
Scheduling Jobs Before Shut-DownVincenzo Liberatore1

1UMIACS, A. V. Williams Building, University of Maryland, College Park, MD 20742(vliberatore@acm.org). URL: http://www.umiacs.umd.edu/users/liberato/.

AbstractDistributed systems execute background or alternative jobs while waiting for data or requests toarrive from another processor. In those cases, the following shut-down scheduling problem arises:given a set of jobs of known processing time, schedule them on m machines so as to maximize thetotal weight of jobs completed before an initially unknown deadline. We will present optimallycompetitive deterministic and randomized algorithms for shut-down scheduling. Our deterministicalgorithm is parameterized by the number of machines m. Its competitive ratio increases as thenumber of machines decreases, but it is optimal for any given choice of m. Such family of determin-istic algorithm can be translated into a family of randomized algorithms that use progressively lessrandomization and that are optimal for the given amount of randomization. Hence, we establish aprecise trade-o� between amount of randomization and competitive ratios.

1 IntroductionInternet users experience substantial delays while retrieving Web documents. Web performanceis particularly degraded by the self-similar nature of Internet tra�c [CB98, WP98], in which lullsalternate with spikes of extreme activity. As a result, Web performance is especially improvedwhen operations are moved from peak periods to intervening lulls. For example, idle periodscan be exploited by servers to speculatively disseminate data to dial-up clients, thus substantiallyreducing the latency experienced to retrieve subsequent documents [FCJ99]. The \polite push"framework is currently the major feature of a commercial system1. Delays can stall the executionof a distributed query in a Web-based database system so as to trigger alternate queries or queryplans [UFA98].Shut-Down Scheduling. Such systems share the following core optimization problem: a setof alternative or background jobs can be scheduled during a lull. A lull has unknown durationbecause it ends asynchronously when a message is received from the network. We will refer to suchproblem as shut-down scheduling because jobs execution is unpredictably interrupted. The o�-lineversion of shut-down scheduling is a maximum 0/1 multiple knapsack problem where all knapsackshave the same capacity. A book summarizes results in the theoretical and practical solution ofthe multiple knapsack problem [MT90]: it is strongly NP-hard [MT90], and a polynomial-timeapproximation scheme has been recently discovered [Kel99]. Several authors have considered anon-line single knapsack problem where the deadline is known in advance, and jobs arrive on-line[Lue95, MSV95]. The on-line knapsack problem can be regarded as the dual of shut-down schedulingand it is substantially an admission control problem [BEY98, GGK+97]. In general, shut-downscheduling is related to on-line call control [BEY98, GGK+97], load balancing [BEY98, Gra66], andbin packing [BEY98, CGJ97, GGU73]. Scheduling with machine breakdowns has been consideredas well [KP94, KP97, AS98]: jobs must be scheduled on m processors so as to complete in thepresence of permanent or transient faults. Breakdowns are di�erent from shut-down in severalrespects, as, for example, arrival times, objective function, job restart, redundant scheduling, andfor the techniques and results of the analysis.Our results. We will present optimally competitive deterministic and randomized algorithmsfor shut-down scheduling. We have obtained preliminary experimental results on actual Web tracesimulations [LD99]. Such results indicate that a competitive algorithm indeed outperforms natural,but non-competitive strategies. We will also express the optimal competitive ratio as a functionof the number of randomization bits. Consequently, we will establish a precise trade-o� betweencompetitive ratios and the amount of randomization. Randomized algorithms can be fully deran-domized provided that there are su�ciently many machines. If there is only a small number mof machines, we will give an optimal deterministic algorithm CSM that is parameterized by m.The competitive ratio of CSM increases as m decreases, but, for any given choice of m, our CSMalgorithm is optimal. We will also interpret CSM as a family of randomized algorithms that useprogressively less randomization at the price of a worse competitive ratio. Our algorithm is optimalfor any given choice of the amount of randomization and coincides with the optimal deterministicand randomized algorithms in the two extreme cases. Thus, such algorithm establishes the claimedtrade-o� between randomization and competitive ratio. Deterministic algorithms and lower boundsare transformed into randomized algorithms and lower bounds by a technique that is simple andthat might be more generally applicable to other scheduling problems.1See http://www.backweb.com/ or the i icon on Compaq and HP personal computers.1

