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Autonomous underwater vehicles are becoming increasingly prevalent, and 

their emergence will allow for the execution of previously unfeasible underwater 

missions.  These missions include seeking naval mines, navigation and mapping of 

ocean features, and sampling on the ocean floor at extreme depths.  One method to 

achieve this latter objective involves the attachment of a robotic manipulator to an 

underwater vehicle and use of the manipulator to collect specimens and deposit them 

in containers.  This thesis focuses on the design and testing of an end-effector to be 

used on such a manipulator.  End-effectors previously utilized in underwater robotics 

were evaluated during the conceptualization of the selected tool design.  These 

evaluations in conjunction with manipulator interface requirements were used to 

produce the end-effector design that was constructed and subsequently tested.  In 

addition, sample containers were designed and fabricated, and kinematics software 

used to determine sample container position, orientation, and quantity was developed. 
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Chapter 1 

Introduction 

 
The scientific community has been employing submersibles for decades in a 

variety of applications including inspection of subsea structures, recovery operations, 

and sample collection.  In general, these submersibles have been remotely operated 

vehicles (ROVs), enabled by receiving power and commands from a surface vessel 

through an umbilical.  However, operation at extreme depths and in challenging 

environments such as an ice field presents serious complications for tethered ROVs.   

The emergence of autonomous underwater vehicles (AUVs) has made such 

difficult missions possible.  As AUVs are not constrained by an umbilical, they have 

considerably more operational freedom.  As the field continues to develop, robotic 

manipulators mounted to AUVs are expected to have an increasingly prominent role 

[1].  In order for such manipulators to be truly effective, they will need to have end-

effectors capable of achieving demanding tasks while operating in harsh 

environments. 

This thesis focuses on the development of an end-effector capable of reliably 

collecting samples from the seafloor.  The design of the storage containers to be 

mounted to an AUV and house the collected specimens is also presented.  This end-

effector is actuated with a roll degree of freedom (DOF) on an existing 6-DOF 

manipulator, and the kinematic effects of this actuation method are also investigated. 
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1.1 Motivation 
 

The field of astrobiology addresses the issues of how life began and evolved, 

whether or not life exists elsewhere in the universe, and the future of life on Earth and 

beyond [2].  With its primary objective of space exploration, the National Aeronautics 

and Space Administration (NASA) has become increasingly active in this field in 

recent years.  To increase its astrobiology involvement, NASA formed the 

Astrobiology Science and Technology for Exploring Planets (ASTEP) program.   

ASTEP funds research efforts on Earth designed to ascertain the best methods 

to be used to search for life elsewhere in the Solar System.  These places include 

Europa and Enceladus, geologically-active moons of Jupiter and Saturn, respectively, 

which are believed to be composed of liquid below the surface.  These remote moons 

are characterized by harsh environmental conditions, and to prepare for such 

missions, the ASTEP research efforts are carried out in terrestrial analogs. 

Similarly extreme conditions exist in many locations on Earth, and one of the 

most interesting is the Gakkel Ridge.  The Gakkel Ridge, located beneath the Arctic 

ice cap as shown in Figure 1.1, represents the slowest spreading ridge on the planet 

and extends to a depth of 5500 m.  This particular location is of considerable interest 

as evidence obtained from hydrocasts has suggested the presence of a hydrothermal 

vent field.  These deep volcanic vents are biologically rich environments that thrive 

despite the absence of sunlight.  Potential sampling targets include tubeworms and 

shrimp, as depicted in Figure 1.2. 
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Figure 1.1: Map showing location of Gakkel Ridge (from [3]). 

 
 

 
Figure1.2: Potential sampling targets: tubeworms (left)  

and shrimp (right) (from [4]). 
 
 

In an effort to develop a vehicle capable of autonomously observing and 

sampling biological specimens in such an environment, the Space Systems 

Laboratory (SSL) at the University of Maryland (UMD) joined with the Woods Hole 

Oceanographic Institute (WHOI).  WHOI was tasked with the design and fabrication 

of the underwater vehicle, which evolved into JAGUAR, Just Another Great 

Underwater Autonomous Robot.   

In parallel, the SSL applied its robotics experience towards the development 

of a 6-DOF robotic manipulator.  SAMURAI, the Subsea Arctic Manipulator for 
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Underwater Retrieval and Autonomous Interventions, pictured in Figure 1.3, would 

mount to the WHOI vehicle and serve as the device to physically collect the 

specimens, as depicted in Figure 1.4.  The SAMURAI/JAGUAR system would 

submerge to a depth of 6000 m where it is to spend up to 36 hours exploring and 

collecting samples. 

     
     Figure 1.3: SAMURAI          Figure 1.4: CAD model showing SAMURAI 

                  manipulator.        manipulator mounted on JAGUAR. 
 
 

While several top-level trade studies of end-effector concepts had been 

performed by SSL personnel, resource constraints limited the potential end-effector to 

a simple scoop.  In effect, a trowel would have been mounted to the end of the 

manipulator, and this would have resulted in significant limitations.  Realizing these 

inadequacies, the SSL elected to develop an end-effector that would provide 

additional capabilities but not necessitate the complete fabrication of an additional 

joint. 
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1.2 Problem Statement 
 

The primary objective of this research is to design and fabricate an end-

effector which uses the hand roll degree of freedom of the SAMURAI manipulator 

for actuation.  The hand roll joint is the terminal joint as indicated in Figure 1.5.  The 

end-effector is to be capable of retrieving a sand dollar from the seafloor and 

depositing it in a sample container.  While sand dollars are not necessarily the 

sampling objective, they are representative of the approximate size of the actual 

desired targets.  The ability to collect seafloor sediment and additional biological 

specimens such as tubeworms was desired but not required for this particular effort. 

 
Figure 1.5: SAMURAI with hand roll joint specified. 

 
 

A subset of objectives includes developing a modular design so that various 

components can be replaced easily if an alternative mission requires a different 

design.  Moreover, the end-effector should be easy to assemble and disassemble so 

that it could be exchanged for a different instrument on the surface without risk of 

complications.  Given a limited budget, the fabrication process needed to be 

straightforward and the materials relatively inexpensive. 
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The secondary research objectives included design and construction of a 

sample container.  Possible locations for these containers on the JAGUAR vehicle are 

to be determined, and the effects of eliminating the hand roll DOF from the 

manipulator kinematics are to be examined. 

1.3 Approach 
 

This thesis discusses the design and testing of the end-effector, the sample 

containers, and the development of software to determine sample container location 

and quantity.  The research began with the design of the end-effector, which 

constituted the primary research focus.  Sample containers were fabricated to 

incorporate the end-effector geometry.  Having established the sample container 

design, it was possible to create the kinematics software used to determine the 

number of possible containers and their locations. 

1.4 Thesis Structure 
 

Chapter 2 focuses on the function of an end-effector, how the devices are 

employed on current submersibles, and the tools that have been previously used by 

the SSL.  Chapter 3 overviews the mechanical properties of the SAMURAI 

manipulator and the interface that the end-effector must accommodate.  Chapter 4 

discusses the design of the end-effector, focusing on the function of the significant 

components.  Chapter 5 presents the theoretical end-effector performance in addition 

to results obtained through physical testing.  Chapter 6 covers the design and testing 

of the sample containers, and Chapter 7 overviews the kinematics software employed 
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to determine sample container location and quantity.  Chapter 8 presents conclusions 

and outlines future tasks pertaining to end-effector development. 
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Chapter 2 

End-Effector Background and Previous Work 

 

In order to design an end-effector, it is important to understand the role of this 

robotic component.  End-effectors are used to accomplish a wide variety of objectives 

on the surface and can similarly be used to achieve multiple underwater tasks.  This 

chapter focuses on the generic role of these robotic tools and discusses end-effectors 

that have been employed in underwater missions.  Additionally, relevant devices 

previously developed and currently in use at the SSL are also detailed. 

2.1 End-Effector Background 
 

An end-effector is a functional unit associated with the interaction of a robotic 

system with the environment or with a given object [5].  It is so-named as when it is 

affixed to a serial manipulator, it is placed on the distal end and is the part of the 

robotic arm that has a direct effect on the workspace. 

Types of end-effectors vary widely as they may be used for diverse 

applications.  The term “end-effector” can refer to a welding torch, a vacuum pump, 

grippers or any other tool that is attached to a robotic manipulator.  Figure 2.1 shows 

a robot containing a welding torch end-effector being used to manufacture an 

automotive exhaust system.  Figure 2.2 is a depiction of the Orbital Replacement Unit 

/ Tool Changeout Mechanism (OTCM).  The OTCM is a gripper end-effector 

designed for the Dextre robotic system aboard the International Space Station (ISS).  
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    Figure 2.1: Welding torch      Figure 2.2: Dextre OTCM 
      end-effector (from [6]).       end-effector (from [7]). 
 

2.2 Existing Underwater End-Effectors 
 

Just as an end-effector is chosen to suit its application on the surface, the same 

is true of selecting an end-effector for an underwater application.  Applications of 

underwater robots include seafloor mapping, water mine search and disposal, 

underwater structure inspection and maintenance, and geological sampling [8].  

Surveying and/or inspection missions effectively entail mounting cameras to a 

submersible and do not require robotic manipulators. 

However, for tasks pertaining to structure construction or maintenance, 

manipulators are essential.  Figure 2.3 shows a commercially-available ROV 

manufactured by Oceaneering.  The vehicle is designed for activities related to the 

drilling and production of oil and gas. 
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    Figure 2.3: Oceaneering    Figure 2.4: Schilling Orion  
    Magnum ROV (from [9]).    Manipulator (from [10]). 

 
 

In Figure 2.3, it is apparent that the ROV contains two manipulators, and 

Figure 2.4 is an enhanced view of one of these manipulators, which are developed by 

Schilling Robotics.  One manipulator is used to grapple the subsea structure while the 

other manipulator performs the desired task.  The end-effector in Figure 2.4 consists 

of parallel jaws actuated by a 4-bar linkage.   

The continued strong demand for oil juxtaposed with the dwindling shallow-

water reserves has been a significant driving factor in the technological progress of 

underwater robotics [11]; however, end-effectors have also been developed for the 

purpose of sample collection.  Figure 2.5 shows one of the manipulators on the 

WHOI Alvin submersible reaching for a “black smoker” on the East Pacific Rise.  

The end-effector is characterized by a gripper design and functions similarly to the 

Schilling device previously shown in Figure 2.4. 
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Figure 2.5: WHOI Alvin end-effector reaching for black  

smoker chimney (from [12]). 
 

The claw design has proven to be one of the most effective underwater 

sampling tools.  In a WHOI survey, marine biologists were asked about their current 

and future needs regarding deep submergence sampling.  The survey produced the 

following data regarding tool selection: 

Table 2.1: Survey Responses to Preferred Manipulator Tools (from [13]) 
Device Used Most Often (%) Importance for Future Research (%) 

Vacuum Sampler 74 70 
Manipulator Claw 63 61 
Sediment Push Core 59 36 
Nets and Scoops 56 28 
Bioboxes 56 54 
In-Situ Sensors 40 57 
Faunal Samplers 37 30 
 
 

The survey demonstrates that not only do the marine biologists rely heavily on 

the claw, but they also hypothesize that these grippers would be important for their 

future research.  Only the vacuum sampler proved to be more popular, which is 
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unsurprising given that it represents the best tool for collecting sediment and is 

comparatively easy to operate.  While a gripper may require tremendous accuracy to 

securely grasp a target, a vacuum sampler does not need the same precision.  The 

disadvantages to a vacuum sampler are a limited sample size and elevated power 

requirements.  This latter disadvantage is of little consequence on an ROV where 

power is being supplied via an umbilical, but on an AUV, the power is stored in 

batteries and is therefore more limited. 

2.3 Previously Considered End-Effector Concepts for SAMURAI 
 

Just as WHOI surveyed marine biologists to assist in the selection of their 

manipulator tools, the SSL also contacted oceanic researchers to generate potential 

concepts for the SAMURAI end-effector [14].  The inquiries were made to a wide 

range of scientists and engineers and related to the sampling of a large variety of 

underwater specimens, and the potential targets were not limited to solid objects. 

The investigation did include the vacuum sampler that had been popular in the 

WHOI survey, but the high power draw was noted by the interviewees.  Additional 

disadvantages included potential cross-contamination of samples, the possibility of 

damaging soft specimens, and the fact that the vacuum could become plugged. 

Additional devices considered included the Bushmaster and the Mussel Pot.  

The Bushmaster, developed at Pennsylvania State University, consists of netting 

attached to flexible ribbing that opens and closes through the actuation of hydraulic 

pumps.  The Mussel Pot, developed by Pennsylvania State University and the College 

of William and Mary, functions similarly to the Bushmaster.  However, it is different 
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in that it is a rigid container which is sealed by either pulling a drawstring or shutting 

an iris.  Both of these devices are shown in Figure 2.6. 

   
Figure 2.6: Bushmaster with basket open (left), Bushmaster with basket closed 

(middle), mussel pot with drawstring (right)  (from [14]). 
 
 

These designs are capable of collecting large quantities of diverse samples; 

however, interfacing with the SAMURAI manipulator would be a serious challenge.  

Modifying the actuators would be difficult as well, especially in the case of the 

Bushmaster with its hydraulic pumps. 

Concepts highlighted by the interviewed researchers which could more easily 

interface with SAMURAI include the PacMan Scoop and the previously-detailed 

claw design.  The PacMan scoop, featured in Figure 2.7 and in use at the Canadian 

Scientific Submersible Facility (CSSF), is an end-effector consisting of two semi-

cylinders which open and close like its namesake videogame character. 

 
Figure 2.7: CSSF PacMan Sampler (from [14]) 
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There appeared to be a consensus amongst the researchers that the claw was 

the most utilized device when collecting rocks in hydrothermal vent fields.  

Additionally, they noted that claws could be used to acquire tube worms by grabbing 

the worms and subsequently twisting, whereas the Bushmaster or a vacuum sampler 

would experience difficulty collecting these specimens.  Thus, while claw-like 

grippers may not be able to collect samples on the same scale as these other devices, 

grippers are nevertheless regarded as very useful general purpose tools in underwater 

sampling. 

2.4 SSL End-Effectors 
 

The SSL has been developing complex robotics for years and has produced 

many different end-effector designs.  Some of them, such as a bolt driver, were 

designed for space assembly tasks that would not coincide with a sampling end-

effector.  However, the design concepts behind several SSL tools could be applied to 

sample collection. 

2.4.1 TERPS Planetary Sampler 

 
In 2007, the SSL developed the Tool for EVA or Robotic Planetary Sampling 

(TERPS), a sampling tool depicted in Figure 2.8.  It was designed primarily to assist 

an astronaut in the collection of rocks or soil on a planetary surface.  Torque output 

by the motor is transferred to the jaws through worm gears. 
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Figure 2.8: TERPS sampling tool (from [15]). 

 
 

The TERPS sampler may be capable of grabbing a sand dollar, but the jaws 

would have to be enlarged to adequately fit the object.  Additionally, at 100% 

efficiency, the torque output by the TERPS motor/gearbox is 25.5 N-m, which is 

approximately 10.5 times less than the 267 N-m output by the SAMURAI hand 

motor/harmonic drive combination.  Either the structural components of the TERPS 

sampler would have to be enhanced or critical soft stops would be required in the 

SAMURAI controls to prevent the motor from damaging the end-effector. 

2.4.2 Ranger Flight Development Manipulator Parallel Jaw Mechanism 

 
The SSL Ranger project was funded by NASA as part of the Space 

Telerobotics Program.  The objective was to design a robotic system capable of 

servicing the Hubble Space Telescope, though the developed manipulators can be 

used for other tasks.  One of the end-effectors created that would be most capable of 

achieving the task of collecting a sand dollar would be the parallel jaw mechanism 

(PJM), shown in Figure 2.9.  In the figure, the curvature in the grippers allows the 
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end-effector to grasp cylindrical beams, but this geometry could be altered to better 

coincide with underwater sampling objectives. 

 
Figure 2.9:  PJM end-effector on Ranger manipulator. 

 
 

The PJM operates by rotating an anodized aluminum spiral plate containing 

two milled grooves.  Rollers are inserted into the grooves, and their motion is 

confined to one direction by guide rails positioned on either side.  As the plate is 

rotated by a motor, one roller is translated in one direction while the other moves in 

the opposite direction, producing either an opening or a closing of the jaws.  Thus, the 

spiral plate is acting as a cam disk.  These components can be viewed in Figure 2.10, 

which contains images of the PJM partially disassembled. 

 
Figure 2.10: Ranger Spiral Plate (left) and Associated Track Rollers (right) 
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While the Ranger PJM is still used on a regular basis, several design iterations 

were required to reach this operational state.  Early iterations occasionally produced 

binding of the rollers in the grooves, which in turn damaged the rollers and broke the 

end-effector.  All mechanical power is transmitted from the motor to the jaws via the 

two rollers, which are ½ in stainless steel rollers with a dynamic load capacity of 544 

lbs each, according to manufacturer specifications.  The structural limitations of the 

rollers in turn limit the capabilities of the end-effector. 

In addition, the guide blocks which move along the rails are held in place by 

heavily-lubricated Delrin sliders, as shown in Figure 2.11.  Delrin would have been 

selected as the material for these parts as it would create less friction than metal 

pieces.  Even so, plastic sliders are comparatively fragile and do not lead to a robust 

design. 

 
Figure 2.11: PJM Delrin sliders. 

 
 

There are advantages to the concept, however, and these include a relatively 

simple design with few moving parts.  The PJM is devoid of complicated gear trains, 

and any operational complications are immediately diagnosable.  Moreover, if a 
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different force or speed profile is desired, the spiral plate can easily be replaced 

without affecting the rest of the end-effector. 

2.4.3 Ranger Neutral Buoyancy Vehicle II Parallel Jaw Mechanism 

 
A similar end-effector was created for use on the Ranger Neutral Buoyancy 

Vehicle (NBV).  This device is also a parallel jaw mechanism that uses a spiral plate 

to create unidirectional jaw motion.  The end-effector is shown in Figure 2.12, which 

also contains an image of the end-effector in use while attached to Ranger in the SSL 

Neutral Buoyancy Research Facility (NBRF).   

 
Figure 2.12: PJM (right) and Ranger operating with PJM (left) (from [16]). 

 
 

In contrast to the PJM fabricated for the Ranger Flight Development 

Manipulator, this end-effector has flat jaws that can be used for more generic tasks.  

Additionally, as can be seen in the figure, where the former concept employed Delrin 

sliders, this end-effector uses aluminum rods to constrain the motion path. 

2.5 Summary 
 

A considerable variety of end-effectors are utilized in robotics applications 

throughout engineering and manufacturing disciplines; however, the number of 
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concepts decreases markedly when examining the potential tools for underwater 

tasks.  Many submersibles equipped with manipulators use claw-shaped end-effectors 

to grasp targets.  While other sampling systems are in use, they are either not as 

popular amongst the marine biologists or would present significant challenges in 

terms of interfacing with SAMURAI and/or JAGUAR. 

The SSL has developed end-effectors and sampling systems in the past, but all 

of these concepts would require significant design modifications in order to attach to 

the SAMURAI hand roll joint.  Moreover, some of these devices necessitated several 

design iterations in order to reach functional status.  These lessons, along with the 

recommendations of the underwater sampling community, were considered in the 

selection of the final end-effector concept. 
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Chapter 3 

SAMURAI & End-Effector Interface Overview 

 

One of the most significant challenges associated with designing this end-

effector was the SAMURAI interface.  This chapter presents relevant details 

pertaining to the SAMURAI manipulator and more specifically, the hand roll joint.   

3.1 SAMURAI Manipulator Mechanical Design Overview 
 

The SAMURAI arm is a 6-DOF dexterous robotic manipulator with motors 

housed in three joint pairs (shoulder, elbow, and wrist).  The joint pairs are labeled in 

Figure 3.1.   

 
Figure 3.1: SAMURAI manipulator joint pairs. 

 
 

The shoulder consists of a yaw joint and a pitch joint.  Both joints use 

KollMorgen RBE-03010-B-00 brushless DC motors, which produce a continuous 

stall torque of 2.21 lb-ft (3.00 N-m) when supplied with 5.9 A of current. 
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The elbow is comprised of a pitch joint and a roll joint powered by  

RBE-02111-A-00 brushless DC motors.  They generate a continuous stall torque of 

1.23 lb-ft (1.67 N-m) at a current of 5.74 A.  The wrist uses identical motors to the 

elbow and also has a pitch-roll configuration.  The wrist roll joint is more accurately 

referred to as a hand roll joint1, and the final configuration is yaw-pitch-pitch-roll-

pitch-roll (Y-P-P-R-P-R).  Table 3.1 summarizes the SAMURAI joints.  The yaw and 

roll joints contain hard stops, while the manipulator itself constrains the pitch joint 

motion. 

Table 3.1: SAMURAI joint summary. 
Joint Number Location Motion 

1 Shoulder Yaw 
2 Shoulder Pitch 
3 Elbow Pitch 
4 Elbow Roll 
5 Wrist Pitch 
6 Wrist Roll 

 
 

The torque output of all the joints is amplified through harmonic drives.  

Harmonic drives produce high gear ratios more efficiently and more compactly than 

alternative systems such as planetary gears.  The devices have three main 

components: a wave generator, a flex spline, and a circular spline.  Generic harmonic 

drive components can be viewed in Figure 3.2.  The wave generator is an elliptical 

disk that rotates inside the cup-like flex spline.  The walls of the flex spline are thin, 

making them flexible.  Teeth on the external side of the flex spline fit with teeth in the 

circular spline, but there are two fewer teeth on the former component.  Thus, as the 

wave generator rotates, it produces a small shift in the flex spine as it slowly moves 
                                                 
1 Manipulator joints are referred to by their analogous human arm components.  Because the human 
wrist is not capable of producing a rolling motion, Joint 6 is referred to as the “hand roll” joint.  This 
matches the naming convention used previously by the SSL on the Ranger DXM manipulator. 
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about the circular spline.  Flex spline motion is much slower but produces a much 

higher torque.  All of the SAMURAI harmonic drives have gear ratios of 160:1 and 

increase the output torque substantially. 

 
Figure 3.2: Harmonic drive components (from [17]). 

 
 

Using the harmonic drives in combination with the motors, the manipulator is 

capable of generating a tool tip force of 32 lb (142 N) in 1-g and 71 lb (316 N) in 

neutral buoyancy [18].  The difference is attributable to the fact that in neutral 

buoyancy, the arm does not have to lift its own weight. 

The SAMURAI joint pairs are separated by two cylindrical links.  The links 

are attached to the joints via Marman bands.  Marman bands, also called “Marman 

clamps” or “Marman rings,” contain V-shaped wedges that pinch two flanges 

together.  Figure 3.3 shows one of the SAMURAI Marman bands. 

 
Figure 3.3: SAMURAI Marman band. 
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The manipulator joints will be filled with mineral oil to compensate for the 

considerable pressure 6000 m below sea level.  The design calls for only the 

hemispherical electronics housings to be filled with air.  Power, data, and oil are 

supplied from the JAGUAR AUV to each of the joints via daisy-chained cabling 

running external to the arm. 

The manipulator links and joint housings are mainly fabricated from 

Aluminum 6061-T6.  The flanges, Marman bands, and electronics housings are 

machined from Titanium 6-4, while the majority of the fasteners on the arm are made 

from A-286, a high-strength corrosion-resistant superalloy. 

These material selections contribute to very high mechanical robustness in the 

manipulator.  In each of the joints, torque is transferred from the motors to the 

harmonic drives through stainless steel motor keys.  Discussions with the lead 

mechanical designer indicated that the design called for these to be the weakest 

mechanical components [19].  This corresponds to a minimum SAMURAI 

mechanical factor of safety of approximately 40.  SAMURAI was designed to be 

dragged behind a ship through an ice field without loss of function, regardless of the 

number of collisions.  The end-effector was created with this in mind. 

3.2 Details of the SAMURAI Interface 
 

In terms of end-effector construction, the design needed to take the structural 

interface of the joint into account.  It was critical that the end-effector easily attach to 

SAMURAI, without significant alterations to the manipulator.  Additionally, given 

that the joint motor constitutes the end-effector actuator, the motor properties needed 

to be considered as they would affect structural limits and tool performance. 



 

24 

3.2.1 Structural Interface 

 
A close-up view of the hand roll joint is shown in Figure 3.4. As can be 

observed in the image, there is a titanium cover at the end of the joint.  The threaded 

hole on the front of the plate is required during the oil-filling process.  Mineral oil is 

to fill the joints after passing through hose barbs attached to the penetrator plates 

which will house all of the electrical connectors.  In Figure 3.5, hose barbs inserted 

into a penetrator plate can be observed.  At another location on each of the joint pairs, 

there is an additional hole.  A vacuum pump will be attached to this hole during the 

filling process to ensure that potentially hazardous air bubbles are removed.  The hole 

will then be plugged.  This affects the end-effector only in that there must be 

sufficient clearance for the plug. 

 
Figure 3.4: SAMURAI hand roll joint. 

 
 

 
Figure 3.5: Oil hose barbs inserted in penetrator plate. 
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The outer rim of this titanium plate has a male flange identical to those used to 

connect the links to the joints.  Its corresponding female counterpart had been 

previously engineered and was to be incorporated into the end-effector should such an 

attachment plan be selected.  Inclusion of this part adds to the modularity of the 

manipulator and reduces the need for additional design work.  A dimensioned 

drawing for the female flange and all additional end-effector components are featured 

in Appendix A.   

Many of the end-effector concepts investigated would require that some 

elements be held stationary relative to the joint housing.  While a vacuum sampler or 

a push core could mount directly to the end of the roll joint, almost all end-effector 

designs involving moving jaws would require some set fixtures.  Certain gearing 

connections, guide rails for a PJM, a track for a rack and pinion, and other such items 

would need to be fixed to the joint.  Drilling additional holes into the housing was 

highly undesirable for reasons pertaining to structural integrity and sealing.  Attempts 

to use current holes would be made before removing additional material from the 

joint housing.  Two fasteners have been removed in Figure 3.6, showing the existing 

holes. 

 
Figure 3.6: Existing holes for fasteners in the joint housing. 
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3.2.2 Hand Roll Joint Motor Properties 

 
As previously stated, the motor internal to this joint is a KollMorgen  

RBE-02111-A-00 DC brushless motor (complete specifications in Appendix A).  The 

motor is capable of operating at continuous stall torque at a current of 5.71 A; 

however, the motor driver electronics boards limit the continuous current delivered to 

the motors to 5 A.  While the motor driver boards allow for a peak current of 10 A, 

elimination of the heat generated by the electronics is a serious issue, and 

considerable efforts will be made to avoid any current spikes.  As such, 5 A is taken 

to be the maximum motor current.  The supplied voltage is 28 V, rendering the 

maximum electrical motor power 140 W. 

Given a maximum current, Imax, and obtaining the torque constant, KT, from 

the specifications sheet, (3-1) can be used to compute the maximum expected motor 

torque, Tmax. 

       TKIT ⋅= maxmax               (3-1) 

To determine the torque output by the joint, Troll, the maximum motor torque 

is multiplied by N, the harmonic drive gear ratio, and ηHD, the harmonic drive 

efficiency.  This relation is shown in (3-2). 

      maxTNT HDroll ⋅⋅= η               (3-2) 

The numeric values for these variables are summarized in Table 3.2. 

Table 3.2: Values relating to hand roll joint output torque. 
Variable Description Value (English) Value (SI) 
Tsens Torque Sensitivity 0.225 lb-ft/A 0.305 N-m/A 
Imax Maximum Current 5.0 A 5.0 A 
Tmax Maximum Motor Torque 1.13 ft-lb 1.53 N-m 
N Gear Ratio 160 160 
ηHD Efficiency 0.80 0.80 
Troll Output Joint Torque 144 ft-lb 195 N-m 
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The motor will generate a back electromotive force (EMF) that will cancel 

voltage at a rate of 31.9 V/krpm.  While the motor specification sheet lists the speed 

at rated power as 4242 rpm, the actual maximum motor speed is approximately  

880 rpm due to the supply voltage of 28 V.  In regard to the initial end-effector 

performance predictions, it is assumed that the tool is operating with maximum joint 

torque.  This presumes no structural limitations and provides the absolute end-effector 

performance limit. 

3.3 Summary 
 

The SAMURAI joints contain brushless DC motors and harmonic drives, 

providing significant torques throughout the arm.  Material selections and various 

components are incorporated in the design to produce a mechanically robust 

manipulator. 

Any modifications to the SAMURAI structure were to be avoided; however, 

there are multiple features that can be utilized for end-effector attachment.  The male 

flange positioned on the end of the joint and fastener holes already located in the 

housing represent possible interfacing points.  Motor performance was evaluated, and 

the maximum theoretical torque expected to be delivered to the end-effector is  

144 ft-lb (195 N-m). 
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Chapter 4 

End-Effector Design 

 
In this chapter, candidate end-effector designs are compared, and the most 

capable device is determined.  The manner in which torque will be transferred from 

the joint through the end-effector is discussed, and the rationales for significant end-

effector components are overviewed. 

4.1 Concept Selection 
 

Although the vacuum sampler had been viewed the most favorably in the 

WHOI sampling tool survey, there would be serious complications in using it on the 

SAMURAI/JAGUAR system.  The significant power draw would be a considerable 

obstacle for any AUV, but for a mission at 6000 m beneath the surface with a 36-hour 

duration, this is especially problematic.  Moreover, a sand dollar would be too large 

and too brittle for many vacuum sampling systems currently in use.  For these 

reasons, it was discounted as a possibility. 

A push-core end-effector was seriously considered as it would basically entail 

mounting a cylinder on the end of the hand roll joint and actuating a lid with a spring 

mechanism.  If the mission had entailed a single sample, this would have worked well 

as the end-effector would have doubled as the container.  However, as multiple 

targets were desired, the push core would either need to open and release the sample 

into a container or SAMURAI would need to exchange end-effectors during the 

mission.  The complexity associated with either of these designs was undesirable, and 

the push core was not selected. 
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Net-based concepts, such as the Bushmaster, were also considered; however, 

as in the case of the push-core, it would be difficult to collect multiple samples.  

While the netting could be opened and closed to possibly obtain several samples, 

cross-contamination would then be an issue.  Furthermore, the large surface area of 

such a device would greatly increase drag as the AUV travels through the water.  In 

addition, interfacing with SAMURAI would be extremely challenging, and this was 

not amongst the most popular devices in the research surveys. 

A gripper end-effector was selected due to its successful implementation on 

previous undersea sampling missions and popularity amongst marine biologists.  A 

design with actual claws composing the tool tip was considered, but jaws were 

ultimately used for reasons that will be detailed in Section 4.4.5.  Although the 

interface design between the gripper end-effector and the manipulator was nontrivial, 

it was less complicated than some of the netted concepts.  It would allow for 

acquisition of a sand dollar and could collect multiple samples and deposit them in 

separate containers. 

A summary of the concept capabilities is included in Table 4.1.  Only the 

gripper mechanism is capable of achieving all of the objectives. 
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Table 4.1: End-effector concept capabilities. 

Capability Vacuum Sampler Push Core Actuated Nets Grippers 
Sand Dollar 
Collection 

Yes Yes Yes Yes 

Multiple Sample 
Collection 

FER No FER Yes 

Cross-Contamination 
Avoidance 

FER Yes No Yes 

Low Power Draw No Yes Yes Yes 
Low Drag Yes Yes No Yes 

Yes – Highly likely or certain to demonstrate the capability. 
FER – Further Evaluation Required.  Capability may or may not be possible 
 depending on design configuration. 
No – Highly unlikely if not impossible to demonstrate the capability. 
 

4.2 SAMURAI Attachment 
 

For the gripper end-effector to have moving jaws, it would be necessary to 

create stationary points relative to the rotating hand roll joint.  An object devoid of 

these fixtures would simply spin along with the wrist.  As had been shown in  

Chapter 3, there are fastener holes in the housing that connect the final joint to the 

manipulator.  Stationary points are produced by using longer fasteners and attaching 

mounting braces to the joint housings using these same holes.  These side mounts can 

be visualized in Figure 4.1. 
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Figure 4.1: CAD model of wrist joint pair showing flange and braces. 

 
 

In Chapter 3 it was also mentioned that the titanium plate on the front of the 

hand roll joint contains a male flange.  This flange was created on the plate 

specifically for the attachment of whatever tool would be placed on the end of the 

arm.  Correspondingly, the end-effector contains the female mate, and the two flanges 

are joined with a Marman band.  This can also be observed in Figure 4.1. 

4.3 Torque Transmission Method 
 

Having established fixed mounts and an attachment to the rotating joint, it was 

necessary to determine how to transmit torque from the joint to the jaws.  Some of the 

grippers used for underwater sampling employ 4-bar linkages activated by linear 

actuators.  Other concepts use actuation schemes more analogous to the hand roll 

joint.  These include a worm-gear driven linkage, such as the one pictured in  

Figure 4.2. 
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Figure 4.2: Parallel jaw gripper concept (from [21]). 

 
 

Another potential worm gear concept for the SAMURAI end-effector was 

inspired by the TERPS sampler as the orientation of its motor and jaws is identical to 

the orientation in the SAMURAI joint.  This early concept is displayed in Figure 4.3. 

 
Figure 4.3: End-effector worm gear concept. 

 
 

In this configuration, an adapter connects the female flange to a worm gear, 

colored blue in the figure.  Rotation of the worm gear induces motion in spur gears 

mounted on shafts, which are supported by the mounting braces.  Links connect the 
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shafts to the jaws.  A 4-bar linkage could be used to augment the jaw mechanical 

advantage. 

Other possibilities involved bevel gears or a rack and pinion, but all of these 

concepts use some form of gearing, which is a drawback.  Gear trains can result in 

substantial efficiency losses as evidenced by the TERPS sampler, which 

demonstrated a mechanical efficiency of 15% [15].  Additionally, the relatively high 

torques being output by the harmonic drive could cause gear teeth to skip or break.  If 

either of these events transpired, the end-effector would likely become inoperable.  

On the surface, the broken gear can be replaced quickly and the device returned to an 

operational state; however, over the course of 36 hours underwater, a single tooth 

could compromise the entire mission. 

Based on these concerns, the cam disk concept previously used by the SSL in 

the Ranger PJM was selected.  The spiral plate has been a successful development, 

though several design iterations were required to reach this state2.  It offers the 

additional advantage of having no complicated gearing.  The primary disadvantage is 

that all torque is transferred through two relatively small track rollers.  However, 

difficulties could be avoided by designing an appropriate cam path and selecting a 

sufficiently strong roller. 

4.4 End-Effector Component Design 
 

The end-effector was composed of several significant components.  These 

elements will be discussed individually.  The respective functions will be presented in 

the order that the components attach to the end-effector, beginning with the flange 
                                                 
2 Note on terminology.  The terms “spiral plate” and “cam disk” are used interchangeably.  The 
component of interest is both a plate and a disk that contains spiral grooves, which function as cams. 
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connector and concluding with the jaws.  Loading and safety factors are presented in 

Chapter 5. 

Ninety-six fasteners bind the end-effector components together, and they are 

all 10-32 socket head cap screws (SHCS), though lengths vary.  The same socket 

head was selected to simplify assembly and disassembly procedures. 

