Scheduling Jobs Before Shut-Down

Vincenzo Liberatore!

University of Maryland

Institute for Advanced Computer Studies

IUMIACS, A. V. Williams Building, University of Maryland, College Park, MD 20742
vliberatore@acm.org). URL: http://www.umiacs.umd.edu/users/liberato/.
8

Abstract

Distributed systems execute background or alternative jobs while waiting for data or requests to
arrive from another processor. In those cases, the following shut-down scheduling problem arises:
given a set of jobs of known processing time, schedule them on m machines so as to maximize the
total weight of jobs completed before an initially unknown deadline. We will present optimally
competitive deterministic and randomized algorithms for shut-down scheduling. Our deterministic
algorithm is parameterized by the number of machines m. Its competitive ratio increases as the
number of machines decreases, but it is optimal for any given choice of m. Such family of determin-
istic algorithm can be translated into a family of randomized algorithms that use progressively less
randomization and that are optimal for the given amount of randomization. Hence, we establish a
precise trade-off between amount of randomization and competitive ratios.

1 Introduction

Internet users experience substantial delays while retrieving Web documents. Web performance
is particularly degraded by the self-similar nature of Internet traffic [CB98, WP9R], in which lulls
alternate with spikes of extreme activity. As a result, Web performance is especially improved
when operations are moved from peak periods to intervening lulls. For example, idle periods
can be exploited by servers to speculatively disseminate data to dial-up clients, thus substantially
reducing the latency experienced to retrieve subsequent documents [FCJ99]. The “polite push”
framework is currently the major feature of a commercial system'!. Delays can stall the execution
of a distributed query in a Web-based database system so as to trigger alternate queries or query

plans [UFA9S].

Shut-Down Scheduling. Such systems share the following core optimization problem: a set
of alternative or background jobs can be scheduled during a lull. A lull has unknown duration
because it ends asynchronously when a message is received from the network. We will refer to such
problem as shut-down scheduling because jobs execution is unpredictably interrupted. The off-line
version of shut-down scheduling is a mazimum 0/1 multiple knapsack problem where all knapsacks
have the same capacity. A book summarizes results in the theoretical and practical solution of
the multiple knapsack problem [MT90]: it is strongly NP-hard [MT90], and a polynomial-time
approximation scheme has been recently discovered [Kel99]. Several authors have considered an
on-line single knapsack problem where the deadline is known in advance, and jobs arrive on-line
[Lue95, MSV95]. The on-line knapsack problem can be regarded as the dual of shut-down scheduling
and it is substantially an admission control problem [BEY98, GGK'97]. In general, shut-down
scheduling is related to on-line call control [BEY98, GGK'97], load balancing [BEY98, Gra66], and
bin packing [BEY98, CGJ97, GGUT73|. Scheduling with machine breakdowns has been considered
as well [KP94, KP97, AS98]: jobs must be scheduled on m processors so as to complete in the
presence of permanent or transient faults. Breakdowns are different from shut-down in several
respects, as, for example, arrival times, objective function, job restart, redundant scheduling, and
for the techniques and results of the analysis.

Our results. We will present optimally competitive deterministic and randomized algorithms
for shut-down scheduling. We have obtained preliminary experimental results on actual Web trace
simulations [LD99]. Such results indicate that a competitive algorithm indeed outperforms natural,
but non-competitive strategies. We will also express the optimal competitive ratio as a function
of the number of randomization bits. Consequently, we will establish a precise trade-off between
competitive ratios and the amount of randomization. Randomized algorithms can be fully deran-
domized provided that there are sufficiently many machines. If there is only a small number m
of machines, we will give an optimal deterministic algorithm CSM that is parameterized by m.
The competitive ratio of CSM increases as m decreases, but, for any given choice of m, our CSM
algorithm is optimal. We will also interpret CSM as a family of randomized algorithms that use
progressively less randomization at the price of a worse competitive ratio. Our algorithm is optimal
for any given choice of the amount of randomization and coincides with the optimal deterministic
and randomized algorithms in the two extreme cases. Thus, such algorithm establishes the claimed
trade-off between randomization and competitive ratio. Deterministic algorithms and lower bounds
are transformed into randomized algorithms and lower bounds by a technique that is simple and
that might be more generally applicable to other scheduling problems.

!See http://www.backweb.com/ or the i icon on Compaq and HP personal computers.

Probabilistic Analysis. We will also conduct a probabilistic analysis of algorithms for shut-down
scheduling on m = 1 machine. Probabilistic analyses of knapsack problems have been performed
by several authors [DP82, Lue82, GMS84, MRKSV90, SL.87]. A probabilistic analysis was also
performed for the on-line case [Lue95, MSV95]. We will focus on shut-down scheduling and on the
case when the deadline D is exponentially distributed. Such probabilistic assumptions models the
case of a Web traffic lull that is interrupted by the arrival of a client request [FCJ99], and client
arrivals follow a Poisson process. We will show a policy that maximizes the expected profit for the
exponential distribution. We also present a shut-down schedule that breaks ties among jobs so as
to minimize variance without worsening expected profit. Therefore, the resulting strategy is, in
the parlance of portfolio theory, F,V efficient [Mar70]. Our tie-breaking procedure provides some
justification to the proxy server scheduling algorithm in [FCJ99] if the deadline D is uniformly
distributed.

Contents. The paper is organized as follows. In §2, we introduce our notation for shut-down
scheduling. In §3, we present competitive analyses and give optimal deterministic and randomized
algorithm for shut-down scheduling. In §4, we conduct a probabilistic analysis.

