with the round-trip tildeand go through a bottleneck link with fixed
bandwidthC'. The bottleneck router is implemented with some ECN marking scheme. We have the following
dynamics,

dr 1 flglt—r)rit—7)
dt 72 r(t)

el — ) (gt~ 7)
da- _ (r—C)} (13)

dt



The functionf(q) € C1(R,[0,1]) is a nondecreasing marking function satisfying the following constraints

flgg=0 , for ¢<0
flay=1 , for q=B. (14)

From observations of simulations, we notice that dynamics (13) has periodic solutions when the idejegater
than a certain value. Low [5] proved that the condition of stability of linearized version of (13). In this section, we
try to prove some properties of nonlinear dynamics, including boundedness and periodic behavior of the solution.
First of all, we want to derive the local behavior of the system (13) when the deiaynear the boundary
of the stability region established from the linearized system. To begin with, we need to obtain the local stability
conditions with regard to. The linearized version of Equations (13) is

G = 1@ (g a0 -
dqg
E = T.

Here we letr = r* 4+ 7 andg = ¢* + ¢, wherer* = C'and¢* = f~1((1 + 02R2/2)*1) are equilibrium rate and
gqueue length respectively. Re-scale the time s to normalize the delay, we get

. - L et
i
s = TT. (15)

The following lemma holds.
Lemma 2: Supposef’(¢*) < 0.5006 and lett,, k = {0,1} be the solutions of the following equation,

w2
L= ()0 +5C%2) (16)

andwy, wy be respectively the first and the second smallest positie[0, 7 /2] satisfying

COSW ,,, 4 wt tan® w
f(Q)+m—1- (17)
If to < 7 < t1, then all the characteristic root§7) of Equations (15) have negative real parts. There is an infinite
seriesty, k = 0,1,..., such that there are exactly 2 pure imaginary roots when ;. A\(7) is differentiable at
7 =t1, andReX (t1) > 0. If f'(¢*) > 0.5006, the system (15) is unstable for all For r > t,, there are precisely
two characteristic roota of Equations (15) in the regioRe\ > 0 and —7 < Im\ < 7.

Proof: The characteristic equation of Equation (15) is

w?

! *
AN) =N+ 7f(q")CX + ) -y (18)
fla*)
Suppose Equation (18) has pure imaginary rgatsthen
7f(¢C = wtanw (29)
f/(q*) 2 _ 4 + Qf( *)202 2 (20)
f(q*) = W T q w.
Substitute equality (19) into (20), we immediately get
@) _ w?
fla)  cosw’ =1

Multiply this with (19) and after some calculations we obtain Equation (17). This indicates that the pure imaginary
roots of Equation (18) do not depend ¢fy*) whose value is decided by the delayFurther examination of the
signs of real and imaginary terms of the equation tells us that all possible positive pure imaginary roots of Equation
(18) can only lie in the interval®kn, 2km + 7 /2], k = 0,1,.... For sufficiently largek, the first term in the left



hand side of (17) can be small 2t7 and the second term is zero. So there is a smallest positive solution to the
equation (17) and we denotedt. There is a sequence of positive pure imaginary rdats}, w, < wp41.

For eachwy, the value ofr such that (19) and (20) hold can be easily deducted.tpaand ¢; the result is
in Equation (16) and the rest is the same. We will show that at edtlere are at most 2 pure imaginary roots
possible. Assume the contrary holds. Then there exjsandw/, such that (20) and (21) both hold for some
Therefore

coswy 1 f(g")
s’wp @) f(e)
_ coswy
~ sin? wh ’

Sincecos 0/ sin?  is monotone fol € [2k7 + /2], sow| = 2k7 + w). It is obviously not possible for ank # 0
by checking (20). Therefore at eachthere are at most 2 conjugated pure imaginary roots.
By applying Theorem 13.9 of [10] we know that the necessary and sufficient condition that all roAts\ pf
reside to the left of the imaginary axis is
Ctf(q*)? - sina

f'(g*) a’ )

where a
cota = ———. 23
C1f(q*) (23)
It can be observed that for afs that satisfy (23), we only need to check the restriction of (22)dar [0, 7],
sincesin a/a is @ monotonically decreasing function. For convenience deméte”'r, we have from (23)

b=a 'cota+tVa2cot?a—2

for a € [0,6] C [0,7/2] wherecot /6 = 2. Thus after some calculations (22) is the same as,

- cos’a [ cota cot? a
') > a3sina < a a2 2) (24)
for 1 <+/2/C and
Pl > cos‘2 a [cota N cot’a 5 (25)
a3sina a a?

for 7 > /2/C.

