ABSTRACT

Title of Document: DESIGN AND EVALUATION OF

END-EFFECTORS FOR AUTONOMOUS

SAMPLING

Craig Michael Lewandowski, M.S., 2008
Directed By: Associate Professor David L. Akin

Department of Aerospace Engineering

Autonomous underwater vehicles are becoming inorghsprevalent, and

their emergence will allow for the execution of yoeisly unfeasible underwater
missions. These missions include seeking navaésninavigation and mapping of
ocean features, and sampling on the ocean floexta¢me depths. One method to
achieve this latter objective involves the attachima a robotic manipulator to an
underwater vehicle and use of the manipulator teciospecimens and deposit them
in containers. This thesis focuses on the desmghtesting of an end-effector to be
used on such a manipulator. End-effectors prelyautdized in underwater robotics
were evaluated during the conceptualization of skéected tool design. These
evaluations in conjunction with manipulator intedarequirements were used to
produce the end-effector design that was constluatel subsequently tested. In

addition, sample containers were designed anddated, and kinematics software

used to determine sample container position, atent, and quantity was developed.

DESIGN AND EVALUATION OF END-EFFECTORS FOR
AUTONOMOUS SAMPLING

By

Craig Michael Lewandowski

Thesis submitted to the Faculty of the Graduateo8icbf the
University of Maryland, College Park, in partialfiilment
of the requirements for the degree of
Master of Science
2008

Advisory Committee:

Associate Professor David L. Akin, Chair
Assistant Professor Raymond J. Sedwick
Adjunct Professor Craig R. Carignan

© Copyright by
Craig Michael Lewandowski
2008

Acknowledgements

First and foremost, | would like to thank Dr. DaA&in for the opportunity to
work at the Space Systems Laboratory. The fad#ityruly unique, and | can say
with certainty that | could not have had the samsgate experience at any other
institution. Moreover, his insight and directidmdughout these past two years has
been greatly appreciated. Similarly, | would litee thank Dr. Sedwick and Dr.
Carignan for serving on my committee and contriyitheir ideas and support.

Additionally, 1 would like to thank my team of ungdgaduate research
assistants, Brandon, Courtney, and Jordan, who eglovkith me even when things
did not go completely as planned. Also, the cootions made by all of the SSL
undergraduate and graduate students and the tiree gy Stephen Roderick were all
very much valued. Likewise, the assistance of V&altith and Mike Perna was
especially appreciated as their answers to manyyfjuestions helped make this
research possible. Finally, | would like to thamly office companion Barrett,
without whom my time at the University of Marylamuld not have been nearly as

enjoyable.

This research was conducted at the Space Systainsrdiory, part of the
Aerospace Engineering Department of the A. Jamask@chool of Engineering at
the University of Maryland, College Park. It wagpported through the Institute for

Dexterous Space Roboaotics.

Table of Contents

ACKNOWIEAGEIMENTS. ...ttt et et e e e sreeeesneeneenee e i
LI o (=X H 000 01110 1£ TR i
=) o 0 =P Vii
List of Abbreviations and SYMDOIS..........coviieiiiieee e Xi
CHAPTER L1 INTRODUCTION ...ttt eeeeeeiea e e e e e e e ee e aaeeaens 1
L. IV OTIVATION ceeeeeeeeee e e e e e e e e e e e e e e eee e e e eeeeeeeeeanneeesaanneeesaanneeseaneeesaannnnesaannneens 2
1.2 PROBLEM ST ATEMENT «.ueeeeeeieteeeeeeeeeeeaeeeeeesaeeeeessaneeessaneeesaaneeesaanneeesaasneeessanneessannees 5
IR Y === Yo = TR 6
LA THESIS STRUCTURE ...t tteeeeeeeeeeeeee e e e ee e eeeaaeeeesseneeesaaneeasaaneeesaanneeesaasneeessannneesaannees 6
CHAPTER 2 END-EFFECTOR BACKGROUND AND PREVIOUSWORK....8
2.1 END-EFFECTOR BACKGROUNDcuttitiiieeiiieiiitereeessessssssssesessssssssssssseseesssssssssssssssssssens 8
2.2 EXISTING UNDERWATER END-EFFECTORS ... ueeieeieeeeeeeeeeeeeeeseeeeeeeeeeeaaeeeeeeaaneeeeseanes 9
2.3PREVIOUSLY CONSIDERED END-EFFECTOR CONCEPTSFOR SAMURAI 12
P S I N D o = = o 0] =TT 14
2.4.1 TERPS Planetary SAMPIEN e eetieeeieeiaeeeeeaeeeeaeeeeeeaeeeiaeaanaaenaen 14
2.4.2 Ranger Flight Development Manipulator Pardibev Mechanism...................... 15
2.4.3 Ranger Neutral Buoyancy Vehicle Il Paralleh Mechanism........................... 18
TS O L T N = X 2 18
CHAPTER 3SAMURAI & END-EFFECTOR INTERFACE OVERVIEW...... 20
3.1 SAMURAI MANIPULATOR MECHANICAL DESIGN OVERVIEW.....uuvtveeeiiiiiirreeeneeen, 20
3.2DETAILSOF THE SAMURAI INTERFACEettttiiieeeeeeecteeeeee e e esiteereea s s ssssasseneaeas s 23
I Y (U oa A0 [= 1 L1 =] = (oL TP 24
3.2.2 Hand Roll Joint Motor PropertieSccuuvevveeieeeveeeeeiiiiiiieiiesiiininiinneeseeennees. 26
BRI B 1 N = 3 22 27
CHAPTER 4 END-EFFECTOR DESIGN ...ttt eerenan e 28
S OT0 N of = = B =T I =0 1] TR 28
4.2 SAMURAIL ATTACHMENT .eutttttiiiieeeiesiireeteeessssssssreeesesssssssssssesessssssssssssssesesssssssssssssens 30
4.3 TORQUE TRANSMISSION METHOD ... coiiieieiiieitie e etieetiesstee s s tesssreessaessbesssnaessaaasans 31
4.4 END-EFFECTOR COMPONENT DESIGN..uutiiiiiiiiiiirtiiiieeeessesirrerieesssssssssseesessssssssssseens 33
4.4.1 Flange-Cam DiSK AAPLEN............... oo eeeeveeeeeeeevessssesssesnrenssennnnrenseeeeeees 34
4.4.2 SPIFAl PIALEoeiiiieiiiie e e 35
O T I = (o1 L (0] |1 £ 39
4.4.4 GuUide BIOCKS AN RAIISicvviiiteceemmce et e e e e e e e et e e et resenasesrneees 40
I o A1V 1= o | o P 41
A5 SUMMARY oot ee e e e ee e e e eeeeeeeeanseeeeeaaseeeeeansneeesanneeessaanneessanseeeesanneessanneeseans 44
CHAPTER 5 END-EFFECTOR PERFORMANCE: THEORY AND TEST
o U R 1 T 46
5.1 THEORETICAL JAW PERFORMANCEcvttiiiitieeeieteeesseiteeesssiseessssseessssssessssssseessssnens 46
5.1.1 Jaw Opening DistanCe..........coooeeeiiiiiiee e 47
5.1.2 JaW FOrce ANAIYSIS......ccooeiieee et 49
5.1.3 Additional PerformanCe METIHICSc.eeeoeieieieeeiie et e e s ena s 53

5.2 STRUCTURAL CALCULATIONS. ..o icccttttiteeeteeeeitrtteeeessssssssssstesessssssssssssesssssssssssssessssens 53

LT T I =S S = 1 U = TR 57
LY R I Sy =S [TP 59
SR RS LY Y N 2 2O 61
CHAPTER 6 SAMPLE CONTAINER DESIGN AND TESTING....................... 63
6.1 SAMPLE CONTAINER DESIGN ..coiiieeetteeie et et eeeeeeeett e e e eeaeeeseeeesssssssssesseessssasassseneeeesss 63
6.2 SAMPLE CONTAINER TESTING ceiiiiittieeiiiieee e eeiteee s eitteeesesatesessstessssstessssnsresssensanssssnnens 66
.3 SUMMARY iiiieeetetieee e e teeeeeeteeeeeesaasaaeeteeesseaa s sseeeteessssaaaseseeeesessassesesteeessssaassreneeeeses 68
CHAPTER 7 KINEM AT ICS. ottt ettt s e e e er s aas s s s s e s esesaannn s e e e 70
7.1 EFFECTSOF REMOVING THE HAND ROLL DEGREE OF FREEDOMcoeevuvvvveneennn. 70
7.2SAMURAI KINEMATICS SOFTWAREccttiieeteeiette et eeseiieseeeesssssssssseseeesssssssssssesesessses 71
7.2.1 Description of Pre-EXiSting SOftWarecoooiiiiiiiiiiiiiicciiieeeeeeees 71
7.2.2 MATLAB KinematiCS GUI OVEIVIEWveveeeieieeeeee et e e 72

7.2.3 FOrwWward KINEMALICSueeei ettt e e e e e e e e e eere e e aeens 72

T.2.4 INVEISE KINEIMALICS .. ceuiee ittt e ettt ettt et e et e e et e e e e emeeamn e ernreeeeen 78
7.2.5 Kinematics Software LIMItAtiONS........ o eeeeerieeeieeeeieesieeeeieeesseessresennns 79
7.3 SAMURAI RANGE OF MOTION ...ccttiiiiiitiiie e cittee e s eittee e s esitee e s sitee s s sntesssebaeessensaesssennens 79
7.4 SAMPLE CONTAINER QUANTITY AND LOCATION ..ccctieviie e cee e e steesaee e e 81
7.0 SUMMARY ceiiieeeteeieee e et eeaeeeteeeeeesaasaeeteeesseaaarsseeeeeesssaaaaseseeeesesaaaassesteeesssssassreneeeeses 83
CHAPTER 8 CONCLUSION AND FUTURE WORK ..., 85
8.1 CONCLUSIONS. ..utteteeeeeetee ettt e aeessaasaeeteeesseaa s seeeeeesssasaaseateeesesssasssesteeesssasassreereeeses 85
B2 FUTURE WORK ..eiiiiittiieiiitteee e cittee e e ettt e s sittee e s seate e e s sabbesssennbesasenbbessssnbbesssanbbeessanbaesssensens 87
Appendix A End-Effector and Sample Container Hardware............cccccevvveeveveeceeseseeseeee 20
Appendix B MATLAB Function for Evaluating Cam Disk Performance...........c.cccccceeeenee.. 116
Appendix C Additional Jaw Performance MEriCSooeviiiereriiere e 121
Appendix D End-Effector Sructural Analysisand Test Data............ccoceeeeceieceeiieseeeennne, 123
Appendix E Sample Container Buoyancy ANAlYSIS..........ccoeiireririeieeieieneseseseseeseeeeeens 128
Appendix F SAMURAI INVErse KINEMALICScoiveeeerieiiiniesiesie s 130
Appendix G SAMURAI Range of Mation Determination............ccccocveveveeveseceenieseeeeseenn 135
Appendix H MATLAB KinematiCS Fil€S..........coiviieiiii ettt 138
[I U o i g =TS 1= oo 1 1 4 O PPPR 143

H.2 FUNCHON KINMALICSIM ..ottt e e e ettt e e e e e et e e e e e e aaab e e e s s eesbaaeeaees 150

H.3 FUNCHON INV_KINML.ooiiiiiiiece e e e e e e e e e s eene e e eaaeeennnnes 153

H.4 FUuNCtion TransforMMat.m.......cocueiiiiiiiiee e et e e e et e e et e e et e e s e e e saa s esaaaeeeaen 155

H.5 FUNCLON TranSf OrMWW M. ... ettt e e e e e e e e s e s e s e e s ab e e s st s e raneennns 157

H.6 FUNCLION TranSfOrMPOSIMieieiiiie ettt e e e e et e et e e et e s e e e e e saaeeseaeeeaan 158

H.7 FUNCEON OULPULSIM ..ottt e e e e ettt et e e e e e e e e st e e e e e e e e e e ennnnneeeeas 159

H.8 FUNCHON @rmMPIOL.M .ot e e e et e e e e e e et e e e e e e e e snnanreeeeas 161

[IRl U Vot i o g IR T o F 172

H.10 Function TransformMWOIK.M c....... et e e e e e et e e e e e aeaaaas 180
L I U T L T R (0 (== o N 181
H.12 FunCction Sample_CONTAINEN .Mt ee e e e e e e e e e e e e e e e nnaneeeeeaeeans 182

R LS = 101 TR 184

2.1

3.1

3.2

4.1

4.2

4.3

5.1

5.2

6.1

7.1

7.2

7.3

7.4

Al

A.2

A3

A4

A5

A.6

D.1

D.2

D.3

List of Tables

Survey Responses to Preferred ManipulatoisT@domm [13])................... 11
SAMURAI JOINt SUMMAIY ... oot e e e et e e e e et e e e aeens 21
Values Relating to Roll Joint Output TOrQUE . .au «vvvvveeeeeeieieieeeaes 26
End-Effector Concept Capabilities.............c.coeevveiiiiiiiiiecene e nn2.30
Selected Ranger and SAMURAI Roller Properties...............ccooevveneeee. 39
Gripper Capability CompariSon..........cocvvvvie e iiieiieiieiee e v mmen e 42
Force Values at the Jaw-Closed PosSition............cccvceii i, 53
Jaw Assembly Force Analysis Values.............ccccoviiiiiiicieiei e, 56
Sample Container Geometry Parameters..................c.vomummneeceevnennn..04
SAMURAI DH Parameters...........ooivi i e e {4
SAMURAI Joint Ranges of MotioN........ccovvviiiiiiiieie e e e 80
Sample Container Coordinates..........covvviii it iii i ee v eeeee. 82
Sample Container Pre- and Post-Insertiort doigles...................o.coeee. 83
List of End-Effector and Sample Container CREAWINGS............cvvvunen. 90
End-Effector Fasteners............cc.ccoiiiiiiic i 110
End-Effector Heli-Coil Inserts...........c.ccoooii i e 111
End-Effector Washers. e 12
ENd-Effector BEaringS.ccoievi it s e e e e 112
Sample Container ComponentS.........ccovvveviveviiieiieiieiieene e e e .2 112
Shear Stress SUMMAIY......covviiiieieie e e e e ieenee e 412
Bending Stress SUmMmMary........ccooovviiiiiicie e ieeaenan 2 240
Tensile SreSS SUMMAIYiuiie it e e e e e e re e e 512

D.4

D.5

D.6

D.7

G.1

Compressive SIresS SUMMAIY... ... iie it e e ee e e 125
Jaw Closure-Induced Stress Summary..........ccocevviveineiineneennenn ... 126
Structural ANalysiS Data.........c.e i 126
End-Effector Closing Force Test Data..............ccovvieveeiiiiiiii e 127

SAMURAI Joint Ranges of Motion.............ccccevviveiii i e 135

Vi

List of Figures

1.1 Map Showing Location of Gakkel Ridge (from)[3..........cccooviiiiiinnnnn. 3
1.2 SAMURAI Sampling Targets of Tubeworms andi@pr(from [4])............... 3

1.3 SAMURAI Manipulator.........ccovviiiiiiiie e e e e ne e ne a2 A

1.4 CAD Model Showing SAMURAI Manipulator Mounted JAGUAR............. 4
1.5 SAMURAI with Hand Roll Joint Specified.............coooiveeiiiii i, 5
2.1 Welding Torch End-Effector (from [6]).......ccoeviiiii i, 9
2.2 Dextre OTCM End-Effector (from [7])....cccvviveiiiiie e, 9
2.3 Oceaneering Magnum ROV (from [9])....covvviiiiiiiii i e, 10
2.4 Schilling Orion Manipulator (from [10])......covve it mm e 10

2.5 WHOI Alvin End-Effector Reaching for Black Skey Chimney (from [12])...11

2.6 Bushmaster with Basket Open, Bushmaster Basket Closed, and

Mussel Pot with Drawstring (from [14]).......vvrimmmee e e, 13
2.7 CSSF PacMan Sampler (from [14]).....c.coooiiiiiiiiiiie e e e s e 13
2.8 TERPS Sampling Tool (from [15]).....cccceiiiiiiiiiiie e e et e e 15

2.9 PJM End-Effector on Ranger Manipulator................cc.cc.coveeennenn.. .16

2.10 Ranger Spiral Plate and Associated Track Rolle.....................oooeee. 16
2.11 PIM DeIriN SHOABIS. .. .e ittt e e e e e e e et e e e 17
2.12 PJM and Ranger Operating with PIM (from [16])uweevvvvvvevniiiiiiinnnn. 18
3.1 SAMURAI Manipulator JOiNt Pairs.........ccccvieiie i i ee e 20
3.2 Harmonic Drive Components (from [17]).....c.cccvveiiiiiiiiiniie i, 22
3.3 SAMURAI Marman Band.............ooooeiiiiniie e e e e e e 22

3.4 SAMURAI Hand Roll Joint........cocooiiiiiii e e 24

vii

3.5 Oil Hose Barb Inserted in Penetrator Plate................cooviiiiininnnn. 24
3.6 Existing Holes for Fasteners in the Joint$log................coooi i, 25
4.1 CAD Model of Wrist Joint Pair Showing Flanged Braces....................... 31
4.2 Parallel Jaw Gripper Concept (from [21])......cuuommme e e 32
4.3 Worm Gear End-Effector Concept........c.oovvviiiiiiiii i eeemas 32
4.4 CAD Model of Wrist Joint Pair Featuring Adapt..............cooov i veiienen. 35
4.5 Manipulator Link-Flange Interface...........c.coooiiiiiiii it e e e e 35
4.6 CAD Model Featuring Cam DisK..........ccoiiiiiiiiiiii i e e e 36
4.7 Selected Generic Cam Profile for Spiral P(atam [22])............cccvveee .37
4.8 Stainless Track Roller (from [23]).....ccooiri i e e e e 39
4.9 CAD Model Indicating Track Rollers...........ccoviiiii i 39
4.10 CAD Model Highlighting Guide Rails and Guidmeéks........................... 40
4.11 Exploded CAD Model of Shoulder Screw Assembly.........coooviiinnnne. 41
4.12 CAD Model of JAGUAR Including AVATAR and AVATR FOV.............. 42
4.13 CAD Model of Jaw Showing Key DiImensions............... v e ceenenn e 43
4.14 CAD Model of Wrist Joint Pair and Complete Heffector....................... 43
4.15 Fabricated End-Effector............ccooiiiiii i A4
5.1 Cam Disk Representations in CAD Software @A LAB....................... 46
5.2 Cam Disk Groove Profiles with Superimposed@mate Frames............... 47
5.3 Plot of Follower Displacement vs. Rotationgha...............coocvviveiienen. 48
5.4 Plot of Track Roller Force vs. Rotation Angle.....................ceeene.....50
5.5 CAD Model Cam Disk Pressure Angle Parameters..............ccoceevenn.n. 50
5.6 Plot of Pressure Angle vs. Cam Disk Rotafiogle...................coveeieneeee. 51

viii

5.7

5.8

5.9 Jaw Assembly Free Body Diagram
5.10 Force Measurement TeSt SetUP.......cvveiieiinii i e e e
5.11 Plot of Motor Current vs. Output Force

5.12 Asymmetric Load Test with Rubber Stack Befomd During Testing

6.1

6.2

6.3 CAD Model of End-Effector Insertion

6.4

6.5

6.6

6.7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

8.1

Plot of Jaw Closing Force vs. Angle of R@®ti...............ccocevviiiiiiiinnn,

Plot of Track Roller FOS vs. Rotation Angle. ..o viiiiiiiiiinnnnn.

CAD Model Highlighting End-Effector Diagon@imension...............

Exploded Sample Container CAD Model.............ccooiiiiii i,

CAD Model of Container Internal Syntactic Foa.................c.coeenee.
Sample Container Prototype.........ccininiiiii i i
Sample Container Insertion/Extraction Testfe............ccoeevvevieennn.
Sample Container Function Demonstration............cccccevvvivinnnn.
MATLAB Kinematics Software GUI..........cooiiiiiiiiiiiii e e
SAMURAI Kinematics Coordinate Frames............ccooovviiiicvmmee e vennes
Kinematics GUI with Plots of SAMURAI in Sto@eéonfiguration.......
Screenshot of Automatically-Generated KinérsdData File..............
GUI with SAMURAI in Sample Container Pre-Insen Orientation............
Image of Elbow Pitch Joint at Maximum Rotatio................cocevveuviennnn.

SAMURAI Work Envelope Plotted in MATLAB..........cc.ov i vvevneen.

Isometric and 2-D Views of JAGAUR/SAMURAI CAModels with

Sample CONTAINEIS.ttt it e e e e

CAD Model of Jaw Plate with Raised Edge Coptce.......................

...... 67

A.1 Exploded View of End-Effector CAD Model withomponent Numbers....... 91
C.1 Plot of Follower Displacement vs. Time BasadVIATLAB and

(7N D I B L | - F PPN 2!
C.2 Plot of Follower Velocity vs. Time Based o AMLAB and CAD Data...... 122

C.3 Plot of Follower Acceleration vs. Time BassdMATLAB

AN CAD DaAta.......ovvieiieiie e e e s s iee e et re e e e e nen e e e 122
G.1 Shoulder Pitch Joint at Extreme Pitch Angles................................136
G.2 Elbow Pitch Joint at Extreme Pitch Angles........cooiiiiiiiiiiiiiiicnn e, 137
G.3 Wrist Pitch Joint at Extreme Pitch Angles.......cccooooiiiiiiiii e 137

AVATAR
ASTEP
AUV
CAD
CSSF
DH
DOF
EMF
EVA
FBD
FOS
FOV
GUI
JAGUAR
ISS
NASA
NBRF
NBV
OoCP
OTCM
PIM
ROV
SAMURAI

SHCS
SSL
TERPS
UMD
WHOlI

List of Abbreviations and Symbols

Autonomous Vision Application for Target Aaisition and Ranging
Astrobiology Science and Technology for Exiplg Planets
Autonomous Underwater Vehicle

Computer-Aided Design

Canadian Scientific Submersible Facility
Denavit-Hartenberg

Degrees of Freedom

Electromotive Force

Extravehicular Activity

Free Body Diagram

Factor of Safety

Field of View

Graphical User Interface

Just Another Great Underwater AutonomousdRob
International Space Station

National Aeronautics and Space Administration

Neutral Buoyancy Research Facility
Neutral Buoyancy Vehicle

Overcurrent Protection

Orbital Replacement Unit / Tool Changeout kigaism
Parallel Jaw Mechanism

Remotely Operated Vehicle
Subsea Arctic Manipulator for UnderwatertReval and Autonomous
Intervention

Socket Head Cap Screw

Space Systems Laboratory

Tool for EVA or Robotic Planetary Sampling
University of Maryland
Woods Hole Oceanographic Institute

Amperes

Centimeter

Inches

Feet

Gravitational Acceleration
Maximum Cam Follower Displacement
Kilograms

Kilopounds per Square Inch
Pounds (force)

Pounds (mass)

Meters

Millimeter

Xi

MPa

psi
rad
rpm

<

TR K<< X

Megapascals

Newtons

Pounds per Square Inch

Radians

Revolutions per Minute

Volts

Cartesian Distance from Spiral Plate Centeram@roove
Cam Follower Vertical Displacement
Cam Follower Velocity

Cam Follower Acceleration

Angle of Joint Rotation

Cam Displacement Angle

Angle of Joint Rotation

Xii

Chapter 1

Introduction

The scientific community has been employing subibkss for decades in a
variety of applications including inspection of seh structures, recovery operations,
and sample collection. In general, these submessittave been remotely operated
vehicles (ROVs), enabled by receiving power and mmamds from a surface vessel
through an umbilical. However, operation at extedepths and in challenging
environments such as an ice field presents sedounplications for tethered ROVs.

The emergence of autonomous underwater vehicles/géAllas made such
difficult missions possible. As AUVs are not caasted by an umbilical, they have
considerably more operational freedom. As thedf@ntinues to develop, robotic
manipulators mounted to AUVs are expected to hawvemereasingly prominent role
[1]. In order for such manipulators to be trulyeetive, they will need to have end-
effectors capable of achieving demanding tasks ewhdlperating in harsh
environments.

This thesis focuses on the development of an efedtef capable of reliably
collecting samples from the seafloor. The desigrithe storage containers to be
mounted to an AUV and house the collected specinmentso presented. This end-
effector is actuated with a roll degree of freedd@OF) on an existing 6-DOF

manipulator, and the kinematic effects of this atttn method are also investigated.

1.1 Motivation

The field of astrobiology addresses the issuesouf life began and evolved,
whether or not life exists elsewhere in the unigeesd the future of life on Earth and
beyond [2]. With its primary objective of spacekration, the National Aeronautics
and Space Administration (NASA) has become increggiactive in this field in
recent years. To increase its astrobiology involeet, NASA formed the
Astrobiology Science and Technology for Exploririgriets (ASTEP) program.

ASTEP funds research efforts on Earth designeddertain the best methods
to be used to search for life elsewhere in the rSBistem. These places include
Europa and Enceladus, geologically-active moondupfter and Saturn, respectively,
which are believed to be composed of liquid belbe surface. These remote moons
are characterized by harsh environmental conditiarsd to prepare for such
missions, the ASTEP research efforts are carri¢éhaerrestrial analogs.

Similarly extreme conditions exist in many locasaon Earth, and one of the
most interesting is the Gakkel Ridge. The GakkidgR, located beneath the Arctic
ice cap as shown in Figure 1.1, represents theesliospreading ridge on the planet
and extends to a depth of 5500 m. This partidoleaition is of considerable interest
as evidence obtained from hydrocasts has suggdsteoresence of a hydrothermal
vent field. These deep volcanic vents are biollgicrich environments that thrive
despite the absence of sunlight. Potential samkngets include tubeworms and

shrimp, as depicted in Figure 1.2.

| :Flgrel 2: Potntal sampllng' target ubworreﬁ)(l
and shrimp (right) (from [4]).

In an effort to develop a vehicle capable of autoaosly observing and
sampling biological specimens in such an enviroriinghe Space Systems
Laboratory (SSL) at the University of Maryland (UMi@ined with the Woods Hole
Oceanographic Institute (WHOI). WHOI was taskethwhe design and fabrication
of the underwater vehicle, which evolved into JAGRIAJust Another Great
Underwater Autonomous Robot.

In parallel, the SSL applied its robotics expereenowards the development

of a 6-DOF robotic manipulator. SAMURAI, the Suasarctic Manipulator for

Underwater Retrieval and Autonomous Interventiguistured in Figure 1.3, would
mount to the WHOI vehicle and serve as the deviephysically collect the
specimens, as depicted in Figure 1.4. The SAMURKBUAR system would
submerge to a depth of 6000 m where it is to spgndo 36 hours exploring and

collecting samples.

Figure 1.3: SAMURAI Figure 1.4: CADoatel showing SAMURAI
manipulator. manipulataoumted on JAGUAR.

While several top-level trade studies of end-efiectoncepts had been
performed by SSL personnel, resource constraimiseldl the potential end-effector to
a simple scoop. In effect, a trowel would haverbesunted to the end of the
manipulator, and this would have resulted in sigaiit limitations. Realizing these
inadequacies, the SSL elected to develop an eedteff that would provide
additional capabilities but not necessitate the mete fabrication of an additional

joint.

1.2 Problem Statement

The primary objective of this research is to desay fabricate an end-
effector which uses the hand roll degree of freeddrthe SAMURAI manipulator
for actuation. The hand roll joint is the termifj@ht as indicated in Figure 1.5. The
end-effector is to be capable of retrieving a salodlar from the seafloor and
depositing it in a sample container. While sandlad® are not necessarily the
sampling objective, they are representative of dpproximate size of the actual
desired targets. The ability to collect seafloediment and additional biological

specimens such as tubeworms was desired but nateddor this particular effort.

Figure 1.5: SAMURAI with hand roll joint specified.

A subset of objectives includes developing a maddésign so that various
components can be replaced easily if an alternatngsion requires a different
design. Moreover, the end-effector should be éasgssemble and disassemble so
that it could be exchanged for a different instraotnen the surface without risk of
complications. Given a limited budget, the fakiima process needed to be

straightforward and the materials relatively inaxgiee.

The secondary research objectives included desigh canstruction of a
sample container. Possible locations for theséagoers on the JAGUAR vehicle are
to be determined, and the effects of eliminating tmand roll DOF from the

manipulator kinematics are to be examined.

1.3 Approach

This thesis discusses the design and testing oktlaeeffector, the sample
containers, and the development of software torohéte sample container location
and quantity. The research began with the desigrithe end-effector, which
constituted the primary research focus. Sampletaooers were fabricated to
incorporate the end-effector geometry. Having ldisaed the sample container
design, it was possible to create the kinematiddwace used to determine the

number of possible containers and their locations.

1.4 Thesis Structure

Chapter 2 focuses on the function of an end-effe¢ctow the devices are
employed on current submersibles, and the toolsithee been previously used by
the SSL. Chapter 3 overviews the mechanical ptgserof the SAMURAI
manipulator and the interface that the end-effeatost accommodate. Chapter 4
discusses the design of the end-effector, focusmghe function of the significant
components. Chapter 5 presents the theoreticab#ector performance in addition
to results obtained through physical testing. @map covers the design and testing

of the sample containers, and Chapter 7 overvieekinematics software employed

to determine sample container location and quant@fapter 8 presents conclusions

and outlines future tasks pertaining to end-effledevelopment.

Chapter 2

End-Effector Background and Previous Work

In order to design an end-effector, it is importentunderstand the role of this
robotic component. End-effectors are used to aptisma wide variety of objectives
on the surface and can similarly be used to achiewiiple underwater tasks. This
chapter focuses on the generic role of these rolbotils and discusses end-effectors
that have been employed in underwater missions.ditibdally, relevant devices

previously developed and currently in use at the &$ also detailed.

2.1 End-Effector Background

An end-effector is a functional unit associatedhite interaction of a robotic
system with the environment or with a given objégt It is so-named as when it is
affixed to a serial manipulator, it is placed o ttistalend and is the part of the
robotic arm that has a diregffect on the workspace.

Types of end-effectors vary widely as they may sedu for diverse
applications. The term “end-effector” can referatavelding torch, a vacuum pump,
grippers or any other tool that is attached tokmtic manipulator. Figure 2.1 shows
a robot containing a welding torch end-effectornpeiused to manufacture an
automotive exhaust system. Figure 2.2 is a dgmiaf the Orbital Replacement Unit
/ Tool Changeout Mechanism (OTCM). The OTCM is @pper end-effector

designed for the Dextre robotic system aboardrternational Space Station (ISS).

716" Socket

Force-Moment

Gripper Jaws
Sensor

IR E. "~ Umbilical Connector
|5 A o b v 5. i

Figure 2.1: Welding torch Figure 2.2: DexDTCM
end-effector (from [6]). end-effectémofmn [7]).

2.2 Existing Underwater End-Effectors

Just as an end-effector is chosen to suit its eqjodin on the surface, the same
is true of selecting an end-effector for an undeéewapplication. Applications of
underwater robots include seafloor mapping, watenemsearch and disposal,
underwater structure inspection and maintenanced, geological sampling [8].
Surveying and/or inspection missions effectivelyta@nmounting cameras to a
submersible and do not require robotic manipulators

However, for tasks pertaining to structure congioumc or maintenance,
manipulators are essential. Figure 2.3 shows anuwially-available ROV
manufactured by Oceaneering. The vehicle is desdigor activities related to the

drilling and production of oil and gas.

Figure 2.3: Oceaneering Figure 2.4: Schyl@rion
Magnum ROV (from [9]). Manipulator (from [J)O

In Figure 2.3, it is apparent that the ROV contams manipulators, and
Figure 2.4 is an enhanced view of one of these podetiors, which are developed by
Schilling Robotics. One manipulator is used tggta the subsea structure while the
other manipulator performs the desired task. T eadfector in Figure 2.4 consists
of parallel jaws actuated by a 4-bar linkage.

The continued strong demand for oil juxtaposed i dwindling shallow-
water reserves has been a significant driving faictdhe technological progress of
underwater robotics [11]; however, end-effectorgsehalso been developed for the
purpose of sample collection. Figure 2.5 shows ohé¢he manipulators on the
WHOI Alvin submersible reaching for a “black smcoken the East Pacific Rise.
The end-effector is characterized by a grippergiesind functions similarly to the

Schilling device previously shown in Figure 2.4.

10

Figure 2.5: WHOI Alvin end-effector reaching forabk
smoker chimney (from [12]).

The claw design has proven to be one of the mdstctefe underwater
sampling tools. In a WHOI survey, marine biologigtere asked about their current
and future needs regarding deep submergence s@mplihe survey produced the

following data regarding tool selection:

Table 2.1: Survey Responses to Preferred Manipulaiols (from [13])

Device Used Most Often (%) Importance for Future Research (%)
Vacuum Sampler 74 70
Manipulator Claw 63 61
Sediment Push Corge 59 36
Nets and Scoops 56 28
Bioboxes 56 54
In-Situ Sensors 40 57
Faunal Samplers 37 30

The survey demonstrates that not only do the méiimlegists rely heavily on
the claw, but they also hypothesize that thesepgrgpwould be important for their

future research. Only the vacuum sampler provetbeéanore popular, which is

11

unsurprising given that it represents the best foolcollecting sediment and is
comparatively easy to operate. While a gripper memyire tremendous accuracy to
securely grasp a target, a vacuum sampler doesawsut the same precision. The
disadvantages to a vacuum sampler are a limiteglsasize and elevated power
requirements. This latter disadvantage is ofelitbnsequence on an ROV where
power is being supplied via an umbilical, but on AdV, the power is stored in

batteries and is therefore more limited.

2.3 Previously Considered End-Effector Conceptsfor SAMURAI

Just as WHOI surveyed marine biologists to assighe selection of their
manipulator tools, the SSL also contacted oceagsearchers to generate potential
concepts for the SAMURAI end-effector [14]. Theginries were made to a wide
range of scientists and engineers and relatedacsdéimpling of a large variety of
underwater specimens, and the potential targets marlimited to solid objects.

The investigation did include the vacuum samplat tiad been popular in the
WHOI survey, but the high power draw was noted hwy interviewees. Additional
disadvantages included potential cross-contaminatfosamples, the possibility of
damaging soft specimens, and the fact that thewaaould become plugged.

Additional devices considered included the Busheraahd the Mussel Pot.
The Bushmaster, developed at Pennsylvania Statgeldity, consists of netting
attached to flexible ribbing that opens and clasesugh the actuation of hydraulic
pumps. The Mussel Pot, developed by Pennsylvaaig §niversity and the College

of William and Mary, functions similarly to the Blusmaster. However, it is different

12

in that it is a rigid container which is sealeddther pulling a drawstring or shutting

an iris. Both of these devices are shown in Figuée

Figure 2.6: Bushmaster with baket pen (left),HBoaster with baske closed
(middle), mussel pot with drawstring (right) (frdd«]).

These designs are capable of collecting large giemnbf diverse samples;
however, interfacing with the SAMURAI manipulatoould be a serious challenge.
Modifying the actuators would be difficult as we#ispecially in the case of the
Bushmaster with its hydraulic pumps.

Concepts highlighted by the interviewed researchdrish could more easily
interface with SAMURAI include the PacMan Scoop ahe previously-detailed
claw design. The PacMan scoop, featured in Figureand in use at the Canadian
Scientific Submersible Facility (CSSF), is an effféaor consisting of two semi-

cylinders which open and close like its namesalleagame character.

Figure 2.7: CSSF PacMan Sampler (from [14])

13

There appeared to be a consensus amongst thectemsathat the claw was
the most utilized device when collecting rocks iydiothermal vent fields.
Additionally, they noted that claws could be usedtquire tube worms by grabbing
the worms and subsequently twisting, whereas thehBaster or a vacuum sampler
would experience difficulty collecting these speems. Thus, while claw-like
grippers may not be able to collect samples orséime scale as these other devices,
grippers are nevertheless regarded as very usendrgl purpose tools in underwater

sampling.

2.4 SSL End-Effectors

The SSL has been developing complex robotics farsy@and has produced
many different end-effector designs. Some of theagh as a bolt driver, were
designed for space assembly tasks that would niotide with a sampling end-
effector. However, the design concepts behindreg&SL tools could be applied to

sample collection.

2.4.1 TERPS Planetary Sampler

In 2007, the SSL developed the Tool for EVA or Rob®lanetary Sampling
(TERPS), a sampling tool depicted in Figure 2.8wds designed primarily to assist
an astronaut in the collection of rocks or soileoplanetary surface. Torque output

by the motor is transferred to the jaws throughrwgears.

14

]

Figure 2.8: TERPS sampling tool (from [15]).

The TERPS sampler may be capable of grabbing a daltett, but the jaws
would have to be enlarged to adequately fit theeabj Additionally, at 100%
efficiency, the torque output by the TERPS motargex is 25.5 N-m, which is
approximately 10.5 times less than the 267 N-m wutyy the SAMURAI hand
motor/harmonic drive combination. Either the stowal components of the TERPS
sampler would have to be enhanced or critical stufps would be required in the

SAMURAI controls to prevent the motor from damagthg end-effector.

2.4.2 Ranger Flight Development Manipulator Parallel Jaw Mechanism

The SSL Ranger project was funded by NASA as pdrithe Space
Telerobotics Program. The objective was to desgrobotic system capable of
servicing the Hubble Space Telescope, though thvelolged manipulators can be
used for other tasks. One of the end-effectoratecethat would be most capable of
achieving the task of collecting a sand dollar wlobé the parallel jaw mechanism

(PIM), shown in Figure 2.9. In the figure, thevature in the grippers allows the

15

end-effector to grasp cylindrical beams, but treemetry could be altered to better

coincide with underwater sampling objectives.

i

Figure 2.9: PJM end-effector on Ranger manipulator

The PJM operates by rotating an anodized aluminpinalsplate containing
two milled grooves. Rollers are inserted into tp@oves, and their motion is
confined to one direction by guide rails positiormd either side. As the plate is
rotated by a motor, one roller is translated in divection while the other moves in
the opposite direction, producing either an opemwing closing of the jaws. Thus, the
spiral plate is acting as a cam disk. These compsncan be viewed in Figure 2.10,

which contains images of the PJM partially disadsleth

Figure 2.10: Ranger Spiral Plate (left) and Asdedd rack Rollers (right)

16

While the Ranger PJM is still used on a regulardhasveral design iterations
were required to reach this operational state.lyHtarations occasionally produced
binding of the rollers in the grooves, which intidamaged the rollers and broke the
end-effector. All mechanical power is transmittemin the motor to the jaws via the
two rollers, which are ¥ in stainless steel roll@ith a dynamic load capacity of 544
Ibs each, according to manufacturer specificatiombe structural limitations of the
rollers in turn limit the capabilities of the entfextor.

In addition, the guide blocks which move along this are held in place by
heavily-lubricated Delrin sliders, as shown in Fg@.11. Delrin would have been
selected as the material for these parts as it dvotgate less friction than metal
pieces. Even so, plastic sliders are comparatifralyile and do not lead to a robust

design.

Figure 2.11: PJM Delrin sliders.

There are advantages to the concept, however,lese include a relatively
simple design with few moving parts. The PJM igalé of complicated gear trains,

and any operational complications are immediateggmbsable. Moreover, if a

17

different force or speed profile is desired, theradpplate can easily be replaced

without affecting the rest of the end-effector.

2.4.3 Ranger Neutral Buoyancy Vehicle |l Parallel Jaw Mechanism

A similar end-effector was created for use on tlaader Neutral Buoyancy
Vehicle (NBV). This device is also a parallel janechanism that uses a spiral plate
to create unidirectional jaw motion. The end-effeés shown in Figure 2.12, which
also contains an image of the end-effector in uséevattached to Ranger in the SSL

Neutral Buoyancy Research Facility (NBRF).

Figure 2.12: PJM (right) and Ranger operating \WiM (left) (from [16]).

In contrast to the PJM fabricated for the Rangeghfl Development
Manipulator, this end-effector has flat jaws thah de used for more generic tasks.
Additionally, as can be seen in the figure, whéeformer concept employed Delrin

sliders, this end-effector uses aluminum rods testrain the motion path.

2.5 Summary

A considerable variety of end-effectors are uttize robotics applications

throughout engineering and manufacturing disciglinbowever, the number of

18

concepts decreases markedly when examining thenfmdteools for underwater
tasks. Many submersibles equipped with maniputatse claw-shaped end-effectors
to grasp targets. While other sampling systemsirangse, they are either not as
popular amongst the marine biologists or would @méssignificant challenges in
terms of interfacing with SAMURAI and/or JAGUAR.

The SSL has developed end-effectors and samplstgrsg in the past, but all
of these concepts would require significant desmgrdifications in order to attach to
the SAMURAI hand roll joint. Moreover, some of fgedevices necessitated several
design iterations in order to reach functionalugtat These lessons, along with the
recommendations of the underwater sampling commumiere considered in the

selection of the final end-effector concept.

19

Chapter 3
SAMURAI & End-Effector Interface Overview

One of the most significant challenges associatéd designing this end-
effector was the SAMURAI interface. This chapteregents relevant details

pertaining to the SAMURAI manipulator and more sfeally, the hand roll joint.

3.1 SAMURAI Manipulator Mechanical Design Overview

The SAMURAI arm is a 6-DOF dexterous robotic mamapar with motors
housed in three joint pairs (shoulder, elbow, amgt)v The joint pairs are labeled in

Figure 3.1.

Figure 3.1: SAMURAI manipulator joint pairs.

