THESIS REPORT
Ph.D.

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

Ph.D. 90-4

Feedback Stabilization via Center
Manifold Reduction with
Application to Tethered Satellites

by D.C. Liaw
Advisor: E.H. Abed



ABSTRACT

Title of Dissertation: Feedback Stabilization via Center Manifold Reduction
with Application to Tethered Satellites

Der-Cherng Liaw, Doctor of Philosophy, 1990

Dissertation directed by: Dr. Eyad H. Abed
Associate Professor

Department of Electrical Engineering

Center manifold reduction has recently been introduced as a tool for de-
sign of stabilizing control laws for nonlinear systems in critical cases. In this
dissertation, the center manifold approach is elaborated for general such non-
linear systems in several critical cases of interest, and the results are applied to
the control of tethered satellite systems (TSS). In addition, to address stability
questions for satellite deployment via TSS, we obtain new results in finite-time
stability theory.

The critical cases considered in the general feedback stabilization studies
include the cases in which the system linearization possesses a simple zero eigen-
value (of multiplicity one or two), a pair of simple pure imaginary eigenvalues,
one zero eigenvalues along with a pair of simple pure imaginary eigenvalues,
and two pairs of simple pure imaginary eigenvalues. The calculations involve
center manifold reduction, normal form transformations, and Liapunov function
construction for critical systems. These calculations are explicit.

The tethered satellite systems considered here consist of a satellite and
subsatellite connected by a tether, in orbit around the Earth. The Lagrangian
formulation of dynamics is used to obtain a nonlinear system of ordinary dif-
ferential equations for TSS dynamics. For simplicity, a rigid, massless tether
is assumed. Linear analysis reveals the presence of critical eigenvalues in the
station-keeping mode of operation. This renders useful results on stabilization

in critical cases to this application. The control variable assumed is tether



tension feedback. Besides the design of stabilizing station-keeping controllers,
stability of deployment and instability of retrieval are also shown for a constant

angle deployment /retrieval scheme.
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CHAPTER
ONE

INTRODUCTION

Stability analysis and stabilization for nonlinear autonomous systems are
subjects which have been studied extensively. Many publications have ap-
peared: Some of them emphasize the development of new control theories for
general systems [6], [15]-[19], [23], [25]-[26], [29]-[34], [44], [45], [53]-[55], [60]-
[62], and some concern practical applications, for instance, [5], [8], [9], [12]-[14],
[20]-[22], [24], [37]-[39], [46]-[50], [66]-[73]. But until now, not many papers
have been published in the study of the stability and stabilization of critical
systems, wherein the system’s Jacobian matrix possesses eigenvalues lying on
the imaginary axis. Several approaches have been used to study such systems.
One involves an application of bifurcation theorems [1], [2], [25], [34], and an-
other is geometric in nature and uses center manifold reduction [4], [10], [51],
[65]. Other, often less constructive, techniques have also been used; see the
survey papers of Bacciotti and Boieri [7], and Sontag [83] for details and fur-
ther references. In this dissertation, we extend existing results in the geometric
approach to the study of stability and stabilization of general critical nonlin-

ear autonomous systems. These results are then employed to design stabilizing
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control laws for a Tethered Satellite System (TSS) during station-keeping. Ad-
ditionally, we extend known results on the so-called finite time stability, and
use these results to study stability of the TSS during constant in-plane angle

deployment and retrieval.
1.1. Motivation

In general, the linearization approach is a very popular and powerful method
being used to study the local stability properties as well as the locally stabiliz-
ing control design for smooth, nonlinear autonomous systems. It is known (e.g.,
[17], [36]) that if the linearized system at an equilibrium has all its eigenvalues
in the open left-half of the complex plane, then the nonlinear system is asymp-
totically stable. If, on the other hand, one of these eigenvalues has positive real
part the system is unstable. In the critical cases, where some of the eigenvalues
have zero real parts while the res‘t lie in the open-left-half plane, it is known

that stability is not determined by the linearization.

It is known that the local stability of smooth, nonlinear autonomous system
is implied by the asymptotic stability (or the instability) of its linearized model.
For the critical cases, the results will not be as direct. This might involve using
the results of the bifurcation theorems [1], [2], [25], [34], especially, when a
system has only simple critical eigenvalues, i.e., one zero eigenvalue or a pair
of pure nonzero imaginary eigenvalues. An example of such a situation can
be found in Section 2.4. Thus, by using the technique of linearization with
linear stability criteria and bifurcation theorems, the local stability of smooth,
nonlinear systems might be possible to determine. This approach is used in this
dissertation to investigate the stabilization of a tethered satellite system during
station-keeping mode.

The other approach studying critical systems is to use a geometric method
for constructing the stability conditions of the overall system from an auxiliary
system, namely the reduced model, by employing the center manifold theorem

(e.g., [4], [10], [18], [19], [29], [32]). The application of this method has been ex-
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tended to many areas, for instance, the stabilization of two time-scale nonlinear
systems [60]-[61], [82].

Among those using center manifold reduction, Aeyels [4] investigated the
existence of smooth stabilizing feedback control laws for a class of third order
nonlinear systems for which the linearization possesses an uncontrollable pair of
pure imaginary eigenvalues. Behtash and Sastry [10] considered the stabiliza-
tion for critical nonlinear systems whose linearization possesses a scalar stable
mode, along with a double zero eigenvalue, two distinct complex conjugate pairs
of pure imaginary eigenvalues, or a zero eigenvalue along with a pair of imag-
inary eigenvalues. Unfortunately, there does not currently exist an analogous
understanding for more general nonlinear critical systems. For instance, it is
clearly important to allow any finite number of stable modes. Also, calculations
given directly in terms of the original higher order model are clearly desirable.

A main goal of this dissertation is to derive such stabilizing control al-
gorithms for general nonlinear systems in critical cases. Previous results for
simple critical systems [4] and the double critical systems [10] are extended
to more general high dimensional systems. Moreover, the stability conditions
and stabilizing control laws obtained here are stated explicitly in terms of the
original system dynamics.

A convenient assumption for using center manifold reduction is that there
exist two groups of system states with linearly decoupled dynamics. To employ
this reduction technique in constructing the stabilizing controllers for general
nonlinear systems, we observe that linear feedbacks will change the structure
of the linearized model of system dynamics. Obtaining a change of coordinates
facilitating the use of the center manifold theorem for such problems is analyzed
in this thesis. This is useful in the design of linear and linear-plus-nonlinear
stabilizing control laws for critical systems.

In constructing Liapunov functions for critical nonlinear systems, Fu and
Abed [26] have obtained results for the simple critical cases by using an asymp-

totic approach. Analogous results for general critical nonlinear systems do not
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currently exist. One goal of this thesis is to alleviate this deficiency.

In this thesis, we are strongly concerned with the applications of the exist-
ing stability criteria and stabilization techniques to the study of the behavior
of the TSS, where analytical results are few. Based on a derived rigid-body
model of the TSS, the bifurcation theorems and the new geometric results are
applied to obtain cri‘teria for stability and stabilization during station-keeping.
In addition, Liapunov-like finite-time stability criteria are proposed and consid-
ered in the context of studying the behavior of the TSS during constant angle

deployment and retrieval.
1.2. Introduction to Tethered Satellite Systems (TSS)

The topic of TSS has received considerable attention in recent years (e.g.,
[5], [8], [9], [12], [20]-[22], [24], [37]-[39], [66]-[73]). The basic TSS configuration
consists of a satellite and a subsatellite connected by a tether, in orbit around
the Earth (see Figure 1.1). Potential TSS applications include deployment
and retrieval of satellites, aiding in space-assembly tasks, use of electrodynamic
tethers for electric power generation [74, p. 4-259], and tethering platforms
with an infrared telescope above the Space Station for observing stellar and
planetary objects [74, p. 4-263]. Other potential applications [81] include low
altitude scientific applications (such as gravity and magnetic field mapping,
Earth surveillance, plasma physics and pollutant measurement), release of ar-
tificial meteors, study of Earth’s magnetic field, cargo transfer and disturbance
avoidance for payload deployment. Control problems associated with satellite
tethering which are of particular concern in this thesis concern stabilization of
the TSS during the deployment, retrieval and station-keeping modes of opera-
tion.

The basic structure of the Tethered Satellite System is as shown in Figure
1.2 [81]. The main body (“satellite”) of this configuration can be a Shuttle or
a large satellite and the tethered object (“subsatellite”) at the far end of the

tether might be an experimental laboratory or a small satellite. The TSS should
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be capable of deploying the subsatellite either upward away from the Earth or
downward toward the Earth. In [81], a reel mechanism (see Figure 1.2) is
proposed to provide control of the tension force along the tether. Other options

for control, besides direct control of the tether tension, include momentum-type

controllers [46] and thrusters [38], [89].

Subsatellite

Figure 1.1. Tethered Satellite System in orbit

A variety of mathematical models for the TSS have been introduced and .
studied through analysis and simulation [5], [8], [24], [37], [57], [66]-[71], [85].
These models are based on assumptions on the mass and configuration of each
element (satellite, subsatellite and tether), the flexibility and elasticity of the
tether, orbit eccentricity, aero dynamic drag, electromagnetic forces, gravita-
tional forces, thermal or solar radiation, and control techniques. In addition,
as noted by Misra and Modi [66], several other factors should be considered in
modeling TSS dynamics. These are longitudinal vibration of the tether, lon-
gitudinal strain variation along the tether, transverse vibration of the tether,
torsional stiffness of the tether, rotational motion of the end masses, offset of
the point of attachment at the satellite, and effects of a rotating atmosphere
(in low altitude applications).

Several previous investigators consider simple cases and obtained lumped-
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parameter models [5], [47]-[50], while others propose more complicated models
[66]-[71]. For instance, Eades and Wolf [24] obtain the relative motion equations
and discuss the determination factors of the initial ejection velocity and the
required techniques (constant tension force) to cause the trajectory to pass a
desired spot. Arnold [5] proposes an approximate model and uses it to discuss

the libration of the system through the gravity gradient method.

CONTROL AND
DISPLAY PANEL

Figure 1.2. Basic structure of the Tethered Satellite System

As mentioned above, the major modes of operation of the TSS are payload
deployment, payload retrieval and station-keeping. Among the possible control
techniques for these three basic functions, a tension control method [80] and
a constant in-plane angle method [5] were proposed for satellite deployment
and retrieval. It was asserted in [5], [80] that constant angle retrieval of the
TSS is inherently unstable. Several techniques have been proposed to overcome
this unacceptable behavior. Kane [39] proposed that the tether be used as a
guideline, wherein a dummy subsatellite serves as a pseudo-end object, with

the true subsatellite “crawling” along the tether during retrieval. Kane and
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Banerjee [38] proposed the use of a built-in thruster in the subsatellite, in
addition to the tension control force. For station-keeping, Perrine [76] suggested
to repeatedly let the tether be taut only at some discrete time instants and let
it be slack for the remainder of the time.

Attitude control of tethered objects was studied by Lemke, Powell and
He [46], who proposed using a moving attach point for attitude adjustment.
Linearized controllability and observability of a tethered platform system during
station-keeping motion were studied by Bainum, Woodard and Juang [8], where
control input contains the tension control force and a momentum-type control
device.

In [8], a minimum energy control law was also proposed for station-keeping
motion by using a linear quadratic regulator design. Colombo and Arnold [20]
discussed the anticipated orbit and speed of the subsatellite after release from
the tether. In [21], Colombo considered use of a special reel mechanism to
achieve a stable release motion of the system without significant loss of tension
force. In [20], limitations on the tension force imposed by the configuration
of the tether were studied and a tapered type tether was proposed for wider
application.

A security problem might also arise during the operation of the system. If
the tether breaks during any of the operating modes, then serious damage can
result. Since the breakage of the tether will effectively change the payload, the
tether itself might be forced back and hit the main satellite body. Moreover,
the motion of the “lost” payload might also block the motion of the system
and hit the main satellite body. Beramaschi [12] noted that parts of the tether
would be able to reach the shuttle’s altitude if this breakage occurred sufficiently
close to the orbiter with the tether slackening after breakage. He also proposed
either increasing the cross section of tether’s terminal section or connecting the
terminal section to the remaining part of the tether by a damper as ways of
reducing the satellite safety problem. This study considered only the case of
station-keeping and the safety of the satellite.
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Many applications of the TSS have been proposed by Rupp and Laue [81].
In addition, Maunel and Gavit [63] considered an application in orbit modifi-
cation by using forced tether length variations, and Lorenzini [58] considered
a micro-g/variable-g application. Moreover, two-shuttle/two-tether systems or

even multi-shuttle/multi-tether systems can be considered [67].
1.3. Outline

The development of this dissertation is as follows. In Chapter 2, we collect
some basic results on nonlinear systems of ordinary differential equations, which
will be referenced in the sequel. First, the definition of invariant and locally
invariant manifold are given. This is followed by a discussion of the center
manifold theorem. A convenient assumption in applying the center manifold
theorem is that the system state variables separate into two groups, for which
the linearized system dynamics are decoupled. A generally applicable linear
transformation is introduced to facilitate systematic application of the center
manifold theorem to linear feedback stabilization of critical nonlinear systems
even when this assumption does not hold. This is followed by a summary of
the definitions and some properties of multilinear functions, and the technique
of normal form reduction. In Section 2.4, we review basic behaviors of one
parameter families of nonlinear systems and simple bifurcation theorems, for
cases in which the system Jacobian at a critical parameter value possesses one
simple zero or a pair of simple pure imaginary eigenvalues. Definitions and
results related to the so-called “finite time stability” are also given in the last

section of Chapter 2.

Based on the existence theorems for the locally invariant manifold given
in Section 2.1, composite-type linear and/or nonlinear controllers are proposed
in Chapter 3 for stabilization of nonlinear systems in critical cases. Designs for
feedback stabilizing controllers for the simple critical (SC) and the compound
critical (CC) systems are proposed in Chapters 3 and 4, respectively. The simple

critical cases (SC) occur when the linearized model has one simple zero or a pair
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of simple pure imaginary eigenvalues, while for the compound critical cases (CC)
of interest here, the linearized model has two zero eigenvalues with geometric
multiplicity one, one zero and a pair of simple pure imaginary eigenvalues, or two
pairs of simple pure imaginary eigenvalues. In this design, the linear feedback is
first constrained to ensure existence of a locally attracting invariant manifold.
The remaining freedom in the controller is then employed to guarantee stability

of the reduced model.

Families of Liapunov functions for critical systems are constructed in Chap-
ter 5. The Center Manifold Theorem is employed in the development. Stability
conditions for the simple critical systems (SC) and the compound critical sys-
tems (CC) are rederived by using these Liapunov functions.

In Chapter 6, tension control laws are designed guaranteeing asymptotic
stability of the TSS during station-keeping. After deriving a set of dynamic
equations governing the TSS dynamics, stabilizing tension control laws in feed-
back form are derived. The tether is assumed rigid and massless, and the
equations of motion are derived using the system Lagrangian. It is observed
that, to stabilize the system using tension control, tools from stability analysis
of critical nonlinear systems must be applied. The results employs calculations
related to the Hopf Bifurcation Theorem (recalled in Section 2.4). It is found
that linear stabilizing feedback control laws exist. Simulations illustrate the na-
ture of the conclusions, and demonstrate that nonlinear terms in the feedback
can be used to significantly improve the transient response. The results given
in Chapter 6 are found to be obtained by using the center manifold reduction
technique proposed in Chapter 3.

In order to improve the transient responses of the TSS given in Chapter
6 without using high gains, a different technique is proposed in Chapter 7 for
station-keeping control. In this approach, the linear feedback is first constrained
to preserve the two distinct pairs of nonzero pure imaginary eigenvalues of the
uncontrolled model of the TSS. The remaining freedom in the controller is then

designed to provide the stability of the system by invoking the stability criterion
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as in Section 4.2.3 for a class of fourth-order critical systems. Simulations
indicate that the nonlinear stabilizing feedback control law will improve the
transient response significantly and the performance of the transient responses
by using the new approach is better than those given in Chapter 6.

Based on the rigid model of TSS obtained in Chapter 6, a constant an-
gle control method is hypothesized for subsatellite deployment and retrieval in
Chapter 8. It is proved that this control law results in stable deployment but
unstable retrieval. An enhanced control law for deployment is also proposed,
which entails use of the constant angle method followed by a station-keeping
control law once the tether length is sufficiently near the desired value. Simu-
lations are given to illustrate the conclusions.

Finally, a summary of this dissertation and suggestions for the future study

are given in Chapter 9.
Notation

o(-) - Eigenvalue

Re{-} - Real part

Im{-} - Imaginary part

D,D,, D, - Differentiation operator, partial differentiation operator with re-
spect to 7 and partial differentiation operator with respect to ¢

@ij, pijk - Coeflicients of the quadratic terms ij and the cubic terms ¢jk of func-
tion ¢, respectively, when ¢ € {f,g,7,5,u,G} and 4,5,k € {z,y,2z,w}.

I,1,, 1, - Identity matrices.

O(-) - High order terms of Taylor series expansion

prime denotes the transpose of vector and matrix
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CHAPTER
TWO

MATHEMATICAL PRELIMINARIES

In this chapter, we collect some basic results on nonlinear systems of or-
dinary differential equations which will be employed in the remainder of this
dissertation. The definitions of invariant and locally invariant manifold are
recalled first, along with the Center Manifold Theorem. Next, definitions and
properties associated with multilinear functions are recalled. This is followed by
a description of the technique of normal form reduction. Results on generic sim-
ple bifurcations of equilibria of one-parameter families are given next. Finally,

concepts and results on the so-called “finite time stability” are summarized.
2.1. Center Manifold Reduction

Consider the class of nonlinear autonomous systems
n=Ann+ A€+ F(n, ) (2.1a)
€ = Auin + An€ + G(n,§), (2.16)
where € IR", £ € IR™. In (2.1), A;j for i,j = 1,2 are constant matrices, and
the functions F, G are sufficiently smooth, with their values and first derivatives

vanishing at the origin. Let x = (9',£')’. Denote by x(t, xo) the solution to
(2.1) at time ¢ satisfying initial condition x¢ at time Zo.
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Definition 2.1. A manifold D C IR™™, 0 € D, is a locally inveriant manifold
for (2.1) if for each x¢ € D with ||xo|| sufficiently small, there is a 7 > 0 such
that x(¢,x0) € D for |t| < 7. Moreover, if this holds for any xo € D with

T = o0, then D is said to be an invariant manifold for (2.1).

Existence conditions for and some properties of a special locally invariant
manifold, the so-called “center manifold,” are given in the next theorem ([16],

[18], [19], [32}).

Theorem 2.1. Let A;2 =0 and Ay = 0. If Re{o(A22)} < 0 and Re{c(A411)}
= 0, then there exists a § > 0 and a locally invariant manifold for (2.1) given

by the graph of a C? function ¢ = h(n), ||n]| < 8, where the function A satisfies

Dh(n) - {Auin + F(n, h(n))} = A22h(n) + G(n, h(n)) (2.2)

with h(0) = 0 and Dh(0) = 0. Moreover, the stability of the origin for (2.1)
coincides with the stability of the origin for the reduced model (2.1a), with ¢

replaced by h(n).

Suppose A;; = 0, A2; = 0 and introduce the operator

N(k(n)) = Dh(n) - {A11n + F(n, h(n))} — Azzh(n) — G(n, h(n)) (2.3) .

on the class of smooth functions h with h(0) = 0 and Dh(0) = 0. Clearly,
N(h(n)) = 0 precisely when h solves Eq. (2.2). In most cases, h cannot be
solved for exactly. In this context, we note that although center manifolds are
not necessarily unique, they are unique to finite order [16]. A well known result

useful in constructing an approximate solution for h is recalled next.

Theorem 2.2. (Carr [16], Henry [32]). Let ¢ : IR™ — IR" be a C' mapping
with 9(0) = 0 and Dy(0) = 0. If N(¥(n)) = O(||n]|”) for some 4 > 1, then
any h solving (2.2) satisfies

h(n) = %(n) + O(lInl]")- (2.4)

The following extension of Theorem 2.1 appears in [6].
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Theorem 2.3. Let A;; = 0 and Az; = 0. If there is a 8 > 0 such that
Re{o(A22)} < —B and Re{o(A11)} = —B, then there exists § > 0 and a locally
invariant manifold for (2.1) given by the graph of a C? function ¢ = h(y),

lInll < &.

Since (2.1) is an autonomous (i.e., time-invariant) system, reversing the

sense of time yields the following result.

Corollary 2.1. Let A1 = 0 and A;; = 0. If there is a 8 > 0 such that
Re{o(A22)} > B and Re{o(A11)} < B, then there exists § > 0 and a locally
invariant manifold for (2.1) given by the graph of a C? function ¢ = h(p),
lInl| < 6.

In Theorems 2.1 and 2.3, a convenient assumption in ascertaining existence
of a locally invariant manifold is that the linearized dynamics in the variables n
and £ (as given in (2.1)) are decoupled. A linear transformation is introduced in
the following discussions to facilitate application of the results above to general
nonlinear systems, for which the linear decoupling does not apply.

First, recall the following matrix equality (e.g., [36]).

Equality 2.1. Let A and D be square matrices, with A nonsingular. Then

det (é g) — det(A) - det(D — CA™'B). 2.5)

Next, we use this identity to show that the stability of a smooth nonlinear
system is preserved under a specific linear transformation defined below, which
facilitates application of the center manifold theorem to cases in which 4,5 and
Ajy do not vanish.

Consider a general nonlinear system

&1 = fi(z1,z2), (2.6a)
iz = fo(z1,22), (2.6b)

where z; € IR", z, € IR™, and f1, fo are smooth vector functions.
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Let z; := 23 — Pzs and zp := 29 — Ez;, where P and E are constant

matrices. System (2.6) can then be rewritten in the form
2 = fi(z1,22), (2.7a)

29 = fa(21, 22). (2.7b)

It is implied by the inverse function theorem and Lemma 2.1 below that
the local stability of the origin is preserved under the linear coordinate trans-

formation defined above.

Theorem 2.4. (An Inverse Function Theorem) Let D be an open subset of IR™
and F : D — IR"™ be C1. Suppose the Jacobian matrix DF(n,) is invertible for
some 173 € D. Then there exists an r > 0 and an open subset D; of D containing
m such that F : Dy — B.(F(1)) is invertible, where B.(F(n:)) denotes the
open ball centered at F(n;) and of radius r. Moreover, the inverse mapping is
also C1.

[

By using Theorem 2.4, it is easy to have following result.

Lemma 2.1. The origin of (2.7) is asymptotically stable if and only if the
origin of (2.6) is asymptotically stable.

(2) - (f% I,,,:rPEP) (2) ) (2.8)

where I, and I,, denote identity matrices of dimension of n and m, respectively.

Proof: We have

From Equality 2.1, we have

I, -P
det (——E Inm + EP)

—det(I,) - det[In + EP — (=E)-I-(—-P)] = 1. (2.9)

The conclusion now follows from (2.8) and Theorem 2.4.
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In our study of systems for which the linearized decoupling assumption
does not hold, we shall encounter equations of the form (2.10) below. We now
proceed to study this linear matrix equation. Consider

AM 4+ MB = C, (2.10)
where A € €™*™ B € €™*" and M,C € €™*™. For n =m and B = A', Eq.
(2.10) is a Liapunov matrix equation [17].

Let F denote the linear operator

F:Me AM + MB (2.11)

for M € €™*".

For the case of m = n, we have the following results (see, e.g., [17]).

Lemma 2.2. Let m = n. Any eigenvalue of the linear operator F is the sum

of an eigenvalue of A and an eigenvalue of B.

Lemma 2.3. Let m = n. Any matrix representation of the linear operator F
is nonsingular if and only if the sum of any eigenvalue of A and any eigenvalue

of B is nongzero.

The proofs of Lemmas 2.2 and 2.3 given in [17, p. 572-574] are easily
extended to show validity of these lemmas for the case of n # m. We thus have

the following result.

Theorem 2.5. Let n,m be arbitrary positive integers. If the sum of any
eigenvalue of A and any eigenvalue of B is nonzero, then the linear matrix

equation (2.10) has a unique solution.

We now study the application of Theorem 2.1 (or Theorem 2.3) to the
stability analysis of (2.1) for the case in which the assumption that A;; = 0

and Az; = 0 does not apply. First, consider the case in which A;2 = 0 and

A21 ‘ié 0.
Letting v := £ — En, we have that
n=Aunn+ F(n,v + En) (2.12q)
U= Ayv + G(n,v+ En)— E - F(n,v+ En), (2.12b)
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for a matrix F solving the linear equation

A22E - EAll + A21 =0. (213)

A condition for the existence of a matrix E solving (2.13) has been given
in Theorem 2.5. Applying Theorems 2.1 and 2.5 and Lemma 2.1 to (2.12), we

have

Lemma 2.4. Assume A;; = 0, Re{o(A22)} < 0 and Re{o(A411)} = 0. Then
the origin of (2.1) is asymptotically stable if the origin is asymptotically stable

for the reduced model

1 =Aun+ F(n,h(n) + En), (2.14)

where h satisfies the partial differential equation
Dh(n) - {Au1n + F(n, h(n) + En)}
= Agzh(n) + G(n,h(n) + En) ~ E- F(n,h(n) + En),  (2.15)
with h(0) = 0 and DAh(0) = 0.

A similar result can be obtained for the case in which A2; = 0 but 4;2 #0.

Letting ¢ :=n — P¢, (2.1) gives

(= Aul + F(C + P£,6) — P G(C + P¢,¢) (2.16a)
£ = Asé + G(( + PE,¢), (2.16b)

where P solves
AP — PAgyy 4+ Ay =0. (2.17)

Thus, we have

Lemma 2.5. Assume that Ay = 0, Re{o(A22)} < 0 and Re{o(A11)} = 0.
Then the origin is asymptotically stable for (2.1) if the reduced model (2.16a)
with ¢ = h(() is asymptotically stable, where h satisfies

Dh(S) - {Aus + F(¢ + Ph(C), h($)) — P - C(¢ + Ph(¢), h(O)))
= Aph(C) + G(C + Ph(C), h()), (2.18)
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with £(0) = 0 and DA(0) = 0.
2.2. Multilinear Functions

To construct a Liapunov function for nonlinear systems, the technique of
Taylor series expansion is a very important tool, which can be conveniently
represented in terms of multilinear functions. In this section, we recall basic

facts on multilinear functions.

Definition 2.2. (e.g., [26]) Let V4, V4,..., Vi and W be vector spaces over the
same field. A map ¢ : V3 x Vo x ... X Vi — W is said to be multilinear (or

k-linear) if it is linear in each of its arguments. That is, for any v;,9; € V;,

t=1,...,k, and for any scalars a, d, we have
Y(v1,...,av;i + @i, ...,vx) = aP(vV1,...,Vi,...,Vk)
+ ap(viy ...y Diyenny VE). (2.19)

The integer & is the degree of the multilinear function .

Next, we consider a special case in which Vi =Vo =... =V =V,

Definition 2.3. [26] A k-linear function ¢ : VXV x...xV — W is symmetric
if the vector %(v1,vs,...,v) is invariant under arbitrary permutations of the
argument vectors v;. A function ¢ : IR" — IR™ is homogeneous of degree k (k

an integer), if for each scalar a, ¢(an) = a¥¢(n) for all € IR".

A representation of such maps can also be given in terms of multilinear
functions. A very important property of homogeneous functions represented in

terms of multilinear functions is given next.

Proposition 2.1. [26] Let ¢ : (IR™)* — IR™ be a symmetric k-linear function.

For any vector v € IR",

D¢(n7 n""?n) U= k'l/)(nan,""TI, v)' (2'20)
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2.3. Normal Form Reduction

Normal form reduction consists of a nonlinear transformation usually used
to study the local stability of time-invariant nonlinear systems, specifically,
when all eigenvalues of system lie on the imaginary axis. This transformation
results in a locally equivalent model of the system for which stability conditions
are more easily obtained. Thus, the technique of normal form reduction provides
a means to study local stability of critical nonlinear systems.

Consider a nonlinear system

1= F(n) (2.21)

where n € IR" and F is a sufficiently smooth function with F(0) = 0. Let
n = ¢ + P({), where P is a purely nonlinear function with P(0) = 0. Local

stability properties are preserved under such nonlinear transformations.

Lemma 2.6. Let P({) be smooth mapping with DP(0) = 0. Then there
exists an open subset D of IR™ containing the origin for which the nonlinear
mapping n = ¢ + P(() is one-to-one and onto. Thus, local stability of the origin

is preserved under the nonlinear transformation n — (.

n
Under the nonlinear transformation n = { + P((), system (2.21) becomes
¢ =(I+DP(Q))"'F(¢+P(()). (2:22)
Write
F(n) = Fin + Fy(n,7) + F3(n,7,1) + O(|In|[*), (2.23)

where Fy, F3 and F3 denote the linear, quadratic and cubic terms of the Taylor
expansion of F' at the origin, respectively. Here, we have presumed F is at least

four times continuously differentiable. Analogously, write

P(¢) = P2(¢,€) + P3(¢, ¢, O) + O(IKKIT), (2.24)

where P, and P; are the quadratic and cubic terms in the expansion of P. The

transformed model (2.22) becomes

= Fil+ Fa(¢, ) + F((,¢, 0O+ OlICI), (2.25)
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where F; = F; and F;, F3 are given by

F2(¢,¢) =F2(C,€) + F1 - P2((,¢) — DP2((, () - Fu, (2.26)
f3(<7 C’ C) :FS(C1C7 C) - DP2(C) C) - f?!(C7C) + DFZ(C) C) ° P2(Ca C)
+ Fy - P3((,¢,¢) — DPs(¢, ¢, ¢) - FiC. (2.27)

Normal form reduction involves choosing a nonlinear function P({) for
which the nonlinear terms F; up to a certain order in Eq. (2.25) either vanish

or have as few nonzero components as possible.
2.4. Stability of Critical Nonlinear Systems

In this section, we recall several bifurcation-theoretic results on stability of

one-parameter families of nonlinear systems

where z € IR™ and u € IR. The vector field f is assumed to be sufficiently
smooth in r and x and f(0,0) = 0.

The equilibrium solutions of system (2.28) are the solutions of f(z,u) =0,
and thus clearly depend on the value of the parameter y. For any given p = yo -
with Dy f(zo(p), #) nonsingular, the Implicit Function Theorem guarantees the
existence of a locélly unique equilibrium solution zo(u) for g near po. For
a parameter value y. at which the Jacobian Dy f(zo(uc), gtc) is singular, the
possibility arises of (2.28) possessing several equilibrium paths emanating from
zo(pe) for p near p.. If such a joining of equilibria occurs, the critical point
(zo(ee), phe) is called a stationary (or static) bifurcation point. Another type
of bifurcation from equilibrium is the so-called Hopf bifurcation, which may
occur when the Jacobian D f(zo(uc), #c) has a conjugate pair of simple pure
imaginary eigenvalues. In the Hopf bifurcation, a family of periodic solutions
merges with the equilibrium zo(p.) at g = pe.

Two main approaches are generally used in studying the stability of bifur-

cated solutions. One is to apply the center manifold theorem given in Theorem
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2.1 to obtain stability criteria for the system from criteria derived for the re-
duced model. For details see, for instance, [16], {18], [29], [32] and [75]. In the
other approach (as in [1], [2], [25], [34]), a Taylor series expansion of system
(2.28) at the bifurcation point up to cubic terms can be used to determine
stability criteria from the Jacobian of the bifurcated solution.

Here, we follow the notation of [25]. Write the Taylor series expansion of

(2.28) as

T = f(a:,,u)
= Loz + QO(:C7$) + CO((E,ZI?,(E) +-e
FUre + Qe ) +o) i Taz )4 (220)

where Qr(z,z) 1= Dyr ., f(z,p), Ci(z,z,2) := Dyrgqe. f(z,p), etc., are the
quadratic terms, cubic terms, etc., of f(z,p). Here, the quadratic and high
order terms in the expansion are chosen symmetric. For instance, Qi(z,y) =
Qi (y,z) for each £ > 0. In (2.29), Lo denotes the Jacobian D, f(0,0) and
Ly := D}z f(0,0), k > 1.

Let 1 and r denote the left (row) and right (column) eigenvectors of the
matrix Lo corresponding to the simple zero eigenvalue or to the pair of pure
imaginary eigenvalues +jw.. Here, for definiteness, the first component of r is
set to 1 and the left eigenvector [ is chosen such that Ir = 1. In some cases,
a reordering of the components of the state vector is required in order for this
normalization to be possible.

Suppose Lo has only simple critical eigenvalues with the remaining eigen-
values stable. In stationary bifurcation, the stability conditions for the bifur-
cated solutions are found to be determined by the values of $; and f;, the
so-called bifurcation stability coefficients. If By is zero and f; is negative, then
the bifurcated solution will be asymptotically stable. In Hopf bifurcation, the
stability of the periodic solution (and of the origin as well) may be derived
from computing the Floquet exponent §; by applying Floquet theory or by

considering the linearization of the so-called Poincaré return map. If g2 < 0,
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the bifurcated periodic solution is asymptotically stable. For purposes of this
thesis, we require only the stability criterion for Hopf bifurcation. A stability

criterion for simple stationary bifurcation and further details can be found in

[25].