The right hand side is lower bounded away frénfor a € [0,6]. We calculated numerically its minimum as
1.9976 and we denote the delayat this moment as; whose value isr; = 0.8355/C. Consequently there is an
upper bound equal t8y £ 0.5006 for f'(¢*) so that there exists stability region for Therefore by properties of
a with regard tor and Theorem 13.9 in [10] we obtain the stability region described in Figure 3. So we see that
if f'(¢*) < By, the system is stable atr, 7 € [to,t;] for somety, ¢;.

It is easy to observe that there are no roots of (18) having the foemu + iw. Otherwise the imaginary part
of (18) implies

u=—Crf(q")/2,

and the real part of (18) becomes

0 = v -7+ 07f(¢")u— ‘;l((qq:))e“
_ _l 2 200 x\2 2_f,(q*) —u
= 4C (") —7 —f(q*)e < 0.

This is a contradiction. Sincg; < 7, applying Rouche’s theorem, it can be shown that there are two roots in the
region of Re\ > 0, —7 < ImA < 7 for V7 > t;.
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Fig. 3. Stability region of (15) with regard te and f’(¢*)

Suppose\ = u + iv is the solution and denote = 1/f(q*). It follows,
u? —v? + Crwlu+ f/(¢")we ¥ cosv = 0
2uv + Crw™ v — f/(¢*)we " sinv = 0.

Differentiating the above equations with regardutonve get

d
(2u+ Crw™ — f'(¢*)we ™ cos U)—u
dw

d
— (2v+ fl(gHwe™ sinv)ﬁ

and

+ Qu+ Crw™t — f'(¢")we ™ cos v)—v
w

Ctv 1o —w
= 2 + f(¢")e “sinw,

From the Implicit Function Theorem\,(ry) is continuously differentiable with regard to (equivalently with regard
to 7) and from some calculations the sign &\’ (¢y) is the same as the sign of

wf’(q*)2 + 2010w ™2 + C’Tf’(q*)mu’1 sinv
+ 2vuf'(¢")sinv — f'(¢*)TCw™" cosv. (26)
But atT = 1, v = wq, using the relation (16) it follows
f'(g")Crw ™t cosv = vf'(¢*) sinw.

Substituting this back to (26) we obtale)'(t;) > 0 [ |
Theorem 2. Equations (13) has a Hopf bifurcation @at, wheret, is defined in Lemma 2.
Proof: According to [11] in order to prove Hopf bifurcation point it is sufficient to check the following two
conditions,
1) The linear equations (15) has a simple purely imaginary characteristid geetivy = 0 and all characteristic
roots \; # Ao, Ao, satisfy \; # m, for any integerm.
2) Re)\/(To) 75 0.
And from Lemma 2 both conditions are automatically satisfied. [ |
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Theorem 2 can be interpreted as the local solution to Equations (13) wiseclosely abové ; is periodic with
period close t@7/w;. See [11] Theorem 11.1.1 for exact statement.

To prove the existence of global periodic solution is equivalent to prove the invariant solution under an infinite
dimensional operator. The basic idea is to use Schauder Fixed Point Theorem. To avoid trivial constant solution
certain criterion called ejectivity ( [11], [12]) has to be checked.

Definition 1: SupposeX is a Banach spacé] is a subset ofX, andz is a given point inUU. Given a map
A: U\{z} — X, the pointz € U is said to be amjective point of A if there is an open neighborhodd C X
of x such that for everyy € GNU, y # z, there is an integem = m(y) such thatA™y ¢ GNU.

Periodic solution for infinite dimensional problems is studied by examining the mapping of a closed convex set,
usually a cone, its boundedness and ejectivity under such mapping. So we list some useful tools (Theorem 3 an
Theorem 4 for convenience [11].

For anyM > 0, denoteSy; = {z € X : |[x| = M}, andBy; = {z € X : || < M }.

Theorem 3: If K is a closed convex set i, A: K\ {0} — K is completely continuous) € K is an ejective
point of A, and there is ad/ > 0 such thatdx = Az, x € K N S, implies A < 1, then A has a fixed point in
K N By \ {0} if either K is infinite dimensional of is an extreme point of.