2 Preliminaries

In this section, we give definitions and notations for the shut-down scheduling problem. First, we
introduce our notation for the m = 1 machine problem. The maxzimum 0/1 knapsack problem
is: given lengths (i) € IN (i € [n] dof {1,2,...,n}), profits p(i) € N (i € [n]), and a deadline D,
find a subset J C [n] such that 3 ,c;/(¢) < D that maximizes) ;c;p(i). We will now introduce
some notation. The profit p(J) and length I(J) of a set J C [n] are defined in the obvious way:
p(J) =Yg p(i)and I(J) = 37,25 U(3). Let p*(D) = maxjyj)<p p(J) be the optimum 0/1 knapsack
objective value. Let 7 = (my,72,...,7k) be a k-permutation of [n], define J; = {my,m9,...,7;}
(1 <i<k)and p(z,D) = p(J,) where s is the largest integer such that [(J;) < D. Note that when
k < n and D > [(Jg), the machine will remain idle after the completion of the k scheduled jobs.
Although it does not seem intuitive, some algorithms will in fact exploit the fact that only some
of the jobs are scheduled. Finally, we will omit the reference to D in p*(D) and p(w, D) when the
deadline D is clear from the context.

We will consider a two-person zero-sum game which is based on the maximum 0/1 knapsack
problem and which we call the knapsack game. In the knapsack game, all the values (i) and p(7)
(i € [n]) are known at the beginning, but the deadline D is not. The player G selects a permutation
7 of [n] and the player H chooses D. If p*(D) > 0, the quantity v(7, D) def p(m, D)/p*(D) will
be G’s payoff corresponding to the strategies m and D. If p*(D) = 0, we define G’s payoff to be
one. The objective of G is to maximize its payoff in the game. Since G’s payoff is always at most
one, we can assume without loss of generality that D > min;¢p,{(¢). Notice that G has at most
n! strategies and H has at most 2" strategies, so that, for a given n, the knapsack game is a finite
matrix game. We interpret the knapsack game as an on-line problem as follows. We have a set
of n jobs numbered from 1 to n. Each job has a profit p(¢) and it takes [(7) units of time to be
completed. The on-line algorithm &' starts to schedule jobs on one machine according to some
ordering w. At time D, the adversary shuts the machine down, and G gains the values of all the
jobs completed before D. A strict competitive ratio is an upper bound to the inverse of the game
value. We do not allow additive terms in the competitive ratio because the game is finite. We
remark the difference among the following quantities relative to an (on-line) algorithm:

Profit Total profit of jobs completed before the deadline

Payoff Ratio of the algorithm’s profit over the adversary’s. The payoff is relative to the chosen
strategies for the on-line algorithm and for the adversary.

Game Value Best payoff an on-line player can achieve.
Competitive Ratio An upper bound on the inverse of the game value.

It can be noticed that the competitive ratio is defined in terms of inverse of game values, which is
the correct choice in maximization on-line games [BEY98]. We notice that the knapsack game is
trivial if all p(7)’s are equal (choose the jobs in non-decreasing length order) or if all /(7)’s are equal
(choose the jobs in non-increasing profit order). In the more general scenario, we will assume that
a job can be scheduled on any one of m machines that run at the same speed. The adversary will
shut all machines down at the deadline D.

Henceforth, we will use natural logarithms because they simplify notation and derivatives. Of
course, the logarithm base does not alter the order of asymptotic bounds. Finally, we introduce some
quantities that will be fundamental to the analysis below. Define V' = max;c[,{p(7)}/ min;ep{p(2)}
as the ratio of the largest to the smallest profit. Another important quantity is L, the number of
distinct length values in the job set, that is, L = |{l(j) : j € [n]}| < n. Finally, we define the
critical number of machines p = min{L — 1,In V'}.

3 Competitive Analysis

In this section, we conduct competitiveness analysis for the shut-down scheduling problem.

3.1 Randomized Algorithms

We present strongly competitive randomized algorithms for shut-down scheduling. Here, we will
focus on the case when L,V # O(1), and we will obtain different competitive ratios depending on
the relative growth rate of L and V. We begin with a lower bound on the case of m = 1 machine

Lemma 3.1 No randomized algorithm for the knapsack game can be better than Q(L)-competitive
when V = Q(2F) and better than Q(log V')-competitive when V = o(21).

The proof will exploit the minimax principle [BEY98].

Proof Sketch. Let p = 1/ *V/V, I(i) = n+ i — 1 and p(i) = |p(1)p*~7| for all i € [n]. Notice
that p(1) < p(2) < ... < p(n) <V, so that the ratio of the largest to the smallest value is indeed
bounded by V. The two fundamental points of the proof are the following. First, if D < 2n—1, at
most one job can be scheduled before the deadline. If the on-line player guesses the right job, its
payoff is one. If it guesses a job that is longer than the deadline, its payoff is naught. Finally, if it
guesses a job that is shorter than the deadline, its payofl is limited by the exponential growth of
profits. The second point is to use the minimax principle as follows. Let ¢ = n(1 — p) 4 p. We can
show a probability distribution over D that forces any deterministic on-line strategy to have payoff
O(1/¢). By the minimax principle, the value of the game is O(1/¢), and so the competitive ratio
of a randomized on-line algorithm is Q(¢) = Q(n(1 — p)). An asymptotic analysis of ¢ completes
the proof. a

We now show that the same lower bound holds for an arbitrary number m of machines.

Corollary 3.2 No randomized algorithm for the shut-down scheduling on m machines can be better
than Q(L)-competitive when V = Q(2%) and better than Q(log V')-competitive when V = o(21).