Lemma 2.7. Suppose system (2.29) undergoes a Hopf bifurcation with a pair
of pure imaginary eigenvalues +jw,. Then the bifurcated periodic solution will
be orbitally asymptotically stable with asymptotic phase in a neighborhood of

the bifurcation point if
_ ., 93 _
P2 = QRG{I[QQO(T,G) + QO(T’ b) + ZCO(T’ T, 7‘)]} <0,

where the vectors a and b solve
1 _
~Loa = 1Qu(r,7), (230)

(2 = Lo)b = 5Qu(r,7), (231)

respectively, and where 7 denotes the complex conjugate of the vector r.

Moreover, stability of the trivial solution z = 0 for system (2.28) is known

(e.g., [25]) to coincide with the stability of the bifurcated periodic orbits if
B2 # 0.
2.5. Finite-Time Stability

In our study of the stability properties of satellite deployment and retrieval
in Chapter 8, we shall find standard notions of stability inadequate from a
physical point of view. The nonasymptotic notions arising in the theory of
finite-time stability will, on the other hand, be of considerable value. Below,
we summarize basic concepts of finite-time stability. Further extensions will be
given in Chapter 8.

Consider the system
T = f(t1$)7 (2.32)
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where f: I' x IR" — IR" and T := [to,to + 7 ) with t, € R and 7 > 0. Let zq
denote the initial condition of (2.32) at tp, and let ¢(¢;t9,z0) be the solution
of (2.32) at time ¢ satisfying this initial condition. We recall several relevant
definitions [40].

Definition 2.4. System (2.32) is finite-time stable with respect to (a, 3, T, ||-||),
a < B (see Figure 2.1), if for each zq with ||zo|| < @, we have ||$(¢; 0, z0)|| < B,
Vit e€T. System (2.32) is finite-time unstable with respect to (o, 8, T, || - |]),

a < B, if there exist an z¢ and a t; with [[z¢]| < o and #; € T such that

¢ (t1;t0, z0)|| = B.

Definition 2.5. System (2.32) is uniformly finite-time stable with respect to
(o, B,T, || - |]); & < B (see Figure 2.1), if for each s € T' and z with ||z|| < «, we
have ||¢(¢;s,2)|| < BVt eT.

Definition 2.6. System (2.32) is quasi-contractively stable with respect to
(a,7, T, ]| - |]), 7 < a (see Figure 2.1), if for each z¢ with ||zo|| < a, there is a
t1 € T for which ||¢(t;t0,20)]] <7, VE € [t1,t0 + T).

Definition 2.7. System (2.32) is contractively stable with respect to («, 3,7,
L1 11, v < @ < B, if it is finite-time stable with respect to (o, 3,T,]| - ||) and

quasi-contractively stable with respect to (a,%,T, || - |])-

For given «, 3,T’, and ||- ||, 2 necessary and sufficient condition for uniform

finite-time stability is recalled next.

Lemma 2.8. ([40]) System (2.32) is uniformly finite-time stable with respect
to (a, 8,1, |- ]]), @ < B, if and only if there exists a continuous function V (¢, z)

such that
V(t,z) <0, V z€B(B), teT, (2.33)

V&(tl) < V,g(tg), Vite>t, V é§<a, andty,tp €T, (2.34)

where

B(B) = {z : |l=|| < B}, (2.35)
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|| - || denotes a norm on IR™, B(f) is the closure of B(8), and

V() := sup V(t,z), (2.36)
llell=a
Va(t) == ”iﬁ£ V(t, ). (2.37)

Here, V (¢, z) is the time derivative of V(t, z) along trajectories of system (2.32).

Figure 2.1. Illustrating finite-time stability
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CHAPTER
THREE

STABILIZATION OF NONLINEAR SYSTEMS
IN SIMPLE CRITICAL CASES

The center manifold theorem has been applied to the local feedback sta-
bilization of nonlinear systems in critical cases. In the present chapter, this
approach is explicated for two particular critical cases in stability. The system
linearization at the equilibrium point of interest is assumed to possess either a
simple zero eigenvalue or a complex conjugate pair of simple, pure imaginary
eigenvalues. In either case, the noncritical eigenvalues are taken to be stable.
The results on stabilizability and stabilization are given explicitly in terms of
the nonlinear model of interest in its original form, i.e., before reduction to
the center manifold. Moreover, the formulation given in this chapter uncovers
connections between results obtained using the center manifold reduction and

those of an alternative approach.
3.1. Introduction

Recently, the center manifold reduction has been employed in nonlinear
stabilization, resulting in stabilizing control laws for various classes of nonlinear

systems in the so-called “critical cases.” Critical cases occur when the linearized
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system at an equilibrium point has at least one eigenvalue on the imaginary axis,
with the remaining eigenvalues in the open left half of the complex plane.

Aeyels [4], who initiated application of the center manifold reduction in
nonlinear stabilization, investigated the existence of smooth stabilizing feedback
control laws for a class of third-order nonlinear systems for which the linearized
model possesses an uncontrollable pair of pure imaginary eigenvalues. Behtash
and Sastry [10] used the same approach to study stabilization for nonlinear
systems whose linearized model has two distinct pairs of complex conjugate
pure imaginary eigenvalues, or a double pole at the origin, or a pole at the
origin and a complex conjugate pair of pure imaginary eigenvalues. In [10],
the design was undertaken for the reduced system on the center manifold using
normal form calculations, and for simplicity, a scalar stable mode was assumed.
Generally, there is a need for considering cases with any finite number of stable
modes. Moreover, the control laws will be more convenient if they are given
directly in terms of the original model rather than in terms of transformed
versions.

A main goal of this chapter is to derive such stabilizing control algorithms
for general nonlinear systems in critical cases. The development focuses on
. general nonlinear systems in two specific critical cases. In the first critical case
of interest here, a simple zero eigenvalue occurs, while in the second case a pair
of pure imaginary eigenvalues occurs. In either case, the critical eigenvalues of

the linearized model need not be controllable.

Stabilizing control algorithms for such systems have been obtained [1], [2],
[25] by using asymptotic expansions of critical eigenvalues and Floquet expo-
nents of bifurcated solution branches of one-parameter embeddings of the non-
linear models. In this chapter, we use the center manifold reduction approach
to obtain criteria for existence of stabilizing feedback control laws for critical
nonlinear control systems. Moreover, explicit designs of these control laws are
given when the existence criteria hold. The algorithms for controller design in-

volve a preliminary stabilization of the noncritical modes, followed by a setting
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of control gains to stabilize the so-called reduced model whose eigenvalues lie
on the imaginary axis. The feedback laws obtained include purely linear state
feedback and feedback control laws containing both linear and nonlinear terms

in the state.
3.2. General Design via Center Manifold Reduction

Referring to the results given in Theorem 2.1, a convenient assumption
for the existence of a locally invariant manifold is that the linearized model
of a nonlinear system must have two groups of states that are decoupled. In
the application of the theorem, the decoupling may be destroyed as a result
of the linear terms in the feedback controller. To overcome this difficulty, we
introduced a similarity transformation in Section 2.1. Thus, we will be able to
deal with systems whose states are linearly coupled. Stability criteria for such
cases have been given in Lemmas 2.4 and 2.5, which can then be employed to
design linear and/or nonlinear stabilizing feedback control laws for nonlinear
control system.

Consider the class of nonlinear control systems

#1 = Zuz + Z1222 + Biu + fi(21, 22). (3.1)

2y = Z3121 + Z3229 + Byu + fa(21, 22). (3.2)

Using a block diagonalizing transformation for the uncontrolled model of

the system, we can rewrite Eqs. (3.1)-(3.2) as
7 = Ann + Biu + F(n,¢), (3.30)
€ = Azs€ + Bau + G(n,€). (3.3b)

We assume that the linear transformation is chosen such that A,, is stable,
while A;; is not stable. (It is always possible to achieve this by suitable choice
of states 7, £ and of diagonalizing transformation.) Since the states 7 and  in

(3.3) are linearly decoupled, we have the following result.
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Lemma 3.1. If {41, B} is a controllable pair or the subsystem (3.3a) with
€ = 0 is linearly stabilizable, then the original system (3.1)-(3.2) is stabilizable
by linear state feedback.

Note that, in the sequel the nonlinear control system (3.1)-(3.2) is supposed
to have been transformed into block diagonal form as given in (3.3). The sta-
bility analysis below focuses on the block diagonalized model. The implications
for stability of the original system are then readily obtained. For simplicity,
we assume a scalar control input u. It is not difficult to extend the analysis to
general multi-input nonlinear control systems. Consequently, we assume that
Bi is a column vector denoted by b; for ¢ = 1,2 and we can rewrite system (3.3)

as

7= Anun+bu+ F(n,§), (3.4a)
€ = Apsb + byu + G(n, €). (3.4b)

Next, we apply the center manifold reduction technique given in Lemma
2.4 to the design of stabilizing control laws for the class of nonlinear systems
(3.4) in which all eigenvalues of the matrix A;; lie on the imaginary axis.

Let us first consider the case in which b; = 0 and assume the feedback

control to be of the form

where U(-,-) is a smooth, purely nonlinear function whose first derivatives van-

ish at the origin. Rewrite the system dynamics (3.4) as

1= Ann+ F(n,§), (3.6)

£ =boKin + (A22 + b2 K2)€ + b2U(n, £) + G(n, €). (3.7)

From Eq. (3.7), the linear decoupling property of the original uncontrolled
system has been destroyed. Thus, the center manifold reduction technique given

in Theorem 2.1 cannot be applied directly.
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As introduced in Section 2.1, there is a constant matrix E such that, with
v := { — En, the transformed version of the control system (3.6)-(3.7) has a

block diagonal form if E is the (unique) solution of the Liapunov-like equation

bo K1 + (Ag2 + b K2)E — EAy; = 0. (3.8)

We assume that Ags + by K5 is stable. Moreover, since all the eigenvalues of
Aj1 lie on the imaginary axis, then by Theorem 2.5 we can guarantee existence
of a solution E of Eq. (3.8). The new system dynamics for states n and £ can
then be obtained from Eq. (3.6)-(3.7) as

7= Aun+F(n,v+En), (3.94)
l./ = (A22 + bng)l/ + sz(T], 14 + E‘I]) + G(n, v —I- ET]) (39b)

Theorem 2.1 guarantees the existence of a C? locally invariant manifold,
which is given by the graph of a function v = h(7), for the transformed model
(3.9). The function h satisfies

Dh(n) - {Auin+ F(n,h(n) + En)} = (422 + b2 K2)h(n)
+ bU(n, h(n) + En) + G(n, h(n) + En) (3.10)

with boundary conditions ~(0) = 0 and DA(0) = 0.

As required by Lemma 2.4, the stability of system (3.9) can be guaranteed
if the control gains K;, K2 and the nonlinear function U are chosen such that
(i) A22 + b2 K, is stable, and (ii) the reduced model (3.9a) with v = h(n) (the
solution of Eq. (3.10)) is also stable.

Next, we consider the case in which b; is nonzero. In the simple criti-
cal cases where A;; has only one zero eigenvalue or a pair of pure imaginary
eigenvalues, Lemma 3.1 will imply the existence of a linear stabilizing feedback
control for system (3.4). Consider next the existence of a purely nonlinear
smooth feedback.

Let the control input be as in Eq. (3.5). Since now we focus on purely

nonlinear stabilizing controllers (i.e., K3 = 0 and K2 = 0in Eq. (3.5)), then we
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have that system (3.4) is still linearly decoupled. Thus, if Ag2 is stable and all
eigenvalues of Aj; lie on the imaginary axis, then there exists a locally invariant
manifold given by the graph of a function £ = h(n). Furthermore, the function

h satisfles

Dh(n)-{A11n + b1 U(n, h(n)) + F(n, h(n))}
=Agh(n) + b2U(n, h(n)) + G(n, h(n)) (3.11)

with boundary conditions k(0) = 0 and Dh(0) = 0.
Suppose that A, is stable. Then, a purely nonlinear stabilizing feedback
control law may be designed (by using Theorem 2.1 and Eq. (3.11)) from the

stability conditions for the reduced model

n = Aun+ b U(n, h(n)) + F(n, h(n)). (3.12)

Note that, for the case in which A, is not stable, a linear state feedback
K, ¢ is needed to first stabilize Azs + b2 K>. Then the procedure discussed above
can be employed to design stabilizing control laws for the system.

In the following sections, we consider two special cases in which the system
has only simple critical modes (i.e., one zero eigenvalue or a pair of pure imagi-

nary eigenvalues) and the rest of the eigenvalues are controllable or stabilizable.
3.3. One Zero Eigenvalue

In this section, we consider the case in which a simple zero eigenvalue occurs
in the linearization. As discussed above, the stability of the overall system can
be studied by a consideration of the reduced model only. Because of this, we first
consider stability conditions for scalar systems with a zero eigenvalue. Then
these conditions can be employed to design stabilizing control laws for general
higher order systems.

Consider a scalar nonlinear system

t=de?+ex® +.--, (3.13)

where d and e are real scalars.
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Stability conditions for system (3.13) are given in the next lemma.

Lemma 3.2. System (3.13) is asymptotically stable if d = 0 and e < 0.

Moreover, system (3.13) is unstable in case d # 0.

In the following, we apply the stability criteria of Lemma 3.2 to the design
of stabilizing control laws for the general higher order system (3.4). We now
make the following assumption, which applies throughout the remainder of this
section. Suppose A;; = 0, a scalar, and let (Az2,b2) be a controllable (or
stabilizable) pair.

Let z := n be a scalar and write

f(z,£) :=F(z,§)
=fez®® + Tfoel + € feeb + fozot® + 2 frzgl
+2 - € fagel + feee(€:6,6) + O(ll(z, O)II*), (3.14)
G(,€) =2 Gz + 2Gagl + Gee(£,€) +2°Gaza
+ 22 Gaael + 2Gage(§,€) + Geee(€,6,6) + O(ll(=, O)II*)- (3.15)

The coefficients in the Taylor series expansion (3.14)-(3.15) are either constants
or symmetric multilinear functions of their arguments. For instance, feee(€,€,€)
and Gee(€,€) denote symmetric trilinear scalar function and bilinear vector

function of &, respectively.
3.3.1. The case b; =0

In this subsection, we consider the case in which b; = 0, and consider

feedback controls

U((B, 6) = klx + K2£ + U(IL‘, 6)3 (316)

with k; a scalar control gain.
As observed in Section 3.2, the stability of control system (3.4) in this

critical case coincides with the stability of the reduced model
z = f(z,h(z) + Ez), (3.17)

30



where E and h(-) solve Egs. (3.8) and (3.10), respectively, under the conditions:
A11 =0, (A2 + by K>) is stable, with 7 substituted by z and K; substituted by
ky.

Referring to the boundary conditions (i.e., 2(0) = 0 and DA(0) = 0) of the

solution h of Eq. (3.10), we can approximate b as
h(z) = 22hzr + O(|z]?). (3.18)
We assume that A2z + b, K> is stable, and rewrite the control input (3.16)
as
u(z,€) =k17 + Ko + tz02? + Tuzel + E'uge
+ Uzzzwa + $2uzz€€ + mfluufff + uEEf(f, 67 f) + 0(377 E)a (3'19)

where ugee is a symmetric trilinear function of §, and Uis a higher order
nonlinear function which vanishes along with its partial derivatives up to third
order at (z,¢) = (0,0).

Solving Egs. (3.8) and (3.10), we have

E=-— (A22 + szz)_l ba k1 (320)
her =(A22 + b2 K2) H{[foz + fee E + E' fee E|E — [bauzs + Gis
+ (battag + Gag)E + (52 E'uge E + Cee(E, E))])- (3.21)

The reduced model (3.17) is then given by
T ={fzz + feeE+ E'ffeE}x2 + {fz{fhzz + 2E'f££h“;

+ fzz:z + fzz:fE + E,fszE + fﬂ:f(E? E) E)}xs + 0(127'4) (322)
Using Lemma 3.2, we have the following stabilization result for control

system (3.4).

Lemma 3.3. Suppose b; = 0 and let the control input be of the form (3.19).
Then system (3.4) is asymptotically stable if Ay + b2 K3 is stable and the

following conditions are satisfied:

Jeo+ fe¢E+ E'fee E =0, (3.23)
frehgr + 2E,f£Ehmz + frex + fzzeE
+ E'foee E + feee(E, E, E) <0, (3.24)
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where E and h;, are as given in Eqgs. (3.20) and (3.21).

From Egs. (3.20)-(3.21), and the fact that A, is invertible, we have E = 0
and hz; = —A{QI G ;; for the uncontrolled system. The next stability criterion

for the uncontrolled version of system (3.4) follows readily from Lemma, 3.3.

Corollary 3.1. System (3.4) (with u = 0) is asymptotically stable if Aj, is
stable, fz; = 0 and fuz5 — foedsy Guz < 0.

In the rest of this section, we assume that the stability conditions given in
Corollary 3.1 do not hold, and seek stabilizing control laws for system (3.4).
Linear stabilizing control laws follow from Lemma 3.3, and are as given

next.

Proposition 3.1. Suppose b; = 0. Then there is a purely linear feedback which
stabilizes (3.4) if there exist feedback gains k; and Kj for which (422 + b2 K3)

is stable,

fow — ki foeMby + K20, M fee Mby =0, (3.25)

and
Jzzz — foeMGoz + k1 {fee MGog + 2G, , M’ fee — frze}Mby
+ kE {0y M freeMbs — fre MGee(Mby, Mby) — 265 M fee MG pe Mby )
+ k3 {26, M fee MGee(Mby, Mby) — feee(Mby, Mby, Mby)} < 0, (3.26)

where M := (A22 + szz)—l.

Remark 3.1. The linear stabilizing control rule proposed in Proposition 3.1
is a composite-type controller design. First, the feedback gain K is chosen to
stabilize state £. Then the remaining feedback gain k; is selected to satisfy the
conditions (3.25) and (3.26) based on the chosen gain K,. Since the stability
of state £ will not be influenced by the feedback gain k3, no extra constraints

are required for the choice of k;, such as the one given in [2].

Since k; is scalar, conditions (3.25) and (3.26) do not necessarily hold for

any given K. Thus, a stabilizing linear feedback does not always follow from
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Corollary 3.1. As observed from the stability conditions given in Lemma 3.3, the
cubic terms of both the function G and the control input u do not contribute to
the stability criteria of system (3.4). A general linear-plus-quadratic feedback

control law can be abstracted as

u(z,€) = k12 + Kof + vz02® + zugzel + E'uge (3.27)

if the control gains satisfy the conditions of Lemma 3.3.

Moreover, as observed from stability conditions (3.23) and (3.24) given in
Lemma 3.3, when k; = 0 a possibility for smooth, a purely nonlinear feedback
stabilization of the origin of (3.4) is to have an input of the form u = u,,z2.

We have the following special result.

Corollary 3.2. Suppose A;2 is stable and b; = 0. Then a purely quadratic sta-
bilizing feedback u = u,,z?% for (3.4) exists if fz = 0 and frzz ——fng;;(G” +

b2uzz) < 0.
3.3.2. The case b; #0

Next, we consider the case in which 4 # 0. To obtain a nontrivial sta-
bilization problem in this case, we now restrict the control law to be purely -
nonlinear. We assume Aj; is stable and the control input is given by Eq. (3.19)
with k; = 0 and Kz = 0. Then according to Section 3.2, the stability of system
(3.4) is determined by the stability of the reduced model

z = bU(z, h(z)) + F(z, h(x)), (3.28)
where h solves Eq. (3.11) with  substituted by z and with boundary conditions

h(0) = 0 and DA(0) = 0.
Similarly, we can approximate A as in (3.18). Solving Eq. (3.11), we have

hes = A H[bruzs + foz + (Bruze + fae)E + E'(byuge + fee)ENE
- [bzum; + Gy + (bz'u,xf + sz)E + (ng'UffE + Gfe(E, E))]} (329)
Applying Lemma 3.2 to the reduced model (3.28), we have
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Lemma 3.4. Let Az; be stable and let b; # 0. Then system (3.4) is asymp-
totically stable if frz + bi1uzz = 0 and fozr + b1Uzes — (fze + bluxg)A;; (Gez +

b2 Uz;,;) < 0.
Moreover, a purely cubic stabilizing controller exists when f,, = 0.

Corollary 3.3. If f;, = 0, then system (3.4) is stabilizable by a purely cubic
feedback. A stabilizing cubic control of the form u = ug ;23 exists.

For the case in which Aj; is not stable, a linear feedback K¢ is needed
to guarantee the existence of a locally invariant manifold. Then the design of
stabilizing control laws proposed in Lemma 3.4 and Corollary 3.3 can be applied

directly.
3.4. Pair of Pure Imaginary Eigenvalues

Next, we consider the case in which A;; has a pair of pure imaginary
eigenvalues. Specifically, we take Ay; to be of the form (3.31) below.

First, consider the stability of a planar system

n=Aun+Qn,n)+Cln,nn)+--, (3.30)

where n = (z,y)’, and

0 0
A11=(_Q2 01> (3.31)

with €182 > 0. Without loss of generality, we may express the quadratic and
cubic terms in Eq. (3.30) as

2 2
_ | qu12® + q122y + q13y ) 3.32
Qo) = (7 T eyt as ), (3.32)

3 2 2 3
_ [ cn1z” + 1227y + cu3zy” + c14y
Clnsm,m) = <C21$3 + c2272y + c2azy? + 0243/3) ’ (3.33)

respectively. Note that system (3.30) has the pair of pure imaginary eigenvalues
+i/Q1 Q3.
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Applying a general stability criterion for planar systems undergoing Hopf
bifurcation (see, e.g., [29]), we find that a sufficient condition for the stability
of the origin for (3.30) is:

Slaa(gran + g-aw) — an(gan + gran) + o
3 qd22 qu21 quzs q12 quu Q%QB QZQ11<]21

2§2 q13¢23 + 3(c11 + é%‘*cla + ;sz + %—624)} <0. (334

In the following, we apply the stability criterion (3.34) to the design of

a stabilizing control law for the more general (nonplanar) system (3.4). We

now make the following assumption, which ‘h.olds throughout the remainder of

this section. Assume A;; (given in Eq. (3.4)) is of the form given by Eq.

(3.31), and let » = (z,y)" be a two-dimensional vector, b; := (by1,b12)" and
F(n,€) = (f(z,9,£),9(=,9,€))".

System (3.4) may be rewritten as

z=Qy+bnu+ f(z,y,£) (3.35q)
y = —2z + biau + g(z,y,§) (3.35b)
€ = Ans€ + byu + G(z,, ). (3.35¢)

Here by1, b12 are constant scalars, and f, g, G are given by

F(2,9,6) = feez® + fayzy + fuy¥? + (2 fze + yfye)€

+ &' feeb + fr222° + foryT Y + foyyzy®

+ fyuy¥® + (2% foze + Ty foye + ¥* Fyye)t

+ &' (2 fzee + yfyee)€ + feee(6,6,€) + O(ll(z, 9, 6)II*), (3.36)
9(2,Y,€) = 9222° + goy@y + gyy¥® + (Tgs¢ + ygye)é

+ E'geel + 9o + GozyT?Y + goyyzy®

+ 9yuyy’ + (229226 + 2Ygzye + ¥ gyye )t

+ & (2gage + ygyee)€ + 9eec(§6,6,€) +O(ll(= v, OII), (3.37)

G(z,y,€) = 2° Gz + zYGry + ysz + (2G e + yGye )€
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+ Gee(€,6) + 22 Gazs + 2°YyGrzy + 2y*Gay,y
+ yanyy + (5'32Gzr£ + zYGrye + 372ny€)§
+ 2Gree(§,6) + yGyee (€, €) + Geee(6,6,€) + O(l|(z, v, 6)[|*). (3.38)

Similarly, the coeflicients in (3.36)-(3.38) are either constants or symmetric

multilinear functions of their arguments.
3.4.1. The case by =0
First, we consider the case in which &3 = b1, = 0. Let the control input

be of the form
u =ky1¢ + k12y + K26 + U(z,y, ). (3.39)

Assume that Ay; + b2 K is stable. According to Section 3.2, the stability
of the origin of system (3.35) agrees with the stability of the reduced model

T = Qly + f(x’ Y, Eiz + E;'?y + h(xs y)) (340(1)
g = _QZQ: + g("lf, Y, Eyz + E2y + h(z’ y))’ (340b)

where E = (Ey, E;) and h(z,y) are the solutions of Eqs. (3.8) and (3.10),
respectively, with K; = (k11, k12).
Similarly, referring to the boundary conditions of Eq. (3.10), we can write

h in the form

h(z,y) =2"hez + oyhay + 4 hyy + Oz, 0IP), (3.41)

where hzz, hey, hyy are constant vectors.

Now, define the nonlinear control function U in Eq. (3.39) as
U(z,y,£) =Ugp T’ + UzyTy + uyyy2 + (zugze + yuye)é + {'usgﬁ + UppaZ®
+ uuyxzy + u::yy’:y2 + “yyy3/3 + (x2umf + Tyuzye )€

+ PP ugyel + &' (Tuzee + yuyee )6 + ugee(§,€,€) + U(z,€), (3.42)

where ugge is a symmetric trilinear function of ¢, and U is a nonlinear function
which vanishes along with its partial derivatives up to third order at (z,{) =

(0,0).
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Since (A22+b; K3) is stable, by assumption matrices (Azz +bK3)2 4+ 0, Q.1
and (Azz + b2 K3)? + 492,9Q,1 are both invertible, where I denotes the identity

matrix.

Let
H(z,y) :=bU(z,y, E1z + E2y) + G(z,y, E1z + E,y)
— f(z,y, Erz + E2y)Er — g(z,y, Eyz + Eyy)Es
=2’ Hyo + 2yHay + y* Hyy + O(ll(=z, 9)I*), (3.43)

where U is as defined in Eq. (3.42). Solving Egs. (3.8) and (3.10), we have

El = —{(A22 + b21{2)2 + Q]Qz[}_l{kll(Azg + bng) - szlzI}bz (344)
Ey = —{(A22 + by K2)* + Q02 T} " {k12( A2z + b2 K2 ) + Qu k11 1}b; (3.45)

and

hay ={(A22 + b2 K3)? + 401 Qo I} {202 Hyy — 201 H

— (A22 + b K3)Hzy b, (3.46)
hos = — (Az2 + b2 K3) ™t - (Hpr + Q2hay), (3.47)
hyy = — (22 + b2 Ko) ™! - (Hyy — Qu1hzy). (3.48)

The reduced model (3.40) is hence obtained as
z =91y + fz;cxz + fzymy + fyyy2 + fzzzza
+ fzzyxzy + fzyy$y2 + Jayy‘y?/3 + O(li(z, »)II*) (3.49a)
3) = 9237 + gzzmz + ﬁzywy + jiyyyz + gzzzwa

+ Gozy @Y + Goyyey® + Gyuyt’ + O(ll(z, W)IIY), (3.49b)

where f , § denote the new versions of the cubic terms, the values of which are
given in Appendix 3.A.

Referring to the stability criterion (3.34) and the foregoing discussions,

we obtain stability conditions for the control system (3.35) summarized in the

following lemma.
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Lemma 3.5. Suppose b1; = b2 = 0 and that the control input is of the form
(3.39) with nonlinear function U as in (3.42). Then the origin of Eq. (3.35) is
asymptotically stable if A2y + by K is stable and

1
gzy( g.z;z: Q gyy) fry( fIiE ngyy)’*‘ fz:c grz

20, » 1 Q.
o — fay gy + 3(feoa + fm, gJaey + o 22 5,) <0. (3.50)

Remark 3.2. From (3.50) and Appendix 3.A, we observe that only quadratic
terms of the function G, and the linear and quadratic terms of the control input
u contribute to the stability conditions. A linear and/or quadratic feedback

stabilizing control law follows from Lemma 3.5.

Although Lemma 3.5 provides a means for the design of a linear feedback
stabilizing control law, such a linear stabilizing control law need not exist.
Referring to Eqs. (3.43)-(3.45), we have H(z,y) = bU(z,y,0) + G(z,y,0)
when ki3 = k12 = 0 and K2 = 0. A purely quadratic stabilizing control law can

then be proposed as follows.

Corollary 3.4. Assume that b;; = b2 = 0, A;2 is stable and the origin
of system (3.35) is unstable. Then a purely quadratic stabilizing feedback
U = UzpZ? + uzyTy + uy,y? exists for system (3.35) if one of the values of

Jzey fyer9z¢, gye 18 nonzero and

1 1 1 9 2
939(9_291‘2: + Q—lgyy) - fzy(ﬁzfzz + ﬁgfyy) + % fzzgzx

2Q,

Q
2 fyygyy + 3{fxzz + fthzz + 2

(fzyy + fzﬁhyy + fyfhry)
Q,
+ (guy + grghey + gyfhzz) + (‘71111.1/ + gyfhyy)} <0, (3.51)

where
hzy ={A§2 + 49192.[}—1 {292(uyyb2 + ny) - 291(’&1:1)2 + Gzz)
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- A22(U:cyb2 + Gzy)}, (352)
hor = — Ay (Uzrbs + Ger + Qahzy), (3.53)
hyy = — Agy (uyybe + Gyy — Quhay). (3.54)

We note that Aeyels’ stabilization conditions for a third-order system [4] are
special cases of those given in Corollary 3.4. Corollary 3.4 can also be extended
to the case in which Aj2 is not stable but the pair (Agq2, b2) is stabilizable.
Under this condition, an additional linear feedback K¢ is needed to ensure the
existence of the locally invariant manifold and the stability of the noncritical
states { (obtained by setting z; = 23 = 0 and v = 0 in Eq. (3.35¢)).

A stability criterion for the uncontrolled model of system (3.35) readily
follows from Corollary 3.4.

Corollary 3.5. The origin of Eq. (3.35) with u = 0 is asymptotically stable
if condition (3.51) holds with uz; = uzy = uyy = 0.

3.4.2. The case b #0

Next, we consider the case in which either b;; or b;2 is nonzero. Since
this assumption guarantees the controllability of the subsystem (3.35a)-(3.35b),
- for a nontrivial stabilization problem in this case we only consider a purely
nonlinear control law. Assume Ay, is stable and the control input is as given in
(3.39) with k113 = k12 = 0 and K3 = 0. According to Section 3.2, the stability
of system (3.35) is then determined by the stability of the reduced model

¢ =y +bU(z,y, k(z,9)) + f(z,y, k(z,y)) (3.55a)
¥ = —Q2z + b12U(z, y, h(z,y)) + 9(z,y, h(z,y)), (3.55b)

where h solves Eq. (3.11) with n substituted by (z,y)’ and with boundary
conditions h(0) = 0 and Dh(0) = 0.

As before, we take h to be of the form (3.41), and the nonlinear control
function U to be a function of = and y only, as follows:

U(z,y,§) =uggz? + UgyTyY + uyyy2 + UggzzS

+ UzryT Y + UzyyTY? + uyyyy®. (3.56)
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We have the following stability criterion for the control system (3.35) in

this case.

Lemma 3.6. Suppose Ajy; is stable and that b; # 0. Then the origin of system
(3.35) is asymptotically stable if

1 1
(bi2uszy + gzy) - {ﬁ‘(bnuu + 9zz) + 6"(”12“1/1/ + 9y3)}
2 1

1 Q
— (bratzy + fry) - {(g(brattas + fez) + o3 (brugy + fiy))
1 1

20,

2
+ Q_z(bllu:ca: + fzz) : (b12ua:z + gzz) - ’?E‘(blluyy + fyy) - (bl2uyy + gyy)

Q
+ 3{b11uzzz + frez + fz&hzz + ggl%(blluzyy + fzyy + fthyy + fyfhzy)

1
+ §(b12uzzy + Gzzy + gzehzy + gyehaz)

Q
+ @_j(bwuyyy + gyyy + 9gyehyy)} <0, (3.57)

where hzz, hey, hyy are as given in Eqgs. (3.52)-(3.54).
A purely cubic stabilizing control law is readily obtained from Lemma 3.6.

Corollary 3.6. Let Aj; be stable and b; # 0. (We do not require (3.35) to
be stable.) Then system (3.35) is stabilizable by a purely cubic state feedback

u= uzzzxs + uzzym2y + 'Uv.z:yym'.'l2 + uyyyys-
Note that the stabilizing control laws obtained in Corollaries 3.4 and 3.6

agree with those obtained by Abed and Fu [1], where an asymptotic expansion

method based on bifurcation analysis is used for controller design.
3.5. Concluding Remarks

In this chapter, the center manifold reduction technique has been applied

to study the smooth feedback stabilization problem for nonlinear systems in two

critical cases. The stabilizing control law designs were composite-type designs.