Probabilistic Analysis. We will also conduct a probabilistic analysis of algorithms for shut-downscheduling on m = 1 machine. Probabilistic analyses of knapsack problems have been performedby several authors [DP82, Lue82, GMS84, MRKSV90, SL87]. A probabilistic analysis was alsoperformed for the on-line case [Lue95, MSV95]. We will focus on shut-down scheduling and on thecase when the deadline D is exponentially distributed. Such probabilistic assumptions models thecase of a Web tra�c lull that is interrupted by the arrival of a client request [FCJ99], and clientarrivals follow a Poisson process. We will show a policy that maximizes the expected pro�t for theexponential distribution. We also present a shut-down schedule that breaks ties among jobs so asto minimize variance without worsening expected pro�t. Therefore, the resulting strategy is, inthe parlance of portfolio theory, E,V e�cient [Mar70]. Our tie-breaking procedure provides somejusti�cation to the proxy server scheduling algorithm in [FCJ99] if the deadline D is uniformlydistributed.Contents. The paper is organized as follows. In x2, we introduce our notation for shut-downscheduling. In x3, we present competitive analyses and give optimal deterministic and randomizedalgorithm for shut-down scheduling. In x4, we conduct a probabilistic analysis.2 PreliminariesIn this section, we give de�nitions and notations for the shut-down scheduling problem. First, weintroduce our notation for the m = 1 machine problem. The maximum 0/1 knapsack problemis: given lengths l(i) 2 IN (i 2 [n] def= f1; 2; : : : ; ng), pro�ts p(i) 2 IN (i 2 [n]), and a deadline D,�nd a subset J � [n] such that Pi2J l(i) � D that maximizes Pi2J p(i). We will now introducesome notation. The pro�t p(J) and length l(J) of a set J � [n] are de�ned in the obvious way:p(J) = Pi2J p(i) and l(J) = Pi2J l(i). Let p�(D) = maxJ :l(J)�D p(J) be the optimum 0/1 knapsackobjective value. Let � = (�1; �2; : : : ; �k) be a k-permutation of [n], de�ne Ji = f�1; �2; : : : ; �ig(1 � i � k) and p(�;D) = p(Js) where s is the largest integer such that l(Js) � D. Note that whenk < n and D > l(Jk), the machine will remain idle after the completion of the k scheduled jobs.Although it does not seem intuitive, some algorithms will in fact exploit the fact that only someof the jobs are scheduled. Finally, we will omit the reference to D in p�(D) and p(�;D) when thedeadline D is clear from the context.We will consider a two-person zero-sum game which is based on the maximum 0/1 knapsackproblem and which we call the knapsack game. In the knapsack game, all the values l(i) and p(i)(i 2 [n]) are known at the beginning, but the deadline D is not. The player G selects a permutation� of [n] and the player H chooses D. If p�(D) > 0, the quantity v(�;D) def= p(�;D)=p�(D) willbe G's payo� corresponding to the strategies � and D. If p�(D) = 0, we de�ne G's payo� to beone. The objective of G is to maximize its payo� in the game. Since G's payo� is always at mostone, we can assume without loss of generality that D � mini2[n] l(i). Notice that G has at mostn! strategies and H has at most 2n strategies, so that, for a given n, the knapsack game is a �nitematrix game. We interpret the knapsack game as an on-line problem as follows. We have a setof n jobs numbered from 1 to n. Each job has a pro�t p(i) and it takes l(i) units of time to becompleted. The on-line algorithm G starts to schedule jobs on one machine according to someordering �. At time D, the adversary shuts the machine down, and G gains the values of all thejobs completed before D. A strict competitive ratio is an upper bound to the inverse of the gamevalue. We do not allow additive terms in the competitive ratio because the game is �nite. Weremark the di�erence among the following quantities relative to an (on-line) algorithm:2

Pro�t Total pro�t of jobs completed before the deadlinePayo� Ratio of the algorithm's pro�t over the adversary's. The payo� is relative to the chosenstrategies for the on-line algorithm and for the adversary.Game Value Best payo� an on-line player can achieve.Competitive Ratio An upper bound on the inverse of the game value.It can be noticed that the competitive ratio is de�ned in terms of inverse of game values, which isthe correct choice in maximization on-line games [BEY98]. We notice that the knapsack game istrivial if all p(i)'s are equal (choose the jobs in non-decreasing length order) or if all l(i)'s are equal(choose the jobs in non-increasing pro�t order). In the more general scenario, we will assume thata job can be scheduled on any one of m machines that run at the same speed. The adversary willshut all machines down at the deadline D.Henceforth, we will use natural logarithms because they simplify notation and derivatives. Ofcourse, the logarithm base does not alter the order of asymptotic bounds. Finally, we introduce somequantities that will be fundamental to the analysis below. De�ne V = maxi2[n]fp(i)g=mini2[n]fp(i)gas the ratio of the largest to the smallest pro�t. Another important quantity is L, the number ofdistinct length values in the job set, that is, L = jfl(j) : j 2 [n]gj � n. Finally, we de�ne thecritical number of machines � = minfL� 1; lnV g.3 Competitive AnalysisIn this section, we conduct competitiveness analysis for the shut-down scheduling problem.3.1 Randomized AlgorithmsWe present strongly competitive randomized algorithms for shut-down scheduling. Here, we willfocus on the case when L; V 6= O(1), and we will obtain di�erent competitive ratios depending onthe relative growth rate of L and V . We begin with a lower bound on the case of m = 1 machineLemma 3.1 No randomized algorithm for the knapsack game can be better than
(L)-competitivewhen V =
(2L) and better than
(logV)-competitive when V = o(2L).The proof will exploit the minimax principle [BEY98].Proof Sketch. Let � = 1= L�1pV , l(i) = n + i � 1 and p(i) = bp(1)�1�ic for all i 2 [n]. Noticethat p(1) � p(2) � : : : � p(n) � V , so that the ratio of the largest to the smallest value is indeedbounded by V . The two fundamental points of the proof are the following. First, if D � 2n� 1, atmost one job can be scheduled before the deadline. If the on-line player guesses the right job, itspayo� is one. If it guesses a job that is longer than the deadline, its payo� is naught. Finally, if itguesses a job that is shorter than the deadline, its payo� is limited by the exponential growth ofpro�ts. The second point is to use the minimax principle as follows. Let c = n(1� �) + �. We canshow a probability distribution over D that forces any deterministic on-line strategy to have payo�O(1=c). By the minimax principle, the value of the game is O(1=c), and so the competitive ratioof a randomized on-line algorithm is
(c) =
(n(1� �)). An asymptotic analysis of c completesthe proof. 2We now show that the same lower bound holds for an arbitrary number m of machines.3