Proof. The proof is a reduction to the case of m = 1 machine. Consider the same counterexample
as in Lemma 3.1 on n’ jobs and replicate each job for m times, so that the total number of jobs
is now n = n’m. The number L of length classes remains unchanged. Again, at most one job
can complete on any machine when D < 2n — 1. We will show how to convert any randomized
algorithm for the m machine instance into a randomized algorithm for the original one-machine
problem so that the two schedules achieve the same payofl. If D < 2n — 1, any randomized strategy
for m machines is completely characterized by the expected number f; of machines starting a job of
length n+17—1. Let h be the index with D = I(h). By linearity of expectation, the on-line expected
profit is Y1 fip(i). Meanwhile, the adversary’s profit is mp(h), so that the on-line expected payoff
is S0, fip(i)/(mp(h)). Consider an on-line algorithm for the one machine instance that schedules
job i with probability f;/m. Its expected payoff is exactly the same as the m machine algorithm
for any choice of deadline D < 2n — 1. Hence, the same lower bound as in Lemma 3.1 applies, and
the proof is complete. a

If m > 1 and all I(¢)’s are equal, then shut-down scheduling is trivial (schedule jobs in non-
increasing profit order). We turn to the case when the p(i)’s are equal, and show an O(1)-
competitive algorithm. Such algorithm is an intermediate step to solve the general case of different
profits. First, notice that when all profits are equal, our objective is to maximize the number of
completed jobs. Define the canonical job scheduling algorithm for a set C' C [n] as a list scheduling
algorithm [Gra66] that orders the jobs from the shortest to the longest.

Lemma 3.3 Let C' C [n] be a set of jobs. The canonical schedule of C' completes at least 1/5 of
the jobs completed by any other algorithm before the deadline D.

Define the load of a machine as the total length of jobs completed on that machine before the
deadline and the makespan as the maximum load of any one machine. The proof will exploit a
result for load balancing of permanent jobs [Gra66].

Proof. The proof is organized as follows. We partition the jobs executed by the optimum into
five classes, depending on their starting and completion time with respect to the deadline D and
the makespan of the canonical schedule. Then, we show that no class contains more jobs than
those completed by the canonical schedule before the deadline D. Hence, the canonical schedule
completes at least 1/5 of the jobs completed by the optimum, which will complete the proof.
Assume without loss of generality that jobs are numbered in non-decreasing order of length,
that is, [(j+ 1) > I(j) for j = 1,2,...,n — 1. Let G be the set of jobs completed by the canonical
schedule before D and let M the makespan of GG, that is the time the last job in G is completed.
By definition, Mg < D. Observe that initially G starts by assigning one job in [m] to each machine.
Let H be a the largest set of jobs completed before D. Suppose first that |H| < m. Then, D is at
least the length of the longest job in H, which is at least I(| H|). Hence, (G completes at least one job
on at least | H | machines and the claim is proven. Assume now |H| > m, so that D > I(|H]|) > I(m).
Hence, |G| > m. We now make the following definition: if X C [n] is a set of jobs, then M% is
the minimum makespan to complete X. Observe that if X C Y, then M% < My:. Analogously,
if X,Y C [n] and if there is a one-to-one mapping f : Y — X with {(j) > I(f(j)) for all j € Y,
then M% < My:. Let M{ be the earliest time when ' can be completed. A load balancing results
claims that 2M75 > M. Schedule H on m machine so that the schedule completes before time D

Hs

H:

Figure 1: A partition of the optimal set H/ of jobs according to the optimal makespan M, and the
actual makespan Mg of the on-line algorithm.

and partition H into five subsets according to such schedule as follows (Figure 1 gives an example
of such partition).

e The subset Hy C H is the set of jobs that complete before time M. We claim that |Hq| < |G|.
Suppose by contradiction |Hy| > |G|. Take any proper subset H' C Hy with |H'| = |G|
elements. Since G consists of the |G| shortest jobs, there is a one-to-one mapping f : H' — G
with I(j) > I(f(j)) for all j € H'. Hence, the optimal makespan M};, of H' is not smaller
than the optimal makespan M of G. Therefore, My, < M}, < Mj;, and a contradiction is
reached. Therefore, we conclude |Hq| < |G].

o The subset H, C H is the set of jobs that start before time M and complete after time M¢..
The set Hy contains at most one job per machine, so that |Hy| < m < |G|.

o The subset H3 C H is the set of jobs that starts after time M% and complete after time M.
Since Mg — M{ < Mg, we conclude that |Hs| < |G| with an argument similar to Hy.

e The subset Hy C H is the set of jobs that starts before time Mg and complete after time
Me. Hy contains at most one job per machine and so |Hy| < m < |G|.

o The subset Hs C H is the set of jobs that start after M. Notice that D — Mg < I(|G|+ 1)
or else G would have scheduled one more job. Hence, H5 can contain at most |G| documents
because job |G| 4 1 does not fit in the alloted time D — Mg < I(|G] + 1).

Notice that Hy, Hy,..., Hs give indeed a partition of H. We conclude that |H| < 5|G|, which
proves the lemma. a

Corollary 3.4 The canonical schedule is 5-competitive for shut-down scheduling on any number
m of machines when p(i) =1 for all jobs i.

The canonical schedule algorithm easily generalizes to the case of arbitrary profits by using the
CRS techniques. Partition the job set into O(log V') profit classes such that no job is more than
O(1) times as profitable as any other job in the same class. Then, extract a profit class at random
and execute jobs only from that class. However, if V = Q(2%), then jobs are partitioned according
to their length in such a way that a job class contains only jobs of the same length. We conclude
that

V=002 |V = Q(2F)
m<p | O(mp) O(mp)
m>p | O(ogV) O(L)

Table 1: Competitive ratios of the best deterministic algorithm for the m machine knapsack game,
where L is the number of length classes, V' is the ratio of largest and smallest profit, g = min{L —
1,InV'} is the critical number of machines, and p = V/V.