Supposd. : C' — R" is linear and continuous; : C' — R™ is completely continuous together with a continuous
derivative /" and f(0) = 0, f/(0) = 0. Consider two equations

(t) = Lag+ f(xr)

y(t) = Ly (27)
For any characteristic root of the above equation, there is a decompositiorCoés C' = Py ® Q», Where Py
and @, are invariant under the solution operatbr (t) of the above equatiori’; (t)¢ = y(¢), ¢ € C. Let the
projection operators defined by the decompositio@dbe 7, I — w) with the range ofr, equal toP,. Now we

have the following conditions [12] to check the ejective point.
Theorem 4. Suppose the following conditions are fulfilled:

(i) There is a characteristic root of Equation (27) satisfyindReA > 0.
(i) There is a closed convex séf C C', 0 € K, andd > 0, such that

v=uv(0) 2inf{|mr¢| : ¢ € K,|¢| =6} >0
(iii) There is a continuous function : K \ {0} — [, o], 0 < a such that the map defined by

Ap = x2(9)(0), ¢ € K\ {0}

takesK \ {0} into K and is completely continuous.
(iv) Given G C C open,0 € G, there is a neighborhoot of 0 such thatz,(;¢) € G, if ¢ € VN K, and
0<t<7(¢).
ThenO is an ejective point ofA.
In next two lemmas we prove the boundedness of réte and queue size(t). Note that the functiory(q) is
only a marking function, so it is not trivial to shog(t) is bounded.
Lemma 3;: DenoteC; > C as the solution to

720 (C1(1 - ()Y - 0)?
20,

:B7

and (5 as the solution to
Cc3—C?
20
Let Cy; = max{C1,Cq,C/(1 — (C7)~1)}. Then for any initial conditions, there exists a finite timg such that
Yt > tpr, r(t) of Equation (13) is less thafi',.
Proof: Suppose at some timg, r(¢;) = Cs. Due to the continuity of-(¢), we can define

T=2.

to £ sup{to|r(ty) < C, to<ti}
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andr(tg) = C. We note that from (13),

which is equivalent to

So it follows,

2 t
rt)? —C? < — | r(s—T)ds
2 [y,

2
< —20]V[(t — t()).
T

Thus the time the trajectory takes framto ¢; is lower bounded by

It can be easily shown that sin€&,; > Cs, t — tg > 27.
In addition, we know thavt € [to + 7, 1],
d?“(t CM
< = 28
dt — 720 (28)
It follows thatr(t — 7) > Car (1 — (C7)71). In real applications, since there are always more than one packet
flowing in the network, s@'r >> 1. Therefore the lower bound eft; — 7) is always positive. We want to obtain
the following lower bound for the bottleneck queue size at time- 7:

q(t1 —7) > /t 17T(r(5) — C)ds.

o+T

~—

Sincer(t) is a continuous function with upper bounded first derivative (28), it turns out that the lower bound for
q(t1 — 7') is
(Cv (1 - &) - )’
2C)/(12C) ’
From our assumption we know that the above expression is no lesstteamd the marking functiorf (B) = 1.
So we have

7“(751) _ 7“(751 — T) (1 _ (1 n 7'27”(151)2)f(q(t1 B 7_)))

t T2?”(t1) 2
’I”(tl — 7') TQ?”(tl)Q
() 2
< 0.

Therefore the rate(¢) can not increase beyord,,.

The previous proof applies to the situations whef® < C,, for t € [to — 7, t0]. In general case, from previous
deduction we know that the queue size will redghif the rater(t) exceeds”, after rising fromC'. It will remain
aboveB until the rater(t) falls below C. But there is a delay from the queue to the sender. Consequently the
rater(t) will stay belowC for the period of at leastau to return back ta”. Therefore there always exists a time
tyr such thatr(tas) = C, r(t) < Cy, YVt € [ty — 7, tpr] @and the upper bound applies after timg. [ |

Lemma 4: We defineg,, as

B+(C]V[—C)T+2(——ln——l>

whereC), is the same as in Lemma 3. Then ¢ > ¢, wheret,, is also defined in Lemma 3(t) < gas.
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Proof: From Lemma 3 we know thatt, ¢ > ¢, 7(t) < Cas. We only consider this range ofin this proof.
Suppose(ty) = B. We know that fort > to + T,

dr(t) _ r)r(t—7)

dt 2
until for somet; such that-(¢;) = C. Sincer(ty) > C as we showed in the previous proof, it follows,

dr(t) - r(t)C.