Corollary 3.2 No randomized algorithm for the shut-down scheduling onm machines can be betterthan
(L)-competitive when V =
(2L) and better than
(logV)-competitive when V = o(2L).Proof. The proof is a reduction to the case of m = 1 machine. Consider the same counterexampleas in Lemma 3.1 on n0 jobs and replicate each job for m times, so that the total number of jobsis now n = n0m. The number L of length classes remains unchanged. Again, at most one jobcan complete on any machine when D � 2n � 1. We will show how to convert any randomizedalgorithm for the m machine instance into a randomized algorithm for the original one-machineproblem so that the two schedules achieve the same payo�. If D � 2n�1, any randomized strategyfor m machines is completely characterized by the expected number fi of machines starting a job oflength n+ i�1. Let h be the index with D = l(h). By linearity of expectation, the on-line expectedpro�t is Phi=1 fip(i). Meanwhile, the adversary's pro�t is mp(h), so that the on-line expected payo�is Phi=1 fip(i)=(mp(h)). Consider an on-line algorithm for the one machine instance that schedulesjob i with probability fi=m. Its expected payo� is exactly the same as the m machine algorithmfor any choice of deadline D � 2n� 1. Hence, the same lower bound as in Lemma 3.1 applies, andthe proof is complete. 2If m > 1 and all l(i)'s are equal, then shut-down scheduling is trivial (schedule jobs in non-increasing pro�t order). We turn to the case when the p(i)'s are equal, and show an O(1)-competitive algorithm. Such algorithm is an intermediate step to solve the general case of di�erentpro�ts. First, notice that when all pro�ts are equal, our objective is to maximize the number ofcompleted jobs. De�ne the canonical job scheduling algorithm for a set C � [n] as a list schedulingalgorithm [Gra66] that orders the jobs from the shortest to the longest.Lemma 3.3 Let C � [n] be a set of jobs. The canonical schedule of C completes at least 1=5 ofthe jobs completed by any other algorithm before the deadline D.De�ne the load of a machine as the total length of jobs completed on that machine before thedeadline and the makespan as the maximum load of any one machine. The proof will exploit aresult for load balancing of permanent jobs [Gra66].Proof. The proof is organized as follows. We partition the jobs executed by the optimum into�ve classes, depending on their starting and completion time with respect to the deadline D andthe makespan of the canonical schedule. Then, we show that no class contains more jobs thanthose completed by the canonical schedule before the deadline D. Hence, the canonical schedulecompletes at least 1/5 of the jobs completed by the optimum, which will complete the proof.Assume without loss of generality that jobs are numbered in non-decreasing order of length,that is, l(j + 1) � l(j) for j = 1; 2; : : : ; n� 1. Let G be the set of jobs completed by the canonicalschedule before D and let MG the makespan of G, that is the time the last job in G is completed.By de�nition, MG � D. Observe that initially G starts by assigning one job in [m] to each machine.Let H be a the largest set of jobs completed before D. Suppose �rst that jH j � m. Then, D is atleast the length of the longest job in H , which is at least l(jH j). Hence, G completes at least one jobon at least jH j machines and the claim is proven. Assume now jH j > m, so that D � l(jH j)� l(m).Hence, jGj � m. We now make the following de�nition: if X � [n] is a set of jobs, then M�X isthe minimum makespan to complete X . Observe that if X � Y , then M�X � M�Y . Analogously,if X; Y � [n] and if there is a one-to-one mapping f : Y ! X with l(j) � l(f(j)) for all j 2 Y ,then M�X �M�Y . Let M�G be the earliest time when G can be completed. A load balancing resultsclaims that 2M�G > MG. Schedule H on m machine so that the schedule completes before time D4

MG
*

MG

D

1 2 m

H1

H2

H3

H4

H5

Figure 1: A partition of the optimal set H of jobs according to the optimal makespan M�G and theactual makespan MG of the on-line algorithm.and partition H into �ve subsets according to such schedule as follows (Figure 1 gives an exampleof such partition).� The subset H1 � H is the set of jobs that complete before time M�G. We claim that jH1j � jGj.Suppose by contradiction jH1j > jGj. Take any proper subset H 0 � H1 with jH 0j = jGjelements. Since G consists of the jGj shortest jobs, there is a one-to-one mapping f : H 0 ! Gwith l(j) � l(f(j)) for all j 2 H 0. Hence, the optimal makespan M�H 0 of H 0 is not smallerthan the optimal makespan M�G of G. Therefore, M�G � M�H 0 � M�H 0 and a contradiction isreached. Therefore, we conclude jH1j � jGj.� The subset H2 � H is the set of jobs that start before time M�G and complete after time M�G.The set H2 contains at most one job per machine, so that jH2j � m � jGj.� The subset H3 � H is the set of jobs that starts after time M�G and complete after time MG.Since MG �M�G < M�G, we conclude that jH3j � jGj with an argument similar to H1.� The subset H4 � H is the set of jobs that starts before time MG and complete after timeMG. H4 contains at most one job per machine and so jH4j � m � jGj.� The subset H5 � H is the set of jobs that start after MG. Notice that D �MG < l(jGj+ 1)or else G would have scheduled one more job. Hence, H5 can contain at most jGj documentsbecause job jGj+ 1 does not �t in the alloted time D �MG < l(jGj+ 1).Notice that H1; H2; : : : ; H5 give indeed a partition of H . We conclude that jH j � 5jGj, whichproves the lemma. 2Corollary 3.4 The canonical schedule is 5-competitive for shut-down scheduling on any numberm of machines when p(i) = 1 for all jobs i.The canonical schedule algorithm easily generalizes to the case of arbitrary pro�ts by using theCRS techniques. Partition the job set into O(logV) pro�t classes such that no job is more thanO(1) times as pro�table as any other job in the same class. Then, extract a pro�t class at randomand execute jobs only from that class. However, if V =
(2L), then jobs are partitioned accordingto their length in such a way that a job class contains only jobs of the same length. We concludethat 5