The shoulder consists of a yaw joint and a pitcimtjo Both joints use
KolIMorgen RBE-03010-B-00 brushless DC motors, whjgroduce a continuous

stall torque of 2.21 Ib-ft (3.00 N-m) when suppli@dh 5.9 A of current.

20

The elbow is comprised of a pitch joint and a rmint powered by
RBE-02111-A-00 brushless DC motors. They genesatentinuous stall torque of
1.23 Ib-ft (1.67 N-m) at a current of 5.74 A. Theist uses identical motors to the
elbow and also has a pitch-roll configuration. Trést roll joint is more accurately
referred to as a hand roll jointand the final configuration is yaw-pitch-pitchio
pitch-roll (Y-P-P-R-P-R). Table 3.1 summarizes 8&MURAI joints. The yaw and
roll joints contain hard stops, while the manipataitself constrains the pitch joint
motion.

Table 3.1: SAMURAI joint summary.
Joint Numbern Location | Motion

1 Shoulder Yaw
2 Shoulder Pitch
3 Elbow Pitch
4 Elbow Roll
5 Wrist Pitch
6 Wrist Roll

The torque output of all the joints is amplifiedrdigh harmonic drives.
Harmonic drives produce high gear ratios more ieffity and more compactly than
alternative systems such as planetary gears. Tdecas have three main
components: a wave generator, a flex spline, aticcalar spline. Generic harmonic
drive components can be viewed in Figure 3.2. Whee generator is an elliptical
disk that rotates inside the cup-like flex splinEhe walls of the flex spline are thin,
making them flexible. Teeth on the external sitithe flex spline fit with teeth in the
circular spline, but there are two fewer teeth lo@ former component. Thus, as the

wave generator rotates, it produces a small ghithe flex spine as it slowly moves

! Manipulator joints are referred to by their analog human arm components. Because the human
wrist is not capable of producing a rolling motidojnt 6 is referred to as the “hand roll” joirkhis
matches the naming convention used previously &y5BL on the Ranger DXM manipulator.

21

about the circular spline. Flex spline motion iaam slower but produces a much
higher torque. All of the SAMURAI harmonic drivéswve gear ratios of 160:1 and

increase the output torque substantially.

Circular Spline

Flexspline

Wave
Generator -

Using the harmonic drives in combination with thetars, the manipulator is
capable of generating a tool tip force of 32 Ib2AI) in 1-g and 71 Ib (316 N) in
neutral buoyancy [18]. The difference is attritkato the fact that in neutral
buoyancy, the arm does not have to lift its ownghei

The SAMURAI joint pairs are separated by two cytiodl links. The links
are attached to the joints via Marman bands. Marbends, also called “Marman
clamps” or “Marman rings,” contain V-shaped wedgest pinch two flanges

together. Figure 3.3 shows one of the SAMURAI Mambands.

Figure 3.3: SAMURAI Marman band.

22

The manipulator joints will be filled with minerall to compensate for the
considerable pressure 6000 m below sea level. ddsgn calls for only the
hemispherical electronics housings to be filledhwair. Power, data, and oil are
supplied from the JAGUAR AUV to each of the joint& daisy-chained cabling
running external to the arm.

The manipulator links and joint housings are mairfigbricated from
Aluminum 6061-T6. The flanges, Marman bands, aletteonics housings are
machined from Titanium 6-4, while the majority betfasteners on the arm are made
from A-286, a high-strength corrosion-resistantesafjoy.

These material selections contribute to very higitimanical robustness in the
manipulator. In each of the joints, torque is $farred from the motors to the
harmonic drives through stainless steel motor keyBiscussions with the lead
mechanical designer indicated that the design atdibe these to be the weakest
mechanical components [19]. This corresponds taniaimum SAMURAI
mechanical factor of safety of approximately 40AMBJRAI was designed to be
dragged behind a ship through an ice field witHoss of function, regardless of the

number of collisions. The end-effector was creatéH this in mind.

3.2 Details of the SAMURAI Interface

In terms of end-effector construction, the desigeded to take the structural
interface of the joint into account. It was crtichat the end-effector easily attach to
SAMURAI, without significant alterations to the mpualator. Additionally, given
that the joint motor constitutes the end-effectctuator, the motor properties needed

to be considered as they would affect structunaité and tool performance.

23

3.2.1 Sructural Interface

A close-up view of the hand roll joint is shown kigure 3.4. As can be
observed in the image, there is a titanium covéheend of the joint. The threaded
hole on the front of the plate is required durihg bil-filling process. Mineral oil is
to fill the joints after passing through hose badbsched to the penetrator plates
which will house all of the electrical connectorln Figure 3.5, hose barbs inserted
into a penetrator plate can be observed. At anddleation on each of the joint pairs,
there is an additional hole. A vacuum pump willdieached to this hole during the
filling process to ensure that potentially hazasdair bubbles are removed. The hole
will then be plugged. This affects the end-effectmly in that there must be

sufficient clearance for the plug.

Figure 3.5: Oil hose barbs inserted in penetratep

24

The outer rim of this titanium plate has a maladla identical to those used to
connect the links to the joints. Its correspondfegiale counterpart had been
previously engineered and was to be incorporatedtive end-effector should such an
attachment plan be selected. Inclusion of thid pdds to the modularity of the
manipulator and reduces the need for additionaigdesvork. A dimensioned
drawing for the female flange and all additionatl-&ffector components are featured
in Appendix A.

Many of the end-effector concepts investigated worgquire that some
elements be held stationary relative to the joouding. While a vacuum sampler or
a push core could mount directly to the end ofrihiejoint, almost all end-effector
designs involving moving jaws would require some fedures. Certain gearing
connections, guide rails for a PJM, a track foagkrand pinion, and other such items
would need to be fixed to the joint. Drilling atidnal holes into the housing was
highly undesirable for reasons pertaining to strradtintegrity and sealing. Attempts
to use current holes would be made before remoaadjtional material from the
joint housing. Two fasteners have been removedegare 3.6, showing the existing

holes.

Figure 3.6: Existing holes for fasteners in th@jdiousing.

25

3.2.2 Hand Roll Joint Motor Properties

As previously stated, the motor internal to thisnjois a KollMorgen
RBE-02111-A-00 DC brushless motor (complete speatiions in Appendix A). The
motor is capable of operating at continuous stafjue at a current of 5.71 A;
however, the motor driver electronics boards lithé continuous current delivered to
the motors to 5 A. While the motor driver boartlsva for a peak current of 10 A,
elimination of the heat generated by the electnic a serious issue, and
considerable efforts will be made to avoid any entrspikes. As such, 5 A is taken
to be the maximum motor current. The supplied ag#tis 28 V, rendering the
maximum electrical motor power 140 W.

Given a maximum currents, and obtaining the torque constaikt, from
the specifications sheet, (3-1) can be used to otanihe maximum expected motor
torque, Trax-

Trax = ! max Kt (3-1)

To determine the torque output by the joihty, the maximum motor torque
is multiplied by N, the harmonic drive gear ratio, amép, the harmonic drive
efficiency. This relation is shown in (3-2).

Trot =/71p EN My (3-2)

The numeric values for these variables are sumethiiz Table 3.2.

Table 3.2: Values relating to hand roll joint outparque.

Variable Description Value (English) | Value (SI)
Tsens Torque Sensitivity 0.225 Ib-ft/A 0.305 N-m/A
I max Maximum Current 50A 50A

T max Maximum Motor Torque 1.13 ft-Ib 1.53 N-m

N Gear Ratio 160 160

MNHD Efficiency 0.80 0.80

Troll Output Joint Torque 144 ft-Ib 195 N-m

26

The motor will generate a back electromotive fofE&F) that will cancel
voltage at a rate of 31.9 V/krpm. While the madpecification sheet lists the speed
at rated power as 4242 rpm, the actual maximum mgpeed is approximately
880 rpm due to the supply voltage of 28 V. In regeo the initial end-effector
performance predictions, it is assumed that theisooperating with maximum joint
torque. This presumes no structural limitationd provides the absolute end-effector

performance limit.

3.3 Summary

The SAMURAI joints contain brushless DC motors dmarmonic drives,
providing significant torques throughout the arrivlaterial selections and various
components are incorporated in the design to pdacmechanically robust
manipulator.

Any modifications to the SAMURAI structure were tbe avoided; however,
there are multiple features that can be utilizedefad-effector attachment. The male
flange positioned on the end of the joint and fasteholes already located in the
housing represent possible interfacing points. dviperformance was evaluated, and
the maximum theoretical torque expected to be dedy to the end-effector is

144 ft-Ib (195 N-m).

27

Chapter 4
End-Effector Design

In this chapter, candidate end-effector designscarapared, and the most
capable device is determined. The manner in wtoolue will be transferred from
the joint through the end-effector is discussed| @@ rationales for significant end-

effector components are overviewed.

4.1 Concept Selection

Although the vacuum sampler had been viewed thet fia®rably in the
WHOI sampling tool survey, there would be serioamplications in using it on the
SAMURAI/JAGUAR system. The significant power dravould be a considerable
obstacle for any AUV, but for a mission at 6000 emé&ath the surface with a 36-hour
duration, this is especially problematic. Moregweisand dollar would be too large
and too brittle for many vacuum sampling systemgerily in use. For these
reasons, it was discounted as a possibility.

A push-core end-effector was seriously consideeetl would basically entalil
mounting a cylinder on the end of the hand rohja@nd actuating a lid with a spring
mechanism. If the mission had entailed a singhepse, this would have worked well
as the end-effector would have doubled as the pwrta However, as multiple
targets were desired, the push core would eithed t@ open and release the sample
into a container or SAMURAI would need to exchareyed-effectors during the
mission. The complexity associated with eithethaflse designs was undesirable, and

the push core was not selected.

28

Net-based concepts, such as the Bushmaster, weereahsidered; however,
as in the case of the push-core, it would be diffito collect multiple samples.
While the netting could be opened and closed tasipbsobtain several samples,
cross-contamination would then be an issue. Furtbee, the large surface area of
such a device would greatly increase drag as th¥ Ablels through the water. In
addition, interfacing with SAMURAI would be extrefgechallenging, and this was
not amongst the most popular devices in the reseanweys.

A gripper end-effector was selected due to its esgful implementation on
previous undersea sampling missions and popularntgngst marine biologists. A
design with actual claws composing the tool tip veassidered, but jaws were
ultimately used for reasons that will be detailedSection 4.4.5. Although the
interface design between the gripper end-effeatdrthe manipulator was nontrivial,
it was less complicated than some of the netteccequts. It would allow for
acquisition of a sand dollar and could collect mpldt samples and deposit them in
separate containers.

A summary of the concept capabilities is includedTable 4.1. Only the

gripper mechanism is capable of achieving all efdbjectives.

29

Table 4.1: End-effector concept capabilities.

Capability Vacuum Samplel Push Core| Actuated Nets| Grippers
Sand Dollar Yes Yes Yes Yes
Collection
Multiple Sample FER No FER Yes
Collection
Cross-Contamination FER Yes No Yes
Avoidance
Low Power Draw No Yes Yes Yes
Low Drag Yes Yes No Yes

Yes — Highly likely or certain to demonstrate tlapability.

FER — Further Evaluation Required. Capability maynay not be possible
depending on design configuration.

No — Highly unlikely if not impossible to demongtdhe capability.

4.2 SAMURAI Attachment

For the gripper end-effector to have moving jawsyould be necessary to
create stationary points relative to the rotatiagcroll joint. An object devoid of
these fixtures would simply spin along with the stiri As had been shown in
Chapter 3, there are fastener holes in the houkisigconnect the final joint to the
manipulator. Stationary points are produced bygisdonger fasteners and attaching
mounting braces to the joint housings using thaseesholes. These side mounts can

be visualized in Figure 4.1.

30

Side Mounting Braces

Female Flange

Figure 4.1: CAD model of wrist joint pair showinigrige and braces.

In Chapter 3 it was also mentioned that the titanplate on the front of the
hand roll joint contains a male flange. This flangias created on the plate
specifically for the attachment of whatever toolulkbbe placed on the end of the
arm. Correspondingly, the end-effector contaimsfémale mate, and the two flanges

are joined with a Marman band. This can also s=onked in Figure 4.1.

4.3 Torque Transmission Method

Having established fixed mounts and an attachneethiet rotating joint, it was
necessary to determine how to transmit torque tiwarjoint to the jaws. Some of the
grippers used for underwater sampling employ 4db&ages activated by linear
actuators. Other concepts use actuation schemes amalogous to the hand roll
joint. These include a worm-gear driven linkagachs as the one pictured in

Figure 4.2.

31

emitting LED's
proximity sensing
s phototransistor
o

parallel arm
linkage sector
gears
limit detector 4
lh&__\
™ shaft encoder

torque overload

motorbuilt —— ___ o detector

into base

1~ & DOFforce sensor

Figure 4.2: Parallel jaw gripper concept (from [21]

Another potential worm gear concept for the SAMUR&id-effector was
inspired by the TERPS sampler as the orientatiatsaghotor and jaws is identical to

the orientation in the SAMURAI joint. This earlprcept is displayed in Figure 4.3.

Figure 4.3: End-effector worm gear concept.

In this configuration, an adapter connects the ferflange to a worm gear,
colored blue in the figure. Rotation of the woreaginduces motion in spur gears

mounted on shafts, which are supported by the nroyifiraces. Links connect the

32

shafts to the jaws. A 4-bar linkage could be usedugment the jaw mechanical
advantage.

Other possibilities involved bevel gears or a raokl pinion, but all of these
concepts use some form of gearing, which is a daakib Gear trains can result in
substantial efficiency losses as evidenced by thHeRAS sampler, which
demonstrated a mechanical efficiency of 15% [1Afditionally, the relatively high
torques being output by the harmonic drive couldseagear teeth to skip or break. If
either of these events transpired, the end-effeetmunld likely become inoperable.
On the surface, the broken gear can be replacefflg@nd the device returned to an
operational state; however, over the course of @rhunderwater, a single tooth
could compromise the entire mission.

Based on these concerns, the cam disk concepiopstyiused by the SSL in
the Ranger PJM was selected. The spiral platdbbas a successful development,
though several design iterations were requiredetch this stafe It offers the
additional advantage of having no complicated geariThe primary disadvantage is
that all torque is transferred through two reldivemall track rollers. However,
difficulties could be avoided by designing an appiate cam path and selecting a

sufficiently strong roller.

4.4 End-Effector Component Design

The end-effector was composed of several signific@mponents. These
elements will be discussed individually. The retpe functions will be presented in

the order that the components attach to the emtteif, beginning with the flange

2 Note on terminology. The terms “spiral plate” &odm disk” are used interchangeably. The
component of interest is both a plate and a diakdbntains spiral grooves, which function as cams.

33

connector and concluding with the jaws. Loadingd aafety factors are presented in
Chapter 5.

Ninety-six fasteners bind the end-effector comptsengether, and they are
all 10-32 socket head cap screws (SHCS), thouggthenvary. The same socket
head was selected to simplify assembly and disdsgeocedures.

Unless otherwise stated, Aluminum 6061-T6 was $eteas the material for
all end-effector components due to its relativeighhstrength and low mass.
Moreover, this is the material comprising the migyoof the manipulator. Parts are
made from commercially available stock (1/4 in, BY8and %z in thickness) wherever
possible. These thicknesses correspond to 0.633&25 cm, and 1.27 cm in metric
units. The total prototype mass 9.09 (.12 kg).

As previously stated, dimensioned drawings forealll-effector components
are contained in Appendix A. In addition, spreadsh listing all end-effector parts
and associated gquantities, materials, volumes,sc@std masses are included in

Appendix A.

4.4.1 Flange-Cam Disk Adapter

An adapter is used to connect the flange to the diskn The component is
indicated in Figure 4.4. As the adapter must contwethe flange in the same manner
as the SAMURAI link tubes join to their respectif@nges, the same insert pattern
was used in the outermost ring. An inner ring Bfhibles allows for attachment of

the cam disk. A view of a link-flange interfacdéstured in Figure 4.5.

34

Flange-Cam Disk Adapter

Figure 4.4: CAD model of wrist Figure 4NBanipulator link-
joint pair featuring adapter. flange interface.

The objective of this research focused on the agweént of a prototype, and
modularity was incorporated into the design wheéreds possible. The adapter is
included to allow for easier change-out of diffdrexam disks, which may be
machined to produce different profiles or be conggosf different materials. If a
solitary cam disk is to be used, the adapter cbeleliminated and the flange could

mate directly to the disk, reducing length and mass

4.4.2 Siral Plate

The spiral plate is critical to the transmissiontaique from the roll joint to
the parallel jaws. It attaches to the flange aslaptith 12 fasteners on the lower
surface. The upper surface contains two grooves,for each of the track rollers

which drive each of the respective jaws. The $piicte can be seen in Figure 4.6.

35

Spiral Plate
Figure 4.6: CAD model featuring cam disk.

Close inspection of the figure reveals two circulates on the upper surface.
These were included at the request of the machsoighat the part could easily be
mounted in the mill.

Although cams are generally made from steel, iommther hard metals, the
prototype spiral plate is to be fabricated fromnailbum. The Ranger plates are made
from aluminum, although those have been anodizethdcease wear resistance.
Should long-term testing indicate that increasedliess is necessary, the disk may
be anodized or machined from stainless steel. &yl the plate would also
alleviate concerns of sand entering the disk greamd the small grains damaging
the tracks.

When initially selecting profiles for the spiralgpé grooves, the design sought
a general pathway described in tiam Design Handbook characterized by a high
opening acceleration and closing deceleration [Z2}e associated generic equations
are contained in Figure 4.6 wheraepresents the vertical displacement of the cam
follower, h is the total displacemenj; is the cam angle associated with the

displacement,f is the angle of rotation, ang’ and y"” are the velocity and

36

acceleration, respectively. This concept was sedieso that high accelerations would

negate any stiction effects and ensure that the jagen and close smoothly and

invariably.
y
| | rt L
> '1:_'2\ 008 g |
J L. B - ol
| Y
TN . rmh{.. ne)
/ \ = — |sin —|
‘ / N V=28 \ "B)
; g
| "
o
| _N____p . meh [no
| R =——1C08 —-
- ~ ¥ 752" B

Figure 4.7: Selected Qéﬁéric cam profile for spptate (from [22]).

Such a profile will produce high opening and clgsfarces. While this may
seem like a design attribute as the capability reak off a portion of a targeted
specimen would be desirable, it is very likely ttreg jaws will inevitably close upon
an extremely rigid object. In an instance whereobject is to be fractured, it is
critical that excessive force is not transmittedotiyh the cam followefs two
relatively weak end-effector components. As eauh §s associated with only one
cam follower, any damage to this follower will remdhe end-effector inoperable.

Consequently, the profile was adjusted so thatftinee capability would
continually decrease as the jaws closed. As the @oceed to shut, the likelihood
that they will close upon an object simultaneoustreases. By decreasing the force

at which the motor will stall, the cam followersancreasingly protected.

% Note on terminology. The terms “cam follower” &fiick roller” are used interchangeably. The
components of interest are rollers designed tetralong a track. As that track is being generated
the cam disk, the track rollers are simultaneouaaly followers.

37

In order to model the curves using CAD software emdchieve the desired
forces, the position profile displayed in Figur@ #das modified to make it dependent
solely ong andh, as shown in Equation 4-15 andh are constants and are set to

155 (2.71 rad) and 2.25 in (5.715 cm), respectively.

et

Whereas the generic position profile is a functbd directly, the CAD
package generates variables by definiag a unitless parameter varying from 0 to 1.
This requires that the rotation variables be matiefunctions ot, and this is done in
Equation 4-2.

6=1f(t)=tpB (4-2)

To model the grooves using Cartesian coordinatasdd are converted t&

andy using Equations 4-3 and 4-4.
X=r [CO{H - gj (4-3)

y=r E’sin[@ —]—27] + offset (4-4)

The termoffset in Equation 4-4 creates space between the groouetlze
center of the spiral plate. This offset ensurgmsaion between the grooves, and the
value is set to 0.45 in (1.143 cm). To obtain ¢ogations for the second groove,
Equations 4-3 and 4-4 are simply multiplied by -1.

The theoretical end-effector performance using ehgsofiles will be

discussed in Chapter 5.

38

4.4.3 Track Rollers

Stainless steel track rollers follow the motionhpateated by the spiral plate
grooves. Their motion is constrained to one dinmnby guide rails which will be
discussed in Section 4.4.5. The track roller usethe end-effector is shown in

Figure 4.8.

Figure 4.8: Stainless track roller (from [23]).

To avoid the complications experienced in earlyatiens of the Ranger PJM,
a larger, stronger roller was chosen. Selectecpepties of the Ranger and
SAMURAI rollers are compared in Table 4.2.

Table 4.2: Selected Ranger and SAMURAI roller praps.

Detail Ranger SAMURAI
Manufacturer Carter Bearings McGill
Outer Diameter Y2in (1.27 cm) 5/8in (1.59 cm)
Dynamic Load Capacity 544 1b (2420 NP551b (4250 N)

The track rollers are oriented in the spiral pla®oves as shown in

Figure 4.9.

Track Rollers
Figure 4.9: CAD model indicating track rollers.

39

4.4.4 Guide Blocks and Rails

Guide rails serve as structural fixtures to comstteack roller motion. The
track rollers screw into the rear surface of guattcks which travel along the rails.

The guide blocks and rails are shown in Figure 4.10

Guide Block

Guide Rail
Figure 4.10: CAD model highlighting guide rails aguaide blocks.

Each guide block incorporates eight stainless dtaél bearings to provide
smooth motion along the rails. In Figure 4.10sthbearings are colored blue. Each
of the bearings is characterized by a 332-Ib (1IMy®ynamic load capacity and
connects to the guide block by spinning on thetsbifad 1/4-in (0.635-cm) diameter
shoulder screw. Initial designs used one row af tmearings, but a second row was
added to increase stability and reduce binding eorsc

To ensure that the ball bearings are not pinchéads:n the shoulder screw
head and the guide block, 1/16-in (0.159-cm) thi2&lrin thrust bearings are
positioned on each side of the ball bearings. htn@AD model, the thrust bearings
are shown in white. An exploded view of the sheuldcrew assembly is shown in

Figure 4.11.

40

Ball Bearing

Shoulder Screw

Thrust Bearings
Figure 4.11: Exploded CAD model of shoulder scregsembly.
In Figure 4.10, there are seven holes on eacheofjtide block faces. These

represent the holes for the jaw attachment fastener

4.4.5 Jaw Design

Scoop like jaws were selected over the true clamd ather geometries
employed on some submersibles in an effort to comthe capabilities of claws with
those of a scoop. While the primary objective wasd dollar collection, the ability
to acquire tube worms and sediment was also désirab

In addition, consideration was given to how the-effdctor would transfer
the sample from the seafloor to the containers. Iotate samples, the SAMURAI
system uses two stereo cameras rated to 6000 rmopesi on the upper cylinder of
the AUV. The Autonomous Vision Application for Tmt Acquisition and Ranging
(AVATAR) uses its pair of high-resolution cameragdted in housings and image
processing software to identify desired targets aedermine their respective
locations. However, the field of view (FOV) is lited, as shown in Figure 4.12. As
the manipulator approaches the sample containerapves out of the AVATAR
FOV. If a sample fell during the transfer, it wdugo unrecognized until the
JAGUAR returned to the surface. Thus, a methoskturely grasp the sample until

releasing it into a container would be beneficial.

41

AVATAR
AVATAR FOV

Arbitrary Sample Containers

Figure 4.12: CAD model of JAGUAR including AVATARe(t)
and AVATAR FOV (right).

Capabilities of the various grippers are comparedTable 4.3, which
illustrates that the jaws are the superior optamrtlis application. A trowel would be
unable to break off tube worms while claws coultlcary sediment. Samples could
be lost in both of these devices during transfah&containers. The PacMan scoop
is capable of grasping all the desired samples;ehew the sample containers would
need to be excessively large to accommodate thieed@hen it opens. It was not
selected for this reason.

Table 4.3: Gripper capability comparison.

Capability Jaws | Trowel Scoop| Claws | PacMan Scoop
Sand Dollar Collection Yes Yes Yes Yes
Tube Worm Collection Yes No Yes Yes
Sediment Collection Yes Yes No Yes
Secure Transfer to Yes No No Yes
Container
Simple Container Yes Yes Yes No
Insertion

Yes — Highly likely or certain to demonstrate tlapability.
No — Highly unlikely if not impossible to demongtdhe capability.

Jaw dimensions were determined based on sand dufles. George and
Boone (2003) examined sand dollar populations énstiate of Georgia from 1998 to

2002 and found their diameters to range from 50 tmM10 mm with a mode of

42

60 mm (2.36 in) to 70 mm (2.75 in) [24]. Usingsttmode, the average sand dollar
diameter was estimated to be 63.5 mm (2.5 in),thedaw width and length were
designed to accommodate sand dollars of this sidetl@ose of up to 25.4 mm (1 in)
larger diameters. Thus, the jaw width and lengghenset to 88.9 mm (3.5 in).
Triangular geometry was used to ease machiningtleaavedge height was
set at 31.75 mm (1.25 in). The basic dimensions lsa seen in the model in
Figure 4.13. The individual jaw internal volumeli&6 cni (7.66 irf), rendering a

total internal volume of 251 ch{15.3 irf).

Figure 4.13: CAD model of jaw showing key dimension

The jaws are attached to the rest of the end-effestthe manner shown in

Figure 4.14.

Figure 4.14: CAD model of wrist joint pair and colete end-dffector.

43

Fasteners used in the jaw are countersunk to argicentanglements with the
samples. The jaw is an assembly of several pieceiow for access to the guide
block attachment fasteners. Additionally, the assg allows for easier exchange of
components. The prototype top plate, which hasnaosh front edge, could be
exchanged for one with a serrated edge or a blaglgerdling on mission
requirements.

Figure 4.15 shows the actual end-effector attathelde SAMURAI hand roll

joint.

Figure 4.15: Fabricated end-effector.

4.5 Summary

The gripper concept was selected for the end-&ffeand jaws are utilized as
the grippers themselves. These selections cotestiie geometry most capable of
achieving mission objectives. It was determineat the end-effector would attach to
the hand roll joint with both a flange and side miing braces attached through

existing fastener holes.

44

A spiral plate was selected for the transmissiderafeeming the complexity
and risk associated with gearing systems to besinradde. General overviews of the
design rationale for the spiral plate and othenifitant end-effector components

were presented. The performance of these compdreeavaluated in Chapter 5.

45

Chapter 5
End-Effector Performance: Theory and Test Results

This chapter discusses the theoretical performamicehe end-effector,
focusing in particular on the jaw opening distaeel closing force. Theoretical
calculations are used to establish anticipatededfedtor performance, and structural
analyses are completed to determine the force rangéhich the end-effector can
safely operate. Closing force was measured folowarcurrent settings, and the

physical results are compared to predicted values.

5.1 Theoretical Jaw Perfor mance

Both the jaw opening distance and the closing fortveo significant
parameters, are dictated by the groove profilehenspiral plate. Profile generation
was discussed in Chapter 4, and depictions of thevgs created using CAD
software and MATLAB are juxtaposed in Figure 5.The equations generating the
MATLAB curves are identical in form to (4.1 — 4.4Yhe software used to generate

this and all subsequent cam disk plots is featurégpendix B.

e— Depiction of Cam Disk Grooves

‘/———\

/N

(\

_)
"/

N

-

__/r

1
-

Y-Position (in.)
[=)
TN

1
N

‘_/

-2 -1 0
X-Position (in.)

Figure 5.1: Cam disk representations in CAD (laftf MATLAB (right).

46

These groove profiles constitute the basis foistifessequent analysis.
5.1.1 Jaw Opening Distance

In order to calculate the jaw opening distancées itecessary to determine the
locations of the track rollers in the cam disk gre® To accomplish this, the
coordinate frame is rotated from the cam disk frgrgy,) to the global framexg,
y2), wherey, represents the cam follower location. These feamen be seen in

Figure 5.2.

‘/————\

N

[(. \
N—s)
N

‘______/
Figure 5.2: Cam disk groove profiles with superirsg coordinate frames.

In the imagey; is the angle of joint rotatidn which is not identical to the
angled used to generate the groove profiles. The dissiityi is attributable to the
0.45 in (1.14 cm) offset from the plate center. aA®sult of the offsef] varies from
0° to 155° whereas; nx €xtends to 175.3°. Actual joint rotation is liedtto 173.6°
to ensure that the jaws contact before the tralbtfers reach the end of the grooves.

To determine track roller location, a rotation matrix is applied as shown in

(5-1). The values ok; andy; were determined when the groove profile was

* Subscript “j” refers to the joint and is includeddistinguish the: referring to joint rotation to the
used in Chapter 7 in the kinematics analysis.

47

converted to Cartesian coordinates using EquateBsand 4-4. Ther terms are
included to properly orient the base framgyj, shown in green in Figure 5.2.
{Xz} _ cos-(aj —77) sin(aj —77) Eﬁxl} (5-1)
Yo —sm(a'j —7T) cos(a'j —IT) Y1
Equation 5-2 is employed to solve for the followlesplacementys.

Y, = —xlBl;in(a]- -n)+y, E:os(a]- - 1) (5-2)

Follower displacement is plotted against the jaimgle of rotationg;, in Figure 5.3.

Follower Displacement vs. Cam Disk Angle of Rotation
2

1.8
c e

.

.

N

N
Q)

—
»

/

N
N

RN

™,

N

0 50 100 150
Angle of Rotation (deg.)

Figure 5.3: Plot of follower displacement vs. raiatangle.

Follower Displacement (i

©c o
o

Assuming the center of the cam disk representtigin of the coordinate
frame, Figure 5.3 shows that when the jaws are tetelg open, the upper jaw track
roller is at a position Ofopen = 1.80 in (4.57 cm). After a smooth descent,jéves
shut completely when the roller reachggsy = 0.572 in (1.453 cm). The total

displacementAyq) is calculated by taking the difference using Eouma5-3.
Aytot = Yopen ~ Yclosed (5'3)
The displacement of one jaw is 1.23 in (3.12 crajulting in a maximum

opening distance of 2.46 in (6.25 cm) for both jaws

48

If larger samples are desired, this opening digtarmuld be increased with a
larger cam disk with elongated grooves. In thisigle, the cam disk diameter was set
equal to that of the SAMURAI links and yields areamg sufficient for collection of

sand dollars, tube worms, and sediment.

5.1.2 Jaw Force Analysis

Jaw force is determined by equating the work dopehle cam disk to the
work done on the follower:

Tron AT} Wiroter = Four LY (5-4)
whereT,q is the torque input to the cam digly; is the change in angle of rotation,
A4y is the vertical displacement of a cam followerd & is the total force being
output by both jaws combined. The efficiency o thack rollers is represented by
Nroller-

Solving forFqy in (5-4) gives:

TroII usalj |1‘7ro|ler
Ay

(5-5)

Fout

where T,o is the constant torque associated with maximunreatirand was

previously determined to be 144 Ib-ft (195 N-m),il@hy,q e is estimated to be 0.90
based on established values [25]. This leavesulut force as a function afy and

Aa;, butdy can be set equal to the position of the cam falowSince this was made
to be a function ofde; in (5-2), Fox IS a function of the angle of joint rotation
exclusively. The force acting on the track rollerplotted against angle of rotation
in Figure 5.4. When the jaws close, the force outp the track rollers is 892 Ib

(3968 N).

49

Output Force vs. Angle of Rotation

4000 \\
3000

N\

1000 -

N
o
Q
(=]

Output Force (Ibs.)

0

20 40 60 80 100 120 140 160
Angle of Rotation (deg.)

Figure 5.4: Plot of track roller force vs. rotatiangle.

This force acting on the track rollers is not idesitto the jaw closing force.
The track roller force is a vector acting normalthhe groove surface, whereas the
closing force is represented by its vertical comgmindue the vertical motion
constraints imposed on the rollers. The pressaggeay) is defined as the angle
between this normal vector and the instantaneorecttbn of motion of the cam

follower. Figure 5.5 illustrates the relationsbhigtween these terms.

Figure 5.5: CAD model of cam disk including pregsangle parameters.

50

To calculate the pressure angle from known quastitithe MATLAB
software takes two adjacent points on the camdiskes and determines the slope of

a line joining them. This basic relation is showr{5-6).

_Yiua 7Y -
m= Xitg = X% (5-6)

By calculating the negative reciprocal of this |itiee slope of the perpendicular line

is determined:

1
Mperp =~ (5-7)

The pressure angle is produced by calculating tbiargent of this slope, as shown
in (5-8). The angle of rotation must be subtradtech the pressure angle to account
for the rotation of the disk.

y= atan(mpe,p)— a (5-8)

Pressure angle is plotted as a function of rotadiogle in Figure 5.6.

Pressure Angle vs. Angle of Rotation

~
(@]

(o]
(@]

a
(@]

o
(@]

\

Pressure Angle (deg.)
W
o
\

\

"

o

-10 20 40 60 80 100 120 140 160

Angle of Rotation (deg.)
Figure 5.6: Plot of pressure angle vs. cam disktia angle.

The jaw closing forcefjaw, and the horizontal force pushing against the guid

rails, F4, are determined by the trigonometric relationg5¢) and (5-10). F4i

51

represents the total amount of horizontal forcedpeed, though each rail only
receives half of this total value. Equations 58 &-10 contain an additional term,
Nbearings Which represents the efficiency of the guide bldmall bearings. The
parameter is estimated to be 0.90 based on es$tatbislues [25].

Frail =/Tocering (Froter (5iN(y) (5-9)

Fjaw =/Tocaring Froller (£04Y) (5-10)
Using these equations, jaw closing force is plo#&tec function of angle of rotation in
Figure 5.7. The force acting against the guidis emd the total force~(ye) are also
included in the plot. These profiles are assodiatéh higher forces than the track
roller curve in Figure 5.4 because in this case,fthices from the upper and lower

jaws are being combined to produce the total ctpfince.

Directional Force Capabilities vs. Angle of Rotation
5000 y : . . '

4000f

w
Q
Q
O

"]
Q
Q
(=]

Force (Ibs.)

1000

50 40 60 80 100 120 140 160
Angle of Rotation (deg.)

Figure 5.7: Plot of jaw closing force vs. angleatiation.

The numeric values associated with the jaw-closegitipn in Figure 5.8 are

listed in Table 5.1.

52

Table 5.1: Force values at the jaw-closed posfiigr 173.56).

Parametel Value (Ib) Value (N)
Froller 1784 7936
Frail 1441 6410
Fiaw 1052 4680

Thus, disregarding structural considerations, tmal-effector jaws will
theoretically be able to close upon an object véatiminimum force of 1052 Ib
(4680 N). This value would be more than adequateathieving the end-effector

sampling objectives.

5.1.3 Additional Performance Metrics

Profiles of jaw velocity and acceleration were gated as well. These plots
appear in Appendix C and show the velocity to betioosiously decreasing while
the acceleration curve remains relatively flat lutite end of the profile, where it
abruptly decreases. CAD analysis features were ated to generate plots of
position, velocity, and acceleration. The corregfog data points and those from
MATLAB were exported to Excel and were subsequenplptted together.
Comparison plots were produced to verify the anslgsd are also included in
Appendix C. The comparison plots show that tha diem the two different sources

are identical.

5.2 Structural Calculations

The plot of the force output to the track rollefsiglire 5.4) revealed a
substantial force at all angles of rotation. Thaimum force in the profile is 892 Ib

(3968 N), nearly as high as the 955-Ib (4248-N)agit load capacity of the track

53

rollers. This plot implies that overcurrent prdteas (OCP) soft stops will be
necessary if a 5-A current is to be input to thedhaoll joint.

As discussed in Section 4.4.2 and shown in Figudethe force capability is
designed to continuously decrease to ensure thuetstal integrity of the track
rollers. The factor of safety (FOS) of these desits determined by dividing the
955-Ib (4248-N) dynamic load capacity of the rdlleby the force profile
corresponding to a hypothetical input current @ A. Figure 5.8 shows the safety
factor continuously increasing until the jaws clasd.73.56°, where the FOS is 5.4.

Track Roller FOS vs. Angle of Rotation

Factor of Safety
g & u o

N

—_

80 00 120 140 160
Angle of Rotation (deg.)
Figure 5.8: Plot of track roller FOS vs. rotatiormgée.
Although the track roller structural capabilitiesfiditely require evaluation,
the guide block ball bearings constitute the mosbable failure mode in the current
end-effector configuration. When the jaws clampgrd@n an object, the forces from

the roller and the grasped sample induce reactoses$ in the guide block bearings.

The free body diagram (FBD) for the jaw assemblhiswn in Figure 5.9.

54

Figure 5.9: Jaw assembly free body diagram.

whereB; andB; indicate the two nearside bearings counteractiegapplied force,
and Fg; andFg; represent the bearing reaction forces. To detariie maximum
jaw closing force, the moments will be summed ali®yut Dimensionsyg, X, andx;,
are the distances from tiig axis toBy, Fjaw, andFraier, respectively. Equation 5-11
represents the sum of the forces in the x-directidmle (5-12) is the force balance

for the y-components. The moments around Beariaige then summed in (5-13).

D F=0=Fg, ~Fg (5-11)
Z Fy=0= F roIIer (5'12)
ZM g =0= (JaW)EﬁX) Froller EGX (FBZ)[qu) (5-13)

Combining these three relations yields Equatior 5-1

=

Fiaw = (;2)fﬂxy%) (5-14)

Values for these variables are contained in Tall?e %y, is set to 332 Ib

(1477 N), the load capacity of the ball bearings.

55

Table 5.2: Jaw assembly force analysis values.

Variable | Value (English) Value (SI)
Fg2 332 1b 1477 N
Vs 0.655in 1.66 cm
X 5.00in 12.7cm
Xr .844 in 2.14 cm

Solving forFjay produces a force of 37.2 Ib (165 N), which incesat® 149 Ib
(663 N) when accounting for set of bearings ondajygosite side of the guide block as
well as those on the lower jaw. Thus, to maingir-OS of approximately 2, the jaw
closing force should be near 75 Ib (334 N). Althlouhis quantity is significantly
less than the 1052 Ib (4680 N) the cam disk isritezally capable of generating, this
value is substantial nevertheless. This limit wéltainly allow the end-effector to
grasp sand dollars and will provide the abilityftacture most desired specimens
should it become necessary. If a higher closingefas desired, more ball bearings
could be incorporated into the guide block desigttn \wininor alterations to the end-
effector.

Additional structural analyses are presented inefyglx D. These analyses
demonstrate that some of the end effector comperfemte FOS values greater than
100; however, the values corresponding to soméneffasteners are approximately
10, which are comparatively low when juxtaposedwitose on SAMURAI. In part,
the high mechanical SAMURAI FOS values are produnedsing A-286 superalloy
fasteners. A-286 has a yield strength of 102 kK88(MPa), over three times greater
than the 31.2 ksi (215 MPa) yield strength of tBeBlstainless steel fasteners used in

the end-effector. These superalloy fastenersygersive and are not included in the

56

prototype for this reason; however, their inclusiorthe design would increase some
of the FOS values.

The structural analysis reveals that with OCP rsgsti the end-effector will be
capable of operating without serious risk of stuual failure, even without premium-
grade fasteners. As previously mentioned, incafpam of different materials, a
larger cam disk and rollers, or more conservatvi stops could further decrease

structural risk.

5.3 Test Setup

During the performance of this end-effector researthe SAMURAI
electronics were being developed in parallel. diiofvs that it is not currently
possible to actuate the manipulator with SAMURAgattonics boards. However,
spare Ranger electronics boards and test softveard e used to power individual
joint motors. With these boards, the joint wiltate at constant velocity, and the
power supply will increase current up to the ugeredfied OCP limit to produce the
additional torque needed to counter any resistarepowering the hand roll joint
with this method, it is possible to test end-efbedtinctionality.

With SAMURALI in a state of limited functionality,pgcimens cannot be
collected at present, but jaw closing force camieasured. To do this, the jaws were
shut around one side of a scissors device whilgitatiforce sensor was mounted at
the other end. The sensor contains a peak vahtaréthat allows it to record the
highest registered force, which occurs when the @Ciiggered. The test setup is

pictured in Figure 5.10.

57

Figure 5.10: Force measurement test setup.

The distance between the jaws and the centralossisxis is 2 in (5.08 cm),
while 10 in (25.4 cm) separate the center rod ftbenforce sensor. This produces a
moment arm that reduces the measured jaw closneg fuy a factor of five, as shown
in (5-15). This scissors rig geometry was selettednsure that the measurements
would remain within the force sensor range, whgh to 50 Ib (0 to 222 N).

Factia =5 Frreasired (5-15)

The scissors rig is placed at the end of the janeating a moment around
around the center of the guide block which will mifg the recorded force value.
Referring to the distances in the free body diagrstmwn in Figure 5.9, the
theoretical force is magnified by 5.92/k = 5 in/0.844 in) to account for the rig
placement.

The jaws clamp down on the scissor rig when theyla40 in (3.56 cm) apatrt,
which corresponds to a rotation angle of l4¥Vhile the force is expected to change
at different rotation angles, this selection alldwer the simplest test setup and was

deemed sufficient for establishing general endegbieperformance.

58

The jaws were closed on the scissor rig for variougor current settings
starting at 0.75 A and proceeding to 0.79 A in @0ihcrements. An ammeter was
connected in series with the power lines runningh® motor, allowing for direct
monitoring of the motor current. Increasing thereat was expected to linearly
increase the closing force. Five measurements ree@ded at each current setting,
and all data were subsequently plotted together.

In addition, a test was performed to determinénd faws would bind under
asymmetric loading. To perform this test, a rubdfdeck 1.25 in (3.18 cm) in height
was placed on one side of the lower jaw. The jasre closed until the rubber was
compressed 0.50 in (1.27 cm). The end effector subisequently opened to check

for binding.

