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Abstract

Partial likelihood analysis of two generalized logistic regression models for nominal and
ordinal categorical time series is presented, taking into account stochastic time dependent
covariates. Under some conditions on the covariates, the resulting estimators are consistent
and asymptotically normal. The analysis is applied to rainfall data where the goodness of
fit is judged by a certain chi square statistic.

Keywords: Time dependent covariates, ordinal, autoregression, nonstationary, martin-
gale, goodness of fit.



1 Introduction

With the advent of generalized linear models—described in McCullagh and Nelder (1989)-
there is much recent interest in categorical time series and their application. The recent
books by Diggle, Liang and Zeger (1994), Fahrmeir and Tutz (1994), and Kedem (1994,
Ch. 9), all attest to this trend. Categorical time series arise naturally when observing
nominal and ordinal time records, or when a time series undergoes quantization at several
levels.

A particular example of the latter type is the classification of precipitation radar data
into bins in the effective dynamic range as explained in Meneghini and Jones (1993). We
shall consider a similar case below using a time series of rain rate averaged over an area
every 10 minutes. As we shall see, an important covariate for this problem is the fraction
of the area where it is raining.

The objective of this paper is to discuss partial likelihood estimation and a goodness of
fit procedure for ordinal and nominal categorical time series models, following the logistic
regression paradigm. Partial likelihood-introduced by Cox (1975), extended and ramified
in Wong (1986), Slud (1992), and Andersen, Borgan, Gill and Keiding (1993)-generalizes
both the notion of likelihood and conditional likelihood, and is particularly useful for time
series data where the precise dependence structure is not known.

We mainly focus on two models, the multinomial logits model and the proportional
odds model. In both cases, under some conditions the maximum partial likelihood esti-
mator (MPLE) is consistent and asymptotically normal-a fact established by appealing to
martingale theory.

2 Partial Likelihood Considerations

Assume that an individual observes a stochastic process, say (z:,4:), t = 1,...,N. In
principle, we can write down the joint distribution of all the observations up to time N,
by employing the law of total probability; that is (Wong (1986))

N N
f@iy1, 20,92, ey yn) = [T £y | dONIT £ (e | )] (2.1)
t=1 =1
where d; = (y1,%1,. .., Y1, 21—1) and ¢; = (Y1, 21, .+, Yem1, Tt—1, Yt ).

Cox (1975) defined the second product on the right hand side of (2.1) as the Partial
Likelihood. It is helpful to note that the o-field generated by c;_; is contained in the one



generated by c;. This is a key feature which motivates our definition(see Slud (1992), and
Slud and Kedem (1994)).

Definition 2.1 Let F;,t =0,1,... be an increasing sequence of o-fields, and let X;, X, ...
be a sequence of random variables in some common probability space such that X; is JF;
measurable. Denote the density of X; given F;_; by fi(z¢; 8), where B € R? is a parameter.
The Partial Likelihood function relative to 8, F;, and the data X;, X5, ..., Xy, is given by
the product

N
PL(B; X, .. o,XN) = H ft(mt;,@) (2.2)
t=1

This definition generalizes both likelihood and conditional likelihood. Unlike (full) likeli-
hood, partial likelihood does not require complete knowledge of the joint distribution of
the covariates. Unlike conditional likelihood, complete covariate information need not be
known throughout the period of observation. Partial likelihood takes into account only
what is known to the observer up to the time of actual observation.

The vector ,B that maximizes (2.2) is called the maximum partial likelihood estimator
(MPLE). Its asymptotic distribution has been studied by several authors (see Wong (1986)
; Slud and Kedem (1994)). The key point is that the gradient of the logarithm of (2.2) is
a martingale with respect to the nested sequence of histories F;.

Before we proceed, we need to establish some notation and make some calculations
which will be found useful in the sequel.