Theorem 3.5 The best algorithm for shut-down scheduling is ©(L)-competitive when V = Q(2F)
and ©(log V')-competitive when V = o(2%).

A consequence of the matching upper and lower bounds is that if we change the number m of
machines, we do not help nor hamper the competitive ratio of randomized algorithms.

3.2 Deterministic Algorithms

We now turn to deterministic algorithms. It is helpful during the discussion to refer to table 1
which summarizes our results. First, we argue that if there is a sufficiently large number m > u of
machines, then, we can find deterministic algorithms that match the randomized lower bound. We
derandomize the CRSlog algorithm as follows. If we have m > pu+ 1 > InV 4+ 1 machines, we can
assign m’ = [m/(InV 4+ 1)] machines to process jobs in each profit class according to the canonical
schedule. Roughly speaking, the derandomized version translates the probability of executing jobs
in class C; into the fraction of machines assigned to class C;. It is critical that profit classes be
disjoint sets, as otherwise a job would have to be scheduled on more than one machine.

Lemma 3.6 The derandomized version of the CRSlog algorithm is O(logV')-competitive for shut-
down scheduling on m > In'V + 1 machines.

Proof. At any time, the algorithm has completed at least 1 / 5 of the jobs in a certain class that
are completed by any other algorithm that uses m’ machines for that class. Hence, the adversary
completes in each class at most 5m/m’ = O(logV') jobs more than the derandomized CRSlog
algorithm, and, on each job, it earns less than e times as much as the derandomized CRSlog. Thus,
such algorithm is O(log V')-competitive. o

We can analogously derandomize the O(L)-competitive algorithm as long as we have m >
1+ 1> L machines. It remains to establish deterministic competitive ratios for m < g machines.
In this case, Corollary 3.2 is tight for randomized algorithms, but gives a weak lower bound for
deterministic algorithms. Intuitively, the weakness of Corollary 3.2 stems from the fact that it is not
always possible to execute simultaneously all deterministic strategies that compose a randomized
algorithm if only few machines are available. Define p def 'V (such notation is independent of
that in Lemma 3.1) and notice that p > 1. We will frequently use the equalities Inp = (InV')/m
and m = pu.

Lemma 3.7 If m < min{L — 1,InV'}, then no deterministic algorithm can be better than Q(mp)-
competitive.

Notice that mp = w(mlogp) = w(log V). On the other hand, if V = Q(2%), then p = Q(2%/™) =
w(L/m), and so mp = w(L). Hence, Lemma 3.7 dominates Corollary 3.2 when m < p.

Proof. The proof is based on an instance with the property that the adversary will be able to
choose a bad deadline for any on-line algorithm. The instance consists of m+1 classes of m identical
jobs such that jobs in class 7 are p times more valuable than jobs in class ¢ — 1. Job lengths are
chosen in such a way that only one job can complete on any one machine, which is similar to the
length distribution of Lemma 3.1. Since there are more classes than machines, the on-line algorithm
does not schedule any job from a certain class. The adversary chooses the deadline so that the
optimum strategy schedules jobs only from that class, while the on-line algorithm achieves a small
profit. We will now give the details of the arguments.

Set-up. The proof is based on an instance where there are m identical jobs of profit |pop’]
(i =0,1,2,...,m) for some minimal profit pg. Hence, the total number of jobs is n = m(m + 1).
Notice that L, = m 4+ 1 > m. Observe that the minimum profit is pp and the maximum profit is no
more than pgV'. A profit class is a set of jobs with the same profit. We will think of profit classes
as ordered by the profit of the jobs they contain. A job of profit pgp® has length 2m 4. If D < 3m,
then at most one job can complete on any one machine.

Holes. Since the number of profit classes is m + 1, there is at least one profit class from which
no job is completed before the deadline D < 3m. We will say that a hole is a maximal non-empty
sequence of profit classes with the property that no job has been scheduled from any class in the
hole. Clearly, there is at least one hole. If the first class Cy is in a hole, then the adversary will set
D = 2m, and the on-line algorithm achieves no profit. Therefore, we can assume from now that the
first class is not in a hole without loss of generality. Suppose that the holes are H; < Hy < ... < Hj.
Let k; be the number of jobs scheduled from the class immediately preceding hole H;. We claim
that there is at least one hole H; for which k; < |H;| + 1. Suppose that this is not true. Then,
denote by v the number of classes that are not immediately followed by a hole and observe that
the total number of jobs is at least v + 21 + Y°'_, |H;| = m 4 [> m, which is a contradiction. The
adversary considers an hole H such that |H| 4 1 is a bound on the number of jobs scheduled in the
class immediately before the hole.