Unless otherwise stated, Aluminum 6061-T6 was selected as the material for 

all end-effector components due to its relatively high strength and low mass.  

Moreover, this is the material comprising the majority of the manipulator.  Parts are 

made from commercially available stock (1/4 in, 3/8 in, and ½ in thickness) wherever 

possible.  These thicknesses correspond to 0.635 cm, .9525 cm, and 1.27 cm in metric 

units.  The total prototype mass 9.09 lbm (4.12 kg). 

As previously stated, dimensioned drawings for all end-effector components 

are contained in Appendix A.  In addition, spreadsheets listing all end-effector parts 

and associated quantities, materials, volumes, costs, and masses are included in 

Appendix A. 

4.4.1 Flange-Cam Disk Adapter 

 
An adapter is used to connect the flange to the cam disk.  The component is 

indicated in Figure 4.4.  As the adapter must connect to the flange in the same manner 

as the SAMURAI link tubes join to their respective flanges, the same insert pattern 

was used in the outermost ring.  An inner ring of 12 holes allows for attachment of 

the cam disk.  A view of a link-flange interface is featured in Figure 4.5. 
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   Figure 4.4: CAD model of wrist      Figure 4.5: Manipulator link- 
       joint pair featuring adapter.               flange interface. 
 
 

The objective of this research focused on the development of a prototype, and 

modularity was incorporated into the design where it was possible.  The adapter is 

included to allow for easier change-out of different cam disks, which may be 

machined to produce different profiles or be composed of different materials.  If a 

solitary cam disk is to be used, the adapter could be eliminated and the flange could 

mate directly to the disk, reducing length and mass. 

4.4.2 Spiral Plate 

 
The spiral plate is critical to the transmission of torque from the roll joint to 

the parallel jaws.  It attaches to the flange adapter with 12 fasteners on the lower 

surface.  The upper surface contains two grooves, one for each of the track rollers 

which drive each of the respective jaws.  The spiral plate can be seen in Figure 4.6. 
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Figure 4.6: CAD model featuring cam disk. 

 
 

Close inspection of the figure reveals two circular holes on the upper surface.  

These were included at the request of the machinist so that the part could easily be 

mounted in the mill. 

Although cams are generally made from steel, iron, or other hard metals, the 

prototype spiral plate is to be fabricated from aluminum.  The Ranger plates are made 

from aluminum, although those have been anodized to increase wear resistance.  

Should long-term testing indicate that increased hardness is necessary, the disk may 

be anodized or machined from stainless steel.  Anodizing the plate would also 

alleviate concerns of sand entering the disk grooves and the small grains damaging 

the tracks. 

When initially selecting profiles for the spiral plate grooves, the design sought 

a general pathway described in the Cam Design Handbook characterized by a high 

opening acceleration and closing deceleration [22].  The associated generic equations 

are contained in Figure 4.6 where y represents the vertical displacement of the cam 

follower, h is the total displacement, β is the cam angle associated with the 

displacement, θ is the angle of rotation, and y′ and y′′ are the velocity and 
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acceleration, respectively.  This concept was selected so that high accelerations would 

negate any stiction effects and ensure that the jaws open and close smoothly and 

invariably.   

 
Figure 4.7: Selected generic cam profile for spiral plate (from [22]). 

 
 

Such a profile will produce high opening and closing forces.  While this may 

seem like a design attribute as the capability to break off a portion of a targeted 

specimen would be desirable, it is very likely that the jaws will inevitably close upon 

an extremely rigid object.  In an instance where an object is to be fractured, it is 

critical that excessive force is not transmitted through the cam followers3, two 

relatively weak end-effector components.  As each jaw is associated with only one 

cam follower, any damage to this follower will render the end-effector inoperable. 

Consequently, the profile was adjusted so that the force capability would 

continually decrease as the jaws closed.  As the jaws proceed to shut, the likelihood 

that they will close upon an object simultaneously increases.  By decreasing the force 

at which the motor will stall, the cam followers are increasingly protected.   

                                                 
3 Note on terminology.  The terms “cam follower” and “track roller” are used interchangeably.  The 
components of interest are rollers designed to travel along a track.  As that track is being generated by 
the cam disk, the track rollers are simultaneously cam followers. 
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In order to model the curves using CAD software and to achieve the desired 

forces, the position profile displayed in Figure 4.7 was modified to make it dependent 

solely on β and h, as shown in Equation 4-1.  β and h are constants and are set to  

155° (2.71 rad) and 2.25 in (5.715 cm), respectively. 
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Whereas the generic position profile is a function of θ directly, the CAD 

package generates variables by defining t as a unitless parameter varying from 0 to 1.  

This requires that the rotation variables be made into functions of t, and this is done in 

Equation 4-2. 

( ) βθ ⋅== ttf               (4-2) 

To model the grooves using Cartesian coordinates, r and θ are converted to x 

and y using Equations 4-3 and 4-4. 
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The term offset in Equation 4-4 creates space between the groove and the 

center of the spiral plate.  This offset ensures separation between the grooves, and the 

value is set to 0.45 in (1.143 cm).  To obtain the equations for the second groove, 

Equations 4-3 and 4-4 are simply multiplied by -1. 

The theoretical end-effector performance using these profiles will be 

discussed in Chapter 5. 
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4.4.3 Track Rollers 

 
Stainless steel track rollers follow the motion path created by the spiral plate 

grooves.  Their motion is constrained to one dimension by guide rails which will be 

discussed in Section 4.4.5.  The track roller used in the end-effector is shown in 

Figure 4.8. 

 
Figure 4.8: Stainless track roller (from [23]). 

 
 

To avoid the complications experienced in early iterations of the Ranger PJM, 

a larger, stronger roller was chosen.  Selected properties of the Ranger and 

SAMURAI rollers are compared in Table 4.2. 

Table 4.2: Selected Ranger and SAMURAI roller properties. 
Detail Ranger SAMURAI 

Manufacturer Carter Bearings McGill 
Outer Diameter ½ in   (1.27 cm) 5/8 in (1.59 cm) 
Dynamic Load Capacity 544 lb   (2420 N) 955 lb   (4250 N) 

 
The track rollers are oriented in the spiral plate grooves as shown in  

Figure 4.9. 

 
Figure 4.9: CAD model indicating track rollers. 
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4.4.4 Guide Blocks and Rails 

 
Guide rails serve as structural fixtures to constrain track roller motion.  The 

track rollers screw into the rear surface of guide blocks which travel along the rails.  

The guide blocks and rails are shown in Figure 4.10. 

 
Figure 4.10: CAD model highlighting guide rails and guide blocks. 

 
 

Each guide block incorporates eight stainless steel ball bearings to provide 

smooth motion along the rails.  In Figure 4.10, these bearings are colored blue.  Each 

of the bearings is characterized by a 332-lb (1477-N) dynamic load capacity and 

connects to the guide block by spinning on the shaft of a 1/4-in (0.635-cm) diameter 

shoulder screw.  Initial designs used one row of four bearings, but a second row was 

added to increase stability and reduce binding concerns. 

To ensure that the ball bearings are not pinched between the shoulder screw 

head and the guide block, 1/16-in (0.159-cm) thick Delrin thrust bearings are 

positioned on each side of the ball bearings.  In the CAD model, the thrust bearings 

are shown in white.  An exploded view of the shoulder screw assembly is shown in 

Figure 4.11. 
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Figure 4.11: Exploded CAD model of shoulder screw assembly. 

 
 

In Figure 4.10, there are seven holes on each of the guide block faces.  These 

represent the holes for the jaw attachment fasteners. 

4.4.5 Jaw Design 

 
Scoop like jaws were selected over the true claws and other geometries 

employed on some submersibles in an effort to combine the capabilities of claws with 

those of a scoop.  While the primary objective was sand dollar collection, the ability 

to acquire tube worms and sediment was also desirable. 

In addition, consideration was given to how the end-effector would transfer 

the sample from the seafloor to the containers.  To locate samples, the SAMURAI 

system uses two stereo cameras rated to 6000 m positioned on the upper cylinder of 

the AUV.  The Autonomous Vision Application for Target Acquisition and Ranging 

(AVATAR) uses its pair of high-resolution cameras located in housings and image 

processing software to identify desired targets and determine their respective 

locations.  However, the field of view (FOV) is limited, as shown in Figure 4.12.  As 

the manipulator approaches the sample containers, it moves out of the AVATAR 

FOV.  If a sample fell during the transfer, it would go unrecognized until the 

JAGUAR returned to the surface.  Thus, a method to securely grasp the sample until 

releasing it into a container would be beneficial. 
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Figure 4.12: CAD model of JAGUAR including AVATAR (left)  

and AVATAR FOV (right). 
 
 

Capabilities of the various grippers are compared in Table 4.3, which 

illustrates that the jaws are the superior option for this application.  A trowel would be 

unable to break off tube worms while claws could not carry sediment.  Samples could 

be lost in both of these devices during transfer to the containers.  The PacMan scoop 

is capable of grasping all the desired samples; however, the sample containers would 

need to be excessively large to accommodate the device when it opens.  It was not 

selected for this reason. 

Table 4.3: Gripper capability comparison. 
Capability Jaws Trowel Scoop Claws PacMan Scoop 

Sand Dollar Collection Yes Yes Yes Yes 
Tube Worm Collection Yes No Yes Yes 
Sediment Collection Yes Yes No Yes 
Secure Transfer to 
Container 

Yes No No Yes 

Simple Container 
Insertion 

Yes Yes Yes No 

Yes – Highly likely or certain to demonstrate the capability. 
No – Highly unlikely if not impossible to demonstrate the capability. 
 

 
Jaw dimensions were determined based on sand dollar sizes.  George and 

Boone (2003) examined sand dollar populations in the state of Georgia from 1998 to 

2002 and found their diameters to range from 50 mm to 110 mm with a mode of  



 

43 

60 mm (2.36 in) to 70 mm (2.75 in) [24].  Using this mode, the average sand dollar 

diameter was estimated to be 63.5 mm (2.5 in), and the jaw width and length were 

designed to accommodate sand dollars of this size and those of up to 25.4 mm (1 in) 

larger diameters.  Thus, the jaw width and length were set to 88.9 mm (3.5 in).  

Triangular geometry was used to ease machining, and the wedge height was 

set at 31.75 mm (1.25 in).  The basic dimensions can be seen in the model in  

Figure 4.13.  The individual jaw internal volume is 126 cm3 (7.66 in3), rendering a 

total internal volume of 251 cm3 (15.3 in3). 

 
Figure 4.13: CAD model of jaw showing key dimensions. 

 
 

The jaws are attached to the rest of the end-effector in the manner shown in 

Figure 4.14. 

 
Figure 4.14: CAD model of wrist joint pair and complete end-dffector. 

 
 



 

44 

Fasteners used in the jaw are countersunk to avoid any entanglements with the 

samples.  The jaw is an assembly of several pieces to allow for access to the guide 

block attachment fasteners.  Additionally, the assembly allows for easier exchange of 

components.  The prototype top plate, which has a smooth front edge, could be 

exchanged for one with a serrated edge or a blade depending on mission 

requirements. 

Figure 4.15 shows the actual end-effector attached to the SAMURAI hand roll 

joint. 

 
Figure 4.15: Fabricated end-effector. 

 

4.5 Summary 
 

The gripper concept was selected for the end-effector, and jaws are utilized as 

the grippers themselves.  These selections constitute the geometry most capable of 

achieving mission objectives.  It was determined that the end-effector would attach to 

the hand roll joint with both a flange and side mounting braces attached through 

existing fastener holes. 
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A spiral plate was selected for the transmission after deeming the complexity 

and risk associated with gearing systems to be undesirable.  General overviews of the 

design rationale for the spiral plate and other significant end-effector components 

were presented.  The performance of these components is evaluated in Chapter 5. 
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Chapter 5 

End-Effector Performance: Theory and Test Results 

 
This chapter discusses the theoretical performance of the end-effector, 

focusing in particular on the jaw opening distance and closing force.  Theoretical 

calculations are used to establish anticipated end-effector performance, and structural 

analyses are completed to determine the force range in which the end-effector can 

safely operate.  Closing force was measured for various current settings, and the 

physical results are compared to predicted values. 

5.1 Theoretical Jaw Performance 
 

Both the jaw opening distance and the closing force, two significant 

parameters, are dictated by the groove profiles in the spiral plate.  Profile generation 

was discussed in Chapter 4, and depictions of the grooves created using CAD 

software and MATLAB are juxtaposed in Figure 5.1.  The equations generating the 

MATLAB curves are identical in form to (4.1 – 4.4).  The software used to generate 

this and all subsequent cam disk plots is featured in Appendix B. 

 
Figure 5.1: Cam disk representations in CAD (left) and MATLAB (right). 

 



 

47 

 
These groove profiles constitute the basis for the subsequent analysis. 

5.1.1 Jaw Opening Distance 

 
In order to calculate the jaw opening distance, it is necessary to determine the 

locations of the track rollers in the cam disk grooves.  To accomplish this, the 

coordinate frame is rotated from the cam disk frame (x1, y1) to the global frame (x2, 

y2), where y2 represents the cam follower location.  These frames can be seen in 

Figure 5.2. 

 
Figure 5.2: Cam disk groove profiles with superimposed coordinate frames. 

 
 

In the image, αj is the angle of joint rotation4, which is not identical to the 

angle θ used to generate the groove profiles.  The dissimilarity is attributable to the 

0.45 in (1.14 cm) offset from the plate center.  As a result of the offset, θ varies from 

0° to 155° whereas αj,max extends to 175.3°.  Actual joint rotation is limited to 173.6° 

to ensure that the jaws contact before the track followers reach the end of the grooves. 

To determine track roller location y2, a rotation matrix is applied as shown in 

(5-1).  The values of x1 and y1 were determined when the groove profile was 

                                                 
4 Subscript “j” refers to the joint and is included to distinguish the α referring to joint rotation to the α 
used in Chapter 7 in the kinematics analysis. 
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converted to Cartesian coordinates using Equations 4-3 and 4-4.  The π terms are 

included to properly orient the base frame (x, y), shown in green in Figure 5.2. 
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Equation 5-2 is employed to solve for the follower displacement, y2. 

      ( ) ( )παπα −⋅+−⋅−= jj yxy cossin1 12             (5-2) 

Follower displacement is plotted against the joint angle of rotation, αj, in Figure 5.3. 

 

 
Figure 5.3: Plot of follower displacement vs. rotation angle. 

 
 

Assuming the center of the cam disk represents the origin of the coordinate 

frame, Figure 5.3 shows that when the jaws are completely open, the upper jaw track 

roller is at a position of yopen = 1.80 in (4.57 cm).  After a smooth descent, the jaws 

shut completely when the roller reaches yclosed = 0.572 in (1.453 cm).  The total 

displacement (∆ytot) is calculated by taking the difference using Equation 5-3. 

     closedopentot yyy −=∆                         (5-3) 

The displacement of one jaw is 1.23 in (3.12 cm), resulting in a maximum 

opening distance of 2.46 in (6.25 cm) for both jaws. 
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If larger samples are desired, this opening distance could be increased with a 

larger cam disk with elongated grooves.  In this design, the cam disk diameter was set 

equal to that of the SAMURAI links and yields an opening sufficient for collection of 

sand dollars, tube worms, and sediment.   

5.1.2 Jaw Force Analysis 

 
Jaw force is determined by equating the work done by the cam disk to the 

work done on the follower: 

yFT outrollerjroll ∆⋅=⋅∆⋅ ηα              (5-4) 

where Troll is the torque input to the cam disk, ∆αj is the change in angle of rotation, 

∆y is the vertical displacement of a cam follower, and Fout is the total force being 

output by both jaws combined.  The efficiency of the track rollers is represented by 

ηroller. 

Solving for Fout in (5-4) gives: 

 
y

T
F

rollerjroll
out ∆

⋅∆⋅
=

ηα
              (5-5) 

where Troll is the constant torque associated with maximum current and was 

previously determined to be 144 lb-ft (195 N-m), while ηroller is estimated to be 0.90 

based on established values [25].  This leaves the output force as a function of ∆y and 

∆αj, but ∆y can be set equal to the position of the cam follower.  Since this was made 

to be a function of ∆αj in (5-2), Fout is a function of the angle of joint rotation 

exclusively.  The force acting on the track rollers is plotted against angle of rotation 

in Figure 5.4.  When the jaws close, the force output to the track rollers is 892 lb 

(3968 N). 
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Figure 5.4: Plot of track roller force vs. rotation angle. 

 
 

This force acting on the track rollers is not identical to the jaw closing force.  

The track roller force is a vector acting normal to the groove surface, whereas the 

closing force is represented by its vertical component due the vertical motion 

constraints imposed on the rollers.  The pressure angle (γ) is defined as the angle 

between this normal vector and the instantaneous direction of motion of the cam 

follower.  Figure 5.5 illustrates the relationship between these terms. 

 
Figure 5.5: CAD model of cam disk including pressure angle parameters. 
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To calculate the pressure angle from known quantities, the MATLAB 

software takes two adjacent points on the cam disk curves and determines the slope of 

a line joining them.  This basic relation is shown in (5-6). 
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By calculating the negative reciprocal of this line, the slope of the perpendicular line 

is determined: 

         
m

m perp
1−=               (5-7) 

The pressure angle is produced by calculating the arctangent of this slope, as shown 

in (5-8).  The angle of rotation must be subtracted from the pressure angle to account 

for the rotation of the disk. 

      ( ) jperpma αγ −= tan               (5-8) 

Pressure angle is plotted as a function of rotation angle in Figure 5.6. 

 
Figure 5.6: Plot of pressure angle vs. cam disk rotation angle. 

 
 

The jaw closing force, Fjaw, and the horizontal force pushing against the guide 

rails, Frail, are determined by the trigonometric relations in (5-9) and (5-10).  Frail 
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represents the total amount of horizontal force produced, though each rail only 

receives half of this total value.  Equations 5-9 and 5-10 contain an additional term, 

ηbearing, which represents the efficiency of the guide block ball bearings.  The 

parameter is estimated to be 0.90 based on established values [25]. 

( )γη sin⋅⋅= rollerbearingrail FF              (5-9) 

           ( )γη cos⋅⋅= rollerbearingjaw FF            (5-10) 

Using these equations, jaw closing force is plotted as a function of angle of rotation in 

Figure 5.7.  The force acting against the guide rails and the total force (Froller) are also 

included in the plot.  These profiles are associated with higher forces than the track 

roller curve in Figure 5.4 because in this case, the forces from the upper and lower 

jaws are being combined to produce the total closing force. 

 
Figure 5.7: Plot of jaw closing force vs. angle of rotation. 

 

The numeric values associated with the jaw-closed position in Figure 5.8 are 

listed in Table 5.1. 
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Table 5.1: Force values at the jaw-closed position (αj = 173.56°).  
Parameter Value (lb) Value (N) 
Froller 1784 7936 
Frail 1441 6410 
Fjaw 1052 4680 

 
 

Thus, disregarding structural considerations, the end-effector jaws will 

theoretically be able to close upon an object with a minimum force of 1052 lb  

(4680 N).  This value would be more than adequate for achieving the end-effector 

sampling objectives. 

5.1.3 Additional Performance Metrics 

 
Profiles of jaw velocity and acceleration were generated as well.  These plots 

appear in Appendix C and show the velocity to be continusiously decreasing while 

the acceleration curve remains relatively flat until the end of the profile, where it 

abruptly decreases.  CAD analysis features were also used to generate plots of 

position, velocity, and acceleration.  The corresponding data points and those from 

MATLAB were exported to Excel and were subsequently plotted together.  

Comparison plots were produced to verify the analysis and are also included in 

Appendix C.  The comparison plots show that the data from the two different sources 

are identical. 

5.2 Structural Calculations 
 
The plot of the force output to the track rollers (Figure 5.4) revealed a 

substantial force at all angles of rotation.  The minimum force in the profile is 892 lb 

(3968 N), nearly as high as the 955-lb (4248-N) dynamic load capacity of the track 
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rollers.  This plot implies that overcurrent protection (OCP) soft stops will be 

necessary if a 5-A current is to be input to the hand roll joint. 

As discussed in Section 4.4.2 and shown in Figure 5.4, the force capability is 

designed to continuously decrease to ensure the structural integrity of the track 

rollers.  The factor of safety (FOS) of these devices is determined by dividing the 

955-lb (4248-N) dynamic load capacity of the rollers by the force profile 

corresponding to a hypothetical input current of 1.0 A.  Figure 5.8 shows the safety 

factor continuously increasing until the jaws close at 173.56°, where the FOS is 5.4.   

 
Figure 5.8: Plot of track roller FOS vs. rotation angle. 

 
 

Although the track roller structural capabilities definitely require evaluation, 

the guide block ball bearings constitute the most probable failure mode in the current 

end-effector configuration.  When the jaws clamp down on an object, the forces from 

the roller and the grasped sample induce reaction forces in the guide block bearings.  

The free body diagram (FBD) for the jaw assembly is shown in Figure 5.9.   
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Figure 5.9: Jaw assembly free body diagram. 

 
 
where B1 and B2 indicate the two nearside bearings counteracting the applied force, 

and FB1 and FB2 represent the bearing reaction forces.  To determine the maximum 

jaw closing force, the moments will be summed about B1.  Dimensions yB, xj, and xr, 

are the distances from the B1 axis to B2, Fjaw, and FRoller, respectively.  Equation 5-11 

represents the sum of the forces in the x-direction, while (5-12) is the force balance 

for the y-components.  The moments around Bearing 1 are then summed in (5-13). 

    ∑ −== 120 BBx FFF            (5-11) 

   rollerjawy FFF −==∑ 0            (5-12) 

                   ( ) ( ) ( ) ( ) ( ) ( )BBrrollerjjawB yFxFxFM ⋅−⋅+⋅==∑ 21 0           (5-13) 

Combining these three relations yields Equation 5-14. 
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Values for these variables are contained in Table 5.2.  FB2 is set to 332 lb 

(1477 N), the load capacity of the ball bearings. 
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Table 5.2: Jaw assembly force analysis values. 
Variable Value (English) Value (SI) 

FB2 332 lb 1477 N 
yB 0.655 in 1.66 cm 
xj 5.00 in 12.7 cm 
xr .844 in 2.14 cm 

  
 

Solving for Fjaw produces a force of 37.2 lb (165 N), which increases to 149 lb 

(663 N) when accounting for set of bearings on the opposite side of the guide block as 

well as those on the lower jaw.  Thus, to maintain an FOS of approximately 2, the jaw 

closing force should be near 75 lb (334 N).  Although this quantity is significantly 

less than the 1052 lb (4680 N) the cam disk is theoretically capable of generating, this 

value is substantial nevertheless.  This limit will certainly allow the end-effector to 

grasp sand dollars and will provide the ability to fracture most desired specimens 

should it become necessary.  If a higher closing force is desired, more ball bearings 

could be incorporated into the guide block design with minor alterations to the end-

effector. 

Additional structural analyses are presented in Appendix D.  These analyses 

demonstrate that some of the end effector components have FOS values greater than 

100; however, the values corresponding to some of the fasteners are approximately 

10, which are comparatively low when juxtaposed with those on SAMURAI.  In part, 

the high mechanical SAMURAI FOS values are produced by using A-286 superalloy 

fasteners.  A-286 has a yield strength of 102 ksi (703 MPa), over three times greater 

than the 31.2 ksi (215 MPa) yield strength of the 18-8 stainless steel fasteners used in 

the end-effector.  These superalloy fasteners are expensive and are not included in the 
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prototype for this reason; however, their inclusion in the design would increase some 

of the FOS values. 

The structural analysis reveals that with OCP settings, the end-effector will be 

capable of operating without serious risk of structural failure, even without premium-

grade fasteners.  As previously mentioned, incorporation of different materials, a 

larger cam disk and rollers, or more conservative soft stops could further decrease 

structural risk. 

5.3 Test Setup 
 

During the performance of this end-effector research, the SAMURAI 

electronics were being developed in parallel.  It follows that it is not currently 

possible to actuate the manipulator with SAMURAI electronics boards.  However, 

spare Ranger electronics boards and test software could be used to power individual 

joint motors.  With these boards, the joint will rotate at constant velocity, and the 

power supply will increase current up to the user-specified OCP limit to produce the 

additional torque needed to counter any resistance.  By powering the hand roll joint 

with this method, it is possible to test end-effector functionality.   

With SAMURAI in a state of limited functionality, specimens cannot be 

collected at present, but jaw closing force can be measured.  To do this, the jaws were 

shut around one side of a scissors device while a digital force sensor was mounted at 

the other end.  The sensor contains a peak value feature that allows it to record the 

highest registered force, which occurs when the OCP is triggered.  The test setup is 

pictured in Figure 5.10. 
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Figure 5.10: Force measurement test setup. 

 

The distance between the jaws and the central scissors axis is 2 in (5.08 cm), 

while 10 in (25.4 cm) separate the center rod from the force sensor.  This produces a 

moment arm that reduces the measured jaw closing force by a factor of five, as shown 

in (5-15).  This scissors rig geometry was selected to ensure that the measurements 

would remain within the force sensor range, which is 0 to 50 lb (0 to 222 N). 

             measuredactual FF ⋅= 5            (5-15) 

 The scissors rig is placed at the end of the jaws, creating a moment around 

around the center of the guide block which will magnify the recorded force value.  

Referring to the distances in the free body diagram shown in Figure 5.9, the 

theoretical force is magnified by 5.92 (xj/xr = 5 in/0.844 in) to account for the rig 

placement. 

The jaws clamp down on the scissor rig when they are 1.40 in (3.56 cm) apart, 

which corresponds to a rotation angle of 142°.  While the force is expected to change 

at different rotation angles, this selection allowed for the simplest test setup and was 

deemed sufficient for establishing general end-effector performance. 
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The jaws were closed on the scissor rig for various motor current settings 

starting at 0.75 A and proceeding to 0.79 A in 0.01-A increments.  An ammeter was 

connected in series with the power lines running to the motor, allowing for direct 

monitoring of the motor current.  Increasing the current was expected to linearly 

increase the closing force.  Five measurements were recorded at each current setting, 

and all data were subsequently plotted together. 

In addition, a test was performed to determine if the jaws would bind under 

asymmetric loading.  To perform this test, a rubber block 1.25 in (3.18 cm) in height 

was placed on one side of the lower jaw.  The jaws were closed until the rubber was 

compressed 0.50 in (1.27 cm).  The end effector was subsequently opened to check 

for binding. 

5.4 Test Results 
 
  When the power supply to the hand roll motor is activated, the control 

electronics draw 0.67 A at 20 V when the joint is stationary.  An additional  

0.07 A are required to rotate the motor with no applied load.  Thus, in the analysis, 

0.74 A were subtracted from the input currents to determine force output.  Figure 5.11 

shows the actual data points with a superimposed linear trendline along with the 

predicted force values.   
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Measured Force vs. Current
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Figure 5.11: Plot of current vs. output force. 

 
 

While the actual data are close to the theoretical values, there is a difference in 

slope.  This could be caused by inaccuracies in the various efficiency estimates made 

in the theoretical model.  A complete data table containing the values recorded during 

the testing is contained in Appendix D. 

At 0.05 A, the force generated by the end effector is approximately 85 lb  

(378 N).  This is comparable to the capability of the human hand, which has been 

shown to generate an average grasping force of 66 lb (284 N) and 102 lb (454 N) for 

women and men, respectively [26].  Thus, while the end effector cannot replicate the 

dexterity of the human hand, it is capble of replicating its strength. 

Figure 5.11 does show that data recorded for the five different current settings 

are consistent.  As expected, the data are characterized by a strong linear trend, which 

is evidenced by an R2 value of 0.97.   The registered force values demonstrate that the 

jaws are capable of functioning while applying relatively high closing forces.    
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To test asymmetric load conditions, the rubber stack was placed in the middle 

of one of the jaw side plates and subsequently compressed 0.50 in (1.27 cm).  The test 

can be observed in Figure 5.12. 

 
Figure 5.12: Assumetric load test with rubber stack before testing (left) 

 and during testing (right). 
 

 
Based on empirical data obtained with the same force sensor used in the 

closing force test setup, approximately 40 lb (178 N) of force are required to 

compress the block by this amount.  After completion of the test, the jaws showed no 

evidence of binding and remained fully operational.  The test was repeated five times, 

and the end effector retained functionality during each of these tests. 

 
5.5 Summary 
 
 The end-effector was found to have a maximum jaw opening of 2.46 in  

(6.25 cm) and a possible closing force of 1052 lb (4680 N) if structural considerations 

are disregarded.  The guide block ball bearings were determined to be the weakest 

structural end-effector components, limiting the jaw closing force to 75 lb (334 N) 

with an FOS of 2.   
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 Jaw closing force was tested using a force sensor mounted on a scissor rig.  

Measured values were plotted against varying input currents, and the results were 

compared to theoretical predictions.  Recorded data indicated a strong linear current-

force relationship, and relatively high closing forces (85 lb, 378 N) were observed 

with no disruption to end-effector functionality.  This functionality was maintained 

even in cases of asymmetric loading.   
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Chapter 6 

Sample Container Design and Testing 

 
As the objectives of the end-effector entail the collection of multiple samples, 

the various specimens are to be stored in several separate containers.  These storage 

units must interface with the end-effector geometry.  This chapter is devoted to 

sample container design and testing. 

6.1 Sample Container Design 
 

The sample container engineering objective was to produce a design that is 

functional but as simple as possible.  The containers were to be entirely passive; 

however, some sort of cover was necessary to ensure sample retention.  Some target 

specimens are neutrally buoyant; thus, a method to scoop samples from the jaws was 

necessary. 

Before determining the container cover, the primary geometry needed to be 

established.  Cylinders were selected for structural and hydrodynamic reasons, and 

PVC was chosen as the cylinder material due to its relatively low density.  The low 

density generates buoyancy, which reduces weight concerns. 

The diagonal distance across the end-effector face is 8.011 in (20.348 cm), as 

shown in Figure 6.1.  Thus, the inner diameter of the PVC cylinder must be larger 

than this dimension to allow for insertion. 
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Figure 6.1: CAD model highlighting end-effector diagonal dimension. 

 
 

After examining commercially available PVC cylinders, a 10-in (25.4 cm) 

nominal diameter, Schedule 80, cylinder was selected.  To accommodate the end-

effector length, the cylinder height is 10.88 in (27.64 cm).  The frontal projection area 

for one container is 117 in2 (755 cm2), creating a drag profile area of 234 in2  

(1510 cm2) assuming containers are to be positioned on either side of JAGUAR.  

Eight ¼ in (0.635 cm) holes are drilled into the container sides to allow for pressure 

equalization during depth changes.  The container base plate was set as 3/8 in  

(0.953 cm) thick PVC sheet as it was readily available at the SSL.  Parameters 

relating to sample container geometry are compiled in Table 6.1.   

Table 6.1: Sample container geometry parameters. 
Parameter Value (English) Value (SI) 

Material Schedule 80 PVC Schedule 80 PVC 
Outer Diameter 10.75 in 27.31 cm 
Inner Diameter 9.49 in 24.10 cm 
Height 10.88 in 27.64 cm 
Projected Area (side) 234 in2 1510 cm2 

 
 

Rubber was chosen for the lid material, which is to function similarly to a 

garbage disposal to trap the specimen.  Specifically, natural gum rubber was selected 

as it is virtually neutrally buoyant and is resistant to abrasions, tears, and impacts.   
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Cuts are made into a rubber sheet to allow for end-effector insertion.  When 

the end-effector is extracted, the rubber flaps ride up with the end-effector before 

folding out into the jaw, ensuring that the samples are retained in the container.  A 

second, smaller rubber ring is positioned beneath the primary ring to offer structural 

support.  A PVC ring is used to fasten the rubber sheets to the cylinder.  The various 

sample container components can be seen in the views in Figures 6.2 and 6.3. 

   
Figure 6.2: Exploded sample        Figure 6.3: CAD model of end- 
    container CAD model.       effector insertion. 

 
 

Since weight is a concern, calculations were performed to determine the 

sample container wet weight.  This evaluation is contained in Appendix E.  The 

sample containers were determined to be 3.47 lb (15.44 N) negatively buoyant, but 

the evaluation also determined that this weight could be negated by incorporating  

202 in3 (3310 cm3) of syntactic foam into the design.  Figure 6.4 is a reproduction of 

Figure 6.3; however, the PVC sample container has been hidden and a potential  

202 in3 (3310 cm3) syntactic foam configuration is displayed.   
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Figure 6.4: CAD Model of Container Internal Syntactic Foam 

 
 

While it would not be necessary to employ this specific configuration, it 

demonstrates that there is sufficient internal volume for enough foam to render the 

containers neutrally buoyant.  It may be possible to compensate for the sample 

container weight by incorporating the foam external to the sample containers, but that 

is a determination that will be made by WHOI personnel. 

6.2 Sample Container Testing 
 

The manufactured sample container can be seen in Figure 6.5. 
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Figure 6.5: Sample container prototype. 

 
 

To determine whether the flaps would fold as desired during end-effector 

insertion and extraction, a sample container was constructed and placed on a wheeled 

table of adjustable height.  The table was adjusted as necessary, pushed into the 

stationary manipulator, and subsequently removed.  This basic setup can be seen in  

Figure 6.6. 

 
Figure 6.6: Sample container insertion/extraction test setup. 
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To test the effectiveness of the rubber flaps, a plastic egg was placed inside of 

the open jaws, and the jaws were subsequently closed.  The table with the sample 

container was pushed over the closed end-effector, and the jaws were opened.  When 

the sample container was pulled away from the manipulator, the rubber flaps folded 

out as designed, and the egg remained inside the sample container.  This sequence can 

be observed in Figure 6.7.  The final image in sequence shows the container 

positioned vertically with the flaps pulled back to reveal the egg inside. 

 
Figure 6.7: Sample container function demonstration. 

 

6.3 Summary 
 

The sample containers to be used in the SAMURAI collection system are to 

be composed of Schedule 80 PVC cylinders with a 10-in (15.4-cm) nominal diameter.  

Rubber lids with flaps cut into them represent the upper container covers.  The flap 

geometry is such that they fold out to ensure that samples contained in the jaws 

remain in the sample containers. 
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Physical testing of the containers in conjunction with the end-effector was 

performed by demonstrating an insertion and extraction procedure.  Testing 

demonstrated that the flaps function as designed and will ensure that even neutrally 

buoyant specimens are retained inside of the sample container. 
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Chapter 7 

Kinematics 

 
Having determined the sample container geometry, it was necessary to 

establish the maximum possible quantity and corresponding locations for the storage 

units on the JAGUAR vehicle.  These determinations are dependent upon the 

SAMURAI kinematics and work envelope.  Thus, basic SAMURAI inverse 

kinematics software composed by Carignan [2006] was used as a skeleton to develop 

a robust program to make the necessary determinations. 

This chapter presents the forward and inverse kinematics used for the sample 

container evaluations.  Details of a graphical user interface (GUI) used to produce 

easy access to a plethora of kinematics options are also presented.  The SAMURAI 

range of motion is outlined, and sample container quantity and corresponding 

locations are suggested. 