V = o(2L) V =
(2L)m � � �(m�) �(m�)m > � �(logV) �(L)Table 1: Competitive ratios of the best deterministic algorithm for the m machine knapsack game,where L is the number of length classes, V is the ratio of largest and smallest pro�t, � = minfL�1; lnV g is the critical number of machines, and � = mpV .Theorem 3.5 The best algorithm for shut-down scheduling is �(L)-competitive when V =
(2L)and �(log V)-competitive when V = o(2L).A consequence of the matching upper and lower bounds is that if we change the number m ofmachines, we do not help nor hamper the competitive ratio of randomized algorithms.3.2 Deterministic AlgorithmsWe now turn to deterministic algorithms. It is helpful during the discussion to refer to table 1which summarizes our results. First, we argue that if there is a su�ciently large number m > � ofmachines, then, we can �nd deterministic algorithms that match the randomized lower bound. Wederandomize the CRSlog algorithm as follows. If we have m � � + 1 � ln V + 1 machines, we canassign m0 = dm=(lnV + 1)e machines to process jobs in each pro�t class according to the canonicalschedule. Roughly speaking, the derandomized version translates the probability of executing jobsin class Ci into the fraction of machines assigned to class Ci. It is critical that pro�t classes bedisjoint sets, as otherwise a job would have to be scheduled on more than one machine.Lemma 3.6 The derandomized version of the CRSlog algorithm is O(logV)-competitive for shut-down scheduling on m � ln V + 1 machines.Proof. At any time, the algorithm has completed at least 1 / 5 of the jobs in a certain class thatare completed by any other algorithm that uses m0 machines for that class. Hence, the adversarycompletes in each class at most 5m=m0 = O(logV) jobs more than the derandomized CRSlogalgorithm, and, on each job, it earns less than e times as much as the derandomized CRSlog. Thus,such algorithm is O(logV)-competitive. 2We can analogously derandomize the O(L)-competitive algorithm as long as we have m �� + 1 � L machines. It remains to establish deterministic competitive ratios for m � � machines.In this case, Corollary 3.2 is tight for randomized algorithms, but gives a weak lower bound fordeterministic algorithms. Intuitively, the weakness of Corollary 3.2 stems from the fact that it is notalways possible to execute simultaneously all deterministic strategies that compose a randomizedalgorithm if only few machines are available. De�ne � def= mpV (such notation is independent ofthat in Lemma 3.1) and notice that � > 1. We will frequently use the equalities ln � = (lnV)=mand m = �.Lemma 3.7 If m � minfL� 1; lnV g, then no deterministic algorithm can be better than
(m�)-competitive. 6

Notice that m� = !(m log�) = !(logV). On the other hand, if V =
(2L), then � =
(2L=m) =!(L=m), and so m� = !(L). Hence, Lemma 3.7 dominates Corollary 3.2 when m � �.Proof. The proof is based on an instance with the property that the adversary will be able tochoose a bad deadline for any on-line algorithm. The instance consists of m+1 classes of m identicaljobs such that jobs in class i are � times more valuable than jobs in class i � 1. Job lengths arechosen in such a way that only one job can complete on any one machine, which is similar to thelength distribution of Lemma 3.1. Since there are more classes than machines, the on-line algorithmdoes not schedule any job from a certain class. The adversary chooses the deadline so that theoptimum strategy schedules jobs only from that class, while the on-line algorithm achieves a smallpro�t. We will now give the details of the arguments.Set-up. The proof is based on an instance where there are m identical jobs of pro�t bp0�ic(i = 0; 1; 2; : : : ; m) for some minimal pro�t p0. Hence, the total number of jobs is n = m(m + 1).Notice that L = m+ 1 > m. Observe that the minimum pro�t is p0 and the maximum pro�t is nomore than p0V . A pro�t class is a set of jobs with the same pro�t. We will think of pro�t classesas ordered by the pro�t of the jobs they contain. A job of pro�t p0�i has length 2m+ i. If D � 3m,then at most one job can complete on any one machine.Holes. Since the number of pro�t classes is m + 1, there is at least one pro�t class from whichno job is completed before the deadline D � 3m. We will say that a hole is a maximal non-emptysequence of pro�t classes with the property that no job has been scheduled from any class in thehole. Clearly, there is at least one hole. If the �rst class C0 is in a hole, then the adversary will setD = 2m, and the on-line algorithm achieves no pro�t. Therefore, we can assume from now that the�rst class is not in a hole without loss of generality. Suppose that the holes are H1 � H2 � : : : � Hl.Let ki be the number of jobs scheduled from the class immediately preceding hole Hi. We claimthat there is at least one hole Hi for which ki � jHij + 1. Suppose that this is not true. Then,denote by � the number of classes that are not immediately followed by a hole and observe thatthe total number of jobs is at least � + 2l +Pli=1 jHij = m+ l > m, which is a contradiction. Theadversary considers an hole H such that jHj+ 1 is a bound on the number of jobs scheduled in theclass immediately before the hole.Payo�. Suppose that hole H extends from class h+ 1 to class h+ � for some � � 1. The on-linealgorithm schedules at most � + 1 jobs in of value �h. The adversary chooses D = 2m + h + �and achieves a pro�t p� � m(�h+�p0 � 1). Meanwhile, the on-line algorithm achieves a pro�tp(G) � (� + 1)�hp0 + (m� (� + 1))�h�1p0. Hence, for any � > 0,p�p(G) � m��+1(� + 1)�+ m� (� + 1) � � :The function f(x) = m�x=(x�+ m� x) is increasing whenever x�+ m� x > (�� 1)= ln�, that is,for all x's with x > 1= ln��m=(�� 1). However, 1= ln ��m=(�� 1) � m= lnV � 1, which impliesthat f(x) is increasing when x � 2. Hence, the pro�t ratio is minimized whenever � = 1, so thatp�p(G) � m�22�+ m� 2 � � :If � < m, then p�=p(G) > m�2=(3�� 2) � � � m�2=� � � = m� � �. If � � m, then p�=p(G) �m�2=(3m� 2)� � � m�2=m� � � m�� �, and the proof is complete. 27