2.1 The Mathematical Setup

Assume that we observe a nonstationary time series, say {Y;}, with m possible categories
for each observation. Let z; denote a vector of random time dependent covariates. This may
contain lagged values of the observations process or any other time series which evolves
in time simultaneously with Y;. Suppose that the t'th observation is given by a vector
Vi = (Yt1,- - -, Ytg)' of length ¢ = m — 1, where

~_J 1 if the j'th category is observed at time ¢
Y =13 0 otherwise

Denote by p; = (pu,... pty)’ the corresponding vector of conditional probabilities given
Fior, that is pyj = P(y;; = 1 | Fe1), 7 = 1,...,¢q, and F;_; stands for the available



information to the observer up to and including time ¢. For the m/th category, put

q
Ytm =1— Z Yiq (2-3)
J=1
and .
Ptm = 1-— Zptj (24)
j=1
By parametrizing suitably the probabilities of each category, the partial likelihood based
on the sample y,,...,yn, is easily obtained. Since each component of y; takes the values

0 or 1 we have the multinomial probability

Fws B | Frr) = ﬁptj(ﬂ)yta (2.5)

Consequently, the corresponding Partial Likelihood is:
N
PL(IB) = Hf(yt;ﬁ | ft—l)
t=1
N m
= [T II»s(8)% (2.6)
t=1j=1

It follows that the partial log-likelihood is given by

m

pln(8) = 53" iy log s 8) 27)

t=1 j=1

The partial score is given by the vector

Sn(B) = (ip—%@—), e Qp—é#)’ (2.8)

The maximum partial likelihood estimator ,3 is a consistent root of the equation
Sn(B) = 0. As in full likelihood inference, we need the notion of information matriz,
given here by the conditional information matrix

Gr(8) = 3 Var(a(8) | 7o) 29)

3



with ay(8) = S¢(B) — St-1(8). The unconditional information matrix is given by

Fn(B) = E[Gn(B)] (2.10)

Finally, let Hy(3) denote the negative matrix of the second partial derivatives of the
partial log-likelihood, that is
_&*pln(B)

Hy(B) = 9808

Notice, that the expectation and variance have been taken above with respect to the true
parameter 3.

3 Multinomial Logits Model

When y; is binary, logistic regression with time dependent covariates is defined by the
model (Korn and Whittemore (1979); Zeger et al. (1985) ; Cox and Snell (1989); Slud and

Kedem (1994))
1

1 + exp(—B'2:-1)

where z,_y may contain past values of y;. It has been shown (Slud and Kedem (1994))
that the MPLE exists, is consistent and asymptotically normal. A generalization aimed at
nominal time series is as follows (Agresti (1990)).

Assume that we observe a multicategorical time series as in section 2.1. Then in analogy
with (3.1) put,

P(yt=1|-7:t_1)=

(3.1)

L= Ba, (=1059) (32)

Recall that ¢ = m — 1. It follows from (2.4), that

log

(.
T T4 oL, exp(Blat)

where 3; is a p-dimensional regression parameter and z;_; is a vector of stochastic time
dependent covariates of the same dimension. Another derivation of this model is described
in Mc Fadden (1973) by maximizing a utility function.

Observe from (3.3) that

(G=1y,q) (3.3)

log 24 = (8} — B})z-s
yun



So, we see that the ratio, pi;/ps, for the jth and i'th category is the same irrespective
of the total number of categories m. This property is usually referred as independence of
irrelevant alternatives. The function

i(pe) = (log 2L, log 212 (3.4)

E,... ptm

is called the logit function.
In this section we let 3 be the pg-vector

:B = (:8,11 . aﬂ;),
and Z,_; be the gp x ¢ matrix

Zi-1 o .- 0

0 Zi—1 0

2y = : Do, :
0 0o ... Zi1

The partial score function is easily obtained by means of properties of the exponential

family as (McCullagh and Nelder (1989, ch. 2); Kedem (1994, pp. 288-290))

N
Sn(B) = Z Z,_1(y: — p:(B)) (3.5)
=1
It readily follows that
N
Gn(B) =) Zi1%4(B)Z;,
t=1
with the (7, j) element of X;(3) is given by
@) g — | —Pa(BIpi(B) i
o (B) = { pa(B)(1 - pu(B)) ifi=j

fori,j =1,...,q. It also follows that the negative matrix of the second partial derivatives,
that is the sample information matrix, satisfies the equality

Hy(B8) = Gn(B)

The last relation—a consequence of the multinomial logits model (3.3)-is of great impor-
tance, since it implies concavity of the partial log-likelihood and therefore uniqueness of
the corresponding estimator.