7.1 Effects of Removing the Hand Roll Degree of Freedom 
 

Removing a degree of freedom from a manipulator will degenerate the 

kinematics, and this is certainly true of the effective elimination of the SAMURAI 

hand roll joint.  The largest consequence for sampling is the limitation on sample 

orientation.  The end-effector is designed to collect a sand dollar positioned flat on 

the ocean floor, and this can be accomplished with or without the hand roll degree of 

freedom.  However, in the hypothetical case in which the sand dollar is propped up 

against a rock towards vertical, if the hand roll joint is accessible, the grippers would 

be rotated to match the sample orientation.  By removing this DOF, it will be much 
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more challenging and perhaps impossible to acquire the sample.  The end-effector 

could potentially be oriented as necessary through a combination of Joints 2, 3, 4, and 

5, but in this case, what was a trivial exercise in kinematics is now a much more 

difficult problem. 

Additionally, when depositing the samples in their respective containers, if the 

hand roll joint is in use, the grippers can be rotated to match the container orientation.  

Thus, container orientation when mounted to JAGUAR is not particularly important.  

However, when this DOF is removed, there is a solitary configuration in which the 

vector normal to the storage unit lid will match the axis of the hand roll joint.  In this 

latter case, the attachment to the AUV must be made with precision. 

7.2 SAMURAI Kinematics Software 
 

To determine sample container position and orientation for the manipulator in 

a 5-DOF configuration, kinematics software was developed.  Significant 

enhancements were made to the existing framework of both forward and inverse 

kinematics calculations. 

7.2.1 Description of Pre-Existing Software 

 
During manipulator development, multiple programs in Mathematica and C 

were computed to characterize the SAMURAI kinematics [27].  The inverse 

kinematics program was the one applicable to the sample container issue and was 

selected as a starting point for the subsequent kinematics development. 

In its present configuration, the code combines the known Denavit-Hartenberg 

(DH) parameters with programmed joint angles to generate the relevant position 
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vectors, rotation matrices, and tool position using forward kinematics.  These results 

are then used in an inverse kinematics solution, which demonstrates code 

functionality by outputting joint angles identical to the originally-programmed values.   

7.2.2 MATLAB Kinematics GUI Overview 

 
This program was converted into MATLAB and subsequently expanded to 

incorporate a wide range of features.  The program files comprising the enhanced 

software are contained in Appendix G along with an overview of the function of each 

file. 

A GUI was constructed to allow the user to select options and insert values 

without modifying the program itself.  The GUI is shown in Figure 7.1. 

 
Figure 7.1: MATLAB kinematics software GUI. 

 
 

7.2.3 Forward Kinematics 

 
Each SAMURAI joint has a coordinate frame with its respective z-axis 

oriented to coincide with the axis of rotation.  Frames 1 through 6 correspond to the 
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six joints.  In addition, Frame 0 represents the global frame and is positioned beneath 

the center of the shoulder yaw joint (Joint 1).  Frame T is located at the tool tip at the 

forward end of the manipulator.  The SAMURAI coordinate frames can be seen in 

Figure 7.2.  The figure shows the manipulator in the configuration in which all joint 

angles are set to 0°. 

 
Figure 7.2: SAMURAI kinematics coordinate frames. 

 
 

The DH parameters that determine the manipulator kinematics are provided in 

Table 7.1.  While the hand roll joint angle (θ6) would ordinarily be a variable, it has 

been set to 0° in Table 7.1 because it is being used to power the end-effector and will 

have no kinematic impact. 
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Table 7.1: SAMURAI DH parameters. 
i αi-1 (deg.) ai-1 (m) di (m) θ (deg.) 
1 0 0 0.108 θ1 
2 -90° 0.152 0 θ2 
3 0 0.610 0 θ3 - 90° 
4 -90° 0.114 0.610 θ4 
5 90° 0 0 θ5 
6 -90° 0 0 0 
T 0 0 0.441 0 

         

The kinematics software sets the αi-1, ai-1, and di DH parameters to their 

constant values and creates an array of joint angles based on the user specifications 

input through the GUI.  The software uses these values to create transformation 

matrices.  The form of a generic transformation matrix is featured in Equation 7-15 

[28].  In this equation, i-1
iT represents the transformation matrix used to locate Frame i 

relative to Frame i-1. 

              





















−−
−

=
−−−−

−−−−

−

−

1000

0

1111

1111

1

1

iiiiiii

iiiiiii

iii

i
i dccscss

dsscccs

asc

T
αααθαθ
αααθαθ

θθ

            (7-1) 

The 4x4 homogenous transformation matrix is composed of a 3x3 rotation 

matrix in the upper left corner.  Additionally, it contains a position vector whose 

respective components are featured in the first three elements of the fourth column.   

The transformation matrices representing each of the coordinate frames 

relative to Frame 0 are found by beginning with the base frame and multiplying the 

matrices sequentially, as shown in Equation 7-2. 

            TTTTT N
NN
12

3
1
2

0
1

0 −⋅⋅⋅= K              (7-2) 

                                                 
5 The letters “c” and “s” constitute the shorthand notation for the sine and cosine functions. 
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After the joint angles are input to the forward kinematics, the program 

computes the local transformation matrices.  These matrices are then cascaded as 

shown in (7-2) to produce transformation matrices relative to Frame 0.  Global frame 

positions, represented by the vector 0PN, are determined by isolating the position 

components in 0
NT.  This procedure is outlined in Equation 7-3. 

             ( ) ( ) ( ) ( )( )4,3,4,2,4,1,, 0000000 TTTzyxP NNNNNNN ==            (7-3) 

The program then generates the SAMURAI links by taking two successive 

positions and using three-dimensional plotting functions to generate lines between the 

points.  The process is repeated until reaching the tool frame at which point the entire 

manipulator has been produced. 

The SAMURAI representation is superimposed on a model of JAGUAR, 

which was created using a collection of MATLAB plotting tools.  In the kinematics 

analysis, it is assumed that SAMURAI will mount to JAGUAR on the upper surface 

of the plane where the AUV hemispherical cap joins with the cylinder.  The model 

also includes sample containers, which are set to default locations when using 

forward kinematics.  An image of the GUI output showing the manipulator in its 

stowed configuration is shown in Figure 7.3.  An isometric view and three two-

dimensional views show the manipulator from all perspectives while the software 

repositions the plots around the GUI. 

 



 

76 

 
Figure 7.3: Kinematics GUI with plots of SAMURAI in stowed configuration. 

 
 

All joint angles, position vectors, and rotation matrices are automatically 

saved to a data file in the working directory.  Every time the code is compiled, the 

previously saved file is overwritten.  A screenshot of the data file corresponding to 

arbitrary joint angles is shown in Figure 7.4. 
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Figure 7.4: Screenshot of automatically-generated kinematics data file. 
 
 

The user also has the option of displaying these parameters in the MATLAB 

command window.  If only one or two parameters are of interest, the command 

window displays are ideal; however, the data file eliminates the need for excessive 

scrolling and instantly provides significant manipulator data in a cohesive format.  

Additionally, the data file can easily be imported to Excel and/or other programs if 

further analysis is desired. 
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7.2.4 Inverse Kinematics 

 
Inverse kinematics is employed to determine joint angles based on user-input 

sample container position and orientation.  The solution follows the procedure 

outlined by Carignan [27], and a detailed description of that process is contained in 

Appendix F.  With the sample container inputs, the software generates the 

corresponding joint angles, which are then used to plot the manipulator with the 

forward kinematics approach previously described.  An image of the GUI output 

showing the manipulator immediately prior to sample container insertion is shown in 

Figure 7.5. 

 
Figure 7.5: GUI with SAMURAI in sample container pre-insertion orientation. 

 
 

Thus, the software allows the user to select any sample container location and 

orientation and will output the joint angles required to insert the end-effector into the 
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container and a visualization of the manipulator in that configuration.  This is 

especially useful in that the storage unit mounting points have not been determined.  

If the sample containers need to be mounted in a certain manner, it will be easy to 

evaluate whether or not that that will generate a feasible set of joint angles for the 

SAMURAI manipulator.  In addition, it is possible to establish potential sample 

container quantity by using the software to generate the workspace and placing 

containers inside of it.  However, this is dependent upon joint ranges of motion, 

which are addressed in Section 7.3. 

7.2.5 Kinematics Software Limitations 

 
While the software provides many new capabilities, it does have limitations.  

In its current state, the program does not compute joint rates or Jacobians, nor does it 

actively monitor for singularities or sample container locations outside of the 

workspace.  If the user requests an impossible sample container location or 

orientation corresponding to a singularity, the software will not execute as it is unable 

to construct the geometry.  While this indirectly informs the user that the inputs are 

problematic, an improved system for monitoring for impossible configurations should 

be added to the code, and this constitutes a possible area of future work. 

7.3 SAMURAI Range of Motion 
 

To determine how many sample containers could be used on Jaguar, it is 

necessary to establish how many units could be contained within the SAMURAI 

workspace.  Determination of the workspace requires values for each of the joint 

ranges of motion.  Internal hard stops were known to limit the motion of the shoulder 
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yaw, elbow roll, and hand roll joints to 220°, 540°, and 540° respectively.  The three 

pitch joints have external hard stops represented by the manipulator itself.  The ranges 

of motion for these joints were determined by recording images of the manipulator at 

range-of-motion extremes.  Figure 7.6 is an example of one of these images.   

 
Figure 7.6: Image of the elbow pitch joint at maximum rotation. 

 
 

A protractor was then used to measure the extreme angles and establish 

motion ranges.  A detailed description of the range of motion determination 

procedure is included in Appendix G.  The joint ranges are shown in Table 7.2. 

Table 7.2: SAMURAI joint ranges of motion. 
Joint Number Range of Motion 

1   (Shoulder Yaw) 220° 
2   (Shoulder Pitch) 225° 
3   (Elbow Pitch) 210° 
4   (Elbow Roll) 540° 
5   (Wrist Pitch) 215° 
6   (Hand Roll) 540° 

 
 

With the joint ranges of motion known, the SAMURAI work envelope can be 

plotted by using the forward kinematics software and iterating through the joint 

motion ranges.  The kinematics GUI has an option for plotting the work envelope and 
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allows the user to specify the resolution in degree increments.  Only half of the 

symmetric envelope is displayed to reduce compilation time and to allow for better 

visibility, as shown in Figure 7.7.  In Figure 7.7, the plots have been generated using 

2° increments. 

 
Figure 7.7: SAMURAI work envelope plotted in MATLAB. 

 

7.4 Sample Container Quantity and Location 
 

To maximize sample container quantity, the containers are placed at the end 

of the workspace on either side of the JAGUAR AUV.  As shown in Figure 7.7, the 

SAMURAI workspace does not extend far down the length of JAGUAR.  This is 

attributable to the shoulder yaw joint hard stop, which limits the total range of motion 

to 220°.  The hard stop is included in the design to ensure that SAMURAI would not 

inadvertently damage aft JAGUAR components. 
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Two additional containers can be added forward of the initial two.  The 

resulting configuration is modeled in Figure 7.8.  These latter two extend beyond the 

front of JAGUAR, but attachment to the AUV and/or the other sample containers 

should be possible. 

 
Figure 7.8: Isometric (left) and 2-D (right) views of JAGUAR/SAMURAI  

CAD models with sample containers. 
 
 

The sample container locations are listed in Table 7.3.  These coordinates 

correspond to the center of the container base plates and are relative to Frame 0, 

which once again, is located on the underside of the SAMURAI shoulder yaw joint.   

Table 7.3: Sample container coordinates. 
Container X-Coordinate (in) Y-Coordinate (in) Z-Coordinate (in) 

1 -4.72 13.19 -13.06 
2 -4.72 -13.19 -13.06 
3 6.03 13.19 -13.06 
4 6.03 -13.19 -13.06 

 
 

The joint angles corresponding to these locations are listed in Table 7.4.  

Values both immediately before sample container insertion and after sample container 

insertion are listed. 
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Table 7.4: Sample container pre- and post-insertion joint angles. 

Joint Pre-Insertion (°)Post-Insertion (°) Pre-Insertion (°) Post-Insertion (°)
1 109.6 109.6 -109.6 -109.6
2 -128.7 -83.8 -128.7 -83.8
3 158.9 171.6 158.9 171.6
4 180 180 180 180
5 -59.7 -2.1 -59.7 -2.1
6 -160.4 -160.4 -19.6 -19.6

Joint Pre-Insertion (°)Post-Insertion (°) Pre-Insertion (°) Post-Insertion (°)
1 65.4 65.4 -65.4 -65.4
2 -126.6 -82.9 -126.6 -82.9
3 158.1 170.4 158.1 170.4
4 180 180 180 180
5 -58.4 -2.5 -58.4 -2.5
6 155.4 155.4 24.6 24.6

Container 1 Container 2

Container 3 Container 4

 
 
 
The θ6 values vary in Table 7.4, and this is because in each of these cases, the 

sample container yaw, pitch, and roll values were all set to zero.  Thus, the θ6 values 

in Table 7.4 are actually representative of the amount by which the sample containers 

themselves must be rotated in order to align with the end-effector. 

If WHOI determines that JAGUAR is able to operate with additional profile 

drag, several more sample containers could be positioned outside of the current two 

rows.  Though, it is expected that the addition of just SAMURAI and two rows of 

sample containers will have very adverse effects on the hydrodynamic properties of 

the AUV which could restrict system performance and mission parameters. 

7.6 Summary 
 

Existing SAMURAI kinematics software was modified to create a program 

that accepts a multitude of user inputs.  The developed program applies forward and 
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inverse kinematics to generate data files, create plots for visualization, and establish 

the SAMURAI work envelope. 

The software was utilized to determine sample container locations and 

quantity.  Four containers can reasonably mount to JAGUAR within the SAMURAI 

workspace, possibly more if the AUV will be able to perform with additional profile 

drag. 
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Chapter 8 

Conclusion and Future Work 

 
 This thesis presented the design of an end-effector to be used in conjunction 

with autonomous underwater sampling missions.  End-effectors currently in use on 

submersibles, the preferences of the marine biology community, and previous SSL 

projects were considered during concept selection.  The chosen jaw concept and 

corresponding sample container were designed, constructed, and tested.  In addition, 

kinematics software was developed to ascertain sample container location and 

quantity.  The result is a sampling system which achieves all design objectives.   

8.1 Conclusions 
 
 Although robotic devices are used in myriad of applications on the surface, 

complex problems still need to be solved in order render the attachment of 

manipulators to AUVs routine [29].  The SAMURAI/JAGUAR sampling system 

aims to perform innovative research by collecting biological specimens in extreme 

environments. 

The end-effector represents the device that will physically collect the samples 

and deposit them in containers.  A gripper design was selected due to successful past 

implementation and popularity amongst marine biologists.  Jaws constitute the 

grippers themselves to allow for potential sample diversity. 

The existing titanium flange and fastener holes in the hand roll joint housing 

were selected as end-effector attachment points to avoid any modifications to the 
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SAMURAI structure.  Side mounting braces fixed to the fastener holes allow for the 

relative motion necessary to actuate the jaws. 

A cam disk was selected as the method of actuation due to past SSL success 

with the design and concerns that gear teeth could potentially skip or fracture.  With 

the exception of the cam disk, the rest of the end-effector is designed to be both easy 

to machine and easy to construct.  The fasteners are nearly entirely 10-32 screws, 

which render the assembly and disassembly procedures simple. 

End-effector performance was found to be limited by the structural constraints 

of the guide block bearings.  Nevertheless, the jaws were found to be capable of 

safely outputting a closing force of 75 lb, and this was verified with physical testing. 

A sample container to be used in conjunction with the end-effector was 

designed and tested as well.  PVC was selected as the container material due to its 

favorable buoyancy properties, and the lid was made out of rubber to render the unit 

as simple as possible.  Testing demonstrated that the lid flaps fold out effectively to 

remove specimens from the end-effector jaws and retain them in the container. 

It was determined that four sample containers should be used on JAGUAR, 

though more storage units could be included if additional profile drag is permissible.  

Kinematics software was enhanced to ascertain locations for the containers as well as 

the corresponding manipulator joint angles. 

This work has produced both functional hardware and software.  The end-

effector operates as designed, opening and closing smoothly and interfacing with the 

sample container.  Although further testing and design enhancements will likely be 
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necessary, the device could be employed on a submersible and successfully retrieve 

samples. 

 

8.2 Future Work 
 

The actual utility of this or any other SAMURAI end-effector will only be 

established when electronics to control the entire manipulator have been developed.  

When the electronics are operational, the end-effector should be used to simulate the 

collection of actual samples.  Sand dollars and other potential specimens should be 

placed in sand and the entire arm used to grasp the objects and place them in the 

sample containers.  The SSL is currently developing a structure to replicate the 

JAGUAR geometry.  By attaching sample containers to the JAGUAR mockup, the 

effectiveness of the end-effector-sample container combination should be evaluated 

through testing. 

After a more extensive test plan is used to assess end-effector performance, 

the prototype design should be finalized.  The cam disk should be modified to 

interface with the titanium flange directly, eliminating the need for the adapter.  This 

would reduce the end-effector mass by 0.71 lbm (0.32 kg) and length by 0.814 in 

(2.068 cm).  The cam disk should also be anodized to increase wear resistance. 

Parts used to reduce cost in the current design should be replaced with high-

grade components.  The steel track rollers should be replaced with stainless steel, and 

the 18-8 stainless fasteners should be replaced by A-286 parts.  This latter alteration 

will increase the FOS of several components and eliminate any confusion with 

fasteners used elsewhere on the manipulator. 
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Different jaw plates could be developed to increase the ability to break or grip 

samples.  For example, by decreasing the surface area of the jaw surface, the pressure 

exerted on a sample could be increased substantially.  In the concept shown in Figure 

8.1, the flat plate edges have been replaced by a raised edge on the upper jaw and a 

mating edge on the lower jaw.  The material removed on the lower jaw allows the 

jaws to shut completely. 

 
Figure 8.1: CAD model of jaw plate with raised edge concept. 

 
 

Concepts using features such as this, serrated edges, and other geometries 

could be developed and tested without extensive effort.  These designs could also be 

incorporated into the jaw side plates should such a configuration allow for easier 

acquisition of a sampling target. 

WHOI will need to be consulted regarding several end-effector-related tasks.  

Additional work needs to be performed to attach the sample containers to JAGUAR.  

WHOI will be responsible for the information pertaining to the necessary 

modifications that will allow the containers to mount to the AUV structure.  WHOI 

will also need to verify that the system will remain operational even with the 
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additional drag produced by SAMURAI and the sample containers.  The quantity of 

syntactic foam required to offset component mass also needs to be established. 

The sample container software should be modified to include checks for 

impossible container locations and arm configurations.  The program could be further 

enhanced to incorporate trajectories and possibly animations.  These trajectories 

could be used for the manipulator path planning that will be necessary when the 

electronics development has been completed and the manipulator is fully operational. 
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Appendix A  

End-Effector and Sample Container Hardware 

 
Table A.1: List of end-effector and sample container CAD drawings. 

Drawing # Drawing Type Description
FD20-0070 Part Female Flange (End Effector Attachment Flange)
EE-0001e Part Flange/Cam Disk Adapter
EE-0003 Part Cam Disk
EE-0004 Part Track Roller/Cam Follower
EE-0012 Part Ball Bearing for Block Slider
EE-0014 Part Custom Guide Block
EE-0015 Part Custom Guide Rail
EE-0015b Part Custom Guide Rail - Penetrator Plate Side
EE-0016 Part Delrin Thrust Bearings
EE-0017 Part Jaw Side Plate
EE-0018 Part Side Mounting Brace
EE-0018b Part Side Mounting Brace (penetrator plate side)
EE-0019 Part Jaw Top Plate
EE-0020 Part Jaw Back Plate
EE-0022 Part Guide Rail Connector
AYEE-0005 Assembly Custom Guide Block Assembly
AYEE-0006 Assembly Shoulder Screw, Ball Bearing, Thruster Bearing Combination
AYEE-0007 Assembly Wrist Joint Pair/End Effector Assembly
AYEE-0008 Assembly Custom Jaw (Top, Back, Side Plates, and Fasteners)

Drawing # Drawing Type Description
EE-0026 Part Sample Container Cylinder
EE-0027 Part Sample Container Base Plate
EE-0028 Part Sample Container Top Fastening Ring
AYEE-0013 Assembly Complete Sample Container

END EFFECTOR

SAMPLE CONTAINER
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Figure A.1: Exploded view of end-effector CAD model with component numbers. 
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Table A.2: End-effector fasteners. 
FASTENERS

Item Screw Description Quantity Thread Head Length (in)
1 Screws Connecting Flange to Al Adapter 12 10-32 SHCS 0.375
2 Screws Connecting Al Adapter to Cam Disk 12 10-32 SHCS 0.5
3 Track Rollers to Join Disk to Guide Blocks 2 1/4-28 Roller 0.3125
4 Shoulder Screws to Hold Bearings to Guide Blocks 16 10-32 SHCS .25
5 Jaw Screws to Connect Rear Plate to Guide Blks. 14 10-32 SHCS 0.5
6 Screws Connecting Jaw Rear Plate to Side Plate 8 10-32 SHCS 0.5
7 Screws Connecting Jaw Top to Side & Rear Plates 16 10-32 SHCS 0.5
8 Screws Bolting Connection Plate to Guide Rails 8 10-32 SHCS 0.5
9 Screws Bolting Side Mounts to Guide Rails 8 10-32 SHCS 0.5
10 Screws Connecting Side Mounts to Wrist Joint 8 1/4-20 SHCS 1

Total Screw Quantity: 104

Item Material Part # Cost Ind. Cost ($) Tot. Cost ($)
1 18-8 Stainless 92196A267 $8.94 per 100 0.0894 1.0728
2 18-8 Stainless 92196A269 $9.95 per 100 0.0995 1.194
3 Steel 1460T13 $13.62 Each 13.62 27.24
4 416 Stainless 93985A535 $2.81 Each 2.81 44.96
5 18-8 Stainless 92196A269 $9.95 per 100 0.0995 1.393
6 18-8 Stainless 92196A269 $9.95 per 100 0.0995 0.796
7 18-8 Stainless 92196A269 $9.95 per 100 0.0995 1.592
8 18-8 Stainless 92196A269 $9.95 per 100 0.0995 0.796
9 18-8 Stainless 92196A269 $9.95 per 100 0.0995 0.796
10 18-8 Stainless 92196A542 $12.83 per 50 0.2566 2.0528

Total ($): 81.89

Item Material Part # Cost Ind. Cost ($) Tot. Cost ($)
1 A286 Super Alloy 92423A502 $2.07 Each 2.07 24.84
2 A286 Super Alloy 92423A505 $2.07 Each 2.07 24.84
3 440C Stainless 8043K74 $61.20 Each 61.2 122.4
4 416 Stainless 93985A535 $2.81 Each 2.81 44.96
5 A286 Super Alloy 92423A505 $2.07 Each 2.07 28.98
6 A286 Super Alloy 92423A505 $2.07 Each 2.07 16.56
7 A286 Super Alloy 92423A505 $2.07 Each 2.07 33.12
8 A286 Super Alloy 92423A505 $2.07 Each 2.07 16.56
9 A286 Super Alloy 92423A505 $2.07 Each 2.07 16.56
10 A286 Super Alloy 92423A539 $3.68 Each 3.68 29.44

Total ($): 358.26
Notes:
 -SHCS = Socket Head Cap Screw

  countersunk under the penetrator plate
 -These 2 screws may have to be switched to 3/4" length to fit (Part No. 92423A536)
 -SSL stock has plenty of 18-8, 1" length screws with 1/4"-20 threads
 -SSL stock has a lot of18-8, 1/2" length, 10-32 screws, but not excessive quantities
 -SSL has few 18-8, 3/8" length, 10-32 screws.  Count is presently at 18 (7/24/08)
 -Source: www.mcmaster.com

 -2 of the screws in Item 10 are to have their heads machined down so they can be

Prototype

Final Design
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Table A.3: End-effector Heli-Coil inserts. 
INSERTS

Item Insert Description Total Quantity Thread Drill Depth (in)

1
For Screws Connect ing Flange to 
Al Adapter 12 10-32 0.662

2
For Screws Connect ing Al Adapter 
to Cam Disk 12 10-32 0.568

3
For Track Roller Attachment in 
Guide Block 2 (1 x 2 Blocks) 1/4-28 0.714

4
For Shoulder Screws into Guide 
Block 16 (8 x 2 Blocks) 10-32 0.568

5 For Jaw Screws into Guide Block 14 (7 x 2 Blocks) 10-32 0.472

6
For Jaw Screws Connect ing Side 
and Rear Plates 8 (2 x 4 Pieces) 10-32 0.472

7
For Jaw Screws Connect ing Top 
to Side & Rear Plates 16 (8 x 2 Pieces) 10-32 0.472

8
For Screws Bolting Connection 
Plate to Guide Rails 8 (4 x 2 Pieces) 10-32 0.662

9
For Screws Bolting Side Mounts to 
Guide Rails 8 (4 x 2 Pieces) 10-32 0.662

10
For Screws Connect ing Side 
Mounts to Wrist Joint 8 (4 x 2 Sides) 1/4-20 0.675

Item Thread Depth (in) Insert Number McMaster-Carr # Cost Ind. Cost ($)
1 0.38 1191-3CN380 91732A725 $5.29 per 10 0.529
2 0.285 1191-3CN285 91732A231 $4.10 per 10 0.41
3 0.375 1191-4CN375 91732A232 $4.10 per 10 0.41
4 0.285 1191-3CN285 91732A231 $4.10 per 10 0.41
5 0.19 1191-3CN190 91732A511 $2.92 per 10 0.292
6 0.19 1191-3CN190 91732A511 $2.92 per 10 0.292
7 0.19 1191-3CN190 91732A511 $2.92 per 10 0.292
8 0.38 1191-3CN380 91732A725 $5.29 per 10 0.529
9 0.38 1191-3CN380 91732A725 $5.29 per 10 0.529
10 0.25 1185-4CN250 91732A368 $3.13 per 10 0.313

Item Sum Quantity Thread Drill Depth (in) Thread Depth (in) Insert Number
A 38 10-32 0.472 0.19 1191-3CN190
B 28 10-32 0.568 0.285 1191-3CN285
C 28 10-32 0.662 0.38 1191-3CN380
D 2 1/4-28 0.714 0.375 1191-4CN375 
E 8 1/4-20 0.675 0.25 1185-4CN250

Total Quantity: 104
Item McMaster-Carr # Ind. Cost ($) Tot. Cost ($)

A 91732A511 0.292 11.096
B 91732A231 0.41 11.48
C 91732A725 0.529 14.812
D 91732A232 0.41 0.82
E 91732A368 0.313 2.504

Total Cost ($): 40.71  
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Table A.4: End-effector washers. 
WASHERS

Item Washer Description Quantity ID (in) OD (in) Thick. (in) Washer Size

A
Separate Screws from Al 
Adapter 12 0.195 0.354 .06 to .067 10

B
Separate Screws from 
Guide Rail Sides 8 0.195 0.354 .06 to .067 10

C
Separate Screws from 
Side Mount Origins 6 0.255 0.468 0.035 1/4"

D
Separate Screws from 
Side Mount Origins 6 0.265 0.5 .059 to .067 1/4"

Item Material Part # Cost Ind. Cost ($) Total Cost ($)
A 18-8 Stainless 90945A741 $8.75 per 100 0.0875 1.05
B 18-8 Stainless 90945A741 $8.75 per 100 0.0875 0.7
C 18-8 Stainless 90945A760 $6.38 per 100 0.0638 0.3828
D 18-8 Stainless 98017A660 $5.28 per 100 0.0528 0.3168

Total ($): 2.13
Notes:
 -SSL stock contains plenty of #10 washers.
 -C will replace D if thinner washers are necessary.
 -Source: http://www.mcmaster.com

Prototype & Final Design (no difference)

 
 
 

Table A.5: End-effector bearings. 
BEARINGS

Item Description Material Total Quantity ID (in.) OD (in.)
1 Ball Bearings for Guide Block 416 Stainless 16 1/4 5/8
2 Thrust Bearings for Guide Block Delrin 32 1/4 5/8

Item Thickness (in.) Part Number Ind. Cost ($) Total Cost ($)
1 13/64 6138K65 6.03 96.48
2 1/16 2795T11 0.91 29.12

Total ($): 125.60
Notes:
 -The 2 roller bearings are considered fasteners due to their threaded ends.
 -The bearings are the same for both the prototype and the final design.
 -Source: http://www.mcmaster.com  

 
 

Table A.6: Sample container components. 
Vendor Part Number Quantity Description Material

United States Plastic Corp. 26333 1 Main Cylinder, 10", Schedule 80 PVC
United States Plastic Corp. 45089 1 Base Plate, 3/8" Thick Sheet PVC
United States Plastic Corp. 26333 1 Top Ring,  10", Schedule 80 PVC
McMaster-Carr 87145K85 1 1/4" Thick Rubber Support Layer Natural Gum Rubber
McMaster-Carr 87145K85 1 1/4" Thick Rubber Cover Layer Natural Gum Rubber
McMaster-Carr 90945A740 24 #10 Washer, .195" ID, .354" OD, t = .067" 18-8 Stainless
McMaster-Carr 92196A273 12 10-32 Thread Screw, 7/8" Length 18-8 Stainless
McMaster-Carr 92196A275 12 10-32 Thread Screw, 1-1/8" Length 18-8 Stainless  
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A.2 Track Roller Data 
 
Track Roller Part Number: 8043K74  
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A.3 Hand Roll Motor Data Sheets 
 
Hand Roll Motor Part Number: RBE-02111-A-00 
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Appendix B  

MATLAB Function for Evaluating Cam Disk Performance 
 
 
function camdisk() 
 
%This function solves the grooves in the cam disk and finds the associated dynamic properties 
 
close all, clear all          %Close all windows and clear variables from previous runs 
 
time_plots = 0;            %Set time_plots to 1 to activate figures plotting variables vs. time 
excel = 0;                  %Set to 1 to send time and position data to Position Data.xls spreadsheet 
offset = .45;               %Declare an offset which serves as the dist. between the center... 
                            %of the circle and the start of the groove 
h = 2.25;                   %Total follower displacement (inches) 
                            %It is the height one of the jaws opens 
beta_deg = 155;            %Cam angle for displacement "h" (degrees) 
%alpha_max_deg = 175.33;   %Maximum cam disk rotation - found with trig. (deg) 
alpha_max_deg = 173.56;    %Actual max cam disk rotation - limited by jaws contacting (deg) 
iter = .0005;               %Iteration size of theta (rad) 
cd_rad = 2.3;              %Cam disk radius (inches)... 
                                         %Diameter of flange/cam disk adapter is 4.60 inches 
follower_lim = 955;        %Cam follower dynamic radial load capacity (lbs) 
T_in = 144;                 %Input torque, based on motor break-in values (inch-lbs), SAMURAI Boards 
%T_in = 98.3;              %Input torque, based on motor break-in values (inch-lbs), Ranger Boards 
eta = .9;                  %Combined efficiency of track rollers and guide block bearings (90% each) 
ang_vel_deg = 13.86;       %Angular velocity of hand roll joint, found empirically (deg/s) 
ang_vel = ang_vel_deg * pi/180;      %Angular velocity converted to (rad/s) 
Lo = -10;                   %External load on the cam follower, value is neg. as force is down (lbs) 
 
%Plot controls and variables: 
    title_size = 26;          %Set title, xlabel, and ylable font sizes 
    axes_size = 24;          %Set axes font size 
    line_width = 4;           %Set width of plotted lines 
    mult = 2;                  %Line_width multiplier for the cam disk grooves 
    fig_color = [1 1 1];      %Sets background in figures to white 
    set(0, 'DefaultFigureColor', fig_color, 'DefaultAxesLineWidth',...  
       line_width, 'DefaultAxesFontSize', axes_size);    %Set figure color line width of axes, axes font size 
%End plot controls and variables 
    
beta = beta_deg * pi/180;         %Convert beta angle into radians (rad) 
 
%Create a visual depiction of the curves to be inserted into the cam disk to drive the parallel jaws 
%Step 1: Create the first groove in the cam disk (presently on right side of disk 
theta_deg = 0;                          %Reset theta_deg to its initial position (deg) 
x1_array = [];   y1_array = [];        %Initialize x and y arrays, which will contain individual values (in) 
%Initialize rotation arrays - these arrays represent the x and y arrays put 
%through a rotation matrix to track points in the cam-disk grooves: 
x_rot_array = [];  y_rot_array = [];    
%Initialize velocity, acceleration, and output force arrays: 
vel_array = [];   accel_array = [];     F_out_array = []; 
%Initialize variables used in velocity and acceleration calculations: 
y_old = 0;  time_old = 0;   v_old = 0; 
%Initialize variables used in pressure angle calculations: 
y3 = 0; x3 = 0; gamma_save = -pi; gamma_array = []; 
%Initialize rotation angle variables: 
theta_deg_array = [];  alpha_deg_array = [];   alpha = 0;  alpha_deg = 0; 
theta_deg_incr = iter*(180/pi);                    %Increment value for theta_deg (deg) 
while theta_deg <= beta_deg;                     %As long as theta is within the beta limit... 
    theta = theta_deg * pi/180;                    %Convert theta to radians (rad) 
    radius = (h/2)*(1+cos((beta_deg*(pi/180))*theta/beta));      %Follower displacement (inches) 
         
    x1 = radius * cos(theta-pi/2);                %X position of the location within the 1st groove (in) 
    y1 = radius * sin(theta-pi/2)+offset;         %Y position of the location within the 1st groove (in) 
    %Note: The pi/2 values in the trig. terms rotate the grooves for easier viewing 
    x1_array = [x1_array, x1];                     %Add latest x position to the x_array (in) 
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    y1_array = [y1_array, y1];                   %Add latest y position to the y_array (in) 
     
    l1 = sqrt(x1^2 + y1^2);                       %Calculate the length of the vector to the point in the groove 
    if alpha_deg <= 89.99,                        %Case for which alpha <= 90 degrees 
        alpha = asin(x1/l1);                      %Calculate the angle via inverse sine function 
    else                                          %Case for which alpha >= 90 degrees 
        alpha = asin(y1/l1) + pi/2;               %Calculate the angle via inverse sine function + 90 deg. 
    end 
    alpha_deg_old = alpha_deg;                            %Store value of alphs_deg in "old" variable (deg) 
    alpha_deg = alpha * 180/pi;                           %Convert alpha to degrees (deg)     
    delta_alpha_deg = alpha_deg - alpha_deg_old;        %Calculate change in alpha (deg) 
    delta_alpha = delta_alpha_deg * pi/180;               %Convert change in alpha to radians (rad) 
    alpha_deg_array = [alpha_deg_array, alpha_deg];      %Add alpha_deg to array 
    theta_deg_array = [theta_deg_array, theta_deg];      %Add theta_deg to theta_deg_array 
     
    y_rot = -x1*sin(alpha - pi) + y1*cos(alpha-pi);      %Y-coords after rotation alpha (in) 
    x_rot = x1*cos(alpha-pi) + y1*sin(alpha-pi);          %X-coords after rotation alpha (in) 
    y_rot_array = [y_rot_array, y_rot];                   %Add rotated y-coord to array 
    x_rot_array = [x_rot_array, x_rot];                   %Add rotated x-coord to array 
         