Such lower bound is matched by the following CSM (Canonical Schedule for m machines)algorithm. First, normalize job pro�ts so that the minimum pro�t is one and the maximum pro�tis V . CSM divides the job set into m classes according to job pro�t, where class i consists of jobsof pro�t �i�1 � p(j) < �i. CSM schedules jobs of class i on machine i according to the canonicalschedule.Lemma 3.8 The CSM algorithm is O(m�)-competitive for the knapsack game on m of machines.Proof. De�ne the hth pro�t class as Ch = fj : �h�1 � p(j) < �hg. Let xh be the number of jobsin class h scheduled by the optimum before the deadline D. Hence, the optimum pro�t from classh is less than xh�h. The CSM algorithm schedules at least a xh=(5m) jobs in class h, so that itspro�t is at least xh�h�1=(5m). Hence, CSM has a payo� of at leastPmh=1 xh�h�1mPmh=1 xh�h � Pmh=1;xh 6=0 xh�h�1mPmh=1;xh 6=0 xh�h � 15m 1� � 15m� :The competitive ratio is the inverse of the payo�, and thus the proposition is proven. 2The lower bound and the CSM algorithm are summarized by:Theorem 3.9 The best algorithm for the knapsack game on m � minfL� 1; lnV + 1g machinesis �(m mpV)-competitive.3.3 Reduced RandomizationThe CSM algorithm can be translated into a randomized algorithm, where a random class of jobsis scheduled according to the canonical schedule. We will name the resulting randomized algorithmCSMr.Lemma 3.10 The CSMr algorithm is O(m�)-competitive for the shut-down scheduling problem.Proof. Since there are m pro�t classes, jobs in the same classes have pro�ts that are within afactor of �, and the canonical schedules has a performance guarantee of 5, we obtain that the payo�of CSM is at least 1=(5m�). 2Hence, CSMr gives a precise trade-o� between randomization and competitive ratio. Indeed,if no randomization is allowed, then the best algorithm is �(V)-competitive. As the amount ofrandomization increases to m strategies (m � lnV), performance improves as �(m mpV). Finally,when m = ln V + 1, the best algorithm is �(logV)-competitive and, if V = o(2L), no furtherimprovement stems from adding more machines. Meanwhile, we claim that CSMr achieves optimalperformance.Theorem 3.11 The best randomized algorithm that is a distribution over only m deterministicstrategies is �(m�)-competitive.Proof Sketch. Consider the proof of Lemma 3.7 and replace the number of machine starting acertain job class with the expected number of machines. 28

4 Probabilistic AnalysisIn this section, we will conduct probabilistic analyses of shut-down scheduling on m = 1 machine.Let � = (�1; �2; : : : ; �n) be a permutation of [n] and Ji = f�1; �2; : : : ; �ig. Then,E[p(�)] = nXi=1 p(Ji)Pr[l(Ji) � D < l(Ji+1)] = nXi=1 p(�i)Pr[D � l(Ji)] : (1)Our objective is to �nd a permutation � that maximizes (1). A corresponding decision problem isto �nd a permutation � such that E[p(�)] � �p for some given �p. Such decision problem is easilyseen to be NP-complete as it reduces to a knapsack problem when there is a t with Pr[D = t] = 1.First, we give a general optimality criterion.Lemma 4.1 If a permutation � maximizes (1), then, for all i 2 [n� 1],p(�i)Pr[l(Ji) � D < l(Ji+1)] � p(�i+1)Pr[l(Ji�1) + l(�i+1) � D < l(Ji+1)] :Moreover, if � maximizes (1) andp(�i)Pr[l(Ji) � D < l(Ji+1)] = p(�i+1)Pr[l(Ji�1) + l(�i+1) � D < l(Ji+1)] ;then the permutation �0 obtained by exchanging �i and �i+1 is also optimal.Proof Sketch. If this were not so, exchange jobs �i and �i+1 to increase the pro�t. Analogously,if equality holds, the pro�t remains unchanged, and thus optimal. 2A simple corollary is that if all p(i)'s are equal, then the optimal solution is to arrange jobsin increasing order of length, independently of the distribution of D. Another simple consequenceis that if D is uniformly distributed in an interval [0; A] of the real line with A � l([n]), thenhe optimal permutation is to arrange jobs in non-increasing pro�t density p(i)=l(i) (PD-order).Such result for the uniform distribution also follows by noticing that, under such distribution, theobjective (1) de�nes a weighted completion time problem, and we can apply Smith's rule [Smi56].We now turn to the case when the deadline D is extracted according to an exponential distribu-tion with rate �. The exponential distribution models the case when client requests arrive accordingto a Poisson process, and each request terminates a lull. First, recall that, if D is exponentiallydistributed, we have Pr[D � t] = e��t. Then, expression (1) becomesE[p(�)] = nXi=1 p(�i)e��l(Ji) : (2)De�ne the exponential density of job i as the ratio de(i) = p(i)=(e�l(i)� 1). The Exponential Pro�tDensity (EPD) algorithm arranges jobs in non-increasing order of exponential pro�t density. Wewill say that a permutation is in EPD-order if its jobs are in non-increasing order of exponentialpro�t density.Theorem 4.2 If Pr[D � t] = e��t, then a permutation minimizes (2) if and only if it is inEPD-order. 9