3.1 Large Sample Theory

We will prove now existence, consistency and asymptotic Normality of the MPLE under
regularity conditions.
Assumption (A)

A.1 The parameter 3 belongs to an open set B C RP?.

A.2 The covariate matrix belongs to a non-random compact subset of RP?%? such that
SN Z:_1Z!_, is positive definite almost everywhere.

A.3 The probability measure P which governs {y;,Z;}, t = 1,..., N gives (3.3) with
B = Bo.

A.4 There is a probability measure v on RP?*? such that [ppexs ZZ'dv(Z) is positive defi-
nite, such that under (3.3) with 8 = 8,, and for Borel sets A we have

1 N
5 2 Tz seal B v(4), N — o0 (3.6)
t=1

Assumption A.2 is useful for the derivation of bounds for asymptotics. Furthermore, it
ensures that the conditional information matrix is positive definite with probability 1. It
follows that the unconditional information matrix is positive definite. Due to assumption
A.4, we can conclude that the conditional information matrix has a limit in probability

Gn(B) » ' -
NT A /quxq ZZ(,@)Z dV(Z) = A1(,3) (3'7)

where ¥ has the generic element

ij _ ) —pi(Z'B)p;(Z'B) ifi#)
o (B) = { p(ZB)(1 - p:(Z'B)) ifi=j

forz,7=1...,q.

Here, integration with respect to a matrix means that we integrate with respect to each
element of the matrix. It follows from A.4 that A;(3) is a positive definite matrix and
therefore its inverse exist at the true value. It is important to emphasize that our approach

is quite general and does not call for any Markov assumption(compare with Fahrmeir and
Kaufmann (1987); Kaufmann (1987)).
The main result of this section is the following theorem.
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Theorem 3.1 Consider the multinomial logits model (3.3) and assume that assumption

(A) holds. Then we have that:
1. There exists a unique MPLE, ,@, with probability tending to 1, as N — oo.

2. The estimator is consistent and asymptotically normal,

~

B 5 B,
VN(B - By) B N(0,A7Y(By))

Proof: We sketch the proof of the theorem. Since all the calculations are under the true
value we drop the dependence of the notation on 3,. Notice that the partial score (3.5)
is a gp-variate zero mean square integrable martingale with respect to {Fn}. Appealing
to the Cramer-Wold device (Billingsley (1986, Ch. 29)), we define ¢y = NSy for some
A € RP. Then ¢y is a univariate zero mean square integrable martingale. Its conditional
and unconditional covariance matrices are A’Gy A and MFy )\ respectively. We have,

—_— 1
NEA
and
1 N ) p
Ty 2 Bl ac [ Inu(e) | Fma] 5 0
t=1

as N — oo, with In(e) = Ljjo,p>(nF )12 and ag = ¢y — ¢r—1. 1t follows from the Central
Limit Theorem for martingales (Hall and Heyde (1980, Corollary 3.1)) that

SN D
\/_N —)N(O,Al)

Asymptotic existence can be established along the lines of Kaufmann (1987) by proving
that for every n > 0 there exists N and 4 such that

Plpin(B) — pln(Bo) <0 VB € 0N(8)] 21 =17 (3.8)

with On(8) = {8 :|| FN*(8 — B, ||) < §}. The basic idea is to use a Taylor expansion
of the log-partial likelihood and estimate the above probability. Since for the multinomial



logits model Hy = Gy, it follows that the MPLE ﬁ is also unique with probability tending
to 1. From the above discussion, we immediately get that