    %Velocity Determination: 
    y_new = y_rot;                                %Set new y-position to the the rotated value (in) 
    delta_y = y_new - y_old;                      %Calculate the change in position over the time step (in) 
    y_old = y_rot;                                %Redefine "y_old" as the new position (in) 
    time_new = alpha_deg / ang_vel_deg;          %Calculate the time at the given position (s) 
    delta_time = time_new - time_old;            %Calculate the change in time from the previous time step (s) 
    time_old = time_new;                          %Redefine "time_old" as the new time (s) 
    vel = delta_y / delta_time;                   %Divide change in position by change in time to get velocity (in/s) 
    vel_array = [vel_array, vel];                 %Put velocity term in velocity array 
         
    %Acceleration Determination: 
    v_new = vel;                                 %Set new velocity term to the calculated value (in/s) 
    delta_v = v_new - v_old;                      %Determine change in velocity across the time step (in/s) 
    v_old = v_new;                                %Redefine vel_old as the new velocity (in/s) 
    accel = delta_v / delta_time;                 %Divide change in velocity by change in time to get accel. (in/s^2) 
    accel_array = [accel_array, accel];          %Add acceleration term to the array 
      
    %Force Determination: 
    F_out = T_in * (delta_alpha)/delta_y;        %Individual output force (lbs)  
    F_out_array = [F_out_array, F_out];          %Add force value to the output force array (lbs) 
     
    %Pressure Angle Determination: 
    x4 = x1;                                      %Set the new x (x4) equal to the new x1 (in) 
    y4 = y1;                                      %Set the new y (y4) equal to the new y1 (in) 
    slope = (y4 - y3)/(x4 - x3);                  %Calculate the slope based on changes in x and y 
    x3 = x1;                                      %Set x3 to what is now the old x1 (in) 
    y3 = y1;                                     %Set y3 to what is now the old y1 (in) 
    slope_perp = -(1/slope);                      %Calculate the neg. repicrocal to find the perpendicular slope 
    gamma = atan(slope_perp) + pi/2 - alpha;     %Let gamma equal to the pressure angle 
                                                  %pi/2 accounts for the frame rotation 
                                                   %-alpha is used to find the difference between the follower… 
     %direction and vector normal to the cam 
    %Use if statements to correct for tangent calculations: 
    if gamma >= gamma_save | alpha_deg <= 0.036,     %If gamma is increasing or if alpha is near zero 
        gamma_array = [gamma_array, gamma];       %Add gamma term to array 
    else 
        gamma = gamma + pi;                       %If tangent dropped the pressure angle, flip the…  
      %direction back with pi addition 
        gamma_array = [gamma_array, gamma];       %Add gamma term to array 
    end 
    gamma_save = gamma;                           %Update gamma_save for comparison purposes 
     
    theta_deg = theta_deg + theta_deg_incr;       %Increment theta_deg (deg) 
end 
 
%Create Figure 1 and plot the curve for the first groove in the cam disk: 
figure(1),   plot(x1_array, y1_array,'r-', 'LineWidth', line_width*mult), hold on 
%Step 2: Create the second groove in the cam disk 
theta_deg = 0;                           %Reset theta_deg to its initial position (deg) 
x2_array = [];   y2_array = [];         %Initialize x and y arrays, which will contain individual values (in) 
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while theta_deg <= beta_deg;                    %As long as theta is within the beta limit... 
    theta = theta_deg * pi/180;                   %Convert theta to radians (rad) 
    radius = (h/2)*(1+cos((beta_deg*(pi/180))*theta/beta));        %Follower displacement (inches) 
    x2 = -radius * cos(theta-pi/2);              %X position of the location within the 1st groove (in) 
    y2 = -radius * sin(theta-pi/2) - offset;     %Y position of the location within the 1st groove (in) 
    %Note: The pi/2 values in the trig. terms rotate the grooves for easier viewing 
    x2_array = [x2_array, x2];                    %Add latest x position to the x_array (in) 
    y2_array = [y2_array, y2];                    %Add latest y position to the y_array (in) 
    theta_deg = theta_deg + theta_deg_incr;       %Increment theta_deg (deg) 
end 
%Plot the curve for the second groove in the cam disk 
plot(x2_array, y2_array, 'r-', 'LineWidth', line_width*mult), hold on          
 
%Plot the four quadrants of the cam disk border (it's a circle) 
x = 0       : iter : cd_rad;  y = sqrt(cd_rad^2-x.^2);   plot(x,y,'-', 'LineWidth', line_width), hold on 
x = -cd_rad : iter :      0;  y = sqrt(cd_rad^2-x.^2);   plot(x,y,'-', 'LineWidth', line_width), hold on 
x = -cd_rad : iter :      0;  y = -sqrt(cd_rad^2-x.^2);  plot(x,y,'-', 'LineWidth', line_width), hold on 
x = 0       : iter : cd_rad;  y = -sqrt(cd_rad^2-x.^2);  plot(x,y,'-', 'LineWidth', line_width), hold on 
x = 0;   y = 0;   plot(x,y,'k+')   %Plot point in center of disk 
 
title('Depiction of Cam Disk Grooves', 'FontWeight', 'bold') 
xlabel('X-Position (in.)'), ylabel('Y-Position (in.)') 
grid on, axis([-2.5 2.5 -2.5 2.5])              %Manually set axes for better plot viewing 
 
 
%Generate plot of vertical position of track roller:  
%Note: Plot of horizontal position is a constant at zero 
figure(2), plot(alpha_deg_array, y_rot_array, '-', 'LineWidth', line_width), hold on 
title('Follower Displacement vs. Cam Disk Angle of Rotation', 'FontWeight', 'bold') 
xlabel('Angle of Rotation (deg.)'), ylabel('Follower Displacement (in.)') 
grid on, axis([0 alpha_max_deg .4 2])         %Manually set axes for better plot viewing 
 
time = alpha_deg_array / ang_vel_deg;          %Time corresponding to a given angle of rotation (s)... 
[time_last_index] = find(time,1, 'last');       %Index of last value in the time array 
time_last = time(time_last_index);             %Last time value in array (s) 
 
 
%Generage plot of velocity of track roller as a function of angle alpha 
figure(3), plot(alpha_deg_array, vel_array, '-', 'LineWidth', line_width) 
title('Jaw Velocity vs. Cam Disk Angle of Rotation', 'FontWeight', 'bold')    %Plot jaw velocity 
xlabel('Angle of Rotation (deg.)'), ylabel('Jaw Velocity (in./deg.)') 
grid on, axis([0 alpha_max_deg -.25 0])                                    %Manually set axes for better plot viewing 
 
%Generate plot of acceleration of track roller as a function of angle alpha 
figure(4), plot(alpha_deg_array, accel_array, '-', 'LineWidth', line_width)                  %Plot jaw acceleration 
title('Jaw Acceleration vs. Cam Disk Angle of Rotation', 'FontWeight', 'bold') 
xlabel('Angle of Rotation (deg.)'), ylabel('Jaw Acceleration (in./deg.^2)') 
grid on, axis([.1 alpha_max_deg -.2 0])                     %Manually set axes for better plot viewing 
 
%Generate plot of output force of track roller as a function of angle alpha 
    %Note: F_out is multiplied by a minus sign because it's only the magnitude that matters here 
    %F_out is divided by 2 because there are 2 jaws, each of which is receiving the same amount of work 
%F_out_array = -eta * F_out_array/2; 
F_out_array = -eta * F_out_array; 
%Plot output force versus angle of rotation: 
figure(5), plot(alpha_deg_array, F_out_array, '-', 'LineWidth', line_width)         
title('Output Force vs. Angle of Rotation', 'FontWeight', 'bold') 
xlabel('Angle of Rotation (deg.)'), ylabel('Output Force (lbs.)') 
grid on, axis([.1 alpha_max_deg 0 8*10^2])            %Manually set axes for better plot viewing 
 
 
%Plot output force versus angle of rotation along with cam follower capacity limits 
figure(6), plot(alpha_deg_array, F_out_array, '-', 'LineWidth', line_width), hold on 
follower_lim = alpha_deg_array .* 0 + follower_lim;      %Create follower limit array to speed up computation 
plot(alpha_deg_array, follower_lim, 'r-', 'LineWidth', line_width)       %Add follower limit to the plot 
title('Force vs. Angle of Rotation', 'FontWeight', 'bold') 
xlabel('Angle of Rotation (deg.)'), ylabel('Force (lbs.)') 
legend('Output Force Capacity', 'Cam Follower Structural Limit', 'Location', 'Best')     %Generate legend 
grid on, axis([.1 alpha_max_deg 0 4000])            %Manually set axes for better plot viewing 
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%Output maximum and minimum forces to the Command Window 
fprintf('\nMaximum Output Force: %.4g lbs\n', max(abs(F_out_array)))      %Output max force (lbs) 
%Minimum force corrsponds to the asymptote at theta = 0, so min() can't be used 
[M, N] = size(F_out_array);                   %Find the size of the array 
F_out_min = abs(F_out_array(N));            %Find the output force corresponding ot the index & divide by 2 
fprintf('Minimum Output Force: %.6g lbs\n', F_out_min)  %Output min force (lbs) 
 
%Plot pressure angle versus angle of rotation: 
gamma_deg_array = gamma_array * 180/pi;       %Convert array of pressure angles to degrees (deg.) 
figure(7), plot(alpha_deg_array, gamma_deg_array, '-', 'LineWidth', line_width)          
title('Pressure Angle vs. Angle of Rotation', 'FontWeight', 'bold') 
xlabel('Angle of Rotation (deg.)'), ylabel('Pressure Angle (deg.)') 
grid on, axis([.1 alpha_max_deg -10 75])           %Manually set axes for better plot viewing 
 
%Generate plot of vector components of cam disk output force capacity: 
%Note: F_out_array has already been switched to pos. & divided by 2 at this point 
F_out_x_array = F_out_array .* sin(gamma_array);    %Determination of the force capability in the x-direction (lbs) 
F_out_y_array = F_out_array .* cos(gamma_array);    %Determination of the force capability in the x-direction (lbs) 
figure(8), plot(alpha_deg_array, F_out_array, '-', 'LineWidth', line_width), hold on         
plot(alpha_deg_array, F_out_x_array, 'g-', 'LineWidth', line_width), hold on         
plot(alpha_deg_array, F_out_y_array, 'r-', 'LineWidth', line_width)         
title('Directional Force Capabilities vs. Angle of Rotation', 'FontWeight', 'bold') 
xlabel('Angle of Rotation (deg.)'), ylabel('Force (lbs.)') 
legend('F_r_o_l_l_e_r', 'F_r_a_i_l', 'F_j_a_w', 'Location', 'Best') 
grid on, axis([.1 alpha_max_deg 0 5*10^2])            %Manually set axes for better plot viewing 
 
%Generate plot of vector components of cam disk output force based on external follower load: 
F_Lo_array = -Lo./(cos(gamma_array)); 
F_Lo_x_array = F_Lo_array .* sin(gamma_array); 
F_Lo_y_array = F_Lo_array .* cos(gamma_array); 
figure(9), plot(alpha_deg_array, F_Lo_array, '-', 'LineWidth', line_width), hold on         
plot(alpha_deg_array, F_Lo_x_array, 'g-', 'LineWidth', line_width), hold on         
plot(alpha_deg_array, F_Lo_y_array, 'r-', 'LineWidth', line_width)         
title('Directional Reaction Forces vs. Angle of Rotation', 'FontWeight', 'bold') 
xlabel('Angle of Rotation (deg.)'), ylabel('Force (lbs.)') 
legend('Normal Force', 'X-Dir. Force', 'Y-Dir. Force', 'Location', 'Best') 
grid on, axis([.1 alpha_max_deg -25 25])            %Manually set axes for better plot viewing 
 
%Generate plot of factor of safety of track roller based on jaw closing force: 
FOS = follower_lim ./ F_out_array;       %Factor of safety (unitless) 
figure(10), plot(alpha_deg_array, FOS, '-', 'LineWidth', line_width), hold on  
title('Track Roller FOS vs. Angle of Rotation', 'FontWeight', 'bold') 
xlabel('Angle of Rotation (deg.)'), ylabel('Factor of Safety') 
grid on, axis([67.5 alpha_max_deg 0 7])            %Manually set axes for better plot viewing 
 
 
if excel,                       %If excel is set to logical true... 
    xlswrite('Position Data.xls', time', 'MATLAB', 'A1:A5411')                %Send time data to spreadsheet 
    xlswrite('Position Data.xls', alpha_deg_array', 'MATLAB', 'B1:B5411') %Send angle data to spreadsheet 
    xlswrite('Position Data.xls', y_rot_array', 'MATLAB', 'D1:D5411')         %Send position data to spreadsheet 
    xlswrite('Position Data.xls', vel_array', 'MATLAB', 'E1:E5411')           %Send velocity data to spreadsheet 
    xlswrite('Position Data.xls', accel_array', 'MATLAB', 'F1:F5411')         %Send acceleration data to spreadsheet  
    xlswrite('Position Data.xls', F_out_array', 'MATLAB', 'G1:G5411')       %Send output force data to spreadsheet  
end 
 
if time_plots,                                %If time_plots is set to logical true... 
    %Plot position, velocity, and acceleration curves vs. time 
    figure(11), plot(time, y_rot_array, '-', 'LineWidth', line_width)    %Plot jaw displacement 
    title('Follower Displacement vs. Time', 'FontWeight', 'bold') 
    xlabel('Time (s)'), ylabel('Follower Displacement (in.)') 
    grid on, axis([0 time_last .4 2])                                     %Manually set axes for better plot viewing 
 
    figure(12), plot(time, vel_array, '-', 'LineWidth', line_width) 
    title('Jaw Velocity vs. Time', 'FontWeight', 'bold')                  %Plot jaw velocity 
    xlabel('Time (s)'), ylabel('Jaw Velocity (in./s)') 
    grid on, axis([0 time_last -.25 0])                                   %Manually set axes for better plot viewing 
 
    figure(13), plot(time, accel_array, '-', 'LineWidth', line_width)     %Plot jaw acceleration 
    title('Jaw Acceleration vs. Time', 'FontWeight', 'bold') 
    xlabel('Time (s)'), ylabel('Jaw Acceleration (in./s^2)') 
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    grid on, axis([.01 time_last -.2 0])                                  %Manually set axes for better plot viewing 
     
    figure(14), plot(time, F_out_array, '-', 'LineWidth', line_width)    %Plot jaw force capacity 
    title('Output Force vs. Time', 'FontWeight', 'bold') 
    xlabel('Time (s)'), ylabel('Output Force (lbs.)') 
    grid on, axis([0 time_last 0 5*10^4])                                 %Manually set axes for better plot viewing 
     
    figure(15), plot(alpha_deg_array, F_out_array, '-', 'LineWidth', line_width), hold on 
    plot(alpha_deg_array, follower_lim, 'r-', 'LineWidth', line_width)  %Plot jaw force capacity with follwer limits 
    title('Force vs. Angle of Rotation', 'FontWeight', 'bold') 
    xlabel('Angle of Rotation (deg.)'), ylabel('Force (lbs.)') 
    legend('Output Force Capacity', 'Cam Follower Structural Limit', 'Location', 'Best') 
    grid on, axis([.1 time_last 0 4000])                                  %Manually set axes for better plot viewing 
end 
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Appendix C  

Additional Jaw Performance Metrics 

 
As stated in Chapter 5, both MATLAB and CAD analysis features were used 

to generate plots of position, velocity, and acceleration.  Data points from both 

programs were exported to Excel and were subsequently plotted together.  These 

plots are shown below. 

The CAD software was only capable of plotting these variables as functions of 

time.  To make the necessary conversion, the known angular position was multiplied 

by a constant angular velocity of 13.9°/s to produce time.  This rotation rate 

corresponds to that observed when powering the hand roll motor with the Ranger 

boards while applying no external load. 
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Figure C.1: Plot of follower displacement vs. time  

based on MATLAB and CAD data. 
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MATLAB - CAD Velocity Data Comparison
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Figure C.2: Plot of follower velocity vs. time based on MATLAB and CAD data. 
 
 

MATLAB - CAD Acceleration Data Comparison
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Figure C.3: Plot of follower acceleration vs. time based on MATLAB and CAD data. 
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Appendix D  

End-Effector Structural Analysis and Test Data 

 
 
Supplementary Structural Analysis 
 

Analyses were performed for all relevant structural failure modes.  Different 

types of stresses imposed on the various end-effector components are discussed, and 

the applicable equations are presented.  All calculations performed in this appendix 

correspond to a maximum hand roll joint output torque of 144 lb-ft (195 N-m).  The 

load, the component, and the FOS are then presented in Tables D.1 through D.4.  A 

more detailed display of all the parameters used in the structural calculations is 

featured in Table D.5. 

Track-roller loading and loads applied on the guied block bearings are not 

evaluated as those calculations were presented in Chapter 5. 

 
D.1 Shear Stresses 
 

The joint torque directly imposes a shear stress on the following end-effector 

components: the flange-adapter fastener ring, flange-cam disk adapter, adapter-cam 

disk fastener ring, and the cam disk itself.   

Shear stress (τ) is calculated in (D-1), where T is the applied torque, r is the 

distance from the rotation axis to the outer surface of the part, and Ip is the polar 

moment of inertia.  Because the majority of the end-effector components contained 

cross-sections more complicated than basic circles and rectangles, moments of inertia 

were found with CAD analyses. 
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pI

rT ⋅=τ              (D-1) 

 
Table D.1: Shear stress summary. 

Component τ (psi) FOS
Flange-Adapter Fastener Ring 2327.3 8
Flange-Cam Disk Adapter 119.6 184
Adapter-Cam Disk Fastener Ring 2741.7 7
Cam Disk Rear 116.0 190
Cam Disk Front (w/ grooves) 131.7 167  

 
 
D.2 Bending Stresses 
 

The horizontal force component in the cam follower force vector induces a 

bending moment on the side mounting brace.  Each guide rail is impacted by one half 

of the total force value of 120.1 lb.  This value is further reduced by an additional 

factor of 2 due to the connector plates which stabilize the guide rails.  The total force 

acting on each of the rails is therefore 30.0 lb. 

This force value is used to calculate the bending moment, M.  Combining this 

with the maximum distance from the neutral axis to the plate edge, c, and the area 

moment of inertia, I, the bending stress (σb) is determined using Equation D-2. 

  

 
I

cM
b

⋅=σ              (D-2) 

 
Table D.2: Bending stress summary. 

Component σ (psi) FOS
Side Mounting Brace 4540.0 9  

 
 
D.3 Tensile Stresses 
 

The ¼ in-thick aluminum connectors are used to stabilize the guide rails.  

These objects are in tension due to the opposing forces being applied to the respective 

rails.  The equation for the tensile stress (σt) being exerted on the members is shown 
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in Equation D-3, where F and A represent the applied load and cross-sectional area, 

respectively. 

          
A

F
t =σ              (D-3) 

 
Table D.3: Tensile stress summary. 

Component σ (psi) FOS
Guide Rail Connector 96.8 413  

 
 
D.4 Compressive Stresses 
 

The rail forces produce compression between the guide blocks and the guide 

rails.  This stress is experienced by the guide blocks, guide rails, and Delrin thrust 

bearings.  As there are four sets of thrust bearings on each side of the guide block, the 

load is divided by four for these components. 

The equation for compression is identical to that shown in Equation D-3. 

Table D.4: Compressive stress summary. 
Component σ (psi) FOS

Thurst Bearings 58.6 17
Guide Rail 25.9 1544
Guide Block 72.3 554  

 
 
D.5 Stresses Caused by Jaw Closure 
 

When the jaws shut upon an object, the jaws pitch in opposite directions.  This 

induces a bending moment on the seven screws connecting the jaws to the guide 

blocks.  Additionally, a radial load is applied to four of the eight bearings on each of 

the guide blocks.  The load value for these calculations is taken to be 87.7 lb, the jaw 

closing force at the closed position. 

Equation D-2 is used to find the bending stress in the screws, and the applied 

load is assumed to be spread across each of the bearings equally. 
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Table D.5: Jaw closure-induced tress summary. 
Component Load FOS

Guide Block-Jaw Attachment Fasteners 1049.5 psi 38
Ball Bearings 15.0 lb 22  

 
 
D.6 Structural Analysis Data Table 
 

Table D.6: Structural analysis data. 
Load Component T (lb-ft) T (lb-in) r (in) Ip (in

4) τ (psi)

Shear Caused Directly Flange-Adapter Fastener Ring 144 1728 2.3 1.7077 2327.3
by Joint Torque Flange-Cam Disk Adapter 144 1728 2.3 33.225 119.6

Adapter-Cam Disk Fastener Ring 144 1728 1.85 1.166 2741.7
Cam Disk Rear 144 1728 2.3 34.27 116.0
Cam Disk Front (w/ grooves) 144 1728 2.3 30.175 131.7

Load Component F (lb) x (in) M (lb-in) c (in) I (in
4
)

Bending Caused by Side Mounting Brace 30.025 7.079 212.54698 0.1875 0.008778
Track Roller Rail Force

Load Component F (lb) A (in
2
)

Tension from Rail Force Guide Rail Connector 30.025 0.3101

Load Component Fa pplied (lb) Quantity (Fap p)i (lb) Ai (in
2 )

Compression Caused by Thurst Bearings 60.05 4 15.0125 0.2577
Track Roller Rail Force F (lb) A (in2)

Guide Rail 60.05 2.318
Guide Block 60.05 0.8309

Load Component (Fap p)i (lb) x (in) M (lb-in) c (in) I (in4 )

Bending Caused by Guide Block-Jaw Fasteners 8.578571429 4.75 40.748214 0.1875 0.00728
Jaw Closing Force Fapplie d (lb)

Ball Bearings 60.05

Load Component Material σyield  (psi) τyield (psi) FOS

Shear Caused Directly Flange-Adapter Fastener Ring 18-8 Stainless 31200 18096 8
by Joint Torque Flange-Cam Disk Adapter Al 6061 40000 22000 184

Adapter-Cam Disk Fastener Ring 18-8 Stainless 31200 18096 7
Cam Disk Rear Al 6061 40000 22000 190
Cam Disk Front (w/ grooves) Al 6061 40000 22000 167

Load Component σ (psi) Material σyie ld (psi) FOS
Bending Caused by Side Mounting Brace 4540.049876 Al 6061 40000 9
Track Roller Rail Force

Load Component σ (psi) Material σyie ld (psi) FOS
Tension from Rail Force Guide Rail Connector 96.82360529 Al 6061 40000 413

Load Component σ (psi) Material σrating (psi) FOS

Compression Caused by Thurst Bearings 58.25572371 Delrin 1000 17
Track Roller Rail Force σ (psi) Material σyie ld (psi) FOS

Guide Rail 25.90595341 Al 6061 40000 1544
Guide Block 72.27103141 Al 6061 40000 553

Load Component σ (psi) Material σyie ld (psi) FOS
Bending Caused by Guide Block-Jaw Fasteners 1049.490409 Al 6061 40000 38
Jaw Closing Force Quantity (Fapp)i (lb) Frate d (psi) FOS

Ball Bearings 4 15.0125 332 22  
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End-Effector Closing Force Test Data 
 

Table D.7: End-effector closing force test data. 
Input Current (A) Motor Current (A) Measured Force (lbs) Actual Force (lbs) Theoretical Force (lbs)

0.75 0.01 3.81 19.05 24.39
0.75 0.01 5.04 25.2 24.39
0.75 0.01 4.9 24.5 24.39
0.75 0.01 3.99 19.95 24.39
0.75 0.01 4.41 22.05 24.39
0.76 0.02 8.7 43.5 48.69
0.76 0.02 8.78 43.9 48.69
0.76 0.02 9.05 45.25 48.69
0.76 0.02 8.78 43.9 48.69
0.76 0.02 8.62 43.1 48.69
0.77 0.03 11.75 58.75 72.99
0.77 0.03 11.52 57.6 72.99
0.77 0.03 12.24 61.2 72.99
0.77 0.03 12.22 61.1 72.99
0.77 0.03 12.43 62.15 72.99
0.78 0.04 13.47 67.35 97.29
0.78 0.04 13.61 68.05 97.29
0.78 0.04 13.69 68.45 97.29
0.78 0.04 14.21 71.05 97.29
0.78 0.04 14.57 72.85 97.29
0.79 0.05 16.17 80.85 121.59
0.79 0.05 16.86 84.3 121.59
0.79 0.05 16.98 84.9 121.59
0.79 0.05 17.32 86.6 121.59
0.79 0.05 17.15 85.75 121.59  
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Appendix E  

Sample Container Buoyancy Analysis 

 
The objective of this analysis is to determine the wet weight of a sample 

container and the quantity of syntactic foam that would be required to render that 

container neutrally buoyant. 

The net force of an object is given by the buoyancy relation shown in (E-1). 

        gVgmFnet ⋅⋅−⋅= ρ             (E-1) 

The weight of the submerged object is represented by m·g, while ρ·V·g is the 

weight of the displaced water.  To determine the weight, the manufacturer 

specifications were converted from 11.956 lb/ft to lb/in3. 

( ) ( ) 3
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The mass of the PVC was found by multiplying this density by the total PVC 

volume, which is 244.4 in3 (0.141 ft3). 

      ( ) ( ) ( ) mPVCPVCPVC lbin
in

lb
Vm 17.124.2440498. 3

3
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


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
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The buoyancy calculations are performed for salt water density at sea-level as 

that is where the sample containers will first be tested.  This value corresponds to 

1.98 slugs/ft3 (1020 kg/m3).  At a depth of 6000 m, the water density increases 

marginally to 2.04 slugs/ft3 (1050 kg/m3).   
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This value signifies that the PVC is 3.16 lb negatively buoyant.  Repeating the 

procedure for the stainless steel screws and washers produces an additional wet 

weight of 0.31 lb, making the total net weight of the assembly 3.47 lb. 

Calculations are completed to determine how much foam would be required to 

make the container neutrally buoyant.  The density of AZ (Abyssopelagic Zone) deep 

water foam that would potentially be used is 34 lb/ft3.  With that value, it is possible 

to solve for the required foam volume. 

  ( )
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      (E-5) 

Thus, 202 in3 of syntactic foam would be required to compensate for the  

3.47 lb net force of the sample container assembly. 
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Appendix F  

SAMURAI Inverse Kinematics 

 

The preexisting inverse kinematics software composed by Carignan employs 

equivalent angle-axis representation to locate Frame 4 from the tool tip [27].  In the 

updated program, the user inputs sample container position and orientation, which are 

then used to specify tool tip position and generate a vector pointing to Frame 4.  In 

(F-1), 0P4 is the position of Frame 4 relative to Frame 0, and 4PT is that of the tool 

frame relative to Frame 4.  0PT and 0TR are the user-input sample container position 

and orientation, respectively.  These values double as the tool tip location and the tool 

frame rotation matrix relative to the base frame. 

                   TTT PRPP 400
4

0 ⋅−=             (F-1) 

After determining the location of Frame 4, a geometric approach is employed 

to determine the joint angles of the first three joints (θ1, θ2, θ3) [27].  Recalling that 

Joint 1 is the only joint that produces yawing motion, θ1 is found by taking the 

arctangent of the y-position (0y4) divided by the x-position (0x4), as shown in (F-2). 
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The position of Frame 2 relative to the base frame (0P2) is a function of θ1 

exclusively and is known once (F-2) has been solved.  Equation F-3 can then be 

applied to find 2P4, the location of Frame 2 relative to Frame 4. 
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The distance between Frames 2 and 4 in the x-y plane is set to rxy, and rz is 

defined as the z-separation between the joints.   The total scalar distance between the 

frames (r) can be found with Equations F-4 through F-6. 

                                  ( ) ( ) ( ) ( )2
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22
4

22
4

22
4

2 1,21,1 PPyxrxy +=+=                      (F-4) 

              ( )1,34
2

4
2 Pzrz ==             (F-5) 

           ( ) ( )22
zxy rrr +=             (F-6) 

These variables and others to be discussed can be seen in Figure F.1. 

 
Figure F.1: Illustration of inverse kinematics solution variables. 

 

 The two manipulator links, L1 and L2, and r represent the three sides of a 

triangle.  The angle opposite side r is defined as δ and is calculated using the law of 

cosines in (F-7). 
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Examining the relationship at Joint 3 in Figure F.1, it is observed that θ3 and δ 

minus γ sum to π radians.  γ represents the geometric pitch from Joint 3 to Joint 4, 

which is constant regardless of manipulator configuration.  Equation F-8 solves for θ3 

            γδπθ +−=3              (F-8) 

In Figure F.1, λ is the angle in the triangle opposite link L2.  Another 

application of the law of cosines to solve for this angle yields (F-9). 
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Once β is determined by taking the arctangent of rz/rxy, θ2 is found using  

(F-10). 

    λβθ +=2            (F-10) 

With the determination of θ1, θ2, and θ3, it is possible to calculate rotation 

matrices through Frame 3.  This is represented in (F-11). 
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As 0TR is the user-input sample container position and 0
3R is now known, 3TR 

can be calculated with (F-12). 
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3
TR is composed of the product of the 3

4R, 4
5R, and 5TR matrices, the latter 

component resulting from the fact that 5
6R and 5TR are equivalent.  These matrices are 

functions of θ4, θ5, and θ6, and this is represented in (F-13). 
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These respective matrices were found using symbolic variables in the forward 

kinematics portion of the program.  Equation F-14 shows the product of these 

matrices. 
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θ5 is found by isolating the θ5 sine terms in the first two columns of the second 

row and dividing the result by the cosine term from the third column.  This process is 

illustrated in (F-15). 
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With sin(θ5) known, the θ4 terms in the third column can be isolated, and θ4 is 

calculated by taking the arctangent of the parameters as shown in (F-16). 
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θ6 is determined in a similar manner to θ4, though the terms of interest in this 

case are the first and second columns of the second row.  θ6 is computed in (F-17). 
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 While θ6 does not correspond to a rotating joint, it represents the relative 

orientation between the end effector and the sample container.  For example, if θ6 is 
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equal to 45°, it signifes that the sample container must be rotated 45° in order for the 

jaws to properly align with the sample container lid. 

Having calculated θ6, all of the joint angles have been determined and can be 

input to the forward kinematics software to generate the desired matrices and plots. 
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Appendix G  

SAMURAI Range of Motion Determination 

 
The manipulator joint ranges, previously detailed in Table 7.2, are reproduced 

in Table G.1. 

Table G.1: SAMURAI joint ranges of motion. 
Joint Number Range of Motion (deg.) 

1   (Shoulder Yaw) 220° 
2   (Shoulder Pitch) 225° 
3   (Elbow Pitch) 210° 
4   (Elbow Roll) 540° 
5   (Wrist Pitch) 215° 
6   (Wrist Roll) 540° 

 
 
Joint 1 (Shoulder Yaw): 

The shoulder yaw joint contains a wedge-shaped hard stop in the outer 

housing measuring 95°.  This works in conjunction with a 45° hard stop located in the 

support bearing.  This 45° hard stop limits the joint motion by 22.5° on either side of 

the outer housing, or 45° total.  Adding this to the 95° stop in the outer housing yields 

140° total.  Thus, the total range of motion of the shoulder yaw joint is 220°. 

 

Joint 2 (Shoulder Pitch): 

The shoulder pitch joint has no hard stops internal to the joint.  Rather, it 

relies on the hard stops associated with the manipulator itself.  Stated another way, 

the joint will operate until it forces the arm to collide with itself.  This is true of the 

other two pitch joints as well.  To determine the range of motion, the arm was driven 

until it triggered the OCP soft stop, and pictures were taken at these locations.  Lines 

were drawn on the images representing various axes, and a protractor was used to 
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determine the approximate range of motion.  The images for Joint 2 are shown below 

in Figure G.1. 

 

  
Figure G.1: Shoulder pitch joint at extreme pitch angles. 

 
 

There are several limitations associated with this method.  First, the resolution 

of the protractor imposes accuracy restrictions.  Additionally, the positioning of the 

camera will affect the perspective and therefore the angle.  The positioning of the 

Marman bands will produce different angles as the clasps extend further out than the 

bands themselves.  Even the user-adjusted OCP limits will affect the angle as a higher 

limit will cause the joint to “push” harder into the manipulator.  As a result of these 

factors, the joint angles were conservatively estimated to the nearest ±5°.  For Joint 2, 

the range of motion was determined to be 225°. 

 
Joint 3 (Elbow Pitch): 
 

The range of motion for Joint 3 was found in a manner identical to that used 

for Joint 2.  The images used to take angle measurements are shown below in  

Figure G.2.  With these images, the Joint 3 range of motion was found to be 210°. 
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Figure G.2: Elbow pitch joint at extreme pitch angles. 

 
 
Joint 4 (Elbow Roll): 
 

Joint 4 does contain hard stops, but idlers allow it to rotate beyond 360° to 

540°.  In the MATLAB scripts that generate the work envelope, this will be limited to 

360° as the extra 180° does not extend the workspace. 

 
Joint 5 (Wrist Pitch): 
 

The range of motion for Joint 5 was found in a manner identical to that used 

for Joints 2 and 3.  The images used to take angle measurements are shown in  

Figure G.3.  These images yielded a Joint 5 range of motion of 215°. 

   
Figure G.3: Wrist pitch joint at extreme pitch angles. 

 
 
Joint 6 (Hand Roll): 
 

The hand roll joint functions in a manner identical to that of the elbow roll 

joint.  Its range is also 540°. 
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Appendix H  

MATLAB Kinematics Files 

 
The MATLAB kinematics software is composed of 12 different functions.  A 

brief description of the role of each of these functions is provided below. 

 
Overview of the Different MATLAB Kinematics Functions: 
 
astepgui.m 
 

astepgui.m represents the script for the user interface.  This is where the 

software reads the user input data, searching for active checkboxes and recording 

values for the joint angles, sample container positions, and workspace iterations.  

After reading-in all of these parameters, astepgui.m sends the settings to 

kinematics.m. 

 
kinematics.m 

 
kinematics.m is the controller of the kinematics software.  It collects data from 

astepgui.m and distributes variables to their appropriate locations.  Additionally, 

while DH parameters appear in several locations, this is where they are seen first. 

There is an option in kinematics.m to use symbolic or numeric DH 

parameters.  The GUI (astepgui.m) does not allow for this option.  If there is desire to 

see the matrices displayed in symbolic form, it must be accessed through kinematics.  

To use this feature, set Line 11 to 1 (variable sym to logical true). 

After receiving parameters from astepgui.m, kinematics.m communicates with 

inv_kin.m, TransformMat.m, TransformW.m, TransformPos.m, Outputs.m, 

armplot.m, and work.m. 
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inv_kin.m 
 

inv_kin.m receives the user-input sample container positions and orientations.  

The function applies inverse kinematics in the manner described in Chapter 7 and 

returns the joint angles to kinematics.m. 

 
TransformMat.m 
 

TransformMat.m receives the DH parameters from kinematics.m and 

calculates the transformation matrices based on these values.  After calculating a 

transformation matrix, it breaks it up into a rotation matrix and a position vector.  It 

returns these matrices and vector to kinematics.m.  It can perform the calculations in 

either symbolic or numeric form.   

kinematics.m calls TransformMat.m in a for loop.  Thus, matrices are 

computed joint to joint, all throughout the manipulator. 

 
TransformW.m 
 

TransformW.m receives the individual rotation matrices from kinematics.m 

and uses them to calculate the cumulative rotation parameters at each arm position.  It 

then returns the cumulative rotation matrices (now called W matrices) to 

kinematics.m. 