Proof. If a permutation is optimal, then the optimality condition of Lemma 4.1 implies that it isin EPD-order. Conversely, assume that the identity is an optimal EPD permutation, and supposewe exchange two terms h and h + 1 with the same exponential value density. Lemma 4.1 impliesthat the new permutation is optimal as well. Any permutation in EPD-order can be obtained by a�nite exchange of jobs with the same exponential pro�t density, and the proposition is proven. 2The previous theorem suggests that in some sense lengths are exponentially more importantthan values for an exponential distribution. On the other hand, an exponential distribution canbe approximated by a uniform distribution when � is large, in which case we can show that PD iswithin 1.1312 of the optimum.We observe that there are in general several scheduling strategies in PD-order (EPD-order). Al-though any such strategy maximizes the expected pro�t, we will show that some optimal strategieshave smaller variance than others. Variance analysis is based on the optimality conditions and onthe followingLemma 4.3 If � is an optimal permutation that has minimum V ar[p(�)] among all optimal per-mutations and p(�i)Pr[l(Ji) � D < l(Ji+1)] = p(�i+1)Pr[l(Ji�1) + l(�i+1) � D < l(Ji+1)] 6= 0,then p(�i) � p(�i+1).Proof Sketch. Since � is optimal, Lemma 4.1 holds. Hence, we can only exchange jobs for whichthe equality condition holds. Furthermore, p(�) is a constant among all optimal permutation, sothat minimizing the variance is tantamount to maximizing the second moment E[p2(�)]. Therefore,we seek optimality conditions for the problem where p(j) is replaced by �p2(j), subject to theconstraints given by Lemma 4.1. Such optimality conditions are found by an exchange argumentand the lemma is proven. 2It can be seen that a tie breaking procedure for the uniform and exponential distribution is tofavor shorter jobs. Indeed, suppose that job i and i+ 1 have the same (exponential) pro�t densityand p(i) � p(i + 1). Then, l(i) � l(i + 1). Hence, the optimal strategy that minimizes risk is toarrange jobs in PD-order (EPD-order) and break ties by scheduling shortest jobs �rst.AcknowledgmentsWe are grateful to Brian Davison, Kevin Christian, Samir Khuller, and Xiao-Tong Zhuang forhelpful discussions.References[AS98] Susanne Albers and Guenter Schmidt. Scheduling with unexpected machine break-downs. Technical Report MPI-I-98-1-021, Max-Planck-Institut Fuer Informatik, 1998.[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.Cambridge University Press, 1998.[CB98] Mark Crovella and Paul Barford. The network e�ects of prefetching. In Proceedingsof IEEE INFOCOM, 1998. 10

[CGJ97] E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms forbin packing: A survey. In Dorit S. Hochbaum, editor, Approximation Algorithms forNP-hard Problems, chapter 2. PWS, Boston, 1997.[DP82] Gianfranco D'Atri and Claude Puech. Probabilistic analysis of the subset-sum prob-lem. Discrete Appl. Math., 4(4):329{334, 1982.[FCJ99] Li Fan, Pei Cao, and Quinn Jacobson. Web prefetching between low-bandwidth clientsand proxies: Potential and performance. In Proceedings ACM SIGMETRICS '99,pages 178{187, 1999.[GGK+97] Juan A. Garay, Inder S. Gopal, Shay Kutten, Yishay Mansour, and Moti Yung. E�-cient on-line call control algorithms. J. Algorithms, 23(1):180{194, 1997.[GGU73] M. R. Garey, R. L. Graham, and J. D. Ullman. An analysis of some packing algorithms.In Combinatorial algorithms (Courant Comput. Sci. Sympos., No. 9, 1972), pages 39{47. Algorithmics Press, New York, 1973.[GMS84] Andrew V. Goldberg and Alberto Marchetti-Spaccamela. On �nding the exact so-lution to a zero-one knapsack problems. In Proceedings of the 16th Annual ACMSymposium on Theory of Computing, pages 359{368, 1984.[Gra66] R. L. Graham. Bound for certain multiprocessor anomalies. Bell System TechnicalJournal, 45:1563{1581, 1966.[Kel99] Hans Kellerer. A polynomial time approximation scheme for the multiple knapsackproblem. In Proceedings of The 2nd International Workshop on Approximation Algo-rithms for Combinatorial Optimization Problems, 1999.[KP94] Bala Kalyanasundaram and Kirk Pruhs. Fault-tolerant scheduling. In Proceedings ofthe Twentysixth Annual ACM Symposium on the Theory of Computing, pages 115{124, 1994.[KP97] Bala Kalyanasundaram and Kirk Pruhs. Fault-tolerant real-time scheduling. InAlgorithms|ESA '97 (Graz), pages 296{307. Springer, Berlin, 1997.[LD99] Vincenzo Liberatore and Brian D. Davison. Data dissemination on the Web: Specu-lative and unobtrusive. Technical Report 99-23, UMIACS, College Park, MD, April1999.[LT94] Richard J. Lipton and Andrew Tomkins. Online interval scheduling. In Proceedingsof the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (Arlington, VA,1994), pages 302{311, New York, 1994. ACM.[Lue82] George S. Lueker. On the average di�erence between the solutions to linear andinteger knapsack problems. In Applied probability|computer science: the interface,Vol. I (Boca Raton, Fla., 1981), pages 489{504. Birkh�auser Boston, Boston, Mass.,1982.[Lue95] George S. Lueker. Average-case analysis of o�-line and on-line knapsack problems.In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,pages 179{188, 1995. 11

