Mechanical Systems with Partial
Damping: Two Examples

by L.S. Wang, P.S. Krishnaprasad,
and W.P. Dayawansa

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

TR 91-49



Mechanical Systems with Partial Damping: Two Examples

Li-Sheng Wang* P.S. Krishnaprasadf W.P. DayawansaT

ABSTRACT. We discuss the problem of constructing steady state motions of mechanical
systems with partial damping. A planar three bar linkage with viscous damping at one of
the joints is considered as an example. We show that for a generic set of system parameters
all steady state motions are confined to relative equilibria. We also consider the example
of two rigid bodies with on-board rotors coupled via a ball-in-socket joint with viscous

friction and show that in the steady state, the system is at a relative equilibrium.
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1 Introduction

Mechanical systems typically possess some amount of damping. Thus the steady
state behavior of systems can be described by restricting the dynamics to a certain maximal
invariant set in the state space. An example of such behavior is that of laminar flow of
fluids [5]. Even though the overall system is infinite dimensional, in the steady state, the
flow is captured by a finite dimensional model and the restriction of the system to a finite
dimensional invariant set known as the inertial manifold is well-understood in many cases
[5]-

Here we consider two essentially equivalent methods to compute the steady state

behavior of a Lagrangian system with partial dissipation. In the first method, which is
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valid for real analytic systems, dissipation is modeled as a vector field along which the time
derivative of the hamiltonian is nonpositive. This then yields the criterion that along any
steady state motion all higher order time derivatives of the hamiltonian with respect to
the dissipative fleld should be zero. This in turn gives rise to equations which describe an
invariant subset of the state space of the system which contains all steady state motions.

This method will be demonstrated by an example of coupled rigid-body system.

Another method to compute steady state motions is the following. Suppose that the
dissipation is due to viscous friction at a subset of the joints. Now the configuration space
of the system can be thought of as a fiber bundle over the space of joint variables and any
motion of the body which yields a relative motion at joints with viscous friction corresponds
to negative external work done and hence by the Lagrange-d’Alembert Principle, the total
energy of the system will decrease. Thus in the steady state there is no relative motion
at joints with viscous friction and vice versa. We will illustrate this with the example of
a three-bar linkage mechanism with one of the two joints subject to viscous friction. An
interesting aspect of this example is that it displays resonance behavior in the sense that
for a nongeneric set of system parameters there can be non-relative equilibrium steady

state motions.

2 Hamiltonian Systems with Added Dissipation

A mechanical system with damping (in reduced or unreduced phase space) can be
described abstractly as a triple (P, Xz, XP), where P is a Poisson manifold with a Poisson
structure {-,-}, Xg is a hamiltonian vector field on P with hamiltonian H, and X7 is

a vector field on P which describes dissipative terms.

DEFINITION 2.1.

A vector field Y on P is called a dissipative field with respect to the hamiltonian H
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if,
(1) Y[H](p) £ 0, VpeP,
(2) Forpe P,

Y{H](p) = 0, ifandonlyif Y(p) = 0.

In what follows, we will assume that X7 is a dissipative field.

The fact that in the case of mechanical systems one is led to consider a triple as
above can be inferred from the following.

Let @ be the configuration space of a mechanical system with the associated
Lagrangian L : TQ — R. Let H; : TQ — R be the associated energy (see [1] [6]
for details). T'Q inherits a symplectic structure from the canonical symplectic structure
of T*Q via L in a natural way. Let Xy, denote the hamiltonian vector field on TQ
associated to Hp. A dissipative force can be modeled as a horizontal one-form w on TQ
by considering the virtual work on infinitesimal displacements, i.e. special vector fields.
Due to the symplectic structure, there is a one-to-one correspondence between horizontal
1-forms and vertical vector fields on TQ. Let XP be the vertical vector fleld on TQ
which corresponds to w. As a generalization of the notion of Rayleigh’s dissipation, (c.f.

e.g. [2],) we assume that the dissipative forces satisfy the following properties,

(1) w(z,0)(v, w) = 0,forall z € Q, v, we T:Q.
(2) w(z,&)(£,2) < 0, for all (z,2) € TQ, and furthermore, if w(z,£)(£,0) = 0 at

some (z,%), then w(z,z) = 0.

It can be seen easily that these conditions imply that if XP[H](z,2) = 0 at some
(z,2) € TQ, then XP(z,2) = 0 as well. Each triple (T'Q, X, , XP) defines a mechanical

system under consideration.