 
TransformPos.m 
 

TransformPos.m receives the W rotation matrices determined by 

TransformW.m and position vectors calculated by TransformMat.m.  Those original 

positions were local.  To make them absolute, the cumulative W matrices are 
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multiplied by individual position vectors to get the vector change in position from one 

frame to the next.  These vectors are added together to get the absolute position of 

each frame.  The changes in position and absolute positions are returned to 

kinematics.m. 

 
Outputs.m 
 

Outputs.m takes all of the calculated parameters (theta array, T matrices, R 

matrices, p vectors, and other calculated arrays) along with output control settings 

from kinematics.m.  Outputs.m will then output the desired matrices to the command 

window.  Assuming symbolic variables are not being used, it will also generate a data 

file called MatrixData.dat, which gets saved in the active directory.  The data file 

contains the joint angles, rotation matrices, position vectors, and the additional 

important matrices.  The data file gets created automatically, regardless of user 

inputs. 

 
armplot.m 
 

armplot.m is one of the most complicated of all the kinematics functions.  It 

reads in the joint angles, transformation matrices, and plot settings from 

kinematics.m.  After redefining the DH parameters, it progresses down the arm using 

the transformation matrices.  The matrices are used to determine the next significant 

point, which is not necessarily the next coordinate frame.  Using the current point and 

the next one, the script connects the two with a line, and plots a cross at each of the 

points.  Changes in the user-input joint angles will produce different transformation 

matrices, which will generate different arm positions. 
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armplot.m contains numerous if/else statements.  These are included to 

account for any possible configuration.  For example, in one configuration Frame 4 

may have a greater x-coordinate than Frame 2, but in another situation, the case may 

be reversed.  A single array in MATLAB will not account for both situations and will 

produce an error for one of the scenarios.  The if/else statements allow for all 

possibilities. 

At the end of the program, armplot.m plots an isometric image of the arm in 

addition to 2D models in all planes, producing four total plots.  If spread is selected 

on the GUI, it will then space the four plots out around the screen. 

 
work.m 
 

work.m is the function designed to plot the SAMURAI workspace.  The 

majority of the file functions similarly to armplot.m, but work.m contains embedded 

loops and calculates the tool tip position at the end of the work envelope.  These 

positions are stored in an array, which is continually growing.  When the loops have 

been completed, the points are graphed in the same plots generated by armplot.m.  

The resolution of the workspace depends on the number of iterations, but with 

embedded loops, a very high resolution may require significant computing time. 

 
TransformWork.m 
 

TransformWork.m serves an identical function to TransfromMat.m, but it 

performs strict numeric calculations (no symbolic expressions) and does not 

disassemble the transformation matrices into position vectors and rotation matrices.  

This function was created in the interest of computing efficiency. 
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R03testf.m 
 

R03testf.m is used to find the rotation matrix from Frame 0 to Frame 3 for use 

in the inverse kinematics function.  It receives the DH parameters and joint angles for 

Joints 1, 2, and 3 and returns 0
3R to inv_kin.m. 

 
sample_container.m 
 

sample_container.m receives the user-input sample container position and 

orientation and combines these values with the known sample container geometry to 

generate numeric representations of the cylinders as well as the location of the upper 

surface.  The numeric cylinder representations are ultimately plotted using armplot.m.  

The location of the upper surface is used for the manipulator tool tip position if the 

user selects the sample container pre-insertion option.   

 

 

 

 

 

 

 

 

 

 

 



 

143 

H.1 Function astepgui.m 
 
 
function varargout = astepgui(varargin) 
% ASTEPGUI M-file for astepgui.fig 
%      ASTEPGUI, by itself, creates a new ASTEPGUI or raises the existing 
%      singleton*. 
% 
%      H = ASTEPGUI returns the handle to a new ASTEPGUI or the handle to 
%      the existing singleton*. 
% 
%      ASTEPGUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in ASTEPGUI.M with the given input arguments. 
% 
%      ASTEPGUI('Property','Value',...) creates a new ASTEPGUI or raises the 
%      existing singleton*.  Starting from the left, property value pairs 
%      are 
%      applied to the GUI before astepgui_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to astepgui_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
% Copyright 2002-2003 The MathWorks, Inc. 
% Edit the above text to modify the response to help astepgui 
% Last Modified by GUIDE v2.5 15-Aug-2008 19:39:25 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @astepgui_OpeningFcn, ... 
                   'gui_OutputFcn',  @astepgui_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
                
%set(figure(astepgui), 'units', 'normalized', 'outerposition', [.25 .25 .15 .375]) 
%set(figure(astepgui), 'position', [.25 .25 .15 .375]) 
 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
% --- Executes just before astepgui is made visible. 
function astepgui_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to astepgui (see VARARGIN) 
 
% Choose default command line output for astepgui 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes astepgui wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
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% --- Outputs from this function are returned to the command line. 
function varargout = astepgui_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%Forward kinematics inputs (joint_angles) 
theta_1_deg = handles.edit1; 
theta_2_deg = handles.edit2; 
theta_3_deg = handles.edit5; 
theta_4_deg = handles.edit6; 
theta_5_deg = handles.edit7; 
theta_6_deg = handles.edit8; 
 
%Workspace joint angle iteration size 
workspace_iter = handles.edit9; 
 
%Inverse kinematics inputs (sample container pos. and orientatation) 
x_sc = handles.edit10; 
y_sc = handles.edit11; 
z_sc = handles.edit12; 
pitch_sc_deg = handles.edit13; 
roll_sc_deg = handles.edit14; 
yaw_sc_deg = handles.edit15; 
 
 
%Use if statements to account for intial case when GUI outputs strings as substitutes for logic values 
%We want the following varialbes to be 0 or 1, and the if statements make this happen 
if handles.checkbox1 ~= 1,              %Display rotation matrices in CW 
    rot = 0; 
else 
    rot = handles.checkbox1; 
end 
if handles.checkbox2 ~= 1,                %Display position matrices in CW 
    pos = 0;    else    pos = handles.checkbox2;    end 
if handles.checkbox3 ~= 1,                %Display transformation matrices in CW 
    trans = 0;  else    trans = handles.checkbox3;  end 
if handles.checkbox4 ~= 1,                %Display all relevant matrices in CW 
    disp = 0;   else    disp = handles.checkbox4;   end 
if handles.checkbox5 ~= 1,                %Display "important" matrices in CW 
                                           %Matrices include P04, R03, and R36 
    mat_impt = 0;   else    mat_impt = handles.checkbox5;   end 
if handles.checkbox6 ~= 1,               %Spreads plots across the desktop, making them all visible at once 
    spread = 0;     else    spread = handles.checkbox6;     end 
if handles.checkbox7 ~= 1,                %Hides the upper Jaguar clyinder and the support beam 
                                           %Cylinder sometimes obscures the plot 
jaguar = 0;         else    jaguar = handles.checkbox7;     end 
if handles.checkbox8 ~= 1,                %Uses plot settings for laptop (single window) 
    laptop = 0;     else    laptop = handles.checkbox8;     end 
if handles.checkbox9 ~= 1,                %Uses plot settings for iMac (dual monitors) 
    imac = 0;       else    imac = handles.checkbox9;       end 
if handles.checkbox11 ~= 1,               %Activate workspace plot 
    workspace = 0;  else    workspace = handles.checkbox11; end 
if handles.checkbox12 ~= 1,               %Activate SAMURAI plots 
    plots = 0;      else    plots = handles.checkbox12;     end 
if handles.checkbox13 ~= 1,               %Activate multi-colored links in plots 
    colors = 0;     else    colors = handles.checkbox13;    end 
if handles.checkbox16 ~= 1,               %Display sample containers coords. in CW 
    containers = 0; else    containers = handles.checkbox16;    end 
if handles.checkbox17 ~= 1,               %Display tool tip position in CW 
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    tool_tip = 0;   else    tool_tip = handles.checkbox17;      end 
if handles.checkbox18 ~= 1,               %Activate inverse kinematics 
    inverse = 0;   else     inverse = handles.checkbox18;      end 
if handles.checkbox19 ~= 1,               %Display Joint Angles 
    ang_disp = 0;   else    ang_disp = handles.checkbox19;     end 
if handles.checkbox20 ~= 1,               %Display SAMURAI After Sample Container Insertion 
    insert = 0;   else    insert = handles.checkbox20;     end 
if handles.checkbox21 ~= 1,               %Display SAMURAI Pre-Sample Container Insertion 
    pre_insert = 0;   else    pre_insert = handles.checkbox21;     end 
 
%Send variables and logic values to kinematics code (primary code) 
kinematics(theta_1_deg, theta_2_deg, theta_3_deg, theta_4_deg, theta_5_deg,... 
    theta_6_deg, plots, rot, pos, trans, disp, mat_impt, spread, jaguar, laptop, imac,... 
    workspace, workspace_iter, colors, containers, tool_tip,... 
    x_sc, y_sc, z_sc, pitch_sc_deg, roll_sc_deg, yaw_sc_deg, inverse, ang_disp,... 
    pre_insert, insert) 
 
%%%Theta 1%%% 
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a double 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit1 = NewVal; 
guidata(hObject, handles); 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%%%Theta 2%%% 
function edit2_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit2 = NewVal; 
guidata(hObject, handles); 
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%%%Theta 3%%% 
function edit5_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit5 = NewVal; 
guidata(hObject, handles); 
function edit5_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
%%%Theta 4%%% 
function edit6_Callback(hObject, eventdata, handles) 
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NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit6 = NewVal; 
guidata(hObject, handles); 
function edit6_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%%%Theta 5%%% 
function edit7_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit7 = NewVal; 
guidata(hObject, handles); 
function edit7_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%%%Theta 6%%% 
function edit8_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit8 = NewVal; 
guidata(hObject, handles); 
function edit8_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
%%%Activate Manipulator Plots%%% 
% --- Executes on button press in checkbox1. 
function checkbox1_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of checkbox1 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox1 = NewStrVal; 
guidata(hObject, handles); 
 
%Display Position Matrices: 
function checkbox2_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox2 = NewStrVal;  guidata(hObject, handles); 
 
%Display Transformation Matrices: 
function checkbox3_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox3 = NewStrVal;  guidata(hObject, handles); 
 
%Display All Relevant Matrices: 
function checkbox4_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox4 = NewStrVal;  guidata(hObject, handles); 
 
%Display "Important" Matrices: 
function checkbox5_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox5 = NewStrVal;  guidata(hObject, handles); 
 
%Spread Plots Across Desktop: 
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function checkbox6_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox6 = NewStrVal;  guidata(hObject, handles); 
 
%Hide the Jaguar Upper Cylinder: 
function checkbox7_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox7 = NewStrVal;  guidata(hObject, handles); 
 
%Use Plot Settings for Laptop (Windows) 
function checkbox8_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox8 = NewStrVal;  guidata(hObject, handles); 
 
%Use Plot Settings for Imac 
function checkbox9_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox9 = NewStrVal;  guidata(hObject, handles); 
 
%Activate Workspace Plots 
function checkbox11_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox11 = NewStrVal; guidata(hObject, handles); 
 
%Specify Workspace Joint Angle Iteration Size (User-Input Value) 
function edit9_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit9 = NewVal; 
guidata(hObject, handles); 
function edit9_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%Activate SAMURAI Plots 
function checkbox12_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox12 = NewStrVal; guidata(hObject, handles); 
 
%Activate Plots with Multi-Colored Links 
function checkbox13_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox13 = NewStrVal; guidata(hObject, handles); 
 
%Display Sample Container Coordinates in CW 
function checkbox16_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox16 = NewStrVal; guidata(hObject, handles); 
 
%Diplay Tool Tip Position in CW 
function checkbox17_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox17 = NewStrVal; guidata(hObject, handles); 
 
%Sample Container X-Position: 
function edit10_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit10 = NewVal; 
guidata(hObject, handles); 
function edit10_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
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%Sample Container Y-Position: 
function edit11_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit11 = NewVal; 
guidata(hObject, handles); 
function edit11_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%Sample Container Z-Position: 
function edit12_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit12 = NewVal; 
guidata(hObject, handles); 
function edit12_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%Sample Container Pitch: 
function edit13_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit13 = NewVal; 
guidata(hObject, handles); 
function edit13_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%Sample Container Roll: 
function edit14_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit14 = NewVal; 
guidata(hObject, handles); 
function edit14_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%Sample Container Yaw: 
function edit15_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'String'); 
NewVal = str2double(NewStrVal); 
handles.edit15 = NewVal; 
guidata(hObject, handles); 
function edit15_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
%Activate Inverse Kinematics: 
% --- Executes on button press in checkbox18. 
function checkbox18_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox18 = NewStrVal;  guidata(hObject, handles); 
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%Diplay Joint Angles in Command Window: 
function checkbox19_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox19 = NewStrVal;  guidata(hObject, handles); 
 
%Display SAMURAI at Sample Container Insertion 
function checkbox20_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox20 = NewStrVal;  guidata(hObject, handles); 
 
%Display SAMURAI Just Before Sample Container Insertion 
function checkbox21_Callback(hObject, eventdata, handles) 
NewStrVal = get(hObject, 'Value'); 
handles.checkbox21 = NewStrVal;  guidata(hObject, handles); 
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H.2 Function kinmatics.m 
 
 
function kinematics(theta_1_deg, theta_2_deg, theta_3_deg, theta_4_deg, theta_5_deg,... 
    theta_6_deg, plots, rot, pos, trans, disp, mat_impt, spread, jaguar,... 
    laptop, imac, workspace, workspace_iter, colors, containers, tool_tip,... 
    x_sc, y_sc, z_sc, pitch_sc_deg, roll_sc_deg, yaw_sc_deg, inverse, ang_disp,... 
    pre_insert, insert) 
%SAMURAI Kinematics - Central Function 
 
%close all, clear all 
 
%Control Settings: 
sym = 0;          %Set to 1 to use symbolic variables (0 computes actual numbers) 
if sym,           %If symbolic variables are being used, use these settings... 
    disp = 0;         %Set to 1 to display ALL matrices in CW (0 allows for individual settings) 
    rot = 0;          %Set to 1 to display rotation matrices in CW (0 hides values) 
    pos = 0;         %Set to 1 to display position matrices in CW (0 hides values) 
    trans = 1;        %Set to 1 to display transformation matrices (0 hides values) 
    mat_impt = 0;     %Set to 1 to display "important matrices": p04, R03, R36 (0 hides values) 
    containers = 0;   %Set to 1 to display sampler container coordinates (0 hides values) 
    tool_tip = 0;     %Set to 1 to display tool tip coordinates (0 hides values) 
    plots = 1;        %Set to 1 to display manipulator plots (0 hides plots) 
    spread = 1;       %Set to 1 to spread plots across window (0 stacks plots) 
    jaguar = 0;       %Set to 1 to hide Jaguar upper cylinder (0 plots it) 
    axis5 = 0;        %Set to 1 to plot joint 5 axis (0 hides it) 
    colors = 0;       %Set to 1 to plot manipulator in colors (0 plots in all black) 
    workspace = 0;    %Set to 1 to plot manipulator workspace (0 ignores plots) 
    laptop = 1;       %Set to 1 if using laptop and want to see GUI (0 if using Mac) 
    imac = 0;         %Set to 1 if using Imac and want to see GUI (1 if using Windows) 
    %Deactivate plot settings: 
    plots = 0;  workspace = 0;  imac = 0;  laptop = 0;  theta_3_deg = 0; inverse = 0; 
    pitch_sc_deg = 0;   roll_sc_deg = 0;    yaw_sc_deg = 0; 
    x_sc = 0; y_sc = 0; z_sc =0; 
end 
 
 
%There is a 90 deg. theta rotation from Frame 2 to Frame 3 
%This is being accounted for here: 
theta_3_deg = theta_3_deg-90;      
 
pitch_sc = pitch_sc_deg * pi/180;        %Convert sample container pitch to radians 
roll_sc = roll_sc_deg * pi/180;          %Convert sample container roll to radians 
yaw_sc = yaw_sc_deg * pi/180;            %Convert sample container yaw to radians 
 
sc_plot = inverse;                     %Create variable for sample container plotting equal to inverse 
if inverse,         %If computations are to be for the inverse kinematics: 
    %Return theta array obtained via inverse procedure 
    [theta_1_deg, theta_2_deg, theta_3_deg, theta_4_deg, theta_5_deg, theta_6_deg]... 
        = inv_kin(containers, x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc,... 
          pre_insert, insert, sc_plot); 
end 
 
if ~sym, 
    %Assemble theta array (array of joint angles in degrees): 
    theta_deg = [theta_1_deg theta_2_deg theta_3_deg theta_4_deg theta_5_deg theta_6_deg]; 
end 
 
 
if disp,          %If display is logical true, turn on CW outputs for all matrices 
    rot = 1;    pos = 1;    trans = 1;      mat_impt = 1; 
end 
 
dof = 6;          %Set number of degrees of freedom 
nframes = dof;  %Set number of coord. frames equal to DOFs 
 
if sym,         %If symbolic variables are being used: 
    %Declaration of Symbolic Variables 
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    syms a0 a1 a2 a3 a4 a5  
    syms d1 d2 d3 d4 d5 d6  
    syms theta1 theta2 theta3 theta4 theta5 theta6 
 
    %Table of D-H Parameters 
    alpha0 = 0;       a0 = 0;      d1 = d1;    theta1 = theta1; 
    alpha1 = -pi/2;  a1 = a1;   d2 = 0;      theta2 = theta2; 
    alpha2 = 0;       a2 = a2;    d3 = 0;      theta3 = theta3; 
    alpha3 = -pi/2;   a3 = a3;    d4 = d4;     theta4 = theta4; 
    alpha4 = pi/2;    a4 = 0;     d5 = 0;      theta5 = theta5; 
    alpha5 = -pi/2;   a5 = 0;     d6 = 0;     theta6 = theta6; 
     
    theta = [theta1, theta2, theta3, theta4, theta5, theta6];       %Array of theta angles (sym) 
else,           %If actual numbers are being used: 
    %Table of D-H Parameters 
    alpha0 = 0;        a0 = 0;         d1 = .10795;    
    alpha1 = -pi/2;   a1 = .1524;     d2 = 0;     
    alpha2 = 0;       a2 = .6096;     d3 = 0;     
    alpha3 = -pi/2;   a3 = .1143;     d4 = .6096;    
    alpha4 = pi/2;   a4 = 0;         d5 = 0;     
    alpha5 = -pi/2;   a5 = 0;         d6 = 0;   
         
    theta = theta_deg * pi/180;              %Convert theta array to radians (rad) 
end 
     
%Convert D-H Parmeters in Table into MATLAB Arrays 
alpha = [alpha0, alpha1, alpha2, alpha3, alpha4, alpha5];       %Create array of alpha angles (rad) 
a = [a0, a1, a2, a3, a4, a5];                                   %Array of "a" offset vectors 
d = [d1, d2, d3, d4, d5, d6];                                   %Array of "d" offset vectors 
 
for i = 1:nframes, 
    %TransformMat computes transformation, rotation, and position matrices 
    [T(:,:,i), R(:,:,i), P] = TransformMat(a(i),alpha(i),d(i),theta(i), sym);   %Transformations from frame i to i-1 
    %Redefine variable names for matrices and output matrices to data file: 
    if i == 1, T1 = T(:,:,i); R1 = R(:,:,i); P1 = P; end 
    if i == 2, T2 = T(:,:,i); R2 = R(:,:,i); P2 = P; end 
    if i == 3, T3 = T(:,:,i); R3 = R(:,:,i); P3 = P; end 
    if i == 4, T4 = T(:,:,i); R4 = R(:,:,i); P4 = P; end 
    if i == 5, T5 = T(:,:,i); R5 = R(:,:,i); P5 = P; end 
    if i == 6, T6 = T(:,:,i); R6 = R(:,:,i); P6 = P; end 
end 
 
[W0, W1, W2, W3, W4, W5, W6] = TransformW(R1, R2, R3, R4, R5, R6);                                     %Get W 
Transformations (W(i) = W(i-1)*R(i) 
[dx1, dx2, dx3, dx4, x0, x1, x2, x3, x4] = TransformPos(W0, W1, W2, W3, W4, W5, P1, P2, P3, P4, P5, P6);   %Get 
positions of coordinate frames 
if sym,     %Simplify function will only apply for symbolic variables 
    p04 = simplify(x4);                 %Simplify trigonometric terms in x4 matrix 
    R03 = simplify(W3);                %Simplify trigonometric terms in W3 matrix 
    R36 = simplify(W6);                %Simplify trigonometric terms in W6 matrix 
else        %If actual values are being used... 
    p04 = x4;          %MATLAB will simplify automatically 
    R03 = W3;          %MATLAB will simplify automatically 
    R36 = W6;          %MATLAB will simplify automatically 
end 
 
%Function Outputs contains controls to output data to command window and data file 
if sym,     %If symbolic variables are being used, set the numeric arrays to arbitrary values 
            %This allows function "Outputs" to be activated and the desired arrays to be displayed. 
    theta_deg = [0 0 0 0 0 0];                p04 = [0; 0; 0]; 
    R03 = [0 0 0; 0 0 0; 0 0 0];              R36 = [0 0 0; 0 0 0; 0 0 0]; 
    p0T = [0; 0; 0];                         R0T = [0 0 0; 0 0 0; 0 0 0]; 
    ang_disp = 0; 
end 
 
if ~sym, 
    %Access manipultor plotting function 
    close(figure(2), figure(3), figure(4), figure(5))       %Closes any figures that may be open from previous run 
    [p0T, R0T] = armplot(theta_deg, spread, jaguar, T1, T2, T3, T4, T5, T6,... 
    laptop, imac, colors, containers, plots, tool_tip,... 
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    x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot); 
end 
 
%Send all data to function Outputs, which controls matrices output to the...  
%command window and numeric matrices in the data file 
Outputs(theta_deg, R1, R2, R3, R4, R5, R6, P1, P2, P3, P4, P5, P6, T1, T2, T3, T4, T5, T6,... 
       p04, R03, R36, p0T, R0T, rot, pos, trans, mat_impt, sym, ang_disp) 
 
 
%If workspace plots are desired: 
if workspace,     
    close(figure(6), figure(7), figure(8), figure(9))       %Closes any figures that may be open from previous run 
    work(spread, jaguar, laptop, imac, workspace_iter, nframes),   end 
 
%Fix the position of the GUI interface 
if imac,        %Settings for a dual monitor Mac setup 
    set(figure(astepgui), 'units', 'normalized', 'outerposition', [.4285 .75 .25 .25]) 
end 
if laptop,      %Settings for a single monitor Windows setup 
    set(figure(astepgui), 'units', 'normalized', 'outerposition', [0 .52 .666667 .485]) 
end 
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H.3 Function inv_kin.m 
 
 
function [theta_1_deg, theta_2_deg, theta_3_deg, theta_4_deg, theta_5_deg, theta_6_deg]... 
    = inv_kin(containers, x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, pre_insert, insert, sc_plot) 
 
   %Table of D-H Parameters 
   alpha0 = 0;      a0 = 0;        d1 = .10795;    
   alpha1 = -pi/2;  a1 = .1524;    d2 = 0;     
   alpha2 = 0;      a2 = .6096;    d3 = 0;     
   alpha3 = -pi/2;  a3 = .1143;    d4 = .6096;    
   alpha4 = pi/2;   a4 = 0;        d5 = 0;     
   alpha5 = -pi/2;  a5 = 0;        d6 = 0;   
 
%Convert D-H Parmeters in Table into MATLAB Arrays 
alpha = [alpha0, alpha1, alpha2, alpha3, alpha4, alpha5];       %Create array of alpha angles (rad) 
a = [a0, a1, a2, a3, a4, a5];                                     %Array of "a" offset vectors 
d = [d1, d2, d3, d4, d5, d6];                                      %Array of "d" offset vectors 
     
joint6_length = 0.2171;                  %Joint 5 axis to face of hand roll joint (m) 
ee_length = .2237;                       %End-effector length (m) 
 
nframes = 6;        sym = 1; 
 
[X_sc, Y_sc, Z_sc, C_sc, X2_sc, Y2_sc, Z2_sc, X3_sc, Y3_sc, Z3_sc,... 
    X4_sc, Y4_sc, Z4_sc, X_lower, X_upper, Y_lower, Y_upper, Z_lower, Z_upper] = ... 
    sample_container(containers, x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot); 
 
    %Set tool offset from Frames 4,5,6 
    pTool = [0; 0; joint6_length + ee_length];           %Tool offset in tool frame (m) 
    if pre_insert,  %SAMURAI just before entering sample containers 
        p0Tval = [X_upper; Y_upper; Z_upper];        %User-input location of tool tip (m) 
    else            %SAMURAI inside of sample containers 
        p0Tval = [X_lower; Y_lower; Z_lower];        %User-input location of tool tip (m) 
    end 
     
    %From sample container calculations: 
    R_yaw = [cos(yaw_sc) -sin(yaw_sc) 0;...        %Rotation matrix for sample container yaw (Frame 0 z-axis) 
            sin(yaw_sc) cos(yaw_sc) 0;... 
            0 0 1]; 
    R_pitch = [cos(pitch_sc) 0 sin(pitch_sc);...   %Rotation matrix for sample container pitch (Frame 0 y-axis) 
               0 1 0;... 
               -sin(pitch_sc) 0 cos(pitch_sc)]; 
    R_roll = [1 0 0;...                             %Rotation matrix for sample container roll (Frame 0 x-axis) 
              0 cos(roll_sc) -sin(roll_sc);... 
              0 sin(roll_sc) cos(roll_sc)]; 
    Rsc = R_yaw*R_pitch*R_roll;                   %Combine rotataion matrices into one matrix - note the order... 
    R0Tval = Rsc;                                  %Redefine rotation matrix as sample container rotation 
 
    %%%Inverse Kinematics%%% 
    p04val = p0Tval + R0Tval*pTool;              %Position of Frame 4 relative to Frame 0  
      
    %Find theta1: 
    theta1 = atan2(p04val(2,1),p04val(1,1));      %atan(y/x) of p04, (rad) 
     
    %Find theta2 and theta3: 
    L1 = a2;                         %Distance from frame 2 to frame 3, Link 1 (m) 
    L2 = sqrt(a3^2 + d4^2);          %Distance from frame 3 to frame 4, Link 2 (m) 
    gamma = atan(a3/d4);            %Fixed angle between frames 3 and 4 (rad) 
         
    pos0 = [0; 0; 0];                                 %Position of frame 0, fixed (m) 
    pos2 = [a1*cos(theta1); a1*sin(theta1); d1];     %Position of frame 2 (m) 
                                                     %Note: Pos. of frame 2 is only dependent upon theta1, joint 1 yaw 
    p02 = pos2 - pos0;                               %Vector distance between frames 0 and 2 (m) 
    p24val = p04val - p02;                         %Vector distance between frames 2 and 4 (m) 
    r_xy = sqrt(p24val(1,1)^2 + p24val(2,1)^2);    %Scalar distance between frames 2 and 4 in the x-y plane (m) 
    r_z = -p24val(3,1);                             %Scalar distance between frames 2 and 4 and in the z-dir (m) 
    r = sqrt(r_xy^2+r_z^2);                        %Total scalar distance between frames 2 and 4 (m) 
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    t3prime = acos((r^2-L1^2-L2^2)/(-2*L1*L2));     %Angle in triangle formed by L1, L2, and vector between... 
                                                      %frames 2 and 4 obtained w/ law of cosines (rad) 
 
    theta3 = pi + gamma - t3prime;                   %Theta3 after adding offsets (rad) 
 
     
    psi = acos((r^2 + L1^2 - L2^2)/(2*L1*r));       %Angle between L1 and vector between frames 2 and 4 (rad) 
                                                     %Again, obtained via law of cosines 
    beta = atan2(r_z, r_xy);           %Pitch angle between frames 2 and 4, see determination of theta2 (rad) 
    theta2 = beta - psi;                %Subtract pitch due to pitching of joint 3 to find theta2 (rad) 
     
    t1 = theta1;            %Redefine t1soln as t1 
    t2 = theta2;            %Redefine t2soln as t2 
    t3 = theta3;            %Redefine t3soln as t3 
     
    %Solve for wrist joints 4-6 
    t3 = t3 - pi/2;                         %Adjust -pi/2 rotation to Frame 3 in DH Parameters (rad) 
    theta_inv = [t1, t2, t3, 0, 0, 0];     %Create new theta array for solution purposes  
                                            %Only the 1st 3 values are of interest (at this point) 
                                            %The last 3 are place holders to enable function use 
    R03 = R03testf(theta_inv, a, alpha, d, sym, nframes);  %Send data to function R03testf 
                                                            %R03testf is the function that determines R03test 
                                                            
    R3T = inv(R03) * -R0Tval;   %Find rotation matrix (R) from Frame 3 to point to the tool tip (T) 
                                %Note: R03 is an orthonormal matrix, making its transpose and inverse identical matrices 
                                %R3T is also an orthonormal matrix                       
                                %R0T is multiplied by -1 because we previously pointed... 
                                %from the tool frame to  Frame 4.  Now we're doing the opposite. 
s5 = -sqrt((R3T(2,1))^2+(R3T(2,2))^2); 
c5 = R3T(2,3); 
theta5 = atan2(s5,c5); 
theta4 = atan2(R3T(3,3)/s5, -R3T(1,3)/s5); 
theta6 = atan2(R3T(2,1)/s5, -R3T(2,2)/s5); 
 
t4 = theta4;    t5 = theta5;     t6 = theta6; 
 
    theta = [t1; t2; t3; t4; t5; t6];         %Assemble array of modified theta's 
    theta_deg = theta * 180/pi;           %Convert theta2 from radians to degrees 
 
%Separate variables for return to function kinematics: 
    theta_1_deg = theta_deg(1,1);   theta_2_deg = theta_deg(2,1); 
    theta_3_deg = theta_deg(3,1);   theta_4_deg = theta_deg(4,1); 
    theta_5_deg = theta_deg(5,1);   theta_6_deg = theta_deg(6,1); 
    R0T = R0Tval;      p0T = pTool; 
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H.4 Function TransformMat.m 
 
 
function [T R P] = TransformMat(a, alpha, d, theta, sym) 
% Returns T transform matrix for manipulator kinematics per  
% Craig eq. 3.6 (Intro. to Robotics, 3rd ed.) 
 
 
if sym         %If symbolic variables are being used, the "round" function applies... 
    %Row 1 of tranformation matrix 
    T(1,1) = cos(theta); 
    T(1,2) = -sin(theta); 
    T(1,3) = 0; 
    T(1,4) = a; 
    %Row 2 of transformation matrix 
    T(2,1) = sin(theta)*round(cos(alpha)); 
    T(2,2) = cos(theta)*round(cos(alpha)); 
    T(2,3) = round(-sin(alpha)); 
    T(2,4) = round(-sin(alpha))*d; 
    %Row 3 of transformation matrix 
    T(3,1) = sin(theta)*round(sin(alpha)); 
    T(3,2) = cos(theta)*round(sin(alpha)); 
    T(3,3) = round(cos(alpha)); 
    T(3,4) = round(cos(alpha))*d; 
    %Row 4 of transformation matrix 
    T(4,1) = 0; 
    T(4,2) = 0; 
    T(4,3) = 0; 
    T(4,4) = 1; 
 
else           %If actual numbers are to be computed... 
    %Row 1 of tranformation matrix 
    T(1,1) = cos(theta); 
    T(1,2) = -sin(theta); 
    T(1,3) = 0; 
    T(1,4) = a; 
    %Row 2 of transformation matrix 
    T(2,1) = sin(theta)*cos(alpha); 
    T(2,2) = cos(theta)*cos(alpha); 
    T(2,3) = -sin(alpha); 
    T(2,4) = -sin(alpha)*d; 
    %Row 3 of transformation matrix 
    T(3,1) = sin(theta)*sin(alpha); 
    T(3,2) = cos(theta)*sin(alpha); 
    T(3,3) = cos(alpha); 
    T(3,4) = cos(alpha)*d; 
    %Row 4 of transformation matrix 
    T(4,1) = 0; 
    T(4,2) = 0; 
    T(4,3) = 0; 
    T(4,4) = 1; 
end 
 
T = [T(1,1) T(1,2) T(1,3) T(1,4);... 
     T(2,1) T(2,2) T(2,3) T(2,4);... 
     T(3,1) T(3,2) T(3,3) T(3,4);... 
     T(4,1) T(4,2) T(4,3) T(4,4)]; 
 
%Rotation Matrices 
%Row 1 of rotation matrix 
r11 = T(1,1); 
r12 = T(1,2); 
r13 = T(1,3); 
%Row 2 of rotation matrix 
r21 = T(2,1); 
r22 = T(2,2); 
r23 = T(2,3); 
%Row 3 of rotation matrix 
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r31 = T(3,1); 
r32 = T(3,2); 
r33 = T(3,3); 
R = [r11 r12 r13; r21 r22 r23; r31 r32 r33]; 
 
%Position Matrices/Arrays 
px = T(1,4); 
py = T(2,4); 
pz = T(3,4); 
P = [px; py; pz]; 
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H.5 Function TransformW.m 
 
 
function [W0, W1, W2, W3, W4, W5, W6] = TransformW(R1, R2, R3, R4, R5, R6) 
 
 
W0 = eye(3);           %Set base frame W matrix equal to identity matrix 
 
W1 = W0*R1;           %Rotation to Frame 1 
W2 = W1*R2;           %Rotation to Frame 2 
W3 = W2*R3;           %Rotation to Frame 3 
W4 = R4;               %Frame 4 
W5 = W4 * R5;         %Rotation to Frame 5 
W6 = W5 * R6;         %Rotation to Frame 6 
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H.6 Function TransformPos.m 
 
 
function [dx1, dx2, dx3, dx4, x0, x1, x2, x3, x4] = TransformPos(W0, W1, W2, W3, W4, W5, P1, P2, P3, P4, P5, P6) 
 
dx1 = W0 * P1;        %Change in position of baseframe to frame 1 
dx2 = W1 * P2;        %Change in position of frame 1 to frame 2 
dx3 = W2 * P3;        %Change in position of frame 2 to frame 3 
dx4 = W3 * P4;        %Change in position of frame 3 to frame 4 
 
%Absolute Positions of the Coordinate Frames 
x0 = [0; 0; 0];        %Define position of base frame 
x1 = x0 + dx1;         %Frame 1 
x2 = x1 + dx2;         %Frame 2 
x3 = x2 + dx3;         %Frame 3 
x4 = x3 + dx4;         %Frame 4 
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H.7 Function Outputs.m 
 
 
function Outputs(theta_deg, R1, R2, R3, R4, R5, R6, P1, P2, P3, P4, P5, P6, T1, T2, T3, T4, T5, T6,... 
                 p04, R03, R36, p0T, R0T, rot, pos, trans, mat_impt, sym, ang_disp)           
                  