1-n < P(IFY*(B~B,I<9)
< P(IB~-BlI<e)

for some €. Therefore the estimator is also consistent. The last step makes use of the mean
value theorem

Sn = Gn(B)(B - Bo)

for some A3 in the line segment connecting 3 and B3,. Since Gy is a continuous function of
B, from the consistency that was just proved we have

Gn(B)(B - Bo) ~ GN(B - Bo)

The desired result follows from the Central Limit Theorem we proved earlier. O

4 The Proportional Odds Model
4.1 On the model

One of the most widely used models for the analysis of ordinal data is the proportional
odds model (Snell (1964); McCullagh (1980)). We show how one can derive this model by

using the method of a latent variable.

Assume that z; = —~'z;_; + e;, where ¢; is a sequence of i.i.d logistically distributed
random variables, 4 is a vector of parameters and z;., is a covariate vector of the same
dimension. Suppose that we observe

ytzj(=>0j_1§xt<9,’

for j = 1,...,q, where —o0 = 6y < 6; < ... < 6 = oo are the so called threshold
parameters. It follows that

Py =g | Ficr) = P(6j-1 <z < 0; | Fio)
= F(0; +4'2t-1) — F(0;-1 + ¥'2:-1)

with F(z) = 1/(1 + exp(—z)). The model can be formulated somewhat more compactly
by the equation:

Ply: < j | Fier) = F(8; + 7'2-1) (4.1)
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Since the set of cumulative probabilities corresponds one to one to the set of the response
probabilities, estimating the former enables estimation of the latter.
In this section we let B to be the ¢ + p vector

ﬂ = (017 s )0q77,),

and
1 0 -+ 0 24
Za=|h L
00 1 2y
h=(h1,...,hy)
with

hl(ﬂ) = F(n(t-—l)l(:@))
hi(B) = F(ne-13(8)) — F(e-1)6-1(8)), §=2,-.-,9

and hy, =1 — 31_; h; where
Ne—1 = (n(t-—l)l’ ERRX n(t—l)q) = Zt—lﬂ
With this notation, the partial score function for the proportional odds model becomes

Sn(B) = Z_: 2,1 U1 (B)(y: — pe(B)) (4.2)

with U,_1(8) = [0(l o h)/On—~1) whrere [ is the logit function (3.4). It follows that the

conditional information matrix is

N
Gn(B) = Z: Z,-,U,_,(8)%:(B)U,_,(B)Z;_,

with 3,(8) is as before. The negative matrix of the partial second derivatives is
Hy(B) = Gn(B) — Rn(B) (4.3)

with Ry(8) = TN, Y0, Z:-1W(t_1)-(B)Z}_1 (y1r — pir(B)) and
W-1)r(B) = [0*(l o h)/Ompe—10m;_,].



4.2 Large Sample Theory

We still adhere to (A), the only exception being that the true model obeys (4.1) and the
dimension pq now becomes g + p. Moreover, we assume that the Jacobian of U;_1(3)
is different than zero. We denote this modified version of assumption (A) by (B). The
discussion after assumption (A) applies here too. In particular from (B.4) we see once
again that the conditional information matrix has a limit in probability, that is

S8 5 | .. BOBS(B)U(B)Zdu(Z) = As(8)

with 3(B) as before and U(B) = [0(l o h)/In]. As before Az(8) > 0. We want to

emphasize again that no Markovian assumption is necessary.

Theorem 4.1 Consider the proportional odds model and assume (B). Then:
1. The probability that a unique MPLE exists tends to 1 as N — oc.