dt  — 2

So,
r(t) < Cpye” U2,

d
* th—tg—7< zln%
1Tt =070

Therefore the traffic accumulation at the bottleneck queue frgm 7 to ¢, is upper-bounded by

t1
/ (Care=Clt=to=1/2 _ oy

tDJrT
Cum Cum
< 2l—-In— -1 29
< ( o I ) (29)
The traffic accumulation fromy to to + 7 is upper-bounded byC; — C')7. Combine this and (29) we obtain the
claim of this lemma. ]

Consider Equations (13), €ty = C'([—7, 0], R) xR and denote elements @ by ) = (¢, a), ¢ € C(|—7,0],R),
a € R. For anyy € Cy, Equations (13) has a unique solutiop(v)), z; = (¢, ¢(t — R)), throught> at zero. Let
K={¢=(6,a) €Co:0<a<o0,0=a(—7) > d(8),—R < 6 < 0}.
Lemma 5. Suppose marking functiorf(q) satisfies conditions (14), then there exists a continuous function
T : K\ 0— (1,00), such that
oY) € K £ {—¢ ¢ € K}.

And there exists a continuous functi@h : —K \ 0 — (27, c0), such that

Ty~ (—) € K
Proof: If the functionT} exists, and from Equations (13) we see that the solutidm) is transversal to the
g-axis att = T1(v), so it immediately follows thaf; (') is continuous from the continuity of the solution with
respect to the initial conditions. So we will prove the existence of the fundfiomhe function7; can be proved
in a similar way. To study the behavior of the solution of Equations (I3)) for ¢» € K, we analyze its curve in
the (7, ¢)-plane. Denote
1— fq)

P={(rg) B 10 = 224(g)}.

Because of the properties ¢fq), I is a curve that starts gt-C, B — ¢*), passeg0,0), and converges te-¢*
when7 — oo in the (7, §)-plane.

Fig. 4. Trajectory of Periodic Solution of Equations (13)
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Supposer(0) = 1(0) is abovel'. Denotet; = min{t|z(t) € I',t > 0}. We will showt, is finite. As long as
z(t) remains abova', 7(t) = r(t — 7)r(t)~' ((1 — f(qt — 7)) 72 —r(t)?f(q(t — 7))/2) < 0, andg(t — 7) =
7(t — 1) < 0. If z(t) never intersect¥, we haveq(t — 1) = 7(t — 7) < #(0) < 0,Vt > 7. This is obviously not
possible. So it follows that, is finite. Also sincer(t;) = 0, and{(t; — 7) = #(t; — 7) < 0, SOt; > 7.

Fort > ¢, and#(t) < 0, we haver(t) > 0 and §(t — 7) < 0. If the trajectory ofz; intersectsI' before it
intersects thg-axis, we know that at the intersection the trajectory must be vertical to-&xés, so at that instance
¢ > 0, which is contradictoryz;, cannot passef,0) since local stability condition forbids this. Se, does not
cross thejg-axis in the second quadrant @f, ¢)-plane.

Next we showz, will hit 7-axis in finite time. If not so, thanks to the monotonicity #f) andg(¢) as well as
the boundedness of the third quadrantwill converge to a certairi#, §). That means the system (13) has another
equilibrium state other tha(0,0) in the (7, §)-plane, which is impossible. Sg&(t) will become positive in finite
time. We denoteé, = min{t[7(t) = 0, > ¢;} andTy(¢)) = t2+ 7, thenTi(¢) is continuous and:r, ) (1) € —K.

Similarly denotet; = min{t|z(t) € I',t > to} and we can show thas is finite. This is becauséj/dt is strictly
positive fort € [t2 + 7, t3]. Use the same reasoning as before it can be showncthean not first cross thé-axis
in the fourth quadrant fot > t¢3. It is left to be shown that; reachesj-axis in the first quadrant in finite time.
Here we can utilize the actual boundedness; &hown in Lemma 4 and monotonicities 6fand g in the first
quadrant to prove this. Therefore there exits a finitesuch thatz(t4) belongs tog-axis andT(v)) £ ty + 7 is
continuous andr, () () € K. [

For anyy € K \ {0}, defined : K\ {0} — K by

Aq/} = le(w)_quz(:ch(u;)(uz))(Q’Z))'

We need to prove the Condition (iv) of Theorem 4. We only show the magpinigere, and due to symmetry,
the proof ofT5 is the same.