5.4 Test Results

When the power supply to the hand roll motor isivated, the control
electronics draw 0.67 A at 20 V when the joint tatisnary. An additional
0.07 A are required to rotate the motor with noli@opload. Thus, in the analysis,
0.74 A were subtracted from the input currentsedtednine force output. Figure 5.11
shows the actual data points with a superimposeehti trendline along with the

predicted force values.

59

Measured Force vs. Current

140
120
100 /.
80 / —3
jg /'/?/‘/ —a— Theoretical
20 !//

O T T T T T
0 0.01 0.02 0.03 0.04 0.05 0.06

Current (A)

¢ Actual

Force (Ib)

Figure 5.11: Plot of current vs. output force.

While the actual data are close to the theoretiahles, there is a difference in
slope. This could be caused by inaccuracies ivdneus efficiency estimates made
in the theoretical model. A complete data tabletaiming the values recorded during
the testing is contained in Appendix D.

At 0.05 A, the force generated by the end effetdoapproximately 85 Ib
(378 N). This is comparable to the capability lo¢ thuman hand, which has been
shown to generate an average grasping force db 8384 N) and 102 Ib (454 N) for
women and men, respectively [26]. Thus, whileahd effector cannot replicate the
dexterity of the human hand, it is capble of regdiing its strength.

Figure 5.11 does show that data recorded for treedifferent current settings
are consistent. As expected, the data are chawmsttdy a strong linear trend, which
is evidenced by an’Rralue of 0.97. The registered force values destrate that the

jaws are capable of functioning while applying tekay high closing forces.

60

To test asymmetric load conditions, the rubberkste&s placed in the middle
of one of the jaw side plates and subsequently cesspd 0.50 in (1.27 cm). The test

can be observed in Figure 5.12.

Figre 5.12: Assumetric load test with ruber staefore testing (left)
and during testing (right).

Based on empirical data obtained with the sameef@@nsor used in the
closing force test setup, approximately 40 Ib (INB of force are required to
compress the block by this amount. After compteté the test, the jaws showed no
evidence of binding and remained fully operationbhe test was repeated five times,

and the end effector retained functionality durgagh of these tests.

5.5 Summary

The end-effector was found to have a maximum jgpening of 2.46 in
(6.25 cm) and a possible closing force of 10524880 N) if structural considerations
are disregarded. The guide block ball bearingsevaatermined to be the weakest
structural end-effector components, limiting thev jelosing force to 75 Ib (334 N)

with an FOS of 2.

61

Jaw closing force was tested using a force semsmmted on a scissor rig.
Measured values were plotted against varying irmquutents, and the results were
compared to theoretical predictions. Recorded ntaligated a strong linear current-
force relationship, and relatively high closingdes (85 Ib, 378 N) were observed
with no disruption to end-effector functionalityThis functionality was maintained

even in cases of asymmetric loading.

62

Chapter 6

Sample Container Design and Testing

As the objectives of the end-effector entail thbeotion of multiple samples,
the various specimens are to be stored in seveparate containers. These storage
units must interface with the end-effector geometryhis chapter is devoted to

sample container design and testing.

6.1 Sample Container Design

The sample container engineering objective wasroolyce a design that is
functional but as simple as possible. The containgere to be entirely passive;
however, some sort of cover was necessary to essmngle retention. Some target
specimens are neutrally buoyant; thus, a methatdop samples from the jaws was
necessary.

Before determining the container cover, the primgepmetry needed to be
established. Cylinders were selected for struttama hydrodynamic reasons, and
PVC was chosen as the cylinder material due teelttively low density. The low
density generates buoyancy, which reduces weigideros.

The diagonal distance across the end-effectoritaBed11 in (20.348 cm), as
shown in Figure 6.1. Thus, the inner diameterhef PVC cylinder must be larger

than this dimension to allow for insertion.

63

Figure 6.1: CAD model highlighting end-effector giienal dimension.

After examining commercially available PVC cylindea 10-in (25.4 cm)
nominal diameter, Schedule 80, cylinder was select€éo accommodate the end-
effector length, the cylinder height is 10.88 iii.@ cm). The frontal projection area
for one container is 117 in(755 cnf), creating a drag profile area of 234 in
(1510 cnf) assuming containers are to be positioned on reihie of JAGUAR.
Eight % in (0.635 cm) holes are drilled into thet@iner sides to allow for pressure
equalization during depth changes. The contairasebplate was set as 3/8 in
(0.953 cm) thick PVC sheet as it was readily atddaat the SSL. Parameters

relating to sample container geometry are compiietable 6.1.

Table 6.1: Sample container geometry parameters.

Parameter Value (English) Value (SI)
Material Schedule 80 PVC Schedule 80 P
Outer Diameter 10.751n 27.31 cm
Inner Diameter 9.49 in 24.10 cm
Height 10.88 in 27.64 cm
Projected Area (side)) 234 irf 1510 cm

Rubber was chosen for the lid material, which iduoction similarly to a
garbage disposal to trap the specimen. Specificaditural gum rubber was selected

as it is virtually neutrally buoyant and is resmgti abrasions, tears, and impacts.

64

Cuts are made into a rubber sheet to allow for effettor insertion. When
the end-effector is extracted, the rubber flape ngh with the end-effector before
folding out into the jaw, ensuring that the sames retained in the container. A
second, smaller rubber ring is positioned bendathptimary ring to offer structural
support. A PVC ring is used to fasten the rublheess to the cylinder. The various

sample container components can be seen in thes wiekigures 6.2 and 6.3.

Base Plate

Rubber Lid

™~

Support
o Ring
Fastening Ring
Figure 6.2: Exploded sample Figure 6.3: QABdel of end-
container CAD model. effector insertion.

Since weight is a concern, calculations were peréar to determine the
sample container wet weight. This evaluation istamed in Appendix E. The
sample containers were determined to be 3.47 |B41B) negatively buoyant, but
the evaluation also determined that this weightldcde negated by incorporating
202 irf (3310 cni) of syntactic foam into the design. Figure 6.4 ieeproduction of
Figure 6.3; however, the PVC sample container heenthidden and a potential

202 ir? (3310 cm) syntactic foam configuration is displayed.

65

Figure 6.4: CAD Model of Container Internal Synta¢toam

While it would not be necessary to employ this #peconfiguration, it
demonstrates that there is sufficient internal n@ufor enough foam to render the
containers neutrally buoyant. It may be possildecompensate for the sample
container weight by incorporating the foam extetoahe sample containers, but that

is a determination that will be made by WHOI persan

6.2 Sample Container Testing

The manufactured sample container can be seemgyime=6.5.

66

Figure 6.5: Sample container prototype.

To determine whether the flaps would fold as desidering end-effector
insertion and extraction, a sample container wastrocted and placed on a wheeled
table of adjustable height. The table was adjustechecessary, pushed into the
stationary manipulator, and subsequently removElis basic setup can be seen in

Figure 6.6.

Figure 6.6: Sample container insertion/extractest setup.

67

To test the effectiveness of the rubber flapsastpl egg was placed inside of
the open jaws, and the jaws were subsequently &logde table with the sample
container was pushed over the closed end-effeatal the jaws were opened. When
the sample container was pulled away from the maaipr, the rubber flaps folded
out as designed, and the egg remained inside thplsa@ontainer. This sequence can

be observed in Figure 6.7. The final image in sega shows the container

positioned vertically with the flaps pulled backr&veal the egg inside.

UL -
R

Figure 6.7: mI container function demonstration

6.3 Summary

The sample containers to be used in the SAMURAlectbn system are to
be composed of Schedule 80 PVC cylinders with &n@5.4-cm) nominal diameter.
Rubber lids with flaps cut into them represent dipper container covers. The flap
geometry is such that they fold out to ensure g@hples contained in the jaws

remain in the sample containers.

68

Physical testing of the containers in conjunctiothvthe end-effector was
performed by demonstrating an insertion and extactprocedure. Testing
demonstrated that the flaps function as designedvalh ensure that even neutrally

buoyant specimens are retained inside of the sacopl@iner.

69

Chapter 7

Kinematics

Having determined the sample container geometrywats necessary to
establish the maximum possible quantity and comedimg locations for the storage
units on the JAGUAR vehicle. These determinati@ame dependent upon the
SAMURAI kinematics and work envelope. Thus, baS@&MURAI inverse
kinematics software composed by Carignan [2006] ugzsl as a skeleton to develop
a robust program to make the necessary determmnsatio

This chapter presents the forward and inverse katiesiused for the sample
container evaluations. Details of a graphical ustrface (GUI) used to produce
easy access to a plethora of kinematics optionslaepresented. The SAMURAI
range of motion is outlined, and sample containeangity and corresponding

locations are suggested.

7.1 Effects of Removing the Hand Roll Degree of Freedom

Removing a degree of freedom from a manipulatol wédgenerate the
kinematics, and this is certainly true of the efifex elimination of the SAMURAI
hand roll joint. The largest consequence for sargpis the limitation on sample
orientation. The end-effector is designed to @blke sand dollar positioned flat on
the ocean floor, and this can be accomplished artithout the hand roll degree of
freedom. However, in the hypothetical case in Whitwe sand dollar is propped up
against a rock towards vertical, if the hand roihj is accessible, the grippers would

be rotated to match the sample orientation. Byoreng this DOF, it will be much

70

more challenging and perhaps impossible to acghigesample. The end-effector
could potentially be oriented as necessary thraugbmbination of Joints 2, 3, 4, and
5, but in this case, what was a trivial exercis&imematics is nhow a much more
difficult problem.

Additionally, when depositing the samples in thhegpective containers, if the
hand roll joint is in use, the grippers can betexddo match the container orientation.
Thus, container orientation when mounted to JAGU#ARot particularly important.
However, when this DOF is removed, there is a agliconfiguration in which the
vector normal to the storage unit lid will matcle thxis of the hand roll joint. In this

latter case, the attachment to the AUV must be maatteprecision.

7.2 SAMURAI Kinematics Softwar e

To determine sample container position and orierdbr the manipulator in
a 5-DOF configuration, kinematics software was dmgved. Significant
enhancements were made to the existing frameworkoti forward and inverse

kinematics calculations.

7.2.1 Description of Pre-Existing Software

During manipulator development, multiple programsMathematica and C
were computed to characterize the SAMURAI kinensat[@7]. The inverse
kinematics program was the one applicable to tmepsa container issue and was
selected as a starting point for the subsequerniatics development.

In its present configuration, the code combinesktimvn Denavit-Hartenberg

(DH) parameters with programmed joint angles toegate the relevant position

71

vectors, rotation matrices, and tool position udwmgvard kinematics. These results
are then used in an inverse kinematics solutionichwhdemonstrates code

functionality by outputting joint angles identidal the originally-programmed values.

7.2.2 MATLAB Kinematics GUI Overview

This program was converted into MATLAB and subsexdiyeexpanded to
incorporate a wide range of features. The progfiéea comprising the enhanced
software are contained in Appendix G along withoaarview of the function of each
file.

A GUI was constructed to allow the user to selagatioms and insert values
without modifying the program itself. The GUI isasvn in Figure 7.1.

| = line S Flot Options:
Container Locations:

Figure 7.1: MATLAB kinematics software GUI.

7.2.3 Forward Kinematics

Each SAMURAI joint has a coordinate frame with rsspective z-axis

oriented to coincide with the axis of rotation.afes 1 through 6 correspond to the

72

six joints. In addition, Frame O represents trabgl frame and is positioned beneath
the center of the shoulder yaw joint (Joint 1)arke T is located at the tool tip at the
forward end of the manipulator. The SAMURAI comalie frames can be seen in
Figure 7.2. The figure shows the manipulator & tlnfiguration in which all joint

angles are set to 0°.

Figure 7.2: SAMURAI kinematics coordinate frames.

The DH parameters that determine the manipulatwerkatics are provided in
Table 7.1. While the hand roll joint anglé) would ordinarily be a variable, it has
been set to Vin Table 7.1 because it is being used to poweetitkeffector and will

have no kinematic impact.

73

Table 7.1: SAMURAI DH parameters.

i |0gi1(deg)| a1 (m) | di(m) | 6(deg.)
1 0 0 0.108 01

2 o0 0.152 0 0,

3 0 0.610 0 | 6;3-90C°
4 o0 0.114 | 0.610 04

5 90° 0 0 05

6 -o0° 0 0 0

T 0 0 0.441 0

The kinematics software sets the;, a.;, andd, DH parameters to their
constant values and creates an array of joint anghsed on the user specifications
input through the GUI. The software uses theseliemlto create transformation
matrices. The form of a generic transformationrirds featured in Equation 721
[28]. In this equation;} T represents the transformation matrix used to éEaame i

relative to Frame i-1.

co, - s6, 0 aj
i = sgcai, chcaiy —saiq —Saiqd; (7-1)
s@sa,, cBsa;, ca,_, ca,d;
0 0 0 1

The 4x4 homogenous transformation matrix is comgasfea 3x3 rotation
matrix in the upper left corner. Additionally, edontains a position vector whose
respective components are featured in the firsetielements of the fourth column.

The transformation matrices representing each ef ¢bordinate frames
relative to Frame 0 are found by beginning with biase frame and multiplying the

matrices sequentially, as shown in Equation 7-2.

MEIELE IR | (7-2)

® The letters “c” and “s” constitute the shorthamdation for the sine and cosine functions.

74

After the joint angles are input to the forward damatics, the program
computes the local transformation matrices. Thesdrices are then cascaded as
shown in (7-2) to produce transformation matricgdative to Frame 0. Global frame
positions, represented by the vect®y, are determined by isolating the position
components iflyT. This procedure is outlined in Equation 7-3.

°Py :(OXN! %Yn OZN):(I\?T(]"4)’ ,8T(2,4), I\?T(3v4)) (7-3)

The program then generates the SAMURAI links byinigkkwo successive
positions and using three-dimensional plotting fiorss to generate lines between the
points. The process is repeated until reachingdbkeframe at which point the entire
manipulator has been produced.

The SAMURAI representation is superimposed on a ehad JAGUAR,
which was created using a collection of MATLAB ping tools. In the kinematics
analysis, it is assumed that SAMURAI will mountYdGUAR on the upper surface
of the plane where the AUV hemispherical cap jonith the cylinder. The model
also includes sample containers, which are setefi@audt locations when using
forward kinematics. An image of the GUI output sy the manipulator in its
stowed configuration is shown in Figure 7.3. Aontric view and three two-
dimensional views show the manipulator from allgpectives while the software

repositions the plots around the GUI.

75

- \Figure 2
Fille. Edit Yiew Insert Tools Deskiop Window Help

DeHa hRahs €08 "

Manipulator Plotted in 3 Dimensions

(<] <]

||
||
||
||
L]
d
]
L |

File Edit WView Insert Tools Deskbop MWindow Help ile Edit Wiew Insert Tools Desktop Window Help ile Edit Wiew Insert Tools Deskbop Window Help

DEESs kRa0s € 0B "josEs(k RaAN® £|08| "osEs s aans €08
Mampulator Plotted in)(-Z Plane Manipulator Plotted in X-Y Plane Manlpulator Plotted in YJ Plane

= 05- = — 5k

E E E®

) [%]

2 g - o
2o

) b %

J 0&- P 9

N N 05

2 g 1 h L 4 ! T s 5 be 1 18
X-axis (m) X-axis (m) o i)

Figure 7.3: Kinematics GUI with plots of SAMURAI stowed configuration.

All joint angles, position vectors, and rotation tn@es are automatically
saved to a data file in the working directory. Bveme the code is compiled, the
previously saved file is overwritten. A screenshbthe data file corresponding to

arbitrary joint angles is shown in Figure 7.4.

76

I MatrixData. dat - Notepad

fTheta =
=109,
=74,
134,
-107.
-99.
-63.

Lad Bl o] ed 2l

Rl

R2

R3

R4

%]

RG

Important Data:

PO4 =
-0.2308
-0.6625

0.2117

RO3 =

File Edit Format View Help

-0.
-0.

[l

-0.
-0.

-0.
-0.
-0.

POT

3404
2403
L0000

L2685
Ryslslsls]
L9633

. 6014
L7225
Rslslsls]

3040
0000
L9527

1606
0000
0870

L4498
. Q000
L8932

-0.3000 -0.1606 0.9403
-0.8290 -0.4438 -0.3404
0.4720 -0.88la 0.0000

0.9403
-0.3404
0. 0000

0. 9633
0.0000
-0. 2685

-0.7225
0.6914
0.0000

0.9527
-0.0000
0.3040

0. 9870
—0. 0000
-0.1606

0. 8932
0.0000
-0.4496

L1044
LB625
L2117

R3&G

(=3 o=l

L0000
L0000
L0000

L0000
L0000
L0000

0.0000

(=] =) (=3 o=l (=]

(=3 ==

L0000
L0000

L0000
L0000
L0000

L0000
L0000
L0000

L0000
L0000
L0000

-0.8290 0
-0.4438 -0
-0.3404 -0

F1

P2

P3

P4

P3

P&

0. 0000
0. 0000
01080

L1524
L0000
L0000

[=R =]

L6005
L0000
L0000

(=R]

L1143
L6095
L0000

(=R]

L0000
L0000
L0000

(=N et

L0000
L0000
L0000

(=R =l

ROT =
=0.0000 -0.0000 1.0000
1.0000 -0.0000 0.0000
0.0000 1.0000 0.0000

L4720 -0.3001
L8816 -0,1606
L0000 0.9403

Figure 7.4: Screenshot of automatically-generatedrkatics data file.

The user also has the option of displaying thesampeters in the MATLAB

command window.

If only one or two parameters afdnterest, the command

window displays are ideal; however, the data flim@ates the need for excessive

scrolling and instantly provides significant marigiar data in a cohesive format.

Additionally, the data file can easily be importedExcel and/or other programs if

further analysis is desired.

77

7.2.4 Inverse Kinematics

Inverse kinematics is employed to determine jomdles based on user-input
sample container position and orientation. Theutsmh follows the procedure
outlined by Carignan [27], and a detailed desaipif that process is contained in
Appendix F. With the sample container inputs, theftware generates the
corresponding joint angles, which are then usegltd the manipulator with the
forward kinematics approach previously describedn image of the GUI output

showing the manipulator immediately prior to samgbatainer insertion is shown in

Figure 7.5.

|- [B]x|
Plot Options: TIT d File Edit View Insert Tools Desktop Window Help =~

DedsE kA ® w087

Manipulator Plotted in 3 Dimensions

<]

<]
EEEEEEN

<]

& 1
0

Xeaxis (m)

[X| . Figure s |- B[x]

Edit Wiew Insert Tools Desktop Window Help Edit Wiew Insert Tools Desktop Window Help =

NEE&k RAN® £ 08 "|0eES QAN E(0B]|”

it View Insert Tools Desktop MWindow Help

DEEE kaansE DB

Manipulato d in X-Z Plane Manipulator Plotted in X-Y Plane Manipulator Plotted in Y-Z Plane
1 1t
= 0s- = = :
£ E E ns
W il P
Il s N OOsE
1 EAEH 1
Ak
15 £ A5 - - ; : : : : :
<t D ! & ¢ ! M50 45 o b5 1 s
X-axis {m) X-axis (m) ot i

Figure 7.5: GUI with SAMURAI in sample containeleginsertion orientation.

Thus, the software allows the user to select ampgacontainer location and

orientation and will output the joint angles re@uirto insert the end-effector into the

78

container and a visualization of the manipulatorti@at configuration. This is
especially useful in that the storage unit mounfoits have not been determined.
If the sample containers need to be mounted inri@inemanner, it will be easy to
evaluate whether or not that that will generateasible set of joint angles for the
SAMURAI manipulator. In addition, it is possible testablish potential sample
container quantity by using the software to gemetthie workspace and placing
containers inside of it. However, this is deperndgoon joint ranges of motion,

which are addressed in Section 7.3.

7.2.5 Kinematics Software Limitations

While the software provides many new capabilitiesioes have limitations.
In its current state, the program does not comjmimé rates or Jacobians, nor does it
actively monitor for singularities or sample con&i locations outside of the
workspace. If the user requests an impossible lgaropntainer location or
orientation corresponding to a singularity, thetwafe will not execute as it is unable
to construct the geometry. While this indirectiyaorms the user that the inputs are
problematic, an improved system for monitoringifopossible configurations should

be added to the code, and this constitutes a pessia of future work.

7.3 SAMURAI Range of Motion

To determine how many sample containers could el ws Jaguar, it is
necessary to establish how many units could beagwed within the SAMURAI
workspace. Determination of the workspace requiases for each of the joint

ranges of motion. Internal hard stops were knawimntit the motion of the shoulder

79

yaw, elbow roll, and hand roll joints to 22G4C, and 540 respectively. The three
pitch joints have external hard stops represenyetido manipulator itself. The ranges
of motion for these joints were determined by rdoay images of the manipulator at

range-of-motion extremes. Figure 7.6 is an exaraptme of these images.

Figuré 7.6: Image of the elbow pitch joint at maximrotation.

A protractor was then used to measure the extrengtes and establish
motion ranges. A detailed description of the rarmagjemotion determination
procedure is included in Appendix G. The jointgas are shown in Table 7.2.

Table 7.2: SAMURAI joint ranges of motion.

Joint Number Range of Motion
1 (Shoulder Yaw) 220
2 (Shoulder Pitch) 225
3 (Elbow Pitch) 210
4 (Elbow Roll) 540
5 (Wrist Pitch) 215
6 (Hand Roll) 540

With the joint ranges of motion known, the SAMURWbrk envelope can be
plotted by using the forward kinematics softwarel aterating through the joint

motion ranges. The kinematics GUI has an optiorplotting the work envelope and

80

allows the user to specify the resolution in degre@ements. Only half of the
symmetric envelope is displayed to reduce compitatime and to allow for better
visibility, as shown in Figure 7.7. In Figure 7tie plots have been generated using
2° increments.

J lastepgui = _ 3 |||

F Plot Options: gilay File. Edit ¥iew Insert Tools Deskiop ‘Window Help =~

EETTIEICCSvE T I =T
Work Envelope Plotted in 3-D Frame

l

Run cose

|- [B]X]

it wiew Insert Tools Desktop Window Help

ndow Help) % Edit “iew Insert Tools Deskiop Wmiow r—ie\E__x__
Deds R0 8 (€08 " Ioeds | k RANS E|0EH "IDed& | 80w (087
Work Envelope Plotted in X-Z Plane]| Work Envelope Plotted in X-Y Plane] Waork Envelope Plotted in Y-Z Plane

2 . ; 2 ; ; : 2 . : . .

File Edit Wiew Insert Tools Deskbop “Window Help

Z-axis
Y-axis
Z-axis
o

X-axis X-axis

M _once

Figure 7.7: SAMURAI work envelope plotted in MATLAB

7.4 Sample Container Quantity and L ocation

To maximize sample container quantity, the contairage placed at the end
of the workspace on either side of the JAGUAR AUXNSs shown in Figure 7.7, the
SAMURAI workspace does not extend far down the fengf JAGUAR. This is
attributable to the shoulder yaw joint hard stopjch limits the total range of motion
to 22C0. The hard stop is included in the design to engluat SAMURAI would not

inadvertently damage aft JAGUAR components.

81

Two additional containers can be added forward haf initial two. The

resulting configuration is modeled in Figure 7.Bnese latter two extend beyond the

front of JAGUAR, but attachment to the AUV and/betother sample containers

should be possible.

Figure 7.8: Isometric (left) and 2-D (right) viewsJAGUAR/SAMURAI
CAD models with sample containers.

The sample container locations are listed in Tab® These coordinates
correspond to the center of the container baseepland are relative to Frame O,
which once again, is located on the underside®SAMURAI shoulder yaw joint.

Table 7.3: Sample container coordinates.

Container| X-Coordinate (in)| Y-Coordinate (in)| Z-Coordinate (in)
1 -4.72 13.19 -13.06
2 -4.72 -13.19 -13.06
3 6.03 13.19 -13.06
4 6.03 -13.19 -13.06

The joint angles corresponding to these locatiors lsted in Table 7.4.

Values both immediately before sample containegrien and after sample container

insertion are listed.

82

Table 7.4: Sample container pre- and post-insejtion angles.

Container 1 Container 2
Join{ Pre-Insertion (°)Post-Insertion (%) Pre-Insertion (°)| Post-Insertion (¢
1 109.6 109.6 -109.6 -109.6
2 -128.7 -83.8 -128.7 -83.8
3 158.9 171.6 158.9 171.6
4 180 180 180 180
5 -59.7 -2.1 -59.7 -2.1
6 -160.4 -160.4 -19.6 -19.6
Container 3 Container 4
Join{ Pre-Insertion (°)Post-Insertion (%) Pre-Insertion (°)[Post-Insertion (¢
1 65.4 65.4 -65.4 -65.4
2 -126.6 -82.9 -126.6 -82.9
3 158.1 170.4 158.1 170.4
4 180 180 180 180
5 -58.4 -2.5 -58.4 -2.5
6 155.4 155.4 24.6 24.6

The 65 values vary in Table 7.4, and this is because in each of these ttese
sample container yaw, pitch, and roll values were all set to ZEnus, the&s values
in Table 7.4 are actually representative of the amount by whictathele containers
themselves must be rotated in order to align with the end-effector.

If WHOI determines that JAGUAR is able to operate with aoldal profile
drag, several more sample containers could be positioned outside ofrir@ ¢two
rows. Though, it is expected that the addition of just SAMURAI ava rows of
sample containers will have very adverse effects on the hydauyg properties of

the AUV which could restrict system performance and mission parameters.

7.6 Summary

Existing SAMURAI kinematics software was modified to ceeat program

that accepts a multitude of user inputs. The developed programsajopiiard and

83

inverse kinematics to generate data files, create plots forlizesti@n, and establish
the SAMURAI work envelope.

The software was utilized to determine sample container locatoas
guantity. Four containers can reasonably mount to JAGUAR within tha&USBAl
workspace, possibly more if the AUV will be able to perform wildigonal profile

drag.

84

Chapter 8

Conclusion and Future Work

This thesis presented the design of an end-effector to be used unatmmj
with autonomous underwater sampling missions. End-effectors currentlse on
submersibles, the preferences of the marine biology community, anidyseSSL
projects were considered during concept selection. The chosen jaeptamd
corresponding sample container were designed, constructed, and tesgettlition,
kinematics software was developed to ascertain sample confaicegion and

guantity. The result is a sampling system which achieves all design olgective

8.1 Conclusions

Although robotic devices are used in myriad of applications on thacsyrf
complex problems still need to be solved in order render the atathof
manipulators to AUVs routine [29]. The SAMURAI/JAGUAR samplisgstem
aims to perform innovative research by collecting biological spets in extreme
environments.

The end-effector represents the device that will physicalleaathe samples
and deposit them in containers. A gripper design was selectdd duecessful past
implementation and popularity amongst marine biologists. Jaws itcbasthe
grippers themselves to allow for potential sample diversity.

The existing titanium flange and fastener holes in the hangbmotlhousing

were selected as end-effector attachment points to avoid anyicatbdns to the

85

SAMURAI structure. Side mounting braces fixed to the fastanbss allow for the
relative motion necessary to actuate the jaws.

A cam disk was selected as the method of actuation due to pasus&iss
with the design and concerns that gear teeth could potentially skiacture. With
the exception of the cam disk, the rest of the end-effector igrebsio be both easy
to machine and easy to construct. The fasteners are nearglyeh0-32 screws,
which render the assembly and disassembly procedures simple.

End-effector performance was found to be limited by the stralotonstraints
of the guide block bearings. Nevertheless, the jaws were found tadadble of
safely outputting a closing force of 75 Ib, and this was verified with physisiahg).

A sample container to be used in conjunction with the end-effector was
designed and tested as well. PVC was selected as theneontaterial due to its
favorable buoyancy properties, and the lid was made out of rubber tr tedunit
as simple as possible. Testing demonstrated that the lid 8&psut effectively to
remove specimens from the end-effector jaws and retain them in the container.

It was determined that four sample containers should be used on JAGUAR
though more storage units could be included if additional profile dragrmissible.
Kinematics software was enhanced to ascertain locations footitainers as well as
the corresponding manipulator joint angles.

This work has produced both functional hardware and software. The end-
effector operates as designed, opening and closing smoothly anddimgnvith the

sample container. Although further testing and design enhancemdniigealy be

86

necessary, the device could be employed on a submersible andsgulcestrieve

samples.

8.2 FutureWork

The actual utility of this or any other SAMURAI end-effecteitl only be
established when electronics to control the entire manipulator havedaeloped.
When the electronics are operational, the end-effector should beouseautate the
collection of actual samples. Sand dollars and other potentiahspesx should be
placed in sand and the entire arm used to grasp the objects andhglacen the
sample containers. The SSL is currently developing a structurepticate the
JAGUAR geometry. By attaching sample containers to theWAR mockup, the
effectiveness of the end-effector-sample container combination showdaheted
through testing.

After a more extensive test plan is used to assess endeffesformance,
the prototype design should be finalized. The cam disk should be modified t
interface with the titanium flange directly, eliminating tieed for the adapter. This
would reduce the end-effector mass by 0.71 (.32 kg) and length by 0.814 in
(2.068 cm). The cam disk should also be anodized to increase wear resistance.

Parts used to reduce cost in the current design should be replalcddght
grade components. The steel track rollers should be replacedaintless steel, and
the 18-8 stainless fasteners should be replaced by A-286 partslatidrialteration
will increase the FOS of several components and eliminate anfusion with

fasteners used elsewhere on the manipulator.

87

Different jaw plates could be developed to increase the abilliyetak or grip
samples. For example, by decreasing the surface areajaitiarface, the pressure
exerted on a sample could be increased substantially. In the cehogpt in Figure
8.1, the flat plate edges have been replaced by a raisedredge upper jaw and a
mating edge on the lower jaw. The material removed on the |@weallows the

jaws to shut completely.

Edge
Additions

Figure 8.1: CAD model of jaw plate with raised edge concept.

Concepts using features such as this, serrated edges, and otherriggomet
could be developed and tested without extensive effort. These desiltisiso be
incorporated into the jaw side plates should such a configuration &lowasier
acquisition of a sampling target.

WHOI will need to be consulted regarding several end-effectategtltasks.
Additional work needs to be performed to attach the sample contan@fsGUAR.
WHOI will be responsible for the information pertaining to the Bsagy
modifications that will allow the containers to mount to the AUMicure. WHOI

will also need to verify that the system will remain opieraal even with the

88

additional drag produced by SAMURAI and the sample containers. quiuetity of
syntactic foam required to offset component mass also needs to be established.

The sample container software should be modified to include checks for
impossible container locations and arm configurations. The prograih lwedurther
enhanced to incorporate trajectories and possibly animations. Tiagsetories
could be used for the manipulator path planning that will be necessemy the

electronics development has been completed and the manipulator is fully operational

89

Appendix A

End-Effector and Sample Container Hardware

Table A.1: List of end-effector and sample container CAD drawings.

END EFFECTOR

Drawing # |Drawing Type Description
FD20-0070 [Part Female Flange (End Effector Attachment Flange)
EE-0001le |Part Flange/Cam Disk Adapter
EE-0003 Part Cam Disk
EE-0004 Part Track Roller/Cam Follower
EE-0012 Part Ball Bearing for Block Slider
EE-0014 Part Custom Guide Block
EE-0015 Part Custom Guide Ralil
EE-0015b [Part Custom Guide Rail - Penetrator Plate Side
EE-0016 Part Delrin Thrust Bearings
EE-0017 Part Jaw Side Plate
EE-0018 Part Side Mounting Brace
EE-0018b |Part Side Mounting Brace (penetrator plate side)
EE-0019 Part Jaw Top Plate
EE-0020 Part Jaw Back Plate
EE-0022 Part Guide Rail Connector
AYEE-0005 |Assembly Custom Guide Block Assembly
AYEE-0006 |Assembly Shoulder Screw, Ball Bearing, Thruster Bearing Combination
AYEE-0007 |Assembly Wrist Joint Pair/End Effector Assembly
AYEE-0008 |Assembly Custom Jaw (Top, Back, Side Plates, and Fasteners)
SAMPLE CONTAINER

Drawing # | Drawing Type Description
EE-0026 Part Sample Container Cylinder
EE-0027 Part Sample Container Base Plate
EE-0028 Part Sample Container Top Fastening Ring
AYEE-0013 |Assembly Complete Sample Container

90

EE-0003 EE-0020
EE-0015 EE-0019

Figure A.1: Exploded view of end-effector CAD model with component numbers.

91

! _ z £
| 1
o 2100033 L Ui
Jaydepy
A¥sig weg / ebuel4 | o] Josswonmme1 o
v THLOT QN "8 3BL0D) "prreiAmgy o fassavusy sunsiee IHSAMOONYMTT D
Aojesoqe] swa)sks aaedg e BT o
" 1 B 17 o ey L)
| sisesv | eepvema | woop33 | 4 | b
sezreisn | s% e I
e fe—— 15
] v v L
-
.......... .._\r 200 3
& [T z00+ P8
=}
=3
(=3
ul
’ il
; G
u =7
200"
b . oSt
vops P02 @ 2 °
— SeH
2
ez
000" or.vﬂ - V-V NOILO3S
QLo+
=l dAL 006
200 o
—= = zoow OF
a
LEGEENSYN Jod suasul ejsul-
(811.0-0204 ® 6900-0203)
SHUIL IVHNINYS Ul 8S0U) 0 [2o)USP| 8Je 8oBUSIU) SBURY J0) S3I0H-~
QIncHdY awa | NOLOSIT Boz| :93LON
SNOISINTY
4 € 14

I

92

3 _ [4 € 14
| |
2 €003 | biE 10
aeid [ends
psig wed ez IHSIO0NENTT D Se|qe) JuIod ay) 0} aouBIBe) B
THLOT QIN Y97 A8y Ay jo Ausiani) se Ajuo main yaI-da) ui papnjou a2
v Goeioqe] swaisks aseds b Wl aE 9vSv10. 3 Sessts, suo
- T R LEGEEWSYN Jad spesul [lejsul-
T om 1 emawss | o e b ¥-¥ NOILD3S Ei
soormen | ss e T e :SILON TVNOILIdaY
200~ o | ssvao] syroo| L1
— = " oy : ;
200+ 0 | 6¥s90{ o05Lk0| oF
o | sezeof rol] e
— \\ 0 | se690] eszLo| 8
zod 0 | 4508°0] owe0L| L
0 | sesto] ogeet| o
— Im((0 | L9ze0| 965Kl S
mowl\ oy 0 | vese0| LiE|
20 Nu 0 | s0vE'L| 09201 €
0 | 89| eoeso| 2
© "
g 0 | ooost| o [
w Loy z A ¥ id
i \\| 12 9A00JS) U] Pa)ednT Siuiod
895" ——e= N
s 0 | s6rg0| SrpO0[b
B 0 | 6vs90| o0szi0| o1
|) 204 0 | eelo| Lyo| 6
VL o | z690] sszLo] 8
0 | ssoso| oveoL| £
0 | sesi0| ogegL| 9
0 | iezeo] 9ssvL| ©
mwﬁ%h 059 ¢ 0 | wseo| suel] ¥
0 | sove’l| osoL| €
0 | /8.9'1] €o6s0| T
3 o | ooogk| O |
9¥SHY0’ 2 A X i
BZGGYS 5 I} 8A00IE) Ul PAIEIOT SIUIDG
£00™ ogy))
£00'+
ﬁ 0=z
18540 - (06 - BIRYHUIS , J- = A
(06 - BYAW)S00 , 4 = X
— 230 ,) = Bjau}
825479 (0, e18a)s00 + L(E) =4
; GGl = Beq gy =180 gz =y
obShr0 1z 9A00J9) |BNdS 10) 1duag
0=2
19540 + (06 - By uIs 1= 4
(06 - BlaU)s00 , 4 = X
Ej8q . | = BjaU}
a (1, =9q)s00 + L).(z14) =4

QIO awa | NOULJ¥0530

Boz|

SNQISINGY

‘GGl = B18q ‘G’ =198)0 'GZZ = Y
1} 8Ao0IS) [edids o) 1dusg
(1 01 (woy saiten))
UOIONIISUOY SA00IS) 10} SHduoS-

‘S3LON

I

93

+000-33

¥ "v._s,_ 2

i..z_

(1emojjo ¥siq wen)

4810y Moed | 202 MSMOONWII T D
THLOT QN "8 3BL0D) "prreiAmgy o fassavusy sz HSMOONYMIT D
v Aojesoqe] swa)sks aaedg e BT o
P11 P 11 s i T o
| ss | miowwar coa | v | b
£
8k — __r s

m 4

w

i
B | _

Vi |
N T 9L |'_
3 - 418
zels @
a
8Z-/1 $1 PEOIY) 00 08I L
LEO-IASEINOW LUO)) PISBYIING-
oarcuday | 3wa | NOLL40530 Boz|)
SNOISINTY ‘S3LON
€ L4

I

94

I 1
Al 20033 vie 19
Buueag
3001g 8pINg o [ead ™ Josmomemn o
v THLOT CON "R aBajjocy "pueiAmmpy jo Dusiavu) swezid HSMOOHTMET D
e e T B ¥
| ssuw Buuaeg pog spels | v | b
- o szasI0L —=
-
z
w
: £000™
Il oooor 529
6200~ ;
o0l SEOSHOL
2
€000 .
e oooo+ 29—
a
I " Leg-sseop woy peseyand Buuesg-
Q3INCHY 3va NOUWdIHO§30 0Z|
SNOISINGY ‘S3LON

I

95

L _ z
| |
Al I
30| 8pIND
Joy8y3 pug e
v THLOT QIN Y97 A8y Ay jo Ausiani) sz HSMOOHTMET D
frojeroqer] swasig aoedg O BT o
.. e L —
9L-1909 Wy B 0TS FEO0-33 13 +
SSIFTESIN EEl LLEAR LT 2 OBENDE-1EH ' 2z
GEIPTISM R WL ST T TE00 SEBTNOE- LG 2 €
sarmian w5 waren| snorwn | 3 | ¥
¢
Y- !
| P00 .. .
[oo. szz-= g8 NOILJ3S |
— KOO o 000~ ..
[Log. 007 = e B ,
A o0 . ,
| yoo- -7y 2
} T e llﬁ 00"+ S00™- sie
© P00+)
J : . i
5 ¥ ©:0 O "]
m s00- ooy 1O O .
4 1 S00°+ 0" g
i G mu Lo+
L
e |
i / 200 g
Ml sziy , oaga SLE
L g
27 s
ceLd
) ¥-¥ NOILO3IS I T 7
-7
@ l= 680"} =]]
] 54E°
sz
% @ ﬁ)@ o_,mh 200" poog
— z00°+
— u|, £ I i
0z B I
i E j
]
a 2|0y B Uj S) 1eYS J8jol sapue ay]-
(p000-33) 4ajj01 yorY

QIO awa | NOULJ¥0530

Boz|

8y} Joj 81 (¥ HWed) Hesul gz-f/| 8y L~
LESEEWSYN Jed spesul jejsul-
aueld vy au) SS0I08 DLJSWIWAS S ped-

-S3LON

SNQISINGY
I

96

! _ z £
| 1
o stess [vir [0
(eleld "uad ddg epis)
1IBY 8pIND |lews | o] ootz o
v THLOT QN "8 3BL0D) "prreiAmgy o fassavusy sz IHSAMOONYMTT D
Aojesoqe] swa)sks aaedg e BT o
T T o il
L1909 Wy WEY =png. §000-33 + +
SELFEISIN EEl R G S 260 8] QBENDE-I6EE r z
SELPEIS 5% wsapewe ot 0BENOE-LELL v € Y .l.|/
$00'- . oL
son's “G0L : \|
= .I: —
- ,
- %
!
—— g |
. P @
3 $00- o | 200" .
w \m L. 52 : : L. LVT
w X —_ voo+ : [T 200+ "
@ mlk [o0+ 058 ooz
! :
m a7 | |
0 |
— L s00- o). PR oy
00"+
V¥ NOILO3S
f
1 |
3 S00™- .
00~ = L, ¥ e Ta‘ .
U G00'+ ; 00’k I_I|L
3 |
b00"+ 997 —~ p=—
G0~ 2 00 .
so+ ¥ J& o+ O
|
]
000 gy , /
2007+ S0
(Buipunos Aue sziwiuiw) siBuy 06
’ P00 gy
a Lo voo+
LEGEENSYN Jod sposul fejsul-
QIncHdY awa | NOLOSIT Boz| i
SNQISINGY ‘S3LON

I

97

3 [4 € 4
| 1
B 95100-33 gz_ tf;_ 2|
(epis |1Eld Uad)
jley aping ebieq |] Joswonme o
v THLOT CON "R aBajjocy "pueiAmmpy jo Dusiavu) swezid HSMOOHTMET D
Auofucqe susigaoedy 1)
e T e o T
9L-1909 wnpy WEY 2pIng. 45100-33 L3 3
SCLVZISIN sS g PG SN 2E-043) OBENDE-LGEE r 2z
FELPZISN C3-3 RS PTRE 4K 2601 0BENDE- LG r €
v
00" yep R
00"+
\ oy
00" i
8 ™ poos G2
=]
(=3 1
i 1
w _— Lo 200
(&)~ ﬁw oos 656 00+ SHEH 00z
- oo™ sz
m $00'+
]
] ~_ @ /
X oL
V-V NOILO3S
§00™ . .
. coos =l BF—t—
) =T poo+
Biui A
(Buipunoi Aue ezwiui) sibuy $00™ :
00+ ©VS
104
| 2w
S0d
10U o * %00 ’
zo0+ S L; _l|!| Voo V68
000 z
voo+ 992
a
LEGEENSYN Jod sposul fejsul-
QIncHdY awa | NOLOSIT Boz| i
SNOISINTY ‘S3LON