Stability is ensured first for the noncritical state £, and the remaining control
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gains are then chosen to stabilize the reduced model, all of whose eigenvalues
lie on the imaginary axis. Stabilizing control laws for two simple critical cases,
where the system has one zero eigenvalue or a pair of nonzero pure imaginary
eigenvalues with the remaining eigenvalues either stable or linearly controllable,
have been designed in both linear and/or nonlinear feedback forms. It was found
that results given in this chapter agree with those obtained by Abed and Fu [1],
[2], [25], where the stabilizing control laws are obtained by applying bifurcation
stability analysis.

Appendix 3.A

The coeflicients in the Taylor expansions of f , g are given in terms of those
of f, g, by the following. Here, p denotes either f or g, and 7 # j for i,5 € {z,y}
with E[z] = El, and E[y] = Ez.
pii = pii + picEy) + Efppec B
pij = pij + pic Epy) + pie By + 2B pee By
Piii = piii + piig By + Ejppice Bpay + pece(Es Epa> Ep)
+ pichii + 2E[',-] pechii
Piij = pighii + pichij + 2E{;1pechii + 2By pechi; + pisj + pije Epy

+ piie Elj) + Epypjee By + 2E[pice Epyy + 3peee(Eps B, Ej)-
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CHAPTER
FOUR

STABILIZATION OF NONLINEAR SYSTEMS
IN COMPOUND CRITICAL CASES

In this chapter, we continue to study the stabilization of nonlinear systems
in critical cases by using the center manifold reduction technique. Three de-
generate cases are considered in this chapter, wherein the linearized model of
the system has two zero eigenvalues, one zero eigenvalue and a pair of nonzero
pure imaginary eigenvalues, or two distinct pairs of nonzero pure imaginary
eigenvalues; while the remaining eigenvalues are stable. Using a local nonlin-
ear mapping (normal form reduction) and Liapunov stability criteria, one can
obtain the stability conditions for the degenerate reduced models in terms of
the original system dynamics. The stabilizing control laws, in linear and/or
nonlinear feedback forms, are then designed for both linearly controllable and

linearly uncontrollable cases. The normal form transformations obtained in this

chapter have been verified by using MACSYMA.
4.1. Introduction

Recently, the center manifold theorem has been applied to the stabiliza-

tion of nonlinear systems. Aeyels [4] obtained a stabilizing control law for third
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order systems which possess a pair of pure imaginary eigenvalues and one sta-
ble eigenvalue. This result has been extended in Chapter 3 to more general
high dimensional, nonlinear systems, in which the linearized model has either a
pair of pure imaginary eigenvalues or one zero eigenvalue; while the remaining

eigenvalues are stable or stabilizable.

More degenerate cases have been considered by Behtash and Sastry [10].
They obtained results for nonlinear systems whose linear part has: two zero
eigenvalues with geometric multiplicity one; one zero eigenvalue and a pair of
pure imaginary eigenvalues; or two distinct pairs of pure imaginary eigenvalues.
Unfortunately, they consider only the case in which the state vector dimension
is one more than the number of critical modes. Most of their results are given
in terms of the system dynamics after normal form reduction.

In this chapter we extend their results to more general high dimensional,
nonlinear systems, where the noncritical modes are either stable or stabilizable
and the number of these noncritical modes is not restricted. Moreover, the
stabilizing control laws are given in terms of the original system dynamics before
normal form reduction.

First, the normal form reduction technique discussed briefly in Section 2.3
is applied to derive stability conditions for low dimensional, critical nonlinear
systems, specifically, where the linearized model of the system has exactly two
zero eigenvalues with geometric multiplicity one; one zero eigenvalue and a pair
of pure imaginary eigenvalues; or two pairs of pure imaginary eigenvalues. This
is followed by a study of stabilization of general high dimensional, critical non-
linear systems. In Section 4.3, the stability condition derived in Section 4.2.1
for planar systems with two zero eigenvalues, along with the center manifold
reduction technique reviewed in Section 3.2, are employed to design the stabi-
lizing feedback control laws for high dimensional, nonlinear systems. A linear
and/or nonlinear feedback stabilizing control law is proposed for linearly un-
controllable systems, while a purely nonlinear stabilizing control law is designed

for linearly controllable systems. Similar results are obtained for the remaining

43



two degenerate cases, in which the uncontrolled model has one zero eigenvalue
and a pair of pure imaginary eigenvalues, or two distinct pairs of pure imagi-
nary eigenvalues; while remaining eigenvalues are stable or stabilizable by linear

feedback. These are given in Sections 4.4 and 4.5, respectively.
4.2. Stability Conditions for Critical Reduced Models

In the following discussion, we continue to study the stabilization of critical

nonlinear systems
1 =Ann + biu + F(n,§), (4.1a)

§ =Ag€ + byu + G(n,§), (4.1b)

where functions F, G are sufficiently smooth with F(0,0) = 0, DF(0,0) = 0,
G(0,0) = 0 and DG(0,0) = 0. Specifically, we consider three degenerate cases
in which Ay has exactly two zero eigenvalues with geometric multiplicity one;
one zero eigenvalue and a pair of ;.mre imaginary eigenvalues; or two distinct
pairs of pure imaginary eigenvalues. Similar to Chapter 3, the control input u
in (4.1) is taken to be a scalar. So, b1, b; are both vectors. It is not difficult to
extend the results to the case of multiple inputs. Details are omitted.

First, the stability conditions for the low dimensional critical system (4.1a)
with u = 0, £ = 0 are derived in this section by employing the technique of
normal form reduction as in Section 2.3 and Liapunov stability criteria. These
stability conditions and the center manifold reduction technique given in Section
3.2 are applied to study the stabilization of the system (4.1) in the next three
sections.

In the rest of this section, we focus on the derivation of stability conditions

for the low dimensional critical system (4.1a) with u = 0 and { = 0 as given by
n =Aun+ F(n)

=Aun + Fa(n,n) + Fs(n,m,m) + O(||n||*), (4.2)

where F(n) := F(n,0) and F,, F3 denote quadratic and cubic terms of the
Taylor expansion of F, respectively. Here, we have presumed that F' is at least

four times continuously differentiable.
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As mentioned in Section 2.3, a nonlinear transformation n = { + P(() can
be applied to simplify the expressions of the critical nonlinear systems, where

P is a purely nonlinear vector function

P(C) = P2((,¢) + P3(¢, ¢, Q) + OIS, (43)

where P, and P; are the quadratic and cubic terms in P, respectively.

Applying this method to Eq. (4.2), we obtain
(=T +DP()'F(C+ P(C)
= F1l + F2(¢, Q) + Fa(¢, ¢, O + OIS, (4.4)

where F; = A1y and F3, F3 are as given in Eqgs. (2.26)-(2.27).
The main goal of this section is to obtain the homogeneous functions P;
for which the nonlinear terms F; of the transformed model (4.4) allow a simple

analysis of the local stability of the origin.
4.2.1. Stability of the Second-Order Model

First, consider the case in which n = (x,y)' is a two dimensional vector,

and Eq. (4.2) is a planar system

T=y+ frzx2 + fzy-’”y + fyyy2 + fzzzxa + fx:cyxzy

+ foyyey® + fyyy® + O(ll(2, 0)II*), (4.50)
3} = gzzxz + GzyTY + gyy'y2 + g:r:zzxz + gzzyxzy
+ 9zyy7y° + gyyyy® + O(l|(z, I*)- (4.5b)

By using the technique given in Section 2.3, it is not difficult to obtain a
normal form expression for (4.5). For instance, a general form has been obtained

by Takens [84]. A result of [84] for the normal form of (4.5) up to sixth order

can be written as

1 =22+ O(”("Elv‘r2)”6)a (4.6&)
Io = 61:17% + boz129 + 63.'1,':; + 64112?(1)2 + (5511)‘1k + 66113:;:82
+ 8123 + Sszizz + O(||(21,22)11%), (4.6b)
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where z;, 3 are the transformed states after normal form reduction and §; are
constants.

To study the local stability of (4.6) by Liapunov’s direct method, we invoke
a special locally positive definite function. A class of such functions has been
introduced by Fu and Abed [26] for constructing families of Liapunov functions
for critical nonlinear systems the linear part of which has exactly one zero
eigenvalue or a pair.of nonzero pure imaginary eigenvalues with the remaining
eigenvalues stable. This result is extended below to a more general case, which

will provide a means to obtain the stability conditions for the model (4.6).

Lemma 4.1. The scalar function

2 2 3 4 3 2.2
V(z1,22) =v125 + v22125 + vz, + v42] + VsTIT2 + vezi T
3 4 5 6 4.7
+ vrzyzy + vexy + Ve + v10T; (4.7)
is locally positive definite near the origin if vy,v4 > 0.

Lemma 4.1 follows directly from ([26], Lemma 1). Details are omitted. It

is obvious to have the following result.

Corollary 4.1. The scalar function
V(z1,72) =23(81 + p1(z1,22)) + z325(82 + p2(z1,72))

+ 6327 + O(||(21, z2)||") (4.8)
is locally negative definite near the origin if §; < 0, for : = 1,2,3 and the smooth

scalar functions py, p2 satisfy p;(0,0) =0 for : = 1,2.

Next, we employ Lemma 4.1 and Corollary 4.1 to study the local stability
of Eq. (4.6). Choose as a Liapunov function candidate for (4.6) a function V
as in (4.7) with vo = vg = 0. The time derivative of V along trajectories of Eq.
(4.6) is given by
V =201 (612225 + 632122) + vrzh + (20163 + 4dva)zlzs

+ (2v164 + 3vs + 3v3b; + p(ml,mg))mg:ﬂg + vsb 3
+ (5vg + v562 + 20155)93%332 + vsb3z8
+ (vsés + 20167 + 6v10)z5z2 + O(||(z1, $2)||7)> (4.9)

46



where p is a smooth, scalar function with p(0,0) = 0.

According to Lemma 4.1, V is locally positive definite if v;,v4 > 0. By
employing Corollary 4.1 to check the local negative definiteness of V (given in
(4.9)) and applying Liapunov stability criteria, we have

Proposition 4.1. Let §; = 63 = 0. Then the origin of (4.6) is asymptotically
stable if the values of v; in (4.7) can be chosen such that
(1) v1,v4 > 0, v2 = vg =0,
(ii) vr,v583, 20164 + 3vs < 0,
(iii) Svg + 2v165 = 0, v5b4 + 20167 + 6v19 = 0 and 2v; 63 + 4vg = 0.

Assume 6; = §; = 0 and 63,84 < 0. With these assumptions we can choose
v; such that the stability conditions in Proposition 4.1 hold. As implied by
Lemma 2.6, the local stability of the origin is preserved under normal form

reduction. Thus, we have

Lemma 4.2. The origin is asymptotically stable for (4.5) if §; = é2 = 0,
63,04 < 0.

By suitable choice of nonlinear functions P, and P; (in (4.3)), we obtain

the values of the §; as: 8; = gzz, 62 = gy +2fz2 and
53 =9zzz+ gzzfzy - gzyfzzn (410)

1
4 =gzzy + 3fzzz + '2‘{fyy9u + (g:l:y - 2fzz)gyy + fzygzy}- (4-11)

In the next corollary, the stability conditions of Lemma 4.2 are stated in

terms of the functions f and g.

Corollary 4.2. The origin of (4.5) is asymptotically stable if g,. = 0, g2y +
2fzz =0, gzzz +2f3,: <0 and

9zzy + 3fzzz — fza(fzy +294y) <O. (4.12)

Note that the stability conditions for (4.5) given in Corollary 4.2 agree with
a result of Behtash and Sastry ([10], Lemma 4.1).
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4.2.2. Stability of the Third-Order Reduced Model

Next, consider the case in which n = (z,y, z)' and model (4.2) is the three

dimensional system

z =0y + f(=,y, 2), (4.13a)
y=—Qz +g(z,y, 2), (4.13b)
z =r(z,y,z2), (4.13¢)

where ;5 > 0 and functions f,g,r are sufficiently smooth and take the

general form
‘10(3:, Y, z) =‘Pzz$2 + QryTy + Pz + ‘Pyyyz + @yyz + ‘P:zzz2
+ PrzeT® + ProyToY + PrzT22 + QryyTY’ + Pryz2Y2 + Prrrr2®

+ Cuyy¥’ + Cyye¥ 2 + Qyay?® + 02222 + O(||(2, 9, 2)||Y). (4.14)

As explained above, it is not difficult to derive the normal form for system
(4.13). For instance, a normal form for the case of ; = Q3 = —w up to the
third order approximation has been obtained in cylindrical polar coordinates
by Guckenheimer and Holmes [29]. A similar result is also obtained by Behtash
and Sastry [10] for designing a purely nonlinear feedback stabilizing control law
for the case in which ¢ in (4.1) is a scalar. However, in both results mentioned
above, the values of the coefficients in the normal form for (4.13) have not
been expressed in terms of the original system dynamics (i.e., the functions
f,9,7). In the following discussions, a normal form representation for a general
system (4.13) up to third order will be given explicitly in terms of the original
system dynamics. The result will be easy to apply to the stability analysis and
stabilization of higher dimensional systems (4.1). Note that we do not assume
1 = Qs in the following discussions.

By employing the technique given in Section 2.3 with P = P, a quadratic
function as given in Appendix 4.A, we can remove parts of quadratic terms of

the dynamics in (4.13), and Eq. (4.13) becomes

2.1 291{22 -+ (gyz + fzz)zl z3

1
Q1+ Q,
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1 -
+ 29102 (Q2fyz - ngzz)zzzs} -+ f(zl,z2,z3) (4.15a)

1
29 = {— = z 2z L
22 =0y { 21+91+Q2(gy + f22)2223
(Q2fyz ngzz)zlz3} -+ 5(21,22,23) (415b)
29 Q,
. 1 .
23 =m(ﬂ17‘zz + eryy) . (Z% + Zg) + ruzg + 7’(21,22,23). (4.150)

Assume that the nonlinear vector function P in the normal form transfor-
mation is chosen as P(n) = P,(n)+ P3(n) with P, and P; as given in Appendix

4.A. The new transformed version of (4.13) is then

I =Ql {2:2 + (gyz + fzz)m]L-TS

_1
0+ Qs

+ (Q2fyz — Qgez)z2s + 6171 (23 + 23)

2QQ

+ azz(e] + 23) + 23 (6221 + e222)} + O(|l(2, 9, 2)I[*),  (4.16a)

&2 =Qo{—z1 + QT}E(QW + fz2)T223
29 o o (R fyz — Qgez)zizs + 6172(2] + 23)
— e121(22 + 22) + 22(6322 — €221)} + O(J|(z, v, 2)||*), (4.16b)
&3 a0 192 (QUurzz + Qaryy) - (23 +22) + 7,22
+ &3z3(a} + 3) + Fazazd + O(lI(z, 9, 2II*), (4.16¢)
where
€1 =49192(§121 ) {392 fazz + D1 Q2(fr12 — F122) — 3QF111}, (4.17)
€ = 291 ———(Q2 f233 — Q1 di3s), (4.18)
&1 ! AQ1(3f111 + §112) + Qa2(3d222 + fi22)}, (4.19)

T 307 + 20,0 + 302
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1

82 ==———(f133 + J2s3), 4.20

2 010, (fi33 + Ga233) ( )
1 . .

63 —m(ﬂﬂns + Q37203). (4.21)

Here, @;jr denotes the coeflicient of the cubic term z;zjzx of a function ¢ €
{f,5,7} and 4,5,k =1,2,3.

Using Corollary 4.1 and Lemma 2.6, we obtain the following stability con-
ditions for (4.13) based on the transformed model (4.16).

Lemma 4.3. The origin of (4.13) is asymptotically stable if r,, = 0, Q,46;,
7333 < 0, and either of the following conditions hold:
(1) gyz + foz = 0, D172z + Qaryy, = 0, and 2162,83 < 0 or Q162 and 83 are

nonzero and of opposite sign,

(ii) Q1 (gyz + fzz) and Qy7,; + a7y, are nonzero and are of opposite sign, and
(162,63 <0,

where the values of §;, ¢ = 1,2,3 are given in (4.19)-(4.21).

Proof: As discussed above, Eq. (4.13) can be transformed into (4.16) by normal

form reduction. Choose

0
V =pi(al + g-91) + pazl (4.22)

with p1,p2 > 0 as a Liapunov function candidate for the transformed model
(4.16).
The time derivative of V along trajectories of (4.16) is

V= 2le161(xf + z§)2 + 2(p1h b2 + P253)$§($§ + 3’%)

2
2 r 4 2 zz 3 ~ . o~ Q z T2z
+ 2p2T33323 + 2par $3+91+92{ 1P1(gy + f )

+p2(Qares + Qoryy)}zs(a] +23) + O(l(21, 22, 23)[°).  (4.23)

Since p1,p2 > 0, the scalar function V given in (4.22) is positive definite.

Suppose r,, = 0 and ;68,7333 < 0. From Corollary 4.1, it follows that 174
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(given in (4.23)) is locally negative definite if either condition (i) or (ii) holds.
The application of Liapunov stability criteria to (4.16) indicates that the origin
is asymptotically stable. As implied by Lemma 2.6 the origin is also asymptot-
ically stable for the model (4.13).
|
Note that the stability condition (i) of Lemma 4.3 above agrees with that
obtained by Behtash and Sastry ([10], Theorem 4.2).
By expressing the values §; in terms of the original system dynamics, we

have the following result for the case (i) of Lemma 4.3.

Corollary 4.3. The origin is asymptotically stable for (4.13) if r,, = 0,
Qirzs + Qoryy =0, fzr + gy =0, 51,52 < 0 and 53,54 <0 or S3 and 54 are

nonzero and of opposite sign, where

Sy :=7333

1
=91Q2 {Ql Qorzez — Q2fzz"'yz + ngzzrzzr}, (4-24)

Sg :=Ql5l

1
=3Q% + 20,93 + 302 {4192 + Qa2 fys)ryy — Qagysray + I0agyyy

Q2 o2 202
+ (ngzy - 2Q2fyy)gyy + 9_292291'1; + \Dlgzz:y + _9‘2—fzzgzz
- Q2fzyfyy + QIQZfzyy - Qlfzzfz:y + 3Q§fz1:z}, (425)
53 :=91¢52
1
=——{20 zzTyz —2Q 2zTzz +Q z +2 zz )Gz2
(0, 7 0y) Bl feay 19 1(9zy + 2f22)g
+ 919291121 - 2Q2szgyy - Q?fzyfzz + Qlﬂ2fzzz}, (426)
S4 Z=53
1 Q Q,
2__92(91 T QZ){Qg‘ryyz - Q—i(Q2fyy + Q1fzz)7‘yz — E(ngu + Qnyz)Tyy
+ (Q2gyy + nglz)rzz + Q2gyz7'zy + QIQ2Tzzz}- (4.27)
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Similarly, the case (ii) of Lemma 4.3 is addressed in terms of the original

dynamics as follows.

Corollary 4.4. The origin of (4.13) is asymptotically stable if (i) r,, = 0,
(ii) Qrzz + Qoryy and f;. + gy, have nonzero values and of opposite sign, (iii)

S1, Sy < 0 and 5'3, S, < 0, where S is given by (4.24) and

5, _ 1 {_ngzz+92fyz
2T 42010, + 3020 () + 22)

[(Qz + 291 )Qz ryy

Q
+ (202 + 3Q1)Ql7'zz] + 71(93;: + 3fzz)7'zy + 391929yyy

02 2 20?2
+ (ngzy - 292fyy)gyy + ﬁ_g:cz‘gzy + ngzzy + b——fugu
. 2 2
- Q2fzyfyy + Qlﬂ2fzyy - Qlfzzfzy + 3Q§fzzz}7 (428)
~ 1
S3 =m{292fzzryz - 2919;:?‘:: + Q1 (gzy + 2fzz)gzz
+ QIQQQyzz - 2Q2fzzgyy - Q2fz;yfzz + QIQ?.fxzz

_
2005 + Q)

S, — 1 2 2y
S —92(91 + 92) {eryyz - Q4 (Q2fyw + Qlfzz)ryz

(fz:z + gyz) : (ngz;z + Q2fyz)}, (4.29)

+ (Qugz: + szyz)"'zz + (9291111 + Q19z22)T22

2

Q1 + 2,

[ngyz + (92 + 291)ﬁt:]rzy + Ql Q2rzzz}. (430)

4.2.3. Stability of Fourth Order Systems

In this section, we derive stability conditions for (4.2) in which n :=

(z,y,2,w), F(n) = (f(n),9(n),r(n),s(n))’ and

0 O 0 0
—-Q, 0 0 0

0 0 0 Q3

0 0 —Q4 0

Ay = (4.31)

Here, ;95,8384 > 0and f, g,r, s are smooth, purely nonlinear scalar functions
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with the form as

© =PzeT’ + PryTY + 02222 + PrwTw + @y’ + 0yayz + Qyuyw
+ ©2:2° + PrwzW + Puww? + Y228’ + (Przyy + Prz2? + Praww)s?
+ (Pzyy® + Pyyy¥ + Pyyzz + Pyuyww)y® + P2y Yz + PrywTYW + P rwzTW
+ @yzwyzW + (Pz2:% + Pyazly + P22z + P2z0W)2? + (PrwwT + Pywwy
+ Pruww? + Puwuw)w’ + O(l|(z,y, z,0)]|*). (4.32)

Forthe caseinwhichQ; = Qs = —-land 3 =Qy = -w ¢ {:i:%, :}:%,:i:l, +2,
43}, a normal form for the model (4.2) has been obtained by using the tech-
nique given in Section 2.3; see for instance, [10], [29]. In the following analysis,

we do not assume that 2; = Q, nor that Q3 = 4.

Assume that ©,Q; # afd3y, for each a € {%, i,1,4,9}. By using the

technique of normal form reduction as discussed in Section 2.3 to let n = {( +
P(¢) with P defined in Eq. (4.3), we can write model (4.2) as Eq. (4.4).
First, consider the case in which the nonlinear function P is a purely quadratic
function only (i.e., P = P;) as given in Appendix 4.B, we can make F, (given

in Eq. (2.26)) zero and Eq. (4.4) then becomes

¢ = AC+ F(¢), (4.33)

where F(¢) = (F(¢),3(¢),7(¢),3(¢))'. Now, let P be a nonlinear function as
given in (4.3) with P, having being as discussed above such that F; = 0.
By a suitable choice of cubic function Pj, as detailed in Appendix 4.B, the
transformed model (4.4) takes the form

&1 = {z2 + (6121 + e122)(2} + 22) + (6221 + €222 )(23 + 23)}

+ O(||(z1, 22, 23, z)|[*), (4.34q)
g2 =Qa{—21 + (6122 — e171)(a? + 23) + (8222 — €221)(z] + 27)}

+ O()|(z1, 22, 73, za)||*), (4.34b)
3 =Q3{wq + (6325 + c334)(a] +23) + (6435 + cama)(2] + 1)}

+ O(l|(21, 22, 73, z4)|[*), (4.34¢)
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4 =Qu{—23 + (6324 — €23)(2] + 23) + (6424 — €423)(23 + 1)}

+O0(|l(z1, 22, 23, 24)|[*), (4.34d)
where
Q2(3d222 + fr22) + Qu (G112 + 3fi11) )
6 = }
! 302 + 20,0, + 302 (4.35)
_ Q2(firz — G122) + 392 fozz — 3Q%G111 :
“a= 40, 0(0; + 02) (4.36)
Q3(Frss + G233) + Qa(Fraa + Goas) ,
8o = 4.37
2 (S + Q2) - (23 + Q4) (4:37)
€ = Q2(Qa fazs + Qa4 foas) — Q1(Qadizs + QaGras) (4.38)
? 2 Q22(Q25 + Q) -
Q1 (F113 + 3114) + Q2(F22s + 3224)
a = 4.39
s (O F ) (% + ) (4.39)
Q4(Q17114 + Qaf224) — Q3(Q1 5113 + N28223)
€1 = 4.40
3 2Q304(Q + Q22) (4.40)
Q4(35444 + T344) + Q3(8334 + 37333)
64 = ]
¢ 302 + 2039, + 302 (441)
_ Q304(Fa34 — 8344) + 3027444 — 3033333
€ = et 00 : (4.42) .

Here, let ¢ := (21;22,23,24)" in (4.33) then ¢;jx denotes the coefficient of the
cubic term 2;z;2z; of a function ¢, for ¢ = f,§,7Fdandi,jk=1,---,4.

Referring to the transformed model (4.34), we readily obtain the following
stability conditions for the original model (4.2).

Lemma 4.4. Let 0,0 # af3Qy, for each a € {3},1,1,4,9}. The origin
is asymptotically stable for system (4.2) if 216, < 0, Q364 < 0 and either
0,62, <0 and Q3683 <0, or ;62 and 2363 are nonzero and of opposite sign.

Proof: As discussed above, system (4.2) can be transformed into Eq. (4.34) if

Q102 # af23€y, for each o € {%, i-, 1,4,9}. Let
Qs ,

1 Q 1
V=cp(a + ﬁixé) + 5pa(af + 0% (4.43)
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be a Liapunov function candidate for model (4.34) with p;,p; > 0. Taking the
time derivative of V along trajectories of the model (4.34), we then have
V =p1Quéi(af +23)° + (p1ba + p2%63) - (o + 23) - (<] + )
+ p2aQaba(ef + 25)° + O(lI(z1, 2, 23, 24)I°)- (4.44)

Since p1,p2 > 0 and ;82,2384 > 0, the scalar function V given in (4.43)
is positive definite. First, consider the case in which 216, < 0, Q38; < 0,
Q62 <0 and Q363 < 0. Since py,p2 > 0, 1% given in (4.44) is locally negative
definite. So the origin is asymptotically stable for the transformed model
(4.34). By Lemma 2.6, the origin is also asymptotically stable for the original
model (4.2).

Next, consider the case in which 2;6; < 0, Q384 < 0, Q162 and 2363 are
nonzero and of opposite sign. Similarly, we can show that 1% given in (4.44) is
locally negative definite by choosing py,p2 > 0 such that p; 2162 + p2§2363 = 0.
The stability of the origin for model (4.2) is hence implied by the Liapunov
stability criteria and Lemma 2.6. «

Note that, for the case in which Q; = Q = —1and Q3 = U = —w ¢
{£3,£3,41,42, £3}, Lemma 4.4 agrees with a result of Behtash and Sastry
([10], Theorem 4.3). The stability conditions of Lemma 4.4 are expressed in
terms of the original nonlinear dynamics before normal form reduction are given

in the next result.

Corollary 4.5. Suppose 19, # af23Qy, for each o € {3,1,1,4,9}. The
origin of (4.2) is asymptotically stable if S3,S; < 0 and S3,54 <0 or S3 and

Sy are nonzero and of opposite sign, where

1
= : rrzr Q zz Q xr
3+ 2,0, 1 303 00y + D fere) +(Digeny + Dafen)

51

Q?
+ gyy(ngxy - 2Qnyy) - fxy(Qnyy + Qlfzz) + Q_:gzz(gzy + 2f”)

Q
+ ﬁi’[(3923yy + lexz)gyz + (3913235 + Q2Syy)fzz]
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bl %‘[(Q]Tzz + 3Q2ryy)gyw + (eryy —+ 3:917'I$)f1;w]
3

1
t a0, - L0,

Oy
(40,0 — (0304)0

- 92(291fzw - Q3fyz)] . (Q3Szy - 2Q2ryy + 291"'1:1:)},

1

(Q47‘zy — 2913:;1: + 2928yy) —_

S, =

2

[QI(Q4g:cw - 2929;yz) + QZ(Q4fyw + QQlfIz)]'

[Ql (2Q2gyw + 93912')

(4.45)

Q2 {93 [3(Q4Swww + Q3rzzz) + (Q3szzw + Q4rzww)]

Q3
+ Sww(QSSzw - 2Q4rww) - rzw(Qtirww "i' QS"'zz) + szz(szw + 27'zz)

+ &[(394910!0 + Qngz)Szw + (393.9:: + Q4gww)r1:z]

- %[(Q3fzz + 3Q4fww)3yw + (Q4fww + 3Qszz)7'yz]
1
Q3
(49394 - 9192)92

+ Q4(927'_1,(19 + 2937'1':)] : (QZfzw - 2939:‘: + 2Q4gww)

Q3
(49504 — 0 0)

- 94(2937'3(: - er:cw)] * (ngzw - 2Q4fww + 293](::)},

Qs 1
2fzaTyz + _[Z'Q4fww5yw
(2 +Q2)- (023 + 94){ Fesry 3

[Qs(Qgsyz - 2948,,”)

[93(29433;11; + leauz)

S3 =

+ QIQ4(fzww + gyww)] + Ql(fzzz + gyzz)

202 2
- 'Q_zlgzzrzz + = QZQ [93(Q4Sww + 235, )(gyz + fzz)

291 Uy
- Q4(94"'ww + Q3rzz)(gyw + fzw)] Q =~ JuwSzw

+ : [Ql (Q3gzz + Q4gww)(gzy + 2fa:z)
Q309

—_ QQ(Q3fzz + Q4fww)(f:ry + ngy)]
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1

+

(49394 - 9192)93
+ QS(lezz + 2Q4Syw)] : (ngzw - 294f1ww + 2Q3fzz)

(400 — 0.0
+ Qs(QZSyz - 2943zw)] . (QZfzw - 2939;:: + 2Q4gww)}, (447)
T (1 + Q) - (3 4+ Q4)

Q3

20,

2823 1
- Q_4~szzfzz + m[93(9132z + QZSyy)(Szw + 27'::)

[94(91 Tzw — 2937'yz)

[94 (Qz ryw + 2(}!3 Trz )

1,
5'4 {27':c:cf:cw + 9_1[2927°yygyw + Q392("°3lxlz + Syyw)]

+

[Ql (Q2gyy + ngzz)(szw + Tz:z) - QZ(Qny.'/ + Qlfzz)(syw + "'yz)]

282302
— 24(Qrze + Qoryy ) (2w + 25ww)] — _(_2_____39 2 5yy9yz
1824

1
+
(421 — Q324

+ 91(9391:1 + 29293/10)] ) (QSS::y - 2927'9'3/ + 2 rzz)

[22(023 fyz — 28 fow)

Q3
- 11fzz Tw
(40107 — Q30)2, 04 [Q2(Qu fyw + 20 Fz2) + Q1 (Qug
— 29293!2)] . (947'2:3/ - 291-3:: + 2923313/) + QS (rzzz + sxzw)}- (448)

4.3. Double Zero Eigenvalue

In this section, we consider the case in which 5 and b; are both two dimen-

sional vectors. Thus, 7 := (z,y)' and b; = (b11, b12)’, F :=(f,9) and

Ay = (3 (1)) , (4.49)

G(z,9,€) =2%Grz + 2YGay + ¥*Gyy + (2Gze + yGye)E
+ Gee(£,8) + 2°Guoz + °YGozy + 2Y° Gy
+ 53 Cyyy + (22 Caag + 2yCaye + y* COyye)§ + 2G5 (£, )
+ yGyee(£,6) + Geee(£,6,6) +O(ll(z, 9, OI1*)- (4.50)
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The scalar functions f, g are taken to be the form

P(2,9,€) = P22’ + Payy + 0yyy” + (TPae + Yoy )b
+ &' 0eel + Pre22’ + PazyT Y + Pryyzy”
+ gy’ + (2% Pzae + 2YPzye + Y Pyye )t
+ & (zpzee + yoyee ) + peee(6,6,6) +O0(l(z,3,0ll*).  (4.51)

The coefficients in the expansions in (4.50) and (4.51) are either constants or
symmetric multilinear functions of their arguments. For instance, pgee and
G¢e denote a symmetric trilinear function and a symmetric bilinear function,

respectively.
4.3.1. The case b; =0

In this subsection, we consider the case in which b; = 0 and let the feedback

control u be given by

u(z,y,§) =knz + ki2y + K26 + U(z,y,§), (4.52)

where k11, k12 are scalars and U is a smooth function with U(0,0,0) = 0 and
DU(0,0,0) =0.

Suppose A;; + by K is stable. As discussed in Section 3.2, the stability of
system (4.1) agrees with the stability of the reduced model

&=y + f(z,y, Erx + Eqy + h(z,y)) (4.53a)

¥ = g(z,y, E1z + Ea2y + h(z,y)), (4.53b)

where E = (Ey, Ez) and k(z, y) solve Eqgs. (4.54) and (4.55) below, respectively:
by K1 + (A2z + b2 K3)E — EAy; = 0, (4.54)

Dh(n) - {A1un + F(n, h(n) + En)} = (A2 + b2 K2)1(n)
+5.U(n, h(n) + En) + G(n, h(n) + En),  (4.55)

with boundary conditions %(0,0) = 0 and DA(0,0) = 0.
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The boundary conditions above dictate that & be of the form

h(z,y) =2°has + 2yhay +y hyy + O(l|(z, Y)II°),

where hzz, hzy, by, are constant vectors.