Now let us consider our general mechanical system (P, Xy, XP). We assume that

H is bounded below and all solutions of the system

i = Xg + XP, (2.1)

are bounded. Let ' = {z € P| XP[H](z) = 0}. Let M be the maximal invariant
set of the system with respect to the flow of Xy + XP, contained in A'. By LaSalle’s
invariance principle all solutions of the system converge to M in the steady state. Thus
we are interested in the structure of M. Let Ly denote Lie differentiation with respect
to the vector field Y.

LEMMA 2.2.

Suppose that the system is real analytic. Then
M = {zeP|L% LxoH(z) = 0, k=0,1,2,--- }. (2.2)

Proof.

Let z € P be such that L% Lxp H(z) =0, k =0,1,2,---. Then it follows that
XP[H] = 0 along the Xy orbit through p, which is denoted by 4?. Now by the definition
of a dissipative field, X? = 0 on 4?. Thus ~? is the Xy + X7 -orbit through p and it
lies in A'. Therefore p € M. Conversely, if p € M, then XP = 0 along the Xy and
Xy + XP orbit through p. Therefore L’;(HLXD H(z) =0, k=0,1,2,---.

I

In terms of the Poisson structure, we can further write

M = {p| XPH|(p) =0, {H, XP[H]}(p) =0,

(2.3)
{(H,{..{H, XPH]}..}}(p) =0,--}.

This construction will be described via an example of two rigid bodies coupled by a ball-
in-socket joint with viscous friction.
Another observation that helps us to compute the set M is the following. Suppose

that damping occurs only at a certain subset of joints. Now let ¢ : Q@ — S be the projection
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map from the configuration space to the space of joints with damping. Let us assume that
the dissipation on S is due to Rayleigh damping. Now it follows that any infinitesimal
displacement X on T'Q such that T¢(X) # 0 will céuse energy loss. Therefore steady
state motions should be such that the corresponding joint variables are kept constant.
This observation sometimes help us to unravel the otherwise intractable set of equations
describing the maximal invariant set. We will illustrate this via an example of three-bar

linkage with one dissipative joint.

3 Examples

First we consider the example of two rigid bodies with on-board rotors coupled via
a ball-in-socket joint. Figure 3.1 depicts the system configuration. Let By, Bz denote the
attitudes of body 1, body 2, respectively, viewed as elements in the rotation group SO(3).
One set of rotors, called driven rotors, on body 1 are set to spin at constant rates relative
to body 1. The other set of rotors, called damping rotors, on body 2 provides damping

torques according to the following law,

TP = _ad, (3.1)

where o is a positive-definite matrix and @ is a vector consisting of relative angles of each
damping rotors relative to body 2. Let Q;, 2 be the angular velocities of body 1,
and 2 relative to their ¢orresponding frame. Let B = B By denote the coordinate
transformation from body 2 to body 1, or the shape variable. We assume that there

is a damping torque exerted at the spherical joint in the form of

T/ = —o(Q; — BTQ,). (3.2)

where o is also a positive-definite matrix.
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Figure 3.1. Two Rigid Bodies with Rotors

The system under investigation can be set into the framework illustrated in Section 2

with the following entities. First, the configuration space can be modeled as

Q@ = SO(3) x (S')° x SO(3) x (S)?,

where the first (S!)® represents the driven rotors and the second one represents the
damping rotors. Since each of the driven rotors spins at a constant rate, the system
without damping is a gyroscopic system, cf. [6], [7]. Thus it can be shown that the energy

functional H; can be written as



1 1
Hy = D) <, T >+ <Qp, Dy >+e<, d X B(ds x §22) >

(3.3)
1 . b D

-+-2—<<I>,I Q>+ <, IV >,
where J;, J, are the moments of inertia of body 1 and body 2 with locked rotors
respectively, the constant € = (mimg)/(my + m2) is the reduced mass, and the diagonal
matrix IP consists of three moments of inertia of damping rotors with respect to their
corresponding spinning axis. In (3.3) and what follows, the symbol < -,- > denotes the
Euclidean inner product. The exterior force w can be constructed from the damping

torques T2, T7 in (3.1), (3.2). By evaluating the one-form w on the vector field Xy, ,

we obtain,

wXg,) = —<& ad> — <Q—B"Q, o(Q —B7%)> £ 0.