                  
%Command Window Output Commands: 
%Display Rotation, Position, and Transformation Matrices if Desired 
if rot, 
    fprintf('\nROTATION MATRICES:\n') 
    R1, R2, R3, R4, R5, R6 
end 
if pos, 
    fprintf('POSITION MATRICES:\n') 
    P1, P2, P3, P4, P5, P6 
end 
if trans, 
    fprintf('\nTRANSFORMATION MATRICES:\n') 
    T1, T2, T3, T4, T5, T6 
end 
if mat_impt, 
    fprintf('\nIMPORTANT MATRICES:\n') 
    p04, R03, R36, p0T, R0T 
end 
%In kinematics and/or inv_kin, 90 deg. were subtracted from theta3 to account for the... 
%frame rotation.  These must be put back before displaying the user-input joint angle: 
theta_deg(3) = theta_deg(3) + 90;                 %Add the 90 degrees to theta_3_deg 
 
if ang_disp, 
    fprintf('\nSAMURAI JOINT ANGLES:\n') 
    fprintf('Theta 1: %.4g deg.\n', theta_deg(1)) 
    fprintf('Theta 2: %.4g deg.\n', theta_deg(2)) 
    fprintf('Theta 3: %.4g deg.\n', theta_deg(3)) 
    fprintf('Theta 4: %.4g deg.\n', theta_deg(4)) 
    fprintf('Theta 5: %.4g deg.\n', theta_deg(5)) 
    fprintf('Theta 6: %.4g deg.\n', theta_deg(6)) 
end 
 
%Data File 
if ~sym,                           %Data file cannot be written for symbolic variables 
    MatDat = fopen('MatrixData.dat','wt');              %Create Data File for Storage of Matrix Data 
    fprintf(MatDat, 'Theta = \n');                      %Output character string "Theta =" to data file 
    fprintf(MatDat, '%13.1f \n', theta_deg);            %Output theta array 13 spaces from left margin & 1 sig. fig. 
    textR = 'R1 = ';                   %Create character string and assign string to variable textR 
    textP = 'P1 = ';                   %Create character string and assign string to variable textP 
    fprintf(MatDat, '\n');             %Insert new line in the data file 
    fprintf(MatDat, '%21s', textR); %Print the character string inside the data file with 21 spaces ("s" denotes string) 
    fprintf(MatDat,'%31s', textP);  %Print the character string inside the data file with 31 spaces ("s" denotes string) 
    fprintf(MatDat, '\n');             %Insert another new line in the data file 
    for k = 1:size(R1,1),              %For every k where k is an integer between 1 and size(R1,1) 
                                       %size(R1,1) = 3, it's the number of rows in column 1 
        fprintf(MatDat,'%28.4f %7.4f %7.4f',R1(k,:));  
            %The ".4" values signify 4 sig. figs. 
            %The 28 inserts 28 spaces between the left column and the right-most sig. fig. 
            %The 7's insert 7 between between the previous column and the right-most sig. fig. 
            %When k=1, this loop prints the first row and all columns to the data file 
            %This is then repeated when k = 2 and 3 
        fprintf(MatDat,'%15.4f \n',P1(k,:));  %Prints 1st row of P1 & inserts 15 spaces between left col. & right sig. fig. 
    end 
 
    %Same Process for R2 
    fprintf(MatDat,'\n'); textR = 'R2 = '; textP = 'P2 = '; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP); 
    fprintf(MatDat, '\n'); for k = 1:size(R2,1), fprintf(MatDat,'%28.4f %7.4f %7.4f',R2(k,:)); fprintf(MatDat,'%15.4f 
\n',P2(k,:)); end 
    %Same Process for R3 
    fprintf(MatDat,'\n'); textR = 'R3 = '; textP = 'P3 = '; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP); 
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    fprintf(MatDat, '\n'); for k = 1:size(R3,1), fprintf(MatDat,'%28.4f %7.4f %7.4f',R3(k,:)); fprintf(MatDat,'%15.4f 
\n',P3(k,:)); end 
    %Same Process for R4 
    fprintf(MatDat,'\n'); textR = 'R4 = '; textP = 'P4 = '; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP); 
    fprintf(MatDat, '\n'); for k = 1:size(R4,1), fprintf(MatDat,'%28.4f %7.4f %7.4f',R4(k,:)); fprintf(MatDat,'%15.4f 
\n',P4(k,:)); end 
    %Same Process for R5 
    fprintf(MatDat,'\n'); textR = 'R5 = '; textP = 'P5 = '; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP); 
    fprintf(MatDat, '\n'); for k = 1:size(R5,1), fprintf(MatDat,'%28.4f %7.4f %7.4f',R5(k,:)); fprintf(MatDat,'%15.4f 
\n',P5(k,:)); end 
    %Same Process for R6 
    fprintf(MatDat,'\n'); textR = 'R6 = '; textP = 'P6 = '; fprintf(MatDat, '%21s', textR); fprintf(MatDat,'%31s', textP); 
    fprintf(MatDat, '\n'); for k = 1:size(R6,1), fprintf(MatDat,'%28.4f %7.4f %7.4f',R6(k,:)); fprintf(MatDat,'%15.4f 
\n',P6(k,:)); end 
 
     
    %Important Data Matrices: 
    fprintf(MatDat, '\nImportant Data:\n\n'); 
    %Similar Process for P04 and P0T 
    fprintf(MatDat,'\n'); textP = 'P04 = '; fprintf(MatDat,'%0s', textP); 
    textP = 'P0T = '; fprintf(MatDat,'%20s', textP); 
    fprintf(MatDat, '\n');  
    for k = 1:size(p04,1),             %Position matrices are the same size 
        fprintf(MatDat,'%13.4f',p0 4(k,:)); 
        fprintf(MatDat,'%20.4f \n',p0T(k,:));  
    end 
         
    %Similar Process for R03, R36, and R0T 
    fprintf(MatDat,'\n\n'); textR = 'R03 = '; fprintf(MatDat, '%0s', textR);  
                            textR = 'R36 = '; fprintf(MatDat, '%35s', textR);  
                            textR = 'R0T = '; fprintf(MatDat, '%35s', textR);  
    fprintf(MatDat, '\n');  
    for k = 1:size(R03,1),             %Rotation matrices are the same size 
        fprintf(MatDat,'%13.4f %7.4f %7.4f',R03(k,:)); 
        fprintf(MatDat,'%19.4f %7.4f %7.4f',R36(k,:)); 
        fprintf(MatDat,'%19.4f %7.4f %7.4f \n',R0T(k,:)); 
    end 
         
    fclose(MatDat);            %Close Data File 
end                             %End of if ~sym statement 
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H.8 Function armplot.m 
 
 
function [p0T, R0T] = armplot(theta_deg, spread, jaguar, T1, T2, T3, T4, T5, T6,... 
    laptop, imac, colors, containers, plots, tool_tip,... 
    x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot) 
 
    %Table of D-H Parameters 
    alpha0 = 0;       a0 = 0;        d1 = .10795;    
    alpha1 = -pi/2;   a1 = .1524;     d2 = 0;     
    alpha2 = 0;       a2 = .6096;    d3 = 0;     
    alpha3 = -pi/2;   a3 = .1143;    d4 = .6096;    
    alpha4 = pi/2;    a4 = 0;         d5 = 0;     
    alpha5 = -pi/2;   a5 = 0;         d6 = 0;   
         
    theta = theta_deg * pi/180;              %Convert theta array to radians (rad) 
     
    joint6_length = 0.2171;        %Joint 5 axis to face of hand roll joint (m) 
    ee_length = .2237;             %End-effector length (m) 
     
res = .0001;                  %Resolution off increments composing lines 
                               %This must be sufficiently small to coincide 
                               %with values in kinematics codes 
line_width = 2;               %Set width of plotted lines 
 
fig_color = [1 1 1];      %Sets background in figures to white 
set(0, 'DefaultFigureColor', fig_color) 
title_size = 14;              %Set the size of the font for plot text (26 for maximized windows) 
xmin = -1.5; xmax = 1.75; ymin = -1.5; ymax = 1.5; zmin = -1.5; zmax = 1.5;   %Values for axes definitions 
 
%Jaguar Details 
radius = 0.1984;              %Specify radius of Jaguar cylinder (m) 
height = abs(xmin);           %"height" or length of cylinder (m) 
strut_loc = -.42;             %x-displacement of Jaguar strut from base frame (0,0,0) in meters 
strut_width = .12;            %Strut width (m) 
Jag_offset = 1.194;           %Distance between Jaguar cylinder axes (m) 
 
 
%Note: 3D Plot commands will be moved inside the "colors" if statement 
%They will just be commented out with double %% though, so that their original locations are known 
        %%figure(2) 
%Create a point at the origin of Frame 0: 
x0_pt = 0;      y0_pt = 0;      z0_pt = 0; 
        %%plot3(x0_pt, y0_pt, z0_pt, 'r+', 'LineWidth', line_width), hold on       %Plot origin of Frame 0 
%Create a point at the origin of Frame 1: 
x1_pt = T1(1,4);    y1_pt = T1(2,4);    z1_pt = T1(3,4); 
        %%plot3(x1_pt, y1_pt, z1_pt, 'r+', 'LineWidth', line_width), hold on       %Plot origin of Frame 1 
%Create line between Frames 0 and 1 
if abs(x1_pt-x0_pt) >= abs(y1_pt-y0_pt) && abs(x1_pt-x0_pt) >= abs(z1_pt-z0_pt), 
    x_01 = x0_pt : res : x1_pt;     %Let x-array drive change from Frame 0 to 1 
    y_01 = y0_pt : abs(y1_pt-y0_pt)/(size(x_01,2)-1) : y1_pt;  %Create y-array based on size of x-array 
    z_01 = z0_pt : abs(z1_pt-z0_pt)/(size(x_01,2)-1) : z1_pt;  %Create z-array based on size of x-array 
    if size(y_01, 2)==1,  y_01 = y0_pt + x_01.*0;  end    %If there is no change in y, create array of same mag. 
    if size(z_01, 2)==1,  z_01 = z0_pt + x_01.*0;  end    %If there is no change in z, create array of same mag. 
else if abs(y1_pt-y0_pt) >= abs(x1_pt-x0_pt) && abs(y1_pt-y0_pt) >= abs(z1_pt-z0_pt), 
    y_01 = y0_pt : res : y1_pt;     %Let y-array drive change from Frame 0 to 1 
    x_01 = x0_pt : abs(x1_pt-x0_pt)/(size(y_01,2)-1) : x1_pt;  %Create x-array based on size of y-array 
    z_01 = z0_pt : abs(z1_pt-z0_pt)/(size(y_01,2)-1) : z1_pt;  %Create z-array based on size of y-array 
    if size(x_01, 2)==1,  x_01 = x0_pt + y_01.*0;  end    %If there is no change in x, create array of same mag. 
    if size(z_01, 2)==1,  z_01 = z0_pt + y_01.*0;  end    %If there is no change in z, create array of same mag. 
    else        %the biggest change is in the z-direction 
        z_01 = z0_pt : res : z1_pt;     %Let z-array drive change from Frame 0 to 1 
        x_01 = x0_pt : abs(x1_pt-x0_pt)/(size(z_01,2)-1) : x1_pt;  %Create x-array based on size of z-array 
        y_01 = y0_pt : abs(y1_pt-y0_pt)/(size(z_01,2)-1) : y1_pt;  %Create y-array based on size of z-array 
      
        if size(x_01, 2)<=1,  x_01 = x0_pt + z_01.*0;  end    %If there is no change in x, create array of same mag. 
        if size(y_01, 2)<=1,  y_01 = y0_pt + z_01.*0;  end    %If there is no change in y, create array of same mag. 
    end 
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end 
        %%plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on       %Plot line between Frames 0 & 1 in 3D 
 
%Create a point at the origin of Frame 2: 
T_current = T1*T2;          %Create new transformation matrix from origin to current frame 
x2_pt = T_current(1,4);    y2_pt = T_current(2,4);    z2_pt = T_current(3,4); 
        %%plot3(x2_pt, y2_pt, z2_pt, 'r+', 'LineWidth', line_width), hold on       %Plot origin of Frame 2 
%Create line between Frames 1 and 2 
%Case I: Greatest change between frames is in x-direction: 
if abs(x2_pt-x1_pt) >= abs(y2_pt-y1_pt) && abs(x2_pt-x1_pt) >= abs(z2_pt-z1_pt), 
    if x2_pt >= x1_pt,                  %If x2 is greater than or equal to x1, create normal array 
        x_12 = x1_pt : res : x2_pt;     %Let x-array drive change from Frame 1 to 2 
    else x_12 = -x1_pt : res : -x2_pt;   x_12 = -x_12;   end    %Otherwise, flip array direction. 
    size_x12 = size(x_12,2)-1;          %Size of x_12 array 
    if y2_pt >= y1_pt,                  %If y2 is greater than or equal to y1, create normal array 
        y_12 = y1_pt : abs(y2_pt-y1_pt)/size_x12 : y2_pt;  %Create y-array based on size of x-array 
    else 
        y_12 = -y1_pt : abs(y2_pt-y1_pt)/size_x12 : -y2_pt;   y_12 = -y_12;   %Otherwise, flip array direction 
    end 
    if z2_pt >= z1_pt, 
        z_12 = z1_pt : abs(z2_pt-z1_pt)/size_x12 : z2_pt;  %Create z-array based on size of x-array 
    else 
        z_12 = -z1_pt : abs(z2_pt-z1_pt)/size_x12 : -z2_pt;   z_12 = -z_12;   %Otherwise, flip array direction 
    end 
    if size(y_12, 2)<=1,  y_12 = y1_pt + x_12.*0;  end    %If there is no change in y, create array of same mag. 
    if size(z_12, 2)<=1,  z_12 = z1_pt + x_12.*0;  end    %If there is no change in z, create array of same mag. 
%Case II: Greatest change between frames is in y-direction: 
else if abs(y2_pt-y1_pt) >= abs(x2_pt-x1_pt) && abs(y2_pt-y1_pt) >= abs(z2_pt-z1_pt), 
    if y2_pt >= y1_pt,                  %If y2 is greater than or equal to y1,  
        y_12 = y1_pt : res : y2_pt;     %Let y-array drive change from Frame 1 to 2 
    else y_12 = -y1_pt : res : -y2_pt;   y_12 = -y_12;  end    %Otherwise, flip array direction. 
    size_y12 = size(y_12,2)-1;          %Size of y_12 array 
    if x2_pt >= x1_pt,                  %If x2 is greater than or equal to x1,  
        x_12 = x1_pt : abs(x2_pt-x1_pt)/size_y12 : x2_pt;  %Create x-array based on size of y-array 
    else 
        x_12 = -x1_pt : abs(x2_pt-x1_pt)/size_y12 : -x2_pt; x_12 = -x_12;  %Create x-array based on size of y-array 
    end 
    if z2_pt >= z1_pt, 
        z_12 = z1_pt : abs(z2_pt-z1_pt)/size_y12 : z2_pt;  %Create z-array based on size of y-array 
    else 
        z_12 = -z1_pt : abs(z2_pt-z1_pt)/size_y12 : -z2_pt;   z_12 = -z_12;  %Create z-array based on size of y-array 
    end 
    if size(x_12, 2)<=1,  x_12 = x1_pt + y_12.*0;  end    %If there is no change in x, create array of same mag. 
    if size(z_12, 2)<=1,  z_12 = z1_pt + y_12.*0;  end    %If there is no change in z, create array of same mag. 
%Case III: Greatest change between frames is in z-direction: 
    else        %the biggest change is in the z-direction 
        if z2_pt >= z1_pt, 
            z_12 = z1_pt : res : z2_pt;     %Let z-array drive change from Frame 1 to 2 
        else z_12 = -z1_pt : res : -z2_pt;   z_12 = -z_12;  end    %Otherwise, flip array direction. 
        size_z12 = size(z_12,2)-1;          %Size of z_12 array 
        if x2_pt >= x1_pt,                  %If x2 is greater than or equal to x1,  
            x_12 = x1_pt : abs(x2_pt-x1_pt)/size_z12 : x2_pt;  %Create x-array based on size of z-array 
        else 
            x_12 = -x1_pt : abs(x2_pt-x1_pt)/size_z12 : -x2_pt;  x_12 = -x_12;  end    %Otherwise, flip array direction. 
        if y2_pt >= y1_pt,                  %If x2 is greater than or equal to x1,  
            y_12 = y1_pt : abs(y2_pt-y1_pt)/size_z12 : y2_pt;  %Create y-array based on size of z-array 
        else 
            y_12 = -y1_pt : abs(y2_pt-y1_pt)/size_z12 : -y2_pt;  y_12 = -y_12;  end    %Otherwise, flip array direction. 
        if size(x_12, 2)<=1,  x_12 = x1_pt + z_12.*0;  end    %If there is no change in x, create array of same mag. 
        if size(y_12, 2)<=1,  y_12 = y1_pt + z_12.*0;  end    %If there is no change in y, create array of same mag. 
    end 
end 
        %%plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on       %Plot line between Frames 1 & 2 in 3D 
 
 
%Create a point at the origin of Frame 3: 
T_current = T_current*T3;          %Create new transformation matrix from origin to current frame 
x3_pt = T_current(1,4);    y3_pt = T_current(2,4);    z3_pt = T_current(3,4); 
        %%plot3(x3_pt, y3_pt, z3_pt, 'r+', 'LineWidth', line_width), hold on       %Plot origin of Frame 3 
%Create line between Frames 2 and 3 
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%Case I: Greatest change between frames is in x-direction: 
if abs(x3_pt-x2_pt) >= abs(y3_pt-y2_pt) && abs(x3_pt-x2_pt) >= abs(z3_pt-z2_pt), 
    if x3_pt >= x2_pt,                  %If x3 is greater than or equal to x2, create normal array 
        x_23 = x2_pt : res : x3_pt;     %Let x-array drive change from Frame 2 to 3 
    else x_23 = -x2_pt : res : -x3_pt;  x_23 = -x_23;  end    %Otherwise, flip array direction. 
    size_x23 = size(x_23,2)-1;          %Size of x_12 array 
    if y3_pt >= y2_pt,                  %If y3 is greater than or equal to y2, create normal array 
        y_23 = y2_pt : abs(y3_pt-y2_pt)/size_x23 : y3_pt;  %Create y-array based on size of x-array 
    else 
        y_23 = -y2_pt : abs(y3_pt-y2_pt)/size_x23 : -y3_pt;   y_23 = -y_23;   %Otherwise, flip array direction. 
    end 
    if z3_pt >= z2_pt, 
        z_23 = z2_pt : abs(z3_pt-z2_pt)/size_x23 : z3_pt;  %Create z-array based on size of x-array 
    else 
        z_23 = -z2_pt : abs(z3_pt-z2_pt)/size_x23 : -z3_pt;   z_23 = -z_23;   %Otherwise, flip array direction. 
    end 
    if size(y_23, 2)<=1,  y_23 = y2_pt + x_23.*0;  end    %If there is no change in y, create array of same mag. 
    if size(z_23, 2)<=1,  z_23 = z2_pt + x_23.*0;  end    %If there is no change in z, create array of same mag. 
%Case II: Greatest change between frames is in y-direction: 
else if abs(y3_pt-y2_pt) >= abs(x3_pt-x2_pt) && abs(y3_pt-y2_pt) >= abs(z3_pt-z2_pt), 
    if y3_pt >= y2_pt,                  %If y3 is greater than or equal to y2,  
        y_23 = y2_pt : res : y3_pt;     %Let y-array drive change from Frame 2 to 3 
    else y_23 = -y2_pt : res : -y3_pt;   y_23 = -y_23;  end    %Otherwise, flip array direction. 
    size_y23 = size(y_23,2)-1;          %Size of y_23 array 
    if x3_pt >= x2_pt,                  %If x2 is greater than or equal to x1,  
        x_23 = x2_pt : abs(x3_pt-x2_pt)/size_y23 : x3_pt;  %Create x-array based on size of y-array 
    else 
        x_23 = -x2_pt : abs(x3_pt-x2_pt)/size_y23 : -x3_pt; x_23 = -x_23;  %Create x-array based on size of y-array 
    end 
    if z3_pt >= z2_pt, 
        z_23 = z2_pt : abs(z3_pt-z2_pt)/size_y23 : z3_pt;  %Create z-array based on size of y-array 
    else 
        z_23 = -z2_pt : abs(z3_pt-z2_pt)/size_y23 : -z3_pt;   z_23 = -z_23;  %Create z-array based on size of y-array 
    end 
    if size(x_23, 2)<=1,  x_23 = x2_pt + y_23.*0;  end    %If there is no change in x, create array of same mag. 
    if size(z_23, 2)<=1,  z_23 = z2_pt + y_23.*0;  end    %If there is no change in z, create array of same mag. 
%Case III: Greatest change between frames is in z-direction: 
    else        %the biggest change is in the z-direction 
        if z3_pt >= z2_pt, 
            z_23 = z2_pt : res : z3_pt;     %Let z-array drive change from Frame 2 to 3 
        else z_23 = -z2_pt : res : -z3_pt;   z_23 = -z_23;  end    %Otherwise, flip array direction. 
        size_z23 = size(z_23,2)-1;          %Size of z_23 array 
        if x3_pt >= x2_pt,                  %If x3 is greater than or equal to x2,  
            x_23 = x2_pt : abs(x3_pt-x2_pt)/size_z23 : x3_pt;  %Create x-array based on size of z-array 
        else 
            x_23 = -x2_pt : abs(x3_pt-x2_pt)/size_z23 : -x3_pt;  x_23 = -x_23;  end    %Otherwise, flip array direction. 
        if y3_pt >= y2_pt,                  %If y3 is greater than or equal to y2,  
            y_23 = y2_pt : abs(y3_pt-y2_pt)/size_z23 : y3_pt;  %Create y-array based on size of z-array 
        else 
            y_23 = -y2_pt : abs(y3_pt-y2_pt)/size_z23 : -y3_pt;  y_23 = -y_23;  end    %Otherwise, flip array direction. 
        if size(x_23, 2)<=1,  x_23 = x2_pt + z_23.*0;  end    %If there is no change in x, create array of same mag. 
        if size(y_23, 2)<=1,  y_23 = y2_pt + z_23.*0;  end    %If there is no change in y, create array of same mag. 
    end 
end 
        %%plot3(x_23, y_23, z_23, 'm-', 'LineWidth', line_width), hold on       %Plot line between Frames 2 & 3 in 3D 
 
         
%%%Frame 3 to Frame 4a (Bend in Link 2)%%% 
l4 = 0 : res : a3;                      %Create an array based on the length of top part of Link 2 
phi_sum = theta(1);                     %Summation of all phi angles to this point is just theta(1), Joint 1 yaw 
x4a = x3_pt + l4*sin(pi/2+theta(2)+theta(3))*cos(phi_sum);     %pi/2 is the fixed angle between d1 and the z0 axis 
y4a = y3_pt + l4*sin(pi/2+theta(2)+theta(3))*sin(phi_sum); 
z4a = z3_pt + l4*cos(pi/2+theta(2)+theta(3)); 
 
        %%plot3(x4a, y4a, z4a, '-', 'LineWidth', line_width), hold on     %Plot small portion of Link 2 (Frame 3 to 4a) 
x4a_pt_loc = size(x4a,2);    y4a_pt_loc = size(y4a,2);         z4a_pt_loc = size(z4a,2); 
x4a_pt = x4a(x4a_pt_loc);    y4a_pt = y4a(y4a_pt_loc);    z4a_pt = z4a(z4a_pt_loc); 
        %%plot3(x4a_pt, y4a_pt, z4a_pt, 'r+', 'LineWidth', line_width), hold on       %Plot point at origin of Frame 4a 
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%%%Frame 4a to Frame 4 (Base of Link 2)%%% 
%Create a point at the origin of Frame 4: 
T_current = T_current*T4;          %Create new transformation matrix from origin to current frame 
x4_pt = T_current(1,4);    y4_pt = T_current(2,4);    z4_pt = T_current(3,4); 
        %%plot3(x4_pt, y4_pt, z4_pt, 'r+', 'LineWidth', line_width), hold on       %Plot origin of Frame 4 
%Create line between Frames 4a and 4 
%Case I: Greatest change between frames is in x-direction: 
if abs(x4_pt-x4a_pt) >= abs(y4_pt-y4a_pt) && abs(x4_pt-x4a_pt) >= abs(z4_pt-z4a_pt), 
    if x4_pt >= x4a_pt,                 %If x4 is greater than or equal to x4a, create normal array 
        x_4a4 = x4a_pt : res : x4_pt;     %Let x-array drive change from Frame 4a to 4 
    else x_4a4 = -x4a_pt : res : -x4_pt;  x_4a4 = -x_4a4;  end    %Otherwise, flip array direction. 
    size_x4a4 = size(x_4a4,2)-1;          %Size of x_4a4 array 
    if y4_pt >= y4a_pt,                  %If y4 is greater than or equal to y4a, create normal array 
        y_4a4 = y4a_pt : abs(y4_pt-y4a_pt)/size_x4a4 : y4_pt;  %Create y-array based on size of x-array 
    else 
        y_4a4 = -y4a_pt : abs(y4_pt-y4a_pt)/size_x4a4 : -y4_pt;   y_4a4 = -y_4a4;   %Otherwise, flip array direction. 
    end 
    if z4_pt >= z4a_pt, 
        z_4a4 = z4a_pt : abs(z4_pt-z4a_pt)/size_x4a4 : z4_pt;  %Create z-array based on size of x-array 
    else 
        z_4a4 = -z4a_pt : abs(z4_pt-z4a_pt)/size_x4a4 : -z4_pt;   z_4a4 = -z_4a4;   %Otherwise, flip array direction. 
    end 
    if size(y_4a4, 2)<=1,  y_4a4 = y4_pt + x_4a4.*0;  end    %If there is no change in y, create array of same mag. 
    if size(z_4a4, 2)<=1,  z_4a4 = z4_pt + x_4a4.*0;  end    %If there is no change in z, create array of same mag. 
%Case II: Greatest change between frames is in y-direction: 
else if abs(y4_pt-y4a_pt) >= abs(x4_pt-x4a_pt) && abs(y4_pt-y4a_pt) >= abs(z4_pt-z4a_pt), 
    if y4_pt >= y4a_pt,                   %If y4 is greater than or equal to y4a,  
        y_4a4 = y4a_pt : res : y4_pt;     %Let y-array drive change from Frame 4a to 4 
    else y_4a4 = -y4a_pt : res : -y4_pt;   y_4a4 = -y_4a4;  end    %Otherwise, flip array direction. 
    size_y4a4 = size(y_4a4,2)-1;          %Size of y_4a4 array 
    if x4_pt >= x4a_pt,                   %If x4 is greater than or equal to x4a,  
        x_4a4 = x4a_pt : abs(x4_pt-x4a_pt)/size_y4a4 : x4_pt;  %Create x-array based on size of y-array 
    else 
        x_4a4 = -x4a_pt : abs(x4_pt-x4a_pt)/size_y4a4 : -x4_pt;   x_4a4 = -x_4a4;  %Create x-array based on size of y-
array 
    end 
    if z4_pt >= z4a_pt, 
        z_4a4 = z4a_pt : abs(z4_pt-z4a_pt)/size_y4a4 : z4_pt;  %Create z-array based on size of y-array 
    else 
        z_4a4 = -z4a_pt : abs(z4_pt-z4a_pt)/size_y4a4 : -z4_pt;   z_4a4 = -z_4a4;  %Create z-array based on size of y-
array 
    end 
    if size(x_4a4, 2)<=1,  x_4a4 = x4a_pt + y_4a4.*0;  end    %If there is no change in x, create array of same mag. 
    if size(z_4a4, 2)<=1,  z_4a4 = z4a_pt + y_4a4.*0;  end    %If there is no change in z, create array of same mag. 
%Case III: Greatest change between frames is in z-direction: 
    else        %the biggest change is in the z-direction 
        if z4_pt >= z4a_pt, 
            z_4a4 = z4a_pt : res : z4_pt;     %Let z-array drive change from Frame 4a to 4 
        else z_4a4 = -z4a_pt : res : -z4_pt;   z_4a4 = -z_4a4;  end    %Otherwise, flip array direction. 
        size_z4a4 = size(z_4a4,2)-1;          %Size of z_4a4 array 
        if x4_pt >= x4a_pt,                   %If x4 is greater than or equal to x4a,  
            x_4a4 = x4a_pt : abs(x4_pt-x4a_pt)/size_z4a4 : x4_pt;  %Create x-array based on size of z-array 
        else 
            x_4a4 = -x4a_pt : abs(x4_pt-x4a_pt)/size_z4a4 : -x4_pt;  x_4a4 = -x_4a4;  end    %Otherwise, flip array 
direction. 
        if y4_pt >= y4a_pt,                  %If y4 is greater than or equal to y4a,  
            y_4a4 = y4a_pt : abs(y4_pt-y4a_pt)/size_z4a4 : y4_pt;  %Create y-array based on size of z-array 
        else 
            y_4a4 = -y4a_pt : abs(y4_pt-y4a_pt)/size_z4a4 : -y4_pt;  y_4a4 = -y_4a4;  end    %Otherwise, flip array 
direction. 
        if size(x_4a4, 2)<=1,  x_4a4 = x4a_pt + z_4a4.*0;  end    %If there is no change in x, create array of same mag. 
        if size(y_4a4, 2)<=1,  y_4a4 = y4a_pt + z_4a4.*0;  end    %If there is no change in y, create array of same mag. 
    end 
end 
        %%plot3(x_4a4, y_4a4, z_4a4, '-', 'LineWidth', line_width), hold on 
        %%%Plot line between Frames 4a & 4 in 3D 
 
 
%%%Frame 4 to Frame 5 (Still at Base of Link 2)%%% 
T_current = T_current * T5;          %Create new transformation matrix from origin to current frame 
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R_5 = [T_current(1,1) T_current(1,2) T_current(1,3);...     %Isolate rotataion matrix 
       T_current(2,1) T_current(2,2) T_current(2,3);... 
       T_current(3,1) T_current(3,2) T_current(3,3)]; 
 
%%%Create a point at the end of Joint 6%%% 
l6 = 0 : res : joint6_length;       %Create an array based on the distance between Joints 5 and 6 
x_change_5 = l6.*0;      y_change_5 = l6;       z_change_5 = l6.*0;      %Create point at Joint 6 face 
    %Note: Point is offset from the frame in the y_5 direction 
pos_5 = [x_change_5; y_change_5; z_change_5];                            %Put coordinates in a vector array 
pos_6 = R_5 * pos_5;                                                     %Rotate vector based on rotation matrix 
       
x_56 = x4_pt + pos_6(1,:);  y_56 = y4_pt + pos_6(2,:);  z_56 = z4_pt + pos_6(3,:);      %Add new location to previous 
location (x4, y4, z4) 
 
        %%plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on                %Plot connection between Joints 5 
and 6 
x_56_pt_loc = size(x_56,2);    y_56_pt_loc = size(y_56,2);    z_56_pt_loc = size(z_56,2); 
x_56_pt = x_56(x_56_pt_loc);    y_56_pt = y_56(y_56_pt_loc);    z_56_pt = z_56(z_56_pt_loc); 
        %%plot3(x_56_pt, y_56_pt, z_56_pt, 'r+', 'LineWidth', line_width), hold on       %Plot end of Joint 6 
 
%%Create a point at the end of the End-Effector (the tool tip)%%% 
joint_7_length = ee_length;         %This is the end-effector length from Joint 6 to tool tip (meters) 
l_7 = 0 : res : joint_7_length;     %Create an array based on the distance between Joints 5 and 6 
 
x_change_7 = l_7;      y_change_7 = l_7.*0;       z_change_7 = l_7.*0;   %Create end point corresponding to alpha = 
beta = gamma = 0 
pos_7 = R_5 * pos_5;                %pos_7 is just an extension of pos_6 
                                    %=> use same rotation matrix 
x_67 = x_56_pt + pos_7(1,:);  y_67 = y_56_pt + pos_7(2,:);  z_67 = z_56_pt + pos_7(3,:); 
 
        %%plot3(x_67, y_67, z_67, 'g-', 'LineWidth', line_width), hold on     %Plot connection between Joints 6 and EE 
x_67_pt_loc = size(x_67,2);    y_67_pt_loc = size(y_67,2);    z_67_pt_loc = size(z_67,2); 
x_67_pt = x_67(x_67_pt_loc);    y_67_pt = y_67(y_67_pt_loc);    z_67_pt = z_67(z_67_pt_loc); 
        %%plot3(x_67_pt, y_67_pt, z_67_pt, 'r+', 'LineWidth', line_width), hold on       %Plot end of the EE 
 
if tool_tip,                %If tool tip coordiantes are to be output to CW: 
    fprintf('\nTool Tip Coordinates:\n') 
    fprintf('   X-Coordinate: %.4g m\n', x_67_pt) 
    fprintf('   Y-Coordinate: %.4g m\n', y_67_pt) 
    fprintf('   Z-Coordinate: %.4g m\n', z_67_pt) 
end 
 
p0T = [x_67_pt; y_67_pt; z_67_pt];      %Vector from Frame 0 to tool tip (m) 
T_current = T_current * T6;             %Final transformation matrix 
R0T = [T_current(1,1) T_current(1,2) T_current(1,3);...     %Isolate rotataion matrix 
       T_current(2,1) T_current(2,2) T_current(2,3);...      
       T_current(3,1) T_current(3,2) T_current(3,3)]; 
 
         
%%%Create Jaguar Base%%% 
R = [radius radius];                         %Create array with x = radius and y = radius 
N = 25;                                      %Number of mesh segments comprising cylinder 
[X,Y,Z] = cylinder(R,N);                     %Create x, y, and z components of cylinder 
C = zeros(2,N);                              %Generate C to serve as basic colormap (will be lime green) 
[r,s,t] = sphere(N);                         %Create a sphere with NxN segments 
C2 = zeros(N,N);                             %Create variable C2 to serve as a colormap (lime green again) 
 
%%%Create Upper Jaguar Cylinder%%% 
if ~jaguar,                                 %If the upper Jaguar cylinder is NOT to be hidden: 
    %%%Create Strut Between Jaguar Cylinders%%% 
    %Create matrices of x and y to create plane for strut: 
    [X_strut, Y_strut] = meshgrid(strut_loc : .01 : strut_loc + strut_width); 
    Z_strut = X_strut + Y_strut;                          %Create z array (this will ultimately be the strut height 
    Zcol_loc = (size(X_strut,2)+1)/2;                     %Want the middle column of the Z matrix, this is an index 
    Zcol = Z_strut(:,Zcol_loc);                           %Find the column corresonding to the index Zcol_loc 
    Zmax = max(abs(Zcol));                                %Find the maximum value in the column vector 
    Zcol = Zcol + Zmax;                                   %Add to previous Zcol to translate the matrix to zero 
    Y_strut = 0.*Y_strut;                                 %Reset y values to zero (will assume strut has no thickness) 
    count = 1;      Znew = [];                            %Initilize counter and Znew matrix 
    while count <= size(Z_strut,2),                       %Create a new matrix consisting entirely of Zcol 
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        Znew = [Znew, Zcol];                              %This will produce a rectangular figure 
        count = count + 1;                                %Iterate counter 
    end 
    Z_strut_max = max(abs(Znew));                          %Find the maximum value in the Znew matrix  
    Z_strut_max = Z_strut_max(1,1);                        %Want only ONE maximum value 
    Z_normalized = (Znew./Z_strut_max);                   %Normalize the Z values 
    Z_strut = Z_normalized * Jag_offset;                   %Multiply the normalized value by the strut height 
    C3 = zeros(size(Z_strut,2),size(Z_strut,2));         %Create variable C3 to serve as a colormap (lime green again) 
end 
 