2. The estimator ,3 is consistent and asymptotically normal,
B2 B
VN(B ~ Bo) % N (0,A7*(Bo))

Proof: Also here we only give a sketch of the proof. One can again prove under
assumption (B) that the multivariate Central Limit Theorem for martingales applies to
the partial score function,

SN D

— S N(0,A

\/N ( ’ 2)
The next step, is to show that the negative matrix of the second derivatives (4.3) is “close”,
in some sense, to the conditional information matrix, or equivalently

-I}V’—"— 50 (4.4)

This is verified using the boundedness of the covariates and the continuity of the conditional
information matrix. Then we can prove again (3.8) by using Taylor expansion which
establishes existence. Uniqueness can be proved along the lines of Burridge (1982). The
main result there is that the integral of a log-concave function with respect to some of its

10



argument is a log-concave function of the remaining ones. Consistency follows in the same
manner as before. Asymptotic normality can be proved by

Sy =Hn(B)(B - Bo) = Gn(B - By)

by appealing to the continuity of the conditional information matrix, the consistency of
the MPLE, and equation (4.4). The conclusion of the theorem therefore holds. O

5 Goodness of fit Statistic

A question which arises naturally after every procedure involving regression is that of
goodness of fit. Our approach is to classify the responses y; according to mutually exclusive
events in terms of the covariates Z¢1 (see Schoenfeld (1980); Slud and Kedem (1994)).
Since the theory we are going to develop applies to both models under consideration, we
use a unified notation.

Suppose that Aj,..., A; constitute a partition of RP*?, with p the appropriate dimen-
sion; i.e. either pg or p+ q. For | = 1,...,k define

N
M=) Iz, _,ea)y:
=1

and
N
E(B) = Z Iiz,_,e41p:(B)

where [ is the indicator of the set {Z;,_; € Aj},for [ =1,... k. Let My = (M1,..., M),
En(B) = (E1(B),..., EL(B)). If welet I,_y = (Iiz,_,eas), - - -+ L[z._1ea,))’ We can see that

N
dn(B) = My — En(B) = 2_: L1 ® (y: — pe(B))

with ® denotes the Kronecker product. It follows that dy(B) is a zero mean square
integrable martingale that satisfies all the conditions needed for an application of the
Central Limit Theorem under our previous assumptions. It turns out that

Ay »
\/]_V_—U\/(O,C)
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where C = @F_,Cy, the direct sum of k matrices !, and C; is a ¢ x ¢ symmetric matrix
given by

Ja, P1(Bo)(1 — p1(Bo))dv(Z) - -- — Ja, P1(Bo)Py(Bo)dv(Z)
Ci(Bo) = P :
- fA, Y4 (,Bo)Pq(IBO)dV(Z) e fA, Pq(ﬂo)(l - Pq(ﬂo))d’/(z)

From the above result we have the following proposition:

Proposition 5.1 As N — oo, the asymptotic distribution of the statistic

1 & _
Xz(ﬂo) = ']‘V'Edf(ﬂo)cl l(ﬂo)dl(ﬂo) (5.1)
=1
is a chi-square with kq degrees of freedom.

Since djC;'d;/N is distributed as chi-square with q degrees of freedom from the conver-
gence of dy, we have that x?(3,) follows a chi-square with kq degrees of freedom as a sum
of independent chi-square distributed random variables. This is so because the covariates
belong to different partition sets, hence in the limit the components of d are independent.
The inverse of C;(8,), ! =1,...,k is guaranteed from either assumption (A.4) or (B.4).

6 An application

Due to various technological constraints, the effective dynamic range of a spaceborne pre-
cipitation radar (PR) flying at an altitude of 350 km is limited at present to intermediate
values. In particular at high rain rates—the source of most of the rainfall volume-there is
a degraded signal to noise ratio due to large attenuation (Meneghini and Jones (1993)).
Basically this means the spaceborne PR saturates at some intermediate value (roughly
10-15 mm/hr) so that high rain rates are indistinguishable from lower rates. It is therefore
useful to construct methods that can help a PR discern instantaneously high rain rates
using covariate information.