Let the nonlinear control function U have the form (4.51) and
H(z,y) :=bU(z,y, Erz + Eqy) + G(z,y, E1z + E,y)
— f(z,y, Exz + Ea2y) By — g(,y, Bz + Ezy) By
=2 Hzz + 2yHzy +y* Hyy + O(l|(2, 9)II°)-

By solving Eqgs. (4.54)-(4.55), we then have
Ey = —k11(Azz + b2 K2) b

E2 = _{(AZZ + b2K2)2}_1 . {k12(A22 + b2K2) + kllI}bZ

and
hzz = (A22 + b2K2)_1Hzx;
hay = — 2{(A22 + b2 K2)?} 1 H,y — (Ag2 + b2 K2) " Hyy,
hyy = — (A22 + b2 Kp) " (Hyy — hyey).

The reduced model (4.53) is hence obtained as
T =y + fzzmz + fzyzy + fyyy2 + fzzzxs
+ fzznyQy + Jz:zyy"l'"y2 + fyy'yys + O(”(:Z:, y)”4)
y =§zzw2 + gzyxy + gyyy2 + g:;::t:z:x3

+ gzzyxzy + ﬁzyy$y2 + gyyyys + O(”(:II, y)|l4)a

(4.56)

(4.57)

(4.58)
(4.59)

(4.60)
(4.61)
(4.62)

(4.63a)

(4.63b)

where ¢;; and ¢;j; denote the coefficients of quadratic terms ¢5 and cubic terms

ijk of function ¢, for ¢ = f,§ and i, 5, k € {z,y}, respectively, and are given in

Appendix 4.C.

Now, referring to the stability criterion given in Corollary 4.2 and the

foregoing discussions, we have
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Proposition 4.2. Assume that b;; = b2 = 0, the control input is given by
(4.52) and the nonlinear function U has the form as the one given in (4.51).
Then the origin of (4.1) is asymptotically stable if (i) A + b2 K> is stable, (ii)
goz =0, Jzy +2fzz = 0, (i) §zaz +2f2, <0 and (iv) Jooy +3foez — foa(foy +
2§yy) < 0.

It can be seen:from Proposition 4.2 and Appendix 4.C that only the
quadratic terms of the function G, and the linear and quadratic terms of control
input u contribute to the stability conditions. Thus, a linear and/or quadratic
feedback stabilizing control law is implied by Proposition 4.2. Although a purely
linear feedback stabilizing control law might conceivably be obtained by using
Proposition 4.2, in general construction of such a control law is not feasible.

Consider a special case of system (4.1) in which € is a scalar. So, by is a
scalar. Referring to Eqs. (4.57)-(4.62), we can determine the values of E;, E,,
hzz, hzy and hy, from the linear and quadratic gains of the control input. A

linear-plus-quadratic stabilizing control law can hence be obtained as follows.

Lemma 4.5. Assume that ¢ is a scalar, b1 = b2 = 0 and system (4.1) may
or may not be stable. If Ayy + by K3 is stable and g;¢ # 0, then a linear-plus-
'~ quadratic feedback can be designed to guarantee the stability of the origin of
(4.1). The proposed feedback control has the form as u = ky1z + kioy + K2 +

2
uzzxz + UzyTY + Uyyy”©.

Note that a purely quadratic feedback stabilizing control law, under the
assumptions: gzz = 0, gzy +2fzz = 0 and gz¢ # 0, given by Behtash and Sastry
([10], Corollary 4.1) for a three dimensional version of (4.1) is a special case of
Lemma 4.5.

Suppose the control input u is a purely nonlinear function. Then a purely

quadratic stabilizing control law follows readily from Proposition 4.2.

Lemma 4.6. Assume that b3 = bjo = 0, Agg is stable and system (4.1)

may not be stable. Then there exists a purely quadratic stabilizing feedback
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U = UzzZ2 + UzyTY + uyyy? for the origin of (4.1) if the following conditions

hold:
(i) 922 =0, goy + 2fzz =0,
(i) gzze + gzehasz + 212, <0,
(iii) gzzy + goehey + Gyehez + 3(fraz + feehes) — fee(fry + 294y) <O,
where
hes = — A (uzzbz + Gaz), (4.64)
hay = — 2(A2)) " (uzzdz + Goz) — Ay (uzybs + Gay). (4.65)

A stability criterion for the uncontrolled version of (4.1) is obtained as

follows.

Corollary 4.6. Assume that u = 0. The origin of (4.1) is asymptotically stable
if (l) A22 is stable, (11) 9zz = 0, Gzy + 2fz:z = 07 (111) Gzzz + nghxz‘ + 2.’3: < 0’
(iv) gezy + 9zehzy + gyehze +3(froz + feehzz) — fzz(foy +294y) < 0, where bz,
and h., are given in (4.64)-(4.65) by letting uzz = uzy = 0.

4.3.2. The case b; # 0

Next, we consider the case in which either b;; or by3 is nonzero. It is known -
that by2 # 0 implies the controllability of the subsystem (4.1a). For simplicity,
the control law is festricted to be purely nonlinear such that the control input
u has the form as given in (4.51).

Let A2 be stable. As discussed in Section 3.2, the stability of system (4.1)
agrees with that of the reduced model

T = Yy + bllu(x’ Y, h(:l,', y)) + f(x) Y h(za y)) (466a)

y= b12u(‘7"’ Y, h(ma y)) + 9(551 Y, h(mv y))7 (4'66b)

where h is the solution of

Dh(m)-{A1nn + bru(n, k(1)) + F (71, k(n))}
=Az2h(n) + bau(n, k(1)) + G(n, h(n)) (4-67)
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with boundary conditions A(0) = 0 and Dh(0) = 0.
Similarly, the function A is assumed to be given by Eq. (4.56). Choose the

control input to be a function of only z and y as follows

u(:z:, Y, E) =uzz$2 + uryTy + uyyy2 + uz::czl's

+ uuy:czy + u;m,yaf:y2 + u,,yyys. (4.68)

A stability criterion for control system (4.1) is obtained as follows

Proposition 4.3. Assume that b; # 0 and Ajs is stable. Then the origin is
asymptotically stable for (4.1) if
(i) gzz + bi2uzz = 0, gzy + brouzy + 2(fzz + b11uzz) =0,
(i1) gzzz + b12Uzzz + gzehas + 2(Fre + br1uzz)? <0,
(iii) gozy + brotszy + gaghoy + gyghaz + Hfrza + britass + fr¢has)
—(fzz + b11uzz) - {foy + bi1uay + 2(gyy + br2uyy)} <0,
where h;,; and hg, are given in Eqs. (4.64)-(4.65).

According to Proposition 4.3 above, b2 plays a key role in all stability

conditions (i)-(iii). So we have the following result.

Lemma 4.7. Let A,y be stable, but the full system need not be stable. If
bi2 # 0, then the stability of the origin of (4.1) can be guaranteed by a purely
quadratic-plus-cubic state feedback of the form (4.68).

4.4. One Zero and a Pair of Pure Imaginary Eigenvalues

In this section, we apply Corollaries 4.3 and 4.4 to design stabilizing control
laws for control system (4.1), where  := (z,y,2)" and b = (b11, b12, b13)" are

both three dimensional vectors, F := (f,g,r)" and

0 £ 0
Au=[-9 0 0}. (4.69)
0 0 0

Also, in the following analysis, ;; and ¢;;x denote the coefficients of the

quadratic terms ¢j and the cubic terms ijk of function ¢, respectively, for all
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4, J,k € {z,y,2,€} and ¢ € {f,g,7,G}. As usual, these coeflicients are either

constants or symmetric multilinear functions of their arguments.
4.4.1. The case b; =0

Let the control input u be of the form

u(z,y,2,8) =knz + k12y + k13z + K26 + U(z, y, 2, £), (4.70)

where ki;,7 = 1,2,3 are scalars and function U is smooth enough with U(0, 0,0,
0) =0 and DU(0,0,0,0) = 0.

Let Asz + by Ko be stable. As discussed in Section 3.2, the stability of (4.1)
agrees with the stability of the reduced model

T = Qly+f(:z,y,z,E77 + h(m7y’z)) (4“'71a)
y = -z +g(2,y,2, En + h(z,y, 2)), (4.71b)
z =r(z,y,2, En + h(z,y, 2)), (4.71¢)

where E = (E, Eq, E3) and h(z, y, z) solve Eqs. (4.54) and (4.55), respectively,
with  := (z,y,2)’ and boundary conditions k(0,0,0) = 0 and DA(0,0,0) = 0.
Referring to the boundary conditions above, we can write k as
h(2,y,z) =2 heg + TYhey + T2has + yPhyy + yzhy,
+ 2%k + O(l|(2, 9, 2)|P), (4.72)
where hij, t,7 € {z,y, 2} are constant vectors.
Let
H(z,y,z) :=bU(z,y,2,En) + G(z,y,2,En) — f(z,y,2, En)E,
—g(z,y,2,En)Es — r(z,y,2,En)E;s
=2°Hyz + 2yHey + 22Hpr + Y2 Hyy + y2zHy.
+ 22 Hao + O(ll(2, 9, 2)I). (4.73)
Solving Eqs. (4.54)-(4.55), we have
Ei = —{(4A22 + b2 K2)? + Qi QT} M {k11(A2z + b2 K2) — Qak121}102,(4.74)
By = —{(A22 + b2 K2)* + I} H{ki2(A22 + b2K3) + Qi K11} b2, (4.75)
E3 = —ki3(A22 + b K2) ™' bs, (4.76)
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and

hzy = — {(Agg + 621{2)2 + 4Q1921}—]'{—292Hyy
+ 201 Hyr + (A22 + b3 K3 )Hyy }, (4.77)
rx = — (A22 + bZKZ)_l(sz + Q2h1y)$ (478)

h

hyy = — (Aga + b Ko) ™' (Hyy — Qi hzy), (4.79)
hzr = — {(A22 + b2 K2)* + Q1 I} " {(Ag2 + b2 K3)Hz, — Qo Hy, } (4.80)
h
h

— {(A2z + 52K2)? + 1021} " {( A2z + b2 K2)Hy: + Q1 H,.} (4.81)
oz =— (22 + b2 K3) T H... (4.82)

I

yz

Let ¢(z,y,2) = ¢(z,y,2,En + h(z,y,2)), for ¢ = f,g,r, where the ele-
ments of E are given in (4.74)-(4.76) and function h is defined in (4.72) with
hij given in (4.77)-(4.82). The coefficients of the quadratic terms and the cubic
terms of functions f , 3,7 expressed in terms of E; and hj; are also given in

Appendix 4.C.

The reduced model (4.71) can hence be rewritten as

z =My + f(w’ Y, z)’ (483(1)
y=—Qaz + §(z,v,2), (4.83b)
z =f(z,y, 2). (4.83c)

As discussed above, the stability of the overall system (4.1) agrees with that
of the reduced model (4.83) if Aj; + by K is stable. In the following design, we
will focus on the stabilization of (4.83) by assuming A2 + b2 K3 is stable.

The next result follows readily from Corollaries 4.3 and 4.4 and the fore-

going discussions.

Proposition 4.4. Let b;; = b2 = 0 and the control input be given by (4.70).
Then the origin of (4.1) is asymptotically stable if As; 4+ b, K> is stable, 7., =0,

and either of the following conditions holds:
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(1) Qifez + Qofyy =0, for + §yz =0, 51,5, < 0 and S3,5s < 0 or S3 and Sy
are nonzero and of opposite sign, where S;, 2 = 1,---,4 are given in (4.24)-
(4.27) with coefficients ¢;j, pijx replaced by @;; and @;jk, respectively, for
all p = f,g,r.

(ii) Qe + Na2fyy and fu + §y. have nonzero values and of opposite sign,
S1, S, < 0 and .§3, S, < 0, where S is given in (4.24) and Si i = 2,3,4 are
given in (4.28)-(4.30) with coefficients ¢;;, @i replaced by ¢;; and $;jx,
respectively, for all ¢ = f,g,r.

Here, ¢(z,y,2) := ¢(z,y, 2, En + h(z,y,2)) for ¢ = f,g,r, as defined above.

|

1t is obvious from Proposition 4.4 and Appendix 4.C that only up to the
quadratic terms of function G and the control input u contribute to the stabil-
ity conditions of Proposition 4.4 in the case by = 0. A linear and/or quadratic
feedback stabilizing control law can hence be obtained from Proposition 4.4.
Similar to the results given in Proposition 4.2, a purely linear feedback sta-
bilizing control law might conceivably be obtained by using Proposition 4.4,
however, in general construction of such a control law is not feasible. A sta-
bility criterion for the uncontrolled version of (4.1) can also be obtained from
Proposition 4.4 by letting u = 0.

Consider a special case of system (4.1) in which £ is a scalar. So, by is a
scalar. Suppose the nonlinear control function U in (4.70) is a function of z,y
and z only and has the form given in (4.14). According to Eqs. (4.74)-(4.82),
the values of E;, and h;; can be determined by the linear and quadratic gains
of control input. A linear-plus-quadratic stabilizing control law can hence be

obtained from Proposition 4.4 as follows.

Lemma 4.8. Let £ be a scalar, b1; =0, ¢ = 1,2,3 and system (4.1) need not
be stable. Then a linear-plus-quadratic feedback can be designed to guarantee
the stability of the origin for (4.1), if (i) As2 + b K, is stable, (ii) r¢e = 0O,
(i11) r¢ # 0 (iv) Qrzegze — Qaryefze # 0, and (v) Qugze + Qafye # 0, or
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gye +afre #0fora=1and a= % This feedback control has the form

u(z,y, 2,€) =knz + ki2y + k132 +‘K2§ + Uz z?

+ UgyZY + Uz, T2 + uyyy2 + uyyz + Ugpzl. (4.84)

Proof: In the following, we check the stability conditions of Proposition 4.4
under the assumptions of Lemma 4.8. Suppose £ is a scalar, b;; = 0, for
¢ = 1,2,3, and conditions (i)-(iii) hold. Then the values of 7, and S (given in
(4.24)) can be made to be real numbers through r;¢ by the choice of E3 and k..
Moreover, since condition (iv) holds, the values of ;7,5 + Q27yy and for + Gyz
can be assigned arbitrarily by a proper choice of E; and E,, while the values of
S5 and Sy (given in (4.26)-(4.27)) or S3 and Sy in (given in (4.29)-(4.30)) can
be assigned by proper choice of h;, and hy;.

Finally, condition (v) provides the opportunity for assigning the values
of S; (gievn in (4.25)) and Sy (given in (4.28)) by proper choice of k., or
hyy. According to Appendix 4.C and Eqgs. (4.73)-(4.82), @i; and @;jr can be
determined by the linear and quadratic control gains through the linear matrix
E and the vector function k. The conclusions of the lemma follow.

|
A purely quadratic feedback stabilizing control law can also be obtained as

given below. The proof is similar to that of Lemma 4.8. Details are omitted.

Lemma 4.9. Let A, be stable, £ be a scalar, b;; = 0, ¢ = 1,2,3 and system
(4.1) need not be stable. Then a purely quadratic feedback

u(z,y,2) =uy,z? + UzyTY + Uz:T2 + u,,,,y2 + Uy yz + Uy 2°  (4.85)

can be designed to guarantee the stability of the origin of (4.1), if the following
conditions hold:
(i) Qirzz +Qoryy =0 and fo. +9gy: =0, or Qyrze +Qoryy and fz, + gy have
nonzero values and of opposite sign,
(ii) r.; = 0 and r.¢ #0, and
(iii) Q19z¢ + Q2 fye # 0, and gz¢ # 0 or fze # 0.
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4.4.2. The case b; # 0

Next, we consider the case in which one of b;;, 1 = 1,2,3 is nonzero. It
is known that b3 # 0, and 13 # 0 or b1z # 0 implies the controllability of
subsystem (4.1a). For simplicity, the control law is restricted here to be a
purely nonlinear function of z,y and 2 only and to have the form (4.14).

Let A2 be stable. As discussed in Section 3.2, the stability of system (4.1)
agrees with that of the reduced model (4.83). Here,

f(l', y7z) = b11U(.’E, yvz) + f((l!, Y, 2, h(III, y’Z))7 (486(1)
g(zi y,z) = bl2u(wa y,Z) + g(.’B, Y, 2, h(.’L‘, y,z)), (486b)
#(z,y,2) = bisu(z,y,z) + r(z,y,2, h(z, Y,2)), (4.86c)

and A is the solution for (4.67) with boundary conditions h(0) = 0 and DA(0) =
0. Similarly, function A is assumed to be given by Eq. (4.72).
By letting
H(z,y,z) :=byu(z,y,2) + G(=,y, 2,0)
=2 Hyo + syHepy + 22H, o + Y Hyy + yzHy,
+ 22 Hez + O(|l(2, 9, 2)II°), (4.87)

we can obtain h;; as given in (4.77)-(4.82) with K; = 0 and H;; given in (4.87).
A stability criterion for control system (4.1) in the case of b; # 0 is obtained

as follows.

Proposition 4.5. Let b; # 0 and A2z be stable. Then the origin of (4.1) is
asymptotically stable if #,, = 0, and either of conditions (i) and (ii) given in
Proposition 4.4 hold. Here, ¢;; and ¢;;i denote the coefficients of quadratic
terms and cubic terms of function ¢ (= f,4,# given in (4.86)), respectively.

It is obvious from Proposition 4.5 above that the vector b; plays a key
role in all stability conditions (i)-(iii). The next two results follow readily from

Proposition 4.5.
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Lemma 4.10. Let A;; be stable, but the whole system may not be stable. If
b1z # 0 and one of b;; and by, is not zero, then the stability of the origin of (4.1)

can be guaranteed by a purely quadratic-plus-cubic state feedback as follows
u(z,y,2) =uz.z’ + UgyTY + UgT2 + uyyy2 + Uy yz + Uy, 22
+ uzuxs -+ umyxzy + uu,z2z -+ u,,,ya:y2 + UryTyYz + uz,.,za::':2

3 2 2 3
+Uyyyy +uyyzy Z+uyzzyz + Uz 2”.

Lemma 4.11. Let Azs be stable, but the full system need not be stable. Then
the stability of the origin for (4.1) can be guaranteed by a purely cubic state
feedback

3 2 2 2 2
u(z, Y, z) =Uzzzl” + UzzyZT Y + Uz T2 + UzyyZY” + Uz, T2

+ uyyyy3 + uyyzyzz + uyzzyz2 + uzzzz3, (488)

if r,, = 0 and following conditions hold:
(1) b13 # 0 and one of b;; and b3 is not zero, and
(i) Yrze + Qoryy =0 and fi, + gy, = 0, or the expressions Qyrz; + Qaryy and

fzz + gy have nonzero values and of opposite sign,
4.5. Two Distinct Pairs of Pure Imaginary Eigenvalues

In this section, we continue our study of the stability and stabilization of
control system (4.1) in which 5 := (z,y, z,w)’ and by = (b11, b12, b13,b14)" are
both four dimensional vectors, F := (f,g,r,s)' and

0 2 0 0
—Q; 0 0 0

0 0 0 O

0 0 —Q4 O

Ay = (4.89)

As in the previous two sections, in the following analysis, ¢;; and ;&
denote the coefficients of the quadratic terms 75 and the cubic terms 25k of
function gé, respectively, for all ¢,5,k € {z,y,2,w,{} and ¢ € {f,g,r,3,G}. As
usual, these coefficients are either constants or symmetric multilinear functions

of their arguments.
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4.5.1. The case b; =0
First, we consider the case in which b; = 0, and
u(z,y, z,w,€) =k11z + k12y + k132 + kraw + K6 + U(z, y, 2, w, £),(4.90)
where k1,2 = 1,-- -, 4 are scalars and U is sufficiently smooth with U(0, 0, 0, 0, 0)
= 0 and DU(0,0,0,0,0) = 0.

Let Ags + by K> be stable. Similarly, the stability of (4.1) is known to agree
with the stability of the reduced model

=Ny + f(z,y,2,w, En + h(z,y, z,w)), (4.91a)
v =~z + g(z,y,2,w, En + h(z,y, z,w)), (4.910)
z = Qw+r(z,y,z,w,En + h(z,y, z,w)), (4.91¢)
W=~z + s(z,y, 2,w, En + h(z,y, 2,w)), (4.91d)

where E = (E,, E;, Es, E,) and h(z,y,2,w) solve Egs. (4.54) and (4.55), re-
spectively, with n := (z,y,2,w)’ and boundary conditions 4(0,0, 0,0) = 0 and
DR(0,0,0,0) = 0.
The boundary conditions above require h to have the form
h(z,y,z,w) = 22 hy, + Tyhzy + T2hs, + Twhey + y2hyy + yzhy,
+ ywhyw + 2°hez + 20haw + 0 hew + O(l|(2,y, 2,w)II*), (4.92)
where h;j, 1,5 € {z,y,2,w} are constant vectors.
Similarly, let
H(IE, Y,z w) = b2U(x, Yy, 2,w, ET]) + G(.’E, v, zw, E’?) - f(x, Yy, 2w, ET])E]
- g(xa Y,2,w, E’?)E2 - r(x, Y, 2, w, EU)E3 - 8(:27, Y,2,w, E"I)E‘i
=z?H,, + 2yHzy +22Hz: + swHzw + y2Hyy + yzH,y,
+ ywHyy + 22H,, + z2wH,w + w? Hyw + O(||(z,y, 2, w)|]*), (4.93)

By solving Eqgs. (4.54)-(4.55), we have
Ey = —{M} + 21Q2I} " {k11 My — Qok121}bs, (4.94)
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Ey = —{M} + 0021} {1 My + Qi k1 }bo, (4.95)
Ey = —{M} + QsQuI} " {kis My — Quk141}hs, (4.96)
Ey = —{M} + QsQuI} " H{kia My + Q3ki3} b, (4.97)

how = —(M} 4+ 4Q3Q41) N (=2Q4 Hypw + 23 H,. + M1 H.,,), (4.98)

hzz = “'Ml—l (sz + Q4hzw)7 (499)
hww = _Ml_l (wa - QShzw), (4100)
hzs - H,, Hy,
( hw) = (M2 + QD)L {M, ( Hw) _ ( H:w)}, (4.101)
h,, - E,., Hy,
(h:w> = (M:_? + 2:Q:1) I{Ql (sz) + M, (H:w)}’ (4.102)

where the expressions of hy, hey, hyy are given in Egs. (4.77)-(4.79) with H;;
defined in (493), My := Ay + b K3 and

My := (_Aé; I %}II ) : (4.103)
The reduced model (4.91) can hence be obtained as
z =0y + f(:z:, Y, z,w), (4.104q)
¥y =— Qo + §(z,y, z,w), (4.104d)
z =Qzw + 7z, y, z,w), (4.104¢)
w=—Qz+ §(z,y,z,w). (4.1044)

Here, ¢(z,y, z,w) := ¢(z,vy, z,w, En + h(z,y, z,w)), for ¢ = f,g,r, s with
E; given in (4.94)-(4.97) and h defined in (4.92). The values of h;; are given
in (4.77)-(4.79) and (4.98)-(4.102), and the coefficients of the quadratic terms
and cubic terms of the functions f, §,#,§ expressed in terms of E; and h;x are
given in Appendix 4.C.

A linear and/or quadratic feedback stabilizing control law readily follows

from Corollary 4.5 and the foregoing discussions.

Proposition 4.6. Let ;€)s # af3€y, for each a € {§,7,1,4,9} and b1; =0
for i = 1,---,4. The origin is asymptotically stable for control system (4.1) if
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51,52 < 0 and 53,54 < 0 or S3 and Sy are nonzero and of opposite sign, where
S; are given in (4.45)-(4.48) with coefficients ¢ij, @ik replaced by $ij, Pijk,
respectively, for all ¢ = f,g,r,s. Here, f",g,f,§ are defined above and the
control input is given by (4.90).

Note that a stability criterion for the uncontrolled model of (4.1) can also
be obtained from Proposition 4.6 by letting u = 0.

Next, consider a special case in which £ is a scalar. Referring to Egs. (4.93),
(4.77)-(4.79) and (4.98)-(4.102), we can determine h;; from the quadratic gains
of the control input. A purely quadratic stabilizing control law is hence obtained

as follows.

Lemma 4.12. Let £ be a scalar, 9:Q, # af3Qy, for each « € {3, 1,1,4,9},
bi; =0fori=1,---,4 and system (4.1) may not be stable. A purely quadratic
feedback

u(z,y,z,w) =ugz’ + T(Uzyy + UgzZ + Uzuw) + uyyy2

+ y(uyz2z + uyww) + Uzz 2 + Uz 2w + Uypw?  (4.105)

exists guaranteeing the asymptotic stability of the origin for (4.1), if frz¢+gye #
0, rz¢ + swe # 0 and either of the following two conditions hold:

(i) fz¢ # gye and 72¢ # sue,

(ii) Q1gze + Q2 fye # 0 and Q3¢ + Qarwe # 0.

Proof: In the following, we check the stability conditions of Proposition 4.6
under the hypotheses of Lemma 4.12. Suppose € is ascalar, b;; = 0,2 =1,---,4,
fze + 9ye # 0 and r;¢ + sye # 0. Then the values of S3 and Sy (given in
(4.47)-(4.48)) can be made equal to any real numbers by a proper choice of
Qihze + Qohyy and Q3hz; + Qihww.

If condition (i) holds, then the value of S; (given in (4.45)) will be deter-
mined by k., and h,,, independent of the value of Sy. Similarly, the value of
S7 is determined by h;; and Ayy, irrespective of the value of S3. The values of

S; and S3 can also be adjusted by the choice of h,y, and h,, when condition
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(i1) holds.

According to Eqgs. (4.77)-(4.79), (4.93) and (4.98)-(4.102), the values of A;;
can be directly determined by the quadratic feedback gains when £ is scalar.
The conclusion is hence implied.

A similar stabilizing control law can also be designed as follows.

Lemma 4.13. Suppose ¢ is a scalar, Qs # o234, foreach a € {3,1,1,4,9},
bi; =0for:=1,---,4 and system (4.1) may not be stable. A purely quadratic
feedback as given in (4.105) can be designed to guarantee the stability of the
origin for (4.1) if fz¢ # agye and rz¢ # asye for o = —3 and & = — 3 and either
of the following conditions holds:

(1) Q2 fuwesye — U gwesze # 0 or Q2 foerye — Qugzerze # 0,

(i) Q4 fwerse — s fresze # 0 or L fuerye — U Qagaesze #0, or

(iii) Q] Q49w€"z£ - ngafzgsyf 75 0or Q4gw5ry5 - Qggzgsyg # 0.

Proof: The proof is very similar to that of Lemma 4.12. Suppose fz¢ # agye
and ri¢ # asye for a = —3 and a@ = —%. The values of S; and S; (given in
(4.45)-(4.46)) can then be adjusted by h;, (or hyy) and h,, (or hyyw). Moreover,
the values of S3 and S, (given in (4.47)-(4.48)) can be any real numbers by a
proper choice of hzw, Ayw, hz, Or hy,, when either of conditions (i) to (iii)
holds. Since the values of h;; can be directly determined from the quadratic

control gains when £ is a scalar, the conclusion is hence implied.

|
4.5.2. The case b; # 0

In this subsection, we consider the case in which one of b1, ¢ =1,---,41s
nonzero. It is known that b11 # 0 or b12 # 0, and b13 # 0 or by4 # 0 imply the
controllability of subsystem (4.1a). Similar to Section 4.4.2, the control law,
here, is also restricted to be a purely nonlinear function of r, y, z, w and has the

form as given in (4.32).
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Let Ass be stable. Then according to the discussions in Section 3.2, the

stability of (4.1) is determined from the reduced model (4.104), where

f(:c, y,z) = buu(z,y, 2) + f(z,v, 2, h(z, y, 2)), (4.106q)
§(z,y,2) = biau(z,y,2) + g(z,y, 2, h(z,y, 2)), (4.106b)
f(z,y,2z) = bisu(z,y, 2) + r(z,y, 2, h(z,y, 2)), (4.106¢)
§(z,y,2) = buau(z, y, z) + s(z,y, 2, h(z,y, 2)), (4.1064d)

and h is the solution for (4.67) with boundary conditions k(0) = 0 and Dh(0) =
0.

Suppose h is given by Eq. (4.92) and let
H(z,y,z,w) := bu(z,y,z,w) + G(z,y, z,w,0)
=’ Hyz + oyHoy + 22Hze + awHgw + y? Hyy + yzHy,
+ ywHyy + 22 Hyy + 2wH oy + w2 Hyw + O(||(, y, 2, w)|[*).(4.107)

h;; are hence obtained as given in (4.77)-(4.79) and (4.98)-(4.102) with K, =0
and H;; given in (4.107). A stability criterion for control system (4.1) in the
case by # 0 readily follows from Corollary 4.5.

Proposition 4.6. Suppose 10, # aQ3Qy, for each @ € {£,1,1,4,9} and
bji =0for 2 =1,.--,4. The origin is asymptotically stable for control system
(41) if 53,52 < 0 and S3,54 < 0 or S; and S; are nonzero and of opposite
sign, where S; are given in (4.45)-(4.48) with coefficients ¢;j, pijr replaced by
Pij, Pijk, respectively, for all ¢ = f,g,r,s. Here, f,d,7,§ are defined in (4.106)

and the control input u is a purely nonlinear function and has the form as given

in (4.32).
A purely cubic stabilizing control law is obtained as follows.

Lemma 4.14. Let A, be stable, but the full system need not be stable. If
bi1 # 0 or bz # 0, and b1z # 0 or b4 # 0, then the stability of the origin of

(4.1) can be guaranteed by a purely cubic state feedback

3 2
u(z,y,2, W) = Uzzz2” + (Uzzy¥ + Uzz22 + UzzwW)T” + (UzyyT + Uyyyy
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T Uyyz2 + uyyww)y2 + (uzzzw + UyzzY + Uzzz2 + uzzww)22

+ (uzwwm + Uywwl + Uzww2z + uwww'w)w2- (4108)

4.6. Concluding Remarks

The center manifold reduction technique discussed in Section 3.2, along
with the normal form reduction recalled in Section 2.3, are applied in this
chapter to study the stability and stabilization of smooth, nonlinear autono-
mus systems in doubly critical cases. Specifically, the linearized model of the
system has two zero eigenvalues with geometric multiplicity one; one zero eigen-
value and a pair of nonzero pure imaginary eigenvlaues; or two distinct pairs of
nonzero pure imaginary eigenvalues. The feedback stabilizing control laws are
proposed for both linearly controllable and linearly uncontrollable cases, while
a purely nonlinear feedback design is considered in the former case and linear
and/or nonlinear control designs are obtained for the latter case.

Some of the results given in this chapter agree with those obtained by Be-
htash and Sastry [10]. However, the results obtained in this chapter cover more
detailed design for general high dimensional systems. For instance, the stability
_ criteria and stabilizing control laws are given in terms of the original system dy-
namics before normal form reduction. Moreover, there is no restriction on the
number of the noncritical modes and the stabilizing control algorithms proposed

in this chapter can be coded easily.
Appendix 4.A

The polynomial functions P, and P; for deriving the normal form for the
case in which A;; has exactly one zero eigenvalue and a pair of nonzero, pure

imaginary eigenvalues are given below.

Let Py(z,y,2) = (P}, P, P3)', where Pj(z,y,z) has the form as
¥ =‘Pzz‘7’2 + PzyTY + P2:T2 + ‘Pyyy2 + pyYz + ‘Pzzz2,

forallo =P}, i=1,---,3.
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The coefficients of polynomial functions P§ are

1
P2,.1::c -

1
PZ,T»!I

Pl

1
P2,yy

P,

1
2,2z

2,zy

PZ

2,xz

2,zz

¥z

__(291111 + fzy)QZ + g:cle
39192

- (9zy +2f22) — 2fy, 82

- 30,0,

_ fyzQZ + 9z:5U
40189

(fzy — gyy)Q2 - 291‘191
302

_ fzzQ2 - gyzQI
2(Q2 + Q192)

_ 8=
92}
- _ 2fny2 + (fz:z - gzy)Ql
307
=(2gyy + fzy)QZ — 2¢z:h
39192

— fzzQZ - gyzﬂl
S 2(02 + Q18)

- fny2 + (gzy + 2fzx)Ql
- 30,

_ fyzQZ + ¢80
40,8,
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P23,ZZ =0

Next, let Ps(z1,22,23) = (P§, P2, P})', where Pi(z1,22,23) has the form

@ =p11125 + (11222 + P11323)21 + (12221 + Pa2222)22

2 2
+ 2232523 + 123212223 + (P13321 + P23322 + P33323 )23,

forallp =P}, i=1,---,3.