Payoff. Suppose that hole H extends from class h+ 1 to class h + a for some a > 1. The on-line
algorithm schedules at most a 4+ 1 jobs in of value ph. The adversary chooses D = 2m + h + «
and achieves a profit p* > m(p"*t¥py — 1). Meanwhile, the on-line algorithm achieves a profit
p(G) < (a+ 1)p"po + (m — (a4 1))p"1po. Hence, for any € > 0,

* mpoz—l—l

(a+Dptm—(at1)

P

p(G)

The function f(x) = mp”/(xp+ m — z) is increasing whenever zp +m —a > (p — 1)/ In p, that is,

for all ’s with 2 > 1/Ilnp—m/(p—1). However, 1/Inp—m/(p—1) < m/InV <1, which implies
that f(2) is increasing when & > 2. Hence, the profit ratio is minimized whenever @ = 1, so that

v

— €.

p* S me

WG " 2ptm-2

If p < m, then p*/p(G) > mp?/(3p —2) —€ > mp?/p— e = mp —e. If p > m, then p*/p(G) >
mp?/(3m — 2) — € > mp*/m — € > mp — ¢, and the proof is complete. O

Such lower bound is matched by the following CSM (Canonical Schedule for m machines)
algorithm. First, normalize job profits so that the minimum profit is one and the maximum profit
is V. CSM divides the job set into m classes according to job profit, where class ¢ consists of jobs
of profit p'~' < p(j) < p'. CSM schedules jobs of class i on machine ¢ according to the canonical
schedule.

Lemma 3.8 The CSM algorithm is O(mp)-competitive for the knapsack game on m of machines.

Proof. Define the hth profit class as C), = {j : p"~' < p(j) < p"}. Let), be the number of jobs
in class h scheduled by the optimum before the deadline D. Hence, the optimum profit from class
h is less than aj,p". The CSM algorithm schedules at least a x/(5m) jobs in class &, so that its
profit is at least x,p"~!/(5m). Hence, CSM has a payoff of at least

— h—1
ZZLZI xhph ! > Z;Ln:l,l’h;ﬁo xhp > L

1
mypy et T om 2 h=1,en 0 zpp" T bmp T 5mp
The competitive ratio is the inverse of the payoff, and thus the proposition is proven. O

The lower bound and the CSM algorithm are summarized by:

Theorem 3.9 The best algorithm for the knapsack game on m < min{L — 1,InV + 1} machines
is O(m ¥/V')-competitive.

3.3 Reduced Randomization

The CSM algorithm can be translated into a randomized algorithm, where a random class of jobs
is scheduled according to the canonical schedule. We will name the resulting randomized algorithm

CSMr.
Lemma 3.10 The CSMr algorithm is O(mp)-competitive for the shut-down scheduling problem.

Proof. Since there are m profit classes, jobs in the same classes have profits that are within a

factor of p, and the canonical schedules has a performance guarantee of 5, we obtain that the payoff
of CSM is at least 1/(5mp). O

Hence, CSMr gives a precise trade-off between randomization and competitive ratio. Indeed,
if no randomization is allowed, then the best algorithm is ©(V')-competitive. As the amount of
randomization increases to m strategies (m < InV'), performance improves as @(m ¥/V). Finally,
when m = InV + 1, the best algorithm is ©(log V')-competitive and, if V = o(2%), no further
improvement stems from adding more machines. Meanwhile, we claim that CSMr achieves optimal
performance.

Theorem 3.11 The best randomized algorithm that is a distribution over only m deterministic
strategies is ©(mp)-competitive.

Proof Sketch. Consider the proof of Lemma 3.7 and replace the number of machine starting a
certain job class with the expected number of machines. a

4 Probabilistic Analysis

In this section, we will conduct probabilistic analyses of shut-down scheduling on m = 1 machine.

Let 7 = (w1, 72,...,7,) be a permutation of [n] and J; = {my,72,...,7;}. Then,
Elp(m)] =Y p(J)Pr(i(J) < D < U(Jip)] = Y p(m) PriD > 1(J)] . (1)
=1 =1

Our objective is to find a permutation 7 that maximizes (1). A corresponding decision problem is
to find a permutation 7 such that E[p(7)] < p for some given p. Such decision problem is easily
seen to be NP-complete as it reduces to a knapsack problem when there is a ¢t with Pr[D =t] = 1.
First, we give a general optimality criterion.

Lemma 4.1 If a permutation © mazimizes (1), then, for all i € [n — 1],

p(r) Pri(Ji) < D <I(Jiy1)] 2 p(mig) Prl(Jie1) + U(mip1) < D < U(Jiy1)] -
Moreover, if 1 mazimizes (1) and

p(r) Prii(i) < D < U(Jixa)] = p(zip) Pril(Jica) + U7iga) < D <1(Jiga)]
then the permutation @' obtained by exchanging 7; and 7;11 is also optimal.

Proof Sketch. If this were not so, exchange jobs 7; and 7,41 to increase the profit. Analogously,
if equality holds, the profit remains unchanged, and thus optimal. a

A simple corollary is that if all p(¢)’s are equal, then the optimal solution is to arrange jobs
in increasing order of length, independently of the distribution of D. Another simple consequence
is that if D is uniformly distributed in an interval [0, A] of the real line with A > I([n]), then
he optimal permutation is to arrange jobs in non-increasing profit density p(i)/l(i) (PD-order).
Such result for the uniform distribution also follows by noticing that, under such distribution, the
objective (1) defines a weighted completion time problem, and we can apply Smith’s rule [Smi56].

We now turn to the case when the deadline D is extracted according to an exponential distribu-
tion with rate A. The exponential distribution models the case when client requests arrive according
to a Poisson process, and each request terminates a lull. First, recall that, if D is exponentially
distributed, we have Pr[D > t] = e~*. Then, expression (1) becomes

n

Elp(r)] =Y p(mi)e). (2)

=1

Define the exponential density of job i as the ratio d.(i) = p(i)/(eM(D) = 1). The Exponential Profit
Density (EPD) algorithm arranges jobs in non-increasing order of exponential profit density. We
will say that a permutation is in FPD-order if its jobs are in non-increasing order of exponential
profit density.

Theorem 4.2 If Pr[D > t] = e, then a permutation minimizes (2) if and only if it is in
EPD-order.