Lemma 6. If G is a given open subset d&?, 0 € G, there exists a neighborhodd of 0 in C such that
xi(59) € G, foranyy e VN K, ¢ #0, and anyt, 0 < t < T (¢).

Proof: Because the vector field of (13) is continuous, &0d)) is the equilibrium point of the equations, we
only need to prove that,(-;v) € G, for 0 < t < to(¢)) asts(¢)) defined in Lemma 57(t2) = 0). Suppose the
claim of this lemma is not true, we will later show a contradiction. Assume there exists a seqygercE \ {0},
n=12,...,1% — 0, asn — oo, such that there is @,, 0 < 7, < t2(¢) + 7, |7(7,)| = M, or |¢(r,)| = N, for
some given positivel/, N.

From smoothness df, we know for any smalk, there is a constant, such thatmax{|7(¢)|,0 <t < t2(¢)} =
I7(t1)] < ag(0), for any(0) < e. Then consider the period from the trajectory crossingrtais tot,, we have
= e (1= R e - )
1-9¢ 2 *\ ~ 5 ~
= (—T Cfla")r - WQ(t - T))
> —Cf(q")(1—6)r

Y

for some positive constant< 1, and 3. The last inequality is due to the negativity @ft — 7) in the region we
consider. Therefore, we get the upper boundgof, — )| as

o Ot 7(0)
Oe-Crag — 240
[, oo CFla)(1-0)
So the upper bound df(t2)| is justa(r + (C'f(¢*)(1 —6))~1)G(0) for small enoughj(0). Using this we get after
some calculations foty <t <ty + 7
dr _ ya(r+ (Cf(g)(1—8)")
— <
@t = 1(7") 70
for some positive constant So we can give an upper bound [0f¢2 + 7)| as

ot (1 —§)) !
yo +(CTJ”JSEqu§1 5)) )Q(O)'
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Therefore, we proved for sufficiently smajl(0), for any ¢ € [0,74 ()], |z:(-;4)| never hits the boundary of
{(z,y) :x €]0,M], yel0,N]}, for any positiveM, N. That is equivalent to the argument of this lemmam
Lemma 7. For anyr > t; and positive roots\ defined in Lemma 2inf{|m ¢| : ¢ € K, |p| = §} > 0 for any
0> 0.
Proof: It follows from Lemma 2 that there is a characteristic roowith positive real part whem > 7.
Then the transposed equations of Equations (15) are

e R )
() Sl
a = o)t
and the bilinear form is 0
<G >=0(0) + €00~ L [ (o4 1)60)as

where( = (£,b), b € R, £ € C([0,1,R) andy = (a,¢), ¢ € C([-1,0],R), a € R. Since for any¢ € C,

mo =Wy < Zy),¢ > where¥, and=, are the bases of generalized eigenspace of Equations (15) and its adjoint
respectively. So it is sufficient to cheek=,, ¢ >. It can be shown that the basis of the solutions to the transposed
equations for projection is

Cl(s) = (_e—)u,S’ _(Cf(q*) + )‘iT_l)e_AiS)v 1=1,2.

ConsiderA = u + iv, where as proved in Lemma 2,> 0 and0 < v < «. The real and imaginary parts of
< ¢,y > are

Re< (o> = —(Cf(q") +pm1)6(0) —a

. f}((?) /_ 01 O+ cos (0 + 1)6(0)dd
Im< (> = —uvr '¢(0)

+ f}(((;i)) /_01 e MO+ gin v(0+1)p(0)do.

If there is a sequence,, = (¢n,a,) € 0B(1) N K such thatryy, — oo asn — oo, thenIm < ¢, 1, >— 0. But
from the form oflm < (, 1, > we know this is true only whefp,, ()| — 0. This together withRe < ¢, v, >— 0
indicatesa,, — 0 asn — oco. S0, — 0 asn — oo which contradicts the assumption. Therefore the second claim
also holds. |

From Lemma 3 and 4, and based on the fact that the solution continuously depends on initial conditions, we get
the mapA : K \ {0} — K defined above is completely continuous. Also it is obvious from boundedness of the
solution that there is a constaff > 0, such that ifAy = vy, p € K\ {0}, || = M, thenv < 1. Together with
the results in Lemma 5, 6, and 7, applying Theorems 3 and 4, we conclude

Theorem 5: If marking function f(q) satisfies Conditions (14) and > t; wheret; is given in Lemma 2,

Equation (13) has a non-constant periodic solution.
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