The coefficients are given as follows.

pl =(—3f222 + 2f112)Q§ + (G122 — 26111 + ﬁ12)9192 + g1119%
111 40, Q2 + 402Q,

Pg 115 = — {(—3G222 + 3112 — Fr2z + 9F111)Q + (—9G222 + G112
— 3f122 + 3f111)2 }/ {692 + 40,9, + 697}

pl =(2§223 + f123)92 + G113
3113

30218
P3.1,122 =0
pl =2f22392 + (—g123 — 2f113)%
3,123 30,0,
P31,133 =0
Pl —_ F122Q2 4 (—2G222 + G112 + 3F111)Q Qs — 322203
3,222 303 + 20:02 + 3Q2Q,
pl =(§223 — f123)Q2 + 25113
3,223 302
Pl fi33Q2 — G2zl
3,233 Z+ 0.0
J333
P31,333 =‘52‘

P3 111 ={(—33222 + 3G112 — fi22 + 3f111)Q3 + (—3Ga222 + fr12
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= fi22 = fi11)U Qs + 2511293} /{612 + 4020, + 623}

_(—3f222 + f112)9 + (G122 — 3d111)h

P? =
3,112 20, Q; + 202
P 2f223% + (fis — G12s)
3113 302
P32,122 =0
P2, =(2§223 + fus)Qz — 2113
’ 30,0,
P?,2,133 =0
p? z—fzzzﬂg + (=122 — 4f222 + fr112)0 Q2 — 3§11: 92
3,222 40,02 + 4Q2Q,
P2 F223Q2 + (G123 + 2f113)
3,223 30,0,
p2 ___—fzssﬂz — g133§%
3,233 29192
fass
P:?,sss = Q_1
p3 22927‘222 + Q17112
3,111 307
T111
P33,112 == Q_z
T
P:?,us =ﬁ
T922
P:f,122 =Q_1
T223 — 7113
P3 123 =0, 0,
T933
P:?,133 =Q_1
s a0 + 2T
F3200 =— 302
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3 —
P3,223 =0

3 _
P3,233 =

P, 33 ,333 =0

Appendix 4.B

The polynomial functions P, and P; for deriving the normal form for the
case in which Ay; has exactly two distinct pairs of nonzero, pure imaginary
eigenvalues are given below.

Let Py(z,y,2,w) = (P}, P}, P3,P}), where Pj(z,y, 2, w) has the form as

© =Qz2%° + PayTY + P2222 + PrwTW + Pyyy?

+ 0y2YZ + PruyW + 92222 + Qrw2w + Puuw?,

for all ¢ = P§, i =1,---,4. The coefficients are given as follows

___(2gyy + fzy)Q2 - gzzQI

Pl .=
w2 30,9,
Pl = (gzy + 2fzz) — 2fyy e
2,y 30,10,
pl =fxw9394 + Q1 ((—29yw — 2fzw)02 — 92203) — fy:22823
2z | Q204 — 402,020,
Pl —_ Q1 (g:ch4 + (_2gyz - 2fzz)92) + fzzQSQ4 + fwa2Q4
Brw ™ Q302 — 40, 0,0,
Pl - (fzy - gyy)Q2 —2¢z:8h
2,5y 393
pl ___Qs(fwa:i + (fzz - gyz)Ql) - 2fwaIQZ + 2gzw9%
2% Q204 — 49,9,Q3
Pl ___((fzw — gyw)Ql — fyzQ3)Q4 + 2fyzQIQ2 - ngzg%
2w Q302 — 40, 0,04
pl =2gwaZ + (2gzzQ3 + fsz2)Q4 - gzzQIQZ
2,22 4090384 — 919%
Pl _2fwa4 - 2fzzQ3 - gszI
2,zw 49394 - 9192
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_2gwa3Q4 + 29”9% - fszZQ3 - gwaIQZ

Pl =
2w 49,9304 — Q.02
b 2@ (e = 02)0
2,zx 393
P2 ___(zgyy + foy)2 — 29::
27y 39192
P2 =Q3(gzwﬂ4 + (fxz - gyz)Q2) + nyng - ZgszIQ2
L Q204 — 40,0,
P2 - _ (g,;zQ;; + (gyw - fzw)Q2)Q4 + 2fyzQ% — 29,018
ew Qa2 — 40,0,
P2 = _ Fyy§l2 + (gzy + 2fzz )0
2y 3019,
p2 ___gyw9394 + Q1(92:80 + (—29yw — 2fzw)2) + fy22:03
Zyz 020, — 4919,
P2 — Q1((""2gyz - 2fzz)92 - gsz4) + gyzQSQtt - .fwaZQ4
2w Q302 — 40,0,Q4
P2 - 2fwaZ + (2fzzQ3 - gszl)Q4 - fzzQI QZ
22 40, Q30 — Q2Q,
P2 =2gwa4 - 2gzzQ3 + fzw92
22w 4030, — Q]QQ
P2 - _ 2fwa3Q4 + 2fzzQ§ + Ql(gszS - fwa2)
2w 40,0304 — 020,
P3 - 2Q§syy — Q3Q4Szz + 2919231:1: + 92941"1y
2 0302 — 40,00,
P3 _ —Qgszy + 2927"3”! - 2917‘;,;;,;
22y Q384 — 40,05
P3 :94(2935yw + erzw) + Q19331:2 + (29394 - 9192)7'312
2z 40,038, — Q%Q2
p3 =_QQ§5yz + Q1Q3(51w - 7'1::) + (29394 - QIQZ)"'yw
Zzw 4919394 — Q%Qz
P3 =Q3Q4Syy — QQIQZSW — 29%31;1; + QlQ4sz
2,9y 9392 - 4919294
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P4

2,zw

2,ww —

=Q3(923yz —2Q4Szw — 2Q4r1:z) + Q2947'3;11) + Q9 Qary,
40,900 — 002

- "QQQZ%Syw e 25—2%31: + QQQ3ryz + 2Q394rzw - QIQT"xw
4000 — 22

_2Q4Sww + QSSzz + Q4"'zw
B 3030,

Q3820 — 24T ww + 2Q37 22
3030,

_ — Q48w — 20382, + QT 0
302

_93(_0231’1/ - Q4"'1:::) + QQgryy + 21 Qorzs
= 020, — 40,00

- 2styy — 2Q13:¢z + Q4'I‘zy
2304 — 4018,

_ Q (Q2syz — Q487w + Q4Tzz) - 2939433/: + 2QZryw
40 (00 — 20,

(20350 — Qirrw) — U Qasyw — Q1 Qs + 20307y,
= 10,0 — G,

_ —Q1933:,;y + (Q394 — QQlﬂg)Tyy - 29%7‘11
= Q20 — 40,050

— Q4(2933:::;: - Q2“531111) — Q1Q98,, + Q2947'1/7. - 2927'2:10
= 10,050, — 0,0

_ Q3(Q23yz + 204870 + 2Q4rzz) — 282w + Q2Qt17'yw
= 10500 — O,

—Q3820 + 2UTww + Qa7

302
_2Q4Sww —2Q35,, + Q4"'zw
- 3Q30,
_ QSSZUJ + Q47'ww + 2937',::
30380,
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Let ( = (21,22,23,24)" and Ps(21,22,23,24) = (P}, P}, P, P}, where
Pi(z1, 22, 23, z4) has the form as
[0 =<{>1112’i5 + (p11222 + P11323 + 9011424)2%
+ (p12221 + p22222 + @22323 + 9022424)23 + p123212223 + P124212224
+ 134232124 + P234222324 + (13321 + 23322 + Q33323 + 5033424)23
+ (p14421 + P24422 + V34423 + P1r4azs)2],

for all ¢ = P§,i=1,---,4. The coefficients of P§ are given as follows.

pl F2222 + (Gr22 + fi12)Q:Q + G111522
3,111 49%92

Py = {2£122Q3 + (=ga22 — G112 + Frzz — 3fin) U Qe
+ (3222 — J112 + 3f122 — 3F111)02} /{60192 + 402, + 603}
Pi 115 = {f11aQ0:03 + (Q2((—25124 — T114)0 — fi230s) — G115
— 2f22402)Q4 + (6223 + 3);123)9193 + 351130230 }
{0292 — 100,2:0:04 + 90202}
P31,114 = —{(F11392 + F1240:95 + G1142193) + Q2(21(—2G12303
— T11308) — 35114Q3) + Q3((—6G224 — 3f124)
~ 2f20303)}/{Q3Q% — 100:Q2Q:Q4 + 90202}

Pl _ F22298 + (G122 + 4fa22 — F112)0 Q2 + 35111 Q2
3,122 7 40,02 + 492Q,

P31,123 = {12402 + (2,(2f113Qs — §12303) + Qa2 ((—4Fa24

~ 5f124)Q — 2f223Q) + 4§114922)Q4 + 6 2232, 02

+ (—3G123 — 6113)022Q2}1 /{0202 — 100, Q20230 + 90202}
P32 = —{(f123903 + 22240203 + (f124 — 2F114)Q1Q23) Q2

+ Q2( (~452230 — 5£12303) + (3124 + 6£114)07)

+ 451130203 — 6f2240, 02} /{Q202 — 10Q,92,9:04 + 9Q2Q2}

pl (ﬁ4492 + G144 )% + (.7?23392 + §133821)Q3 + (G234 + f134)9192:
3,133 ™ 4Q1Q2Q3

81



P3 134 = {(2f14492 — 224421)Q2 + (2142 — 2f133)%
+ (28244 — 25233 + 4 f140 — 4f133)01 )
— f234925 + (—§134 — fo34) Q2 — §12402)0
+ (26233 — 2f13392)Q2 + (—f2342 + (—G134
— f230)Q Q2 — §1349)Qs + (~ 20244 + 25233
— 2f14a + 2135)09] + (—2G244 + 20233
— 2f14s + 2133) 232} /{(40Q2 + 401 )02 + (402 + 40,)022
- 40,02 — 4020,)Q4 + (—40, 02 — 4020,)03)
Pjias= {(F244% + 5144)Q Q4 + (f23302 + G133 Q2
+ (G234 — f134)21Q2Qs — 2f244Q19F — 25144020}
/{402:0:Q;94 — 40202}
P ,02=0
Py 593 = {F2242395 + (Qu (Fi2sQs — §223Q) — 722410,
+ (25124 — 2f114)92 ) + (3G225 — 3f123)2 0,
+ 6§113023}/{Q202 — 100:2,Q:04 + 90202}
Pg 924 = —{(F2239% + (J224 - F124)Q01Q3)2 + Q2((3f124
— 3§224)023 — Tf2230Q) + Q2 (251230 — 2F1139)
— 6511403 }/{Q202 — 100, Q:Q:Q4 + 90202}
Pjgas = {(2f234(R2 + )3 — 2f1440 Qs + 2524402)02 + (2f234(Q2 + )03
+ (28244 — 25233)0 Q2 + (2133 — 2f144)22) 25
— f23aU 2 + (G134 — Fa30)Q3Q + G133
+ (2f1350 22 — 252330D)3 + (— Fa34 95 + (G134
— f230)21Q + §134923)Q }/{(402 + 4000305 + (492 +49,)03
+ (—409Q5 — 49710)Q2)Q4 + (-4 92 — 4Q30Q,)03}

P?,l,234 = {(1?24492 + 144803 + (((3ﬁ44 - 3f233)92
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— J144§0 + G13301)Q3 + (f134 — §234)21822)2

+ (= f23392 — 513520)Q5 + (fiaa — §234)20 Q2

+ (2f233 — 2f244)2 95 + (2514403 — 2513307)2,)

/{49902 + (40,02 — 40,02)04 — 40,0205}
P31,244 =0
Pj 333 = {6F2aa % + (372349 — 203442 + (—733332 Qs

~ F2340122)Q + G233020,} /{99202 — 100,250 + 203}
P31,334 = —{6§244019Q% + (9£23302 + Q1(37334Q3 + 2 f24422))

— 3fa330 Qs — §334220, 1/{90202 — 100, Q2094 + Q202)
Py 310 = {9F14423Q2 + (= 37204 Q3 — 3F144010)Q4 — 673350102

+ Q2(2F3340 Qs + §24402)} /{90202 — 100,02, + 0202}
P340 = —{(3f34493 + 752440193)Q4 + 6f23303 + Q1 (2533402

— f24400s) — G244 030} /{90505 — 1021220504 + 0202}
P32,111 = —{2f12095 + (G222 — fu12 + fizz

+ 3f111)2)Q + (—3G222 — G112 + frze

+ fi11)Q2Q2 — 2511203} /{69202 + 4030, + 601}
P}ip = {F22292 + (G122 — 2fa22 + fr12) Qs

+ (20122 — 3G111)Q7}/{4Q1Q; + 407}
P311s = {11499 + (Q2(— 1230 + F1130s — T§1141)

+ (2f124 — 20224)02)Q4 — 6203 + (35123

— 3f113)u 3} /{595 — 100:0,2:04 + 90203}
P} 11 = {((f114 = §124)Q2Q3 — §11203)Q + Q2(252200

— 2123 + (3G124 — 3F114)1) + TG1130 Qs

— 6£224031/{0202 — 100,0,0,Q, + 90202)
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_ me% + (—2F222 + G112 + 3f111)2 90 — 3222022
30,0 + 2020, + 303

2 —_
P3,122 =

P 123 = {51242 + (2(—272250 + fi23Q + (—5§124

— 4f114)) + 251130 Qs + 4£22403)Q24 + (65223

+ 3f123) 9 — 651130202} /{Q202 — 10Q:0:2:Q4 + 90202}
P10 = —{(§12302 + (20224 — f124)Q2Q3 — 2511421 03)2

+ QR (—551232s — 4F11303) + 6§114023) + Q2 (4£2230s

+ (—6§224 — 3f124))}/ {0307 — 100, 2,030 + 90202}
P33 = —{(2f14492 — 252441)Q + (2f133822 — 2523301 )3

+ f23405 + (fase — G13)0 Qs — G124 Q2 }/{(40 Q2 + 407)05}
P} 3y = {(f2449 + 5144)92 + (((F33 — F2aa)2

+ 3§14 — 3G1330)Qs + (fiss — G234)21822)82

+ (—fass Q2 — 51332092 + (fisa — G234)Q0 Q203

+ (2f24a — 2f233)0 Q2 + (2513392 — 2514423)Q22}

[{4019:Q5 + (40:92 — 4920,)Q, — 402Q,Q5}
P} 1as = —{(2f14492 — 252440)2 97 + +(((2f144 + 2F133)0

+ (—2§244 — 2§233)0)2 + (f2342 + (G134

+ f234)Q1 02 + §13407)2 — 4f1440: 02 + 45244020Q2)Q

+ (21330 — 2523308 + (f23492 + (G134

+ f230)0Q; + §13402)02 + (25244 — 25233

— 2f144 — 2f133)1 Q% + (25244 + 2§33

— 2f144 + 2f133)05Q2)2 }/{(42 92 + 493)Q:0F + (402, + 403)02

— 40202 — 4Q30,)Q4 + (—492Q2 — 403Q,)Q:)
Pg,mz =0

P} 105 = {22405 + (Q2(f223 + (—TG224 — 2f124)01)
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+ G123 Qs — 2§11403)Q — 3f223 0 Q2 + (—3d123

— 6/113)01 20}/ {259 - 100120304 + 90703}
P? s = {(=§2238 + F224020 + §1242:193)Q + Q2(Q1 (752235

+2f125Q) + (—3§124 — 6f114)02) + 25113020

~ 3f2242: 02} /{202 — 1002, 2,2:9,4 + 90202}
P7 255 = {(202349 — f244Q2 — §144Q1)Qu + (2322

+ 5133210 + (—f2sa — Fr3a) 02} /{402Q4 — 402:9:Q5)
P32,234 = —{(2f144Q2 — 2§24421)Q22 + (4244 + 45233

— 2f144 + 2f133)Q2 + (25233 — 2G244)821 )23

— F2349% + (=§134 — Fasa) Q2 — §13402)0

+ (252330 — 2f13302)02 + (= fa34 02 + (—J134

— f230)Q Q2 — §13407)Qs + (20244 — 2G2s3

+ 2f144 — 2f133)% Q2 + (20244 — 2§233

+2f1aa — 2133) 2R} /{(4Q + 401) Q02 + (492 + 40,)Q2

— 40,02 — 4020,)Q4 + (—42:Q2 — 402Q,)03}
P32,244 =0 ’
P:?,sss = {65444 + (3733403 + 2F244902)Q2 + (7 f233 205

— 33340192)Q — fr23 01 05}/{9050F — 10019220230 + 0703}
P} 434 = {6£1440297 + (D2(3 3340 — 25344 ) — 9533302) 2

+ 353330 Qs — f33402:02 /{90202 — 1001 Q2030 + 0202}
P32,344 = {94443 + (33442005 — 354440 Q) Q4 + 6 333002

+ Q1(2533402905 — F344902)} /{99202 — 109,92, + 2202}
Plyu= {(7f14492Q3 — 3§34402) Qs — 652330 + Q2(2f23402

+ §2440:183) — f4449193}/{99§92 — 1092:0220:04 + Qfﬂg}

Pjin = {Q2(3Q 7112 — 2Q38122) + (2204 — 7Q102203)3111
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+ 6Q37222 — QuQsQu112}/{Q50F — 100:9,Q:Q4 + 90202}
P33,112 = {Q3(Q2(—3Q 5112 — 2Q4F122) — 69225392)
+ Q3045112 + (30 Qs — 9020, )7111}
/{202 — 10Q: Q0304 + 90303}
P33,113 = —{Q3(Q23203 + Qu(—8124 — F123) — Q1 3113)
+ Q2 Quf224 + 20 Drfras — D Quf114} /{4120 — 4050}
P??,114 = —{Q3(—2Q238224 — 2Q18114) + V304 (3123 — F124)
+ Q25123 + 202047903 — Q37194 + 201 Q7113 )
/{492:9; + 49,0304}
P:?’122 = —{Q4(— Q35122 + 32, Q37222 — 20 Q37112) + 32122035122
+ 692035111 — 901 Q5 222}/ {Q5 0] — 10010, Q2304 + 90703}
Pg 125 = {Q4(5 (28224 — 25114) + Q5(Q2 (125 + F124)
+ Q1 (3123 + 7124))) + Q5 (Q3(23224 — 28114)
+ QoF124 + Q17124) + Q3(2Q02 5904 + Q102(25114
— 23204) — 2035114) + Q2(Q25103 + Q138123)
+ (2397 + (203 — 20 — 20, Q2)Q4 — 40,2203 )7223
+ (=203 + (=203 + 2Q:Q; + 207)Q + 42,2203 )7113}
/{490 + 4Q1)Q0 Q5 + ((4Q2 + 491)Q3 — 40,02 — 401Q,)Q,
+ (—42:Q; — 40212:)23}
P3 124 = {Q3(Q2(Qu (8223 — 5113) + Qu(S124 — F123))
— Q35203 + 21 Q4(5124 — F123) + Q33113)
+ Q3(2Q48113 — 2Q48223) + (22302 — Q204 — 30 0204224
+ (=29302% + 30,9204 + Q2Q4)7114} /{03 (40202
+40,02) — 40,020, — 402Q,04)
P} 133 = {2204(Q3(—23234 — Tf233) — Q17134) + QF(6Q35144
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— 2027244 + 3Q7134) + (32204 — Q192:03)5133 + Q1 027233}
/{90203 — 100, 020304 + 0202}
P31as = —{Q4(Q2Q3(45244 + 57234) + 3025134 + 201 Q7144)
— 402025933 + Q102035135 — Q1 N2Fa34 — 6Q3 Q27 44
+ (6Q3Q4 — 2Q,Q2Q3)7133 }/{90202 — 100, 2,Q2:Q4 + 0202}
P} 14 = {Q2(93 (25234 — 2F233) — Q1 Q38144 + 01 QaF134)
+ Q4(3023144 — T Q37244 — 3027134) + 6035133
+ Q1027244 }/{99202 — 100, 2,030 + Q202}
P;,zzz = —{Qa(7Q1 Q3222 + 20235112 — Q1 QuF122) — Q3048299
+ 30307122 + 6037111 }/{Q2Q2 — 100;Q,0Q3Q4 + 90202}
P}z =0
P304 = —{Qa(Q3(Q1(—25224 — 28114) — 4Q25204) — Qa3 Q1 (2 + Q2)(B125
+ 7124)) + Q3 (D2 Q (25224 + 25114) + 20, 0Q25294
+2035114) 4+ Q2(2123(25114 — 25224) — Q1 Q7124
— Qff124) — Q3(Q2 + Q1) Q1123 + ((4Q2 + 201)Q2 95
+ (20,93 — 20,02 — 2020,)04 )Fa23 + (20212302
+ (=20, 92 — 2Q3Q; — 203)Q4 7113}/ {(4Q2 + 42,03
+ (492 + 49,)Q3 — 40,03 — 4030,)03 + (-4, Q2 — 4030,)Q304}
P33,233 = {Q3(Qs3 (63244 + 3234) + 2 7140) + (3025233
+ 201 Q35134 — Q1 Qa7934) — Q1 Q2 Q38233 + (T Q3 — Q20)F135}
/{90202 — 100, Q,03Q4 + Q3Q2})
P§,234 = —{Q2(Q3(R1 3234 — 221 7233) + D3F134) + Qe (Q%(35234
+ 67233) — 401035144 + 2Q1 Q27244 — 50 Va7134)
+ 4091025133 — 6Q3027544} /{90302 — 10Q:Q:Q3Q4 + Q2Q2}
P} 44 = {Q24(03 (35244 — 37234) + T2 Q3F144) + 010203 (F234
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— 8244) + 635233 — 29025134 — Q2097144

+ 20, Q57133 /{90203 — 100, Q,Q2:9Q4 + 202}
Pg,sss = —{Q304(23333 — §344) — 25333 + 302F 444

+ (—20% — Q3Q4)7334} /{40507 + 40304}
P:i334 = {Q3(95444 — 3334) + Qa(35444 — 35334)

+(Q4 + 393.)F344 + (—94 — 3Q3)F333} /{693 + 4Q3Q4 + 602}
P:?,344 =0

—30%5044 + Qu(Q3(8334 — 28444) + Q27344 + 303047333
303 + 2002 4 3020,

3 —
P3,444 =

Pf1 = —{—6Q35220 + Q3(—3Q15112 — 2Quf122) + L2 Q3112
+ (302 — 70007111 } /{0202 — 100: 02004 + 99202}
P;,nz = {24(Q2(8MN 7112 — 2Qa8122) + 6Q37220) + (32 Q3 Qs — 902Q5)5111
— Q3027112 } /{0502 — 100, 9,904 + 90202}
Py 113 = {Q4(Q3(2Q35114 — 2053224) + (3 — 2Q1Q2)(Q + Q2)3123)
+ Q3(21Q2(25114 — 23224) + Q3(U + Q2) (8123 — F124))
+ Q3(Q2(—2Q1 8123) — 202Q98123) + (22202 + 203 Q, Q30 223
+ Q3(—= Q27124 — Qi124) + (—20202 — 2030, Q304 )7113}
[{(4Q1 92 + 403302 + (42192 + 403)Q2
— 40202 — 4030,)Q4 + (40202 — 403Q,)Q3}
Pj 114 = —{Q3(Q23223 + Qu(—3124 — F123) + R d113)
+ Q2Q47224 + Q1047114 }/ {40103 }
Pf 120 = {Q3(—392:Q4 5222 + 221Q45112 — Q3F122) + 901035222
+ 30 Q3 Qy 7102 + 623047111 1/ {0502 — 100, Q2,934 + 90203}
P;,123 = —{Q3(Q2(21(38223 — 38113) + Qa(F123 — 5124))

+ Q53223 + Q2180 (F123 — S124) — N15113)
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+ Q32043113 — 2Qud223) + (20302 + Q20 — Q10 )Fa2e
+(~29302 + 0 Qa0 — Q3Q0)F114)/{02(40 0
+ 401 Q) + (—40:Q2 — 402Q,)Q5}
Pj 124 = {Q4(Q3(28204 — 23114) + Q1 Q2(45114 — 45224)
+ Q3(Q2(—3123 — F124) + Q1(—3123 — F124)))
+ Q2(23(25224 — 28114) — QaF124 — Q17124)
+ Q3(—2Q3 5224 + Q192(28114 — 25224) + 2025114)
+ Q3 (— Q28125 — Q13123) + (22303 + (202 + 202 — 201 0,)2 )F22s
+ ((—293 + 22105 — 2Q2)Q4 — 2Q303)7113}/
{(4902 + 491)23Q2 + (492 + 49Q,)0Q2
— 40102 — 403Q,)Q + (—4Q, 02 — 402Q5)05}
P§ 155 = —{Q5(Q2(28244 — 27234) — 3Q38134) + Qa(7Q2 Q35233
+ Q1 Q25134) — Q1025233 + 60237144 + (3032
— Q1 Q2Q)7133 /{90502 — 102, 2, Q30,4 + 2202}
P;,134 = —{Q204(Q3(53234 + 47233) + 2013144 — Q1 F134)
— 0 Q25234 + Q3(—6Q35144 — 47004 — 3Q37134)
+ (69304 — 2Q190203)5133 /{90302 — 1002,: Q20394 + 0202}
Pg 140 = —{Q4(Q2Q3(T8244 + 2F234) + 3025134 — Q1 Q7144)
— 035541 + 202033235 — Q235134 + 3205144
+ 602047133 }/{902Q2 — 100, Q200 + 0202}
Pf g05 = —{Qa(— Q1 Q35122 — T Qaf2a2 — 20%7112) + 3020255120
+ 6915111 + QaQ3f222}/{Q30F — 100:0,Q:Q4 + 9007}
Pfy03 =10
P:f,224 = —{2Q2Q 3203 + Q3(— Q1 Q2223 + Q1 Q4 (7123 — 5124)
— 25113) + (2Q3Q% — Q192Q4)F224 — VIQF114)
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/{4Q202 — 4,122,050}
P;,:zaa = {Q3(Q3(33234 — 37233) + 201 5144 — 20 134)
+ Q2Q4(Q17233 — Q18234) + (12120 — Q2Q;)5135
— 6257244 } /{90202 — 100, 2,239, + 202}
Py 034 = {Q3(03(63244 + 37234) — 4Q17144) + Qa(21Q(F234
— 25244) — 6Q35233 + 5Q:1Q38134) + 201 Q0335233
— Q2238134 + 401 Q3047133 } /{90202
— 1092, Q2,204 + Q202)
P3 sa = {Q2(1 Q38254 — Q25144) + Qu(Q2(—35234 — 67233)
+ TQ1038144 + Q127244 + 201 Q3 7134) + 20, Q25,33
— 33057244 } /{90302 — 100, Q0304 + Q202}
P;,333 = —{04(23(35444 — 3334)) + Q2(35444 — 35334)
— 2038334 + (92 + Q)34 + (W — 3027333}
/{60302 + 4020, + 603}

3(33333 — S344) + 3V4Feaqa — QyF334

Pl =—
3,334 20304 + 29%

P, :3,344 =0

Pt Q4038344 + 3035333 + (02 + 4Q3Q4)Fy4q — Q3QaF334
3,444 = —

40,07 + 4020,

Appendix 4.C

The coeflicients of the quadratic terms and cubic terms of functions f ,G,7,8

are as follows:
Gii =pii + vie By + Ejpee Epa
Gij =pij + 0icElj) + e B + 2Ejpee Eyj)
Guis =puii + piie By + Efypice By + eeee(Epa, Epa, Epyp)
+ pichii + 2E[peehii
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Piij =pjehii + pichij + 2Ejj0echii + 2E[pechij + piij + vije By
+ @iie By + Efyvjee Bl + 2E[0iee By + 30ece (B, Erp, Epyp)
Pijk =Pijk + vichjr + @jehik + orehij

+ 2B 0¢chir + 2E[jpechir + 2E]qpechir.

Here, i, j, k are distinct, ¢ € {f,g,7,s}, and 1,7,k € {z,y, 2, w} with Ep,) = Ey,
Bty = Ep, By = Es, Ep) = By
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CHAPTER
FIVE

LIAPUNOV FUNCTIONS FOR NONLINEAR
SYSTEMS VIA CENTER MANIFOLD
REDUCTION

In this chapter, we construct families of “composite” Liapunov function
candidates for general nonlinear critical systems using center manifold reduc-
tion technique. One part of the composite Liapunov function is based on the
reduced subsystem on the center manifold. The other part is based on the Ja-
cobian matrix of the noncritical subsystem. Detailed constructions of Liapunov
functions are given for the simple critical cases and the compound critical cases
discussed in Chapters 3 and 4. The stability conditions for these critical cases
obtained in the previous two chapters are also reconstructed in this chapter by

using the Liapunov function approach.
5.1. Introduction

Behtash and Sastry [10] employed Liapunov functions for reduced order
models of nonlinear critical systems in normal form to obtain stability criteria.
However, Liapunov functions have not been constructed directly for the orig-

inal system without the need for the reduction. Motivated by Fu and Abed’s

results [26] on the construction of Liapunov functions for nonlinear systems in
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simple critical cases (i.e, cases in which the linearized system has either one
zero eigenvalue or a pair of pure imaginary eigenvalues), we construct families
of Liapunov functions for the nonlinear systems within the framework of center
manifold reduction. The result relies on the stability of the linearization of the
noncritical subsystem and the identification of Liapunov functions for the re-
duced model on the center manifold. In the following, composite-type Liapunov

functions are constructed, in a sense to be explicated below.

Two categories of critical systems are considered in this chapter, which
include the simple critical case and the compound critical case. The simple
critical case considered here is that of the linearized model of the system has
one zero eigenvalue or a pair of pure imaginary eigenvalues with remaining
eigenvalues stable; while the compound critical case is that when the linearized
model possesses two zero eigenvalues with geometric multiplicity one, one zero
eigenvalue and a pair of pure imaginary eigenvalues or two distinct pairs of
pure imaginary eigenvalues with remaining eigenvalues stable. The main differ-
ence between this result and Fu and Abed’s results [26] is that the technique
of center manifold reduction is used in this chapter instead of the approach
using eigenvector decomposition of the vector space in [26]. In addition, [26]
is concerned only with the simple critical cases, whereas the compound critical

cases are also considered here.

The results in this chapter are obtained as follows. First, results on locally
positive definite function are obtained. It is followed by the construction of
Liapunov function candidates for general critical nonlinear systems using center
manifold reduction. The detailed designs of families of Liapunov functions for
the simple critical cases and the compound critical cases are given in Section

5.3 and 5.4 to demonstrate the main results.
5.2. Locally Definite Functions

The technique of Taylor series expansion is a very important tool to con-

struct Liapunov functions for nonlinear systems, which can be conveniently
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represented as multilinear function. By using the notations of multilinear func-
tions given in Section 2.2, some locally positive definite functions are introduced
in this section, which will be employed in the next three sections for the con-

struction of Liapunov function candidates.

First, recall the next two definitions.

Definition 5.1. (e.g., [86]) A continuous function ¢ : IR — IR is said to be of
class K if (1) 4(-) is strictly increasing, and (ii) 1(0) = 0.

Definition 5.2. (e.g., [86]) A continuous function ¢ : IR" — IR is an lL.p.d.f.
if and only if 4(0) = 0, and ¢(z) > 0 for all z # 0 and ||z|| < & for some
§ > 0. ¢isap.df if and only if ¥(0) = 0, ¥(z) > 0 and ¥(z) — oo as
||z]| = oo uniformly in z. Moreover, a continuous function ¥ is said to be

(locally) negative definite if —1) is an (L.p.d.f.) p.d.f.

Now, we introduce some results on the existence of locally positive definite
functions.

Consider a scalar function as given by

v(n, &) = E'PE+ & pue(n) + pon(n) + pree(n, &) + peee(6), (5.1)

where 7 € IR",€ € IR™, ppe(n) is a vector polynomial function of 5 of which
each component has order in 7 no less than ji; pyy(n) is a scalar 2j;-linear
function; ppee(n,£) is a scalar polynomial function of which each component
has order in (7, £) no less than one and two, respectively; and pege(€) is a scalar
polynomial function of ¢ of which each component has order in { no less than
three. Here, j; and j; denote positive integers with j; > 7a.

We have the following result.

Lemma 5.1. (Locally Positive Definite Function for Two Sets of Variables)
Suppose there exist a;,a; > 0 and f; > 0 such that ¢'PE€ > a4||€]|2, pyaln) 2
asln]|** and [|¢’pae(m)l| < Bulléll - Inll>. If 4aace > B, then v(n,¢) given by
(5.1) is an l.p.d.f.
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Proof: 1t is known that there exists &;, 8 > 0 such that
|lpnee(n, €) + peee(I < Ba(llnll + 11€11) - 11€11%, (52)
for all ||n]], [|¢]] < &1

Suppose the assumptions of Lemma 5.1 hold, i.e., there exist aj,as > 0
and f; > 0 such that §'PE > aillé]l?, pyq(n) > azlinl|** and [|¢/pye(n)]] <
Bulléll - I}

Then we have
v(n,€) = A-IE]12 = Bulléll - lnll?2 + azlln]|*2

b
24

where A := a3 — B2(||n|] + |E])-

The conclusion of Lemma 5.1 is hence implied when 4a;az > f2.

= A (lell = Sl + g dans — 8) - [l (5.9

It is known (e.g., [86]) that there exist a1, az > 0 such that £'PE > ay|[¢]|?
and pyy(n) > az||¢]|*? when matrix P is positive definite and function pyy(7)
is a p.d.f. Moreover, when j; > ji, where j; are defined above, we will have
1€’ pneI| < Bo(lImll) - 11€]1 - 1Im|}?2, where Bi is a function of class K instead of

" a positive constant. Thus, we have the following result from Lemma 5.1.