Proof. If a permutation is optimal, then the optimality condition of Lemma 4.1 implies that it is
in EPD-order. Conversely, assume that the identity is an optimal EPD permutation, and suppose
we exchange two terms h and h + 1 with the same exponential value density. Lemma 4.1 implies
that the new permutation is optimal as well. Any permutation in EPD-order can be obtained by a
finite exchange of jobs with the same exponential profit density, and the proposition is proven. O

The previous theorem suggests that in some sense lengths are exponentially more important
than values for an exponential distribution. On the other hand, an exponential distribution can
be approximated by a uniform distribution when A is large, in which case we can show that PD is
within 1.1312 of the optimum.

We observe that there are in general several scheduling strategies in PD-order (EPD-order). Al-
though any such strategy maximizes the expected profit, we will show that some optimal strategies
have smaller variance than others. Variance analysis is based on the optimality conditions and on
the following

Lemma 4.3 If 7 is an optimal permutation that has minimum Var[p(t)] among all optimal per-
mutations and p(7;)Prl(J;) < D < l(Ji41)] = p(mp1)Pr{l(Jicq) + Umipr) < D < U(Jip1)] # 0,
then p(r:) < p(Tisr).

Proof Sketch. Since 7 is optimal, Lemma 4.1 holds. Hence, we can only exchange jobs for which
the equality condition holds. Furthermore, p(7) is a constant among all optimal permutation, so
that minimizing the variance is tantamount to maximizing the second moment E[p?(r)]. Therefore,
we seek optimality conditions for the problem where p(j) is replaced by —p?(j), subject to the
constraints given by Lemma 4.1. Such optimality conditions are found by an exchange argument
and the lemma is proven. a

It can be seen that a tie breaking procedure for the uniform and exponential distribution is to
favor shorter jobs. Indeed, suppose that job ¢ and 7+ 1 have the same (exponential) profit density
and p(¢) < p(i+ 1). Then, {(i) < I(i + 1). Hence, the optimal strategy that minimizes risk is to
arrange jobs in PD-order (EPD-order) and break ties by scheduling shortest jobs first.

Acknowledgments
We are grateful to Brian Davison, Kevin Christian, Samir Khuller, and Xiao-Tong Zhuang for
helpful discussions.

References

[AS98] Susanne Albers and Guenter Schmidt. Scheduling with unexpected machine break-
downs. Technical Report MPI-1-98-1-021, Max-Planck-Institut Fuer Informatik, 1998.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[CB9g] Mark Crovella and Paul Barford. The network effects of prefetching. In Proceedings
of ILEE INFOCOM, 1998.

10

[CGI9T]

[DP82]

[FCJ99]

[GGK197]

[GGUT3]

[GMS84]

[Gra66]

[Kel99]

[KP94]

[KP97]

[LD99]

[LT94]

[Lue82]

[Lue95]

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In Dorit S. Hochbaum, editor, Approxzimation Algorithms for
NP-hard Problems, chapter 2. PWS, Boston, 1997.

Gianfranco D’Atri and Claude Puech. Probabilistic analysis of the subset-sum prob-
lem. Discrete Appl. Math., 4(4):329-334, 1982.

Li Fan, Pei Cao, and Quinn Jacobson. Web prefetching between low-bandwidth clients
and proxies: Potential and performance. In Proceedings ACM SIGMFETRICS °99,
pages 178-187, 1999.

Juan A. Garay, Inder S. Gopal, Shay Kutten, Yishay Mansour, and Moti Yung. Effi-
cient on-line call control algorithms. J. Algorithms, 23(1):180-194, 1997.

M. R. Garey, R. L. Graham, and J. D. Ullman. An analysis of some packing algorithms.
In Combinatorial algorithms (Courant Comput. Sci. Sympos., No. 9, 1972), pages 39—
47. Algorithmics Press, New York, 1973.

Andrew V. Goldberg and Alberto Marchetti-Spaccamela. On finding the exact so-
lution to a zero-one knapsack problems. In Proceedings of the 16th Annual ACM
Symposium on Theory of Computing, pages 359-368, 1984.

R. L. Graham. Bound for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

Hans Kellerer. A polynomial time approximation scheme for the multiple knapsack
problem. In Proceedings of The 2nd International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems, 1999.

Bala Kalyanasundaram and Kirk Pruhs. Fault-tolerant scheduling. In Proceedings of
the Twentysizth Annual ACM Symposium on the Theory of Computing, pages 115—
124, 1994.

Bala Kalyanasundaram and Kirk Pruhs. Fault-tolerant real-time scheduling. In
Algorithms—ESA "97 (Graz), pages 296-307. Springer, Berlin, 1997.

Vincenzo Liberatore and Brian D. Davison. Data dissemination on the Web: Specu-
lative and unobtrusive. Technical Report 99-23, UMIACS, College Park, MD, April
1999.

Richard J. Lipton and Andrew Tomkins. Online interval scheduling. In Proceedings
of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (Arlington, VA,
1994), pages 302-311, New York, 1994. ACM.

George S. Lueker. On the average difference between the solutions to linear and
integer knapsack problems. In Applied probability—computer science: the interface,
Vol. I (Boca Raton, Fla., 1981), pages 489-504. Birkhduser Boston, Boston, Mass.,
1982.

George S. Lueker. Average-case analysis of off-line and on-line knapsack problems.
In Proceedings of the Sizth Annual ACM-STAM Symposium on Discrete Algorithms,
pages 179-188, 1995.