[Mar70] Harry M. Markowitz. Portfolio Selection. E�cient Diversi�cation of Investments.Blackwell, New Haven, 1970.[MRKSV90] M. Meanti, A. H. G. Rinnooy Kan, L. Stougie, and C. Vercellis. A probabilisticanalysis of the multiknapsack value function. Math. Programming, 46(2 (Ser. A)):237{247, 1990.[MSV95] A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems.Math. Programming, 68(1, Ser. A):73{104, 1995.[MT90] Silvano Martello and Paolo Toth. Knapsack problems. John Wiley & Sons Ltd.,Chichester, 1990.[SL87] Krzysztof Szkatu la and Marek Libura. On probabilistic properties of greedy-like algo-rithms for the binary knapsack problem. In Stochastics in combinatorial optimization(Udine, 1986), pages 233{254. World Sci. Publishing, Singapore, 1987.[Smi56] Wayne E. Smith. Various optimizers for single-stage production. Naval Res. Logist.Quart., 3:59{66, 1956.[UFA98] Tolga Urhan, Michael Franklin, and Laurent Amsaleg. Cost-based query scramblingfor initial delays. In ACM SIGMOD Intl. Conference on Management of Data (SIG-MOD), 1998.[WP98] Walter Willinger and Vern Paxson. Where Mathematics meets the Internet. Noticesof the AMS, 45(8):961{970, September 1998.

12

A Randomized AlgorithmsWe now give the proofs relative to the competitiveness analysis of randomized algorithms.Lemma A.1 No randomized algorithm for the knapsack game can have a competitive ratio betterthan
 L 1� 1V 1L�1 !! :Proof. The number of jobs is n = L. Moreover, for any � > 0, there is a p(1) such thatp(i)=p(1)� �1�i � (1 + �)p(i)=p(1). The adversary chooses D according to the distribution:Pr[D = t] = 8><>: 1��c if t = l(i) for i 2 [n� 1]1c if t = l(n)0 otherwiseNotice that the probabilities sum up to (1 + (n � 1)(1� �))=c = 1. Let Gh be any deterministicstrategy that schedules job h �rst, and let p(Gh) be its gain. If D < l(h), then p(Gh) = 0. IfD = l(i) > l(h), then p(Gh) = p(h) � p(1)�1�h, and its payo� is p(Gh)=p� � (1 + �)�i�h. Theexpected payo� for Gn is E �p(Gn)p� � � (1 + �)Pr[D = l(n)] = 1 + �c :Let qi def= Pr[D � l(i)]. The expected payo� for Gh, when 1 � h � n� 1, isE �p(Gh)p� � � (1 + �) nXi=h �i�hqi! == (1 + �) qh + � n�hXi=1 �iqh+i!! == (1 + �)�qn + �E �v(Gh+1)v� �� == (1 + �)�1� �c + �c� == 1 + �c :The inverse of E[v(Gh)=v�] is
(c), and the lemma is proven. 2The most signi�cant di�erence between our worst-case instance and the on-line marriage prob-lem [LT94] is that in shut-down scheduling, the number of jobs n is known in advance, whereasin the on-line marriage problem no such information is available. We will say that the worst-caseexample in the previous lemma is the �nite on-line marriage problem.Proof of Lemma 3.1. We use the notation and result in the previous lemma. First, assume thatV =
(2L). Then, � = V � 1L�1 � 2� LL�1 � 12 :and so c � L=2, and the �rst part of the theorem is proved.13

Next, assume that L = !(logV). Let x = V 1L�1 �1 and observe that ln(1+x) = (lnV)=(L�1),so that limV!1 ln(1 + x) = 0, which implies limV!1 x = 0. Hence,limV!1 cln V = limV!1 L(1� �)lnV == limV!1 LL� 1 L� 1lnV 1� 1V 1L�1 ! == limx!0 x(1 + x) ln(1 + x) == � limx!0 11 + ln(1 + x) = 1 ;and so the competitive ratio is
(logV), which completes the proof. 2We illustrate the general CRS paradigm in the case of m = 1 shut-down scheduling. The job setinto k disjoint classes C1; C2; : : : ; Ck according to some criteria. then, we will provide deterministicstrategies G1; G2; : : : ; Gk that schedules only jobs from class Ci and that within a constant factorfrom the optimum. We will obtain a randomized algorithm chooses one of the Gi's at random andis k-competitive. We now detail this insight. Let C1; C2; : : : ; Ck be a partition of [n]. If � is a jobpermutation, we de�ne pi(�;D) as the pro�t of � from jobs in class Ci that are completed beforethe deadline, that is, pi(�;D) = p(Js \ Ci) where s is the largest integer such that l(Js) � D.Analogously, p�i (D) is the pro�t of the optimum schedule on jobs in class Ci. Suppose that forall i's there is a deterministic algorithm Gi that schedules only jobs from class Ci and such thatpi(Gi; D) = p�i =� for some �. Let G the algorithm that extracts one of the Gi's uniformly atrandom. Then, G's expected pro�t isE[p(G)] = 1k kXi=1 p(Gi) � 1k kXi=1 pi(Gi) � 1�k kXi=1 p�i = p��k : (3)We conclude that G is O(�k)-competitive.We now turn to describe an on-line algorithm for the general case that matches the lower boundup to a constant factor. First, we present an algorithm CRSlog that is O(logV)-competitive.Partition the job set into dln V + 1e pro�t classes Ci = fj : ei � p(j)=p(1)< ei+1g (0 � i � dln V e)such that no job is more than e times as pro�table as any other job in the same class. Choose oneof the classes at random and schedule jobs only from that class on m machines according to thecanonical scheduling algorithm.Lemma A.2 The CRSlog algorithm is O(logV)-competitive for the shut-down scheduling problem.Proof. Let pi be the pro�t earned by CRSlog if class i is chosen and p�i be the pro�t earned bythe optimum on jobs in class i. Then, the optimum pro�t is p� = PlnVi=0 p�i . Suppose that CRSlogchooses class Ch. Since CRSlog schedules jobs in canonical order, Lemma 3.3 implies that no otheralgorithm completes more than �ve times as many jobs in Ch as CRSlog, and on each one of thesejobs, it earns at most e times the pro�t gained by CRSlog. Hence, the expected pro�t of CRSlog is11 + lnV lnVXi=0 pi � 11 + ln V lnVXi=0 p�i5e = p�5e(1 + lnV) ;14