I

98

| 1
9100-33 ks 1O
| i) anca| i -
Buuesag 1sniyL
uueg | 202 MSMOONWII T D
v THLOT QN "8 3BL0D) "prreiAmgy o fassavusy sz IHSAMOONYMTT D
faoreioqe swaishg oedg o v
P11 P 1 s i T o
| uien | Buueey) wiseEz | b | b
H
000 e
coo+ FE
©
S S00'- 9
m gog+ 9890 ————=
w
i
B |
2
S00™- :
= o+ 529" ——=]
a
LED-ISISEINOI WO
paseyaund sBuueaq JSMY) ULRQ-
oarcuday | 3wa | NOLL40530 Boz|)
SNOISINTY ‘S3LON
13 ¥

99

L _ z
1
o a0033 | biLL IO
oleld epig mer
| o] [iswoniun o
v THLOT QN "8 3BL0D) "prreiAmgy o fassavusy sz IHSAMOONYMTT D
faoreioqe swaishg oedg o v
T e i T o
| alisoguny | emgemsmer | mooza | v | b
ssoian | Ss | wwewsanmod] ouNozien | 5 | ¢
0y
S00™- ‘
S00°+ gzl
m _ 8
w
w
| V'Y NOILOAS
08
o
o
—
9 o}
08" — 052" —
Q O &
X
0002 3TV0S ﬂ
Lo .
Lo+ 05
a a
(xcudde) u zo" ¥ 0} pepunos sebpa Jaino |ry-
LESEEWSYN Jod spasul jlejsul-
oarcuday | 3wa | NOLL40530 Boz| i
SNOISINTY ‘S3LON
¥

3 4

! _ z £
| 1
1 siooa3 [e [0
(spis sjeid "uad "ddQ)
ajeld Bununopy spis | [
THLOT QIN Y97 A8y Ay jo Ausiani) [HSMOONYMIT D
v Aojesoqe] swa)sks aaedg o o
P11 P 1711 T o
| alisoguny | aegbunow | wmooza | v | b
1 G —e
£
) sz
.w%o . ST i
% 0'+))
H JH
8 00z y L P00- o
w | ¢ 200~ 3 00+
u u\\ o0+ PO D w
00~ -
m wor == f] e
I oLy .
00 "
— P00+ 60 ———— =
00~ o
voos S
() <o
2 =]
< S i)
[7
| sig
\l z0d
1 I
a
QIncHdY awa | NOLOSIT Boz|
SNOISINTY
€ ¥

I

101

: _ €
1
u 033 [bie [0
(opis s1Eld "Uad)
ajeld Bununopy spis |] Joswonme o
v THLOT CON "R aBajjocy "pueiAmmpy jo Dusiavu) swezid IHSAMOONYMTT D
Auofucqe susigaoedy 1)
1 e
| aisoguny | megbunon | amoraz | v | b
G2 o o T e
00" :
- Z0 oo 98] ﬁ
u 1] * IT L. 4
— 00z z —
i 00~ L ¢ L2
., ST
] = S2E Ly i Lo
8 pooe 6402
=]
3
T 200~ 3
i cogs 99T D
s
EI
0
et \\\\“‘W‘\“
[
o) [+)
: L / /’
50 i ¥
., LeP
5 0ze 00+ N
'}
— 0520 IVOS =
\#’ AT A
100 g 500 .. ||_ 200 poz
Joos S8 o0 SE voos POEE
a V-V NOILO3S
QIncHdY awa | NOLOSIT Boz|
SNOISINGY
€ ¥

I

102

I

+ _ [2 € 4
| 1
o 6l0033 vie 0]
ale|d do) mer
| omEs] [swonuon o
THLOT QN 40 ABa1jo)y ‘prefKimpy jo fsiasm) MSMOONWET D g
v faojesoqe swaisk aaedg S O i V-V NOILD3S v
T e T T
| alisoguny | amgdoimer | mooz@ | v | b
8= . T8 10~
o S00- . L, PSO6L
i S0 SFE—= _lrv_l 0g o+ @
= | I I L
L 500 ..
T i | i oo BEFL
A i 4]
£ =
2 | = 1
= <
: E o
- L i
m lv s+ 527 : 20y a
& ezl g=]
2
EI
™
3
a-8 NOILO3S @ @ @
00~ . A@
ol a
“, 0wt
2 s L o,
00sEl 5
@ 200 2
yoo+ Y02 @
oe
61 F 1@
Vs 15 /2.
W N
00~ \q Y00 oo |
poo+ 00+
4 a
Ul 20" = ¥ 0}10S SJE SPUno.
abpa 1210 ‘Pelou BSIMIBYIO SS3IUN-
QIncHdY awa | NOLOSIT Boz| i
SNOISINTY ‘S3LON
4 € ¥

0200-33 bt w.__‘.ﬁ o)

s

B)e|d Jeay mer

suoziuq ISIMOONTME T D

THLOT QN 40 ABa1jo)y ‘prefKimpy jo fsiasm)

faoreioqe swaishg oedg

oz INSMOONYMIT D

e e P et
| arisoguny | ey esymer |
SSORBSH | ss | s]
sz il i
—) e s8L° B S -3
581 e
— ._ e D W0 o s F e
00+
m_,h @y | A ¥
i) 05 ﬂ& q g
o ﬁ| ORI iy SO O 0 05 i
W g @) oy g M_' ¥V NOILO3S
w =
= @) / obe SED
00z
200~
s $00'+ e @ O.
B 1 61 —e-
1 —t—joet-——— e
i i ¥
v [rApe— _..II v
618
sk a%&l 6° €8 NOILOIS
g «
[} L2
- =
10+ M‘i
005°F 3OS
0
3-0 NOILO3S
@) X - o s
a
U g0 o)
papunoi aJe sebpa [BusBlxX® |iy-
LEGEEWSYN Jad sussul Ll
QIncHdY awa | NOLOSIT Boz|
SNOISINGY S3LON

I

104

L _ £
| 1
Al 0033 | i (9]
aje|d UoIDBUUOD
IBY 8pINS o [ead ™ Josmomemn o
THLOT QN "8 3BL0D) "prreiAmgy o fassavusy sz IHSAMOONYMTT D
Aojesoqe] swa)sks aaedg e BT o
111 P 111 i T o
| alisog wny | moewon s sns ceorza | s | b
— ﬁ szl j
o — | — \H_Huu
o
m \— z0d
w sz
i
B |
— 4]
O
¢}
2
0sg’h 3TvOS
g SZL'e
P00 s
a o 206
a
oarcuday | 3wa | NOLL40530 Boz|
SNOISINTY

I

105

I i
0£00-0204 [3, Lig 37908
sbuo|} 8|)joudoidiw ¥ Tiviad
5 d|oway Ul GLTE g
4 R ria o B GOLRTIN R AT
d\. Zb20z (W “A3ed 9Ha1100 CBuu 1L 50 O3 1sd9a el
L1ojeloqe] sueysdy soedg
T
oW 'Dads TWidsawA | BLIFENLY T L= i:
er o] S s | b siviosbese s sieiel oo |
w‘
i
&
¥ TivL30
2 == ¥-¥ NOILO3S
5 | L
o]
o
m s
e oo’ | Hl—zo0 75e0°
o CER
o
= w
= RS &) “ b T %
il woB R
b o I+ N oo
o o |2 a = Lo
v o —ias —
o h 18] A -
L i " . .
520 8 —— (@ e ao 5o
oo N WO N
o
o \M.Q 7
[EV@ e Al & |
- T0O!—, i
= Yot POT R XTL B
— iy Deeo TTeso”
[T T oL 030 [[amz |
S0iE |

106

: _ z 3
| 1
9200-33 | e 0
o it e .
Jepuiiho e
Jsulejuo) aidwes | o] [rsoniunan o
v THLOT QN '35 3BTy "pRreTAImRY 0 Rgssavuny s INSIOONWMT] D
foreioge] swasis soedsg BT e v
o 7 13 oy o e
| ondosempaps| a wog dues| ston33 | 4 | 4
seoisn | S5 wesui NN zead oeeNoBlsl | w2 | 2
@ Xzl _A‘ SLOLG \WA
1 sL'L
SI'6
sz u
=i = o o

EE-0026

@ xz PI\ v¥ NOILOZS

LEGECWSYN Jad spasut jjejsul-

H UOISSILL [BINOE UE UO Yjdap o}
Buiob sseurejuod Joy Lresseosu Aluo aie Aay -

uonezijenbs sinssaud oy

8le 8pIs JapullAa 8y} ua sejoy /L b8 By~

02|
- ‘S3LON

[E awva | NOLLNOSI0

SNOISIATY
13

107

EE-0027

: _ z 3
| 1
ooz | b9]0
o)eld eseg .
Jsulejuo) aidwes | o] [rsoniunan o
THLOT QN '35 3BTy "pRreTAImRY 0 Rgssavuny o INSMOTNYMI T D
AoresogeT swalsig 2oeds EIC B
T T " e — o T oo
| o 08 anpares] oEld eseg | w3z [|
¥ NOILO3S ! SL0LD
[T 0%} [

200~
00"+

[E

31va

| NOILJMOSI0 Boz|

0z

SNOISIATY
13

108

8200-33 si_

1 GA.:_ 0

Bury Puusyses doj
Jauigjuoy) sjdwes

v THLOT QU “yang aBjjocy "PuviAtm Jo Aysiavu)
foreioqer] swasks aoedg

 E— — s —

| ondosenpas] Bux Buuesey |

EE-0028

_ z
oweoe] | HSMOOHYMITD
susn] | NSMOONWMIT D
T) T
o T
son33 | 4 | L
¥-¥ NOILO3S

=

LA

A %

Lo+

[E

31va _ NOLL4MOS30

Boz|

SNOISIATY

SLOLg

£6V6 (%

_ PA (U0}

9z00-33 10} pas() 8qn] DAd
08 8INPaYDS JBlBWEI] 0} SWES WOy IND-

‘S3LON

3

109

Table A.2: End-effector fasteners.

Notes:
-SHCS = Socket Head Cap Screw

-2 of the screws in Item 10 are to have their heads machined down so they can be

countersunk under the penetrator plate

-These 2 screws may have to be switched to 3/4" length to fit (Part No. 92423A536)
-SSL stock has plenty of 18-8, 1" length screws with 1/4"-20 threads
-SSL stock has a lot 0f18-8, 1/2" length, 10-32 screws, but not excessive quantities
-SSL has few 18-8, 3/8" length, 10-32 screws. Countis presently at 18 (7/24/08)

-Source: www.mcmaster.com

FASTENERS
Item Screw Description Quantity Thread Head Length (in)
1 |Screws Connecting Flange to Al Adapter 12 10-32 SHCS 0.375
2 |Screws Connecting Al Adapter to Cam Disk 12 10-32 SHCS 0.5
3 |Track Rollers to Join Disk to Guide Blocks 2 1/4-28 Roller 0.3125
4 |Shoulder Screws to Hold Bearings to Guide Blocks 16 10-32 SHCS .25
5 [Jaw Screws to Connect Rear Plate to Guide Blks. 14 10-32 SHCS 0.5
6 |Screws Connecting Jaw Rear Plate to Side Plate 8 10-32 SHCS 0.5
7 |Screws Connecting Jaw Top to Side & Rear Plates 16 10-32 SHCS 0.5
8 [Screws Bolting Connection Plate to Guide Rails 8 10-32 SHCS 0.5
9 [Screws Bolting Side Mounts to Guide Rails 8 10-32 SHCS 0.5
10 |Screws Connecting Side Mounts to Wrist Joint 8 1/4-20 SHCS 1
Total Screw Quantity: 104
Prototype
Item Material Part # Cost Ind. Cost ($)] Tot. Cost ($)
1 |18-8 Stainless 92196A267 | $8.94 per 100 0.0894 1.0728
2 |18-8 Stainless 92196A269| $9.95 per 100 0.0995 1.194
3 |Steel 1460T13| $13.62 Each 13.62 27.24
4 |416 Stainless 93985A535 $2.81 Each 2.81 44.96
5 |18-8 Stainless 92196A269| $9.95 per 100 0.0995 1.393
6 |18-8 Stainless 92196A269| $9.95 per 100 0.0995 0.796
7 |18-8 Stainless 92196A269] $9.95 per 100 0.0995 1.592
8 |18-8 Stainless 92196A269| $9.95 per 100 0.0995 0.796
9 |18-8 Stainless 92196A269| $9.95 per 100 0.0995 0.796
10]|18-8 Stainless 92196A542| $12.83 per 50 0.2566 2.0528
Total ($): 81.89
Final Design
Item Material Part # Cost Ind. Cost ($)| Tot. Cost ($)
1 |A286 Super Alloy 92423A502 |$2.07 Each 2.07 24.84
2 |A286 Super Alloy 92423A505 |$2.07 Each 2.07 24.84
3 |440C Stainless 8043K74 |$61.20 Each 61.2 122.4
4 |416 Stainless 93985A535 |$2.81 Each 2.81 44.96
5 |A286 Super Alloy 92423A505 |$2.07 Each 2.07 28.98
6 |A286 Super Alloy 92423A505 |$2.07 Each 2.07 16.56
7 |A286 Super Alloy 92423A505 |$2.07 Each 2.07 33.12
8 |A286 Super Alloy 92423A505 |$2.07 Each 2.07 16.56
9 |A286 Super Alloy 92423A505 |$2.07 Each 2.07 16.56
10 |A286 Super Alloy 92423A539 |$3.68 Each 3.68 29.44
Total ($): 358.26

110

Table A.3: End-effector Heli-Coil inserts.

INSERTS
Item Insert Description Total Quantity Thread Drill Depth (in)
For Screws Connecting Flange to
1 Al Adapter 12 10-32 0.662
For Screws Connecting Al Adapter
2 to Cam Disk 12 10-32 0.568
For Track Roller Attachment in
3 Guide Block 2 (1 x 2 Blocks) 1/4-28 0.714
For Shoulder Screws into Guide
4 Block 16 (8 x 2 Blocks) 10-32 0.568
5 For Jaw Screws into Guide Block | 14 (7 x 2 Blocks) 10-32 0.472
For Jaw Screws Connecting Side
6 and Rear Plates 8 (2 x 4 Pieces) 10-32 0.472
For Jaw Screws Connecting Top
7 to Side & Rear Plates 16 (8 x 2 Pieces) 10-32 0.472
For Screws Bolting Connection
8 Plate to Guide Rails 8 (4 x 2 Pieces) 10-32 0.662
For Screws Bolting Side Mounts to
9 Guide Rails 8 (4 x 2 Pieces) 10-32 0.662
For Screws Connecting Side
10 Mounts to Wrist Joint 8 (4 x 2 Sides) 1/4-20 0.675
ltem Thread Depth (in) Insert Number | McMaster-Carr # Cost Ind. Cost ($)
1 0.38 1191-3CN380 91732A725 $5.29 per 10 0.529
2 0.285 1191-3CN285 91732A231 $4.10 per 10 0.41
3 0.375 1191-4CN375 91732A232 $4.10 per 10 0.41
4 0.285 1191-3CN285 91732A231 $4.10 per 10 0.41
5 0.19 1191-3CN190 91732A511 $2.92 per 10 0.292
6 0.19 1191-3CN190 91732A511 $2.92 per 10 0.292
7 0.19 1191-3CN190 91732A511 $2.92 per 10 0.292
8 0.38 1191-3CN380 91732A725 $5.29 per 10 0.529
9 0.38 1191-3CN380 91732A725 $5.29 per 10 0.529
10 0.25 1185-4CN250 91732A368 $3.13 per 10 0.313
ltem Sum OQuantity Thread Drill Depth (in) | Thread Depth (in)] Insert Number
A 38 10-32 0.472 0.19]1191-3CN190
B 28 10-32 0.568 0.285|1191-3CN285
C 28 10-32 0.662 0.38]1191-3CN380
D 2 1/4-28 0.714 0.375/1191-4CN375
E 8 1/4-20 0.675 0.25]|1185-4CN250
Total Quantity: 104
ltem McMaster-Carr # Ind. Cost ($) Tot. Cost ($)
A 91732A511 0.292 11.096
B 91732A231 0.41 11.48
C 91732A725 0.529 14.812
D 91732A232 0.41 0.82
E 91732A368 0.313 2.504
Total Cost ($): 40.71

111

Table A.4: End-effector washers.

WASHERS
Item Washer Description Quantity ID (in) OD (in) Thick. (in) | Washer Size
Separate Screws from Al
A Adapter 12 0.195 0.354 .06 to .067 10
Separate Screws from
B Guide Rail Sides 8 0.195 0.354 .06 to .067 10
Separate Screws from
C Side Mount Origins 6 0.255 0.468 0.035 1/4"
Separate Screws from
D Side Mount Origins 6 0.265 0.5 .059to .067 1/4"
Prototype & Final Design (no difference)
Item Material Part # Cost Ind. Cost ($) | Total Cost ($)
A 18-8 Stainless 90945A741 |$8.75 per 100 0.0875 1.05
B 18-8 Stainless 90945A741 |$8.75 per 100 0.0875 0.7
C 18-8 Stainless 90945A760 |$6.38 per 100 0.0638 0.3828
D 18-8 Stainless 98017A660 |$5.28 per 100 0.0528 0.3168
Total ($): 2.13
Notes:
-SSL stock contains plenty of #10 washers.
-C will replace D if thinner washers are necessary.
-Source: http://www.mcmaster.com
Table A.5: End-effector bearings.
BEARINGS
Item Description Material Total Quantity ID (in.) OD (in.)
1 |Ball Bearings for Guide Block 416 Stainless 16 1/4 5/8
Thrust Bearings for Guide Block [Delrin 32 1/4 5/8
Item Thickness (in.) Part Number | Ind. Cost ($) | Total Cost ($)
13/64 6138K65 6.03 96.48
1/16 2795711 0.91 29.12
Total ($): 125.60

Notes:

-The 2 roller bearings are considered fasteners due to their threaded ends.
-The bearings are the same for both the prototype and the final design.

-Source: http://www.mcmaster.com

Table A.6: Sample container components.

Vendor Part Number| Quantity Description Material
United States Plastic Corp. 26333 1 Main Cylinder, 10", Schedule 80 PVC
United States Plastic Corp. 45089 1 Base Plate, 3/8" Thick Sheet PVC
United States Plastic Comp. 26333 1 Top Ring, 10", Schedule 80 PVC
McMaster-Carr 87145K85 1 1/4" T hick Rubber Support Layer Natural Gum Rubber
McMaster-Carr 87145K85 1 1/4" T hick Rubber Cover Layer Natural Gum Rubber
McMaster-Carr 90945A740 24 #10 Washer, .195" ID, .354" OD, t=.067" |18-8 Stainless
McMaster-Carr 92196A273 12 10-32 Thread Screw, 7/8" Length 18-8 Stainless
McMaster-Carr 92196A275 12 10-32 Thread Screw, 1-1/8" Length 18-8 Stainless

112

A.2 Track Roller Data

Track Roller Part Number: 8043K74

Corrosion-Resistant Extended-Life Track Rollers

Macde entirely of Type 440C stainless steel, these track rollers offer ex- _._‘ feB=|

cellent corrosion resistance. Quality construction gives them roughly twice r

the life of ardinary track rollers. They're sealed to block out contaminants Al

and have neadle bearings. Marimum temperature is 250° F. c|(lll
Rollers with stud can %e through-hole mounted or threaded directly into

a housmé; or machine component (mounting nut not included). They have a T

—--

—>

hew. head for easy fastening and one lubrication hole, unless noted. Vyt..‘ |-
Studless rollers mount onto a shaft or clevis (yoke) end linkage.

I With Stud |

Radial Radial

— Roller | Max. Load Load — Stud — — Thread —
Dia. Wd. rpm @ Cap., Ilbs. Cap., Ibs. Dia. . La.
(A) {B] No Load (Dynamic) (Static) C} (D) Size (E} Each
2" %L 11,500........ 680......... 7T90.... %% .. 58" .10-32. . 14" B043K724 _961.58
5" T,f1a"... 9.200...... 955 ... 1,215 V" . 234" 14"-28.. 5:13 8043KT44 . 61.20
34" e 6,400........11560.......... 2065, %" . A" 3"-24. 3%3043K?5.. .. 61,96
e Ve . 5400....1,660 ... 2065 %" . T4 247-24. %% . 8043KT6.... 6272
17 8 4,800....2,225 ... 3060 74" 17 .. TAR"-20 Ve 8043KTT.... 75.20
106" 3487 . 3,400, ...2225 ... 3060 717 . TAe"-20 Ve 8043KT8.... 77.06
1147, %8 31003930 ... 4250347 147 1467-20.. 56" 8043K49. .. 2016
1947 . 34" . 28003930 . 4250 14" 14" 14T-20.. 5" 8043K52. .. 2418
108" TR 2500, ...4,840 ... 5640, 54" 147 84718 %7 8043K51....110.44
154", 748" 2.350.....4,840 ... 5640 . 5" 1Ve". 56718 %7 8043KS56.....109.56
1847 1" LB38s L TR20. 1% " e 8043K53.....132.10
L R 3,385 ?920........9;f4".....1%""... B043K57......123.81
27, 1”4 1,400 B090 . 10 70T BT " .8043K55. ... 173.07

éh "Has no lubrication hole.

McMASTER-CARR

113

A.3 Hand Roll Motor Data Sheets

Hand Roll Motor Part Number: RBE-02111-A-00

RBE(H) Motor Series

RBE(H) 02110 MOTOR SERIES PERFORMANCE DATA

Motor Parameters Symbols Units 02110 0111 ®112 n13 2114 «ns
Max Cont. Output Power HP Rated HP 0.323 0.672 0.761 0.8354 0.944 10
at 25°C amb. PRated Watts 241 501 568 637 704 796
Speed at Rated Power NRated RPM 5300 4242 3500 3050 2770 2650
Max Mechanical Speed NMax RPM 12000 12000 12000 12000 12000 12000
Continuous Stall Torque Te bt 0.703 123 m 220 2.69 3.20
at 25°C amb. N-m 0.952 167 240 299 3.64 433
Peak Torque Tp Tb-ft 187 337 5.10 6.80 827 102
N-m 2.55 457 6.92 922 12 138
Max Torque Tsl Tb-ft 126 256 3.75 500 6.37 749
for Linear KT N-m 172 347 5.08 6.78 8.64 102
Motor Constant Tm Ib-f AW 0.102 0175 0.243 0.293 0.345 0.394
Nm/AW 0.139 0.237 0.329 0.396 0.467 0.534
Thermal Resistance* Rth “ClWatt 170 160 150 140 130 120
Viscous Damping H Tb-f/RPM 1.04E05 2.36E05 3.59E-05 482E-05 6.06E-05 7.20E-05
N-m/RPM 141E05 3.19E05 487E-05 6.54E-05 821E-05 9.88E-05
Max Static Friction Tt Tb-ft 0.026 0052 0.077 0.10 0.13 0.15
N-m 0.035 4071 0.104 0.136 0.1711 0.203
Max Cogging Torque Teog Tb-ft 0.016 0.039 0.061 0.082 0.104 0.125
Peak to Peak N-m 0.022 0.053 0.083 G111 0.141 0.16%
Tnertia Jmf Tbft-sec? 5.50E-05 9.70E05 140E-04 LME04 2.13E-04 266E-04
Frameless Kgm? 746805 1.32E04 190E-04 2.36E-04 2.89E-04 361E-04
Motor Weight Wit b 129 221 3.0 394 4.80 5.66
Kg 0.585 100 141 1 218 259
Tnertia Jmh Tb-ft-sec? 5.60E05 110E-04 141E-04 L75E03 2.14E-04 262E-04
Housed Kgn? 7.59805 149E-04 191E-04 237E03 290E-04 3.55E-04
Motor Weight Wth b 2.00 322 4.37 ok 6.66 7.80
Kg 0.907 146 2.00 250 3.04 3.54
No. of poles iy 2 12 12 12 12 12
Winding Constants Symbols Tnits A B (5 A B cC A B G A B C A B G A B [
Current at Cont. Torque I Amps 634 253 106 | 571 227 974|542 217 903 | 507 203 846 | 813 395 3.05 | 867 398 177
Current at Peak Torque Ip Amps 253 100 402 | 253 100 402|253 100 402 | 253 100 403 | 403 201 159 |453 201 106
Torque Sensitivity Kt Ib-fAmp | 0.115 0.287 0.0690|0.225 0.566 0.132|0.341 0851 0.204 0454 114 0272|0347 0714 0525 |0386 0840 189
N-m/Amp | 0.156 0390 0.0935| 0305 0.768 0179|0462 115 0277|062 154 037 | 0471 0968 124 [0.3523 L4 256
Back EMF constant Kb V/KRPM | 163 408 980 | 319 804 187|484 121 291 | 645 161 386 [492 101 130 | S48 119 268
Motor Resistance Rm Ohms 127 805 0479 | 166 106 0611|197 1235 0743|240 152 05904 | 101 417 683 |0961 474 232
Motor Inductance Lm mH 17 10 060 |32 20 11|51 3 18|62 3% 22|28 12 20 |30 4 72

*Rth assumes a housed motor mounted to a 7” x 7.5 x 0.75” aluminum heatsink or equivalent

Continuous Duty Capability for 130°C Rise — RBE - 02110 Series

SPEED (FPH)

021101 2111y o212y 0213y 2114\ 4211
T T

4 s LW A & &bt
1OHQUE

18 KOLLMORGEN * Radford, Virginia + 1-800-77 SERVO

114

RBE(H) Motor Series

DIMENSIONS
RBE-0211X-X00
I
10.16 (.400)
6.35 (.250) MAX.
MAX.
T
MTG. REQT
@92.20
(3.530)
@927 MAX.
3.650) @5461 15913 (6265 | _ 2R
MAX. (2”'1‘;0) 915.888 (6255 Il 25307“ Sy AT
kb A B 94,69 (3.728)
[A]
89 (.035)
REQT Dimensions in mm {inches).
gt Product designed in inches.
Metric conversions provided for reference only.
MODEL RBE- RBE- RBE- RBE- RBE- RBE-
Notes: NUMBER 02110 02111 02112 | 02113 02114 02115
1) For a C.W. rotation, as viewed from lead end, energize per excitation . “A”_ 3.89 19.05 28.58 38.1 47.63 57.15
sequence table. Dimension | (0.350) | (0.750) | (1.125) | (1.500) | (1.875) | (2.250)
2) V-AB, V-BC and V-CA is back EMF of motor phases AB, BC and CA “B” 15.24 254 34.93 4445 53.98 63.5
respectively, aligned with sensor output as shown for C.W. rotation only. Dimension (0.600) | (1.000) | (1.375) | (L.750) | (2.125) | (2.500)
3) Mounting surface is between @ 92.71 (3.650) and @ 94.72 (3.729) on both
sides. Tolerance + .010 on “A” Dimension.
RBEH-0211X-00
15.870 (.6248) —{15_870 T
B 15862 }.6245) Pk E-5245;
A L 028 510546
(2.750) (4270}
i T (orag MAX
maame || 0T | e
51 (085 PR S 311 fizzs)
A AT
& Dimensions in mm {inches) £07.758 (2:850) BASIC
Product designed in inches. (B2 B(0158]A]
Metric conversions provided for reference only.
Notes:
1) Shaftend play: with a 18 Ib reversing load, the axial displacement shall
be-013 13 (0005 003 MODEL | RBEH- | RBEH- | RBEH- | RBEH- | RBEH- | RBEH-
2)]::;ui fcf ;;Vb.l (:otauon, as viewed from pilot end, energize per excitation NUMBER 02110 02111 02112 02113 02114 02115
. HAY 5786 68.02 7755 8707 96.60 106.12
3) V-AB, V-BC and V-CA is back EMF of motor phases AB, BC and CA i 5
respectively, aligned with sensor output as shown for C.C.W. rotation only. Dimension (2278) | (2678) | (3053) | (3428) | (3.803) | (4.178)
RBE/RBEH LEADWIRE
Motor Leads: #18 AWG Teflon coated per MIL-W- Sensor Leads: #26 AWG type “ET” Teflon coated
22759711, 3 leads, 152 (6.00) min Ig. ea. 1-black, per MIL-W-16878, 5 leads, 152 (6.00) min 1g. ea.
1-red, 1-white. 1-blue, 1-brown, 1-green, 1-orange, 1-yellow.
KOLLMORGEN * Radford, Virginia ¢ 1-800-77 SERVO 19

115

Appendix B

MATLAB Function for Evaluating Cam Disk Performance

function camdisk()

%This function solves the grooves in the cam disk and finds the associated dynamic properties

close all, clear all

time_plots = 0;

excel = 0;
offset = .45;
h =2.25;

beta_deg = 155;
%alpha_max_deg = 175.33;
alpha_max_deg = 173.56;
iter =.0005;

cd_rad =2.3;

follower_lim = 955;
T_in =144,
%T_in=98.3;
eta=.9;
ang_vel_deg = 13.86;

ang_vel = ang_vel_deg * pi/180;

Lo =-10;

%Plot controls and variables:
title_size = 26;
axes_size = 24;
line_width = 4;
mult = 2;
fig_color=[111];

%Close all windows and clear variables from previous runs

%Set time_plots to 1 to activate figures plotting variables vs. time

%Set to 1 to send time and position data to Position Data.xls spreadsheet
%Declare an offset which serves as the dist. between the center...

%of the circle and the start of the groove

%Total follower displacement (inches)

%It is the height one of the jaws opens

%Cam angle for displacement "h" (degrees)

%Maximum cam disk rotation - found with trig. (deg)

%Actual max cam disk rotation - limited by jaws contacting (deg)
%lteration size of theta (rad)

%Cam disk radius (inches)...

%Diameter of flange/cam disk adapter is 4.60 inches

%Cam follower dynamic radial load capacity (Ibs)

%Input torque, based on motor break-in values (inch-lbs), SAMURAI Boards
%Input torque, based on motor break-in values (inch-lbs), Ranger Boards
%Combined efficiency of track rollers and guide block bearings (90% each)
%Angular velocity of hand roll joint, found empirically (deg/s)

%Angular velocity converted to (rad/s)

%External load on the cam follower, value is neg. as force is down (Ibs)

%Set title, xlabel, and ylable font sizes

%Set axes font size

%Set width of plotted lines

%Line_width multiplier for the cam disk grooves
%Sets background in figures to white

set(0, 'DefaultFigureColor', fig_color, 'DefaultAxesLineWidth',...

line_width, 'DefaultAxesFontSize', axes_size);
%End plot controls and variables

beta = beta_deg * pi/180;

%Set figure color line width of axes, axes font size

%Convert beta angle into radians (rad)

%Create a visual depiction of the curves to be inserted into the cam disk to drive the parallel jaws
%Step 1: Create the first groove in the cam disk (presently on right side of disk

theta_deg = 0;
x1_array = [|; y1_array = [J;

%Reset theta_deg to its initial position (deg)
%Initialize x and y arrays, which will contain individual values (in)

%Initialize rotation arrays - these arrays represent the x and y arrays put
%through a rotation matrix to track points in the cam-disk grooves:

x_rot_array = []; y_rot_array = [J;

%Initialize velocity, acceleration, and output force arrays:

vel_array =[]; accel_array =J;

F_out_array = [J;

%Initialize variables used in velocity and acceleration calculations:

old =0; time_old=0; v_old =0;

%Initialize variables used in pressure angle calculations:
y3 = 0; x3 = 0; gamma_save = -pi; gamma_array = [J;

%Initialize rotation angle variables:

theta_deg_array = []; alpha_deg_array =[]; alpha =0; alpha_deg = 0;

theta_deg_incr = iter*(180/pi);
while theta_deg <= beta_deg;

theta = theta_deg * pi/180;

%Increment value for theta_deg (deg)
%As long as theta is within the beta limit...
%Convert theta to radians (rad)

radius = (h/2)*(1+cos((beta_deg*(pi/180))*theta/beta)); = %Follower displacement (inches)

x1 = radius * cos(theta-pi/2);
y1 = radius * sin(theta-pi/2)+offset;

%X position of the location within the 1st groove (in)
%Y position of the location within the 1st groove (in)

%Note: The pi/2 values in the trig. terms rotate the grooves for easier viewing

x1_array = [x1_array, x1];

%Add latest x position to the x_array (in)

116

figure(1),

yl_array = [yl_array, y1];

11 = sqrt(x12 + y1/2);
if alpha_deg <= 89.99,
alpha = asin(x1/11);
else
alpha = asin(y1/11) + pi/2;
end
alpha_deg_old = alpha_deg;
alpha_deg = alpha * 180/pi;

delta_alpha_deg = alpha_deg - alpha_deg_old;
delta_alpha = delta_alpha_deg * pi/180;
alpha_deg_array = [alpha_deg_array, alpha_deg];
theta_deg_array = [theta_deg_array, theta_deg];

y_rot = -x1*sin(alpha - pi) + yl*cos(alpha-pi);
x_rot = x1*cos(alpha-pi) + yl*sin(alpha-pi);

y_rot_array = [y_rot_array, y_rot];
X_rot_array = [x_rot_array, x_rot];

%Velocity Determination:
y_new =y_rot;

delta_y =y new -y _old;
y_old =y rot;

time_new = alpha_deg / ang_vel_deg;

delta_time = time_new - time_old;
time_old = time_new;

vel = delta_y / delta_time;
vel_array = [vel_array, vel];

%Acceleration Determination:
v_new = vel;

delta_v =v_new - v_old,;

v_old =v_new;

accel = delta_v / delta_time;
accel_array = [accel_array, accel];

%Force Determination:

F_out =T_in * (delta_alpha)/delta_y;

F_out_array = [F_out_array, F_out];

%Pressure Angle Determination:
x4 =x1,

y4 =yl

slope = (y4 - y3)/(x4 - x3);

x3 =x1,

y3 =yl

slope_perp = -(1/slope);

gamma = atan(slope_perp) + pi/2 - alpha;

%Add latest y position to the y_array (in)

%Calculate the length of the vector to the point in the groove
%Case for which alpha <= 90 degrees

%Calculate the angle via inverse sine function

%Case for which alpha >= 90 degrees

%Calculate the angle via inverse sine function + 90 deg.

%Store value of alphs_deg in "old" variable (deg)
%Convert alpha to degrees (deg)

%Calculate change in alpha (deg)

%Convert change in alpha to radians (rad)
%Add alpha_deg to array

%Add theta_deg to theta_deg_array

%Y-coords after rotation alpha (in)
%X-coords after rotation alpha (in)
%Add rotated y-coord to array
%Add rotated x-coord to array

%Set new y-position to the the rotated value (in)

%Calculate the change in position over the time step (in)
%Redefine "y_old" as the new position (in)

%Calculate the time at the given position (s)

%Calculate the change in time from the previous time step (s)
%Redefine "time_old" as the new time (s)

%Divide change in position by change in time to get velocity (in/s)
%Put velocity term in velocity array

%Set new velocity term to the calculated value (in/s)

%Determine change in velocity across the time step (in/s)
%Redefine vel_old as the new velocity (in/s)

%Divide change in velocity by change in time to get accel. (in/s"2)
%Add acceleration term to the array

%Individual output force (Ibs)
%Add force value to the output force array (Ibs)

%Set the new x (x4) equal to the new x1 (in)

%Set the new y (y4) equal to the new y1 (in)

%Calculate the slope based on changes in x and y

%Set x3 to what is now the old x1 (in)

%Set y3 to what is now the old y1 (in)

%Calculate the neg. repicrocal to find the perpendicular slope
%Let gamma equal to the pressure angle

%pi/2 accounts for the frame rotation

%-alpha is used to find the difference between the follower...
%direction and vector normal to the cam

%Use if statements to correct for tangent calculations:

if gamma >= gamma_save | alpha_deg <= 0.036,
gamma_array = [gamma_array, gammay;

else
gamma = gamma + pi;

gamma_array = [gamma_array, gammay;

end
gamma_save = gamma;

theta_deg = theta_deg + theta_deg_incr;
end

%If gamma is increasing or if alpha is near zero
%Add gamma term to array

%If tangent dropped the pressure angle, flip the...
%(direction back with pi addition

%Add gamma term to array

%Update gamma_save for comparison purposes

%Increment theta_deg (deg)

%Create Figure 1 and plot the curve for the first groove in the cam disk:
plot(x1_array, y1_array,'r-', 'LineWidth', line_width*mult), hold on
%Step 2: Create the second groove in the cam disk

theta_deg = 0;

x2_array = []; y2_array =[];

%Reset theta_deg to its initial position (deg)
%Initialize x and y arrays, which will contain individual values (in)

117

while theta_deg <= beta_deg; %As long as theta is within the beta limit...

theta = theta_deg * pi/180; %Convert theta to radians (rad)
radius = (h/2)*(1+cos((beta_deg*(pi/180))*theta/beta)); %Follower displacement (inches)
X2 = -radius * cos(theta-pi/2); %X position of the location within the 1st groove (in)
y2 = -radius * sin(theta-pi/2) - offset; %Y position of the location within the 1st groove (in)
%Note: The pi/2 values in the trig. terms rotate the grooves for easier viewing
X2_array = [x2_array, X2]; %Add latest x position to the x_array (in)
y2_array = [y2_array, y2]; %Add latest y position to the y_array (in)
theta_deg = theta_deg + theta_deg_incr; %Increment theta_deg (deg)

end

%Plot the curve for the second groove in the cam disk
plot(x2_array, y2_array, 'r-', 'LineWidth', line_width*mult), hold on

%Plot the four quadrants of the cam disk border (it's a circle)

x=0 riter : cd_rad; y = sqrt(cd_rad"2-x."2); plot(x,y,-', 'LineWidth', line_width), hold on
x=-cd_rad :iter: 0; y=sqrt(cd_rad*2-x."2); plot(x,y,-, 'LineWidth', line_width), hold on
x=-cd_rad :iter: 0; y=-sqgrt(cd_rad"2-x."2); plot(x,y,-', 'LineWidth', line_width), hold on
x=0 siter : cd_rad; y = -sqrt(cd_rad"2-x."2); plot(x,y,-', 'LineWidth', line_width), hold on
x=0; y=0; plot(x,y,’k+) %Plot pointin center of disk

title('Depiction of Cam Disk Grooves', 'FontWeight', 'bold")
xlabel("X-Position (in.)"), ylabel("Y-Position (in.)")
grid on, axis([-2.5 2.5 -2.5 2.5]) %Manually set axes for better plot viewing

%Generate plot of vertical position of track roller:

%Note: Plot of horizontal position is a constant at zero

figure(2), plot(alpha_deg_array, y_rot_array, -, 'LineWidth', line_width), hold on
title('Follower Displacement vs. Cam Disk Angle of Rotation’, 'FontWeight', 'bold")
xlabel('Angle of Rotation (deg.)"), ylabel('Follower Displacement (in.)")

grid on, axis([0 alpha_max_deg .4 2]) %Manually set axes for better plot viewing

time = alpha_deg_array / ang_vel_deg; %Time corresponding to a given angle of rotation (s)...
[time_last_index] = find(time, 1, 'last’); %Index of last value in the time array

time_last = time(time_last_index); %Last time value in array (s)

%Generage plot of velocity of track roller as a function of angle alpha

figure(3), plot(alpha_deg_array, vel_array, '-', 'LineWidth', line_width)

title("Jaw Velocity vs. Cam Disk Angle of Rotation’, 'FontWeight', 'bold’) %Plot jaw velocity

xlabel('Angle of Rotation (deg.)"), ylabel('Jaw Velocity (in./deg.)")

grid on, axis([0 alpha_max_deg -.25 0]) %Manually set axes for better plot viewing

%Generate plot of acceleration of track roller as a function of angle alpha

figure(4), plot(alpha_deg_array, accel_array, '-', 'LineWidth', line_width) %Plot jaw acceleration
title('Jaw Acceleration vs. Cam Disk Angle of Rotation’, 'FontWeight', 'bold")

xlabel('Angle of Rotation (deg.)"), ylabel('Jaw Acceleration (in./deg.”2)")

grid on, axis([.1 alpha_max_deg -.2 0]) %Manually set axes for better plot viewing

%Generate plot of output force of track roller as a function of angle alpha
%Note: F_out is multiplied by a minus sign because it's only the magnitude that matters here
%F_out is divided by 2 because there are 2 jaws, each of which is receiving the same amount of work
%F_out_array = -eta * F_out_array/2;
F_out_array = -eta * F_out_array;
%Plot output force versus angle of rotation:
figure(5), plot(alpha_deg_array, F_out_array, -, 'LineWidth', line_width)
title('Output Force vs. Angle of Rotation', 'FontWeight', 'bold")
xlabel('Angle of Rotation (deg.)"), ylabel("Output Force (Ibs.)")
grid on, axis([.1 alpha_max_deg 0 8*10"2]) %Manually set axes for better plot viewing

%Plot output force versus angle of rotation along with cam follower capacity limits

figure(6), plot(alpha_deg_array, F_out_array, -, 'LineWidth', line_width), hold on

follower_lim = alpha_deg_array .* 0 + follower_lim; %Create follower limit array to speed up computation
plot(alpha_deg_array, follower_lim, 'r-, 'LineWidth', line_width) %Add follower limit to the plot

title('Force vs. Angle of Rotation’, 'FontWeight', 'bold")

xlabel('Angle of Rotation (deg.)"), ylabel('Force (Ibs.)")