[X_sc, Y_sc, Z_sc, C_sc, X2_sc, Y2_sc, Z2_sc, X3_sc, Y3_sc, Z3_sc,... 
    X4_sc, Y4_sc, Z4_sc, X_lower, X_upper, Y_lower, Y_upper, Z_lower, Z_upper] = ... 
    sample_container(containers, x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot); 
 
%%%PLOTS%%% 
if plots, 
if colors, 
    figure(2)           %Plot of Manipulator in X-Z Plane 
    plot3(x0_pt, y0_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 0 origin 
    plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 1 (Frame 0 to 1) 
    plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 1 origin 
    plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 2 (Frame 1 to 2) 
    plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 2 origin 
    plot3(x_23, y_23, z_23, 'r-', 'LineWidth', line_width), hold on           %Plot Link 1 (Frame 2 to Frame 3) 
    plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 3 origin 
    plot3(x4a, y4a, z4a, '-', 'LineWidth', line_width), hold on               %Plot small portion of Link 2 (Frame 3 to 4a) 
    plot3(x_4a4, y_4a4, z_4a4, '-', 'LineWidth', line_width), hold on         %Plot main portion of Link 2 (Frame 4a to 
Frame 4) 
    plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point on top of Link 2 axis 
    plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 5 and 6 
    plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6 
    plot3(x_67, y_67, z_67, 'g-', 'LineWidth', line_width), hold on           %Plot connection between Joints 6 and EE 
    plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip) 
    surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
    surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere                                  
    if ~jaguar,                                                                %Create Jaguar Top 
        surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                             %Third variable represents the cylinder axis 
        surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
        surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
    end 
    surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                     %Produce cylindrical sample container 
    fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,:),'r')                                 %Plot sample container baseplate 
    surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
    fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,:),'r')       
    if ~sc_plot,                                                                %If plotting containers 3 & 4 
        surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on                              %Repeat for S.C. #3 
        fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,:),'r')       
        surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on                              %Repeat for S.C. #4 
        fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,:),'r')       
    end 
    title('Manipulator Plotted in 3 Dimensions', 'FontWeight', 'bold', 'FontSize', title_size)        
    xlabel('X-axis (m)', 'FontSize', title_size), ylabel('Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize', 
title_size) 
    axis([xmin xmax ymin ymax zmin zmax]) 
    grid on 
 
 
    figure(3)           %Plot of Manipulator in X-Z Plane 
    plot3(x0_pt, y0_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 0 origin 
    plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 1 (Frame 0 to 1) 
    plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 1 origin 
    plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 2 (Frame 1 to 2) 
    plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 2 origin 
    plot3(x_23, y_23, z_23, 'r-', 'LineWidth', line_width), hold on           %Plot Link 1 (Frame 2 to Frame 3) 
    plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 3 origin 
    plot3(x4a, y4a, z4a, '-', 'LineWidth', line_width), hold on               %Plot small portion of Link 2 (Frame 3 to 4a) 
    plot3(x_4a4, y_4a4, z_4a4, '-', 'LineWidth', line_width), hold on         %Plot main portion of Link 2 (Frame 4a to 
Frame 4) 
    plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point on top of Link 2 axis 



 

167 

    plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 5 and 6 
    plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6 
    plot3(x_67, y_67, z_67, 'g-', 'LineWidth', line_width), hold on           %Plot connection between Joints 6 and EE 
    plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip) 
    surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
    surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere                                  
    if ~jaguar,                                                                %Create Jaguar Top 
        surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                                %Third variable represents the cylinder axis 
        surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
        surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
    end 
    surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                     %Produce cylindrical sample container 
    fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,:),'r')                                 %Plot sample container baseplate 
    surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
    fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,:),'r')       
    if ~sc_plot,                                                                %If plotting containers 3 & 4 
        surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on                              %Repeat for S.C. #3 
        fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,:),'r')       
        surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on                              %Repeat for S.C. #4 
        fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,:),'r')       
    end 
    title('Manipulator Plotted in X-Z Plane', 'FontWeight', 'bold', 'FontSize', title_size)        
    xlabel('X-axis (m)', 'FontSize', title_size), ylabel('Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize', 
title_size) 
    axis([xmin xmax ymin ymax zmin zmax]) 
    grid on 
    view(0,0)            %Viewpoint specification (AZ,EL), (0,0) is the x-z plane 
 
 
    figure(4)           %Plot of Manipulator in X-Y Plane 
    plot3(x0_pt, y0_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 0 origin 
    plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 1 (Frame 0 to 1) 
    plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 1 origin 
    plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 2 (Frame 1 to 2) 
    plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 2 origin 
    plot3(x_23, y_23, z_23, 'r-', 'LineWidth', line_width), hold on           %Plot Link 1 (Frame 2 to Frame 3) 
    plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on       %Plot point at Frame 3 origin 
    plot3(x4a, y4a, z4a, '-', 'LineWidth', line_width), hold on               %Plot small portion of Link 2 (Frame 3 to 4a) 
    plot3(x_4a4, y_4a4, z_4a4, '-', 'LineWidth', line_width), hold on         %Plot main portion of Link 2 (Frame 4a to 
Frame 4) 
    plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point on top of Link 2 axis 
    plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 5 and 6 
    plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6 
    plot3(x_67, y_67, z_67, 'g-', 'LineWidth', line_width), hold on           %Plot connection between Joints 6 and EE 
    plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip) 
    surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
    surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere                                  
    if ~jaguar,                                                                %Create Jaguar Top 
        surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                             %Third variable represents the cylinder axis 
        surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
        surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
    end 
    surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                     %Produce cylindrical sample container 
    fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,:),'r')                                 %Plot sample container baseplate 
    surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
    fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,:),'r')       
    if ~sc_plot,                                                                %If plotting containers 3 & 4 
        surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on                              %Repeat for S.C. #3 
        fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,:),'r')       
        surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on                              %Repeat for S.C. #4 
        fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,:),'r')       
    end 
    title('Manipulator Plotted in X-Y Plane', 'FontWeight', 'bold', 'FontSize', title_size)        
    xlabel('X-axis (m)', 'FontSize', title_size), ylabel('Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize', 
title_size) 
    axis([xmin xmax ymin ymax zmin zmax]) 
    grid on 
    view(0,90)             %Viewpoint specification (AZ,EL), (0,90) is the x-y plane 
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    figure(5)           %Plot of Manipulator in Y-Z Plane 
    plot3(x0_pt, y0_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 0 origin 
    plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 1 (Frame 0 to 1) 
    plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 1 origin 
    plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 2 (Frame 1 to 2) 
    plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 2 origin 
    plot3(x_23, y_23, z_23, 'r-', 'LineWidth', line_width), hold on           %Plot Link 1 (Frame 2 to Frame 3) 
    plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 3 origin 
    plot3(x4a, y4a, z4a, '-', 'LineWidth', line_width), hold on               %Plot small portion of Link 2 (Frame 3 to 4a) 
    plot3(x_4a4, y_4a4, z_4a4, '-', 'LineWidth', line_width), hold on         %Plot main portion of Link 2 (Frame 4a to 
Frame 4) 
    plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point on top of Link 2 axis 
    plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 5 and 6 
    plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6 
    plot3(x_67, y_67, z_67, 'g-', 'LineWidth', line_width), hold on           %Plot connection between Joints 6 and EE 
    plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip) 
    surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
    surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere                                  
    if ~jaguar,                                                                %Create Jaguar Top 
        surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                             %Third variable represents the cylinder axis 
        surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
        surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
    end 
    surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                     %Produce cylindrical sample container 
    fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,:),'r')                                 %Plot sample container baseplate 
    surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
    fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,:),'r')       
    if ~sc_plot,                                                                %If plotting containers 3 & 4 
        surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on                              %Repeat for S.C. #3 
        fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,:),'r')       
        surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on                              %Repeat for S.C. #4 
        fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,:),'r')       
    end 
    title('Manipulator Plotted in Y-Z Plane', 'FontWeight', 'bold', 'FontSize', title_size)        
    xlabel('X-axis (m)', 'FontSize', title_size), ylabel('Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize', 
title_size) 
    axis([xmin xmax ymin ymax zmin zmax]) 
    grid on 
    view(90,0)         %Viewpoint specification (AZ,EL), (90,0) is the y-z plane 
else 
    figure(2)           %Plot of Manipulator in X-Z Plane 
    plot3(x0_pt, y0_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 0 origin 
    plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 1 (Frame 0 to 1) 
    plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 1 origin 
    plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 2 (Frame 1 to 2) 
    plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 2 origin 
    plot3(x_23, y_23, z_23, 'k-', 'LineWidth', line_width), hold on           %Plot Link 1 (Frame 2 to Frame 3) 
    plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 3 origin 
    plot3(x4a, y4a, z4a, 'k-', 'LineWidth', line_width), hold on               %Plot small portion of Link 2 (Frame 3 to 4a) 
    plot3(x_4a4, y_4a4, z_4a4, 'k-', 'LineWidth', line_width), hold on        %Plot main portion of Link 2 (Frame 4a to 
Frame 4) 
    plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point on top of Link 2 axis 
    plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 5 and 6 
    plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6 
    plot3(x_67, y_67, z_67, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 6 and EE 
    plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip) 
    surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
    surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere 
    if ~jaguar,                                                                 %Create Jaguar Top 
        surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                                %Third variable represents the cylinder axis 
        surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
        surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
    end 
    surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                      %Produce cylindrical sample container 
    fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,:),'r')                                 %Plot sample container baseplate 
    surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
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    fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,:),'r')                                          
    if ~sc_plot,                                                                %If plotting containers 3 & 4 
        surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on                              %Repeat for S.C. #3 
        fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,:),'r')       
        surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on                              %Repeat for S.C. #4 
        fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,:),'r')       
    end 
    title('Manipulator Plotted in 3 Dimensions', 'FontWeight', 'bold', 'FontSize', title_size)        
    xlabel('X-axis (m)', 'FontSize', title_size), ylabel('Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize', 
title_size) 
    axis([xmin xmax ymin ymax zmin zmax]) 
    grid on 
 
 
    figure(3)           %Plot of Manipulator in X-Z Plane 
    plot3(x0_pt, y0_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 0 origin 
    plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 1 (Frame 0 to 1) 
    plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 1 origin 
    plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 2 (Frame 1 to 2) 
    plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 2 origin 
    plot3(x_23, y_23, z_23, 'k-', 'LineWidth', line_width), hold on           %Plot Link 1 (Frame 2 to Frame 3) 
    plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on       %Plot point at Frame 3 origin 
    plot3(x4a, y4a, z4a, 'k-', 'LineWidth', line_width), hold on               %Plot small portion of Link 2 (Frame 3 to 4a) 
    plot3(x_4a4, y_4a4, z_4a4, 'k-', 'LineWidth', line_width), hold on  %Plot main portion of Link 2 (Frame 4a to 
Frame 4) 
    plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point on top of Link 2 axis 
    plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 5 and 6 
    plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6 
    plot3(x_67, y_67, z_67, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 6 and EE 
    plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip) 
    surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
    surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere 
    if ~jaguar,                                                                 %Create Jaguar Top 
        surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                             %Third variable represents the cylinder axis 
        surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
        surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
    end 
    surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                     %Produce cylindrical sample container 
    fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,:),'r')                                 %Plot sample container baseplate 
    surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
    fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,:),'r')                                          
    if ~sc_plot,                                                                %If plotting containers 3 & 4 
        surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on                              %Repeat for S.C. #3 
        fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,:),'r')       
        surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on                              %Repeat for S.C. #4 
        fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,:),'r')       
    end 
    title('Manipulator Plotted in X-Z Plane', 'FontWeight', 'bold', 'FontSize', title_size)        
    xlabel('X-axis (m)', 'FontSize', title_size), ylabel('Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize', 
title_size) 
    axis([xmin xmax ymin ymax zmin zmax]) 
    grid on 
    view(0,0)             %Viewpoint specification (AZ,EL), (0,0) is the x-z plane 
 
 
    figure(4)           %Plot of Manipulator in X-Y Plane 
    plot3(x0_pt, y0_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 0 origin 
    plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 1 (Frame 0 to 1) 
    plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 1 origin 
    plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 2 (Frame 1 to 2) 
    plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 2 origin 
    plot3(x_23, y_23, z_23, 'k-', 'LineWidth', line_width), hold on           %Plot Link 1 (Frame 2 to Frame 3) 
    plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 3 origin 
    plot3(x4a, y4a, z4a, 'k-', 'LineWidth', line_width), hold on               %Plot small portion of Link 2 (Frame 3 to 4a) 
    plot3(x_4a4, y_4a4, z_4a4, 'k-', 'LineWidth', line_width), hold on        %Plot main portion of Link 2 (Frame 4a to 
Frame 4) 
    plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point on top of Link 2 axis 
    plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 5 and 6 
    plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6 
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    plot3(x_67, y_67, z_67, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 6 and EE 
    plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip) 
    surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
    surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere 
    if ~jaguar,                                                                 %Create Jaguar Top 
        surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                             %Third variable represents the cylinder axis 
        surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
        surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
    end 
    surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                     %Produce cylindrical sample container 
    fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,:),'r')                                 %Plot sample container baseplate 
    surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
    fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,:),'r')                                          
    if ~sc_plot,                                                                %If plotting containers 3 & 4 
        surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on                              %Repeat for S.C. #3 
        fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,:),'r')       
        surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on                              %Repeat for S.C. #4 
        fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,:),'r')       
    end 
    title('Manipulator Plotted in X-Y Plane', 'FontWeight', 'bold', 'FontSize', title_size)        
    xlabel('X-axis (m)', 'FontSize', title_size), ylabel('Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize', 
title_size) 
    axis([xmin xmax ymin ymax zmin zmax]) 
    grid on 
    view(0,90)             %Viewpoint specification (AZ,EL), (0,90) is the x-y plane 
 
 
    figure(5)           %Plot of Manipulator in Y-Z Plane 
    plot3(x0_pt, y0_pt, z0_pt, 'm+', 'LineWidth', line_width), hold on       %Plot point at Frame 0 origin 
    plot3(x_01, y_01, z_01, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 1 (Frame 0 to 1) 
    plot3(x1_pt, y1_pt, z1_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 1 origin 
    plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on           %Plot Joint 2 (Frame 1 to 2) 
    plot3(x2_pt, y2_pt, z2_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 2 origin 
    plot3(x_23, y_23, z_23, 'k-', 'LineWidth', line_width), hold on           %Plot Link 1 (Frame 2 to Frame 3) 
    plot3(x3_pt, y3_pt, z3_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point at Frame 3 origin 
    plot3(x4a, y4a, z4a, 'k-', 'LineWidth', line_width), hold on               %Plot small portion of Link 2 (Frame 3 to 4a) 
    plot3(x_4a4, y_4a4, z_4a4, 'k-', 'LineWidth', line_width), hold on        %Plot main portion of Link 2 (Frame 4a to 
Frame 4) 
    plot3(x4_pt, y4_pt, z4_pt, 'm+', 'LineWidth', line_width), hold on        %Plot point on top of Link 2 axis 
    plot3(x_56, y_56, z_56, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 5 and 6 
    plot3(x_56_pt, y_56_pt, z_56_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of Joint 6 
    plot3(x_67, y_67, z_67, 'k-', 'LineWidth', line_width), hold on           %Plot connection between Joints 6 and EE 
    plot3(x_67_pt, y_67_pt, z_67_pt, 'm+', 'LineWidth', line_width), hold on %Plot end of EE (tool tip) 
    surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
    surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere 
    if ~jaguar,                                                               %Create Jaguar Top 
        surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                             %Third variable represents the cylinder axis 
        surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
        surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
    end 
    surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                     %Produce cylindrical sample container 
    fill3(X_sc(1,:), Y_sc(1,:), Z_sc(1,:),'r')                                 %Plot sample container baseplate 
    surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
    fill3(X2_sc(1,:), Y2_sc(1,:), Z2_sc(1,:),'r')                                          
    if ~sc_plot,                                                              %If plotting containers 3 & 4 
        surf(X3_sc, Y3_sc, Z3_sc, C_sc), hold on                              %Repeat for S.C. #3 
        fill3(X3_sc(1,:), Y3_sc(1,:), Z3_sc(1,:),'r')       
        surf(X4_sc, Y4_sc, Z4_sc, C_sc), hold on                              %Repeat for S.C. #4 
        fill3(X4_sc(1,:), Y4_sc(1,:), Z4_sc(1,:),'r')       
    end 
    title('Manipulator Plotted in Y-Z Plane', 'FontWeight', 'bold', 'FontSize', title_size)        
    xlabel('X-axis (m)', 'FontSize', title_size), ylabel('Y-axis (m)', 'FontSize', title_size), zlabel('Z-axis (m)', 'FontSize', 
title_size) 
    axis([xmin xmax ymin ymax zmin zmax]) 
    grid on 
    view(90,0)              %Viewpoint specification (AZ,EL), (90,0) is the y-z 
plane 
end 
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if spread,       %If plots are to be spread across the window: 
    if imac,     %If the figures are to be displayed on 2 Mac monitors: 
        x_zoom = .15; 
        y_zoom = .375; 
        set(figure(5), 'units', 'normalized', 'outerposition', [.15 .25  x_zoom y_zoom]) 
        set(figure(4), 'units', 'normalized', 'outerposition', [0   .25  x_zoom y_zoom]) 
        set(figure(3), 'units', 'normalized', 'outerposition', [.15  1   x_zoom y_zoom]) 
        set(figure(2), 'units', 'normalized', 'outerposition', [0    1   x_zoom y_zoom]) 
    end 
    if laptop,  %If the plots are to be shown on a standard Windows laptop 
        y_zoom = .48075; 
        x_zoom = 1/3; 
        y_base = .039; 
        set(figure(5), 'units', 'normalized', 'outerposition', [.6666   y_base  x_zoom y_zoom]) 
        set(figure(4), 'units', 'normalized', 'outerposition', [.3333   y_base  x_zoom y_zoom]) 
        set(figure(3), 'units', 'normalized', 'outerposition', [0       y_base  x_zoom y_zoom]) 
        set(figure(2), 'units', 'normalized', 'outerposition', [.6666   .52     x_zoom y_zoom]) 
    end 
end 
end 
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H.9 Function work.m 
 
 
function work(spread, jaguar, laptop, imac, workspace_iter, nframes) 
 
tic                                                       %Initiate timer 
 
%theta_1_deg_min = -110;   theta_1_deg_max = 110;           %Max and Min Joint 1 Angles (degrees) 
%Theta 1 min is set to zero as the workspace is symmetric 
theta_1_deg_min = 0;      theta_1_deg_max = 110;               %Max and Min Joint 1 Angles (degrees) 
theta_2_deg_min = -110;   theta_2_deg_max = 110;           %Max and Min Joint 2 Angles (degrees) 
%theta_3_deg_min = -30;    theta_3_deg_max = 170;            %Max and Min Joint 3 Angles (degrees) 
%theta_4_deg_min = -180;   theta_4_deg_max = 180;            %Max and Min Joint 4 Angles (degrees) 
%theta_5_deg_min = -105;   theta_5_deg_max = 105;            %Max and Min Joint 5 Angles (degrees) 
theta_5_deg = 0;                %Fix at zero to reach work envelope (deg) 
theta_4_deg = 0;                 %Fix at zero to reach work envelope (deg) 
theta_3_deg = -90;               %Fix at -90 to reach work envelope (deg) 
%Joint 6 will drive the EE and will not contribute to the workspace 
 
%Table of D-H Parameters 
    alpha0 = 0;      a0 = 0;        d1 = .10795;   
    alpha1 = -pi/2;  a1 = .1524;    d2 = 0;     
    alpha2 = 0;      a2 = .6096;    d3 = 0;     
    alpha3 = -pi/2;  a3 = .1143;    d4 = .6096;    
    alpha4 = pi/2;   a4 = 0;        d5 = 0;     
    alpha5 = -pi/2;  a5 = 0;        d6 = 0;   
 
    ee_length = .2237;         %End-effector length (m)     
     
res = .01;                    %Resolution off increments composing lines 
                               %This must be sufficiently small to coincide 
                               %with values in kinematics codes 
line_width = 2;               %Set width of plotted lines 
lw_mult = 2;                  %Line width multiplier for coord. sys origin point 
title_size = 14;              %Set the size of the font for plot text (26 for maximized windows) 
xmin = -1.5; xmax = 1.5; ymin = -1.5; ymax = 1.5; zmin = -1.5; zmax = 1.5;   %Values for axes definitions 
xmin = -2; xmax = 2; ymin = -2; ymax = 2; zmin = -2; zmax = 2;   %Values for axes definitions 
fig_color = [1 1 1];          %Sets background in figures to white 
set(0, 'DefaultFigureColor', fig_color) 
 
%Jaguar Details 
radius = 0.1984;              %Specify radius of Jaguar cylinder (m) 
height = abs(xmin);           %"height" or length of cylinder (m) 
strut_loc = -.42;             %x-displacement of Jaguar strut from base frame (0,0,0) in meters 
strut_width = .12;            %Strut width (m) 
Jag_offset = 1.194;           %Distance between Jaguar cylinder axes (m) 
 
%Sample Container Details 
radius_sc = .1365;               %Sample container outer radius (m) - (corresponds to Di = 10.75 in) 
height_sc = .2667;               %Sample continer height (m) - (corresonds to h = 10.5 in) 
x_loc_sc = .12;                  %Dist. from origin in x-direction (m) 
y_loc_sc = .3350;                %Dist. from origin in y-direction (m) 
z_loc_sc = .3318;                %Dist. from origin in z-direction (m) 
 
theta_1_deg = theta_1_deg_min;               %Set initial Joint 1 angle to min value (deg) 
theta_2_deg = theta_2_deg_min;               %Set initial Joint 2 angle to min value (deg) 
%theta_3_deg = theta_3_deg_min;               %Set initial Joint 3 angle to min value (deg) 
%theta_4_deg = theta_4_deg_min;               %Set initial Joint 4 angle to min value (deg) 
%heta_5_deg = theta_5_deg_min;               %Set initial Joint 5 angle to min value (deg) 
theta_6_deg = 0;                              %Joint 6 Angle is arbitrary and set to 0(deg) 
 
x_67_array = [];            %Initialize array for x-coords. for tool tip 
y_67_array = [];            %Initialize array for y-coords. for tool tip 
z_67_array = [];            %Initialize array for z-coords. for tool tip 
 
%Convert D-H Parmeters in Table into MATLAB Arrays 
alpha = [alpha0, alpha1, alpha2, alpha3, alpha4, alpha5];        %Create array of alpha angles (rad) 
a = [a0, a1, a2, a3, a4, a5];                                   %Array of "a" offset vectors 
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d = [d1, d2, d3, d4, d5, d6];                                   %Array of "d" offset vectors 
 
counter = 0;                                                  %Initialize iteration counter variable 
while theta_1_deg <= theta_1_deg_max, 
    theta_2_deg = theta_2_deg_min;                           %Reset theta_2_deg to min value (deg) 
     while theta_2_deg <= theta_2_deg_max, 
          counter = counter + 1;                      %Iterate iteration counter 
          %Create theta_deg array: 
          theta_deg = [theta_1_deg, theta_2_deg, theta_3_deg, theta_4_deg, theta_5_deg, theta_6_deg]; 
          theta = theta_deg * pi/180;               %Convert theta array to radians (rad) 
 
for i = 1:nframes, 
    %TransformMat computes transformation, rotation, and position matrices 
    [T(:,:,i)] = TransformWork(a(i),alpha(i),d(i),theta(i));   %Transformations from frame i to i-1 
    %Redefine variable names for matrices and output matrices to data file: 
    if i == 1, T1 = T(:,:,i); end 
    if i == 2, T2 = T(:,:,i); end 
    if i == 3, T3 = T(:,:,i); end 
    if i == 4, T4 = T(:,:,i); end 
    if i == 5, T5 = T(:,:,i); end 
    if i == 6, T6 = T(:,:,i); end 
end 
     
%Create a point at the origin of Frame 0: 
x0_pt = 0;      y0_pt = 0;      z0_pt = 0; 
%Create a point at the origin of Frame 1: 
x1_pt = T1(1,4);    y1_pt = T1(2,4);    z1_pt = T1(3,4); 
%Create line between Frames 0 and 1 
if abs(x1_pt-x0_pt) >= abs(y1_pt-y0_pt) && abs(x1_pt-x0_pt) >= abs(z1_pt-z0_pt), 
    x_01 = x0_pt : res : x1_pt;     %Let x-array drive change from Frame 0 to 1 
    y_01 = y0_pt : abs(y1_pt-y0_pt)/(size(x_01,2)-1) : y1_pt;  %Create y-array based on size of x-array 
    z_01 = z0_pt : abs(z1_pt-z0_pt)/(size(x_01,2)-1) : z1_pt;  %Create z-array based on size of x-array 
    if size(y_01, 2)==1,  y_01 = y0_pt + x_01.*0;  end    %If there is no change in y, create array of same mag. 
    if size(z_01, 2)==1,  z_01 = z0_pt + x_01.*0;  end    %If there is no change in z, create array of same mag. 
else if abs(y1_pt-y0_pt) >= abs(x1_pt-x0_pt) && abs(y1_pt-y0_pt) >= abs(z1_pt-z0_pt), 
    y_01 = y0_pt : res : y1_pt;     %Let y-array drive change from Frame 0 to 1 
    x_01 = x0_pt : abs(x1_pt-x0_pt)/(size(y_01,2)-1) : x1_pt;  %Create x-array based on size of y-array 
    z_01 = z0_pt : abs(z1_pt-z0_pt)/(size(y_01,2)-1) : z1_pt;  %Create z-array based on size of y-array 
    if size(x_01, 2)==1,  x_01 = x0_pt + y_01.*0;  end    %If there is no change in x, create array of same mag. 
    if size(z_01, 2)==1,  z_01 = z0_pt + y_01.*0;  end    %If there is no change in z, create array of same mag. 
    else        %the biggest change is in the z-direction 
        z_01 = z0_pt : res : z1_pt;     %Let z-array drive change from Frame 0 to 1 
        x_01 = x0_pt : abs(x1_pt-x0_pt)/(size(z_01,2)-1) : x1_pt;  %Create x-array based on size of z-array 
        y_01 = y0_pt : abs(y1_pt-y0_pt)/(size(z_01,2)-1) : y1_pt;  %Create y-array based on size of z-array 
      
        if size(x_01, 2)<=1,  x_01 = x0_pt + z_01.*0;  end    %If there is no change in x, create array of same mag. 
        if size(y_01, 2)<=1,  y_01 = y0_pt + z_01.*0;  end    %If there is no change in y, create array of same mag. 
    end 
end 
 
%Create a point at the origin of Frame 2: 
T_current = T1*T2;          %Create new transformation matrix from origin to current frame 
x2_pt = T_current(1,4);    y2_pt = T_current(2,4);    z2_pt = T_current(3,4); 
%%%plot3(x2_pt, y2_pt, z2_pt, 'r+', 'LineWidth', line_width), hold on       %Plot origin of Frame 2 
%Create line between Frames 1 and 2 
%Case I: Greatest change between frames is in x-direction: 
if abs(x2_pt-x1_pt) >= abs(y2_pt-y1_pt) && abs(x2_pt-x1_pt) >= abs(z2_pt-z1_pt), 
    if x2_pt >= x1_pt,                  %If x2 is greater than or equal to x1, create normal array 
        x_12 = x1_pt : res : x2_pt;     %Let x-array drive change from Frame 1 to 2 
    else x_12 = -x1_pt : res : -x2_pt;   x_12 = -x_12;   end    %Otherwise, flip array direction. 
    size_x12 = size(x_12,2)-1;          %Size of x_12 array 
    if y2_pt >= y1_pt,                  %If y2 is greater than or equal to y1, create normal array 
        y_12 = y1_pt : abs(y2_pt-y1_pt)/size_x12 : y2_pt;  %Create y-array based on size of x-array 
    else 
        y_12 = -y1_pt : abs(y2_pt-y1_pt)/size_x12 : -y2_pt;   y_12 = -y_12;   %Otherwise, flip array direction 
    end 
    if z2_pt >= z1_pt, 
        z_12 = z1_pt : abs(z2_pt-z1_pt)/size_x12 : z2_pt;  %Create z-array based on size of x-array 
    else 
        z_12 = -z1_pt : abs(z2_pt-z1_pt)/size_x12 : -z2_pt;   z_12 = -z_12;   %Otherwise, flip array direction 
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    end 
    if size(y_12, 2)<=1,  y_12 = y1_pt + x_12.*0;  end    %If there is no change in y, create array of same mag. 
    if size(z_12, 2)<=1,  z_12 = z1_pt + x_12.*0;  end    %If there is no change in z, create array of same mag. 
%Case II: Greatest change between frames is in y-direction: 
else if abs(y2_pt-y1_pt) >= abs(x2_pt-x1_pt) && abs(y2_pt-y1_pt) >= abs(z2_pt-z1_pt), 
    if y2_pt >= y1_pt,                  %If y2 is greater than or equal to y1,  
        y_12 = y1_pt : res : y2_pt;     %Let y-array drive change from Frame 1 to 2 
    else y_12 = -y1_pt : res : -y2_pt;   y_12 = -y_12;  end    %Otherwise, flip array direction. 
    size_y12 = size(y_12,2)-1;          %Size of y_12 array 
    if x2_pt >= x1_pt,                  %If x2 is greater than or equal to x1,  
        x_12 = x1_pt : abs(x2_pt-x1_pt)/size_y12 : x2_pt;  %Create x-array based on size of y-array 
    else 
        x_12 = -x1_pt : abs(x2_pt-x1_pt)/size_y12 : -x2_pt; x_12 = -x_12;  %Create x-array based on size of y-array 
    end 
    if z2_pt >= z1_pt, 
        z_12 = z1_pt : abs(z2_pt-z1_pt)/size_y12 : z2_pt;  %Create z-array based on size of y-array 
    else 
        z_12 = -z1_pt : abs(z2_pt-z1_pt)/size_y12 : -z2_pt;   z_12 = -z_12;  %Create z-array based on size of y-array 
    end 
    if size(x_12, 2)<=1,  x_12 = x1_pt + y_12.*0;  end    %If there is no change in x, create array of same mag. 
    if size(z_12, 2)<=1,  z_12 = z1_pt + y_12.*0;  end    %If there is no change in z, create array of same mag. 
%Case III: Greatest change between frames is in z-direction: 
    else        %the biggest change is in the z-direction 
        if z2_pt >= z1_pt, 
            z_12 = z1_pt : res : z2_pt;     %Let z-array drive change from Frame 1 to 2 
        else z_12 = -z1_pt : res : -z2_pt;   z_12 = -z_12;  end    %Otherwise, flip array direction. 
        size_z12 = size(z_12,2)-1;          %Size of z_12 array 
        if x2_pt >= x1_pt,                  %If x2 is greater than or equal to x1,  
            x_12 = x1_pt : abs(x2_pt-x1_pt)/size_z12 : x2_pt;  %Create x-array based on size of z-array 
        else 
            x_12 = -x1_pt : abs(x2_pt-x1_pt)/size_z12 : -x2_pt;  x_12 = -x_12;  end    %Otherwise, flip array direction. 
        if y2_pt >= y1_pt,                  %If x2 is greater than or equal to x1,  
            y_12 = y1_pt : abs(y2_pt-y1_pt)/size_z12 : y2_pt;  %Create y-array based on size of z-array 
        else 
            y_12 = -y1_pt : abs(y2_pt-y1_pt)/size_z12 : -y2_pt;  y_12 = -y_12;  end    %Otherwise, flip array direction. 
        if size(x_12, 2)<=1,  x_12 = x1_pt + z_12.*0;  end    %If there is no change in x, create array of same mag. 
        if size(y_12, 2)<=1,  y_12 = y1_pt + z_12.*0;  end    %If there is no change in y, create array of same mag. 
    end 
end 
%%%plot3(x_12, y_12, z_12, 'k-', 'LineWidth', line_width), hold on       %Plot line between Frames 1 & 2 in 3D 
 
%Create a point at the origin of Frame 3: 
T_current = T_current*T3;          %Create new transformation matrix from origin to current frame 
x3_pt = T_current(1,4);    y3_pt = T_current(2,4);    z3_pt = T_current(3,4); 
%Create line between Frames 2 and 3 
%Case I: Greatest change between frames is in x-direction: 
if abs(x3_pt-x2_pt) >= abs(y3_pt-y2_pt) && abs(x3_pt-x2_pt) >= abs(z3_pt-z2_pt), 
     
    if x3_pt >= x2_pt,                  %If x3 is greater than or equal to x2, create normal array 
        x_23 = x2_pt : res : x3_pt;     %Let x-array drive change from Frame 2 to 3 
    else x_23 = -x2_pt : res : -x3_pt;  x_23 = -x_23;  end    %Otherwise, flip array direction. 
    size_x23 = size(x_23,2)-1;          %Size of x_23 array 
    if y3_pt >= y2_pt,                  %If y3 is greater than or equal to y2, create normal array 
        y_23 = y2_pt : abs(y3_pt-y2_pt)/size_x23 : y3_pt;  %Create y-array based on size of x-array 
    else 
        y_23 = -y2_pt : abs(y3_pt-y2_pt)/size_x23 : -y3_pt;   y_23 = -y_23;   %Otherwise, flip array direction. 
    end 
    if z3_pt >= z2_pt, 
        z_23 = z2_pt : abs(z3_pt-z2_pt)/size_x23 : z3_pt;  %Create z-array based on size of x-array 
    else 
        z_23 = -z2_pt : abs(z3_pt-z2_pt)/size_x23 : -z3_pt;   z_23 = -z_23;   %Otherwise, flip array direction. 
    end 
    if size(y_23, 2)<=1,  y_23 = y2_pt + x_23.*0;  end    %If there is no change in y, create array of same mag. 
    if size(z_23, 2)<=1,  z_23 = z2_pt + x_23.*0;  end    %If there is no change in z, create array of same mag. 
%Case II: Greatest change between frames is in y-direction: 
else if abs(y3_pt-y2_pt) >= abs(x3_pt-x2_pt) && abs(y3_pt-y2_pt) >= abs(z3_pt-z2_pt), 
     
    if y3_pt >= y2_pt,                  %If y3 is greater than or equal to y2,  
        y_23 = y2_pt : res : y3_pt;     %Let y-array drive change from Frame 2 to 3 
    else y_23 = -y2_pt : res : -y3_pt;   y_23 = -y_23;  end    %Otherwise, flip array direction. 
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    size_y23 = size(y_23,2)-1;          %Size of y_23 array 
    if x3_pt >= x2_pt,                  %If x2 is greater than or equal to x1,  
        x_23 = x2_pt : abs(x3_pt-x2_pt)/size_y23 : x3_pt;  %Create x-array based on size of y-array 
    else 
        x_23 = -x2_pt : abs(x3_pt-x2_pt)/size_y23 : -x3_pt; x_23 = -x_23;  %Create x-array based on size of y-array 
    end 
    if z3_pt >= z2_pt, 
        z_23 = z2_pt : abs(z3_pt-z2_pt)/size_y23 : z3_pt;  %Create z-array based on size of y-array 
    else 
        z_23 = -z2_pt : abs(z3_pt-z2_pt)/size_y23 : -z3_pt;   z_23 = -z_23;  %Create z-array based on size of y-array 
    end 
    if size(x_23, 2)<=1,  x_23 = x2_pt + y_23.*0;  end    %If there is no change in x, create array of same mag. 
    if size(z_23, 2)<=1,  z_23 = z2_pt + y_23.*0;  end    %If there is no change in z, create array of same mag. 
%Case III: Greatest change between frames is in z-direction: 
else        %the biggest change is in the z-direction 
        if z3_pt >= z2_pt, 
            z_23 = z2_pt : res : z3_pt;     %Let z-array drive change from Frame 2 to 3 
        else z_23 = -z2_pt : res : -z3_pt;   z_23 = -z_23;  end    %Otherwise, flip array direction. 
        size_z23 = size(z_23,2)-1;          %Size of z_23 array 
        if x3_pt >= x2_pt,                  %If x3 is greater than or equal to x2,  
            x_23 = x2_pt : abs(x3_pt-x2_pt)/size_z23 : x3_pt;  %Create x-array based on size of z-array 
        else 
            x_23 = -x2_pt : abs(x3_pt-x2_pt)/size_z23 : -x3_pt;  x_23 = -x_23;  end    %Otherwise, flip array direction. 
        if y3_pt >= y2_pt,                  %If y3 is greater than or equal to y2,  
            y_23 = y2_pt : abs(y3_pt-y2_pt)/size_z23 : y3_pt;  %Create y-array based on size of z-array 
        else 
            y_23 = -y2_pt : abs(y3_pt-y2_pt)/size_z23 : -y3_pt;  y_23 = -y_23;  end    %Otherwise, flip array direction. 
        if size(x_23, 2)<=1,  x_23 = x2_pt + z_23.*0;  end    %If there is no change in x, create array of same mag. 
        if size(y_23, 2)<=1,  y_23 = y2_pt + z_23.*0;  end    %If there is no change in y, create array of same mag. 
    end 
end 
 