Accordingly, by the definition in Section 2, w is a dissipative force. The maximum
invariant set M can be then found to be the same as the set of relative equilibria. From
the discussion in Section 2, it follows that all steady state motions should be at relative
equilibria of the undamped system. See [7] for detailed discussions.

The second example is a planar three bar linkage mechanism with one dissipative
joint. Here we consider three planar objects coupled to each other via pin joints, see
Figure 3.2. The center of mass of the second body is assumed to lie on the straight
line segment from joint 1 to joint 2. Joint 1 is assumed to be dissipative and joint 2 is
frictionless. Thus in the steady state, there is no relative motion at joint 1. We exploit this
fact to compute the maximal invariant set. A direct attempt at this computation leads to
an intractable problem.

Qur approach is the following. Since there is no relative motion between links 1
and 2, we lump them into one body and consider the dynamics of a two-body system.
However since the internal torque at joint 1 is equal to 0, the system should satisfy an
extra constraint. This will show that links 1 and 2 should be aligned in a straight line. Now

the constraint equation simplifies even further and will lead to a set of polynomial equations
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Figure 3.2. A Planar Three Bar Linkage

which should be satisfied in order for non-relative equilibrium steady state motions to exist.

Let

: center of mass of the system,

: center of mass of links 1 and 2,

I;

A1 A, etc. will have obvious meanings and | 42C> |, | A1 A2 | etc. will denote their

Euclidean norms, respectively,
= mp + maz,
= miz + ma3,
= angular velocities of link ¢,

= moment of inertia of link ¢ about its center of mass.

By assumption, C3 lies on the line segment Aj; A, . Consider a steady state motion. First

lump links 1 and 2 together to form link (1,2). For the sake of nontriviality, assume that

the system is not at a relative equilibrium and the total angular momentum is nonzero. We
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will only consider the case when Cy; # A; here. Now for the planar two-body (links (1,2
and 3) problem, for the ensuing motion let w3(t), wi 2(t) denote the angular velocities of
links 3 and (1,2) respectively and let ((¢) be the angle between them. We will first show

that Cy, A; and A, are collinear. The dynamical equations are (see 3] [4]),
Jia2 ycosp wiz ) _ ) w?
(7 cos 3 J3 W3 = 7sinf ~w?, (3.4)

msm;y,2
b)
mg3 +my 2
-2
Jig =1io + €| ACra |5,

where

€ =

J3 ==I3 + €‘A203 ‘2’

v = €| A2C5 | | A2Cr2],

and I 2 is the moment of inertia of link (1,2). Hence

B = g — ws
~sin B (3.5)

A A +2 cos? B ((J1,2 + cos ﬁ)uﬁlz + (J3 + 7 cos Bw?).

Now we show that there exists some ¢y > 0 such that B(¢g) = 7. For, assume otherwise,
ie. f(t) € (—m,7) for all ¢t > 0. Since we are considering non-relative equilibrium steady
motions, we may discard the possibility that 3(t) converges to a limit as ¢ — co. Now let
t > 0 such that either B(f) > 0 and B(?) is a local maximum or B(f) < 0 and B(f) is a
local minimum. Then, 5(%) = 0 and A(¥)sin 8(f) < 0. However, from (3.5),

~vsin® B()

J12J3 — % cos? B(1) ((J1,2 + J5) + 27 cos 5(&)“&(’})2,

B@sinB(E) =

and its right hand side is positive since Jy 2J3 > 4. This contradiction proves our assertion
that there exists some to > 0 such that 8(¢¢o) = 7. For simplicity let ¢ = 0.
Let us now focus on the dynamic force balance of the system at ¢ = 0. From (3.4)

it follows that @y 2(0) = 0 = w3(0).



Let us denote the acceleration vector of point z relative to y at time t =0 by ay,
namely, azy 2 7z . Let wy(0) = Q;. It is easy to see that

1

0Cy,,0 = T—n—(m:ngAzcs + msﬂf,g Ci24s ),

where m = my + mz2 + mg3. Since §(0) = , it follows that

ac,,,0 = AACs,

for some positive constant A. For an arbitrary point P on C;A; ,

)
apo = ap4, + aa,0 = Q1,PA;1 + aa, 0.