legend('Output Force Capacity', 'Cam Follower Structural Limit', 'Location’, 'Best') %Generate legend
grid on, axis([.1 alpha_max_deg 0 4000]) %Manually set axes for better plot viewing

118

%Output maximum and minimum forces to the Command Window

fprintf(\nMaximum Output Force: %.4g Ibs\n', max(abs(F_out_array))) %Output max force (Ibs)

%Minimum force corrsponds to the asymptote at theta = 0, so min() can't be used

[M, N] = size(F_out_array); %Find the size of the array

F_out_min = abs(F_out_array(N)); %Find the output force corresponding ot the index & divide by 2
fprintf('Minimum Output Force: %.6g Ibs\n', F_out_min) %Output min force (Ibs)

%Plot pressure angle versus angle of rotation:

gamma_deg_array = gamma_array * 180/pi; %Convert array of pressure angles to degrees (deg.)
figure(7), plot(alpha_deg_array, gamma_deg_array, -, 'LineWidth', line_width)

title('Pressure Angle vs. Angle of Rotation', 'FontWeight', 'bold")

xlabel('Angle of Rotation (deg.)"), ylabel('Pressure Angle (deg.)")

grid on, axis([.1 alpha_max_deg -10 75]) %Manually set axes for better plot viewing

%Generate plot of vector components of cam disk output force capacity:

%Note: F_out_array has already been switched to pos. & divided by 2 at this point

F_out_x_array = F_out_array .* sin(gamma_array); %Determination of the force capability in the x-direction (Ibs)
F_out_y array = F_out_array .* cos(gamma_array); %Determination of the force capability in the x-direction (Ibs)
figure(8), plot(alpha_deg_array, F_out_array, -, 'LineWidth', line_width), hold on

plot(alpha_deg_array, F_out_x_array, 'g-', 'LineWidth', line_width), hold on

plot(alpha_deg_array, F_out_y_array, 'r-', 'LineWidth', line_width)

title('Directional Force Capabilities vs. Angle of Rotation', 'FontWeight', 'bold")

xlabel('Angle of Rotation (deg.)"), ylabel('Force (Ibs.)")

legend(F_r_o I I e r,'F_r_a i I','F_j_a_w', 'Location’, 'Best’)

grid on, axis([.1 alpha_max_deg 0 5*10"2]) %Manually set axes for better plot viewing

%Generate plot of vector components of cam disk output force based on external follower load:
F_Lo_array = -Lo./(cos(gamma_array));

F Lo x_ array = F_Lo_array .* sin(gamma_array);

F Lo y array = F_Lo_array .* cos(gamma_array);

figure(9), plot(alpha_deg_array, F_Lo_array, -, 'LineWidth', line_width), hold on
plot(alpha_deg_array, F_Lo_x_array, 'g-', 'LineWidth', line_width), hold on
plot(alpha_deg_array, F_Lo_y_array, 'r-', 'LineWidth', line_width)

title('Directional Reaction Forces vs. Angle of Rotation', 'FontWeight', 'bold’)

xlabel('Angle of Rotation (deg.)"), ylabel('Force (Ibs.)")

legend('Normal Force', 'X-Dir. Force', 'Y-Dir. Force', 'Location’, 'Best)

grid on, axis([.1 alpha_max_deg -25 25]) %Manually set axes for better plot viewing

%Generate plot of factor of safety of track roller based on jaw closing force:
FOS = follower_lim ./ F_out_array; %Factor of safety (unitless)
figure(10), plot(alpha_deg_array, FOS, ', 'LineWidth', line_width), hold on
title('Track Roller FOS vs. Angle of Rotation', 'FontWeight', ‘bold’)
xlabel('Angle of Rotation (deg.)"), ylabel('Factor of Safety')

grid on, axis([67.5 alpha_max_deg 0 7]) %Manually set axes for better plot viewing
if excel, %If excel is set to logical true...
xlswrite('Position Data.xls', time', 'MATLAB', 'A1:A5411") %Send time data to spreadsheet

xlswrite('Position Data.xIs', alpha_deg_array', 'MATLAB', 'B1:B5411")%Send angle data to spreadsheet

xlswrite('Position Data.xIs', y_rot_array', 'MATLAB', 'D1:D5411") %Send position data to spreadsheet

xlswrite('Position Data.xls', vel_array', 'MATLAB', 'E1:E5411") %Send velocity data to spreadsheet

xlswrite('Position Data.xls', accel_array', 'MATLAB', 'F1:F5411") %Send acceleration data to spreadsheet

xlswrite('Position Data.xIs', F_out_array', 'MATLAB', 'G1:G5411") %Send output force data to spreadsheet
end

if time_plots, %If time_plots is set to logical true...
%Plot position, velocity, and acceleration curves vs. time
figure(11), plot(time, y_rot_array, -, 'LineWidth', line_width) %Plot jaw displacement

title('Follower Displacement vs. Time', 'FontWeight', 'bold")
xlabel('Time (s)'), ylabel('Follower Displacement (in.)")
grid on, axis([0 time_last .4 2]) %Manually set axes for better plot viewing

figure(12), plot(time, vel_array, '-', 'LineWidth', line_width)

title('Jaw Velocity vs. Time', 'FontWeight', 'bold") %Plot jaw velocity

xlabel(‘'Time (s)"), ylabel('Jaw Velocity (in./s)")

grid on, axis([0 time_last -.25 0]) %Manually set axes for better plot viewing
figure(13), plot(time, accel_array, -, 'LineWidth', line_width) %Plot jaw acceleration

title('Jaw Acceleration vs. Time', 'FontWeight', 'bold’)
xlabel('Time (s)"), ylabel("Jaw Acceleration (in./s"2)")

119

grid on, axis([.01 time_last -.2 0]) %Manually set axes for better plot viewing

figure(14), plot(time, F_out_array, '-', 'LineWidth', line_width) %Plot jaw force capacity

title('Output Force vs. Time', 'FontWeight', 'bold’)

xlabel('Time (s)'), ylabel(*Output Force (Ibs.)")

grid on, axis([0 time_last 0 5*10"4]) %Manually set axes for better plot viewing

figure(15), plot(alpha_deg_array, F_out_array, '-, 'LineWidth', line_width), hold on

plot(alpha_deg_array, follower_lim, 'r-', ‘LineWidth', line_width) %PIot jaw force capacity with follwer limits

title('Force vs. Angle of Rotation', 'FontWeight', 'bold")

xlabel('Angle of Rotation (deg.)"), ylabel('Force (Ibs.)")

legend('Output Force Capacity', 'Cam Follower Structural Limit', ‘Location’, '‘Best')

grid on, axis([.1 time_last 0 4000]) %Manually set axes for better plot viewing
end

120

Appendix C

Additional Jaw Performance Metrics

As stated in Chapter 5, both MATLAB and CAD analysis featwee used
to generate plots of position, velocity, and acceleration. Datatsp@iom both
programs were exported to Excel and were subsequently plotted elogeiinese
plots are shown below.

The CAD software was only capable of plotting these variables as functions of
time. To make the necessary conversion, the known angular posisomu#plied
by a constant angular velocity of 139 to produce time. This rotation rate
corresponds to that observed when powering the hand roll motor with therRange

boards while applying no external load.

MATLAB - CAD Position Data Comparison

L
o o N

14

- MATLAB
—— CAD

Position (in.)
[E=Y
=N

0.8 -
0.6 1
04 ‘ ‘
0 5 10
Time (s)

Figure C.1: Plot of follower displacement vs. time
based on MATLAB and CAD data.

121

MATLAB - CAD Velocity Data Comparison

-0.15

0
-0.05
2
£ -01
g —- MATLAB
S ——CAD
(=]
G
>

-0.2

-0.25

Time (s)

Figure C.2: Plot of follower velocity vs. time based on MATLAB and CAD data.

MATLAB - CAD Acceleration Data Comparison

0
-0.01
-0.02
-0.03
-0.04
-0.05 4
-0.06
-0.07 4
-0.08
-0.09

-0.1

—— MATLAB
—— CAD

Acceleration (in/s"2)

Time (s)

Figure C.3: Plot of follower acceleration vs. time based on MATLAB and CAD data.

122

Appendix D

End-Effector Structural Analysis and Test Data

Supplementary Sructural Analysis

Analyses were performed for all relevant structural failmaes. Different
types of stresses imposed on the various end-effector componentscassekd, and
the applicable equations are presented. All calculations performigdsiappendix
correspond to a maximum hand roll joint output torque of 144 Ib-ft (195 Niing
load, the component, and the FOS are then presented in Tables D.hthBrdugA
more detailed display of all the parameters used in the stalictatculations is
featured in Table D.5.

Track-roller loading and loads applied on the guied block bearingaadre

evaluated as those calculations were presented in Chapter 5.

D.1 Shear Stresses

The joint torque directly imposes a shear stress on the foljparnid-effector
components: the flange-adapter fastener ring, flange-cam diégkest, adapter-cam
disk fastener ring, and the cam disk itself.

Shear stresg)(is calculated in (D-1), wher€ is the applied torque, is the
distance from the rotation axis to the outer surface of the gaditl, is the polar
moment of inertia. Because the majority of the end-effectopooents contained
cross-sections more complicated than basic circles and reegangdments of inertia

were found with CAD analyses.

123

r =¥ (D-1)

p

Table D.1: Shear stress summary.

Component T(ps) | FOS
Flange-Adapter Fastener Ring 2327.3 | 8
Flange-Cam Disk Adapter 119.6 | 184
Adapter-Cam Disk Fastener Ring | 2741.7 | 7
Cam Disk Rear 116.0 | 190
Cam Disk Front (w/ grooves) 131.7 | 167

D.2 Bending Stresses

The horizontal force component in the cam follower force vector induces a

bending moment on the side mounting brace. Each guide rail is impacted by one half

of the total force value of 120.1 Ib. This value is further reduced by an additional
factor of 2 due to the connector plates which stabilize the guide rails. The togal for
acting on each of the rails is therefore 30.0 Ib.

This force value is used to calculate the bending morivenCombining this
with the maximum distance from the neutral axis to the plate edged the area

moment of inertial, the bending stressy is determined using Equation D-2.

o, = M lc (D-2)

Table D.2: Bending stress summary.

Component o (psi) | EOS
Side Mounting Brace 45400 | 9

D.3 Tensile Stresses
The Y. in-thick aluminum connectors are used to stabilize the guide ra
These objects are in tension due to the opposing forces being apphedéspective

rails. The equation for the tensile stres} ljeing exerted on the members is shown

124

in Equation D-3, wher& andA represent the applied load and cross-sectional area,

respectively.

F
Ut :K (D'3)

Table D.3: Tensile stress summary.

Component o (psi) | FOS
Guide Rail Connector 96.8] 413

D.4 Compressive Stresses
The rail forces produce compression between the guide blocks and diee gui
rails. This stress is experienced by the guide blocks, guilde aad Delrin thrust
bearings. As there are four sets of thrust bearings onsedelof the guide block, the
load is divided by four for these components.
The equation for compression is identical to that shown in Equation D-3.
Table D.4: Compressive stress summary.
Component o (psi) | EOS
Thurst Bearings 58.6 17

Guide Rail 25.9 1544
Guide Block 72.3 | 554

D.5 Stresses Caused by Jaw Closure

When the jaws shut upon an object, the jaws pitch in opposite directions. This
induces a bending moment on the seven screws connecting theojadie quide
blocks. Additionally, a radial load is applied to four of the eightibhga on each of
the guide blocks. The load value for these calculations is takes 87.7 Ib, the jaw
closing force at the closed position.

Equation D-2 is used to find the bending stress in the screws, anpipliexa

load is assumed to be spread across each of the bearings equally.

125

Table D.5: Jaw closure-induced tress summary.

Component Load |EOS
Guide Block-Jaw Attachment Fasteners | 1049.5 psi| 38
Ball Bearings 15.01b 22
D.6 Sructural Analysis Data Table
Table D.6: Structural analysis data.
Load Component T (Ib-ft) T (Ib-in) r (in) I (in* z (psi
Shear Caused Directly Flange-Adapter Fastener Ring 144 1728 2.3 1.7077 2327.3
by Joint Torque Flange-Cam Disk Adapter 144 1728 2.3 33.225 119.6
Adapter-Cam Disk Fastener Ring 144 1728 1.85 1.166 2741.7
Cam Disk Rear 144 1728 2.3 34.27 116.0
Cam Disk Front (w/ grooves) 144 1728 2.3 30.175 131.7
Load Component E (Ib) x_(in) M (lb-in) c (in) L(in")
Bending Caused by Side Mounting Brace 30.025 7.079 212.54698] 0.1875 | 0.008778
Track Roller Rail Force
Load Component E (Ib) A(in
Tension from Rail Force |Guide Rail Connector 30.025 0.3101
Load Component F Ib) | quantity | F,)(b)] A (in®)
Compression Caused by |Thurst Bearings 60.05 4 15.0125 | 0.2577
Track Roller Rail Force E (Ib) A (in
Guide Rail 60.05 2.318
Guide Block 60.05 0.8309
Load Component Fapg) (Ib x(n) | M(bdn) | c(n) [LnD)
Bending Caused by Guide Block-Jaw Fasteners 8.578571429 4.75 40.748214] 0.1875 0.00728
Jaw Closing Force E Ib
Ball Bearings 60.05
Load Component Material Oyi Si T si FOS
Shear Caused Directly Flange-Adapter Fastener Ring 18-8 Stainless| 31200 18096 8
by Joint Torque Flange-Cam Disk Adapter Al 6061 40000 22000 184
Adapter-Cam Disk Fastener Ring | 18-8 Stainless 31200 18096 7
Cam Disk Rear Al 6061 40000 22000 190
Cam Disk Front (w/ grooves) Al 6061 40000 22000 167
Load Component o (psi) Material | Oyi Si EOS
Bending Caused by Side Mounting Brace 4540.049876 | Al 6061 40000 9
Track Roller Rail Force
Load Component o (psi) Material | & Si EOS
Tension from Rail Force |Guide Rail Connector 96.82360529 Al 6061 40000 413
Load Component o (psi) Material | o Si EOS
Compression Caused by |Thurst Bearings 58.25572371 Delrin 1000 17
Track Roller Rail Force o (psi Material Oyiei (PST) FOS
Guide Rail 25.90595341 Al 6061 40000 1544
Guide Block 72.27103141 Al 6061 40000 553
Load Component o (psi Material | Oyiew (PSI) EOS
Bending Caused by Guide Block-Jaw Fasteners 1049.490409 | Al 6061 40000 38
Jaw Closing Force Quantity (Fapp)i (b)| E si FOS
Ball Bearings 4 15.0125 332 22

126

End-Effector Closing Force Test Data

Table D.7: End-effector closing force test data.

Input Current (A) | Motor Current (A) [Measured Force (Ibs) | Actual Force (Ibs) | Theoretical Force (Ibs)
0.75 0.01 3.81 19.05 24.39
0.75 0.01 5.04 25.2 24.39
0.75 0.01 4.9 245 24.39
0.75 0.01 3.99 19.95 24.39
0.75 0.01 4.41 22.05 24.39
0.76 0.02 8.7 435 48.69
0.76 0.02 8.78 43.9 48.69
0.76 0.02 9.05 45.25 48.69
0.76 0.02 8.78 43.9 48.69
0.76 0.02 8.62 43.1 48.69
0.77 0.03 11.75 58.75 72.99
0.77 0.03 11.52 57.6 72.99
0.77 0.03 12.24 61.2 72.99
0.77 0.03 12.22 61.1 72.99
0.77 0.03 12.43 62.15 72.99
0.78 0.04 13.47 67.35 97.29
0.78 0.04 13.61 68.05 97.29
0.78 0.04 13.69 68.45 97.29
0.78 0.04 14.21 71.05 97.29
0.78 0.04 14.57 72.85 97.29
0.79 0.05 16.17 80.85 121.59
0.79 0.05 16.86 84.3 121.59
0.79 0.05 16.98 84.9 121.59
0.79 0.05 17.32 86.6 121.59
0.79 0.05 17.15 85.75 121.59

127

Appendix E

Sample Container Buoyancy Analysis

The objective of this analysis is to determine the wet weight sample
container and the quantity of syntactic foam that would be requireentter that
container neutrally buoyant.

The net force of an object is given by the buoyancy relation shown in (E-1).

Fre =M -p Vg (E-1)

The weight of the submerged object is represente-gywhile p-V-g is the

weight of the displaced water. To determine the weight, tlaufacturer

specifications were converted from 11.956 Ib/ft to fb/in

ppvc =Vm - l I’SA\ - 11956bm — 0498”:)_2 (E'2)
(L2in) EEZ Lo75in? —9.492n2)} n

The mass of the PVC was found by multiplying this densityhieytotal PVC

volume, which is 244.4 in(0.141 ff).
Ib 3
Mpye =(pwc)[(vwc)=(.o498jj E(244.4m)=12.17Ibm (E-3)
n

The buoyancy calculations are performed for salt water gesisgea-level as
that is where the sample containers will first be testétis value corresponds to
1.98 slugs/ft (1020 kg/m). At a depth of 6000 m, the water density increases

marginally to 2.04 slugsffi(1050 kg/n).

dlugs ft
Fro =12171b; —(1.98 ﬂg JE(O.letS)EﬁsZ.Z?j: 316b; (E-4)

128

This value signifies that the PVC is 3.16 Ib negatively buoyant. &Riepgethe
procedure for the stainless steel screws and washers produ@editonal wet
weight of 0.31 Ib, making the total net weight of the asse/®dl¥lb.

Calculations are completed to determine how much foam would be required to
make the container neutrally buoyant. The density of AZ (Adpaagic Zone) deep
water foam that would potentially be used is 34 Ib/ftvith that value, it is possible

to solve for the required foam volume.

V foam = 1 Foe N ~ 3470 =01171t® =2020in°* (E-5)
I Wroan"Pn20) 355 Mihag 1P _g37 10
s? ft® ft®

Thus, 202 in® of syntactic foam would be required to compensate for the

3.47 Ib net force of the sample container assembly.

129

Appendix F
SAMURAI Inverse Kinematics

The preexisting inverse kinematics software composed by Cargnaloys
equivalent angle-axis representation to locate Frame 4 fronoohd&ip [27]. In the
updated program, the user inputs sample container position and orientaiticin ave
then used to specify tool tip position and generate a vector pointifanoe 4. In
(F-1), °P, is the position of Frame 4 relative to Frame 0, #ndis that of the tool
frame relative to Frame 4°P; and%/R are the user-input sample container position
and orientation, respectively. These values double as the tool tipitoaat the tool

frame rotation matrix relative to the base frame.
°p, =R, - PRAR, (F-1)
After determining the location of Frame 4, a geometric appraaemployed
to determine the joint angles of the first three joidts €., 63) [27]. Recalling that

Joint 1 is the only joint that produces yawing motién,is found by taking the

arctangent of the y-positiofiy§) divided by the x-position’%s), as shown in (F-2).

6, = atar{i—x} = atar{ Zz(é.ll))] (F-2)

The position of Frame 2 relative to the base frafife) (is a function off;

exclusively and is known once (F-2) has been solved. Equation F-3 cabehen

applied to find’P., the location of Frame 2 relative to Frame 4.

*P,="P, =P, (F-3)

130

The distance between Frames 2 and 4 in the x-y plane is sgt aodr; is
defined as the z-separation between the joints. The total destamce between the

frames () can be found with Equations F-4 through F-6.

ry =V (B + (2ya) = 2R (20747, (20 (F-4)
r,=2z,=%P,(31) (F-5)
r=ylry 2+ (1) (F-6)

These variables and others to be discussed can be seen in Figure F.1.

Figure F.1: lllustration of inverse kinematics solution variables.

The two manipulator linksl; andL,, andr represent the three sides of a
triangle. The angle opposite sidés defined a® and is calculated using the law of

cosines in (F-7).

2_,2_, 2
5:aco{—r L L, } (F-7)

_2|:L1 DLZ

131

Examining the relationship at Joint 3 in Figure F.1, it is obseivad; ando
minusy sum torn radians. y represents the geometric pitch from Joint 3 to Joint 4,
which is constant regardless of manipulator configuration. Equation F-8 solvgs for

O;=m-0+y (F-8)

In Figure F.1,7 is the angle in the triangle opposite lihk. Another

application of the law of cosines to solve for this angle yields (F-9).

P2 4212
A=aco - 71 =2 F-9
{ 20, [(F-9)

Oncef is determined by taking the arctangentrgf,y, 6, is found using
(F-10).
6, =B+ (F-10)
With the determination of; 6, and#s, it is possible to calculate rotation

matrices through Frame 3. This is represented in (F-11).
IR=RIRER (F-11)
As %R is the user-input sample container position &fis now known R

can be calculated with (F-12).

2r=(9R)]"FR (F-12)
%R is composed of the product of tAdR, %R, and>R matrices, the latter
component resulting from the fact tHgR and;R are equivalent. These matrices are
functions off,, s, andfs, and this is represented in (F-13).
cf, -s6, 0|cl; -sf; 0| cl -sb5 O

PR(6,.65,60,)= RERFR=| 0 O 10 o0 -1f O 0o 1| (F-13)

132

These respective matrices were found using symbolic variabtas forward

kinematics portion of the program. Equation F-14 shows the product of these

matrices.

s is found by isolating thés sine terms in the first two columns of the second
row and dividing the result by the cosine term from the third coluirhis process is

illustrated in (F-15).

cOs cOs

65 = atar{\/(s%wﬁ)2 (50556, } = atar(%j (F-15)

With sin(ds) known, thef, terms in the third column can be isolated, an

calculated by taking the arctangent of the parameters as shown in (F-16).

56,565
s6, s@
6, =ata —>—— [=atan —~ -
, =ata = 6,58, aar{ceJ (F-16)

0s is determined in a similar mannerag though the terms of interest in this
case are the first and second columns of the secondéas computed in (F-17).

6, =ata ~ S0 =ata S0
6 — Sesces - C¢96 (F'l?)

While 0¢ does not correspond to a rotating joint, it represents the relative

orientation between the end effector and the sample container.xdfple, ifds is

133

equal to 45°, it signifes that the sample container must be rotated défer for the
jaws to properly align with the sample container lid.
Having calculateds, all of the joint angles have been determined and can be

input to the forward kinematics software to generate the desired matrice®tnd pl

134

Appendix G
SAMURAI Range of Motion Determination

The manipulator joint ranges, previously detailed in Table 7.2, arecheqed

in Table G.1.
Table G.1: SAMURAI joint ranges of motion.
Joint Number Range of Motion (deg.
1 (Shoulder Yaw) 220
2 (Shoulder Pitch) 225
3 (Elbow Pitch) 210
4 (Elbow Roll) 54
5 (Wrist Pitch) 215
6 (Wrist Roll) 54
Joint 1 (Shoulder Yaw):

The shoulder yaw joint contains a wedge-shaped hard stop in the outer
housing measuring 95 This works in conjunction with a 4hard stop located in the
support bearing. This 45° hard stop limits the joint motion by 22.5° on eitteiof
the outer housing, or 45° total. Adding this to the 95° stop in the outer hoyielithg

140° total. Thus, the total range of motion of the shoulder yaw joint is 220°.

Joint 2 (Shoulder Pitch):

The shoulder pitch joint has no hard stops internal to the joint. Rather, i
relies on the hard stops associated with the manipulator itse&dfedSanother way,
the joint will operate until it forces the arm to collide witkelf. This is true of the
other two pitch joints as well. To determine the range of motiorartinewas driven
until it triggered the OCP soft stop, and pictures were tak#émeae locations. Lines

were drawn on the images representing various axes, and a torowas used to

135

determine the approximate range of motion. The images for2ai® shown below

in Figure G.1.

There are several limitations associated with this methadt, Fhe resolution
of the protractor imposes accuracy restrictions. Additionally ptistioning of the
camera will affect the perspective and therefore the anglee positioning of the
Marman bands will produce different angles as the claspacitether out than the
bands themselves. Even the user-adjusted OCP limits will #ffeeingle as a higher
limit will cause the joint to “push” harder into the manipulator. aAsesult of these
factors, the joint angles were conservatively estimated todheest5°. For Joint 2,

the range of motion was determined to be 225°.

Joint 3 (Elbow Pitch):
The range of motion for Joint 3 was found in a manner identiclatoused
for Joint 2. The images used to take angle measurements are bletow in

Figure G.2. With these images, the Joint 3 range of motion was found to be 210°.

136

<\

2 | L
Figure G.2: Elbow pitch joint at extreme pitch angles.

Joint 4 (Elbow Roll):
Joint 4 does contain hard stops, but idlers allow it to rotate beyondt@60°
540°. In the MATLAB scripts that generate the work envelope, tHisvwiimited to

360° as the extra 180° does not extend the workspace.

Joint 5 (Wrist Pitch):
The range of motion for Joint 5 was found in a manner identiclatoused
for Joints 2 and 3. The images used to take angle measuremerghoarn in

Figure G.3. These images yielded a Joint 5 range of motion of 215°.

N : "
Figure G.3: Wrist pitch joint at extreme pitch angles.

Joint 6 (Hand Roll):
The hand roll joint functions in a manner identical to that of thevelroll

joint. Its range is also 540°.

137

Appendix H
MATLAB Kinematics Files

The MATLAB kinematics software is composed of 12 different functioAs

brief description of the role of each of these functions is provided below.

Overview of the Different MATLAB Kinematics Functions:

astepgui.m

astepgui.m represents the script for the user interface. Fhahere the
software reads the user input data, searching for active cheskbagerecording
values for the joint angles, sample container positions, and workgeaatons.
After reading-in all of these parameters, astepgui.m sehé@s settings to

kinematics.m.

kinematics.m

kinematics.m is the controller of the kinematics software. It collextsfdom
astepgui.m and distributes variables to their appropriate locatidwusitionally,
while DH parameters appear in several locations, this is where thegearérst.

There is an option in kinematics.m to use symbolic or numeric DH
parameters. The GUI (astepgui.m) does not allow for this optfdherk is desire to
see the matrices displayed in symbolic form, it must be astd¢bsough kinematics.
To use this feature, set Line 11 to 1 (variadyta to logical true).

After receiving parameters from astepgui.m, kinematics.m aamuates with
inv_kin.m, TransformMat.m, TransformW.m, TransformPos.m, Outputs.m,

armplot.m, and work.m.

138

inv_kin.m
inv_kin.m receives the user-input sample container positions and orientations
The function applies inverse kinematics in the manner desciibé&thapter 7 and

returns the joint angles to kinematics.m.

TransformMat.m

TransformMat.m receives the DH parameters from kinematicamd
calculates the transformation matrices based on these valst calculating a
transformation matrix, it breaks it up into a rotation matrix amesition vector. It
returns these matrices and vector to kinematics.m. It caorpethie calculations in
either symbolic or numeric form.

kinematics.m calls TransformMat.m in a for loop. Thus, matrices a

computed joint to joint, all throughout the manipulator.

TransformW.m

TransformW.m receives the individual rotation matrices from kineshat
and uses them to calculate the cumulative rotation parametasharm position. It
then returns the cumulative rotation matrices (now called W ceajri to

kinematics.m.

TransformPos.m
TransformPos.m receives the W rotation matrices determibyd
TransformW.m and position vectors calculated by TransformMat.m. Tdrageal

positions were local. To make them absolute, the cumulative W cemtdre

139

multiplied by individual position vectors to get the vector change in position from one
frame to the next. These vectors are added together tbegabsolute position of
each frame. The changes in position and absolute positions araedetior

kinematics.m.

Outputs.m

Outputs.m takes all of the calculated parameters (theta, arrenatrices, R
matrices, p vectors, and other calculated arrays) along withutoabntrol settings
from kinematics.m. Outputs.m will then output the desired matracdsetcommand
window. Assuming symbolic variables are not being used, it wil géserate a data
file called MatrixData.dat, which gets saved in the activectbrg. The data file
contains the joint angles, rotation matrices, position vectors, ladadditional
important matrices. The data file gets created automaticabardless of user

inputs.

armplot.m

armplot.m is one of the most complicated of all the kinematicsituct It
reads in the joint angles, transformation matrices, and ploingsettfrom
kinematics.m. After redefining the DH parameters, it progsedsa/n the arm using
the transformation matrices. The matrices are used to deteth®e next significant
point, which is not necessarily the next coordinate frame. UWkagurrent point and
the next one, the script connects the two with a line, and plots s atresch of the
points. Changes in the user-input joint angles will produce differansformation

matrices, which will generate different arm positions.

140

armplot.m contains numerous if/else statements. These arededclto
account for any possible configuration. For example, in one configaretame 4
may have a greater x-coordinate than Frame 2, but in anothaticsit the case may
be reversed. A single array in MATLAB will not account for bsitiiations and will
produce an error for one of the scenarios. The iflelse stateradatv for all
possibilities.

At the end of the program, armplot.m plots an isometric imagkeo&tm in
addition to 2D models in all planes, producing four total plotsspriéad is selected

on the GUI, it will then space the four plots out around the screen.

work.m

work.m is the function designed to plot the SAMURAI workspace. The
majority of the file functions similarly to armplot.m, but work.mmntains embedded
loops and calculates the tool tip position at the end of the work envelbpese
positions are stored in an array, which is continually growing. iwhe loops have
been completed, the points are graphed in the same plots generatadpibyt.m.
The resolution of the workspace depends on the number of iterations, but with

embedded loops, a very high resolution may require significant computing time.

TransformWork.m

TransformWork.m serves an identical function to TransfromMat.m, but it
performs strict numeric calculations (no symbolic expressions) agoes not
disassemble the transformation matrices into position vectors aattbmotatrices.

This function was created in the interest of computing efficiency.

141

RO3testf.m
RO3testf.m is used to find the rotation matrix from Frame 0amEr3 for use
in the inverse kinematics function. It receives the DH paramsated joint angles for

Joints 1, 2, and 3 and retuthR to inv_kin.m.

sample_container.m

sample_container.m receives the user-input sample container position a
orientation and combines these values with the known sample contaameetge to
generate numeric representations of the cylinders as wiledscation of the upper
surface. The numeric cylinder representations are ultimatattedlusing armplot.m.
The location of the upper surface is used for the manipulator popbsition if the

user selects the sample container pre-insertion option.

142

H.1 Function astepgui.m

function varargout = astepgui(varargin)
% ASTEPGUI M-file for astepgui.fig
% ASTEPGUI, by itself, creates a new ASTEPGUI or raises the existing
% singleton*.
%
% H=ASTEPGUI returns the handle to a new ASTEPGUI or the handle to
% the existing singleton*.
%
% ASTEPGUI(CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in ASTEPGUI.M with the given input arguments.
%
% ASTEPGUI('Property','Value',...) creates a new ASTEPGUI or raises the
% existing singleton*. Starting from the left, property value pairs
% are
% applied to the GUI before astepgui_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. Allinputs are passed to astepgui_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help astepgui
% Last Modified by GUIDE v2.5 15-Aug-2008 19:39:25
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name"', mfilename, ...
'gui_Singleton’, gui_Singleton, ...
'gui_OpeningFcn', @astepgui_OpeningFcn, ...
'gui_OutputFcen', @astepgui_OutputFcn, ...
'gui_LayoutFen',], ...
‘gui_Callback’, []);

%set(figure(astepgui), 'units’, 'normalized', ‘outerposition’, [.25 .25 .15 .375])
%set(figure(astepgui), 'position’, [.25 .25 .15 .375])

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before astepgui is made visible.

function astepgui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to astepgui (see VARARGIN)

% Choose default command line output for astepgui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes astepgui wait for user response (see UIRESUME)
% uiwait(handles.figurel);

143

% --- Outputs from this function are returned to the command line.
function varargout = astepgui_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Forward kinematics inputs (joint_angles)
theta_1_deg = handles.edit1;
theta_2_deg = handles.edit2;
theta_3_deg = handles.edit5;
theta_4_deg = handles.edit6;
theta_5_deg = handles.edit7;
theta_6_deg = handles.edit8;

%Workspace joint angle iteration size
workspace_iter = handles.edit9;

%Inverse kinematics inputs (sample container pos. and orientatation)
X_sc = handles.edit10;

y_sc = handles.edit11;

z_sc = handles.edit12;

pitch_sc_deg = handles.edit13;

roll_sc_deg = handles.edit14;

yaw_sc_deg = handles.edit15;

%Use if statements to account for intial case when GUI outputs strings as substitutes for logic values
%We want the following varialbes to be 0 or 1, and the if statements make this happen

if handles.checkbox1 ~= 1, %Display rotation matrices in CW
rot = 0;

else
rot = handles.checkbox1,;

end

if handles.checkbox2 ~= 1, %Display position matrices in CW
pos =0; else pos =handles.checkbox2; end

if handles.checkbox3 ~= 1, %Display transformation matrices in CW
trans = 0; else trans = handles.checkbox3; end

if handles.checkbox4 ~= 1, %Display all relevant matrices in CW
disp =0; else disp = handles.checkbox4; end

if handles.checkbox5 ~= 1, %Display "important" matrices in CW

%Matrices include P04, R03, and R36
mat_impt = 0; else mat_impt = handles.checkbox5; end

if handles.checkbox6 ~= 1, %Spreads plots across the desktop, making them all visible at once
spread = 0; else spread = handles.checkbox6; end
if handles.checkbox7 ~= 1, %Hides the upper Jaguar clyinder and the support beam
%Cylinder sometimes obscures the plot
jaguar = 0; else jaguar = handles.checkbox7; end
if handles.checkbox8 ~= 1, %Uses plot settings for laptop (single window)
laptop = 0; else laptop = handles.checkbox8; end
if handles.checkbox9 ~= 1, %Uses plot settings for iMac (dual monitors)
imac = 0; else imac = handles.checkbox9; end
if handles.checkbox11 ~=1, %Activate workspace plot
workspace = 0; else workspace = handles.checkbox11; end
if handles.checkbox12 ~=1, %Activate SAMURAI plots
plots=0; else plots=handles.checkbox12; end
if handles.checkbox13 ~= 1, %Activate multi-colored links in plots
colors =0; else colors = handles.checkbox13; end
if handles.checkbox16 ~= 1, %Display sample containers coords. in CW
containers = 0; else containers = handles.checkbox16; end
if handles.checkbox17 ~=1, %Display tool tip position in CW

144

tool_tip =0; else tool_tip = handles.checkbox17; end

if handles.checkbox18 ~= 1, %Activate inverse kinematics
inverse = 0; else inverse = handles.checkbox18; end

if handles.checkbox19 ~= 1, %Display Joint Angles
ang_disp =0; else ang_disp = handles.checkbox19; end

if handles.checkbox20 ~= 1, %Display SAMURAI After Sample Container Insertion
insert =0; else insert = handles.checkbox20; end

if handles.checkbox21 ~= 1, %Display SAMURAI Pre-Sample Container Insertion

pre_insert =0; else pre_insert = handles.checkbox21; end

%Send variables and logic values to kinematics code (primary code)
kinematics(theta_1_deg, theta_2_deg, theta_3_deg, theta_4_deg, theta_5_deg,...
theta_6_deg, plots, rot, pos, trans, disp, mat_impt, spread, jaguar, laptop, imac,...
workspace, workspace_iter, colors, containers, tool_tip,...
X_SC, Y_SC, z_sc, pitch_sc_deg, roll_sc_deg, yaw_sc_deg, inverse, ang_disp,...
pre_insert, insert)

%%%Theta 1%%%
function editl_Callback(hObject, eventdata, handles)
% hObject handle to editl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String’) returns contents of editl as text
% str2double(get(hObject,'String')) returns contents of editl as a double
NewStrVal = get(hObject, 'String’);
NewVal = str2double(NewStrVal);
handles.editl = NewVal;
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function editl_CreateFcn(hObject, eventdata, handles)
% hObject handle to editl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc

set(hObject,'BackgroundColor','white");
else

set(hObject,'BackgroundColor',get(0, defaultUicontrolBackgroundColor"));
end

%%%Theta 2%%%
function edit2_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'String’);
NewVal = str2double(NewStrVal);
handles.edit2 = NewVal;
guidata(hObject, handles);
function edit2_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

%%%Theta 3%%%
function edit5_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
handles.edit5 = NewVal;
guidata(hObject, handles);
function edit5_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

%%%Theta 4%%%
function edit6_Callback(hObject, eventdata, handles)

145

NewStrVal = get(hObject, 'String’);
NewVal = str2double(NewStrVal);
handles.edit6 = NewVal;
guidata(hObject, handles);
function edit6_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0, defaultUicontrolBackgroundColor'));
end

%%%Theta 5%%%
function edit7_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
handles.edit7 = NewVal;
guidata(hObject, handles);
function edit7_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

%%%Theta 6%%%
function edit8_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
handles.edit8 = NewVal;
guidata(hObject, handles);
function edit8_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

%%%Activate Manipulator Plots%%%

% --- Executes on button press in checkbox1.

function checkboxl1_Callback(hObject, eventdata, handles)

% hObject handle to checkboxl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of checkbox1
NewStrVal = get(hObject, 'Value');

handles.checkbox1 = NewStrVal;

guidata(hObject, handles);

%Display Position Matrices:

function checkbox2_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'Value');

handles.checkbox2 = NewStrVal; guidata(hObject, handles);

%Display Transformation Matrices:

function checkbox3_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox3 = NewStrVal; guidata(hObject, handles);

%Display All Relevant Matrices:

function checkbox4_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'Value');

handles.checkbox4 = NewStrVal; guidata(hObject, handles);

%Display "Important" Matrices:

function checkbox5_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox5 = NewStrVal; guidata(hObject, handles);

%Spread Plots Across Desktop:

146

function checkbox6_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');
handles.checkbox6 = NewStrVal; guidata(hObject, handles);

%Hide the Jaguar Upper Cylinder:

function checkbox7_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'Value');

handles.checkbox7 = NewStrVal; guidata(hObject, handles);

%Use Plot Settings for Laptop (Windows)

function checkbox8_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox8 = NewStrVal; guidata(hObject, handles);

%Use Plot Settings for Imac

function checkbox9_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox9 = NewStrVal; guidata(hObject, handles);

%Activate Workspace Plots

function checkbox11_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'Value');

handles.checkbox11 = NewStrVal; guidata(hObject, handles);

%Specify Workspace Joint Angle Iteration Size (User-Input Value)
function edit9_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
handles.edit9 = NewVal;
guidata(hObject, handles);
function edit9_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

%Activate SAMURAI Plots

function checkbox12_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox12 = NewStrVal; guidata(hObject, handles);

%Activate Plots with Multi-Colored Links

function checkbox13_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox13 = NewStrVal; guidata(hObject, handles);

%Display Sample Container Coordinates in CW

function checkbox16_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'Value');

handles.checkbox16 = NewStrVal; guidata(hObject, handles);

%Diplay Tool Tip Position in CW

function checkbox17_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'Value');

handles.checkbox17 = NewStrVal; guidata(hObject, handles);

%Sample Container X-Position:
function edit10_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
handles.edit10 = NewVal;
guidata(hObject, handles);
function edit10_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

147

%Sample Container Y-Position:
function edit11_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
handles.editll = NewVal;
guidata(hObject, handles);
function editl1_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0, defaultUicontrolBackgroundColor'));
end

%Sample Container Z-Position:
function edit12_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String’);
NewVal = str2double(NewStrVal);
handles.edit12 = NewVal;
guidata(hObject, handles);
function edit12_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0, defaultUicontrolBackgroundColor'));
end

%Sample Container Pitch:
function edit13_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
handles.edit13 = NewVal;
guidata(hObject, handles);
function edit13_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

%Sample Container Roll:
function edit14_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
handles.edit14 = NewVal;
guidata(hObject, handles);
function editl4_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

%Sample Container Yaw:
function edit15_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'String’);
NewVal = str2double(NewStrVal);
handles.edit15 = NewVal;
guidata(hObject, handles);
function editl5_CreateFcn(hObject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0, defaultUicontrolBackgroundColor"));
end

%Activate Inverse Kinematics:

% --- Executes on button press in checkbox18.

function checkbox18_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox18 = NewStrVal; guidata(hObject, handles);

148

%Diplay Joint Angles in Command Window:

function checkbox19_Callback(hObject, eventdata, handles)
NewStrVal = get(hObject, 'Value');

handles.checkbox19 = NewStrVal; guidata(hObject, handles);

%Display SAMURAI at Sample Container Insertion

function checkbox20_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox20 = NewStrVal; guidata(hObject, handles);

%Display SAMURAI Just Before Sample Container Insertion
function checkbox21_Callback(hObject, eventdata, handles)
NewsStrVal = get(hObject, 'Value');

handles.checkbox21 = NewStrVal; guidata(hObject, handles);

149

H.2 Function kinmatics.m

function kinematics(theta_1_deg, theta_2_deg, theta_3_deg, theta_4_deg, theta_5_deg,...
theta_6_deg, plots, rot, pos, trans, disp, mat_impt, spread, jaguar,...
laptop, imac, workspace, workspace_iter, colors, containers, tool_tip,...
X_SC, Y_SC, z_Sc, pitch_sc_deg, roll_sc_deg, yaw_sc_deg, inverse, ang_disp,...
pre_insert, insert)