Corollary 5.1. If matrix P is positive definite and the scalar function py,(7n)
is a p.d.f., and the integer j; > j3, then v(n, ) given by (5.1) is an L.p.d.f.

The next result follows readily from Corollary 5.1.

Corollary 5.2. The scalar function v(n, £) given in (5.1) is locally negative def-
inite when matrix P is negative definite matrix and function p,,(7n) is negative

definite, with 71 > Js.

A special extension of the locally definite function given in (5.1) is intro-
duced as follows.

Consider a scalar function

v(€,1,0) = P&+ 0"Pan 4+ C(€,n,0) + D(n, () + E(&,n) + F(&, (), (5.4)
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wheren € IR",£ € IR™, and ( € IR". Here, C is a scalar polynomial function of
(€,m,¢) of which each component has order in each argument no less than one;
D is a smooth function; £ is a scalar polynomial functions of (¢,n) of which
each component has order in (£,7) no less than (j1, j2), respectively; and F is
a scalar polynomial functions of (£,¢) of which each component has order in
(§,¢) no less than (j3,74), respectively. Here, j; denote positive integers, for
i=1,---,4 with j1,53 > 2, j1 + j2 > 3, and j3 + j4 > 3.

According to the proofs of Lemma 5.1, it is not difficult to prove the fol-

lowing result.

Lemma 5.2. (Locally Positive Definite Function for Three Sets of Variables)

If Py, P, are positive definite matrices and D(n, () is an L.p.d.f., then the scalar
function v(€,7n,¢) given in (5.4) is an Lp.d.f.

The next result follows readily from Lemma 5.2.

Corollary 5.3. If P;, P, are negative definite and D(n, {) is locally negative
definite, then the scalar function v(&,7,() given in (5.4) is locally negative
definite.

5.3. Liapunov Function Candidates for Critical Systems

In the following, we construct families of Liapunov functions for nonlinear
critical systems. First, a general set-up of candidates is proposed for critical
systems. It is observed that such construction can be simplified by invoking
a result on the solution of a class of scalar multilinear equations. Using the
solvability of scalar multilinear equations, along with center manifold reduction
(discussed in Section 3.2), we propose a class of “composite” Liapunov function
candidates for general critical systems. Detailed construction of families of
Liapunov function for the simple critical cases and the compound critical cases

are 8iven in Sections 5.4 and 5.5, respectively, to demonstrate the main results.

In this section, we construct Liapunov function candidates for a class of
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nonlinear autonomous system as given by
n=Aun+F(n,¢) (5-5)

€ = A€+ G(n,6), (5.6)

where n € IR", £ € IR™. Here, A;; and A, are constant matrices, and the
functions F,G are sufficiently smooth, with their values and first derivatives
vanishing at the origin.

Taylor series expansion of system (5.5)-(5.6) at the origin gives
1 =Ann + Fyn(n,n) + Fae(n,€) + Fee(€,€) + Fyqn(n,m,m)

+ Fane(n,m,6) + Free(n,§,8) + Feee(6,6,6) + - - (5.7a)
é =A22E + Gnn(’?, 77) + Gﬂf(n’ E) + fo(&a é) + Gnnn(ﬂ, 7, 77)
+ vat’(n, 7, f) + G')ff(n’ £, 6) + fof(fs £, 6) +... ‘(576)

where components of the approximation of functions F' and G on the right side
of Eq. (5.7) are multilinear (but not necessarily symmetric) functions of their
arguments.
Without loss of generality, we choose _
V =Pl +n0"Pan+ Vaau(m,m,m) + Vane(m,m,6) + Vaee(n, £, €)
+ Veee(€,€,€) + Vanga(n:1,7,1) + Vanne(n,1,m,€)

+ Vonee(n,1,6,€) + Vieee(n, €,6,6) + Veeee (6,6,6,6) + ... (5.8)

as a Liapunov function candidate for (5.7), where the dots denote the high order
terms and P, P, are two symmetric square matrices with the remaining terms
on the right side of Eq. (5.8) being multilinear functions.

Differentiating V along trajectories of (5.7) gives
V=v®4y® 4 p@® 4 4 yO 4 (5.9)

where

VB = €(Py1Ags + AbyP1)E + 1/ (P2 A1 + AL P, (5.10)
VO = V& (n,m,1) + Viok(m,m,€) + Vier(n, £,€) + Viga(6,6,€), (5.11)
VO = VO (0, 0,0,0) + V0 (0,77, €) + Viake (0, 7,,6)

VW (1,6,6,6) + VEL(6,6,6,6), (5.12)
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and V@ are the quadratic, cubic, quartic, i-th order terms, respectively, of V.

In the above (using Proposition 2.1),

l')'(7:31)11(77’77’ n) = 2F,(n,1)P2n + 3Vanq(n, 1, Au1n), (5.13)
V,(,?,)g(n, 1,€) = 2('P1Gyn(n,m) + Fpe(n, €)P2n)
+ Dy Vone(n,m,8)A110 + DeVoge(n,n, £) A22€, (5.14)

vr({t])rm(nv 7, 77) = 2F1;1717(77’ 7, 77)'P277 + 3v’l7l77(n, 7, an(ﬂ, 77))
+ vanns(’?, 7, £)G7177(n’ 77) + 4v7l’77l7l(77’ 7, Alln)v (515)

VD (0,1,1,8) = 2(E'P1Gnn(n,0,1) + Fhne(n,,€)Pan)
+ 8V (1,1 Fag(1, €)) + Dy Vane(1, 7, €) Fyn(n, 1)
+ DeVyne(n,m,€)Gre(n, €) + DeVyee(n, €, §)Gun(n,m)
+ Dy Viane(, 1,1, €)A110 + DeVyyne(n,m,m, ) A22€. (5.16)

The remaining terms are obviously implied and are omitted. Note that the
components of V(-) on the right side of Egs. (5.11)-(5.12) are multilinear func-
tions.

Now, we can check the suitability of V given in (5.8) as a Liapunov function
for (5.7). In the trivial case in which both A;; and Aj; are stable, it is known
(e.g., [17], [86]) that there exist positive definite matrices P; and P, such that
both Py Az; + Aj,P1 and P, A1 + A}, P2 are negative definite, which provide
the local negative definiteness of V. Thus, in this case, we can choose

Y = f”P]f + 77’73217 (5.17)

as a Liapunov function to prove the asymptotic stability of the origin for (5.7).
Throughout the rest of this section, we consider the nontrivial case in which
A2z is stable but all eigenvalues of Aj; lie on the imaginary axis. Motivated by
the results on the existence of locally positive definite function given in Section
5.2, the possibility of V in (5.8) being an L.p.d.f. is considered as follows.
Let V; denote the scalar function containing all the components, which are

functions of 7 only, of V (given in (5.8)). That is,
Vi(n) == 0"Pan + Vaan(1,7,1) + Vagaa(msmmm) + -, (5.18)
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where the dots denote high order terms.

The next result readily follows from Corollary 5.1 and Lemma 5.2.

Lemma 5.3. The scalar function V given by (5.8) is an L.p.d.f., if either of the

following two conditions hold:

(i) both P; and P, are positive definite,

(ii) Py is positive definite, Vi(n) defined in (5.18) above is an l.p.d.f., where
either Py; = 0 and Py, is positive definite with all k-linear function V,,...¢(7,
vy &) = Vyee(my -+ ,m,(2,€), or P22 = 0 and Py is positive definite
with all k-linear function Vy...pe(n,--+,1,€) = Vyeone(n, -+, 1, (1, ). Here,
we assume that n'Pen = ({P21(1 + (3P22(2 and n := ((1,(2)"

Next, we consider the possibility of V given in (5.9) being a locally neg-
ative definite function. Since Ajs is stable, as discussed above, there exists
a symmetric positive definite matrix P; such that P; A2z + A3, P is negative
definite. Motivated by the results of Corollaries 5.2 and 5.3, we observe that

the local negative definiteness of V (given in (5.9)) can be easily proven if the

components V,(,k),lf of V can be set to zero, for all k =3,4,....

It is observed that the expressions of k-linear function 1.),(:),,,5,

Egs. (5.13) and (5.15), have a general form as given in (5.19) below. To simplify

for instance,

the expressions of V, we might need to obtain the solutions of k-linear function

Vy...n¢ for the scalar multilinear equation V1(7k)77€ = 0, for each k£ = 3,4,....
The solvability of such equations is first discussed in Section 5.3.1 below, where
a general result is obtained by employing the result on linear matrix equation
given in Theorem 2.5. Then this result is applied to construct Liapunov function

candidates for system (5.7) in Section 5.3.2.
5.3.1. Solvability of a Class of Scalar Multilinear Equations

Let T,M : (IR™)F x IR™ — IR denote (k + 1)-linear functions, for k > 2

an integer and consider a class of scalar multilinear equations

DnT(U, et ,ﬂ,f)Aﬂ + DET(U, ttt ’7776)36 - M("?y o ,77,6) = 0, (519)
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for all n € IR",£ € IR™, where A € IR™"™ and B € IR™*™ are two constant

matrices.
From Definition 2.2, we have two k-linear vector functions 7* and M*

such that T(n,---,n,&) = &'T*(n,---,n) and M(n, - n,8) =EM*(n,---,7m).
Rewriting Eq. (5.19), we have

¢{DT*(n,---,n)An+ B'T*(n,---,n) — M*(n,---,m)}=0  (5.20)

for alln € IR™, € € IR™. The existence of a solution 7 for the partial differential
equation (5.19) can then be provided by the existence of a solution T* for the

matrix equation (5.21) below:

DT*(q,-+,n)An+ B'T*(n,---,n) = M*(n,---,n) =0 (5.21)

for all n € IR".

By using the principle of induction, we can have the following result.

Lemma 5.4. Let A € IR**™ and B € IR™*™. Then for given positive integer k
and k-linear function M*(7, - - -, n), there exists a k-linear function 7*(n,-- -, n)
such that Eq. (5.21) holds for all n € IR™ if 2:;1 oi(A) + o(B) # 0. Here,

0i(A) and o(B) denote eigenvalues of matrices A and B, respectively.

Proof: The principle of induction is employed here to prove the existence of
each k-linear solution T* for Eq. (5.21) under the assumptions of Lemma 5.4.
Details are given as follows.
First, consider the case of k = 1, and let 7*() := 7*n and M*(n) := M.
Eq. (5.21) can hence be written as
(T*A+ B'T* — M*)n =0. (5.22)

It is implied by Theorem 2.5 that there exists a unique solution 7* for Eq.
(5.22) if 5(A)+a(B') # 0 (i.e., 5(4)+0(B) # 0). So, the conclusion of Lemma
5.4 holds for the case of k = 1.

Next, we suppose there exists a k-linear function 7* such that Eq. (5.21)
holds for given k-linear function M* and ¥ is some positive integer. Here, we

do not have any restriction on the dimensions of the row of T*.
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Now, consider the case in which 7* is a (k + 1)-linear vector function
in 7. According to Definition 2.2, we can let 7* = 3" 7:7i(n,---,n) and
M* =30 niMi(n,---,n), where 5 := (91,72 ---,7,) and each 7; and M;
are k-linear functions in 7.

Rewriting Eq. (5.21), we have

{[71(77,"',U),"',Tn(fh'”,fl)]+Z’7:‘D7;'(77,“',77)}A71

+B'Z77i7;(777""77) — EmM.‘(U,"',TI)
=1

1=1

=S " n{DTi(n,--,mAn+ Y a;iTi(n,- - ,m)

i=1 J=1

+ B,Z(n, e ,7]) — M:‘(T], eee ’17)} = 0’ (5.23)

where A := [a;;]. From Eq. (5.23), we can say that Eq. (5.21) holds for all
n € IR" if for all n € IR"™ the following relationship holds:
DT(na e ,U)AU + (A, ® B,)j'(nv e an) - M(U, e ’77) =0. (524)

Here, @ denotes the Kronecker sum and two k-linear vector functions 7 and M
are defined as: T(n,--+,7) := (T(n,++,m),-+~, Ta(n, - -,m))" and M(n,---,n)
= (Ma(n,--3m),- -, Ma(n, -+ ,m))"

Now, we can iteratively solve for the existing conditions for the solution
T* for Eq. (5.21) for each positive integer k > 1. For instance, for the case of
k = 2. It is not difficult to find out that there exists a solution T* for Eq. (5.21)
if 0(A) + o(A' @ B') # 0 by comparing Eq. (5.24) with Eq. (5.22). Iteratively,
we have a solution, the trilinear function T%, for Eq. (5.21) for the case of k = 3,
if o(A) +o(A' @ (A' @ B')') # 0. 1t is known (e.g., [36]) that any eigenvalue of
matrix A' @ B' is the sum of one eigenvalue of A’ and one eigenvalue of B’'. So,
from the foregoing discussion the existence conditions for the solution 7™ for
Eq. (5.21) will be 01(A)+02(A)+0(B) # 0 and 37, 0:(4)+o(B) # 0 for the
case of ¥ = 2 and k = 3, respectively. Here, 0:(A) denotes one of eigenvalues

of A.
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By the principle of induction, we then have a solution T* for Eq. (5.21)
for each positive integer k if Z:;l oi(A) + o(B) # 0.
|

The next result follows readily from Lemma 5.4 and the foregoing discus-

sion.

Corollary 5.4. Let A € IR"™*"™ and B € IR™™. If Re{o(A)} = 0 and
Re{o(B)} < 0, then for any given positive integer k and given (k + 1)-linear
function M(n,---,n,£) there exists a (k + 1)-linear function 7 (n,---,n,£) such
that Eq. (5.19) holds for all € IR" and £ € IR™.

5.3.2. Construction of the Liapunov Function Candidates

Now, we can apply Corollary 5.4 to simplify the expressions of V given
in (5.9) such that we can construct Liapunov function candidates for system
(5.7) easily. Since A, is stable and all eigenvalues of Aj; lie on the imaginary
axis, then according to Corollary 5.4 the solution (k-linear function) Vy...pe will
always exist for the scalar multilinear equation V,(’k"€ =0 for all n € IR" and
£ € IR™.

From Corollaries 5.2 and 5.3, Lemma 5.3 and the foregoing discussions, we
then have the following two criteria for constructing Liapunov function candi-

dates for nonlinear critical system (5.7).

Lemma 5.5. Suppose P;,P; are two symmetric positive definite matrices
with P1 A2z + A%, P1 being negative definite and P2 A1 + A}; P2 = 0. Then the
function V given in (5.8) is a Liapunov function for ascertaining the asymptotic
stability of the origin of (5.7) if there exists a positive integer j* such that

(i) the (25*)-linear function ]'/,,...,,(17, -++,n) is negative definite,

(i) i},(,f?.nn(n, --+,n,n) =0, for eachi=3,...,2j* -1,

i) V(- ++,m,€) =0 for each i = 3,...,5* + 1.
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Lemma 5.6. Suppose condition (ii) of Lemma 5.3 holds with P; A22 + A5, P1
being negative definite and P, A;1 + Aj;P2 = 0. Then function V given in (5.8)
is a Liapunov function for ascertaining asymptotic stability of the origin of (5.7)

if there exists a positive integer j* such that conditions (i)-(iii) of Lemma 5.5

hold.

As implied by Corollary 5.4, for each k > 3, there exists a k-linear function
Voeome(m,-++,m,€) of V (given in (5.8)), which is (k — 1)-linear in 7 and linear

in £, such that condition (iii) of Lemma 5.3 holds. For instance, there exist

Vine(1,7,€) and Vyyne(n,7,7, ) to make Vox(n,7,€) and V& (7,1,1,€) given
in Eqs. (5.14) and (5.16) equal to zero for all n € IR",£ € IR™. To prove

that the scalar function V (given in (5.8)) is a Liapunov function for (5.7) by
employing Lemma 5.5, we need to have a scalar function Vi(n) given in (5.18)
such that conditions (i) and (ii) of Lemma 5.5 hold. Moreover, in the application
of Lemma 5.6, there is one more restriction on the k-linear function V,...q¢ as
defined in Lemma 5.3.

The problem stated above for finding V; such that conditions (i) and (ii)
of Lemma 5.5 hold is in general hard to solve. In the rest of this section, we
employ the technique of center manifold reduction to delete the contributed -
terms in each k-linear function V,(,k),,(n, -++,7n) from the nonlinear function G so
that the problem can be simplified. According to Theorem 2.1, in the case of
which A, is stable and all eigenvalues of A;; lie on the imaginary axis, system
(5.7) has a locally invariant manifold given by the graph of a function £ = k(7).
Moreover, this h satisfies the partial differential equation (2.2) with boundary
conditions h(0) = 0 and Dh(0) = 0.

Let ¢(n) be an approximate polynomial function of h such that
h(n) = é(n) = O(|In|[™*"), (5.25)

and let v =& — ¢(n).

Then we can rewrite (5.7) as

7 =Aun+ F(n,v + 6(n))
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=Aun+ Fy(n,n) + Fu(n,v) + ...+ O(l(n, )||7*2), (5-26a)
=€ — Dé(n) 1
=Anv + [G(n,v + $(n)) — G(n, $(n))]
— Dé(n) - [F(n,v + é(n)) — F(n, ¢(n))] + O(l|(n, v)||"*?)
=Agov + Gp(n,v) + Gou (v, v) + Gynu(n, 1, v)
+ G (n,v,0) + Gunu (v, v, ) + ...+ O(l|(n,)|™*?),  (5.260)

where 1:",,,, is the new version of bilinear function F;, and the remaining terms
on the right side of Eqs. (5.26a) and (5.26b) are obviously implied by the
approximations of functions F' and G, which are supposed to be represented in

multilinear forms.

It is observed from Eq. (5.26b) that there are no terms in the Taylor series
expansion of the dynamics , which are function of n only. Thus, we have the
following result by modifying the conditions of Lemma 5.5 and referring to the

discussion above.

Theorem 5.1. Suppose Aj; is stable. If there is a scalar function V; given
in (5.18) with P, being symmetric positive definite to show the asymptotic
stability of the origin for the reduced model (5.26a) with v = 0, then the origin
is asymptotically stable for the whole system (5.26).

Next, we implement the result of Lemma 5.6. Suppose there exists no
square matrix P, such that conditions of Theorem 5.1 hold. However, there

exists a square matrix

_(Pa O -
Py = ( 0 7’22) (5.27)

such that V; (given in (5.18)) is an l.p.d.f., with P;; = 0 and P, being positive
definite, or P32 = 0 and P;; being positive definite. Let  := (1, (2)’ such that
n'P2n = (1 Parls + (2 Pa2Ca.

Consider the case in which Pz; = 0 and the scalar function V (given in

(5.8)) is applied to the new model (5.26), i.e., £ is replaced by v + ¢(n). It
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is observed that the k-linear function 1.),(,{“.).,,,,,(17, -++,1,v), for instance, see Eqgs.

(5.14) and (5.16), has the form as given by

“(k
V@, s v) =Dy Vaw (-1, ) A0 + Dy Vyeoonn (1, -+ -1, v) Aga
+ Mn---n(w(ﬁ, R/ <2a V), (1‘528)

where k-linear function My...p¢,0(n, -+, 7,2, v) is linear in v, (k — 1)-linear

in {3 and (k — 2)-linear in {;. Under this condition, we only need to solve

the k-linear functions Vy,...p¢,¢ from the scalar multilinear equation V,(lk) =0
for each k¥ = 3,4,..., in which the existence of such solution is guaranteed by

Corollary 5.4. That is, the k-linear functions Vy..ne of V in (5.8) only need to
contain the components V,...;¢,e¢.

For the case in which P22 = 0 and Ps; is positive definite, similarly, we
can show that the k-linear functions V,...,¢ of V in (5.8) only need to contain
the components V,...;¢.¢.

From the discussion above and Lemma 5.6, we then have the following

stability criterion for (5.26).

Theorem 5.2. Suppose Ay is stable. If there is a scalar function V; given
in (5.18) to show the asymptotic stability of the origin for the reduced model
(5.26a) with v = 0, then the origin is asymptotically stable for the whole
system (5.26). Here, the square matrix P, is defined in (5.27) with P2; = 0 and
P22 being positive definite, or Py; = 0 and Ps; being positive definite.

Remark 5.1. The result given in Theorems 5.1 and 5.2 provide special versions

of the stability conditions given in Theorem 2.1.

To conclude the discussion above, we have the following algorithm for con-
structing families of Liapunov functions for (5.26) in the case when all the

eigenvalues of A;; lie on the imaginary axis and A, is stable. We denote

Vﬂﬂ(’]a’?) = n'Pen.
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Algorithm 5.1. (Algorithm for Constructing Liapunov Function)

Step 1. Choose P; to be a symmetric and positive definite matrix with P; Agy +
A}, P1 negative definite.

Step 2. Apply Theorem 5.1 (or Theorem 5.2) to find a scalar function V; as
given in (5.18) such that conditions (i) and (ii) of Lemma 5.5 hold for
(5.26a) with v = 0 (i.e., to construct a Liapunov function for the reduced
model (5.26a) with v = 0).

Step 3. For each integer k > 3, solve for k-linear function V,...q¢(n, -+, 7n,£) (or
Vyeemcie(ny + <+, 1, (i, €)) such that condition (iii) of Lemma 5.5 holds, the
solution for which is guaranteed by Corollary 5.4.

In the next two sections, we construct families of Liapunov function for two
categories of critical systems (SC) and (CC) defined below to demonstrate the
main results of this chapter. For simplicity, we only focus on the construction
of Liapunov function for the reduced model (5.26a) with v = 0. It is easy to
construct families of Liapunov function for the whole system (5.26) by employ-
ing Algorithm 5.1. Details are omitted. The two critical cases (SC) and (CC)

considered next are defined as follows:

(SC) The matrix Ay is stable and A1; has exactly one zero eigenvalue or a pair
of pure imaginary eigenvalues. |

(CC) The matrix Aj; is stable and A;; has exactly two zero eigenvalues with
geometric multiplicity one; one zero eigenvalue and a pair of nonzero pure
imaginary eigenvalues or two distinct pairs of nonzero pure imaginary
eigenvalues.

Rewrite the reduced model (5.26a) as (by setting v = 0)

n=Aun+ Frm(’l, n)+ ann(’?, 7))+ .., 5.29)

where 1:",,,, and F; wnn denote the quadratic terms and cubic terms of the approx-

imation of dynamics F after substituting ¢ with the approximate solution ¢(7)

for h(n), respectively.
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According to Theorem 2.1, a function describing the locally invariant man-
ifold, h(-), should satisfy the partial differential equation as given in (2.2) with
boundary conditions: h(0) = 0 and Dh(0) = 0. This leads us to take the linear

term of the approximate solution ¢(7) to be zero and
¢(n) = ban(nyn) + bnma(mmm) +---, (5.30)

where ¢,,(-) and ¢,,,(-) denote the quadratic terms and cubic terms of ¢,
respectively.

Thus, we have F,,(1,1) = Fy,(7,7) and

anm(ﬂs n,n) = me(’?, n,m) + FnE(TI, é(n,m)). (5.31)

5.4. Liapunov Functions for Simple Critical Cases

First, we consider the critical case (SC). For simplicity, we have the follow-
ing hypotheses, stated in terms of matrices Ay; and Ay are defined in (5.7) (or
(5.26)).

Case (S): The matrix Aj; is stable and A;; = 0 a scalar.
Case (H): The matrix A, is stable and A;; is a 2 X 2 matrix possessing a pair

of nonzero, pure imaginary eigenvalues.
5.4.1. Case (S)

Consider the critical case (S). Let z := 5, which is a scalar and
f(z,£) :==F(z,£)
=fze2’ + Tfoel + ' feel + fozat® + 2° frael
+2 - & fogel + feee(6,€,€) + O(ll(=, OII), (5.32)
G(2,€) =2 Gz + 2Goel + Gee(€,€) + 2°Grzs
+ 2% Gauel + 2Gage(€,€) + Geee (6, €,€) + O(ll(=, OII)- (5:33)

Here, the coefficients of the approximation in Taylor series expansion (5.32)-

(5.33) are either constants or symmetric multilinear functions of their arguments

as usual.
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Choose the approximate solution ¢(n) = é(z) = hyyz?, where hy, =
—A;ZI Gz as obtained in Section 3.3. The reduced model given in (5.29) can
then be rewritten as

& =fo22” + (faze — freAz Goz)z® + O(|2[*). 5.34)

Choose
YV, =pzz$2 + Vr,zzzzs, («'535)

as a Liapunov function candidate for the reduced model (5.34) with p,, > 0.
Taking the derivative of V, along the trajectory of (5.34), we have
Vr =2Pss fo22® + {2Ps0(fozs — fogAz; Guz)
+ 3V ooz faz )zt + O(z°). 5.36)

Since p,, > 0, the scalar function V, (given in (5.35)) is locally positive
definite. By checking the locally negative definiteness of V, given in (5.36) and

employing Liapunov stability criteria, we have the following obvious result.

Theorem 5.3. Under hypothesis (S), the origin of (5.34) is asymptotically
stable if fzz = 0 and frzz — freAzy Guz < 0.

Remark 5.2. The result of Theorem 5.3 coincides with the one given in Corol-
lary 3.1. Moreover, families of Liapunov function (5.35) for the reduced model
(5.34) have only one restriction, i.e., p;z > 0, There is no restriction on the
value of V ;z-. In this case, families of Liapunov functions for the full model

(5.26) can be constructed by using Theorem 5.3 and Algorithm 5.1.
5.4.2. Case (H)

Next, we consider the critical case (H) in which A;; has eigenvalues w, =
+i/0:8;, with ©;Q; > 0 and ¢ = +/=1. By letting n = (z,y) be a two
dimensional vector and F(n,¢) = (f(z,y,£), 9(z,y,£))", we can describe system
(5.7) as

=My + f(z,y,€) (5.37a)
y=—Qzz + g(=,y,§) (5.37b)
€ = Agst + G(z,y,6), (5.37c)
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with

F(@,9,6) = fro®® + Foyzy + fyyy” + (5 fze + yfye)l + € feeb + froat®

+ fozy@’Y + Foyy2y’ + fypy¥’® + (2 fozt + 2y foye +9* Fuye)t

+ & (zfaee + yfyee ) + feee(€,€,6) + O(ll(2, 5, OII), (5.38)
9(2,9,€) = gz2T® + gay7y + Gy’ + (2926 + Y9y )€ + €' 9eeb + gozot®

+ 922y 2°Y + Goyy®Y” + Gyyy ¥’ + (27 zoe + TYGaye + v gyue)é

+ &'(2gaee +ygyee)€ + geee(€,€,€) + O(ll(=z, v, OIIY), (5.39)
G(z,y,8) = 22Gzz + 2yGay + y*Gyy + (2Gae + yGye )t

+ Gee(6,6) + 22 Goaz + 22 YGazy + 2y’ Gayy

+ 4 Gyyy + (2° Gaoe + 2YGaye + ¥ Gyye )€

+ 2Guge(€,€) + yGyee(§,€) + Geee(6,6,6) + O(ll(z,y, OII)- (5.40)

The coefficients of the approximations (5.38)-(5.40) are either constants or sym-
metric multilinear functions of their arguments as usual. Similarly, we choose

the approximate solution of h as
¢(n) =¢(z,y) = 2>hzz + syhey + y2hyy, (5.41)
~ where h;z, hzy, hyy have been obtained in Section 3.4 as
hay =(A%, + 40 Q01 (2Q:Gyy — 201Gy — A22Goy) (5.42)
hoz = — Azy (Gaw + Q2hay) (5.43)
hyy =— Az—zl(ny = M hoy). (5.44)
The reduced model (5.26a) can hence be obtained as
& =My + faz®® + fay7y + Fiy¥’ + (foze + fogheo)e®
+ (fyehzz + foghay + foay)@®y + (faehyy + fyehay + foyy)zy?
+ (fyw + fuehys)y’ + O(ll(z, 9)I1%), (5.45a)
§ == DT + 222" + GryTY + Gyy¥’ + (G222 + gzehaz)e’
+ (gyehaz + guchay + 9oay)=°y + (gaehyy + Gyehay + goyy)zy?
+ (9yyy + gyfhyy)y3 + O(JI(z, I*)- (5.45b)
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Now, choose
Ve = Pra®® + Pyy¥® + Vewze2® + Vizey'Y + Vi zyy2y® + Vryyyt®
+ Viezzz2t + Vieeoy ¥ + Vizzyy T2y + VizyyyTy® + Vi yyyy y*(5.46)
as a Liapunov function candidate for the reduced model (5.45) with p;z, pyy > 0.
The derivative of V, along the trajectory of (5.45) is

Vr =2(QUpre — Qapyy)zy +v12y? + 0227y + v3y® + vaz® + vszy®

+vez’y + v7z’y® + vsz? + voyt + O(||(2,y)I1°), (5.47)
where
V1 =29zyPyy + 2fyyPrz — 3 Vryyy + 2801 Ve 22y, (5.48)
vz =2¢z2Pyy + 2fzyPas — 2Q2Vrzyy + 3 Vrzza, (5.49)
v3 =2¢yyPyy + U Vrzyys 5.50)
V4 =2fz2Pzz — Q0 Vr 22y, (5.51)
vs = — 402 Vryyyy + 20 Vroayy + 2gzyy + 9zehyy + 9yehay)Pyy + 2f4yVrzay
+ 2(fyyy + fyehyy)Poc + 392y Vryyy + (29yy + foy)Vreyy (5.52)

V6 =~ 202Vr zzyy + 40U Vrcozz + 2 frey + foehay + fyehez)Poc + 3foyVrozz
+ 2(9zzz + gzehoz)Pyy + 2922 Vrzyy + (9zy + 2f22)Vrzzys 5.83)

v7 = — 3 Vr zyyy. + 3 Ve zzzy + 2(gzzy + gzehzy + gyehaz)Pyy
+ 2(foyy + feehyy + fyehey)Pzz + 3922 Vryyy + 292y Vroyy

+ fezVrzyy + (9 + 2foy)Vraey + 3fuyVroza, (5.54)
Vg = — Q2vr,:n:zy + 2(fzzz + fthzz)pzz + gzzvr,zzy + 3fzzvr,zzz, ('555)
vo =M Vrzyyy + 2(9yvy + 9uehuy)Puy + 390y Vrwwy + fuyVroyy- (5.56)

Since pzz,pyy > 0, the scalar function V. given in (5.46) is hence an l.p.d.f.
Similarly, by checking the locally negative definiteness of V. (given in (5.47))

and employing Liapunov stability criteria, we have

Proposition 5.1. Under hypothesis (H), the origin is asymptotically stable
for (5.45) if there exists a function as given in (5.46) with p;z,pyy > 0 such
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that Qipzz — Q2pyy =0andv; =0,7=1,...,6, vz <0 and vg,ve < 0, where
the values of v; are defined in (5.48)-(5.56) above.

From Proposition 5.1, there exist solutions p;;,pyy, > 0 and V, ;;z for
Qupzz = Qopyy and v; = 0, 7 = 1,...,6, where v; are given in (5.48)-(5.53).
The stability conditions given in Proposition 5.1 for the reduced model (5.45)
can be obtained from the solutions of v7 < 0 and vg,vg < 0. Consider a special
case, by letting vs = vy and solve for solutions to v; < 0 and vg < 0. A stability

criterion for the reduced model (5.45) is obtained as follows.

Theorem 5.4. Under hypothesis (H), the origin is asymptotically stable for
(5.45) if

Q2
39192(9111/11 + gyfhyy) + (ngzy - 292fyy)gyy + Q_;gzzgry

202
+ Qf(gzxy + nghzy + gyfhzz) + ‘Q_“:‘fzzgz:c - QZfz:yfyy - Qlfzzfzy

+ Q192(fzyy + fthyy + fyéhry) + 3Q?(fzzz + fthu) <0. (‘5-57)

Remark 5.3. The result of Theorem 5.4 agrees with the one given in Corollary
3.5. Moreover, families of Liapunov function for the whole system (5.7) can be
obtained by using Proposition 5.1, Theorem 5.4 and Algorithm 5.1. Details are

omitted.
5.5. Liapunov Functions for Compound Critical Cases

Next, we consider constructing families of Liapunov functions for the com-
pound critical cases (CC) of a nonlinear system (5.7). To simplify the notations,
we define
Case (SS): The matrix Az, is stable, and A;; is a 2 X 2 matrix possessing two

zero eigenvalues with geometric multiplicity one and has the form as

given in (4.49).
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Case (HS): The matrix A;; is stable and A;; is a 3 X 3 matrix possessing one
zero eigenvalue and a pair of nonzero, pure imaginary eigenvalues with
the form as given in (4.69).

Case (HH): The matrix A, is stable and Ay is a 4 X 4 matrix possessing two
distinct pairs of nonzero, pure imaginary eigenvalues with the form as
given in (4.89).

where matrices A;; and Agg are defined in (5.7) (or (5.26)).