11

[Mar70]

[MRKSV90]

[MSV95]

[MT90]

[SL87]

[Smib56]

[UFA9S]

[WPOS]

Harry M. Markowitz. Portfolio Selection. Efficient Diversification of Investments.
Blackwell, New Haven, 1970.

M. Meanti, A. H. G. Rinnooy Kan, L. Stougie, and C. Vercellis. A probabilistic
analysis of the multiknapsack value function. Math. Programming, 46(2 (Ser. A)):237-
247, 1990.

A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems.
Math. Programming, 68(1, Ser. A):73-104, 1995.

Silvano Martello and Paolo Toth. Knapsack problems. John Wiley & Sons Ltd.,
Chichester, 1990.

Krzysztof Szkatuta and Marek Libura. On probabilistic properties of greedy-like algo-
rithms for the binary knapsack problem. In Stochastics in combinatorial optimization
(Udine, 1986), pages 233-254. World Sci. Publishing, Singapore, 1987.

Wayne E. Smith. Various optimizers for single-stage production. Nawval Res. Logist.
Quart., 3:59-66, 1956.

Tolga Urhan, Michael Franklin, and Laurent Amsaleg. Cost-based query scrambling
for initial delays. In ACM SIGMOD Intl. Conference on Management of Data (SI1G-
MOD), 1998.

Walter Willinger and Vern Paxson. Where Mathematics meets the Internet. Notices
of the AMS, 45(8):961-970, September 1998.

12

A Randomized Algorithms

We now give the proofs relative to the competitiveness analysis of randomized algorithms.

Lemma A.1 No randomized algorithm for the knapsack game can have a competitive ratio better

than
1
Q(L (1_ 1)) |
VIt

Proof. The number of jobs is n = L. Moreover, for any € > 0, there is a p(1) such that
p(i)/p(1) < pt= < (14 €)p(i)/p(1). The adversary chooses D according to the distribution:

L2 if ¢ = 1(i) for i € [n — 1]
if t =1(n)

1
&
0 otherwise

Notice that the probabilities sum up to (1 + (n — 1)(1 — p))/c = 1. Let G}, be any deterministic
strategy that schedules job A first, and let p(Gp) be its gain. If D < [(h), then p(Gp) = 0. If
D = 1(i) > I(h), then p(G1) = p(h) < p(1)p*~", and its payoff is p(Gp)/p* < (1 + €)p*™". The
expected payoff for G, is

P(Gn)

*

1+ ¢

E[] <(1+PrD = I(m)] = —

Let ¢; &f p, [D > 1(i)]. The expected payoff for G, when 1 <h <n-—1,is

E[])(i*h)] < 1_|_€ (sz h(]z):
p

= (1+¢) (h+p(ZPQh+z)) =

v(G
 ivafoern)
1-

= 1—|—€ (p) =

B 1+ ¢

= —
The inverse of E[v(G})/v*] is Q(¢), and the lemma is proven. a

The most significant difference between our worst-case instance and the on-line marriage prob-
lem [LT94] is that in shut-down scheduling, the number of jobs n is known in advance, whereas
in the on-line marriage problem no such information is available. We will say that the worst-case
example in the previous lemma is the finite on-line marriage problem.

Proof of Lemma 3.1. We use the notation and result in the previous lemma. First, assume that
V = Q(2L). Then,
R P

l\')l}—\

and so ¢ > L/2, and the first part of the theorem is proved.

13

Next, assume that L = w(logV). Let = VT —1 and observe that In(142)=(V)/(L-1),
so that limy . In(1 + 2) = 0, which implies limy _ ., # = 0. Hence,

lim - — lim M_
VooolnV Voo InV
I s | PRI
Voo L =1 InV VI
= lim v =
=0 (1+a)n(14+a)
1

* 1

lm ——— =

b

and so the competitive ratio is Q(log V'), which completes the proof. a

We illustrate the general CRS paradigm in the case of m = 1 shut-down scheduling. The job set
into k disjoint classes Cy,Cs, ..., according to some criteria. then, we will provide deterministic
strategies Gy, G, ..., Gk that schedules only jobs from class C; and that within a constant factor
from the optimum. We will obtain a randomized algorithm chooses one of the G;’s at random and
is k-competitive. We now detail this insight. Let C';,Cs,...,C} be a partition of [n]. If 7 is a job
permutation, we define p;(w, D) as the profit of 7 from jobs in class C; that are completed before
the deadline, that is, p;(m, D) = p(Js N C;) where s is the largest integer such that I(J;) < D.
Analogously, pf(D) is the profit of the optimum schedule on jobs in class C;. Suppose that for
all ¢’s there is a deterministic algorithm G that schedules only jobs from class C; and such that
pi(Gi, D) = p7/a for some a. Let G the algorithm that extracts one of the G;’s uniformly at
random. Then, GG’s expected profit is

*

k k
(@)= 330G > 7Y pi(Gi) > i;py - 3)

We conclude that G is O(ak)-competitive.

We now turn to describe an on-line algorithm for the general case that matches the lower bound
up to a constant factor. First, we present an algorithm CRSlog that is O(logV')-competitive.
Partition the job set into [In V + 1] profit classes C; = {j 1 €' < p(j)/p(1) < T} (0 <7 < [nV])
such that no job is more than e times as profitable as any other job in the same class. Choose one
of the classes at random and schedule jobs only from that class on m machines according to the
canonical scheduling algorithm.

Lemma A.2 The CRSlog algorithm is O(log V')-competitive for the shut-down scheduling problem.