%SAMURAI Kinematics - Central Function

%close all, clear all

%Control Settings:

sym =0; %Set to 1 to use symbolic variables (0 computes actual numbers)
if sym, %If symbolic variables are being used, use these settings...
disp = 0; %Set to 1 to display ALL matrices in CW (0 allows for individual settings)
rot=0; %Set to 1 to display rotation matrices in CW (0 hides values)
pos = 0; %Set to 1 to display position matrices in CW (0 hides values)
trans = 1; %Set to 1 to display transformation matrices (O hides values)
mat_impt = 0; %Set to 1 to display "important matrices": p04, R03, R36 (0 hides values)
containers = 0; %Set to 1 to display sampler container coordinates (0O hides values)
tool_tip = 0; %Set to 1 to display tool tip coordinates (0 hides values)
plots = 1; %Set to 1 to display manipulator plots (0 hides plots)
spread = 1, %Set to 1 to spread plots across window (0 stacks plots)
jaguar = 0; %Set to 1 to hide Jaguar upper cylinder (0 plots it)
axis5 = 0; %Set to 1 to plot joint 5 axis (0 hides it)
colors = 0; %Set to 1 to plot manipulator in colors (0 plots in all black)
workspace = 0; %Set to 1 to plot manipulator workspace (0 ignores plots)
laptop = 1; %Set to 1 if using laptop and want to see GUI (0 if using Mac)
imac = 0; %Set to 1 if using Imac and want to see GUI (1 if using Windows)

%Deactivate plot settings:
plots = 0; workspace =0; imac = 0; laptop = 0; theta_3 deg = 0; inverse = 0;
pitch_sc_deg =0; roll_sc_deg=0; yaw_sc_deg =0;
X_sc=0;y_sc=0;z_sc=0;

end

%There is a 90 deg. theta rotation from Frame 2 to Frame 3
%This is being accounted for here:
theta_3_deg = theta_3_deg-90;

pitch_sc = pitch_sc_deg * pi/180; %Convert sample container pitch to radians
roll_sc = roll_sc_deg * pi/180; %Convert sample container roll to radians
yaw_sc = yaw_sc_deg * pi/180; %Convert sample container yaw to radians

sc_plot = inverse; %Create variable for sample container plotting equal to inverse
if inverse, %If computations are to be for the inverse kinematics:
%Return theta array obtained via inverse procedure
[theta_1_deg, theta_2_deg, theta_3_deg, theta_4 deg, theta_5_deg, theta_6_deq]...
= inv_kin(containers, x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc,...
pre_insert, insert, sc_plot);
end

if ~sym,

%Assemble theta array (array of joint angles in degrees):

theta_deg = [theta_1_deg theta_2_deg theta_3_deg theta_4_deg theta_5_deg theta_6_deq];
end

if disp, %If display is logical true, turn on CW outputs for all matrices
rot=1;, pos=1; trans=1; mat_impt=1;

end

dof = 6; %Set number of degrees of freedom

nframes = dof; %Set number of coord. frames equal to DOFs

if sym, %If symbolic variables are being used:
%Declaration of Symbolic Variables

150

syms a0 al a2 a3 a4 a5
syms d1 d2 d3 d4 d5 d6
syms thetal theta2 theta3 theta4 theta5 theta6

%Table of D-H Parameters

alpha0 = 0; a0=0; dl=d1; thetal = thetal;

alphal = -pi/2; al=al; d2=0; theta2 = theta2;

alpha2 = 0; a2=a2; d3=0; theta3 = theta3;

alpha3 = -pi/2; a3 =a3; d4=d4, theta4 = theta4;

alpha4 = pi/2; a4=0; d5=0; theta5 = theta5;

alpha5 =-pi/2; a5=0; d6=0; theta6 = theta6;

theta = [thetal, theta2, theta3, theta4, theta5, theta6]; %Array of theta angles (sym)
else, %If actual numbers are being used:

%Table of D-H Parameters

alpha0 = 0; a0 =0; dl=.10795;

alphal = -pi/2; al = .1524; d2=0;

alpha2 = 0; a2 = .6096; d3=0;

alpha3 = -pi/2; a3 =.1143; d4 = .6096;

alpha4 = pi/2; a4 =0; d5=0;

alpha5b = -pi/2; ab=0; d6 =0;

theta = theta_deg * pi/180; %Convert theta array to radians (rad)
end

%Convert D-H Parmeters in Table into MATLAB Arrays

alpha = [alphaO, alphal, alpha2, alpha3, alpha4, alpha5]; %Create array of alpha angles (rad)
a=[a0, al, a2, a3, a4, a5]; %Array of "a" offset vectors

d =[d1, d2, d3, d4, d5, d6]; %Array of "d" offset vectors

for i = 1:nframes,
%TransformMat computes transformation, rotation, and position matrices
[T(C,50), RG,:0), P] = TransformMat(a(i),alpha(i),d(i),theta(i), sym); %Transformations from frame i to i-1
%Redefine variable names for matrices and output matrices to data file:
ifi==1, TL=T(,,i); RL=R(,:i); PL=P; end
ifi==2,T2=T(,,i); R2=R(,:i); P2=P; end
ifi==3, T3=T(,.,i); R3=R(,:i); P3=P; end
ifi==4,T4=T(,,i); R4 =R(,:,i); P4=P; end
ifi==5, T5 =T(:,:,i); R5 = R(:,:,i); P5 =P; end
ifi==6, T6 =T(:,:,i); R6 = R(:,:,i); P6 = P; end

end

[Wo0, W1, W2, W3, W4, W5, W6] = TransformW(R1, R2, R3, R4, R5, R6); %Get W
Transformations (W (i) = W(i-1)*R(i)

[dx1, dx2, dx3, dx4, x0, x1, X2, x3, x4] = TransformPos(WO0, W1, W2, W3, W4, W5, P1, P2, P3, P4, P5, P6); %Get
positions of coordinate frames

if sym, %Simplify function will only apply for symbolic variables

p04 = simplify(x4); %Simplify trigonometric terms in x4 matrix
R03 = simplify(W3); %Simplify trigonometric terms in W3 matrix
R36 = simplify(W6); %Simplify trigonometric terms in W6 matrix
else %If actual values are being used...
p04 = x4; %MATLAB will simplify automatically
RO3 =WS3; %MATLAB will simplify automatically
R36 = W6; %MATLAB will simplify automatically
end

%Function Outputs contains controls to output data to command window and data file
if sym, %If symbolic variables are being used, set the numeric arrays to arbitrary values
%This allows function "Outputs" to be activated and the desired arrays to be displayed.

theta_deg=[00000OQ]; p04 = [0; 0; 0O];
R03=[000;000;000]; R36=[000;000;000];
poT = [0; 0; O]; ROT=[000;000;000];
ang_disp = 0;

end

if ~sym,

%Access manipultor plotting function

close(figure(2), figure(3), figure(4), figure(5)) %Closes any figures that may be open from previous run
[pOT, ROT] = armplot(theta_deg, spread, jaguar, T1, T2, T3, T4, T5, T6,...

laptop, imac, colors, containers, plots, tool_tip,...

151

X_SC, y_SC, Z_SC, pitch_sc, roll_sc, yaw_sc, sc_plot);
end

%Send all data to function Outputs, which controls matrices output to the...

%command window and numeric matrices in the data file

Outputs(theta_deg, R1, R2, R3, R4, R5, R6, P1, P2, P3, P4, P5, P6, T1, T2, T3, T4, T5, T6,...
p04, RO3, R36, pOT, ROT, rot, pos, trans, mat_impt, sym, ang_disp)

%If workspace plots are desired:

if workspace,
close(figure(6), figure(7), figure(8), figure(9)) %Closes any figures that may be open from previous run
work(spread, jaguar, laptop, imac, workspace_iter, nframes), end

%Fix the position of the GUI interface

if imac, %Settings for a dual monitor Mac setup
set(figure(astepgui), ‘units’, 'normalized', ‘outerposition’, [.4285 .75 .25 .25])
end

if laptop, %Settings for a single monitor Windows setup
set(figure(astepgui), 'units’, 'normalized', 'outerposition’, [0 .52 .666667 .485])
end

152

H.3 Function inv_kin.m

function [theta_1_deg, theta_2_deg, theta_3 deg, theta_4_deg, theta_5_deg, theta_6_deq]...
= inv_kin(containers, x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, pre_insert, insert, sc_plot)

%Table of D-H Parameters

alpha0=0; a0=0; d1 =.10795;
alphal = -pi/2; al =.1524; d2=0;
alpha2 =0; a2=.6096; d3=0;
alpha3 = -pi/2; a3 =.1143; d4 =.6096;
alpha4 = pil2; a4 =0; d5=0;
alphab = -pi/2; a5 =0; d6 =0;

%Convert D-H Parmeters in Table into MATLAB Arrays
alpha = [alphaO, alphal, alpha2, alpha3, alpha4, alpha5]; %Create array of alpha angles (rad)

a=[a0, al, a2, a3, a4, a5]; %Array of "a" offset vectors

d =[d1, d2, d3, d4, d5, d6]; %Array of "d" offset vectors

joint6_length = 0.2171; %Joint 5 axis to face of hand roll joint (m)
ee_length =.2237; %End-effector length (m)

nframes = 6; sym=1;

[X_sc, Y_sc, Z_sc, C_sc, X2_sc, Y2_sc, Z2_sc, X3_sc, Y3_sc, Z3_sc,...
X4_sc, Y4_sc, Z4_sc, X_lower, X_upper, Y_lower, Y_upper, Z_lower, Z_upper] = ...
sample_container(containers, X_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot);

%Set tool offset from Frames 4,5,6

pTool = [0; 0; joint6_length + ee_length]; %Tool offset in tool frame (M)
if pre_insert, %SAMURAI just before entering sample containers

pOTval = [X_upper; Y_upper; Z_upper]; %User-input location of tool tip (m)
else %SAMURAI inside of sample containers

pOTval = [X_lower; Y_lower; Z_lower]; %User-input location of tool tip (m)
end

%From sample container calculations:

R_yaw = [cos(yaw_sc) -sin(yaw_sc) 0;... %Rotation matrix for sample container yaw (Frame 0 z-axis)
sin(yaw_sc) cos(yaw_sc) 0;...
001];
R_pitch = [cos(pitch_sc) 0 sin(pitch_sc);... %Rotation matrix for sample container pitch (Frame 0 y-axis)
010;..
-sin(pitch_sc) 0 cos(pitch_sc)];
R _roll=[100;... %Rotation matrix for sample container roll (Frame 0 x-axis)

0 cos(roll_sc) -sin(roll_sc);...
0 sin(roll_sc) cos(roll_sc)];

Rsc = R_yaw*R_pitch*R_roll; %Combine rotataion matrices into one matrix - note the order...

ROTval = Rsc; %Redefine rotation matrix as sample container rotation

%%%Inverse Kinematics%%%

pO4val = pOTval + ROTval*pTool; %Position of Frame 4 relative to Frame 0
%Find thetal:
thetal = atan2(pO4val(2,1),p04val(1,1)); %atan(y/x) of p04, (rad)
%Find theta2 and theta3:
L1 =a2; %Distance from frame 2 to frame 3, Link 1 (m)
L2 = sqgrt(a3"2 + d4"2); %Distance from frame 3 to frame 4, Link 2 (m)
gamma = atan(a3/d4); %Fixed angle between frames 3 and 4 (rad)
pos0 = [0; 0; OF; %Position of frame 0, fixed (m)
pos2 = [al*cos(thetal); al*sin(thetal); d1]; %Position of frame 2 (m)
%Note: Pos. of frame 2 is only dependent upon thetal, joint 1 yaw
p02 = pos2 - pos0; %Vector distance between frames 0 and 2 (m)
p24val = pO4val - p02; %Vector distance between frames 2 and 4 (m)
r_xy = sqrt(p24val(1,1)"2 + p24val(2,1)"2); %Scalar distance between frames 2 and 4 in the x-y plane (m)
r_z =-p24val(3,1); %Scalar distance between frames 2 and 4 and in the z-dir (m)
r = sqgrt(r_xy"2+r_z"2); %Total scalar distance between frames 2 and 4 (m)

153

t3prime = acos((r"2-L1"2-L272)/(-2*L1*L2)); %Angle in triangle formed by L1, L2, and vector between...
%frames 2 and 4 obtained w/ law of cosines (rad)

theta3 = pi + gamma - t3prime; %Theta3 after adding offsets (rad)

psi = acos((r"2 + L172 - L272)/(2*L1*r)); %Angle between L1 and vector between frames 2 and 4 (rad)
%Again, obtained via law of cosines

beta = atan2(r_z, r_xy); %Pitch angle between frames 2 and 4, see determination of theta2 (rad)

theta2 = beta - psi; %Subtract pitch due to pitching of joint 3 to find theta2 (rad)

t1 = thetal, %Redefine tlsoln as t1

t2 = theta2; %Redefine t2soln as t2

t3 = theta3; %Redefine t3soln as t3

%Solve for wrist joints 4-6
t3 =1t3 - pi/2; %Adjust -pi/2 rotation to Frame 3 in DH Parameters (rad)
theta_inv = [t1, t2, t3, 0, 0, 0]; %Create new theta array for solution purposes
%0nly the 1st 3 values are of interest (at this point)
%The last 3 are place holders to enable function use
R03 = RO3testf(theta_inv, a, alpha, d, sym, nframes); %Send data to function RO3testf
%RO03testf is the function that determines R0O3test

R3T =inv(RO3) * -ROTval; %Find rotation matrix (R) from Frame 3 to point to the tool tip (T)

%Note: RO3 is an orthonormal matrix, making its transpose and inverse identical matrices
%R3T is also an orthonormal matrix
%ROT is multiplied by -1 because we previously pointed...
%from the tool frame to Frame 4. Now we're doing the opposite.

s5 = -sqrt((R3T(2,1))"2+(R3T(2,2))"2);

¢5 =R3T(2,3);

theta5 = atan2(s5,c5);

theta4 = atan2(R3T(3,3)/s5, -R3T(1,3)/s5);

theta6 = atan2(R3T(2,1)/s5, -R3T(2,2)/s5);

t4 = thetad; t5 =theta5; t6 =theta6;

theta = [t1; t2; t3; t4; t5; t6]; %Assemble array of modified theta's
theta_deg = theta * 180/pi; %Convert theta2 from radians to degrees

%Separate variables for return to function kinematics:
theta_1_deg = theta_deg(1,1); theta_2_deg = theta_deg(2,1);
theta_3_deg = theta_deg(3,1); theta_4_deg = theta_deg(4,1);
theta_5_deg = theta_deg(5,1); theta_6_deg = theta_deg(6,1);
ROT =ROTval; pOT = pTool;

154

H.4 Function TransformMat.m

function [T R P] = TransformMat(a, alpha, d, theta, sym)
% Returns T transform matrix for manipulator kinematics per
% Craig eq. 3.6 (Intro. to Robotics, 3rd ed.)

if sym %If symbolic variables are being used, the "round" function applies...
%Row 1 of tranformation matrix
T(1,1) = cos(theta);
T(1,2) = -sin(theta);
T(1,3)=0;
T(1,4) = a;
%Row 2 of transformation matrix
T(2,1) = sin(theta)*round(cos(alpha));
T(2,2) = cos(theta)*round(cos(alpha));
T(2,3) = round(-sin(alpha));
T(2,4) = round(-sin(alpha))*d;
%Row 3 of transformation matrix
T(3,1) = sin(theta)*round(sin(alpha));
T(3,2) = cos(theta)*round(sin(alpha));
T(3,3) = round(cos(alpha));
T(3,4) = round(cos(alpha))*d;
%Row 4 of transformation matrix
T(4,1)=0;
T(4,2) =0;
T(4,3)=0;
T4.4)=1;

else %If actual numbers are to be computed...
%Row 1 of tranformation matrix
T(1,1) = cos(theta);
T(1,2) = -sin(theta);
T(1,3)=0;
T(1,4) = a;
%Row 2 of transformation matrix
T(2,1) = sin(theta)*cos(alpha);
T(2,2) = cos(theta)*cos(alpha);
T(2,3) = -sin(alpha);
T(2,4) = -sin(alpha)*d;
%Row 3 of transformation matrix
T(3,1) = sin(theta)*sin(alpha);
T(3,2) = cos(theta)*sin(alpha);
T(3,3) = cos(alpha);
T(3,4) = cos(alpha)*d;
%Row 4 of transformation matrix
T(4,1) =0;
T(4,2) =0;
T(4,3)=0;
T(4,4) =1,

end

T = [T(L,1) T(1,2) T(L,3) T(L,4);...
T(2,1) T(2,2) T(2,3) T(2,4);...
T(3.1) T(3,2) T(3,3) T(3,4);...
T(4,1) T(4,2) T(4,3) T(4,4)];

%Rotation Matrices
%Row 1 of rotation matrix
r1l =T(1,1);

r12 = T(1,2);

r13 =T(1,3);

%Row 2 of rotation matrix
r21 =T(2,1);

22 =T(2,2);

r23 =T(2,3);

%Row 3 of rotation matrix

155

r31=T(3,1);
r32 =T(3,2);
r33 =T(3,3);
R =[r11r12r13; r21 r22 r23; r31 r32 r33];

%Position Matrices/Arrays
px =T(1,4);

py = T(2,4);

pz = T(3,4);

P =[px; py; pz];

156

H.5 Function TransformW.m

function [WO0, W1, W2, W3, W4, W5, W6] = TransformW(R1, R2, R3, R4, R5, R6)

WO = eye(3); %Set base frame W matrix equal to identity matrix
W1=WO0*R1; %~Rotation to Frame 1

W2 = W1*R2; %Rotation to Frame 2

W3 = W2*R3; %~Rotation to Frame 3

W4 = R4, %Frame 4

W5 =W4 * R5; %Rotation to Frame 5

W6 = W5 * R6; %~Rotation to Frame 6

157

H.6 Function TransformPos.m

function [dx1, dx2, dx3, dx4, x0, x1, x2, x3, x4] = TransformPos(WO0, W1, W2, W3, W4, W5, P1, P2, P3, P4, P5, P6)

dx1 =WO0 * P1; %Change in position of baseframe to frame 1
dx2 = W1*P2; %Change in position of frame 1 to frame 2
dx3 =W2 *P3; %Change in position of frame 2 to frame 3
dx4 = W3 * P4; %Change in position of frame 3 to frame 4

%Absolute Positions of the Coordinate Frames

x0 =[0; 0; 0]; %Define position of base frame
x1 = x0 + dx1; %Frame 1
x2 = x1 + dx2; %Frame 2
X3 = X2 + dx3; %Frame 3
x4 = x3 + dx4; %Frame 4

158

H.7 Function Outputs.m

function Outputs(theta_deg, R1, R2, R3, R4, R5, R6, P1, P2, P3, P4, P5, P6, T1, T2, T3, T4, T5, T6,...
p04, RO3, R36, pOT, ROT, rot, pos, trans, mat_impt, sym, ang_disp)

%Command Window Output Commands:
%Display Rotation, Position, and Transformation Matrices if Desired
if rot,
fprintf(\nROTATION MATRICES:\n')
R1, R2, R3, R4, R5, R6
end
if pos,
fprintf(POSITION MATRICES:\n')
P1, P2, P3, P4, P5, P6
end
if trans,
fprintf(\nTRANSFORMATION MATRICES:\n")
T1, T2, T3, T4, T5, T6
end
if mat_impt,
fprintf(\nIMPORTANT MATRICES:\n")
p04, RO3, R36, pOT, ROT
end
%In kinematics and/or inv_kin, 90 deg. were subtracted from theta3 to account for the...
%frame rotation. These must be put back before displaying the user-input joint angle:
theta_deg(3) = theta_deg(3) + 90; %Add the 90 degrees to theta_3_deg

if ang_disp,

fprintf(\nSAMURAI JOINT ANGLES:\n")

fprintf('Theta 1: %.4g deg.\n', theta_deg(1))
fprintf('Theta 2: %.4g deg.\n', theta_deg(2))
fprintf('Theta 3: %.4g deg.\n', theta_deg(3))
fprintf('Theta 4: %.4g deg.\n', theta_deg(4))
fprintf('Theta 5: %.4g deg.\n', theta_deg(5))
fprintf('Theta 6: %.4g deg.\n', theta_deg(6))

end

%Data File

if ~sym, %Data file cannot be written for symbolic variables
MatDat = fopen('MatrixData.dat','wt'); %Create Data File for Storage of Matrix Data
fprintf(MatDat, 'Theta =\n'); %Output character string "Theta =" to data file
fprintf(MatDat, '%13.1f \n', theta_deg); %Output theta array 13 spaces from left margin & 1 sig. fig.
textR ='R1 =" %Create character string and assign string to variable textR
textP ='P1 =" %Create character string and assign string to variable textP
fprintf(MatDat, \n'); %Insert new line in the data file

fprintf(MatDat, '%21s', textR); %Print the character string inside the data file with 21 spaces ("s" denotes string)
fprintf(MatDat,'%31s', textP); %Print the character string inside the data file with 31 spaces ("s" denotes string)
fprintf(MatDat, \n'); %Insert another new line in the data file
for k = 1:size(R1,1), %For every k where k is an integer between 1 and size(R1,1)
%size(R1,1) = 3, it's the number of rows in column 1
fprintf(MatDat,'%28.4f %7.4f %7.4f ,R1(Kk,}));
%The ".4" values signify 4 sig. figs.
%The 28 inserts 28 spaces between the left column and the right-most sig. fig.
%The 7's insert 7 between between the previous column and the right-most sig. fig.
%When k=1, this loop prints the first row and all columns to the data file
%This is then repeated when k = 2 and 3
fprintf(MatDat,'%15.4f \n',P1(k,:)); %Prints 1st row of P1 & inserts 15 spaces between left col. & right sig. fig.
end

%Same Process for R2

fprintf(MatDat,\n"); textR = 'R2 ='; textP = 'P2 ='; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP);

fprintf(MatDat, \n'); for k = 1:size(R2,1), fprintf(MatDat,'%28.4f %7.4f %7.4f',R2(K,:)); fprintf(MatDat, %15.4f
\n',P2(k,:)); end

%Same Process for R3

fprintf(MatDat,"\n"); textR = 'R3 ="'; textP = 'P3 ="; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP);

159

fprintf(MatDat, \n'); for k = 1:size(R3,1), fprintf(MatDat,'%28.4f %7.4f %7.4f',R3(Kk,:)); fprintf(MatDat,'%15.4f
\n',P3(k,:)); end

%Same Process for R4

fprintf(MatDat,\n"); textR = 'R4 ='; textP = 'P4 ="; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP);

fprintf(MatDat, \n'); for k = 1:size(R4,1), fprintf(MatDat,'%28.4f %7.4f %7.4f' ,R4(K,:)); fprintf(MatDat,'%15.4f
\n',P4(k,:)); end

%Same Process for R5

fprintf(MatDat,"\n"); textR = 'R5 ="; textP = 'P5 ="; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP);

fprintf(MatDat, \n'); for k = 1:size(R5,1), fprintf(MatDat,'%28.4f %7.4f %7.4f',R5(K,:)); fprintf(MatDat, %15.4f
\n',P5(k,:)); end

%Same Process for R6

fprintf(MatDat,"\n"); textR = 'R6 ='; textP = 'P6 ="; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP);

fprintf(MatDat, "\n'); for k = 1:size(R6,1), fprintf(MatDat,'%28.4f %7.4f %7.4f' ,R6(K,:)); fprintf(MatDat,'%15.4f
\n',P6(k,:)); end

%Important Data Matrices:

fprintf(MatDat, \nlmportant Data:\n\n");

%Similar Process for P04 and POT

fprintf(MatDat,"\n"); textP = 'P04 ="; fprintf(MatDat,'%0s', textP);

textP = 'POT ="; fprintf(MatDat,'%20s', textP);

fprintf(MatDat, \n');

for k = 1:size(p04,1), %Position matrices are the same size
fprintf(MatDat,'%13.4f',p04(k,:));
fprintf(MatDat,'%20.4f \n',p0T(k,:));

end

%Similar Process for RO3, R36, and ROT
fprintf(MatDat,\n\n'); textR = 'R03 = '; fprintf(MatDat, '%0s', textR);
textR = 'R36 ='; fprintf(MatDat, '%35s', textR);
textR = 'ROT ="; fprintf(MatDat, '%35s', textR);
fprintf(MatDat, \n');
for k = 1:size(R03,1), %Rotation matrices are the same size
fprintf(MatDat,'%13.4f %7.4f %7.4f',R03(k,:));
fprintf(MatDat,'%19.4f %7.4f %7.4f',R36(K,:));
fprintf(MatDat,'%19.4f %7.4f %7.4f \n',ROT(K,:));

end
fclose(MatDat); %Close Data File
end %End of if ~sym statement

160

H.8 Function armplot.m

function [pOT, ROT] = armplot(theta_deg, spread, jaguar, T1, T2, T3, T4, T5, T6,...
laptop, imac, colors, containers, plots, tool_tip,...
X_SC, y_SC, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot)

%Table of D-H Parameters

alpha0 = 0; a0 = 0; dl =.10795;
alphal = -pi/2; al =.1524; d2=0;
alpha2 = 0; a2 = .6096; d3=0;
alpha3 = -pi/2; a3 =.1143; d4 = .6096;
alpha4 = pi/2; a4 =0; d5=0;
alpha5 = -pi/2; a5=0; d6 = 0;
theta = theta_deg * pi/180; %Convert theta array to radians (rad)
joint6é_length = 0.2171; %Joint 5 axis to face of hand roll joint (m)
ee_length = .2237; %End-effector length (m)
res =.0001; %Resolution off increments composing lines

%This must be sufficiently small to coincide
%with values in kinematics codes

line_width = 2; %Set width of plotted lines

fig_color =11 1]; %Sets background in figures to white

set(0, 'DefaultFigureColor, fig_color)

title_size = 14; %Set the size of the font for plot text (26 for maximized windows)

xmin = -1.5; xmax = 1.75; ymin = -1.5; ymax = 1.5; zmin = -1.5; zmax = 1.5; %Values for axes definitions

%Jaguar Details

radius = 0.1984; %Specify radius of Jaguar cylinder (m)

height = abs(xmin); %"height" or length of cylinder (m)

strut_loc = -.42; %x-displacement of Jaguar strut from base frame (0,0,0) in meters
strut_width = .12; %Strut width (m)

Jag_offset = 1.194; %Distance between Jaguar cylinder axes (m)

%Note: 3D Plot commands will be moved inside the "colors" if statement
%They will just be commented out with double %% though, so that their original locations are known
%%figure(2)
%Create a point at the origin of Frame 0:
xO_pt=0; y0 pt=0; z0_pt=0;
%%plot3(x0_pt, yO_pt, z0_pt, 'r+', 'LineWidth', line_width), hold on %Plot origin of Frame 0
%Create a point at the origin of Frame 1:
x1_pt=T1(1,4); yl pt=T1(2,4); z1 pt=T1(3,4);
%%plot3(x1_pt, y1_pt, z1_pt, 'r+', 'LineWidth', line_width), hold on %Plot origin of Frame 1
%Create line between Frames 0 and 1
if abs(x1_pt-x0_pt) >= abs(yl_pt-y0_pt) && abs(x1_pt-x0_pt) >= abs(z1_pt-z0_pt),
X_01=x0_pt:res:x1l_pt; %lLet x-array drive change from Frame Oto 1
y_01 =y0 pt: abs(yl_pt-yO_pt)/(size(x_01,2)-1) : y1_pt; %Create y-array based on size of x-array
z_01 =2z0_pt: abs(z1_pt-z0_pt)/(size(x_01,2)-1) : z1_pt; %Create z-array based on size of x-array
if size(y_01, 2)==1, y 01 =y0_pt + x_01.*0; end %lf there is no change iny, create array of same mag.
if size(z_01, 2)==1, z_01=2z0_pt+x_01.*0; end %lf there is no change in z, create array of same mag.
else if abs(y1l_pt-y0_pt) >= abs(x1_pt-x0_pt) && abs(y1l_pt-y0_pt) >= abs(z1_pt-z0_pt),
y 01=y0 pt:res:yl _pt; %lety-array drive change from Frame Oto 1
x_01 = x0_pt : abs(x1_pt-x0_pt)/(size(y_01,2)-1) : x1_pt; %Create x-array based on size of y-array
z_01 =2z0_pt: abs(z1_pt-z0_pt)/(size(y_01,2)-1) : z1_pt; %Create z-array based on size of y-array
if size(x_01, 2)==1, x_01=x0_pt+y 01.*0; end %lf there is no change in x, create array of same mag.
if size(z_01, 2)==1, z_ 01 =2z0_pt+y 01.*0; end %lf there is no change in z, create array of same mag.
else %the biggest change is in the z-direction
z 01 =20 pt:res:zl pt; %letz-array drive change from Frame Oto 1
x_01 = x0_pt : abs(x1_pt-x0_pt)/(size(z_01,2)-1) : x1_pt; %Create x-array based on size of z-array
y_01=y0_pt: abs(yl_pt-yO_pt)/(size(z_01,2)-1) : y1_pt; %Create y-array based on size of z-array

if size(x_01, 2)<=1, x 01 =x0_pt+z_01.*0; end %lf there is no change in x, create array of same mag.

if size(y_01, 2)<=1, y 01 =y0_pt +z_01.*0; end %lIf there is no change in y, create array of same mag.
end

161

end
%%plot3(x_01,y 01, z_ 01, 'k-', 'LineWidth', line_width), hold on %Plot line between Frames 0 & 1 in 3D

%Create a point at the origin of Frame 2:
T_current = T1*T2; %Create new transformation matrix from origin to current frame
x2_pt=T_current(1,4); y2_pt=T_current(2,4); z2_pt=T_current(3,4);
%%plot3(x2_pt, y2_pt, z2_pt, 'r+', 'LineWidth', line_width), hold on %Plot origin of Frame 2
%Create line between Frames 1 and 2
%Case |: Greatest change between frames is in x-direction:
if abs(x2_pt-x1_pt) >= abs(y2_pt-y1_pt) && abs(x2_pt-x1_pt) >= abs(z2_pt-z1_pt),
if x2_pt >=x1_pt, %If x2 is greater than or equal to x1, create normal array
x_12=x1_pt:res:x2_pt; %lLet x-array drive change from Frame 1 to 2
else x_12=-x1_pt:res:-x2_pt; x_12=-x_12; end %Otherwise, flip array direction.
size_x12 = size(x_12,2)-1; %Size of x_12 array
if y2_pt>=yl pt, %If y2 is greater than or equal to y1, create normal array
y_12 =yl pt:abs(y2_pt-yl pt)/size_x12:y2_pt; %Create y-array based on size of x-array
else
y_12 =-yl pt:abs(y2_pt-yl_pt)/size_x12:-y2_pt; y_12 =-y 12; %Otherwise, flip array direction
end
if z2_pt>=2z1_pt,
z_12 =71 pt:abs(z2_pt-z1_pt)/size_x12 : z2_pt; %Create z-array based on size of x-array
else
z 12 =-z1 pt:abs(z2_pt-z1_pt)/size_x12:-z2_pt; z_12 =-z_12; %Otherwise, flip array direction
end
if size(y_12, 2)<=1, y_12 =yl pt+x_12.*0; end %lf there is no change iny, create array of same mag.
if size(z_12, 2)<=1, z_12=1z1 pt+x_12.*0; end %lf there is no change in z, create array of same mag.
%Case lI: Greatest change between frames is in y-direction:
else if abs(y2_pt-y1_pt) >= abs(x2_pt-x1_pt) && abs(y2_pt-yl_pt) >= abs(z2_pt-z1_pt),
if y2_pt>=yl_pt, %If y2 is greater than or equal to y1,
y_ 12=yl pt:res:y2_pt; %lLety-array drive change from Frame 1 to 2
elsey 12=-yl pt:res:-y2_pt; y 12=-y 12; end %Otherwise, flip array direction.
size_yl2 =size(y_12,2)-1; %Size of y_12 array
if x2_pt >=x1_pt, %If x2 is greater than or equal to x1,
x_12 =x1_pt : abs(x2_pt-x1_pt)/size_y12 : x2_pt; %Create x-array based on size of y-array
else
x_12 =-x1_pt : abs(x2_pt-x1_pt)/size_y12 : -x2_pt; x_12 = -x_12; %Create x-array based on size of y-array
end
if z2_pt >=z1_pt,
z_12 =71 pt:abs(z2_pt-z1_pt)/size_yl12 : z2_pt; %Create z-array based on size of y-array
else
z_12=-z1 pt:abs(z2_pt-z1_pt)/size_y12:-z2_pt; z_12 =-z_12; %Create z-array based on size of y-array
end
if size(x_12, 2)<=1, x_12=x1_pt+y_12.*0; end %lf there is no change in x, create array of same mag.
if size(z_12, 2)<=1, z_12=2z1 pt+y 12.*0; end %lf there is no change in z, create array of same mag.
%Case lll: Greatest change between frames is in z-direction:
else %the biggest change is in the z-direction
if z2_pt >=2z1_pt,
z 12=71 pt:res:z2_pt; %lLet z-array drive change from Frame 1 to 2
elsez 12=-z1 pt:res:-z2_pt; z_12=-z_12; end %Otherwise, flip array direction.

size_z12 = size(z_12,2)-1; %Size of z_12 array
if x2_pt >=x1_pt, %If x2 is greater than or equal to x1,
x_12 =x1_pt: abs(x2_pt-x1_pt)/size_z12 : x2_pt; %Create x-array based on size of z-array
else
x_12 = -x1_pt : abs(x2_pt-x1_pt)/size_z12 : -x2_pt; x_12 =-x_12; end %Otherwise, flip array direction.
if y2_pt>=yl_pt, %If x2 is greater than or equal to x1,
y_12 =yl pt:abs(y2_pt-yl pt)/size_z12 :y2_pt; %Create y-array based on size of z-array
else

y_12 =-yl pt:abs(y2_pt-yl pt)/size_z12:-y2 pt; y_12=-y 12; end %Otherwise, flip array direction.
if size(x_12, 2)<=1, x_12=x1_pt+z_12.*0; end %lf there is no change in x, create array of same mag.
if size(y_12, 2)<=1, y_12=yl pt+2z_12.*0; end %lIf there is no change iny, create array of same mag.

end
end
%%plot3(x_12,y 12,z 12, 'k-', 'LineWidth', line_width), hold on %Plot line between Frames 1 & 2 in 3D

%Create a point at the origin of Frame 3:
T_current = T_current*T3; %Create new transformation matrix from origin to current frame
x3_pt=T_current(1,4); y3 pt=T_current(2,4); z3_pt=T_current(3,4);

%%plot3(x3_pt, y3_pt, z3_pt, 'r+', 'LineWidth', line_width), hold on %Plot origin of Frame 3
%Create line between Frames 2 and 3

162

%Case |: Greatest change between frames is in x-direction:
if abs(x3_pt-x2_pt) >= abs(y3_pt-y2_pt) && abs(x3_pt-x2_pt) >= abs(z3_pt-z2_pt),
if Xx3_pt >=x2_pt, %If x3 is greater than or equal to x2, create normal array
X _23=x2_pt:res:x3_pt; %Llet x-array drive change from Frame 2 to 3
else x_23 =-x2_pt:res:-x3_pt; x 23 =-x_23; end %Otherwise, flip array direction.
size_x23 = size(x_23,2)-1; %Size of x_12 array
if y3_pt>=y2_pt, %If y3 is greater than or equal to y2, create normal array
y_23 =y2 pt:abs(y3_pt-y2_pt)/size_x23 : y3_pt; %Create y-array based on size of x-array
else
y_23 =-y2_pt:abs(y3_pt-y2_pt)/size_x23:-y3 pt; y_23=-y 23; %Otherwise, flip array direction.
end
if zZ3_pt >=z2_pt,
z_23 =2z2_pt:abs(z3_pt-z2_pt)/size_x23 : z3_pt; %Create z-array based on size of x-array
else
z_23 =-z2_pt: abs(z3_pt-z2_pt)/size_x23 : -z3_pt; z_23 =-z_23; %Otherwise, flip array direction.
end
if size(y_23, 2)<=1, y 23 =y2_pt+x_23.*0; end %lf there is no change iny, create array of same mag.
if size(z_23, 2)<=1, z_23=z2_pt + x_23.*0; end %lf there is no change in z, create array of same mag.
%Case lI: Greatest change between frames is in y-direction:
else if abs(y3_pt-y2_pt) >= abs(x3_pt-x2_pt) && abs(y3_pt-y2_pt) >= abs(z3_pt-z2_pt),
if y3_pt >=y2_pt, %If y3 is greater than or equal to y2,
y_23=y2 pt:res:y3 pt; %Lety-array drive change from Frame 2 to 3
elsey 23=-y2 pt:res:-y3 pt; y 23=-y 23; end %Otherwise, flip array direction.
size_y23 = size(y_23,2)-1; %Size of y_23 array
if X3_pt >= x2_pt, %If x2 is greater than or equal to x1,
X_23 = x2_pt : abs(x3_pt-x2_pt)/size_y23 : x3_pt; %Create x-array based on size of y-array
else
X_23 =-x2_pt : abs(x3_pt-x2_pt)/size_y23 : -x3_pt; x_23 = -x_23; %Create x-array based on size of y-array
end
if zZ3_pt >=22_pt,
z_23 =2z2_pt:abs(z3_pt-z2_pt)/size_y23 : z3_pt; %Create z-array based on size of y-array
else
z_23 =-z2_pt: abs(z3_pt-z2_pt)/size_y23 :-z3 _pt; z_23 =-z_23; %Create z-array based on size of y-array
end
if size(x_23, 2)<=1, x 23 =x2_pt+y_23.*0; end %lf there is no change in x, create array of same mag.
if size(z_23, 2)<=1, z_23=22_pt+y 23.*0; end %lf there is no change in z, create array of same mag.
%Case lll: Greatest change between frames is in z-direction:
else %the biggest change is in the z-direction
if zZ3_pt >=22_pt,
z 23=22 pt:res:z3_pt; %lLet z-array drive change from Frame 2 to 3
elsez 23=-z2 pt:res:-z3_pt; z_23=-z_23; end %Otherwise, flip array direction.

size_z23 = size(z_23,2)-1; %Size of z_23 array
if X3_pt >= x2_pt, %If x3 is greater than or equal to x2,
X_23 =x2_pt : abs(x3_pt-x2_pt)/size_z23 : x3_pt; %Create x-array based on size of z-array
else
X_23 =-x2_pt : abs(x3_pt-x2_pt)/size_z23 : -x3_pt; x_23 =-x_23; end %Otherwise, flip array direction.
if y3_pt>=y2_pt, %If y3 is greater than or equal to y2,
y_23 =y2 pt: abs(y3_pt-y2_pt)/size_z23 : y3_pt; %Create y-array based on size of z-array
else

y_23 =-y2_pt:abs(y3_pt-y2_pt)/size_z23:-y3 pt; y_23=-y 23; end %Otherwise, flip array direction.
if size(x_23, 2)<=1, x_23 =x2_pt +2z_23.*0; end %lIf there is no change in x, create array of same mag.
if size(y_23, 2)<=1, y_23=y2 pt+z_23.*0; end %lf there is no change iny, create array of same mag.
end
end
%%plot3(x_23,y_23, z_23, 'm-, 'LineWidth', line_width), hold on %Plot line between Frames 2 & 3 in 3D

%%%Frame 3 to Frame 4a (Bend in Link 2)%%%

l4=0:res:a3; %Create an array based on the length of top part of Link 2

phi_sum = theta(1); %Summation of all phi angles to this point is just theta(1), Joint 1 yaw

x4a = x3_pt + l4*sin(pi/2+theta(2)+theta(3))*cos(phi_sum); %pi/2 is the fixed angle between d1 and the z0 axis
yda = y3_pt + l4*sin(pi/2+theta(2)+theta(3))*sin(phi_sum);

z4a = z3_pt + l4*cos(pi/2+theta(2)+theta(3));

%%plot3(x4a, y4a, z4a, -, 'LineWidth', line_width), hold on %Plot small portion of Link 2 (Frame 3 to 4a)
xda_pt_loc = size(x4a,2); yda_pt_loc = size(y4a,2); z4a_pt_loc = size(z4a,2);
xda_pt = x4a(x4a_pt_loc); yda_pt=yda(yda_pt_loc); z4a_pt=z4a(z4a_pt_loc);

%%plot3(x4a_pt, yda_pt, z4a_pt, 'r+', 'LineWidth', line_width), hold on %Plot point at origin of Frame 4a