5.5.1. Case (SS)

In this subsection, we consider the critical case (SS) in which 5 := (z,y)’

and the nonlinear system (5.7) is assumed given in the form

&=y + f(z,9,€) (5.584)
g = g(.’t, Y, é) (558b)
é = A€ + G(SC, Y, 6)) (5586)

where functions f, g, G have the forms as given in (5.38)-(5.40). Similarly, we
choose the approximate solution ¢(7n) of the manifold h as the one given in

(5.41), where hgz, hgy and hy, have been obtained in Section 4.3.1 and are

given as
hee = —A3; Gza (5.59)
hoy = —Azs (Goy + 2457 Gz) (5.60)
hyy = "Aé_zl(ny = hzy)- (5.61)

Let ¢(z,y) = ¢(z,y, h(z,y)), for ¢ = f, g, which implies that @;; = ¢;; for
¢ = f,gand i,j € {z,y}. The reduced model (5.26a) can then be written as

& =My + f(z,y), (5.62a)
y=— Qez + §(z,y). (5.620)
Motivated by the scalar function (5.1) and Lemma 5.1, we choose
Vr =pyyy” + Vrzyy®’y + Vrozya y + Vegyy®
+ Vra(2,y) + Vrs(2,y) + Vrs(2,y) (5.63)
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as a Liapunov function candidate for the reduced model (5.62) above. Here,
V4, Vrs and V¢ denote the fourth order, fifth order and sixth order homoge-
neous polynomial functions of z and y, respectively.

By assuming pyy, Vrg,zzzz > 0 and 4pyy Ves 2222 > Vf,uy, the locally posi-
tive definiteness of V, (given in (5.63)) is implied by Lemma 5.1. Moreover, the
derivative of V, along the trajectory of the reduced model (5.62) is obtained as

Ve = 2pyy9222°Y + 2(Vr,zay + Pyy9s0)2y” + (2Pyy9uy + Vro )y’
+ (Vrzzygzz )zt + v12dy + v22%y? + vazy® + vay* + vs2®
+ vty + o1z + Ra(z,) + Ol I, (5.64)

where R;(z,y) denotes the remaining terms of fifth order and sixth order ho-
mogeneous functions of V,. The expressions of R; are very lengthy and it can
be made to zero for all z,y € IR, by a suitable choice of the functions Vs and
V6, which are independent of the nonlinear dynamics f, g and the values of v;.
The expressions of R;(z,y) are omitted.

It is observed from (5.64) that to provide the locally negative definiteness
of Vr, following conditions must hold: gzz = 0, Vr,zyy = —2Pyy9yy and Vreay =
—PyyJzy- Suppose gz, = 0, the expressions of v; are obtained as

v1 =2pyydzer + 4Vra,zzzz + Vrzzy(2fzz + gzy)s (5.65)
v =2pyyGrzy + 3Vra zory + Veeyy (oo + 292y) + Vrzzy(2fzy + 94y ){5.66)

U3 =2pyygzyy + 2Vr‘4,1::cyy + Vr,zyy(fzy + 2gyy)

+ 2Vr,zayfyy + 3Vryyy 9oy (5.67)
Vs =2DyyJyyy + Vra,zyyy + vr,zyyfyy + 3Vr,yyy v (‘5-68)
Vs =4vr4,xzxxfzz + vr,zzygxzza (‘5'69)

Ve =2Pyy§zzzz + 4Vr4,z:c:czfzy + 3vr4,zzzyf::z + vr4,zzzygzy
+ vr,zzy(zfzxz + gzzy) + 2vr,zyy§zzz + 5vr5,zxzzz, (‘5-70)
v7 :4vr4,zzzzfx:c1: + Vr4,za:zy§z1:z + 5Vr5,1:zzz:z:fzz + vr,zzygzzzz- (571)

By using Corollary 5.2 to check the locally negative definiteness of Vr and

employing Liapunov stability criteria, we then have the next result.
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Proposition 5.2. Under hypothesis (SS), the origin is asymptotically stable
for (5.62) if there exists a function given in (5.63) such that (i) pyy, Vra,zzzz > 0,
(i) 4pyyVrs 2222 > vz,:c:cw (iil) gzz = 0, (iV) Vrayy = —2Pyy9yy, (V) Vrzzy =
—Pyy9zy, (Vi) Ri(z,y) = 0 for all z,y € IR, (vii) v; = vz = vs = vg = 0, (viii)
v < 0 and (ix) vg,v7 < 0, where v; are defined in (5.65)-(5.71) above.

Next, we implement the stability conditions of Proposition 5.2 in terms of
dynamics f and g for the reduced model (5.62). From the foregoing discussion, it
is not difficult to have function the V, such that conditions (i)-(vi) of Proposition
5.2 hold. Thus, in the following discussion, we assume conditions (i)-(vi) hold.
Then the rest of job of implementing Proposition 5.2 is to check for conditions
(vii)-(ix) of Proposition 5.2.

Solving for v = v5 = 0 from Eqs. (5.65) and (5.69), we have

Pyy(2fze + 92y) * (§z2z = oy faz) = 0, (5.72)
Vtoses = 125 Duydees for fu #0,

= —%pw(zgm —g2,) for fez=0. 5.73)
By checking the conditions (i)-(ii) and (v) of Proposition 5.2, we have
Gzzz # gzyfzz. Thus, the only possible solution to Eq. (5.72) is that 2f;, +
gzy = 0. From conditions (i) and (v) and Eq. (5.73), the condition (ii) now
becomes §zzz + 22, < 0.
Moreover, it is observed from Eqs. (5.67) and (5.68) that there exist
Vrd,zzyy and Vyg zyyy such that v3 = 0 and vy < 0. Next, we solve for con-
ditions vy < 0, v¢ = 0 and v7 by using the results obtained above. It is found

that there exist Vg zzzy and Vs zzzzz such that vo <0, v¢ =0 and v7 < 0 if
gzzy + 3fzzz - fa:a:(fzy + 2gyy) = Gzzy + nghzy + gyfhzz

+ 3(fozz + foehos) = foa(foy +294y) <0, (5.74)

where hzz, fizy are given in (5.59)-(5.60).

To conclude the discussion above, we have the following result.

114



Theorem 5.5. Under hypothesis (SS), the origin is asymptotically stable for
(562)7 if Jzz = 0’ Jzy + 2fz:z = 07 gzzx + 2]‘3,-_— 9zzz + nghzx + 2f12u. < 0 and
Eq. (5.74) holds.

Remark 5.4. The result given in Theorem 5.5 agrees with the one given in
Corollary 4.6. A stability criterion for the critical subsystem (5.5) with £ =0
can also be obtained from Theorem 5.5, which agrees with the one given by
Behtash and Sastry ([10], Theorem 4.1). However, the proofs given in [10] were
not stated clearly enough. Families of Liapunov functions for the whole system
(5.7) can also be obtained by using Theorem 5.5, Proposition 5.2 and Algorithm

5.1. Details are omitted.

5.5.2. Case (HS)

Next, we consider the critical case (HS), where 5 := (z,y,2),F(n,§) =
(f(z,y,2,6),9(z,y,2,¢),r(z,y,2,£)) are two three dimensional vectors. Let

the approximate solution of & be given as

#(z,y, 2) =hg,2? + heyzy + hoazz + h,,,,,y2 + hy.yz + h,y 2%, (5.75)

where the values of hz, Ay, hzzy hyy, by, and h;, have been obtained in Section
4.4 and are as given in Appendix 5.A.

Let ¢(z,y,2) = ¢(z,y, 2, ¢(z,y,2)) for ¢ = f,g,r. Thus, we have @;; =
@ij, for 1,7 € {z,y,2}. The reduced model (5.26a) can then be written as

z 0 2 0 z f(x, Y,2)
yl=1-Q 0 0 y |+ 1| g(z,y,2) |- (5.76)
z 0 0 0 z 7(z,y,2)

We now choose
Ve = p”$2 +pyyy2 +Pz222 + Vrg(a:,y,z) + vr4(3’,y, z), (‘5'77)

as a Liapunov function candidate for the reduced model (5.76), where p;z,

Pyy, Pzz > 0 and V,3,V,4 denote a cubic and a quartic functions of z,vy,z,

respectively.
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Let Vi y be the coeflicient of the term % in scalar function V,; for i = 3,4,
we have the derivative of V, along the trajectory of (5.76) as

vr 22(le22 - QZpyy)wy + 2pzzrzz23 + vlzzz + 'Uzy2z

+ v3m222 + v4x2y2 + vsy222 + UG-’U4 + v7y4

+vg2" + Ra(z,y,2) + O(ll(=z, 3, 2)II) (5.78)

with
V1 =2r35Pz0 + 2f22Pzz — Q2Vr3,2y2) (5.79)
Ve =27y P2z + 20y:Dyy + 1 Vi3 242, (5.80)

v3 = — Q9 Vs zyzz + 2P 202Dz + zfzzzpzz + Vs, 222722 + 2Vr3,22:722

+ 3Vr3,22:T22 + 922 Vrd,yez + fra V8,222 + 92:Vr3, 292

+ 2f2:Vr3, 222 + 92:Vr3,52y + 3f2:Vr3 222, (5.81)
vg = — 3Q2Vra zyyy + 3 Vra zozy + 2000yPyy + 2FryyPez + Vra zzaTyy

+ Vi3,zy2Tzy + Ves,yyzTza + 3922 Vrs,yyy + 292y Vr3,zyy

+ fozVies,opy + (Gyy + 2f2y)Vr3 22y + 3fyyVrs,zzzs (5.82)
vs =1 Vra zyzr + 2FyyeDez + 20y22Dyy + Via,yyz(Tz2 + 29y2)

+ Vis,y2:(2ry: + gyy) + 3Vrs,22:Tyy + 3922 Vr3,yyy

+ fyyVr3,z22 + fy2Vea,zyz + f2:Vr3, 299, (5.83)
ve =2frzeDer — Q2 Vra,zzzy + Vi3 222722 + 922 Vrs,22y + 3f22Vr3, 222, (5.84)
07 =0 Vra,zyyy + 20yyyPyy + Vis,ppzTyy + 395y Vra,uyy + fyyVrs,oyy, (5.85)

Vg =2fzzzpzz + 3Vr3,zzzrzz + gzzvr?o,yzz + fzzvr3,zzz, ('586)

Ra(z,y,2) denotes the remaining terms of cubic and quartic terms and the
coeflicients of cubic terms of functions f, g and 7 are given in Appendix 5.A.
It is found that Rs(z,y,2) can be zero for all z,y,z € IR independently, by

suitable choice of the functions V,3 and V,4, while there is no assumption on

nonlinear functions f, g and r for the existence of such choice. The expressions

for R are very lengthy and hence are not given.
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Since pzz,Pyy,Pzz > 0, the scalar function V, given in (5.77) is an Lp.d.f.

To check the locally negative definiteness of V, and employ Liapunov stability

criteria, we then have

Proposition 5.3. Under hypothesis (HS), the origin is asymptotically stable
for (5.76) if there exists a function given in (5.77) such that (i) pzz, pyy, Pzz > 0,
(i1) 7oz = 0, (iii) Q1pzz = N2pyy, (iv) Ra(z,y,2) = 0 for all z,y,2 € IR, (v)
vi = vg = 0, (vi) vi <0, ¢ =3,4,5 and (vii) v; < 0, ¢ = 6,7,8, where v; is
defined in (5.79)-(5.86) above.

To implement Proposition 5.3, we assume conditions (i)-(iv) hold in the

following discussions. Solving for v; = v; = 0 from Egs. (5.79)-(5.80), we have

2pzz(917'xac + Q2"'yy) + 291pzz(f:cz + gyz) = 0. (5-87)

From the previous discussion, there is no assumption on the sign of §;
(we only assume ;3 > 0). For simplicity, we choose 7z, + Q2ryy = 0 and
fzz + gyz = 0, which will guarantee that v; = vz = 0. Moreover, by letting
ve = v7 and solving for conditions (vi) and (vii) of Proposition 5.3 we obtain

the following result.

Theorem 5.6. Under hypothesis (HS), the origin is asymptotically stable for
(6.76) if rp; = 0, dryz + eryy =0, fzz + 9y =0, 51,52 < 0 and 53,54 <0 or

S3 and S, are nonzero and of different sign, where

24 R
Sl ='—_{QIQ27'zzz - Q2fzz7'yz + ngzzrzz}, («‘588)
210,

8 ~
52 =Q% T Q% {(ngzz + Q2fyz)7'yy — ngyzrzy + 3919293,”

0 2. 203
+ (ngzy - ZQ2fyy)gyy + mgzzgzy + ngzzy + —Q—z—fzzgzz

- QZfzyfyy + QlQZfzyy - Qlf::zfzy + 3Q%fuz}a (‘5'89)

,5'3 :24{202.}':;”'3/; — Qng,,rzz + Ql(gzy -+ Qf,";)gzz
+ QIQZ’gyz:c - 2Q2fzzgyy - Q?fzyfzz + QIQZszZ}a (5'90)
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) Q Q
S4 '—‘24{Qgryyz - ﬁ%(ﬂ.?fyy + Qlfu)ryz - Q_j(ng" + Q2fyz)ryy

+ (QZny + ngzz)rzz + Q2gyz7°::y + Q192"”‘\1:.1::5}- (591)

Sketch of proof: Suppose r;; = 0, Qirzz + Qaryy = 0, fz: + gy = 0 and
hypothesis (HS) holds. Also, choose V, (given in (5.77)) such that conditions
(i), (iii)-(iv) of Proposition 5.3 hold. It is found that vg < 0 if S; < 0 and there
exist Vr4 zzzy and Vig zyyy such that v = v7 < 0 and v4 < 0 when S; < 0,
under the pre-choice of V,3 and Vy4 such that Ry(z,y,2) =0 for all z,y,z € IR.
The values of v; are given in (5.79)-(5.86). Finally, we have Vy4 zyz5 such that
v3,v5 < 01f S5,54 < 0 or S3 and Sy are nonzero and of different sign. The
conclusion is directly implied by Proposition 5.3.

Remark 5.5. The result of Theorem 5.6. agrees with condition (i) of Propo-
sition 4.4 with v = 0. Similarly, families of Liapunov function for the whole
system (5.7) can be implemented by using Proposition 5.3, Theorem 5.6 and
Algorithm 5.1. Details are also omitted.

5.5.3. Case (HH)

Next, we consider the critical case (HH) for system (5.7), where n :=
(2, 7,w) and F(1,€) = (£(1, ), (1, ),7(m, £), 5(1,€)) ave four dimensional

vectors. Choose the approximate solution of center manifold h as

¢(n) = ¢(z,,2) =haz2® + hoyTy + ko2 + howaw + hyyy® + hy.yz
+ hywyw + hyy2? + hiwzw + hpww?, (5.92)

where the values of constant vectors hij, 1,7 = z,y, 2z, w have been obtained in
Section 4.5 and are as given in Appendix 5.B.

Let ¥(z,y,2,w) = ©(z,y,2,w,¢(z,y,2,w)) for ¢ = f,g,r,8. Thus, we
have ¢;; = ij, for i,j € {z,y,7z,w}. The reduced model (5.26a) can be
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written as

& 0 4 0 0 z f(z,y, z,w)

g — —QQ 0 0 0 Yy g(mv Y, 2, 'U)) ¢
1Sl 0 0 0o @)lz|t| Heyew |- B
w 0 0 -Q4 0 w i(z,y,z,w)

Similarly, let us choose

Yy = pzzmz + pyyy2 + pzzz2 + waw2 + Vrs(-’b', Y, Z) + vr4($, Y, z), (5.94)

as a Liapunov function candidate for the reduced model (5.93), where p,,
Pyys Pzzy Pww > 0 and V3, V4 denote cubic and quartic functions of z,y, z, w,

respectively. Then the derivative of V, along the trajectory of (5.93) is

Vr =2(pze — Qapyy)zy + 2(Qspzz — Qapww)zw + v19222 + vyy?w?
+ v3m222 + v4x2w2 + v5m2y2 + vsz2w2 + v7:1:4

+ vgy? + v92* + viow* + Ra(z,y, z,w) + O(||(z,y,2,w)|[°)  (5.95)

with

V1 = — QuVrg yyew + U Vrszyzr + Ves yywSzz + Vs yzwSyz + Vi3, z20Syy

+ Vi3, yyz(Tzz + 29yz) + Vra,y22(2ryz + Gyy) + 2022 yyz + 3Vr3, 22274y

+ 2§y22Pyy + 392:Vr3,yyy + fyy Vs 22z + fyzVrs,zyz + f22Vr3,2y, (5.96)
v2 =Q3Vr4, yyzw + Q1 Vra,zyww + Vrs yyo(Sww + 20yw)

+ Vis,yww(2syw + gyy) + 2Pwwdyyw + 3Vrs,wwwsyy

+ Vi3,ypzTww + Vi3 yzuTyw + Vi, zwwTyy + 20ywwPyy

+ 39wwVra,yyy + fyyVrs,zww + fywVes zyw + fuwwVrs zyy, 5.97)
v3 = — Qo Vra 2922 — QVra,zz2w + Vrd,zzwSzz + Vs, z2wSzz

+ Vs, z2wSzz + Vi3,z2:722 + 2V1r3,222T22 + 222222

+ 3Vy3.225T2s + 2F022Pzz + 9oeVra gz + feeVrs oz

+ 9zzVrs,5yz + 2f2: V3,055 + 92:Vrs,zzy + 3f2:Vrs,224, (5.98)
vy = — Q2Vrs zyww + L3 Vra,zz2w + Vis,zzw(Sww + 2fzw)
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+ 2Vi3 cwwSzw + 2Pwwdzzw + Vi3, wwwSzz + Vrs zz:Tww

+Vi,cculow + VescwwTze + 2fewwPez + GrzVes,yuw

+ f22Vr3, 20w + JzwVrs,zyw + JwwVr3,zzy + SfwwVrs, zza, 5.99)
vs = — 302 Vs zyyy + 301 Vs 222y + Vis,zzwSyy + Vis,zywSzy + Ves yywSzz

+ Vi3 z2:Tyy + Vis,zyeTzy + Vid,yyzTzz + 2G22yPyy

+ 2fryyPer + 3022 Vrayyy + 202y Vs gy + FrcVies yy

+ (9yy + 2fzy)Vrs, 2oy + 3fyyVrs 2oz, (5.100)
v = — 3 Vr4 zwww + 3V, 2220w + Vi3, 220(Sww + 2rw) + 2Vis zwwSew

+ 2Pwwdzzw + 3Vr3,wwwSzz + 3Vr3,22:Tww + 2P2:F2ww

+ Vi3, zwwlzz + §2:Vrs,yww + g20Vrs, 520 + JwwVrs yzz

+ f2:Vr3,z0w + frwVrs,zz0 + fuwVrs,zzz, (5.101)
v1 = = Vet zozy + Vis,zzwSez + Ves zz2Tze + 2fezeDez

+ 9z2Vr3,22y + 3fezVr3, 222, (5.102)
vs =1 Vra,oyyy + Vis,yywSyy + Vrs,yyzTyy + 20yyPyy

+ 394y Vrs,yyy + FyyVrs,zyy, (5.103)
V9 = — Q4 Vra 220w + Vi3 220822 + 2D22T 222 + 3Vr3, 222722

+ 2 Vrayer + fozVra,onn | (5.104)

v10 =3 Vr4 zwww + 2PwwSwww + 3Vr3, wwwSww + Vi3, zuvwlww

+ JwwVr3 yww + fwwvrs,zww, (5.105)

Rs(z,y,2,w) denotes the cubic and remaining quartic terms of V, and the
coefficients of cubic terms of functions f ,d,7,8 are given in Appendix 5.B. The
expressions for R3 are very lengthy and it can be set to zero for all z,y, z,w € IR
by suitable choice of V,3 and V,4, independent of nonlinear dynamics f,g,7,s
and values of v;. However, 1t is found that to guarantee the existence of solutions
for R3 = 0, we need to have an assumption of 21822 # af23§24, for each a €

{3,%,1,4,9}. The expressions of R are not given.
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Since prz,Pyy;Prz, Pww > 0, the scalar function V, given in (5.94) is an
lLp.df. To check the locally negative definiteness of V, (given in (5.95)) and

employ Liapunov stability criteria, we then have

Proposition 5.4. Under hypothesis (HH), the origin is asymptotically stable
for the reduced model (5.93) if 218 # a3y, for each a € {},1,1,4,9} and
there exists a function as given in (5.94) such that (i) pzz, Pyy, Pzz, Pww > 0, (ii)
1Pz = Qapyy, (i) Qspz: = Qpww, (iv) Ra(z,y,z,w) =0 for all z,y,z,w €
IR, (v) vi <0,i=1,...,6 and (vi) v; <0 for ¢ = 7,...,10, where v; are given

in (5.96)-(5.105).

To implement the stability criterion given in Proposition 5.4 in terms of
system dynamics, we assume conditions (i)-(iv) hold and let va; = vai_y, ¢ =
1,2,4,5. Solving for conditions (v) and (vi) of Proposition 5.4, we obtain a

stability criterion for the reduced model (5.93) in the next theorem.

Theorem 5.7. Suppose ;s # a€3Qy, for each a € {§,1,1,4,9}. Under
hypothesis (HH), the origin is asymptotically stable for the reduced model
(5.93) if 51,52 < 0 and 53,54 < 0 or S3 and Sy are nonzero and of different

sign, where

8

ST wra

{Ql [3(Q2§yyy + Qlfzzr) + (ngzzy + QZfzyy)]

Q2
+ gyy(ngzy - 2Q2fyy) - fzy(Q2fyy + Qlfzz) + 'Q—;gzz(gzy + 2f.1;:|:)

Q
+ Q_i[(3923yy + lezz)gyz + (3913::.1: + Q23yy)fzz]

Q
- b&[(erzz + 3Q2ryy)gyw + (eryy + 3917'a:z)fzw]

2
Q Q Tw 29 z Q w 29 Tz * Q .z
+ (491Q2—Q3Q4)Q4[ 1( 49 28y )+Q2( 4fy + 1f )] ( 4Tzy
5
— 201825 + 2styy) - (49192 — 9394)93 [91(29291110 + 93917.)
- Q2(291.)(‘:::'(1) - Q3fyz)] : (Q3Szy - 2Q2"'yy + 291"'::2)}, (5106)
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8 n R n N
Sz = M{QS [3(Q4Swww + Q3Tzzz) + (Q3sz:fzw + Q4"'zww)]

2
+ Sww(inszw - 2Q4"‘ww) - rzw(\Q47'ww + 937':1) + %szz(szw + 27':;)
4
Qs .
+ Q0 [(3Q4gww + Q3gzz)szw + (39392:: + Q4gww)7'zz]

Q
- ﬁ‘:’[(ﬂiifzz + 3Q4fww)5yw + (Q4fww + 3Q3fzz)ryz]

Q3
+ (49394 — 9192)92 [93(Q2syz - 2Q4wa) + Q4(927'3;'111 + 293"'1:)] ‘ (Q2fzw
23
— QQagzz -+ 294gww) - (49394 _ 9192)91 [Q3(2Q4Syw + Q]Szz)
- 94(2937'3/2 - erzw)] - (ngzw - 2Q4fww + 293fzz)}, (5107)
S5 = —— (2 serye + 2% Fuwsyw + UL Fwe + Fywo)]
3= QL+ 0 z2zTyz Qs 4 JwwSyw 13\ Jzww T Jyww
2 . 20 20,8
+ Ql(f:czz +gyzz) - ‘(—i;gzzrzz - mgwwszw
Q
+ 62%2:[93(9431010 + Q3sz2)(gyz + fzz) - Q4(Q4rww + Q3"'zz)(gyw + fzw)]
3
1
+ 9392 [91(93gzz + Q4gww)(gzy + zfzz) - QZ(Q3fzz + Q4fww)(fzy + 2gyy)]
1
Q zw"2\Q z Q Q Tz 2Q w - (&2 zw
T A — [Qa(Sr 37yz) + Qa(Qszz + 20usyw)] - (g
O
- - w 2Q zz
2Q4fww + 2Q3fzz) (49394 — 9192)9392 [94(927'1/ + 3T )
+ 93(9233;: - 2Q4Szw)] : (Q2fzw - 293921 + 2Q4gww)}, (5'-108)
24 1 o A
Sy = m{zrzzfzw + m[2QZTyygyw + 9392(7'3131: + Syyw)]
. . 2Q 2030
+ 93(7'3:::: + Sz:zw) - ﬁfszzfxz - _S"z‘li{if—syygyz

Q
+ Qg—gzz[ﬂl(QZny + ngxz)(sxw + rzz) - QZ(Qnyy + Qlfzz)(syw + Tyz)]
1
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1
'[QS(QI Szz + QZSyy)(szw + 27'zz) - Q4(91"'2:1 + QZTyy)(rzw + 23ww)]

t o

1
+
(40197 — Q2 Q4)0

[QZ(Q3fyz - 291fxw) + QI(Q3gxz + 2Q2gyw)] * (Qﬂlszy

{23

—2Q20y2)] - (Qurzy — 2Q1875 + 2Qa5yy)}- 5.109)

Sketch of proof: Suppose 1z # aQd38y, for each a € {3, 1,1,4,9}, and the
hypothesis (HH) holds. Also, choose V, (given in (5.94)) such that conditions
(i)-(iv) of Proposition 5.4 hold. It is found that there exist Viq,rzzy and Vi zyyy
such that v7 = vs < 0 and vs < 0if S; < 0, and we have Vr4,zwww and Veg 2220
such that vg = v19 < 0 and v¢ < 0 when S < 0. The values of v; are defined in
(5.96)-(5.105). Moreover, there exist Vrd,zyzzy Vrd,zywws Vra,zzzw a0d Veg yyzw
such that vy = vy <0 and v3 = vy < 0if S3,5; <0 or S5 and S, are nonzero
and of different sign. The conclusion readily follows from Proposition 5.4.

Remark 5.6. The result of Theorem 5.7 agrees with the one given in Propo-
. sition 4.6 with u = 0. Families of Liapunov function for the full model can be

constructed by applying Proposition 5.4, Theorem 5.7 and Algorithm 5.1.
5.6. Concluding Remarks

In this chapter,we have proposed a method for constructing families of Li-
apunov functions for nonlinear systems, specifically, when the Jacobian matrix
of the system has eigenvalues lying on the imaginary axis and the remaining
eigenvalues are stable. The Center manifold reduction technique is employed
here to simplify the complexity of the proposed Liapunov functions. Finally,
families of Liapunov functions for the simple critical case (SC) and the com-
pound critical case (CC) are obtained to demonstrate the proposed method. It
is found that the stability criteria obtained in this chapter for the critical cases

(SC) and (CC) agree with those derived in Chapters 3 and 4 by using normal

123



form reduction.
Appendix 5.A

The values of hgg, hgy, hgzy hyy, by, and h,, are given below.

zy —(Agz + 40, QzI)_l(--zQszy + 200G,z + Azszy)

h
h

T "'A2_21(Gzz + Qthy)

_-(A§2 + Q1 QZI)—I(A22G1,': - QZGyz)
—.A;21(ny - Ql hzy)

I

rz

I

vy

h
h
hy: = —(AZ, + Q:1921) 7 (422 Gy + 2 Ges)
h

-1
2z = —Azz Gzz-

Moreover, the coefficients of cubic terms of functions f,§,7 are defined in
the form as given below.
Giii =piii + pichii
BPiij =piij + Pichi; + @jehii
Pijk =@ijk + @ichjt + wighic + rehi;
where ¢ € {f,g,r} and all 7, 7, k are distinct with ¢, 5,k € {z,y, z}.

Appendix 5.B

The values of hyy, hyy, by, are the same as ones given in Appendix 5.A.

The values of remaining terms of h;j, 1,j € {z,y,2,w} are given as below.

Bow = —(A2y + 42324 1) (=22 Guww + 223G, + A22G.w)
hzz = "’Az-zl (Gzz + Q4hzw)
hww = “Az—zl(wa - Q:!hzw)

e - (G o
(hw) = (M? + Q1) 1{M(Gm) e (G:w)}
. e Gy
(h:w) = (M* + QuQI)" { (sz>+M(G:"’>}
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where

_f Az Ul
M._(_M An).

Moreover, the coefficients of cubic terms of functions f,g,f-,§ are of the
form
Piii =Piii + Pichii
Biij =piij + pichij + @jehii

Pijk =pijk + pichjx + @jechik + @rehi;

where ¢ € {f,g,7,s} and all 7, j, k are distinct with 7,5,k € {z,y, z,w}.

125



CHAPTER
SIX

STATION-KEEPING CONTROL OF TSS:
ONE CRITICAL MODE

In the following three chapters, we apply the existing control theory to
the stabilization and control of a tethered satellite system which is introduced
in Section 1.2. First, in this chapter we employ a bifurcation stability result
to design stabilizing control laws for the TSS during station-keeping. Another
approach for station-keeping control is studied in Chapter 7 by using the center
manifold reduction technique proposed in Section 4.6. Finally, a constant in-
plane angle control technique is proposed in Chapter 8 for the deployment and
the retrieval of the subsatellite of a TSS.

After deriving a set of dynamic equations governing the dynamics of a
Tethered Satellite System (TSS), stabilizing tension control laws for the TSS
during station-keeping in feedback form are derived in this chapter. The tether
is assumed rigid and massless, and the equations of motion are derived using
the system Lagrangian. It is observed that, to stabilize the system, tools from
stability analysis of critical nonlinear systems must be applied. This result
employs tools related to the Hopf Bifurcation Theorem in the construction of

the stabilizing control laws, which may be taken purely linear. Simulations
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illustrate the nature of the conclusions, and show that nonlinear terms in the

feedback can be used to significantly improve the transient response.

6.1. Introduction

The topic of Tethered Satellite Systems (TSS) has received considerable
attention in recent years (e.g., [5], [8], [9], [12], [20]-[22], [24], [37]-[39], [66]-
[73]). Potential applications of these systems include deployment and retrieval
of satellites, aiding in space-assembly tasks, use of electrodynamic tethers for
electric power generation [74, p. 4-259], and tethering platforms with an in-
frared telescope above the Space Station for observing stellar and planetary
objects [74, p. 4-263]. For other potential applications, and a discussion of
early research on tethered satellites, the reader is referred to Rupp and Laue
[81].

In this chapter, we focus on the issue of stabilization of a tethered satellite
system during the station-keeping mode. Specifically, consider the TSS depicted
in Figure 1.1. Here, a large satellite is tethered to a smaller subsatellite and the
configuration is in a circular orbit around the Earth. During station-keeping,
a subsatellite is controlled so as to follow a prescribed orbit to within a set
tolerance [59, p. 220]. By assuming the satellite to be much more massive than
the subsatellite, and that the satellite follows a perfect circular orbit, we are
able to focus attention on the station-keeping control of the subsatellite. This is
accomplished through the design of tether tension control laws in feedback form
which result in regulating the position of the subsatellite relative to the satel-
lite, while simultaneously regulating the tether length at a prescribed nominal
value. The proposed tension control law is implemented, say, using a reel-type
mechanism.

The result makes use of several simplifying assumptions. For instance, the
tether is assumed rigid and massless. With these assumptions, the TSS can be
described by a sct of ordinary differential equations. The system Lagrangian

is used to obtain these equations. Next, we observe that linear feedback-type
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tension control laws can place all but two poles of the system. These two
poles are a complex conjugate pair of pure imaginary eigenvalues of the system
linearization. To stabilize the system, therefore, tools from stability analysis of
critical nonlinear systems must be applied. Our approach is to use the technique
of [1] as summarized in Section 2.4, in which Hopf bifurcation calculations are
employed to construct stabilizing control laws. First, a class of purely linear
stabilizing feedback control laws are given. Next, nonlinear stabilizing control
laws are developed. Simulations are presented which allow one to compare the
transient response of the system with the two types of feedback. The additional
freedom afforded by the inclusion of nonlinear terms can be used to obtain a

significant improvement in the speed of the transient response.

Notation

E - Earth

S - Satellite

m - Subsatellite and subsatellite mass

G - Gravitational constant

M, m, - Mass of the Earth, mass of the satellite

(Zm,Ym, 2m ) - Earth-based rotating Cartesian coordinates of subsatellite, with
Zm in the local outgoing vertical direction, and z,, in the direction of
motion of the satellite in its orbit (see Figure 6.1)

(2s,Ys,2s) - Earth-based rotating coordinates of the satellite

(£, Um, #m) - Inertial coordinates of subsatellite

(£s,3s, 2s) - Inertial coordinates of the satellite

Q - Constant angular velocity of the satellite in circular orbit

6, ¢ - In-plane angle and out-of-plane angle of subsatellite relative to the local
vertical

w¢ = é, wg := 0, £ - Tether length, v := ‘

To, T'm - Radius of the satellite orbit, radius of subsatellite orbit

T, T¢ - Generalized torques in directions 6, ¢
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Fy - Generalized force along tether

F = Z’c%?;é + 1}(}3 + F[é, where a hat indicates a unit vector in the given

direction

6.2. System Model

Referring to the depictions in Figures 1.1 and 6.1, a mathematical model
of the TSS may be derived. Assume the satellite and the subsatellite are point
masses and the tether is massless and rigid. Moreover, take the mass of the
satellite to be much larger than that of the subsatellite (i.e., m, > m). This
allows us to take the center of mass of the TSS to be the satellite, and to consider
the satellite as being in a circular orbit around the Earth. In addition, the

gravitational attraction between the subsatellite and the satellite is neglected.