Since the internal torque at A; is equal to zero, it follows from the Newton’s equation

that,

ag,,0 = pCrA, (3.6)

for some g € R. Now
04,0 = 04,,Ci; t 0C1,,0

= Qig A1C12 + AARCh, : (3.7)

= QE,Z A;Cr2 + 6C124,.
where 8 is a positive constant. However, since Cz lies on A; A,

— J— m —
AiCy = mACr, — -n'i"?z Ci242, (3.8)

where 71, n, are positive constants. From (3.6), (3.7) and (3.8) it now follows that 4;C12
and Cj2A, are linearly dependent. Therefore A;, A2 and C are collinear.
Let 3 denote the angle between A2C; and A;Ciq . For z1(t), z2(%) € R, let the

acceleration vector of z,(t) relative to z2(¢) be denoted by az, z,(t). For § € R, let

R(O) = (cosa —sin9>’

sinfd cos#f
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and define the angle of inclinations of A;C3 and A,C;2 by
A,C3 = R(03)] A2C5 |1,

AC1a = R(64,2)| A2C12 |1,
where 1 = (1 0 0)T. Now by a straightforward calculation, it can be checked that

ac,o0 = %i(égrzca — 62,A4;Cr2 — 063R(6;)|A2C5 |3 + 612R(612)| A2C1213),

where j =(0 1 0)7. Hence

Qc,,0 = %(% A3 — ésR(Gs)‘Azcslj + 6(95,21‘12012 —9‘1,2R(91,2)|?‘r2_é§|j)>,

where £ is a real constant. Now since the internal torque at A; is equal to zero, by

Newton’s equation we obtain,

0 = miac,,0 X A101 + Ilél,gk,

where k = 1 x j. After simplifying this we obtain,

%3-((93 sinﬁ + 53 COS,H) |A203I|A2012| + 651,2|A2012 l2> + Ilélyz == 0, (39)

where § is a constant.

The dynamical equations of the two-body system, i.e. links (1,2) and 3, are
J3 7 cos 53 _ . —é%,z
(70085 J1,2 > (91,2 = 7sinf 63

where J3, J12 and v are defined previously. Hence

93 _ . — sinﬁ legéig -I'.-’YCOS ,39% ) (3 10)
612)  J3Jig—~2cos?B \ —ycos ,39%’2 — J36% ) ’

Substitution of (3.10) in (3.9) yields,

awi + blcos f)wi, + c(cosB)’wi = 0, (3.11)

for all # in an interval around =, where
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- m
=~J3(L; + €| A2C12 *) + 5—;n3J3J1,2|A203 || A2C12 |,

— m
b =L +e6—| Tl ") — 1126 | 4Ca || KCra

c = — 2572—m—3lA2C3HA2CI2I’
m
w3 = é3y
Wiz = 912-

)

Clearly a, b, c are constants which are polynomials of system parameters. It now follows
that if the system parameters are such that a = 0 = b = ¢, then there are steady state
motions which are not at relative equilibria. This is the resonance condition that we
referred to in the Introduction.

We will now show that for a generic set of system parameters, all steady state motions
coincide with relative equilibria. For fixed (a,b,c) we may consider (3.11) as a polynomial
equation in w3, wy2 and cos 8. Note that repeated differentiation of (3.11) with respect
to time along solutions of (3.10) yield equations which are once again polynomials in ws,
wy,2 and cos . (sin B occurs only as a factor and can be omitted for reason of continuity).
Now any orbit passes through a point at which 8 = =. Let us focus on this instant in
time. We only need to show that for a generic set of system parameters these equations in
w3 and w2 are in general position. But since being in general position is generic, we only
need to show that there is one system for which the equations are in general position.

Now we consider the case,

_— —_— ——— 1 —— -
| A2C3| = 1, [AC| = [A1CL] = 50 |A2A1| = 1, A0y = AiCh,

. 1 1 1
m1=m2=§, m3=1, I1=I2‘—tz, I3-‘=§
For this system, (3.11) is
9wi + 6(cosB)wi, + (cosB)’w; = 0. (3.12)

Evaluating (3.12) and its derivative at 8 = m, we obtain
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10w; — 6w;, = 0, (3.13)

~18w3 + 22wjwiy + 46wswi, — 18wi, = 0, (3.14)

Clearly (3.13) and (3.14) have no complex solutions. Thus the system is in general position
for this particular set of parameters, and hence for a generic set of parameters. Therefore
we conclude that for a generic system all steady state motions are coincident with relative

equilibria.
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