163

%%%Frame 4a to Frame 4 (Base of Link 2)%%%
%Create a point at the origin of Frame 4:
T_current = T_current*T4; %Create new transformation matrix from origin to current frame
x4_pt=T_current(1,4); y4 pt=T_current(2,4); z4 pt=T_current(3,4);
%%plot3(x4_pt, y4_pt, z4_pt, 'r+', 'LineWidth', line_width), hold on %Plot origin of Frame 4
%Create line between Frames 4a and 4
%Case |: Greatest change between frames is in x-direction:
if abs(x4_pt-x4a_pt) >= abs(y4_pt-yda_pt) && abs(x4_pt-xda_pt) >= abs(z4_pt-z4a_pt),
if x4_pt >= x4a_pt, %If x4 is greater than or equal to x4a, create normal array
X_4ad =x4da_pt:res: x4 _pt; %let x-array drive change from Frame 4a to 4
else x_4a4 = -x4a_pt:res: -x4_pt; x_4ad =-x_4ad; end %Otherwise, flip array direction.
size_x4a4 = size(x_4a4,2)-1; %Size of x_4a4 array
if yA_pt >=yda_pt, %If y4 is greater than or equal to y4a, create normal array
y_4a4 =yda_pt : abs(y4_pt-yda_pt)/size_x4ad : y4_pt; %Create y-array based on size of x-array
else
y_4a4 = -yda_pt: abs(y4_pt-yda_pt)/size_xdad : -y4 pt; y_4ad =-y_4ad; %Otherwise, flip array direction.
end
if z4_pt >= z4a_pt,
z_4a4 = z4a_pt: abs(z4_pt-z4a_pt)/size_x4as : z4_pt; %Create z-array based on size of x-array
else
z_4ad = -z4a_pt : abs(z4_pt-z4a_pt)/size_x4ad : -z4 pt; z_4ad =-z_4ad; %Otherwise, flip array direction.
end
if size(y_4a4, 2)<=1, y_4a4 =y4 pt+x_4a4.*0; end %lf there is no change iny, create array of same mag.
if size(z_4a4, 2)<=1, z_4a4 = z4 pt + x_4a4.*0; end %lf there is no change in z, create array of same mag.
%Case II: Greatest change between frames is in y-direction:
else if abs(y4_pt-yda_pt) >= abs(x4_pt-x4a_pt) && abs(y4_pt-yda_pt) >= abs(z4_pt-z4a_pt),
if y4_pt >= y4a_pt, %If y4 is greater than or equal to y4a,
y_4ad =yda pt:res:y4d pt; %let y-array drive change from Frame 4a to 4
elsey 4a4 =-yda pt:res:-y4_pt; y dad=-y 4a4; end %Otherwise, flip array direction.
size_y4a4 = size(y_4a4,2)-1; %Size of y_4a4 array
if X4_pt >= xda_pt, %If x4 is greater than or equal to x4a,
X_4ad = x4a_pt : abs(x4_pt-x4a_pt)/size_y4ad : x4_pt; %Create x-array based on size of y-array
else
X_4ad = -xda_pt : abs(x4_pt-xda_pt)/size_ydad : -x4_pt; x_4ad =-x_4ad; %Create x-array based on size of y-
array
end
if z4_pt >= z4a_pt,
z_4ad = z4a_pt : abs(z4_pt-z4a_pt)/size_y4ad : z4_pt; %Create z-array based on size of y-array
else
z_4a4 = -z4a_pt : abs(z4_pt-z4a_pt)/size_y4dad : -z4 _pt; z_4ad =-z_4ad; %Create z-array based on size of y-
array
end
if size(x_4a4, 2)<=1, x_4ad =x4a_pt+y_4a4.*0; end %If there is no change in X, create array of same mag.
if size(z_4a4, 2)<=1, z_4a4 =z4a_pt+y_4a4.*0; end %lf there is no change in z, create array of same mag.
%Case lll: Greatest change between frames is in z-direction:
else %the biggest change is in the z-direction
if z4_pt >= z4a_pt,
z_4ad =z4a pt:res:z4_pt; Y%let z-array drive change from Frame 4ato 4
else z_4a4 = -z4a_pt:res:-z4_pt; z_4ad =-z_4ad; end %Otherwise, flip array direction.
size_z4a4d = size(z_4a4,2)-1; %Size of z_4a4 array
if x4_pt >= x4a_pt, %If x4 is greater than or equal to x4a,
X_4ad = x4a_pt : abs(x4_pt-xda_pt)/size_z4a4 : x4_pt; %Create x-array based on size of z-array
else
X_4ad = -x4a_pt : abs(x4_pt-xda_pt)/size_z4a4d : -x4_pt; x_4ad = -x_4ad; end %Otherwise, flip array
direction.

if yA_pt >=yda pt, %If y4 is greater than or equal to y4a,
y_4a4 =yda_pt : abs(y4_pt-yda_pt)/size_z4a4d : y4_pt; %Create y-array based on size of z-array
else

y_4a4 = -yda_pt: abs(y4_pt-yda_pt)/size_z4ad : -y4 pt; y_4ad =-y 4ad; end %Otherwise, flip array

direction.

if size(x_4a4, 2)<=1, x_4ad =x4a_pt +z_4a4.*0; end %lf there is no change in x, create array of same mag.

if size(y_4a4, 2)<=1, y _4ad =yda_pt +z_4a4.*0; end %If there is no change iny, create array of same mag.

end

end

%%plot3(x_4a4, y_4a4d, z_4a4, '-, 'LineWidth', line_width), hold on

%%%PIlot line between Frames 4a & 4 in 3D

%%%Frame 4 to Frame 5 (Still at Base of Link 2)%%%
T_current = T_current * T5; %Create new transformation matrix from origin to current frame

164

R_5 = [T_current(1,1) T_current(1,2) T_current(1,3);... %lsolate rotataion matrix
T_current(2,1) T_current(2,2) T_current(2,3);...
T_current(3,1) T_current(3,2) T_current(3,3)];

%%%Create a point at the end of Joint 6%%%

16 = 0: res : joint6_length; %Create an array based on the distance between Joints 5 and 6

x_change_5=16.*0; y_change 5 =16; z_change_5=16.*0; %Create point at Joint 6 face
%Note: Point is offset from the frame in the y_5 direction

pos_5 = [x_change_5;y_change_5; z_change_5]; %Put coordinates in a vector array

pos_6 =R_5* pos_5; %Rotate vector based on rotation matrix

X_56 = x4_pt + pos_6(1,:); y_56 =y4_pt + pos_6(2,:); z_56 =z4 pt+ pos_6(3,:); %Add new location to previous
location (x4, y4, z4)

%%plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on %Plot connection between Joints 5
and 6
Xx_56_pt_loc = size(x_56,2); y_56_pt_loc = size(y_56,2); z_56_pt loc = size(z_56,2);
X_56_pt =x_56(x_56_pt_loc); y _56_pt=y 56(y_56_pt_loc); z 56 pt=z 56(z_56_pt_loc);

%%plot3(x_56_pt, y_56_pt, z_56_pt, 'r+', 'LineWidth', line_width), hold on %Plot end of Joint 6

%%Create a point at the end of the End-Effector (the tool tip)%%%
joint_7_length = ee_length; %This is the end-effector length from Joint 6 to tool tip (meters)
|_7=0:res:joint_7_length; %Create an array based on the distance between Joints 5 and 6

x_change_7=1_7; y change 7=1_7.%0; z_change_7 =1_7.*0; %Create end point corresponding to alpha =
beta = gamma =0
pos_7 = R_5* pos_5; %pos_7 is just an extension of pos_6
%=> use same rotation matrix
X_67 =x_56_pt+pos_7(1,:); y_67 =y 56_pt+pos_7(2,:); z 67 =z_56_pt + pos_7(3,:);

%%plot3(x_67,y_67,z_67, 'g-', 'LineWidth', line_width), hold on %Plot connection between Joints 6 and EE
X_67_pt_loc = size(x_67,2); y_67_pt_loc =size(y_67,2); z_67_pt_loc = size(z_67,2);
X_67_pt=x_67(x_67_pt_loc); y 67 _pt=y 67(y_67_pt_loc); z 67 _pt=z 67(z_67_pt_loc);

%%plot3(x_67_pt, y_67_pt, z_67_pt, 'r+', 'LineWidth', line_width), hold on %Plot end of the EE

if tool_tip, %If tool tip coordiantes are to be output to CW:
fprintf(\nTool Tip Coordinates:\n")
fprintf(" X-Coordinate: %.4g m\n', x_67_pt)
fprintf(' Y-Coordinate: %.4g m\n', y_67_pt)
fprintf(" Z-Coordinate: %.4g m\n', z_67_pt)
end

pOT = [x_67_pt; y_67_pt; z_67_pt];, %Vector from Frame 0 to tool tip (m)
T_current = T_current * T6; %Final transformation matrix
ROT = [T_current(1,1) T_current(1,2) T_current(1,3);... %lsolate rotataion matrix
T_current(2,1) T_current(2,2) T_current(2,3);...
T_current(3,1) T_current(3,2) T_current(3,3)];

%%%Create Jaguar Base%%%

R = [radius radius]; %Create array with x = radius and y = radius

N = 25; %Number of mesh segments comprising cylinder

[X,Y,Z] = cylinder(R,N); %Create X, y, and z components of cylinder

C = zeros(2,N); %Generate C to serve as basic colormap (will be lime green)
[r,s,t] = sphere(N); %Create a sphere with NxN segments

C2 = zeros(N,N); %Create variable C2 to serve as a colormap (lime green again)

%%%Create Upper Jaguar Cylinder%%%

if ~jaguar, %If the upper Jaguar cylinder is NOT to be hidden:
%%%Create Strut Between Jaguar Cylinders%%%
%Create matrices of x and y to create plane for strut:
[X_strut, Y_strut] = meshgrid(strut_loc : .01 : strut_loc + strut_width);

Z_strut = X_strut + Y_strut; %Create z array (this will ultimately be the strut height
Zcol_loc = (size(X_strut,2)+1)/2; %Want the middle column of the Z matrix, this is an index
Zcol = Z_strut(;,Zcol_loc); %Find the column corresonding to the index Zcol_loc

Zmax = max(abs(Zcol)); %Find the maximum value in the column vector

Zcol = Zcol + Zmax; %Add to previous Zcol to translate the matrix to zero

Y_strut = 0.*Y_strut; %Reset y values to zero (will assume strut has no thickness)
count=1; Znew={[]; %Initilize counter and Znew matrix

while count <= size(Z_strut,2), %Create a new matrix consisting entirely of Zcol

165

Znew = [Znew, Zcol];

count = count + 1;
end
Z_strut_max = max(abs(Znew));
Z_strut_max = Z_strut_max(1,1);
Z_normalized = (Znew./Z_strut_max);
Z_strut =Z_normalized * Jag_offset;
C3 = zeros(size(Z_strut,2),size(Z_strut,2));

end

%This will produce a rectangular figure
%lIterate counter

%Find the maximum value in the Znew matrix

%Want only ONE maximum value

%Normalize the Z values

%Multiply the normalized value by the strut height
%Create variable C3 to serve as a colormap (lime green again)

[X_sc, Y_sc, Z_sc, C_sc, X2_sc, Y2_sc, Z2_sc, X3_sc, Y3_sc, Z3_sc,...
X4_sc, Y4_sc, Z4_sc, X_lower, X_upper, Y_lower, Y_upper, Z_lower, Z_upper] = ...
sample_container(containers, x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot);

%%%PLOTS%%%
if plots,
if colors,

figure(2) %Plot of Manipulator in X-Z Plane

plot3(x0_pt, yO_pt, zO_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_01,y 01, z_01, 'k-', 'LineWidth', line_width), hold on
plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_12,y 12,z 12, 'k-', 'LineWidth', line_width), hold on
plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_23,y_23, z_23, 'r-', 'LineWidth', line_width), hold on
plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x4a, y4a, z4a, -, 'LineWidth', line_width), hold on
plot3(x_4a4, y 4a4, z_4a4, ', 'LineWidth', line_width), hold on

Frame 4)

plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on

%Plot point at Frame 0 origin

%Plot Joint 1 (Frame 0 to 1)

%Plot point at Frame 1 origin

%Plot Joint 2 (Frame 1 to 2)

%Plot point at Frame 2 origin

%Plot Link 1 (Frame 2 to Frame 3)

%Plot point at Frame 3 origin

%Plot small portion of Link 2 (Frame 3 to 4a)
%Plot main portion of Link 2 (Frame 4a to

%pPlot point on top of Link 2 axis
%Plot connection between Joints 5 and 6

plot3(x_56_pt, y 56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6

plot3(x_67,y 67, z_67, 'g-", 'LineWidth', line_width), hold on

%Plot connection between Joints 6 and EE

plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip)

surf(height*Z-height,Y,X-radius,C), hold on
surf(radius*r,radius*s,radius*t-radius,C2), hold on
if ~jaguar,

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on

%Produce cylindrical surface
%Generate sphere

%Create Jaguar Top
%Produce cylindrical surface

%Third variable represents the cylinder axis

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);
surf(X_strut,Y_strut,Z_strut,C3)
end
surf(X_sc, Y_sc, Z_sc, C_sc), hold on
fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,),r")
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on
fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,),'r)
if ~sc_plot,
surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on
fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,),'r)
surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on
fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,),'r)
end

%Generate sphere
%Plot the strut surface

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

%If plotting containers 3 & 4
%Repeat for S.C. #3

%Repeat for S.C. #4

title('Manipulator Plotted in 3 Dimensions', 'FontWeight', 'bold’, 'FontSize', title_size)
xlabel("X-axis (m)', 'FontSize', title_size), ylabel("Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize',

title_size)
axis([xmin xmax ymin ymax zmin zmax])
grid on
figure(3) %Plot of Manipulator in X-Z Plane

plot3(x0_pt, yO_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_01,y 01, z_01, 'k-', 'LineWidth', line_width), hold on
plot3(x1_pt, y1_pt, z1_pt, 'm+', ‘LineWidth', line_width), hold on
plot3(x_12,y_12, z_12, 'k-', 'LineWidth', line_width), hold on
plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_23,y 23, z_23, 'r-', 'LineWidth', line_width), hold on
plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x4a, y4a, z4a, -, 'LineWidth', line_width), hold on
plot3(x_4a4, y_4a4, z_4a4, ', 'LineWidth', line_width), hold on
Frame 4)

plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on

166

%Plot point at Frame 0 origin

%Plot Joint 1 (Frame 0 to 1)

%Plot point at Frame 1 origin

%Plot Joint 2 (Frame 1 to 2)

%Plot point at Frame 2 origin

%Plot Link 1 (Frame 2 to Frame 3)

%Plot point at Frame 3 origin

%Plot small portion of Link 2 (Frame 3 to 4a)
%Plot main portion of Link 2 (Frame 4a to

%Plot point on top of Link 2 axis

plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on %Plot connection between Joints 5 and 6
plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %PIot end of Joint 6

plot3(x_67,y_67, z_67, 'g-', 'LineWidth', line_width), hold on %Plot connection between Joints 6 and EE
plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip)
surf(height*Z-height,Y,X-radius,C), hold on %Produce cylindrical surface
surf(radius*r,radius*s,radius*t-radius,C2), hold on %Generate sphere
if ~jaguar, %Create Jaguar Top
surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on %Produce cylindrical surface
%Third variable represents the cylinder axis
surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2); %Generate sphere
surf(X_strut,Y_strut,Z_strut,C3) %Plot the strut surface
end
surf(X_sc, Y_sc, Z_sc, C_sc), hold on %Produce cylindrical sample container
fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,),'r") %Plot sample container baseplate
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on %Repeat for S.C. #2
fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,),'r)
if ~sc_plot, %If plotting containers 3 & 4
surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on %Repeat for S.C. #3
fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,),'r)
surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on %Repeat for S.C. #4
fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,),'r)
end

titte('Manipulator Plotted in X-Z Plane’, 'FontWeight', 'bold’, 'FontSize', title_size)

xlabel("X-axis (m)', 'FontSize', title_size), ylabel("Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize',
title_size)

axis([xmin xmax ymin ymax zmin zmax])

grid on

view(0,0) %Viewpoint specification (AZ,EL), (0,0) is the x-z plane

figure(4) %Plot of Manipulator in X-Y Plane

plot3(x0_pt, yO_pt, zO_pt, 'm+', 'LineWidth', line_width), hold on %Plot point at Frame 0 origin
plot3(x_01,y 01, z_01, 'k-', 'LineWidth', line_width), hold on %Plot Joint 1 (Frame 0 to 1)
plot3(x1_pt, y1_pt, z1_pt, 'm+', ‘LineWidth', line_width), hold on %Plot point at Frame 1 origin
plot3(x_12,y 12,z 12, 'k-', 'LineWidth', line_width), hold on %Plot Joint 2 (Frame 1 to 2)
plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on %Plot point at Frame 2 origin
plot3(x_23,y 23, z_23, 'r-', 'LineWidth', line_width), hold on %Plot Link 1 (Frame 2 to Frame 3)
plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on %Plot point at Frame 3 origin
plot3(x4a, y4a, z4a, -, 'LineWidth', line_width), hold on %Plot small portion of Link 2 (Frame 3 to 4a)

plot3(x_4a4, y_4a4, z_4a4, ', 'LineWidth', line_width), hold on %Plot main portion of Link 2 (Frame 4a to
Frame 4)
plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on %Plot point on top of Link 2 axis

plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on %Plot connection between Joints 5 and 6
plot3(x_56_pt, y 56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6
plot3(x_67,y_67, z_67, 'g-', 'LineWidth', line_width), hold on %Plot connection between Joints 6 and EE
plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip)
surf(height*Z-height,Y,X-radius,C), hold on %Produce cylindrical surface
surf(radius*r,radius*s,radius*t-radius,C2), hold on %Generate sphere
if ~jaguar, %Create Jaguar Top
surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on %Produce cylindrical surface
%Third variable represents the cylinder axis
surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2); %Generate sphere
surf(X_strut,Y_strut,Z_strut,C3) %Plot the strut surface
end
surf(X_sc, Y_sc, Z_sc, C_sc), hold on %Produce cylindrical sample container
fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,),r) %Plot sample container baseplate
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on %Repeat for S.C. #2
fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,),r)
if ~sc_plot, %If plotting containers 3 & 4
surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on %Repeat for S.C. #3
fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,),'r)
surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on %Repeat for S.C. #4
fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,),'r)
end

title('Manipulator Plotted in X-Y Plane', 'FontWeight', 'bold', 'FontSize', title_size)

xlabel("X-axis (m)', 'FontSize', title_size), ylabel("Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize',
title_size)

axis([xmin xmax ymin ymax zmin zmax])

grid on

view(0,90) %Viewpoint specification (AZ,EL), (0,90) is the x-y plane

167

figure(5) %Plot of Manipulator in Y-Z Plane

plot3(x0_pt, yO_pt, zO_pt, 'm+', ‘LineWidth', line_width), hold on
plot3(x_01,y_01, z_01, 'k-', 'LineWidth', line_width), hold on
plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_12,y 12,z 12, 'k-', 'LineWidth', line_width), hold on
plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_23,y_23, z_23, 'r-', 'LineWidth', line_width), hold on
plot3(x3_pt, y3_pt, z3_pt, 'm+', ‘LineWidth', line_width), hold on
plot3(x4a, y4a, z4a, -, 'LineWidth', line_width), hold on
plot3(x_4a4, y 4a4, z_4a4, ', 'LineWidth', line_width), hold on

Frame 4)

plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on

%Plot point at Frame 0 origin

%Plot Joint 1 (Frame 0 to 1)

%Plot point at Frame 1 origin

%Plot Joint 2 (Frame 1 to 2)

%Plot point at Frame 2 origin

%Plot Link 1 (Frame 2 to Frame 3)

%Plot point at Frame 3 origin

%Plot small portion of Link 2 (Frame 3 to 4a)
%Plot main portion of Link 2 (Frame 4a to

%Plot point on top of Link 2 axis
%~Plot connection between Joints 5 and 6

plot3(x_56_pt, y 56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6

plot3(x_67,y_67, z_67, 'g-', 'LineWidth', line_width), hold on

%~Plot connection between Joints 6 and EE

plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip)

surf(height*Z-height,Y,X-radius,C), hold on
surf(radius*r,radius*s,radius*t-radius,C2), hold on
if ~jaguar,

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on

%Produce cylindrical surface
%Generate sphere

%Create Jaguar Top
%Produce cylindrical surface

%Third variable represents the cylinder axis

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);
surf(X_strut,Y_strut,Z_strut,C3)
end
surf(X_sc, Y_sc, Z_sc, C_sc), hold on
fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,),r)
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on
fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,),'r)
if ~sc_plot,
surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on
fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,),'r)
surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on
fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,),'r)
end

%Generate sphere
%Plot the strut surface

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

%If plotting containers 3 & 4
%Repeat for S.C. #3

%Repeat for S.C. #4

title('Manipulator Plotted in Y-Z Plane’, 'FontWeight', 'bold’, 'FontSize', title_size)
xlabel("X-axis (m)', 'FontSize', title_size), ylabel("Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize',

else

title_size)
axis([xmin xmax ymin ymax zmin zmax])
grid on
view(90,0) %Viewpoint specification (AZ,EL), (90,0) is the y-z plane
figure(2) %Plot of Manipulator in X-Z Plane

plot3(x0_pt, yO_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_01,y 01, z_01, 'k-', 'LineWidth', line_width), hold on
plot3(x1_pt, y1_pt, z1_pt, 'm+', ‘LineWidth', line_width), hold on
plot3(x_12,y_12, z_12, 'k-', 'LineWidth', line_width), hold on
plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_23,y 23, z_23, 'k-', 'LineWidth', line_width), hold on
plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x4a, yda, z4a, 'k-', 'LineWidth', line_width), hold on
plot3(x_4a4, y_4a4, z_4a4, 'k-', 'LineWidth', line_width), hold on
Frame 4)

plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on

%Plot point at Frame 0 origin

%Plot Joint 1 (Frame 0 to 1)

%Plot point at Frame 1 origin

%Plot Joint 2 (Frame 1 to 2)

%Plot point at Frame 2 origin

%Plot Link 1 (Frame 2 to Frame 3)

%Plot point at Frame 3 origin

%Plot small portion of Link 2 (Frame 3 to 4a)
%Plot main portion of Link 2 (Frame 4a to

%pPlot point on top of Link 2 axis
%Plot connection between Joints 5 and 6

plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %PIot end of Joint 6

plot3(x_67,y 67, z_67, 'k-', 'LineWidth', line_width), hold on

%Plot connection between Joints 6 and EE

plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip)

surf(height*Z-height,Y,X-radius,C), hold on
surf(radius*r,radius*s,radius*t-radius,C2), hold on
if ~jaguar,

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);
surf(X_strut,Y_strut,Z_strut,C3)

end

surf(X_sc, Y_sc, Z_sc, C_sc), hold on

fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,),'r")

surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on

168

%Produce cylindrical surface

%Generate sphere

%Create Jaguar Top

%Produce cylindrical surface

%Third variable represents the cylinder axis
%Generate sphere

%Plot the strut surface

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,),r)

if ~sc_plot,
surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on
fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,),'r)
surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on
fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,),'r)

end

%If plotting containers 3 & 4
%Repeat for S.C. #3

%Repeat for S.C. #4

titte('Manipulator Plotted in 3 Dimensions', 'FontWeight', 'bold’, ‘FontSize', title_size)
xlabel("X-axis (m)', 'FontSize', title_size), ylabel("Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize',

title_size)
axis([xmin xmax ymin ymax zmin zmax])
grid on
figure(3) %Plot of Manipulator in X-Z Plane

plot3(x0_pt, yO_pt, zO_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_01,y 01, z_01, 'k-', 'LineWidth', line_width), hold on
plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_12,y 12,z 12, 'k-', 'LineWidth', line_width), hold on
plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_23,y_23, z_23, 'k-', 'LineWidth', line_width), hold on
plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x4a, y4a, z4a, 'k-', 'LineWidth', line_width), hold on
plot3(x_4a4, y_4a4, z_4a4, 'k-', 'LineWidth', line_width), hold on

Frame 4)

plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on

%Plot point at Frame 0 origin

%Plot Joint 1 (Frame 0 to 1)

%Plot point at Frame 1 origin

%Plot Joint 2 (Frame 1 to 2)

%Plot point at Frame 2 origin

%Plot Link 1 (Frame 2 to Frame 3)

%Plot point at Frame 3 origin

%Plot small portion of Link 2 (Frame 3 to 4a)
%Plot main portion of Link 2 (Frame 4a to

%Plot point on top of Link 2 axis
%~Plot connection between Joints 5 and 6

plot3(x_56_pt, y 56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6

plot3(x_67,y 67, z_67, 'k-', 'LineWidth', line_width), hold on

%Plot connection between Joints 6 and EE

plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip)

surf(height*Z-height,Y,X-radius,C), hold on
surf(radius*r,radius*s,radius*t-radius,C2), hold on
if ~jaguar,

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on

%Produce cylindrical surface
%Generate sphere

%Create Jaguar Top
%Produce cylindrical surface

%Third variable represents the cylinder axis

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);
surf(X_strut,Y_strut,Z_strut,C3)
end
surf(X_sc, Y_sc, Z_sc, C_sc), hold on
fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,),r)
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on
fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,),'r)
if ~sc_plot,
surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on
fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,),'r)
surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on
fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,),'r)
end

%Generate sphere
%Plot the strut surface

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

%If plotting containers 3 & 4
%Repeat for S.C. #3

%Repeat for S.C. #4

title('Manipulator Plotted in X-Z Plane’, 'FontWeight', 'bold’, 'FontSize', title_size)
xlabel("X-axis (m)', 'FontSize', title_size), ylabel("Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize',

title_size)
axis([xmin xmax ymin ymax zmin zmax])
grid on
view(0,0)
figure(4) %Plot of Manipulator in X-Y Plane

plot3(x0_pt, yO_pt, zO_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_01,y 01, z_01, 'k-', 'LineWidth', line_width), hold on
plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_12,y 12,z 12, 'k-', 'LineWidth', line_width), hold on
plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_23,y_23, z_23, 'k-', 'LineWidth', line_width), hold on
plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x4a, yda, z4a, 'k-', 'LineWidth', line_width), hold on
plot3(x_4a4, y_4a4, z_4a4, 'k-', 'LineWidth', line_width), hold on
Frame 4)

plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on

%Viewpoint specification (AZ,EL), (0,0) is the x-z plane

%Plot point at Frame 0 origin

%Plot Joint 1 (Frame 0 to 1)

%Plot point at Frame 1 origin

%Plot Joint 2 (Frame 1 to 2)

%Plot point at Frame 2 origin

%Plot Link 1 (Frame 2 to Frame 3)

%Plot point at Frame 3 origin

%Plot small portion of Link 2 (Frame 3 to 4a)
%Plot main portion of Link 2 (Frame 4a to

%Plot point on top of Link 2 axis
%Plot connection between Joints 5 and 6

plot3(x_56_pt, y _56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6

169

plot3(x_67,y 67, z_67, 'k-', 'LineWidth', line_width), hold on

%Plot connection between Joints 6 and EE

plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip)

surf(height*Z-height,Y,X-radius,C), hold on
surf(radius*r,radius*s,radius*t-radius,C2), hold on
if ~jaguar,

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on

%Produce cylindrical surface
%Generate sphere

%Create Jaguar Top
%Produce cylindrical surface

%Third variable represents the cylinder axis

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);
surf(X_strut,Y_strut,Z_strut,C3)
end
surf(X_sc, Y_sc, Z_sc, C_sc), hold on
fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,),r")
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on
fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,),'r)
if ~sc_plot,
surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on
fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,),'r)
surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on
fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,),'r)
end

%Generate sphere
%PIlot the strut surface

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

%If plotting containers 3 & 4
%Repeat for S.C. #3

%Repeat for S.C. #4

titte('Manipulator Plotted in X-Y Plane', 'FontWeight', 'bold’, ‘FontSize', title_size)
xlabel("X-axis (m)', 'FontSize', title_size), ylabel("Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize',

title_size)
axis([xmin xmax ymin ymax zmin zmax])
grid on
view(0,90)
figure(5) %Plot of Manipulator in Y-Z Plane

plot3(x0_pt, yO_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_01,y 01, z_01, 'k-', 'LineWidth', line_width), hold on
plot3(x1_pt, y1_pt, z1_pt, 'm+', ‘LineWidth', line_width), hold on
plot3(x_12,y_12, z_12, 'k-', 'LineWidth', line_width), hold on
plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_23,y 23, z_23, 'k-', 'LineWidth', line_width), hold on
plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x4a, y4a, z4a, 'k-', 'LineWidth', line_width), hold on
plot3(x_4a4, y_4a4, z_4a4, 'k-', 'LineWidth', line_width), hold on
Frame 4)

plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on
plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on

%Viewpoint specification (AZ,EL), (0,90) is the x-y plane

%Plot point at Frame 0 origin

%Plot Joint 1 (Frame 0 to 1)

%Plot point at Frame 1 origin

%Plot Joint 2 (Frame 1 to 2)

%Plot point at Frame 2 origin

%Plot Link 1 (Frame 2 to Frame 3)

%Plot point at Frame 3 origin

%Plot small portion of Link 2 (Frame 3 to 4a)
%Plot main portion of Link 2 (Frame 4a to

%Plot point on top of Link 2 axis
%Plot connection between Joints 5 and 6

plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %PIot end of Joint 6

plot3(x_67,y 67, z_67, 'k-', 'LineWidth', line_width), hold on

%Plot connection between Joints 6 and EE

plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip)

surf(height*Z-height,Y,X-radius,C), hold on
surf(radius*r,radius*s,radius*t-radius,C2), hold on
if ~jaguar,

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on

%Produce cylindrical surface
%Generate sphere

%Create Jaguar Top

%Produce cylindrical surface

%Third variable represents the cylinder axis

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);
surf(X_strut,Y_strut,Z_strut,C3)
end
surf(X_sc, Y_sc, Z_sc, C_sc), hold on
fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,),'r")
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on
fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,),r)
if ~sc_plot,
surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on
fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,),'r)
surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on
fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,),'r)
end

%Generate sphere
%PIlot the strut surface

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

%If plotting containers 3 & 4

%Repeat for S.C. #3

%Repeat for S.C. #4

titte('Manipulator Plotted in Y-Z Plane’, 'FontWeight', 'bold’, 'FontSize', title_size)
xlabel("X-axis (m)', 'FontSize', title_size), ylabel("Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize',

title_size)
axis([xmin xmax ymin ymax zmin zmax])
grid on
view(90,0)

plane

end

170

%Viewpoint specification (AZ,EL), (90,0) is the y-z

if spread, %If plots are to be spread across the window:
ifimac, %lf the figures are to be displayed on 2 Mac monitors:

X_zoom =.15;

y_zoom = .375;

set(figure(5), 'units', 'normalized', 'outerposition’, [.15 .25 x_zoom y_zoom)])
set(figure(4), 'units', 'normalized', ‘outerposition’, [0 .25 x_zoom y_zoom])
set(figure(3), 'units', 'normalized', 'outerposition’, .15 1 Xx_zoomy_zoom])
set(figure(2), 'units', 'normalized’, 'outerposition’, [0 1 x_zoomy_zoom])

end
if laptop, %lf the plots are to be shown on a standard Windows laptop

y_zoom = .48075;

x_zoom = 1/3;

y_base =.039;

set(figure(5), 'units', 'normalized’, 'outerposition’, [.6666 y_base x_zoom y_zoom])
set(figure(4), 'units', 'normalized', ‘outerposition’, [.3333 y_base x_zoom y_zoom])
set(figure(3), 'units', 'normalized’, 'outerposition’, [0 y_base x_zoomy_zoom])
set(figure(2), 'units', 'normalized', 'outerposition’, [.6666 .52 x_zoom y_zoom])

end

end
end

171

H.9 Function work.m

function work(spread, jaguar, laptop, imac, workspace_iter, nframes)

tic %Initiate timer

%theta_1_deg_min =-110; theta_1_deg_max =110; %Max and Min Joint 1 Angles (degrees)
%Theta 1 min is set to zero as the workspace is symmetric

theta_1 _deg_min=0; theta_1_deg_max = 110; %Max and Min Joint 1 Angles (degrees)
theta_2_deg_min =-110; theta_2_deg_max = 110; %Max and Min Joint 2 Angles (degrees)
%theta_3_deg_min =-30; theta_3_deg_max = 170; %Max and Min Joint 3 Angles (degrees)
%theta_4_deg_min = -180; theta_4_deg_max = 180; %Max and Min Joint 4 Angles (degrees)
%theta_5_deg_min = -105; theta_5_deg_max = 105; %Max and Min Joint 5 Angles (degrees)

theta_5_deg = 0;
theta_4 deg = 0;
theta_3_deg =-90;

%Fix at zero to reach work envelope (deg)
%Fix at zero to reach work envelope (deg)
%Fix at -90 to reach work envelope (deg)

%Joint 6 will drive the EE and will not contribute to the workspace

%Table of D-H Parameters

alpha0=0; a0=0; dl =.10795;

alphal = -pi/2; al =.1524; d2=0;
alpha2 =0; a2=.6096; d3=0;

alpha3 = -pi/2; a3 =.1143; d4 =.6096;

alpha4d = pi/2; a4=0; d5=0;
alpha5 = -pi/2; a5=0; d6 =0;

ee_length = .2237; %End-effector length (m)

res =.01; %Resolution off increments composing lines
%This must be sufficiently small to coincide
%with values in kinematics codes

line_width = 2; %Set width of plotted lines
Iw_mult = 2; %Line width multiplier for coord. sys origin point
title_size = 14; %Set the size of the font for plot text (26 for maximized windows)

xmin = -1.5; xmax = 1.5; ymin = -1.5; ymax = 1.5; zmin = -1.5; zmax = 1.5; %Values for axes definitions
Xmin = -2; Xmax = 2; ymin = -2; ymax = 2; zmin = -2; zmax = 2; %Values for axes definitions
fig_color =11 1]; %Sets background in figures to white

set(0, 'DefaultFigureColor, fig_color)

%Jaguar Details
radius = 0.1984;
height = abs(xmin);
strut_loc = -.42;
strut_width = .12;
Jag_offset = 1.194;

%Sample Container Details
radius_sc = .1365;
height_sc = .2667;
x_loc_sc =.12;

y_loc_sc = .3350;

z_loc_sc =.3318;

theta_1_deg = theta_1_deg_min;
theta_2_deg = theta_2_deg_min;
%theta_3_deg = theta_3_deg_min;
%theta_4_deg = theta_4_deg_min;
%heta_5_deg = theta_5_deg_min;
theta_6_deg = 0;

%Specify radius of Jaguar cylinder (m)

%"height" or length of cylinder (m)

%x-displacement of Jaguar strut from base frame (0,0,0) in meters
%Strut width (m)

%Distance between Jaguar cylinder axes (m)

%Sample container outer radius (m) - (corresponds to Di = 10.75 in)
%Sample continer height (m) - (corresonds to h = 10.5 in)

%Dist. from origin in x-direction (m)

%Dist. from origin in y-direction (m)

%Dist. from origin in z-direction (m)

%Set initial Joint 1 angle to min value (deg)
%Set initial Joint 2 angle to min value (deg)
%Set initial Joint 3 angle to min value (deg)
%Set initial Joint 4 angle to min value (deg)
%Set initial Joint 5 angle to min value (deg)
%Joint 6 Angle is arbitrary and set to 0(deg)

X_67_array = []; %Initialize array for x-coords. for tool tip
y_67_array =]; %Initialize array for y-coords. for tool tip
z_67_array =[]; %Initialize array for z-coords. for tool tip

%Convert D-H Parmeters in Table into MATLAB Arrays
alpha = [alphaO, alphal, alpha2, alpha3, alpha4, alpha5]; %Create array of alpha angles (rad)

a=[a0, al, a2, a3, a4, a5];

%Array of "a" offset vectors

172

d =[d1, d2, d3, d4, d5, d6]; %Array of "d" offset vectors

counter = 0; %lnitialize iteration counter variable
while theta_1_deg <=theta_1_deg_max,
theta_2_deg = theta_2_deg_min; %Reset theta_2_deg to min value (deg)
while theta_2_deg <= theta_2_deg_max,
counter = counter + 1; %lterate iteration counter

%Create theta_deg array:
theta_deg = [theta_1_deg, theta_2_deg, theta_3_deg, theta_4 deg, theta_5_deg, theta_6_deq];
theta = theta_deg * pi/180; %Convert theta array to radians (rad)

for i = L:nframes,
%TransformMat computes transformation, rotation, and position matrices
[T(:,:,))] = TransformWork(a(i),alpha(i),d(i),theta(i)); %Transformations from frame i to i-1
%Redefine variable names for matrices and output matrices to data file:
ifi==1, T1=T(,.,i); end
ifi==2,T2=T(,,i); end
ifi==3, T3=T(,:,i); end
ifi==4,T4=T(,,i); end
ifi==5, T5 =T(,:,i); end
ifi==6, T6 =T(:,:,i); end

end

%Create a point at the origin of Frame 0:
X0_pt=0; y0_pt=0; zO0_pt=0;
%Create a point at the origin of Frame 1:
x1_pt=T1(1,4); yl pt=T1(2,4); z1 pt=T1(3,4);
%Create line between Frames 0 and 1
if abs(x1_pt-x0_pt) >= abs(y1_pt-y0_pt) && abs(x1_pt-x0_pt) >= abs(z1_pt-z0_pt),
X_01=x0_pt:res:x1_pt; %lLet x-array drive change from Frame Oto 1
y_01 =y0 pt: abs(yl_pt-yO_pt)/(size(x_01,2)-1) : y1_pt; %Create y-array based on size of x-array
z_01 =2z0_pt: abs(z1_pt-z0_pt)/(size(x_01,2)-1) : z1_pt; %Create z-array based on size of x-array
if size(y_01, 2)==1, y_ 01 =y0_pt + x_01.*0; end %lf there is no change iny, create array of same mag.
if size(z_01, 2)==1, z_01=2z0_pt+x_01.*0; end %lf there is no change in z, create array of same mag.
else if abs(yl_pt-y0_pt) >= abs(x1_pt-x0_pt) && abs(yl_pt-y0_pt) >= abs(z1_pt-z0_pt),
y 01=y0 pt:res:yl pt; %lety-array drive change from Frame Oto 1
x_01 = x0_pt : abs(x1_pt-x0_pt)/(size(y_01,2)-1) : x1_pt; %Create x-array based on size of y-array
z_01 =2z0_pt: abs(z1_pt-z0_pt)/(size(y_01,2)-1) : z1_pt; %Create z-array based on size of y-array
if size(x_01, 2)==1, x_01=x0_pt+y 01.*0; end %lf there is no change in x, create array of same mag.
if size(z_01, 2)==1, z_ 01 =2z0_pt+y 01.*0; end %lf there is no change in z, create array of same mag.
else %the biggest change is in the z-direction
z 01 =20 _pt:res:zl pt; %letz-array drive change from Frame Oto 1
x_01 = x0_pt : abs(x1_pt-x0_pt)/(size(z_01,2)-1) : x1_pt; %Create x-array based on size of z-array
y_01 =y0 pt: abs(yl_pt-yO_pt)/(size(z_01,2)-1) : y1_pt; %Create y-array based on size of z-array

if size(x_01, 2)<=1, x 01 =x0_pt+z_01.*0; end %lf there is no change in x, create array of same mag.
if size(y_01, 2)<=1, y 01 =y0_pt+z_01.*0; end %lf there is no change iny, create array of same mag.
end
end

%Create a point at the origin of Frame 2:
T_current = T1*T2; %Create new transformation matrix from origin to current frame
x2_pt=T_current(1,4); y2_pt=T_current(2,4); z2_pt=T_current(3,4);
%%%plot3(x2_pt, y2_pt, z2_pt, 'r+', 'LineWidth', line_width), hold on %Plot origin of Frame 2
%Create line between Frames 1 and 2
%Case |: Greatest change between frames is in x-direction:
if abs(x2_pt-x1_pt) >= abs(y2_pt-y1l_pt) && abs(x2_pt-x1_pt) >= abs(z2_pt-z1_pt),
if x2_pt >= x1_pt, %If x2 is greater than or equal to x1, create normal array
x 12 =x1_pt:res:x2_pt; %Let x-array drive change from Frame 1 to 2
elsex 12=-x1_pt:res:-x2_pt; x_12=-x_12; end %Otherwise, flip array direction.
size_x12 = size(x_12,2)-1; %Size of x_12 array
if y2_pt>=yl_pt, %If y2 is greater than or equal to y1, create normal array
y_12 =yl pt:abs(y2_pt-yl pt)/size_x12 :y2_pt; %Create y-array based on size of x-array
else
y_12 =-yl pt:abs(y2_pt-yl pt)/size_x12:-y2 pt; y 12=-y 12; %Otherwise, flip array direction
end
if z2_pt >=z1_pt,
z_12 =71 pt:abs(z2_pt-z1_pt)/size_x12 : z2_pt; %Create z-array based on size of x-array
else
z 12 =-z1 pt:abs(z2_pt-z1_pt)/size_x12:-z2_pt; z_12=-z_12; %Otherwise, flip array direction

173

end
if size(y_12, 2)<=1, y_12=yl pt+x_12.*0; end %lf there is no change iny, create array of same mag.
if size(z_12, 2)<=1, z_12=1z1 pt+x_12.*0; end %lf there is no change in z, create array of same mag.
%Case lI: Greatest change between frames is in y-direction:
else if abs(y2_pt-yl_pt) >= abs(x2_pt-x1_pt) && abs(y2_pt-yl_pt) >= abs(z2_pt-z1_pt),
if y2_pt>=yl pt, %If y2 is greater than or equal to y1,
y_ 12=yl pt:res:y2 pt; %Lety-array drive change from Frame 1 to 2
elsey 12=-yl pt:res:-y2 pt; y 12=-y 12; end %Otherwise, flip array direction.
size_yl12 = size(y_12,2)-1; %Size of y_12 array
if x2_pt >= x1_pt, %If x2 is greater than or equal to x1,
Xx_12 = x1_pt : abs(x2_pt-x1_pt)/size_y12 : x2_pt; %Create x-array based on size of y-array
else
x_12 =-x1_pt: abs(x2_pt-x1_pt)/size_y12 : -x2_pt; x_12 = -x_12; %Create x-array based on size of y-array
end
if z2_pt>=2z1_pt,
z_12 =71 pt:abs(z2_pt-z1_pt)/size_y12 : z2_pt; %Create z-array based on size of y-array
else
z 12 =-z1 pt: abs(z2_pt-z1_pt)/size_y12:-z2_pt; z_12 =-z_12; %Create z-array based on size of y-array
end
if size(x_12, 2)<=1, x_12=x1 pt+y 12.*0; end %lf there is no change in x, create array of same mag.
if size(z_12, 2)<=1, z_12=1z1 pt+y 12.*0; end %lf there is no change in z, create array of same mag.
%Case lll: Greatest change between frames is in z-direction:
else %the biggest change is in the z-direction
if z2_pt>=2z1_pt,
z 12=71 pt:res:z2_pt; %let z-array drive change from Frame 1 to 2
elsez_12=-z1 pt:res:-z2_pt; z_12=-z_12; end %Otherwise, flip array direction.

size_z12 = size(z_12,2)-1; %Size of z_12 array
if x2_pt >= x1_pt, %If x2 is greater than or equal to x1,
x_12 =x1_pt: abs(x2_pt-x1_pt)/size_z12 : x2_pt; %Create x-array based on size of z-array
else
x_12 =-x1_pt : abs(x2_pt-x1_pt)/size_z12 : -x2_pt; x_12=-x_12; end %Otherwise, flip array direction.
if y2_pt>=yl_pt, %If x2 is greater than or equal to x1,
y_12 =yl pt:abs(y2_pt-yl pt)/size_z12 :y2_pt; %Create y-array based on size of z-array
else

y_12 =-yl pt:abs(y2_pt-yl pt)/size_z12:-y2 pt; y_12=-y 12; end %Otherwise, flip array direction.
if size(x_12, 2)<=1, x_12=x1_pt+2z_12.*0; end %lIf there is no change in x, create array of same mag.
if size(y_12, 2)<=1, y_12=yl pt+z_12.*0; end %lf there is no change iny, create array of same mag.

end
end
%%%plot3(x_12,y 12,z 12, 'k-, 'LineWidth', line_width), hold on %Plot line between Frames 1 & 2 in 3D

%Create a point at the origin of Frame 3:

T_current = T_current*T3; %Create new transformation matrix from origin to current frame
x3_pt=T_current(1,4); y3 pt=T_current(2,4); z3 pt=T_current(3,4);

%Create line between Frames 2 and 3

%Case |: Greatest change between frames is in x-direction:

if abs(x3_pt-x2_pt) >= abs(y3_pt-y2_pt) && abs(x3_pt-x2_pt) >= abs(z3_pt-z2_pt),

if X3_pt >= x2_pt, %If x3 is greater than or equal to x2, create normal array
X _23=x2_pt:res:x3_pt; %Let x-array drive change from Frame 2 to 3
else x_23 =-x2_pt:res:-x3_pt; x_ 23 =-x_23; end %Otherwise, flip array direction.
size_x23 = size(x_23,2)-1; %Size of x_23 array
if y3_pt>=y2_pt, %If y3 is greater than or equal to y2, create normal array
y_23 =y2 pt:abs(y3_pt-y2_pt)/size_x23 : y3_pt; %Create y-array based on size of x-array
else
y_23 =-y2_pt: abs(y3_pt-y2_pt)/size_x23 :-y3 _pt; y_23=-y 23; %Otherwise, flip array direction.
end
if z3_pt >=z2_pt,
z_23 =2z2_pt:abs(z3_pt-z2_pt)/size_x23 : z3_pt; %Create z-array based on size of x-array
else
z_23=-z2_pt: abs(z3_pt-z2_pt)/size_x23:-z3_pt; z_23 =-z_23; %Otherwise, flip array direction.
end
if size(y_23, 2)<=1, y 23 =y2_pt+x_23.*0; end %lf there is no change iny, create array of same mag.
if size(z_23, 2)<=1, z_23 =22 pt+x_23.*0; end %lf there is no change in z, create array of same mag.
%Case II: Greatest change between frames is in y-direction:
else if abs(y3_pt-y2_pt) >= abs(x3_pt-x2_pt) && abs(y3_pt-y2_pt) >= abs(z3_pt-z2_pt),

if y3_pt>=y2_pt, %If y3 is greater than or equal to y2,

y_23=y2 pt:res:y3_pt; %lLety-array drive change from Frame 2 to 3
elsey 23=-y2 pt:res:-y3_pt; y 23=-y 23; end %Otherwise, flip array direction.