In the following example it is shown that rain rate time series obtained by a PR can be
classified instantaneously reasonably well using covariate information, and also that the in-
stantaneous fraction of the area where it is raining (fractional area) is a useful covariate-in

! A @ B creates a partitioned diagonal matrix, having A, B on the main diagonal.
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line with Kedem and Pavlopoulos (1991). It stands to reason that additional useful covari-
ates can improve the classification procedure. See Stern and Coe (1984) for a treatment of
a similar problem.

Our data consist of two time series of length N=643 each. The first time series is the
area average rain rate, the second the corresponding fractional area, both obtained from
radar snapshots every 10 minutes (4.46 days) by means of a PR on board the ship R/V
JV Vickers (USA). This is part of the Tropical Ocean Global Atmosphere (TOGA) Cou-
pled Ocean-Atmosphere Response Experiment (COARE) data set collected by shipborne
Doppler radars during November 1992 - February 1993 in the China Sea (approximately
29°€S and 1569°6E) over an area of roughly 300 km by 400 km. For a detailed description
of the data see Short et al. (1995).

Let r; denote the area average rain rate, and let z; be the fractional area. We categorize
rain rate in three and four bins. The new variable, say y;, with three categories, is defined
by the quantization

2 i1f0.005 <r, <0.25
3 ifr,>025

The variable with four categories, say g, is given by,

1 if0<r <0.005
yt={

1 if 0 < 7 < 0.005
)2 if0.005 < < 0.04
=13 if0.04 <r <025

~

These types of data are interval data; they can be taken as ordinal or nominal.

Table 6.1: Fitted Models

| Model | Class Covariates | Number of Categories |
Model 1 | MLM Tty Ti—1y Tt—3y Li—4Tt-1
Model 2 POM Tty Ti-1y Tt—35 Tt-4Tt-1
Model 3 | POM | 7y, r_2, 143, T4z, e_124

Model 4 | POM | ri_y, 1e—2, Tt—3, T4, Te_1, Te—1Ts
Model 5 | MLM Ti1y Ti—2y T1—3, TeTi—1

IR R ENIRY
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Table 6.2: Probabilities of misclassification and goodness of fit test of the fitted models

| Item [ Model 1 [ Model 2 [ Model 3 | Model 4 | Model 5 |
First category 9.4% 7.5% 4.4% 5.6% 9.4%
Second Category | 8.8% 12.5% 13.4% 9.1% 18.3%
Third Category 4.5% 3.2% 2.6% 1.9% 5.8%
Fourth Category - - 6% 0% 1.9%
Overall ™% 8% 5.5% 4.2% 8%
X? 18.29 48.076 | 22.1713 | 10.482 20.703
d.f. 10 14 22 21 15
p-value .05 .001 44 97 .146

The chi-square goodness of fit statistic statistic is constructed from a partition with
k = 10 cells obtained from the fractional area z;. In calculating the p-values, the number
of degrees of freedom is adjusted to account for the fact that (5.1) is computed with B, the
MPLE of B,. Table 6.1 gives the five models that were fitted. All the models consist of an
intercept plus the indicated covariates in the third column of the table. The second column
indicates whether the model is a multinomial logits model (MLM) or proportional odds
model (POM). Model 1 and Model 2 were fitted to y;. The rest of the models correspond
to g.. Table 6.2 gives the value of the chi-square test the corresponding p-values, degrees
of freedom, and the probabilities of misclassification. For example of all the observations

belonging to the first category of the second model, only 7.5% were misclassified etc.
Evidently, Model 4 gives the best fit.

7 Summary

Two generalized logistic regression/autoregression models, that take into account random
time dependent covariates, were presented. We saw that the partial likelihood inference is
a promising method for estimating nonstationary one step transition probabilities. Mar-
tingale limit theory enabled us to prove large sample properties of the MPLE without
reference to any Markov assumption. The use of a chi-square goodness of the fit test was
illustrated using real data. An application reveals that the quality of fit depends on the
number of categories, the boundaries and the set of covariates.
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