Proof. Let p; be the profit earned by CRSlog if class ¢ is chosen and p! be the profit earned by
the optimum on jobs in class ¢. Then, the optimum profit is p* = Z?;X pr. Suppose that CRSlog
chooses class (. Since CRSlog schedules jobs in canonical order, Lemma 3.3 implies that no other
algorithm completes more than five times as many jobs in (') as CRSlog, and on each one of these

jobs, it earns at most e times the profit gained by CRSlog. Hence, the expected profit of CRSlog is

1 InV 1 InV

*

P; P

- > = o _ £
1+InV ;Zh T 14V b S5e(1+1InV)’

14

and we conclude that CRSlog is O(log V')-competitive. o

Define the CRSL algorithm as the algorithm that partitions the job set into length classes where
all jobs in the same class have the same length, chooses one class at random, and schedules the
jobs in that class in non-increasing order of profit.

Lemma A.3 The CRSL algorithm is O(L)-competitive for the shut-down scheduling problem.

Proof. Let p; be the profit earned by CRSL if class ¢ is chosen and p? be the profit earned by the
optimum on jobs in class ¢. Then, the optimum profit is p* = Z?;‘O/ pr. Suppose that CRSL chooses

class C',. Since CRSL schedules jobs from the most to the least profitable, no other algorithm can
achieve a better profit on jobs in the same class. Hence,

1 & ! L
I;pz_z;pi—fv

so that CRSL is L-competitive. a

B Probabilistic Analysis

Proof. We will prove the lemma for the identity permutation for simplicity of notation. Job
renaming will yield the result for an arbitrary permutation =. Then, we need to show that, for all
i €[n—1],

p()PrI([) < D < [([i+1])] > pi + D) Pr[i([i — 1) + 1(i + 1) < D < I([i + 1])] .

Suppose by contradiction that the equation above does not hold for an index ¢ € [n — 1]. Consider
a permutation 7 that is obtained from the identity by exchanging job ¢ and ¢+ 1. All terms in (1)
remain unchanged except those relative to indices ¢ and 7 + 1. Moreover,

p()PPID > U([i)] 4 pli + DPr[D > I([i +1))] =
= p()Pr{I([) < D < (i +)] + p(i)PrlD > ([
<pli+ V)Pr([i— 1) + Ui+ 1) < D < U([i + 1])]
pli + 1)Pr[D > U(fi +1])] =

= pli + DPr[D > U([i = 1)+ 1+ D] + (D) Pr{D > (i + 1))].

so that the identity’s expected profit is less than 7’s It follows that the identity is not optimal. We
have reached a contradiction and the first part of the lemma is proven. Suppose now that equality
holds and repeat the same calculations as in equation (4) with an inequality substituted by an
equality. The expected profit remains unchanged, and so the second part of the lemma is proven

1])] +pli+ 1)Pr[D > I([i + 1])] <

I
+p(O) PriD = [([1 4+ 1))+ (4)

as well. O

Proof. If all value densities are equal, then we can assume without loss of generality that p(¢) = I(7)
for all jobs i. Moreover, the function x/(e” — 1) is decreasing for all > 0, so that longer jobs have
lower exponential value density. The corollary is then proved by invoking the previous proposition.

O

We now compare SF and EPD. An advantage of SF over EPD is that SF does not require the
knowledge of the rate A. However, SF requires that all densities be equal. We next prove that PD
is within a constant factor of the optimum independently of value densities as long as the rate A is
large enough.

15

Corollary B.1 If D follows an exponential distribution with rate A\ and 1/X > l([n]), then PD is
within 1.1312 of the optimum value of (2).

Proof. We approximate the function e” with a linear function e* ~ e*(z + 1 — a), where a =
—1/(e—1). Elementary calculus yields that for all z € [-1,0] and for ¢ = 1/e?(1 —a)—1 < 0.1312,

e <(1+ee(z+1—a)<(1l+e€)e”

Notice that (1 4 ¢)e*(1 — a) = 1 and that (14 ¢)e*(2 — a) > 0, so that the linear approximation
(14 ¢)e*(2 4+ 1 — a) can be expressed as 1 — At for some A > 0 and all 0 < ¢ < {([n]). The result
on uniform distributions implies that PD is optimal under such linear approximation. Assume
without loss of generality that the identity permutation is in PD-order, and let 7 be the optimal
permutation for the original exponential distribution. Then,

n n n) e M)
zymu—mm»zmeu—MMDZDﬂﬁﬁg :

so that the value of PD is no more than 1+ ¢ times the optimum, and the proposition is proved. O

Proof of Lemma 4.3. Notice that Var[p(r)] = E[p*(r)] — (E[p(7)])* and E[p(x)] is fixed to
its optimal value, so that minimizing the variance corresponds to minimizing the second moment
E[p*(7)] subject to the additional constraint that E[p(7)] be optimum. In other words, we seek to
minimize F[p?(7)] among all permutations We will prove the lemma for the identity permutation
for simplicity of notation. Job renaming will yield the result for all permutations. Exchange job
i and i + 1. The resulting permutation is optimal by Lemma 4.1. The second moment E[p*(7)]
remains unchanged except for the terms relative to index ¢ and ¢ + 1. The difference is

0 < P()PID > 1))+ pX(i + DPHD > [(Jig)] -
—pAO)PHD > 1)) = P+ DPIID > 1(Jimy) + U(mi)] =
_ OPHIUD € D <)]+ G+ P + 15 1) € D <)]
so that p2()Pr(I(.)) < D < I(Jipa)] 2 p2(i + DPr{i(Jic) + (i + 1) < D < I(Jiza)]. Divide by

p(m)Pril(J;) < D < U(Jiy1)] = p(mig) Prl(Jic1)+U(mig1) < D < {(Ji41)] to prove the proposition.
a

16