174

size_y23 = size(y_23,2)-1; %Size of y_23 array
if Xx3_pt >=x2_pt, %If x2 is greater than or equal to x1,
X_23 = x2_pt : abs(x3_pt-x2_pt)/size_y23 : x3_pt; %Create x-array based on size of y-array
else
X_23 = -x2_pt : abs(x3_pt-x2_pt)/size_y23 : -x3_pt; x_23 = -x_23; %Create x-array based on size of y-array
end
if z3_pt >=z2_pt,
z_23 =72 _pt: abs(z3_pt-z2_pt)/size_y23 : z3_pt; %Create z-array based on size of y-array
else
z 23 =-z2_pt: abs(z3_pt-z2_pt)/size_y23:-z3_pt; z_23 =-z_23; %Create z-array based on size of y-array
end
if size(x_23, 2)<=1, x_23=x2_pt+y 23.*0; end %lf there is no change in x, create array of same mag.
if size(z_23, 2)<=1, z_23=22 pt+y 23.*0; end %lf there is no change in z, create array of same mag.
%Case lll: Greatest change between frames is in z-direction:
else %the biggest change is in the z-direction
if z3_pt >=z2_pt,
z 23=272 pt:res:z3_pt; %let z-array drive change from Frame 2to 3
elsez_ 23=-z2 pt:res:-z3_pt; z_23=-z_23; end %Otherwise, flip array direction.

size_z23 = size(z_23,2)-1; %Size of z_23 array
if Xx3_pt >=x2_pt, %If x3 is greater than or equal to x2,
X_23 = x2_pt : abs(x3_pt-x2_pt)/size_z23 : x3_pt; %Create x-array based on size of z-array
else
X_23 = -x2_pt : abs(x3_pt-x2_pt)/size_z23 : -x3_pt; x_23 =-x_23; end %Otherwise, flip array direction.
if y3_pt >=y2_pt, %If y3 is greater than or equal to y2,
y_23 =y2 pt:abs(y3_pt-y2_pt)/size_z23 : y3_pt; %Create y-array based on size of z-array
else

y_23 =-y2_pt: abs(y3_pt-y2_pt)/size_z23 :-y3_pt; y_23=-y 23; end %Otherwise, flip array direction.
if size(x_23, 2)<=1, x 23 =x2_pt+2z_23.*0; end %lf there is no change in x, create array of same mag.
if size(y_23, 2)<=1, y_23=y2 pt+z_23.*0; end %lf there is no change iny, create array of same mag.

end
end

%%%Frame 3 to Frame 4a (Bend in Link 2)%%%

l4=0:res:a3; %Create an array based on the length of top part of Link 2

phi_sum = theta(1); %Summation of all phi angles to this point is zero

xda = x3_pt + l4*sin(pi/2+theta(2)+theta(3))*cos(phi_sum); %pi/2 is the fixed angle between d1 and the z0 axis
yda = y3_pt + l4*sin(pi/2+theta(2)+theta(3))*sin(phi_sum);

z4a = z3_pt + l4*cos(pi/2+theta(2)+theta(3));

xda_pt_loc = size(x4a,2); yda_pt_loc = size(y4a,2); z4a_pt_loc = size(z4a,2);

xda_pt = x4a(x4a_pt_loc); yda_pt=yda(yda_pt_loc); z4a_pt=z4a(z4a_pt_loc);

%%%Frame 4a to Frame 4 (Base of Link 2)%%%
%Create a point at the origin of Frame 4:
T_current = T_current*T4; %Create new transformation matrix from origin to current frame
x4_pt=T_current(1,4); y4 pt=T_current(2,4); z4_pt=T_current(3,4);
%Create line between Frames 4a and 4
%Case |: Greatest change between frames is in x-direction:
if abs(x4_pt-x4a_pt) >= abs(y4_pt-yda_pt) && abs(x4_pt-xda_pt) >= abs(z4_pt-z4a_pt),
if X4_pt >= xda_pt, %If x4 is greater than or equal to x4a, create normal array
X_4ad =x4da_pt:res: x4 _pt; %let x-array drive change from Frame 4a to 4
else x_4a4 = -x4a_pt:res: -x4_pt; x_4ad =-x_4a4d; end %Otherwise, flip array direction.
size_x4a4 = size(x_4a4,2)-1; %Size of x_4a4 array
if yA_pt >=yda_pt, %If y4 is greater than or equal to y4a, create normal array
y_4ad =yda_pt : abs(y4_pt-yda_pt)/size_x4ad : y4_pt; %Create y-array based on size of x-array
else
y_4a4 = -yda_pt: abs(y4_pt-yda_pt)/size_xdad : -y4 pt; y_4ad =-y_4ad; %Otherwise, flip array direction.
end
if z4_pt >= z4a_pt,
z_4a4 = z4a_pt : abs(z4_pt-z4a_pt)/size_x4ad : z4_pt; %Create z-array based on size of x-array
else
z_4a4 = -z4a_pt: abs(z4_pt-z4a_pt)/size_x4ad : -z4_pt; z_4ad =-z_4a4; %Otherwise, flip array direction.
end
if size(y_4a4, 2)<=1, y_4ad4 =y4 pt+x_4a4.*0; end %lf there is no change iny, create array of same mag.
if size(z_4a4, 2)<=1, z_4a4 =z4 pt+x_4a4.*0; end %lf there is no change in z, create array of same mag.
%Case II: Greatest change between frames is in y-direction:
else if abs(y4_pt-yda_pt) >= abs(x4_pt-x4a_pt) && abs(y4_pt-yda_pt) >= abs(z4_pt-z4a_pt),
if yA_pt >=yda_pt, %If y4 is greater than or equal to y4a,
y_4ad =yda pt:res:y4d pt; %let y-array drive change from Frame 4a to 4
elsey 4ad =-yda pt:res:-y4 pt; y 4ad=-y 4a4; end %Otherwise, flip array direction.
size_y4a4 = size(y_4a4,2)-1; %Size of y_4a4 array

175

if X4_pt >= xda_pt, %If x4 is greater than or equal to x4a,
X_4ad = xda_pt : abs(x4_pt-xda_pt)/size_yda4d : x4_pt; %Create x-array based on size of y-array
else
X_4ad = -xda_pt : abs(x4_pt-xda_pt)/size_ydad : -x4_pt; x_4ad = -x_4ad; %Create x-array based on size of y-
array
end
if z4_pt >= z4a_pt,
z_4ad = z4a_pt: abs(z4_pt-z4a_pt)/size_y4ad : z4_pt; %Create z-array based on size of y-array
else
z_4ad = -z4a_pt : abs(z4_pt-z4a_pt)/size_y4dad : -z4 _pt; z_4ad =-z_4ad; %Create z-array based on size of y-
array
end
if size(x_4a4, 2)<=1, x_4ad =x4a_pt+y_4a4.*0; end %lf there is no change in X, create array of same mag.
if size(z_4a4, 2)<=1, z_4a4 = z4a_pt+y_4a4.*0; end %lf there is no change in z, create array of same mag.
%Case lll: Greatest change between frames is in z-direction:
else %the biggest change is in the z-direction
if z4_pt >= z4a_pt,
z_4ad =z4a pt:res:z4 _pt; Y%let z-array drive change from Frame 4ato 4
else z_4a4 = -z4a_pt:res:-z4_pt; z_4ad =-z_4ad; end %Otherwise, flip array direction.
size_z4a4 = size(z_4a4,2)-1; %Size of z_4a4 array
if x4_pt >= x4a_pt, %If x4 is greater than or equal to x4a,
X_4ad = x4a_pt : abs(x4_pt-xda_pt)/size_z4a4 : x4_pt; %Create x-array based on size of z-array
else
X_4a4d = -x4a_pt : abs(x4_pt-xda_pt)/size_z4a4d : -x4_pt; x_4ad = -x_4ad; end %Otherwise, flip array
direction.

if y4_pt >=y4da_pt, %lIf y4 is greater than or equal to y4a,
y_4a4 =yda_pt : abs(y4_pt-yda_pt)/size_z4a4d : y4_pt; %Create y-array based on size of z-array
else

y_4a4 = -yda_pt: abs(y4_pt-yda_pt)/size_z4ad : -y4 pt; y_4ad =-y 4ad; end %Otherwise, flip array
direction.
if size(x_4a4, 2)<=1, x_4ad =x4a_pt +z_4a4.*0; end %If there is no change in x, create array of same mag.
if size(y_4a4, 2)<=1, y 4ad =yda_pt +z_4a4.*0; end %If there is no change iny, create array of same mag.
end
end

%%%Create a point at the end of Joint 6%%%
joint6_length = 0.2171; %Joint 5 axis to face of hand roll joint (m)
16 = 0: res : joint6_length; %Create an array based on the distance between Joints 5 and 6

%beta = pitch, alpha_2 = yaw, %gamma = roll
%Note: "alpha" is taken by the DH parameters

beta = theta(2)+theta(3)+pi/2+theta(5); alpha_2 =theta(1); gamma = theta(4);
%Note: pi/2 is added to theta(3) because it is subtracted in astepgui.m due to the frame transformations.
%Those transformations do not apply here

R_yaw = [cos(alpha_2) -sin(alpha_2) 0;... %Rotation matrix for yaw
sin(alpha_2) cos(alpha_2) 0;...
00 1];
R_pitch = [cos(beta) O sin(beta);... %Rotation matrix for pitch
010;...

-sin(beta) 0 cos(beta)];

R_roll=[100;... %Rotation matrix for roll
0 cos(gamma) -sin(gamma);...
0 sin(gamma) cos(gamma)];

R = R_yaw*R_roll*R_pitch; %Pitch first, then roll, then yaw (order is critical)

x_change_5=16; y change_5 =16.*0; z_change_5=16.*0; %Create end point corresponding to alpha =
beta = gamma =0

pos_5 = [x_change_5; y_change_5; z_change_5]; %Put coordinates in a vectory array

pos_6 = R * pos_5; %Rotate vector based on angles

X_56 = x4_pt + pos_6(1,:); y_56 =y4 pt+ pos_6(2,:); z_ 56 =z4_pt+ pos_6(3,:); %Add new location to previous
location (x4, y4, z4)

x_56_pt_loc = size(x_56,2); y_56_pt_loc = size(y_56,2); z_56_pt loc = size(z_56,2);
x_56_pt =x_56(x_56_pt_loc); y 56 pt=y 56(y_56_pt loc); z_56 pt=1z_56(z_56_ pt_loc);

%%Create a point at the end of the End-Effector (the tool tip)%%%

176

joint_7_length = ee_length;

%This is the end-effector length from Joint 6 to tool tip (meters)

|_7=0:res:joint_7_length; %Create an array based on the distance between Joints 5 and 6

x_change_7=1_7; y _change 7=1_7.%0;

beta = gamma =0
pos_7 = R * pos_5;

z_change_7 =1_7.*0; %Create end point corresponding to alpha =

%Rotate vector based on angles

X_67 =x_56_pt + pos_7(1,:); y_67 =y_56_pt + pos_7(2,:); z_67 =z_56_pt + pos_7(3,);
X_67_pt_loc = size(x_67,2); y_67_pt_loc =size(y_67,2); z_67_pt_loc = size(z_67,2);
X_67_pt=x_67(x_67_pt_loc); y 67 pt=y 67(y_67_pt loc); z_67 pt=1z_67(z_67_pt_loc);

X_67_array = [x_67_array, x_67_pt]; %Add latest tool tip x-coord. to array
y_67_array =[y_67_array, y_67_pt]; %Add latest tool tip y-coord. to array
z_67_array = [z_67_array, z_67_pt]; %Add latest tool tip z-coord. to array

theta_2_deg = theta_2_deg + workspace_iter;

end

theta_1_deg =theta_1_deg + workspace_iter;

end

%lterate theta_2_deg (degrees)

%lterate theta_1_deg (degrees)

figure(6) %Create figure for 3-D workspace plot
plot3(x0_pt, yO_pt, zO_pt, '+', 'LineWidth', line_width*lw_mult), hold on %Plot origin of Frame 0
plot3(x_67_array, y_67_array, z_67_array, 'r+', 'LineWidth', line_width), hold on %Plot end of the EE

%%%Create Jaguar Base%%%
R = [radius radius];

N = 25;

[X,Y,Z] = cylinder(R,N);

C = zeros(2,N);

%Create array with x = radius and y = radius

%Number of mesh segments comprising cylinder

%Create X, y, and z components of cylinder

%Generate C to serve as basic colormap (will be lime green)

surf(height*Z-height,Y,X-radius,C); hold on %Produce cylindrical surface

[r,s,t] = sphere(N);
C2 = zeros(N,N);
surf(radius*r,radius*s,radius*t-radius,C2);

if ~jaguar,

%%%Create Upper Jaguar Cylinder%%%

%Third variable represents the cylinder axis

%Create a sphere with NxN segments

%Create variable C2 to serve as a colormap (lime green again)
%Generate sphere

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on %Produce cylindrical surface

[r,s,] = sphere(N);
C2 = zeros(N,N);

%Third variable represents the cylinder axis
%Create a sphere with NxN segments
%Create variable C2 to serve as a colormap (lime green again)

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2); %Generate sphere
%%%Create Strut Between Jaguar Cylinders%%%

%Create matrices of x and y to create plane for strut:
[X_strut, Y_strut] = meshgrid(strut_loc : .01 : strut_loc + strut_width);

Z_strut = X_strut + Y_strut;
Zcol_loc = (size(X_strut,2)+1)/2;
Zcol = Z_strut(:,Zcol_loc);
Zmax = max(abs(Zcol));
Zcol = Zcol + Zmax;
Y_strut = 0.*Y_strut;
count=1; Znew =[]
while count <= size(Z_strut,2),
Znew = [Znew, Zcol];
count = count + 1;
end
Z_strut_max = max(abs(Znew));
Z_strut_max = Z_strut_max(1,1);
Z_normalized = (Znew./Z_strut_max);
Z_strut = Z_normalized * Jag_offset;

C3 = zeros(size(Z_strut,2),size(Z_strut,2));

surf(X_strut,Y_strut,Z_strut,C3)
end

%%%Create Sample Cotiainers%%%
%Create Sample Container 1:

R_sc = [radius_sc radius_sc];

N_sc = 40;

[X_sc,Y_sc,Z_sc] = cylinder(R_sc,N_sc);
X_sc=X_sc-x_loc_sc;

%Create z array (this will ultimately be the strut height
%Want the middle column of the Z matrix, this is an index
%Find the column corresonding to the index Zcol_loc

%Find the maximum value in the column vector

%Add to previous Zcol to translate the matrix to zero
%Reset y values to zero (will assume strut has no thickness)
%Initilize counter and Znew matrix

%Create a new matrix consisting entirely of Zcol

%This will produce a rectangular figure

%Iterate counter

%~Find the maximum value in the Znew matrix

%Want only ONE maximum value

%Normalize the Z values

%Multiply the normalized value by the strut height

%Create variable C3 to serve as a colormap (lime green again)
%pPlot the strut surface

%Create array with x = radius and y = radius
%Number of mesh segments comprising cylinder
%Create X, y, and z components of cylinder

%X translation to sample container position (m)

177

Y_sc=Y_sc-y loc_sc;

Z_sc = height_sc*Z_sc - z_loc_sc;

Xb_sc = X_sc(1,:); Yb_sc =Y_sc(1,:);

Zb_sc =Z_sc(2,:) - height_sc;

C_sc = ones(2, N_sc);

%Create Sample Container 2:

X2_sc=X_sc; Y2_sc=-Y_sc; Z2_sc=Z_sC;
X2b_sc =X2_sc(1,); Y2b_sc=Y2_sc(1,);
Z2b_sc = Z_sc(2,) - height_sc;

surf(X_sc, Y_sc, Z_sc, C_sc), hold on
fill3(Xb_sc, Yb_sc, Zb_sc,'r')

surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on
fill3(X2b_sc, Y2b_sc, Z2b_sc,'r)

%Y translation to sample container position (m)
%Adjust size and translate to container postion (m)
%Isolate single rows from the cylinder matrices
%Ilsolate z-coord. and translate to cylinder base
%Fix color to blue based on cylinder size

%Base position of S.C. 2 on position of S.C. 1
%Ilsolate single rows from the cylinder matrices
%lsolate z-coord. and translate to cylinder base

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

title('Work Envelope Plotted in 3-D Frame', 'FontWeight', 'bold’, ‘FontSize', title_size)
xlabel('X-axis', 'FontSize', title_size), ylabel('Y-axis', 'FontSize', title_size), zlabel('Z-axis', 'FontSize', title_size)

axis([xmin xmax ymin ymax zmin zmax])
%view(0, 0)

%(0,0) is the x-z plane, (0,90) is the x-y plane
grid on

figure(7) %Plot of Manipulator in X-Z Plane

plot3(x0_pt, yO_pt, zO_pt, '+, 'LineWidth', line_width*lw_mult), hold on

%Plot end of EE (tool tip):

%Viewpoint specification (AZ,EL) (-37.5, 30) is the MATLAB default

%Plot point at Frame 0 origin

plot3(x_67_array, y_67_array, z_67_array, 'r+', 'LineWidth', line_width), hold on

surf(height*Z-height,Y,X-radius,C), hold on
surf(radius*r,radius*s,radius*t-radius,C2), hold on
if ~jaguar,

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);
surf(X_strut,Y_strut,Z_strut,C3)

end

surf(X_sc, Y_sc, Z_sc, C_sc), hold on

fill3(Xb_sc, Yb_sc, Zb_sc,'r)

surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on

fill3(X2b_sc, Y2b_sc, Z2b_sc,'r")

%Produce cylindrical surface
%Generate sphere

%Produce cylindrical surface

%Third variable represents the cylinder axis
%Generate sphere

%Plot the strut surface

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

title('Work Envelope Plotted in X-Z Plane', 'FontWeight', 'bold’, 'FontSize', title_size)
xlabel('X-axis', 'FontSize', title_size), ylabel('Y-axis', 'FontSize', title_size), zlabel('Z-axis', 'FontSize', title_size)

axis([xmin xmax ymin ymax zmin zmax])

grid on
view(0,0) %Viewpoint specification (AZ,EL), (0,0) is the x-z plane
figure(8) %Plot of Manipulator in X-Y Plane

plot3(x0_pt, yO_pt, zO_pt, '+', 'LineWidth', line_width*lw_mult), hold on

%Plot end of EE (tool tip):

%Plot point at Frame 0 origin

plot3(x_67_array, y_67_array, z_67_array, 'r+', 'LineWidth', line_width), hold on

surf(height*Z-height,Y,X-radius,C), hold on
surf(radius*r,radius*s,radius*t-radius,C2), hold on
if ~jaguar,

surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on

surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);
surf(X_strut,Y_strut,Z_strut,C3)

end

surf(X_sc, Y_sc, Z_sc, C_sc), hold on

fill3(Xb_sc, Yb_sc, Zb_sc,'r)

surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on

fill3(X2b_sc, Y2b_sc, Z2b_sc,'r)

%Produce cylindrical surface
%Generate sphere

%Produce cylindrical surface

%Third variable represents the cylinder axis
%Generate sphere

%Plot the strut surface

%Produce cylindrical sample container
%Plot sample container baseplate
%Repeat for S.C. #2

title('Work Envelope Plotted in X-Y Plane', 'FontWeight', 'bold', 'FontSize', title_size)
xlabel('X-axis', 'FontSize', title_size), ylabel('Y-axis', 'FontSize', title_size), zlabel('Z-axis', 'FontSize', title_size)

axis([xmin xmax ymin ymax zmin zmax])
grid on
view(0,90)

178

%Viewpoint specification (AZ,EL), (0,90) is the x-y plane

figure(9) %Plot of Manipulator in Y-Z Plane
plot3(x0_pt, yO_pt, zO_pt, '+, 'LineWidth', line_width*lw_mult), hold on %Plot point at Frame 0 origin
%Plot end of EE (tool tip):

plot3(x_67_array, y_67_array, z_67_array, 'r+', 'LineWidth', line_width), hold on

surf(height*Z-height,Y,X-radius,C), hold on %Produce cylindrical surface
surf(radius*r,radius*s,radius*t-radius,C2), hold on %Generate sphere
if ~jaguar,
surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on %Produce cylindrical surface
%Third variable represents the cylinder axis
surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2); %Generate sphere
surf(X_strut,Y_strut,Z_strut,C3) %Plot the strut surface
end
surf(X_sc, Y_sc, Z_sc, C_sc), hold on %Produce cylindrical sample container
fill3(Xb_sc, Yb_sc, Zb_sc,'r') %Plot sample container baseplate
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on %Repeat for S.C. #2

fill3(X2b_sc, Y2b_sc, Z2b_sc,'r")

title('Work Envelope Plotted in Y-Z Plane', 'FontWeight', 'bold’, 'FontSize', title_size)

xlabel('X-axis', 'FontSize', title_size), ylabel('Y-axis', 'FontSize', title_size), zlabel('Z-axis', 'FontSize', title_size)
axis([xmin xmax ymin ymax zmin zmax])

grid on

view(90,0) %Viewpoint specification (AZ,EL), (90,0) is the y-z plane

if spread, %lf plots are to be spread across the window:

if imac, %lf the figures are to be displayed on 2 Mac monitors:
X_zoom =.15;
y_zoom = .375;
set(figure(9), 'units', 'normalized’, 'outerposition’, [.15 .25 x_zoomy_zoom)])
set(figure(8), 'units', 'normalized', ‘outerposition’, [0 .25 x_zoom y_zoom])
set(figure(7), 'units', 'normalized', ‘outerposition’, .15 1 x_zoomy_zoom])
set(figure(6), 'units’, 'normalized', 'outerposition’, [0 1 x_zoomy_zoom])

end

if laptop, %lf the plots are to be shown on a standard Windows laptop
y_zoom = .48075;
x_zoom = 1/3;
y_base =.039;
set(figure(9), 'units', 'normalized’, 'outerposition’, [.6666 y_base x_zoom y_zoom])
set(figure(8), 'units', 'normalized', ‘outerposition’, [.3333 y_base x_zoom y_zoom])
set(figure(7), 'units', 'normalized', ‘outerposition’, [0 y_base x_zoomy_zoom])
set(figure(6), 'units', 'normalized', 'outerposition’, [.6666 .52 x_zoom y_zoom])

end
end
toc %End timer
fprintf('Total Number of Iterations Performed: %.4g\n', counter) %Output number of iterations
speed = counter/toc; %lterations per second
fprintf(‘lterations Performed Per Second: %.7g\n\n’, speed) %Output calculation speed

179

H.10 Function TransformWork.m

function [T] = TransformWork(a, alpha, d, theta)
% Returns T transform matrix for manipulator kinematics per
% Craig eq. 3.6 (Intro. to Robotics, 3rd ed.)

%Row 1 of tranformation matrix
T(1,1) = cos(theta);
T(1,2) = -sin(theta);
T(1,3)=0;
T(1,4) = a;
%Row 2 of transformation matrix
T(2,1) = sin(theta)*cos(alpha);
T(2,2) = cos(theta)*cos(alpha);
T(2,3) = -sin(alpha);
T(2,4) = -sin(alpha)*d;
%Row 3 of transformation matrix
T(3,1) = sin(theta)*sin(alpha);
T(3,2) = cos(theta)*sin(alpha);
T(3,3) = cos(alpha);
T(3,4) = cos(alpha)*d;
%Row 4 of transformation matrix
T(4,1)=0;
T(4,2) = 0;
T(4,3)=0;
T(4,4) =1,

T =[T(L.1) T(1,2) T(1,3) T(L,4);...
T(2,1) T(2,2) T(2,3) T(2,9);...
T(3.1) T(3,2) T(3,3) T(3,4);...
T(4,1) T(4,2) T(4,3) T(4,4)];

180

H.11 Function RO3testf.m

function [RO3test] = RO3testf(theta2, a, alpha, d, sym, nframes)

for i = 1:nframes,
%TransformMat computes transformation, rotation, and position matrices
[T(,:0), RC,:,0), P] = TransformMat(a(i),alpha(i),d(i),theta2(i), sym); %Transformations from frame i to i-1
ifi==1, TL=T(,,i); RL=R(,:i); PL=P; end
ifi==2,T2=T(,,i); R2=R(,:i); P2=P; end
ifi==3, T3=T(,.,i); R3=R(,:i); P3=P; end
ifi==4,T4=T(,,i); R4 =R(,:,i); P4=P; end
ifi==5, T5 =T(:,:,i); R5 = R(:,:,i); P5=P; end
ifi==6, T6 =T(:,:,i); R6 = R(:,:,i); P6 = P; end
end
%Get W Transformations (W (i) = W(i-1)*R(i):
[Wo0, W1, W2, W3, W4, W5, W6] = TransformW(R1, R2, R3, R4, R5, R6);

%Get positions of coordinate frames:
[dx1, dx2, dx3, dx4, x0, x1, X2, x3, x4] = TransformPos(WO0, W1, W2, W3, W4, W5, P1, P2, P3, P4, P5, P6);

RO3test = W3;

181

H.12 Function sample_container.m

function [X_sc, Y_sc, Z_sc, C_sc, X2_sc, Y2_sc, Z2_sc, X3_sc, Y3_sc, Z3_sc,...
X4_sc, Y4_sc, Z4_sc, X_lower, X_upper, Y_lower, Y_upper, Z_lower, Z_upper]...
= sample_container(containers, X_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot)

%Sample Container Details

%radius_sc =.1206; %Sample container inner radius (m) - (corresponds to Di = 9.493 in)
radius_sc = .1365; %Sample container outer radius (m) - (corresponds to Do = 10.75 in)
height_sc = .2667; %Sample continer height (m) - (corresonds to h = 10.5 in)

%Default Container Position:
%x_loc_sc =-.25; y_loc_sc =.3350; z_loc_sc =-.3318;

if sc_plot, %If using the user-values...
x_loc_sc =x_sc; %Dist. from origin in x-direction (m)
y_loc_sc =y _sc; %Dist. from origin in y-direction (m)
z_loc_sc =z_sc; %Dist. from origin in z-direction (m)

else %Use default locations
x_loc_sc =-.12; %Dist. from origin in x-direction (m)
y_loc_sc =.335; %Dist. from origin in y-direction (m)
z_loc_sc =-.3318; %Dist. from origin in z-direction (m)
pitch_sc = 0; %Default pitch angle (rad)
roll_sc =0; %Default roll angle (rad)
yaw_sc = 0; %Default yaw angle (rad)

end

%%%Create Sample Containers%%%
%Create Sample Container 1:

R_sc = [radius_sc radius_sc]; %Create array with x = radius and y = radius

N_sc = 25; %Number of mesh segments comprising cylinder
[X_sc,Y_sc,Z_sc] = cylinder(R_sc,N_sc); %Create X, y, and z components of cylinder

Z_sc = height_sc*Z_sc; %"cylinder" sets Z_sc as array from 0 to 1, height_sc scales it
Xb_sc =X _sc(1,:); Yb_sc =Y_sc(l,); %Ilsolate single rows from the cylinder matrices

Zb_sc =Z_sc(2,:) - height_sc; %lsolate z-coord. and translate to cylinder base

C_sc = ones(2, N_sc); %Fix color to blue based on cylinder size

%~Rotation matrices for sample container position adjustments

R_yaw = [cos(yaw_sc) -sin(yaw_sc) 0;... %~Rotation matrix for sample container yaw (Frame 0 z-axis)
sin(yaw_sc) cos(yaw_sc) 0;...
001];
R_pitch = [cos(pitch_sc) 0 sin(pitch_sc);... %Rotation matrix for sample container pitch (Frame 0 y-axis)
010;.. %Pitch over y0-axis...
-sin(pitch_sc) 0 cos(pitch_sc)];
R_roll=[100;... %Rotation matrix for sample container roll (Frame 0 x-axis)
0 cos(roll_sc) -sin(roll_sc);... %Roll over x0-axis
0 sin(roll_sc) cos(roll_sc)];
R = R_yaw*R_pitch*R_roll; %Combine rotataion matrices into one matrix - note the order...
T=[R(1,1) R(1,2) R(1,3) x_loc_sc;... %Create transformation matrix
R(2,1) R(2,2) R(2,3) y_loc_sc;... %Cylinder translation occurs here
R(3,1) R(3,2) R(3,3) z_loc_sc;...
0o 0 0 1]
[N M] = size(X_sc); %Determine size of matrices
Ones_sc = ones(N, M); %Create matrix of that size composed of ones
pos = [X_sc(1,:); Y_sc(1,:); Z_sc(1,:); Ones_sc(1,:)]; %Form a position vector for one side of cylinder
pos2 = T*pos; %Multiply position vector by transformation matrix
posb =[X_sc(2,:); Y_sc(2,:); Z_sc(2,:); Ones_sc(1,)]; %Form a position vector for other side of cylinder
pos2b = T*posb; %Multiply other position vector by transformation matrix
X_sc =pos2(1,:); %Ilsolate new x-coords. for one side of cylinder
Y_sc = pos2(2,); %Ilsolate new y-coords. for one side of cylinder
Z_sc = pos2(3,:); %Ilsolate new z-coords. for one side of cylinder
Xi_sc = pos2b(1,:); %Ilsolate new z-coords. for other side of cylinder
Yi_sc = pos2b(2,:); %Ilsolate new z-coords. for other side of cylinder
Zi_sc = pos2b(3,:); %Ilsolate new z-coords. for other side of cylinder
Y_adjust = radius_sc - radius_sc*cos(roll_sc); %Dist. container shifted from Jaguar due to rotation (m)

%Y _adjust = 0;

182

X_sc =[X_sc; Xi_sc]; %Combine new x-coords., needed for cylinder plotting

Y_sc =[Y_sc; Yi_sc]; %Combine new y-coords., needed for cylinder plotting
Y_sc =Y_sc - Y_adjust; %Shift y_coord. back to Jaguar
Z_sc =[Z_sc; Zi_sc]; %Combine new z-coords., needed for cylinder plotting

%Create Sample Container 2:

X2_sc=X_sc; Y2_sc=-Y_sc; Z2_sc=Z_sc; %Base position of S.C. 2 on position of S.C. 1
%Negative y flips it to other side of Jaguar

%Create Sample Containers 3 & 4:

if sc_plot, %If using the user-inputs...
X3_sc=0; Y3 _sc=0; Z3_sc=0; %Set variables to arbitrary values
X4 sc=0; Y4 _sc=0; Z4 sc=0; %Set variables to arbitrary values
else %Use default values...
X3_sc = X_sc + 2*radius_sc; %0Offset another row of sample containers by the container diameter
Y3 _sc=Y_sc; Z3_sc=2Z_sc; %Y & Z positions don't change from SC 1

X4_sc =X3_sc; Y4 sc=-Y3_sc; Z4 sc=2723_sc; %Adjust just as from SC 1to 2
end

X_lower = (max(X_sc(1,:))+min(X_sc(1,:)))/2; %Calculate average x postion on lower surface (m)
X_upper = (max(X_sc(2,:))+min(X_sc(2,)))/2; %Calculate average x postion on upper surface (m)
Y_lower = (max(Y_sc(1,:))+min(Y_sc(1,:)))/2; %Calculate average y postion on lower surface (m)
Y_upper = (max(Y_sc(2,:))+min(Y_sc(2,:)))/2; %Calculate average y postion on upper surface (m)
Z_lower = (max(Z_sc(1,:))+min(Z_sc(1,:)))/2; %Calculate average z postion on lower surface (m)
Z_upper = (max(Z_sc(2,:))+min(Z_sc(2,:)))/2; %Calculate average z postion on upper surface (m)
if containers, %I|s sample containers are to be output to the command window...

%0Output container angles to command window:
fprintf(\nProgrammed Sample Container Angles:\n’)
fprintf(" Pitch: %.4g deg.\n', pitch_sc*180/pi)
fprintf(" Roll: %.4g deg.\n', roll_sc*180/pi)
fprintf(' Yaw: %.49g deg.\n', yaw_sc*180/pi)

%0Output coordinates to command window:
fprintf(\nCoordinates of Sample Container Cylinder Center:\n")
fprintf(Upper Surface:\n")
fprintf(" X-Coordinate: %.4g m\n', X_upper)
fprintf(" Y-Coordinate: %.4g m\n', Y_upper)
fprintf('" Z-Coordinate: %.4g m\n', Z_upper)
fprintf('Lower Surface:\n’)
fprintf(" X-Coordinate: %.4g m\n', X_lower)
fprintf(' Y-Coordinate: %.4g m\n', Y_lower)
fprintf(" Z-Coordinate: %.4g m\n', Z_lower)

end

183

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Ishitsuka, M., Sagara, S., and K. Ishii. “Dynamics Analysis and Resolved
Acceleration Control of an Autonomous Underwater Vehicle Equipped with a
Manipulator,”Proc. of IEEE International Symposium of Underwater
Technology, Taipei, Taiwan, Apr. 20-23, pp. 277-281, 2004.

Des Marais, D.J., et al. “The NASA Astrobiology Roadmaptér national
Journal of Astrobiology, Volume 3, Number 2, pp. 219-235, 2003.

“Earth’s Complex Complexion.” WHOI.edu. 2004. Woods Hole Oceanographic
Institute. 8 Aug. 2008
<http://www.whoi.edu/oceanus/viewArticle.do?id=2496>.

Shank, T.M. “The Evolutionary Puzzle of Seafloor Lif@¢eanus Magazine,
Volume 42, Number 2, pp. 1-8, 2004.

Monkman, G.J., Hesse, S., Steinmann, R., and H. Schrollat Grippers.
Wiley-VCH, Germany. 2007.

“Application Examples - MAG Welding.” ReisRobotics.de. 2007. Reis Robotics.
16 Aug. 2008
<http://www.reisrobotics.de/us/APPLICATIONS/Welding+technique.html>

“STS-123 Mission Overview Briefing Graphics.” NASA.gov. 2008. NASA.
16 Aug. 2008 <www.nasa.gov>.

Yuh, J. “Underwater RoboticsProc. of |EEE International Conference on
Robotics and Automation, San Francisco, CA, Apr. 24-28, pp. 932-937, 2000.

“Hydra Magnum 100 hp ROV.” Oceaneering.com. 2006. Oceaneering
International, Inc. 16 Aug. 2008
<http://www.oceaneering.com/ROV.asp?id=596>.

[10} “Orion 7P/7R.” Schilling.com. 2008. Schilling Robatics, Inc. 16 Aug. 2008

<http://www.schilling.com/products_ManipulatorSystems_ORION.php>.

[11] Whitcomb, L.L. “Underwater Robotics: Out of the Research Laboratory and

Into the Field,”Proc. of IEEE International Conference on Robotics and
Automation, San Francisco, CA, Apr. 24-28, 2000.

[12] “Featured Photo.” WHOI.edu. 2008. Woods Hole Oceanographic Institute.

16 Aug. 2008 < http://www.whoi.edu/oceanus/index.do>.

184

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Shank, T. “Survey of Future Needs and Upgrades for Deep-Submergence
Biological Research,” University-National Oceanographic Laboragstem
Meetings, 2004.

Frantz, C.M. “Potential End-Effectors for the Autonomous Sample Collection of
Hydrothermal Vent Sites,” Unpublished SSL Internal Report DT20-0036,
Aug. 10, 2005.

Gruntz, D.W. “Development and Evaluation of a Tool for EVA or Robotic
Planetary Sampling,” Master of Science Thesis, University of Maryland,
College Park, 2007.

“Neutral Buoyancy Photo Archives.” SSL.UMD.edu. 2005. University of
Maryland Space Systems Laboratory. 18 Aug. 2008
<http://spacecraft.ssl.umd.edu/SSL.photos/photos.html>.

Lauletta, A. “Harmonic Drive GearingGear Product News, Apr.,
pp. 33-36, 2006.

Smith, W. “Lift Capacity of ASTEP Manipulator,” Unpublished SSL Internal
Report DT20-0009, June 7, 2005.

Smith, W. “Re: next Tuesday evening.” Email to Craig Lewandowski.
14 May 2008.

“Harmonic Drive Gearing.” HDInfoNet.com. 2008. HDinfoNet. 17 July 2008
<http://www.hdinfonet.com/advantages.html|>.

Bynum, W.L., Wise, M.A., Sliwa, N.E., and F.H. Willard. “The Parallel Jaw
Gripper: A Robotic End-Effector System\ASA Technical Memorandum,
Document No. NASA-TM-101271, 1988.

Rothbart, H.ACam Design Handbook. McGraw-Hill, New York. 2004.

“Track Rollers.” McMaster.com. 2008 McMaster-Carr Catalog. 16 July 2008
<http://www.mcmaster.com>.

George, S.B., and S. Boone. “The Ectosymbiont Crab Dissodactylus Mellitae—
Sand Dollar Mellita Isometra Relationshiggurnal of Experimental Marine
Biology and Ecology, No. 294, pp. 235-255, 2003.

Lim, O., Cho, Y., Lee, J., and W. Lee. “Optimum Design for Raceway Groove
Curvature of a Ball BearingProc. of AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, Long Beach, CA, Sept. 6-8,
pp. 1-6, 2000.

185

[26] Bao, S. “Grip Strength and Hand Force Estimation,” Washington State
Department of Labor and Industries Technical Report, Report No. 65-1-2000,
May, 2000.

[27] Carignan, C. “Samuraiikin(rprwrist).nb,” Mathematica Software Rrog
28 July 2006.

[28] Craig, J.JIntroduction to Robotics Mechanics and Control. Pearson-Prentice
Hall, Upper Saddle River, New Jersey. 2005.

[29] Kim, J., Chung, W.K., and J. Yuh. “Dynamic Analysis and Two-Time Scale
Control for Underwater Vehicle-Manipulator Systenta,bc. of IEEE
International Conference on Intelligent Robots and Systems, Las Vegas, NV,
Oct., pp. 577-582, 2003.

186