%%%Frame 3 to Frame 4a (Bend in Link 2)%%% 
l4 = 0 : res : a3;                      %Create an array based on the length of top part of Link 2 
phi_sum = theta(1);                            %Summation of all phi angles to this point is zero 
x4a = x3_pt + l4*sin(pi/2+theta(2)+theta(3))*cos(phi_sum);     %pi/2 is the fixed angle between d1 and the z0 axis 
y4a = y3_pt + l4*sin(pi/2+theta(2)+theta(3))*sin(phi_sum); 
z4a = z3_pt + l4*cos(pi/2+theta(2)+theta(3)); 
x4a_pt_loc = size(x4a,2);    y4a_pt_loc = size(y4a,2);         z4a_pt_loc = size(z4a,2); 
x4a_pt = x4a(x4a_pt_loc);    y4a_pt = y4a(y4a_pt_loc);    z4a_pt = z4a(z4a_pt_loc); 
 
%%%Frame 4a to Frame 4 (Base of Link 2)%%% 
%Create a point at the origin of Frame 4: 
T_current = T_current*T4;          %Create new transformation matrix from origin to current frame 
x4_pt = T_current(1,4);    y4_pt = T_current(2,4);    z4_pt = T_current(3,4); 
%Create line between Frames 4a and 4 
%Case I: Greatest change between frames is in x-direction: 
if abs(x4_pt-x4a_pt) >= abs(y4_pt-y4a_pt) && abs(x4_pt-x4a_pt) >= abs(z4_pt-z4a_pt), 
    if x4_pt >= x4a_pt,                 %If x4 is greater than or equal to x4a, create normal array 
        x_4a4 = x4a_pt : res : x4_pt;     %Let x-array drive change from Frame 4a to 4 
    else x_4a4 = -x4a_pt : res : -x4_pt;  x_4a4 = -x_4a4;  end    %Otherwise, flip array direction. 
    size_x4a4 = size(x_4a4,2)-1;          %Size of x_4a4 array 
    if y4_pt >= y4a_pt,                  %If y4 is greater than or equal to y4a, create normal array 
        y_4a4 = y4a_pt : abs(y4_pt-y4a_pt)/size_x4a4 : y4_pt;  %Create y-array based on size of x-array 
    else 
        y_4a4 = -y4a_pt : abs(y4_pt-y4a_pt)/size_x4a4 : -y4_pt;   y_4a4 = -y_4a4;   %Otherwise, flip array direction. 
    end 
    if z4_pt >= z4a_pt, 
        z_4a4 = z4a_pt : abs(z4_pt-z4a_pt)/size_x4a4 : z4_pt;  %Create z-array based on size of x-array 
    else 
        z_4a4 = -z4a_pt : abs(z4_pt-z4a_pt)/size_x4a4 : -z4_pt;   z_4a4 = -z_4a4;   %Otherwise, flip array direction. 
    end 
    if size(y_4a4, 2)<=1,  y_4a4 = y4_pt + x_4a4.*0;  end    %If there is no change in y, create array of same mag. 
    if size(z_4a4, 2)<=1,  z_4a4 = z4_pt + x_4a4.*0;  end    %If there is no change in z, create array of same mag. 
%Case II: Greatest change between frames is in y-direction: 
else if abs(y4_pt-y4a_pt) >= abs(x4_pt-x4a_pt) && abs(y4_pt-y4a_pt) >= abs(z4_pt-z4a_pt), 
    if y4_pt >= y4a_pt,                   %If y4 is greater than or equal to y4a,  
        y_4a4 = y4a_pt : res : y4_pt;     %Let y-array drive change from Frame 4a to 4 
    else y_4a4 = -y4a_pt : res : -y4_pt;   y_4a4 = -y_4a4;  end    %Otherwise, flip array direction. 
    size_y4a4 = size(y_4a4,2)-1;          %Size of y_4a4 array 
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    if x4_pt >= x4a_pt,                   %If x4 is greater than or equal to x4a,  
        x_4a4 = x4a_pt : abs(x4_pt-x4a_pt)/size_y4a4 : x4_pt;  %Create x-array based on size of y-array 
    else 
        x_4a4 = -x4a_pt : abs(x4_pt-x4a_pt)/size_y4a4 : -x4_pt;   x_4a4 = -x_4a4;  %Create x-array based on size of y-
array 
    end 
    if z4_pt >= z4a_pt, 
        z_4a4 = z4a_pt : abs(z4_pt-z4a_pt)/size_y4a4 : z4_pt;  %Create z-array based on size of y-array 
    else 
        z_4a4 = -z4a_pt : abs(z4_pt-z4a_pt)/size_y4a4 : -z4_pt;   z_4a4 = -z_4a4;  %Create z-array based on size of y-
array 
    end 
    if size(x_4a4, 2)<=1,  x_4a4 = x4a_pt + y_4a4.*0;  end    %If there is no change in x, create array of same mag. 
    if size(z_4a4, 2)<=1,  z_4a4 = z4a_pt + y_4a4.*0;  end    %If there is no change in z, create array of same mag. 
%Case III: Greatest change between frames is in z-direction: 
    else        %the biggest change is in the z-direction 
        if z4_pt >= z4a_pt, 
            z_4a4 = z4a_pt : res : z4_pt;     %Let z-array drive change from Frame 4a to 4 
        else z_4a4 = -z4a_pt : res : -z4_pt;   z_4a4 = -z_4a4;  end    %Otherwise, flip array direction. 
        size_z4a4 = size(z_4a4,2)-1;          %Size of z_4a4 array 
        if x4_pt >= x4a_pt,                   %If x4 is greater than or equal to x4a,  
            x_4a4 = x4a_pt : abs(x4_pt-x4a_pt)/size_z4a4 : x4_pt;  %Create x-array based on size of z-array 
        else 
            x_4a4 = -x4a_pt : abs(x4_pt-x4a_pt)/size_z4a4 : -x4_pt;  x_4a4 = -x_4a4;  end    %Otherwise, flip array 
direction. 
        if y4_pt >= y4a_pt,                  %If y4 is greater than or equal to y4a,  
            y_4a4 = y4a_pt : abs(y4_pt-y4a_pt)/size_z4a4 : y4_pt;  %Create y-array based on size of z-array 
        else 
            y_4a4 = -y4a_pt : abs(y4_pt-y4a_pt)/size_z4a4 : -y4_pt;  y_4a4 = -y_4a4;  end    %Otherwise, flip array 
direction. 
        if size(x_4a4, 2)<=1,  x_4a4 = x4a_pt + z_4a4.*0;  end    %If there is no change in x, create array of same mag. 
        if size(y_4a4, 2)<=1,  y_4a4 = y4a_pt + z_4a4.*0;  end    %If there is no change in y, create array of same mag. 
    end 
end 
 
%%%Create a point at the end of Joint 6%%% 
joint6_length = 0.2171;             %Joint 5 axis to face of hand roll joint (m) 
l6 = 0 : res : joint6_length;       %Create an array based on the distance between Joints 5 and 6 
 
%beta = pitch,                            alpha_2 = yaw,           %gamma = roll 
    %Note: "alpha" is taken by the DH parameters 
beta = theta(2)+theta(3)+pi/2+theta(5);   alpha_2 = theta(1);      gamma = theta(4); 
    %Note: pi/2 is added to theta(3) because it is subtracted in astepgui.m due to the frame transformations.  
    %Those transformations do not apply here 
 
R_yaw = [cos(alpha_2) -sin(alpha_2) 0;...       %Rotation matrix for yaw 
        sin(alpha_2) cos(alpha_2) 0;... 
        0 0 1]; 
     
R_pitch = [cos(beta) 0 sin(beta);...            %Rotation matrix for pitch 
           0 1 0;... 
           -sin(beta) 0 cos(beta)]; 
 
R_roll = [1 0 0;...                             %Rotation matrix for roll 
          0 cos(gamma) -sin(gamma);... 
          0 sin(gamma) cos(gamma)]; 
 
R = R_yaw*R_roll*R_pitch;                       %Pitch first, then roll, then yaw (order is critical) 
x_change_5 = l6;      y_change_5 = l6.*0;       z_change_5 = l6.*0;      %Create end point corresponding to alpha = 
beta = gamma = 0 
pos_5 = [x_change_5; y_change_5; z_change_5];                            %Put coordinates in a vectory array 
pos_6 = R * pos_5;                                                       %Rotate vector based on angles 
 
x_56 = x4_pt + pos_6(1,:);  y_56 = y4_pt + pos_6(2,:);  z_56 = z4_pt + pos_6(3,:);      %Add new location to previous 
location (x4, y4, z4) 
x_56_pt_loc = size(x_56,2);    y_56_pt_loc = size(y_56,2);    z_56_pt_loc = size(z_56,2); 
x_56_pt = x_56(x_56_pt_loc);    y_56_pt = y_56(y_56_pt_loc);    z_56_pt = z_56(z_56_pt_loc); 
 
 
%%Create a point at the end of the End-Effector (the tool tip)%%% 
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joint_7_length = ee_length;         %This is the end-effector length from Joint 6 to tool tip (meters) 
l_7 = 0 : res : joint_7_length;     %Create an array based on the distance between Joints 5 and 6 
 
x_change_7 = l_7;      y_change_7 = l_7.*0;       z_change_7 = l_7.*0;   %Create end point corresponding to alpha = 
beta = gamma = 0 
pos_7 = R * pos_5;                   %Rotate vector based on angles 
 
x_67 = x_56_pt + pos_7(1,:);  y_67 = y_56_pt + pos_7(2,:);  z_67 = z_56_pt + pos_7(3,:); 
x_67_pt_loc = size(x_67,2);     y_67_pt_loc = size(y_67,2);     z_67_pt_loc = size(z_67,2); 
x_67_pt = x_67(x_67_pt_loc);    y_67_pt = y_67(y_67_pt_loc);    z_67_pt = z_67(z_67_pt_loc); 
 
x_67_array = [x_67_array, x_67_pt];     %Add latest tool tip x-coord. to array 
y_67_array = [y_67_array, y_67_pt];     %Add latest tool tip y-coord. to array 
z_67_array = [z_67_array, z_67_pt];     %Add latest tool tip z-coord. to array 
 
        theta_2_deg = theta_2_deg + workspace_iter;             %Iterate theta_2_deg (degrees) 
    end 
    theta_1_deg = theta_1_deg + workspace_iter;             %Iterate theta_1_deg (degrees) 
end 
 
figure(6)       %Create figure for 3-D workspace plot 
plot3(x0_pt, y0_pt, z0_pt, '+', 'LineWidth', line_width*lw_mult), hold on       %Plot origin of Frame 0 
plot3(x_67_array, y_67_array, z_67_array, 'r+', 'LineWidth', line_width), hold on       %Plot end of the EE 
 
%%%Create Jaguar Base%%% 
R = [radius radius];                          %Create array with x = radius and y = radius 
N = 25;                                       %Number of mesh segments comprising cylinder 
[X,Y,Z] = cylinder(R,N);                      %Create x, y, and z components of cylinder 
C = zeros(2,N);                               %Generate C to serve as basic colormap (will be lime green) 
surf(height*Z-height,Y,X-radius,C); hold on %Produce cylindrical surface 
                                               %Third variable represents the cylinder axis 
[r,s,t] = sphere(N);                          %Create a sphere with NxN segments 
C2 = zeros(N,N);                              %Create variable C2 to serve as a colormap (lime green again) 
surf(radius*r,radius*s,radius*t-radius,C2);  %Generate sphere 
 
if ~jaguar, 
    %%%Create Upper Jaguar Cylinder%%% 
    surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on %Produce cylindrical surface 
                                                               %Third variable represents the cylinder axis 
    [r,s,t] = sphere(N);                          %Create a sphere with NxN segments 
    C2 = zeros(N,N);                              %Create variable C2 to serve as a colormap (lime green again) 
    surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2); %Generate sphere 
    %%%Create Strut Between Jaguar Cylinders%%% 
      %Create matrices of x and y to create plane for strut: 
    [X_strut, Y_strut] = meshgrid(strut_loc : .01 : strut_loc + strut_width); 
    Z_strut = X_strut + Y_strut;                          %Create z array (this will ultimately be the strut height 
    Zcol_loc = (size(X_strut,2)+1)/2;                     %Want the middle column of the Z matrix, this is an index 
    Zcol = Z_strut(:,Zcol_loc);                           %Find the column corresonding to the index Zcol_loc 
    Zmax = max(abs(Zcol));                                %Find the maximum value in the column vector 
    Zcol = Zcol + Zmax;                                   %Add to previous Zcol to translate the matrix to zero 
    Y_strut = 0.*Y_strut;                                 %Reset y values to zero (will assume strut has no thickness) 
    count = 1;      Znew = [];                            %Initilize counter and Znew matrix 
    while count <= size(Z_strut,2),                       %Create a new matrix consisting entirely of Zcol 
        Znew = [Znew, Zcol];                              %This will produce a rectangular figure 
        count = count + 1;                                %Iterate counter 
    end 
    Z_strut_max = max(abs(Znew));                         %Find the maximum value in the Znew matrix  
    Z_strut_max = Z_strut_max(1,1);                       %Want only ONE maximum value 
    Z_normalized = (Znew./Z_strut_max);                 %Normalize the Z values 
    Z_strut = Z_normalized * Jag_offset;                  %Multiply the normalized value by the strut height 
    C3 = zeros(size(Z_strut,2),size(Z_strut,2));         %Create variable C3 to serve as a colormap (lime green again) 
    surf(X_strut,Y_strut,Z_strut,C3)                      %Plot the strut surface 
end 
 
%%%Create Sample Cotiainers%%% 
%Create Sample Container 1: 
R_sc = [radius_sc radius_sc];                             %Create array with x = radius and y = radius 
N_sc = 40;                                                 %Number of mesh segments comprising cylinder 
[X_sc,Y_sc,Z_sc] = cylinder(R_sc,N_sc);                %Create x, y, and z components of cylinder 
X_sc = X_sc - x_loc_sc;                                   %X translation to sample container position (m) 
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Y_sc = Y_sc - y_loc_sc;                                   %Y translation to sample container position (m) 
Z_sc = height_sc*Z_sc - z_loc_sc;                         %Adjust size and translate to container postion (m) 
Xb_sc = X_sc(1,:); Yb_sc = Y_sc(1,:);                    %Isolate single rows from the cylinder matrices 
Zb_sc = Z_sc(2,:) - height_sc;                            %Isolate z-coord. and translate to cylinder base 
C_sc = ones(2, N_sc);                                     %Fix color to blue based on cylinder size 
%Create Sample Container 2: 
X2_sc = X_sc;   Y2_sc = -Y_sc;  Z2_sc = Z_sc;             %Base position of S.C. 2 on position of S.C. 1 
X2b_sc = X2_sc(1,:);  Y2b_sc = Y2_sc(1,:);                %Isolate single rows from the cylinder matrices 
Z2b_sc = Z_sc(2,:) - height_sc;                            %Isolate z-coord. and translate to cylinder base 
 
surf(X_sc, Y_sc, Z_sc, C_sc), hold on                      %Produce cylindrical sample container 
fill3(Xb_sc, Yb_sc, Zb_sc,'r')                             %Plot sample container baseplate 
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                  %Repeat for S.C. #2 
fill3(X2b_sc, Y2b_sc, Z2b_sc,'r')                                         
 
 
title('Work Envelope Plotted in 3-D Frame', 'FontWeight', 'bold', 'FontSize', title_size) 
xlabel('X-axis', 'FontSize', title_size), ylabel('Y-axis', 'FontSize', title_size), zlabel('Z-axis', 'FontSize', title_size) 
axis([xmin xmax ymin ymax zmin zmax]) 
%view(0, 0)         %Viewpoint specification (AZ,EL)  (-37.5, 30) is the MATLAB default 
                    %(0,0) is the x-z plane,  (0,90) is the x-y plane 
grid on 
 
 
figure(7)           %Plot of Manipulator in X-Z Plane 
plot3(x0_pt, y0_pt, z0_pt, '+', 'LineWidth', line_width*lw_mult), hold on       %Plot point at Frame 0 origin 
%Plot end of EE (tool tip): 
    plot3(x_67_array, y_67_array, z_67_array, 'r+', 'LineWidth', line_width), hold on 
surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere 
if ~jaguar, 
    surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                            %Third variable represents the cylinder axis 
    surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
    surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
end 
surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                      %Produce cylindrical sample container 
fill3(Xb_sc, Yb_sc, Zb_sc,'r')                                             %Plot sample container baseplate 
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
fill3(X2b_sc, Y2b_sc, Z2b_sc,'r')                                         
title('Work Envelope Plotted in X-Z Plane', 'FontWeight', 'bold', 'FontSize', title_size) 
xlabel('X-axis', 'FontSize', title_size), ylabel('Y-axis', 'FontSize', title_size), zlabel('Z-axis', 'FontSize', title_size) 
axis([xmin xmax ymin ymax zmin zmax]) 
grid on 
view(0,0)         %Viewpoint specification (AZ,EL), (0,0) is the x-z plane 
 
 
figure(8)           %Plot of Manipulator in X-Y Plane 
plot3(x0_pt, y0_pt, z0_pt, '+', 'LineWidth', line_width*lw_mult), hold on       %Plot point at Frame 0 origin 
%Plot end of EE (tool tip): 
    plot3(x_67_array, y_67_array, z_67_array, 'r+', 'LineWidth', line_width), hold on 
surf(height*Z-height,Y,X-radius,C), hold on                               %Produce cylindrical surface 
surf(radius*r,radius*s,radius*t-radius,C2), hold on                       %Generate sphere 
if ~jaguar, 
    surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on              %Produce cylindrical surface 
                                                                            %Third variable represents the cylinder axis 
    surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);              %Generate sphere 
    surf(X_strut,Y_strut,Z_strut,C3)                                       %Plot the strut surface 
end 
surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                      %Produce cylindrical sample container 
fill3(Xb_sc, Yb_sc, Zb_sc,'r')                                             %Plot sample container baseplate 
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                  %Repeat for S.C. #2 
fill3(X2b_sc, Y2b_sc, Z2b_sc,'r')                                         
title('Work Envelope Plotted in X-Y Plane', 'FontWeight', 'bold', 'FontSize', title_size)        
xlabel('X-axis', 'FontSize', title_size), ylabel('Y-axis', 'FontSize', title_size), zlabel('Z-axis', 'FontSize', title_size) 
axis([xmin xmax ymin ymax zmin zmax]) 
grid on 
view(0,90)         %Viewpoint specification (AZ,EL), (0,90) is the x-y plane 
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figure(9)           %Plot of Manipulator in Y-Z Plane 
plot3(x0_pt, y0_pt, z0_pt, '+', 'LineWidth', line_width*lw_mult), hold on        %Plot point at Frame 0 origin 
%Plot end of EE (tool tip): 
    plot3(x_67_array, y_67_array, z_67_array, 'r+', 'LineWidth', line_width), hold on  
surf(height*Z-height,Y,X-radius,C), hold on                                %Produce cylindrical surface 
surf(radius*r,radius*s,radius*t-radius,C2), hold on                        %Generate sphere 
if ~jaguar, 
    surf(height*Z-height,Y,X-radius + Jag_offset,C); hold on               %Produce cylindrical surface 
                                                                            %Third variable represents the cylinder axis 
    surf(radius*r,radius*s,radius*t-radius + Jag_offset,C2);               %Generate sphere 
    surf(X_strut,Y_strut,Z_strut,C3)                                        %Plot the strut surface 
end 
surf(X_sc, Y_sc, Z_sc, C_sc), hold on                                      %Produce cylindrical sample container 
fill3(Xb_sc, Yb_sc, Zb_sc,'r')                                             %Plot sample container baseplate 
surf(X2_sc, Y2_sc, Z2_sc, C_sc), hold on                                 %Repeat for S.C. #2 
fill3(X2b_sc, Y2b_sc, Z2b_sc,'r')                                         
title('Work Envelope Plotted in Y-Z Plane', 'FontWeight', 'bold', 'FontSize', title_size)        
xlabel('X-axis', 'FontSize', title_size), ylabel('Y-axis', 'FontSize', title_size), zlabel('Z-axis', 'FontSize', title_size) 
axis([xmin xmax ymin ymax zmin zmax]) 
grid on 
view(90,0)         %Viewpoint specification (AZ,EL), (90,0) is the y-z plane 
 
if spread,      %If plots are to be spread across the window: 
    if imac,     %If the figures are to be displayed on 2 Mac monitors: 
        x_zoom = .15; 
        y_zoom = .375; 
        set(figure(9), 'units', 'normalized', 'outerposition', [.15 .25  x_zoom y_zoom]) 
        set(figure(8), 'units', 'normalized', 'outerposition', [0   .25  x_zoom y_zoom]) 
        set(figure(7), 'units', 'normalized', 'outerposition', [.15  1   x_zoom y_zoom]) 
        set(figure(6), 'units', 'normalized', 'outerposition', [0    1   x_zoom y_zoom]) 
    end 
    if laptop,  %If the plots are to be shown on a standard Windows laptop 
        y_zoom = .48075; 
        x_zoom = 1/3; 
        y_base = .039; 
        set(figure(9), 'units', 'normalized', 'outerposition', [.6666   y_base  x_zoom y_zoom]) 
        set(figure(8), 'units', 'normalized', 'outerposition', [.3333   y_base  x_zoom y_zoom]) 
        set(figure(7), 'units', 'normalized', 'outerposition', [0       y_base  x_zoom y_zoom]) 
        set(figure(6), 'units', 'normalized', 'outerposition', [.6666   .52     x_zoom y_zoom]) 
    end 
end 
toc                                %End timer 
fprintf('Total Number of Iterations Performed: %.4g\n', counter)          %Output number of iterations 
speed = counter/toc;              %Iterations per second 
fprintf('Iterations Performed Per Second: %.7g\n\n', speed)          %Output calculation speed 
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H.10 Function TransformWork.m 
 
 
function [T] = TransformWork(a, alpha, d, theta) 
% Returns T transform matrix for manipulator kinematics per  
% Craig eq. 3.6 (Intro. to Robotics, 3rd ed.) 
 
%Row 1 of tranformation matrix 
    T(1,1) = cos(theta); 
    T(1,2) = -sin(theta); 
    T(1,3) = 0; 
    T(1,4) = a; 
    %Row 2 of transformation matrix 
    T(2,1) = sin(theta)*cos(alpha); 
    T(2,2) = cos(theta)*cos(alpha); 
    T(2,3) = -sin(alpha); 
    T(2,4) = -sin(alpha)*d; 
    %Row 3 of transformation matrix 
    T(3,1) = sin(theta)*sin(alpha); 
    T(3,2) = cos(theta)*sin(alpha); 
    T(3,3) = cos(alpha); 
    T(3,4) = cos(alpha)*d; 
    %Row 4 of transformation matrix 
    T(4,1) = 0; 
    T(4,2) = 0; 
    T(4,3) = 0; 
    T(4,4) = 1; 
 
T = [T(1,1) T(1,2) T(1,3) T(1,4);... 
     T(2,1) T(2,2) T(2,3) T(2,4);... 
     T(3,1) T(3,2) T(3,3) T(3,4);... 
     T(4,1) T(4,2) T(4,3) T(4,4)]; 
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H.11 Function R03testf.m 
 
 
function [R03test] = R03testf(theta2, a, alpha, d, sym, nframes) 
 
for i = 1:nframes, 
    %TransformMat computes transformation, rotation, and position matrices 
    [T(:,:,i), R(:,:,i), P] = TransformMat(a(i),alpha(i),d(i),theta2(i), sym);   %Transformations from frame i to i-1 
    if i == 1, T1 = T(:,:,i); R1 = R(:,:,i); P1 = P; end 
    if i == 2, T2 = T(:,:,i); R2 = R(:,:,i); P2 = P; end 
    if i == 3, T3 = T(:,:,i); R3 = R(:,:,i); P3 = P; end 
    if i == 4, T4 = T(:,:,i); R4 = R(:,:,i); P4 = P; end 
    if i == 5, T5 = T(:,:,i); R5 = R(:,:,i); P5 = P; end 
    if i == 6, T6 = T(:,:,i); R6 = R(:,:,i); P6 = P; end 
end 
%Get W Transformations (W(i) = W(i-1)*R(i): 
[W0, W1, W2, W3, W4, W5, W6] = TransformW(R1, R2, R3, R4, R5, R6);      
 
%Get positions of coordinate frames: 
[dx1, dx2, dx3, dx4, x0, x1, x2, x3, x4] = TransformPos(W0, W1, W2, W3, W4, W5, P1, P2, P3, P4, P5, P6);    
 
R03test = W3; 
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H.12 Function sample_container.m 
 
 
function [X_sc, Y_sc, Z_sc, C_sc, X2_sc, Y2_sc, Z2_sc, X3_sc, Y3_sc, Z3_sc,... 
    X4_sc, Y4_sc, Z4_sc, X_lower, X_upper, Y_lower, Y_upper, Z_lower, Z_upper]... 
    = sample_container(containers, x_sc, y_sc, z_sc, pitch_sc, roll_sc, yaw_sc, sc_plot) 
 
%Sample Container Details 
%radius_sc = .1206;               %Sample container inner radius (m) - (corresponds to Di = 9.493 in) 
radius_sc = .1365;               %Sample container outer radius (m) - (corresponds to Do = 10.75 in) 
height_sc = .2667;               %Sample continer height (m) - (corresonds to h = 10.5 in) 
    %Default Container Position: 
    %x_loc_sc = -.25;   y_loc_sc = .3350;   z_loc_sc = -.3318; 
if sc_plot,                       %If using the user-values... 
    x_loc_sc = x_sc;                 %Dist. from origin in x-direction (m) 
    y_loc_sc = y_sc;                 %Dist. from origin in y-direction (m) 
    z_loc_sc = z_sc;                 %Dist. from origin in z-direction (m) 
else                              %Use default locations 
    x_loc_sc = -.12;                 %Dist. from origin in x-direction (m) 
    y_loc_sc = .335;                 %Dist. from origin in y-direction (m) 
    z_loc_sc = -.3318;               %Dist. from origin in z-direction (m) 
    pitch_sc = 0;                    %Default pitch angle (rad) 
    roll_sc = 0;                     %Default roll angle (rad) 
    yaw_sc = 0;                      %Default yaw angle (rad) 
end 
     
%%%Create Sample Containers%%% 
%Create Sample Container 1: 
R_sc = [radius_sc radius_sc];                             %Create array with x = radius and y = radius 
N_sc = 25;                                                 %Number of mesh segments comprising cylinder 
[X_sc,Y_sc,Z_sc] = cylinder(R_sc,N_sc);                %Create x, y, and z components of cylinder 
Z_sc = height_sc*Z_sc;                                    %"cylinder" sets Z_sc as array from 0 to 1, height_sc scales it 
Xb_sc = X_sc(1,:); Yb_sc = Y_sc(1,:);                     %Isolate single rows from the cylinder matrices 
Zb_sc = Z_sc(2,:) - height_sc;                            %Isolate z-coord. and translate to cylinder base 
C_sc = ones(2, N_sc);                                     %Fix color to blue based on cylinder size 
 
%Rotation matrices for sample container position adjustments 
R_yaw = [cos(yaw_sc) -sin(yaw_sc) 0;...            %Rotation matrix for sample container yaw (Frame 0 z-axis) 
        sin(yaw_sc) cos(yaw_sc) 0;... 
        0 0 1]; 
R_pitch = [cos(pitch_sc) 0 sin(pitch_sc);...     %Rotation matrix for sample container pitch (Frame 0 y-axis) 
           0 1 0;...                              %Pitch over y0-axis... 
           -sin(pitch_sc) 0 cos(pitch_sc)]; 
R_roll = [1 0 0;...                               %Rotation matrix for sample container roll (Frame 0 x-axis) 
          0 cos(roll_sc) -sin(roll_sc);...        %Roll over x0-axis 
          0 sin(roll_sc) cos(roll_sc)]; 
R = R_yaw*R_pitch*R_roll;                        %Combine rotataion matrices into one matrix - note the order... 
T = [R(1,1) R(1,2) R(1,3) x_loc_sc;...           %Create transformation matrix 
     R(2,1) R(2,2) R(2,3) y_loc_sc;...           %Cylinder translation occurs here 
     R(3,1) R(3,2) R(3,3) z_loc_sc;... 
     0      0      0      1]; 
[N M] = size(X_sc);                               %Determine size of matrices 
Ones_sc = ones(N, M);                             %Create matrix of that size composed of ones 
  
pos = [X_sc(1,:); Y_sc(1,:); Z_sc(1,:); Ones_sc(1,:)];       %Form a position vector for one side of cylinder 
pos2 = T*pos;                                                 %Multiply position vector by transformation matrix 
posb = [X_sc(2,:); Y_sc(2,:); Z_sc(2,:); Ones_sc(1,:)];      %Form a position vector for other side of cylinder 
pos2b = T*posb;                                               %Multiply other position vector by transformation matrix 
 
X_sc = pos2(1,:);                           %Isolate new x-coords. for one side of cylinder 
Y_sc = pos2(2,:);                           %Isolate new y-coords. for one side of cylinder 
Z_sc = pos2(3,:);                           %Isolate new z-coords. for one side of cylinder 
Xi_sc = pos2b(1,:);                         %Isolate new z-coords. for other side of cylinder 
Yi_sc = pos2b(2,:);                         %Isolate new z-coords. for other side of cylinder 
Zi_sc = pos2b(3,:);                         %Isolate new z-coords. for other side of cylinder 
 
Y_adjust = radius_sc - radius_sc*cos(roll_sc);     %Dist. container shifted from Jaguar due to rotation (m) 
%Y_adjust = 0; 
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X_sc = [X_sc; Xi_sc];                        %Combine new x-coords., needed for cylinder plotting                  
Y_sc = [Y_sc; Yi_sc];                       %Combine new y-coords., needed for cylinder plotting 
Y_sc = Y_sc - Y_adjust;                     %Shift y_coord. back to Jaguar 
Z_sc = [Z_sc; Zi_sc];                       %Combine new z-coords., needed for cylinder plotting 
 
%Create Sample Container 2: 
X2_sc = X_sc;   Y2_sc = -Y_sc;  Z2_sc = Z_sc;             %Base position of S.C. 2 on position of S.C. 1 
                                                            %Negative y flips it to other side of Jaguar 
%Create Sample Containers 3 & 4: 
if sc_plot,                               %If using the user-inputs... 
    X3_sc = 0;  Y3_sc = 0;  Z3_sc = 0;        %Set variables to arbitrary values 
    X4_sc = 0;  Y4_sc = 0;  Z4_sc = 0;        %Set variables to arbitrary values 
else                                      %Use default values... 
    X3_sc = X_sc + 2*radius_sc;              %Offset another row of sample containers by the container diameter 
    Y3_sc = Y_sc;  Z3_sc = Z_sc;             %Y & Z positions don't change from SC 1 
     
    X4_sc = X3_sc;  Y4_sc = -Y3_sc;  Z4_sc = Z3_sc;      %Adjust just as from SC 1 to 2 
end 
 
X_lower = (max(X_sc(1,:))+min(X_sc(1,:)))/2;         %Calculate average x postion on lower surface (m) 
X_upper = (max(X_sc(2,:))+min(X_sc(2,:)))/2;         %Calculate average x postion on upper surface (m) 
Y_lower = (max(Y_sc(1,:))+min(Y_sc(1,:)))/2;         %Calculate average y postion on lower surface (m) 
Y_upper = (max(Y_sc(2,:))+min(Y_sc(2,:)))/2;         %Calculate average y postion on upper surface (m) 
Z_lower = (max(Z_sc(1,:))+min(Z_sc(1,:)))/2;         %Calculate average z postion on lower surface (m) 
Z_upper = (max(Z_sc(2,:))+min(Z_sc(2,:)))/2;         %Calculate average z postion on upper surface (m) 
 
if containers,         %Is sample containers are to be output to the command window... 
%Output container angles to command window:     
    fprintf('\nProgrammed Sample Container Angles:\n') 
    fprintf('   Pitch: %.4g deg.\n', pitch_sc*180/pi) 
    fprintf('   Roll:  %.4g deg.\n', roll_sc*180/pi) 
    fprintf('   Yaw:   %.4g deg.\n', yaw_sc*180/pi) 
%Output coordinates to command window: 
    fprintf('\nCoordinates of Sample Container Cylinder Center:\n') 
    fprintf('Upper Surface:\n') 
    fprintf('   X-Coordinate: %.4g m\n', X_upper) 
    fprintf('   Y-Coordinate: %.4g m\n', Y_upper) 
    fprintf('   Z-Coordinate: %.4g m\n', Z_upper) 
    fprintf('Lower Surface:\n') 
    fprintf('   X-Coordinate: %.4g m\n', X_lower) 
    fprintf('   Y-Coordinate: %.4g m\n', Y_lower) 
    fprintf('   Z-Coordinate: %.4g m\n', Z_lower) 
end 
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