and we conclude that CRSlog is O(logV)-competitive. 2De�ne the CRSL algorithm as the algorithm that partitions the job set into length classes whereall jobs in the same class have the same length, chooses one class at random, and schedules thejobs in that class in non-increasing order of pro�t.Lemma A.3 The CRSL algorithm is O(L)-competitive for the shut-down scheduling problem.Proof. Let pi be the pro�t earned by CRSL if class i is chosen and p�i be the pro�t earned by theoptimum on jobs in class i. Then, the optimum pro�t is p� = PlnVi=0 p�i . Suppose that CRSL choosesclass Ch. Since CRSL schedules jobs from the most to the least pro�table, no other algorithm canachieve a better pro�t on jobs in the same class. Hence,1L LXi=1 pi � 1L LXi=1 p�i = p�L ;so that CRSL is L-competitive. 2B Probabilistic AnalysisProof. We will prove the lemma for the identity permutation for simplicity of notation. Jobrenaming will yield the result for an arbitrary permutation �. Then, we need to show that, for alli 2 [n� 1],p(i)Pr[l([i])� D < l([i+ 1])] � p(i+ 1)Pr[l([i� 1]) + l(i+ 1) � D < l([i+ 1])] :Suppose by contradiction that the equation above does not hold for an index i 2 [n� 1]. Considera permutation � that is obtained from the identity by exchanging job i and i+ 1. All terms in (1)remain unchanged except those relative to indices i and i + 1. Moreover,p(i)Pr[D � l([i])] + p(i + 1)Pr[D � l([i+ 1])] == p(i)Pr[l([i])� D < l([i+ 1])] + p(i)Pr[D � l([i+ 1])] + p(i + 1)Pr[D � l([i+ 1])] << p(i + 1)Pr[l([i� 1]) + l(i+ 1) � D < l([i+ 1])] + p(i)Pr[D � l([i+ 1])]++p(i + 1)Pr[D � l([i+ 1])] == p(i + 1)Pr[D � l([i� 1]) + l(i+ 1)] + p(i)Pr[D � l([i+ 1])] : (4)so that the identity's expected pro�t is less than �'s It follows that the identity is not optimal. Wehave reached a contradiction and the �rst part of the lemma is proven. Suppose now that equalityholds and repeat the same calculations as in equation (4) with an inequality substituted by anequality. The expected pro�t remains unchanged, and so the second part of the lemma is provenas well. 2Proof. If all value densities are equal, then we can assume without loss of generality that p(i) = l(i)for all jobs i. Moreover, the function x=(ex� 1) is decreasing for all x > 0, so that longer jobs havelower exponential value density. The corollary is then proved by invoking the previous proposition.2We now compare SF and EPD. An advantage of SF over EPD is that SF does not require theknowledge of the rate �. However, SF requires that all densities be equal. We next prove that PDis within a constant factor of the optimum independently of value densities as long as the rate � islarge enough. 15

Corollary B.1 If D follows an exponential distribution with rate � and 1=� � l([n]), then PD iswithin 1:1312 of the optimum value of (2).Proof. We approximate the function ex with a linear function ex ' ea(x + 1 � a), where a =�1=(e� 1). Elementary calculus yields that for all x 2 [�1; 0] and for � = 1=ea(1�a)� 1 � 0:1312,ex � (1 + �)ea(x + 1� a) � (1 + �)ex :Notice that (1 + �)ea(1� a) = 1 and that (1 + �)ea(2� a) > 0, so that the linear approximation(1 + �)ea(x + 1 � a) can be expressed as 1� At for some A > 0 and all 0 � t � l([n]). The resulton uniform distributions implies that PD is optimal under such linear approximation. Assumewithout loss of generality that the identity permutation is in PD-order, and let � be the optimalpermutation for the original exponential distribution. Then,nXi=1 p(i)(1�Al([i])) � nXi=1 p(�i)(1�Al(Ji)) � Pni=1 p(�i)e��l(Ji)1 + � ;so that the value of PD is no more than 1 + � times the optimum, and the proposition is proved. 2Proof of Lemma 4.3. Notice that V ar[p(�)] = E[p2(�)] � (E[p(�)])2 and E[p(�)] is �xed toits optimal value, so that minimizing the variance corresponds to minimizing the second momentE[p2(�)] subject to the additional constraint that E[p(�)] be optimum. In other words, we seek tominimize E[p2(�)] among all permutations We will prove the lemma for the identity permutationfor simplicity of notation. Job renaming will yield the result for all permutations. Exchange jobi and i + 1. The resulting permutation is optimal by Lemma 4.1. The second moment E[p2(�)]remains unchanged except for the terms relative to index i and i+ 1. The di�erence is0 � p2(i)Pr[D � l(Ji)] + p2(i + 1)Pr[D � l(Ji+1)]��p2(i)Pr[D � l(Ji+1)]� p2(i+ 1)Pr[D � l(Ji�1) + l(�i+1)] == p2(i)Pr[l(Ji) � D < l(Ji+1)] + p2(i+ 1)Pr[l(Ji�1) + l(i+ 1) � D < l(Ji+1)] ;so that p2(i)Pr[l(Ji) � D < l(Ji+1)] � p2(i + 1)Pr[l(Ji�1) + l(i + 1) � D < l(Ji+1)]. Divide byp(�i)Pr[l(Ji) � D < l(Ji+1)] = p(�i+1)Pr[l(Ji�1)+l(�i+1) � D < l(Ji+1)] to prove the proposition.2
16