Subsatellite (m)

s

E (Earth)

Figure 6.1. Rotating coordinate system
It is evident from Figure 6.1 that we have the relationships

Zy = Lcos $sind (6.1)
Ym = £sing (6.2)
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Zm =710 + £cospcos b (6.3)
r: =12 4+ 0% + 2rglcos ¢ cosd. (6.4)

T cosQ 0 sin{i T
Um 0 0 Ym
ém) —sinfdt 0 cos Qt) (zm)
T cos sin (2t 0
gs = 0 0 0
(23) (—sith 0 cos{it (ro)

where the equations above fix a particular choice of time reference.

Also,

[y

]

= O

Since the tether is assumed to be massless, the total kinetic energy of the
system is given by
1 22 .2 .2 1 .2 22 )
KE = gmy(2, + 9, +2,)+ 5m(Em + Im + £n)
1

= Emanrg + %m{é2 + 0292 + £2 cos® ¢(6 + Q)% + Q%2

+ 2Qrof cos ¢ sin 8 — 2Qro€sin ¢ sin B + 2oL cos ¢ cos 8(6 + Q)}(6.5)

- The potential energy of the system arises solely from gravity and is given by

PE — _G'Mms _ GMm.

To Tm

Moreover, since the satellite is assumed to be in a circular orbit, it is in a zero-g

orbit. Thus
GMm,

D)
To

= maﬂzro,

or more succinctly GM = Q2r3. Writing the expression for the system La-
grangian L = KE — PE and invoking the Lagrangian formulation of dynamics,

the dynamic equations of the system are found to be

79 = ml? cos? {6 + 2%(9 + Q) - 2tan ¢(6 + Q)¢
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Q?rysin b ro
+ Lcos ¢ (1= ;z’:)} (6.8)

7o = ml{ + 2§¢ + cos ¢ sin ¢(8 + Q)?

92 To

T

3
cos fsin ¢(1 — ,,13"’")} (6.7)

Fy =m{f - 4($)? - Lcos® (6 + Q)?

92 30 3
+ r§0 — 2%ry cos p cos 6(1 — :TO)} (6.8)

For the limiting case ro >> ¢, we have rp, ~ ro, and Eq. (6.4) implies

ra £
1 — —- ~3cos$cosf—. (6.9)
Tm To

According to Eq. (6.9), the approximate motion equation of the system for the

case r9 > £ is found to be
F = ml{f — £4% — Lcos? $(6 + Q)? + £0? — 3Q%L cos® ¢ cos? 6}
+ mB{8cos ¢ + 2(6 + Q)(£ cos ¢ — £ sin ¢) + 3¢ cos b cos p sin H}
+ m{ld + 264 + £ cos ¢ sin ¢(§ + Q) + 3£Q? cos® f cos $sin ¢},

which agrees with the model derived by Arnold [5] using the gravity gradient
method. Note that in the analysis of the following sections, we do not assume

ro > £.
6.3. Analysis and Control in the Station-Keeping Mode
6.3.1. Model in State-Space Form

Suppose cos¢ # 0 (ie., ¢ # £7) and let the applied tension force be
the only external force acting on the system. Thus, for instance, we neglect
effects of a rotating atmosphere, the Earth’s magnetic force, solar radiation,
and the oblateness of the Earth. We do not take into account the mechanism
for commanding the desired tether tension, although one can imagine it to be

controlled by a reel mechanism.
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Since (i) we have modeled satellite and subsatellite as point masses, (i)

the tether is assumed rigid, and (iii) there are no external forces besides the

commanded tether tension, we conclude that the generalized forces acting on

the subsatellite are F; = T, 7y = 0, 74 = 0. Egs.

rewritten in state space form as follows:

(6.6)-(6.8) can now be

¢ =wy (6.10)
2 3

bp = _?g% ~ Lain@g)ws + )2 = & 7 cos sin (1 — L) (611)
0 = wp (6.12)

. 2v 02 {2"rg sin§ sm9 rs ,
we = — 7 (we + Q) + 2tan ¢(w0 + Q)w¢ - E cos Tm (613)
{=v (6.14)

2
U—€w¢+€cos d(we + Q) — L rE
9 p r3 T

+ Q%rg cos @ cos ¢(1 — ;3:) + — (6.15)

For the case in which the tether length is held constant (i.e., f=v = 0,

£ = £* = a constant), the conditions for an equilibrium point are § = nr and

¢ = mm, where n,m are integers. (We disregard another apparent possibility

for ¢, since the corresponding equation has no solution for ¢ when 6 = nrx.)
At the equilibrium point (0,0,0,0) when only Eqs. (6.10)-(6.13) are considered
with v = 0, the linearized system of Eqs. (6.10)-(6.13) has the two conjugate

pairs of pure imaginary eigenvalues

. To
/\1’2 = :!:ZQJ]. -+ z—;(l —_ 1"3_),

~ $32Q, for ro > £*

’ S
~ +iv3Q, for ro > £*
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where

Tm,0 = To + £*. (6.18)

The eigenvalues A1 are associated with Eqs. (6.10) and (6.11), i.e., with the
out-of-plane dynamics, and A3 4 are associated with Eqgs. (6.12) and (6.13), i.e.,
with the in-plane dynamics.

The appearance of pure imaginary eigenvalues suggests the possibility of
oscillations near the equilibrium point (0,0,0,0). Specifically, if the reel mech-
anism acts like a latch, resulting in a fixed tether length, the system may have
librations with two distinct frequencies along with the orbital motion.

In the sequel, we consider the problem of designing tension control laws
rendering the TSS asymptotically stable in the station-keeping mode. The main
difficulty will be the presence of the two pairs of pure imaginary eigenvalues,
and the uncontrollability of one of these pairs.

The conditions for an equilibrium point of system (6.10)-(6.15) are

3
0=Q%sin¢{ cosd + %0 cos6(1 — :TO) } (6.19)
2rg sind s
0= W(l - ;?:) (6.20)
2,3 3
0 =£07cos® ¢ — L :Oe + Q%7 cos f cos ¢(1 — 139-) + T (6.21)
r3, r3’  m

where the applied tension force T' (applied through a reel mechanism) may be
constrained to satisfy (6.21). From the definition of out-of-plane angle ¢, we
have —% < ¢ < . There are hence only two equilibrium points: (0, 0, 0, 0, £*,
0) and (0, 0, =, 0, £*, 0) if the tether length is fixed at, say, £ = £*. In our paper
[3], it is observed that the set ¢ = 0, wg = 0 is an invariant manifold for Egs.
(6.10)-(6.15), regardless of the form of the tension control law T'. Although
this implies that the system (6.10)-(6.15) is uncontrollable, we find below that
there does exist a control strategy stabilizing the system. With an assumed

rigid and massless tether, there may appear to be no constraint on the value of
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the applied tension force T'. In reality, however, the tether is not rigid. Thus
the subsatellite cannot be pushed away from the satellite by the applied tension
force through the tether. Note that, in this chapter, the sign convention implies
that a positive value of tension would correspond to a slack tether. Hence, in
the sequel we restrict the applied tension force T to assume only nonpositive
values. Although the conclusions we will reach will also apply to the model
(6.10)-(6.15) in the absence of this restriction, they would no longer relate to
the physical problem.

6.3.2. Stabilization for In-Plane Angle Near 6 =0

Let zo = (0,0,0,0,¢*,0)" and X = z — z¢, where z = (¢, wy, 0, wg, £, v)’.
Then the Taylor expansion of the right side of Egs. (6.10)-(6.15) is, to third

order in X,

T |
%X = LoX + Qo(X, X) + Co(X, X, X) +eU + e, (6.22)

where the matrix Lg, the quadratic form Qp, the cubic form Cjy, the vector e
and the scalar U are given, in terms of parameters a; defined in Appendix 6.4,

by

0 1 0 0 0 0
a2 0 0 0 0 0
I = 0 0 0 1 0 0
™1 0 0 -a2 0 0 “3[?' ’

0 0 O 0 0 1
0 0 0 200 a3 O

0 -~

—2Q0¢wg + a1l — Fwysv
0
QO(X’ X) = a1292_ %wgv + QQqSuu,«, 4 %.—%Z’U ’

0
as0? + E*wg + 2Quwel + as¢? + e*w:‘; + a3 2
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0
agh?p — wgqﬁ +a7¢® + ag¢l72 + T%w,,sgv

_ 0
Co(X, X, X) = agf® + a108¢? + azb0? + 2¢wywe + l.%wggv — 33,220 !
0
a140%0 + wgg—— 20*Qugd? + a11628 + w3,57+ a5
e = (0,0,0,0,0,1)
7= (3rae* + 3rol*? 4 £*°)Q?
- (ro +£%)
where £ := £ — £*. The expressions above have been verified using the code
MACSYMA.!

Case 6.1: Linear State Feedback

Our first design is that of a tension control law in linear state feedback
form which stabilizes the system. The design is carried out in two steps. The
first, addressed in Lemma 6.1 and Corollary 6.1 below, is to give conditions
on the linear state feedback ensuring that four of the eigenvalues of system
(6.10)-(6.15) are moved to the left half of the complex plane. These eigenvalues

correspond to the “in-plane variables” (8, wg, Z, v).

Lemma 6.1. If the following conditions hold, then the tension control force
T =m(-U — k16 — kqwy — ksl — k4v) stabilizes the “in-plane Jacobian matrix”
at the equilibrium point zy, i.e., the Jacobian matrix of Eqs. (6.12)-(6.15) with

respect to the vector (6, wg,é,v):

(l) k4 >0
(11) bl,b2,b3 >0

where

(27‘06*2 + 6*3)92 2Qk2

2 |
Ew T + 402, (6.23)

by = k3

1 MACSYMA is a trademark of Symbolics, Inc., Cambridge, MA.
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_ k4(37‘3 + 3r(2,€* + 7‘06*2)92 2Qk1
(.,.0 + e*)S o* ’
_(3rd +3r20F 4 rol*2)Q2
(ro +£*)?

b2 (6.24)

(3r3 + 3r20* + 3rol*? 4 £*3)Q2
(ro +¢*)3

b3 (ks — ){6.25)

Sketch of proof: The linearization of (6.22) upon application of the linear state
feedback T above is given by

d .
ZX = '
dt LOXa
where
0 1 0 0 0 0
—-a? 0 O 0 0 0
Fo— 0O 0 O 1 0 0
=1 0o 0 —d} 0 0 -2
0 0 O 0 0 1
0 0 —kl --k2 + QZ*Q -—k3 + as —k4

Hence the characteristic equation of the closed-loop system is

()\2 + af) ()\4 + k4A3 + b1/\2 + b\ + ba) =0, (626)

where b;, i = 1, ..., 3 are as defined in Eqgs. (6.23)-(6.25). The lemma follows
readily by applying the Routh-Hurwitz test to the second polynomial factor in
the left side of Eq. (6.26).

The next result follows readily from Lemma 6.1, and demonstrates that the
set of feedbacks of Lemma 6.1 is not vacuous, at least in the practically inter-
esting case ro 3> £*. The result also holds for larger £*, but the corresponding

conditions on the feedback gains become very complicated.

Corollary 6.1. If ry > £*, the conclusion of Lemma 6.1 holds when any of the
following three conditions is satisfied:

(1) 0> k1 > £*Qka(1 — 5535), k2 = 0, k3 > 302, and k4 > 0;

(ii) 0 > k1 > koky, ka2 <0, k3 > 307, and kg > 0;
(iii) k1 = 0, ky < min{20€*, £ ks + 3Q?}, k3 > 3Q2, and k4 > 0.
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From the closed-loop characteristic equation (6.26), we infer that the sys-
tem has an uncontrollable pair of pure imaginary eigenvalues. Moreover, it is
easy to see that even when the states ¢ and wy are used in the tension control
law, these two pure imaginary eigenvalues remain fixed. Hence the stability of
the closed-loop system cannot be identified from the linearized model alone.

The closed-loop system (upon application of a feedback law as in Lemma
6.1 or Corollary 6.1) is approximated, to third order in X, by

d ~ :
EZX =LoX + Qo(X,X) + Co(X, X, X) (6.27)

in which Lo has a complex conjugate pair of pure imaginary eigenvalues, with
the remaining eigenvalues in the left half of the complex plane. This situation
is an example of a critical case in nonlinear stability analysis. Its resolution
may be approached via results on Hopf bifurcation for one-parameter families
of nonlinear systems (see, e.g., [34]). The local asymptotic stability of the origin
of Eq. (6.27) can be concluded from the negativity of an associated “stability
coefficient,” often denoted by 2. The value of this coeflicient can be obtained
in several ways. One can, for instance, study normal forms of Eq. (6.27). Alter-
natively, one observes that, in the situation at-hand, smooth parametrizations
of (6.27) will typically exhibit a Hopf bifurcation. The stability of the bifur-
cated periodic solutions, as well as that of the origin of (6.27), follows from the
negativity of the Floquet exponents of these periodic solutions. The stability
coefficient B2 can be obtained as the leading coefficient in an asymptotic ex-
pansion of the critical Floquet exponent. The coefficient f; may be computed
systematically. When B, < 0, the equilibrium point is locally asymptotically
stable, while B, > 0 implies instability of the equilibrium. The case 2 = 0 is
inconclusive regarding stability. We now proceed to use an algorithm for the
computation of B as given in Lemma 2.9 (see for instance [1], [34]) to determine
the dependence of 32 on the gains k;, 2 =1,...,4.

Denote by r and [ the right (column) and left (row) eigenvectors, respec-

tively, of Lo corresponding to the imaginary eigenvalue ia;. Requiring Ir = 1,
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we have

r =(1,1a1,0,0,0,0) (6.28)
—_— 1 y 1 {
1= (50i5,-0,0,0,0) (6.29)

Next, solve the equations

~Loa = %Qo(r, 7) (6.30)
(2ia; I — Lo)b = %Qo(r, r) (6.31)

for the vectors a and b. Here, an overbar denotes complex conjugation and I

denotes the identity matrix. We find

as — K*a% , ,
a=(0,0,0,0,—————1L ¢ 6.32
( s ) (6.32)
b= (Oa 0,c1 y €2, €3, 64),’ (633)

where the q; are as in Appendix 6.A, and the ¢; and d; are given by

1 as E*a%

= —_— == - — - - = * 6.34
c1 di tids 2 + ) (k3 as) k4a1£ } (6.34)
Cy = 2?:(11 C1 (635)
A zé*(4a1 - a2) .
C3 —4 4 4a1Q C1 (6.36)
ey £*(4a? — az)
and
2*k
di=ki+ 94 (4a? — a?) (6.38)
d2 = 2a1(k2 b 25*9) + —— (4a1 az)( as + 4a% - k3) (639)

In general, the value of the bifurcation stability coefficient §; is given by

the formula

Bz = 2Re{21Q0(r, a) + IQo(F, b) + %lCo(r, r 7)) (6.40)
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In our case, we then have

1 (6r) + 4r2e* + rp*2)Q2? ay
ﬂz = o { QIm(62) + 2(1"0 +£*)4 Im(Ca) + e—*RC(C4)}
ds
= a . Re(cl), 1[641)

where (assuming * < r)

0*(4at — ad) (6r3 + 4r20* + re*?)Q2

dy = —2a;Q —
3 “ 8019 (7‘0 +£*)4

a1(4a? — a?)
20

1 as £*a?
Re(er) = {(22 + 241
di+di 2 2

+ 0 (6.42)

e* 1 ,
- Z(k;; —_ a3))d1 - §k4a1£*d2}. (643)

Since a; > 0, d3 > 0, and since stability is implied by 8, < 0, we have the

following result.
Theorem 6.1. If a linear state feedback controller T as defined in Lemma 6.1

is applied, with

as f*a% £*
2 + 2 4

1
(k3 - ag))dl - -2-k4a1€*d2 < 0,

then the equilibrium point z¢ will be rendered asymptotically stable for the
system (6.10)-(6.15).

The next result readily follows from Theorem 6.1 and Corollary 6.1.
Corollary 6.2. If o > £* and a linear state feedback control T as in Lemma
6.1 is applied, with either of the following three conditions satisfied, then the
conclusion of Theorem 6.1 holds:

(1) 0> k1 > £*Qks(1 — 552), k2 = 0, 3Q? < k3 < 14Q2, and ky > 0;
(i) 0 > k1 > koks, 0 > ko > 200 — 2352(19 — &3 302 < k3 < 1402, and
ky > 0;
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(iii) k1 = 0, min {2Q¢*,302} > ky > 20*Q — 13882(19 — X3) 302 < ky < 1402,

Case 6.2: Nonlinear State Feedback

Next we present a result on stabilization with a tension control law in-
cluding both linear and nonlinear terms. The nonlinear terms introduce more
flexibility in the design, and, as will be seen in Section 6.4, can lead to superior
transient response.

By computing the eigenvectors [ and r and using the formula (6.40) for
B2, we find that any cubic term in the feedback has no effect on the value of
B2. We are therefore led to hypothesize a feedback containing only linear and
quadratic terms. The component of the closed-loop quadratic term Qo(X,X)
depending on the states 8, wy, 7 or v is also found to have no effect on 8. The
next theorem gives conditions for a nonlinear feedback, of the form motivated

by these observations, to be stabilizing.

Theorem 6.2. If condition (6.44) below holds, then the applied tension control
force T = m(—U — k16 — kowg — ksl — kgv — q19% — qadwg — q;;wi) stabilizes the
system (6.10)-(6.15), where the k;, ¢ = 1, ..., 4 satisfy the conditions of Lemma
6.1.

~q1 +as £* 4+ g3
( 2 +( 2

e*
Jai — (ks — aa)z)dl + 012_1(__q2 —£%ky)d; < 0(6.44)

Here, d1, dy are given in Eqgs. (6.38) and (6.39), and the a; are as specified in
Appendix 6.A.

The proof entails checking the effect on the value of f; of adding the extra
quadratic term —(q1¢% + g2dwy + q3w35) in the last row of Qo(X,X).

As mentioned above, inclusion of nonlinear terms in the feedback control
may be used to improve the transient response of the stabilized system. In
particular, the rate at which system trajectories decay toward the equilibrium
point may be significantly increased. Simulation evidence for this is given in

Section 6.4.
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It is not difficult to give analytical reasoning to support this conclusion,
and to guide in the tuning of the linear and quadratic feedback gains. Assume
ro > £*, and use Eq. (6.40) with a feedback of the form given in Theorem 6.2

to ascertain the approximate formula

90 —q1 +as £ 4q3, , e*
B2 =~ NE 1 dg){( 2 + ( 5 Jay — (k3 — aa)z)d1
ax * ‘
+ 5 (=2 = £ka)ds}. (6.45)

Eq. (6.45) can be used to show that, if 7o > £* and the linear gains k;, 1 = 1,
..., 4, are chosen according to condition (i) of Corollary 6.2, with k; = 0, then
B2 may be rendered as negative as desired simply by setting the quadratic gains
g2 = ¢3 = 0 and taking ¢; > 0 and sufficiently large. Thus the gains k; may
be used to place four of the eigenvalues of (6.10)-(6.15) in the left half of the
complex plane, while, independently, the gains ¢;, 1 = 1,2,3, are used to make

B2 negative and of large magnitude.
6.3.3. Stabilization for In-Plane Angle Near § =7

Similarly, now let z, = (0,0,,0,£*,0) denote the equilibrium point of
interest, and X = z — z, be the differential state variation. Then the system
(6.10)-(6.15), to third order near the equilibrium point z,, may be written as

follows

T
%X = LoX + Qu(X, X) + Cu(X, X, X) + €U + .

Here, Ly, Qx, Cx are as identified in Appendix 6.B. The next lemma is analo-
gous to Lemma 6.1, and so is stated without proof.

Lemma 6.2. Let the applied tension force be of the form T' = m(—Uz — k18 —
kowe — k3l — ksv), where §:=60—7 and wg := 5 = @. Then the “in-plane”
Jacobian matrix of Egs. (6.12)-(6.15), i.e., the Jacobian of the right side of

(6.12)-(6.15) with respect to (é, we, £, v), will be stable at the equilibrium point

Ta, if ki, 2 =1, ..., 4, satisfy the following conditions:
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(i) k4 > 0,
(ii) hi, ha,hs > 0, and
(ii1) kgh1hg — hZ — k2hs > 0.
Here, the auxiliary parameters hy, hs, h3 are given by

(2rol — )02 20k,

hl = k3 (7'0 — f*)3 6*

+ 40?2, (6.46)

k4(37‘3 hnd 37‘2£* + r0£*2)92 QQ’CI
N YR e (647

(3r3 — 3r2e* + 3rgl*? — £*3)Q2
(7‘0 - E*)3

he = (3ry — 3rZe* 4+ rol*2)02
3 (T‘g -_ E*)3

(ks — )(6.48)

Corollaries 1 and 2 remain valid. The detailed statements need not be

given.
6.4. Simulation Results
A TSS with the following characteristics is considered:

e Nominal tether length £* = 100 km,

e Orbital radius ro = 6598 km,

e Satellite mass m = 170 kg,

¢ Orbital angular velocity 2 = 0.0011781 radians/second.

Let the equilibrium point of interest of (6.10)-(6.15) be o = (0,0, 0,0, £*,0)'.
Simulation results will now be presented which illustrate the system dynamics
for the various types of control studied in this chapter.

Let the initial conditions of the system be ¢ = 0.01 radians, § = —-0.01

radians, and wg = wg = 0.
Ezample 6.1. ( No tension control: latch mechanism)

Suppose the reel mechanism acts like a latch fixing £ at £*. The system
response for the in-plane angle 8 and the out-of-plane angle ¢ are shown in
Figures 6.2(a) and 6.2(b), respectively. We observe an apparent undamped

oscillation near the equilibrium point zo.
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Ezample 6.2. (Linear stabilizing feedback)

The tension controller is taken as T = —ﬁ(U+k3Z+ k4v), with k3 = 3.1Q2,
ks = 0.0034, and U = 0.41019. The control law is stabilizing, as can be checked
using Theorem 6.1. Indeed, f; ~ —0.0004 for the closed-loop system. The
response of the variables of ¢, 8, and the deviation Z of the tether length are
shown in Figures 6.3(a), 6.3(b) and 6.3(c), respectively. However, it is not easy
to see in Figure 6.3(a) any decay of the oscillation in the out-of-plane angle ¢.
This may be attributed to the fact that |3;| is small. The applied tension force

is shown in Figure 6.3(d).
Ezample 6.3. (Linear-plus-quadratic stabilizing feedback)

Let the tension control law be of the form

T = —m(U + ksl + kgv + 18* + q2w4 + g303), (6.49)

where U = 0.41019. The out-of-plane angle ¢ decays when ks = 3.102, ky =
0.0034, ¢; = 1500, and ¢; = g3 = 0 as, shown in Figure 6.4(a). However, this is
at the expense of large variations in § and Z, as depicted in Figures 6.4(b) and

6.4(c). The applied tension force is shown in Figure 6.4(d).
Ezample 6.4. (Linear-plus-quadratic stabilizing feedback)

A further example is depicted in Figure 6.5. In this example, k3, k4 and
g3 are unchanged from their previous values (given in Example 6.3), but now

q1 =0, and g, = 108.
Ezample 6.5. (Switching-type stabilizing feedback)
Figure 6.6 relates to an example invoking a switching control strategy. The

nonlinear feedback control law of Example 6.3 is used for the first 5 hours of

the simulation. Then the control law is switched to a purely linear feedback

with the parameters values specified in Example 6.2.
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Figure 6.2. Simulation results for uncontrolled system
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Figure 6.3. Simulation results for linear feedback system
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Figure 6.4. Simulation results for nonlinear feedback system (g, = 1500)
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Figure 6.5. Simulation results for nonlinear feedback system (g2 = 109)
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Figure 6.6. Simulation results for switching-controlled system

6.5. Concluding Remarks

In this chapter, we have presented analytical designs of tension feedback
control laws for the stabilization of the tethered satellite system during station-
keeping. These designs are based on calculations related to Hopf bifurcation
stability. The calculations have been performed for a model of the tethered
satellite system derived under several simplifying assumptions. This model is
characterized by its nonlinearity and the existence of two critical modes, one of
which cannot be removed by (linear) feedback. Notwithstanding this fact, we
have been able to construct stabilizing controllers using linear and/or quadratic
feedback. Cubic terms were not included in the feedback laws since the nonlin-
ear stability calculations indicated that their effect might be of only secondary
significance. Moreover, simulation was used to demonstrate the validity of the
analytical designs. The simulations also indicated the importance of quadratic
feedback of the out-of-plane angle ¢ and/or the out-of-plane angular rate wy in

improving the transient response of the out-of-plane variables, i.e., in dampen-
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ing the roll oscillations.

Regarding the issue of how to achieve further improvements in the transient
response, several possibilities arise. Optimization-based computer-aided design
tools can be applied to systematically search for linear and/or nonlinear control
gains resulting in a suboptimal transient response. If other actuators, such as
subsatellite thrusters or tether base movement, are available in addition to
tether tension control, then one expects improved transient performance.
Appendix 6.A

The values of the coefficients a;, 2 =1, ..., 15 are as listed below.

43 2 % *2 *3‘
al:(( rg + 6rgl* + 4rol* + ¢ ))1/2Q

(ro +£*)3
4y = ((31'(3, + 3r2e* + rof*z))l/zﬂ
(ro +£%)3
o (3r3 + 3rie* + 3rpl*? + £*3)Q2
- (ro +£+)3
(613 +6r3e*? + 4rde*® + rol*)Q?
= (ro + £*)°
_ (Brier 4 14r30%% 4 16r20*3 + 9rol* + 20*°)22
% = 2(7’0 + E*)4
_(6r) +9rg* +10r30*2 + 5r20*% 4 rof*)Q?
% = 2(ro + £*)°
1613 + 29r20* 4 50r30*2 4 45r20*3 4 21rgf*4 + 4£*5)Q?
ar = 0 0 0 0
7 6(7‘0 + Z*)5
o — _(107‘8 + 5r2e* + ro£*?)Q2
o (ro +£+)°
(1203 +9rd* 4+ 10r36*2 4 5r20*3 4 ro*4)Q2
%= 6(ro + £*)°
o (27r4e* 4 30r3£*2 4+ 15r3£* + 3rol**)Q?
a0 = 6(7‘0 + 8*)5
o (4rf 4 2rfer + 10r36*% + 1072£*3 + 5rof* + £*°)Q?
a’ll - (7'0 +£*)5
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_(6r3 +4r3 e + rel*)Q2

a2 (ro + £°)*

Gon = 3rng

(s

14 (ro + €775
4r30)?

Appendix 6.B
The system model (6.10)-(6.15) is approximated, to third order in the

states, near the equilibrium point z, by

X=L:X+Q«(X,X)+ Cu(X, X, X)+eUx + e%

where
0 1 0 0 0 0
—f£ 0 o 0 0 0
I = 0 0 O 1 0 0
1 0 0 -f2 o0 o0 -2
0 0 O 0 0 1
0 0 0 20*Q fs 0
0 -~
—2Q0¢wy + f12¢€ — %wd,v
. 0
Qr = f126¢ — f;wgv + 2Qdwy + f—.ﬂfgv
0

Fub® + 10 + 2Qwol + f5¢? + £°w3 + fial?

0
f60%¢ —wid + f1° + fadl® + FErwylv
0
Cr = £o0° + f1009% + fo00% + 2¢wgws + FZrwelv — 2%
0

F14027 4+ W38 — 20*Qupd? + f1162 + 2L+ fi5f

(32" — 3ref? 4 £9)0?

U (ro — £*)?
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e 1s given in Section 6.3.2 and the values of f;, 7 =1, ..., 15 are

(4r3 — 6r20* + drgl*? — £*3) 1/2q)
fl = ( (7'0 _e*)g )

o (B8 =3 4 ry)
J2 =

ot

(83 = 3rdL* + 3rol*? — £22)Q?

fo= (6rae* — 6r30*? +4r2e*3 — ro0*)Q2?
T 2(ro — £*)*
f = (8rée* — 14r30*2 4 16r20*3 — 9rol*t 4 24*5)()2
I8 2(7‘0 - f*)"
fo = (613 — IrgL* + 10r36*2 — 5r2 03 + rof*4)Q2
2(7‘0 - [*)5
5, = (161 — 20040 + 50r30? — 450302 4 21rot+t — 4)02
T 6(‘!‘0 —_ f*)"r’
fo= _(10r§ — Brie* + rol**)Q?
& (ro — £%)3
fom (12r§ — 9rde* 4+ 10r30*2 — 5r20*2 4 ro€*4)Q?
.  6(rg —L£*)F
fio = (2Tr5* — 30r30*2 + 15r20*3 — 3rof**)Q2
1= 6(7‘0 — K*)5
fu = (4rs — 2r50* + 10r30*2 — 10r2€*3 + 5rof*t — £*°)Q2
fiz = (673 — 4r2e* + rol*?)Q2
12 — (7'0 _ e*)4

fio = 3r3Q?
13 — (T‘O ——E*)4

Fra = _(37’3 + 3rge*)Q?
w= (ro — £)5

fis = 4r3Q)2
15 = """““"'_(ro By
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CHAPTER
SEVEN

STATION-KEEPING CONTROL OF TSS:
TWO CRITICAL MODES

In this chapter, we continue to study the stabilization of the TSS during
station-keeping. It has been found in Chapter 6 that the out-of-plane angle of
tethered satellite systems (TSS) is uncontrollable and difficult to stabilize during
the station-keeping mode. (This was in the setting where only tension control
is allowed.) A new method is proposed in this chapter to improve the time
response of the system. As opposed to the design involving the Hurwitz stability
criterion plus Hopf bifurcation theorem in Chapter 6, the new approach relies
upon controlling both the in-plane angle and the out-of-plane angle by invoking
a nonlinear stability criterion for a fourth-order nonlinear critical system whose
linearized model has two distinct pairs of nonzero pure imaginary eigenvalues.
Both linear and nonlinear feedback control laws are obtained to guarantee the
stability of the system. However, simulations show that the nonlinear feedbacks
are superior for having better time responses. Moreover, compared with the
results given in the previous chapter, simulation results also indicate that a
better performance can be achieved by the new technique with smaller nonlinear

control gains and small linear feedback gains.

150



7.1. Introduction

In recent years, lots of issues have been published for the study of the
Tethered Satellite Systems (TSS) (e.g., [5], [49], [66]-[71], [80], [81]). During
station-keeping, a satellite is controlled so as to follow a prescribed orbit to
within a set tolerance. It is observed in Chapter 6 that the system linearization
has two distinct pairs of nonzero pure imaginary eigenvalues while the tether
length is fixed. At the expense of large nonlinear control gains, a linear-plus-
quadratic feedback tension control law is obtained in the previous chapter to
provide the stability and the significant decaying of the time response of the
out-of-plane angle, but having less effect on the large variations of the in-plane

angle and the tether length.

Although a linear feedback can be designed to stabilize all but a pair of
nonzero pure imaginary eigenvalues, it is shown in the following that large linear
feedback gains are needed to place these stabilizable eigenvalues far frorm the
imaginary axis on the complex plane, which will induce the large quadratic
feedback gains in the design of Chapter 6; while significant transient response

is required. This observation might explain why the transient responses of the
system given in the previous chapter, where we used small linear gains, are
not practically acceptable. To improve the transient response by using such
a design proposed in Chapter 6, one might expect to have large linear and

quadratic feedback gains.

In this chapter, we propose a different technique such that we can improve
the transient responses of the TSS during station-keeping without using large
linear and nonlinear feedbacks. Qur approach is based on a stability criterion
for a class of fourth-order nonlinear systems whose Jacobian matrix has two dis-
tinct pairs of nonzero pure imaginary eigenvalues. In this new design, a linear
feedback is first selected to preserve the two pairs of nonzero pure imaginary
eigenvalues of the uncontrolled model of the system linearization and to make

the rest of eigenvalues of the system stable. Then the same linear feedback
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and/or an extra nonlinear feedback will provide the stability of the full model
of the system by employing the center manifold reduction technique and the
stability criterion for the fourth-order nonlinear systems. It is shown that the
quadratic feedback gains corresponding to the out-of-plane angle and its deriva-
tive play a very important role in deciding the stability of the out-of-plane angle.
Moreover, the dynamics of the in-plane angle are found to be stabilizable by a

cubic feedback instead of a linear feedback as in Chapter 6.

The development of this chapter is as follows. First, a stability criterion for
a special class of fourth-order nonlinear critical systems whose linearized model
has two distinct pairs of nonzero pure imaginary is abstracted from Corollary
4.5. It 1s followed by the recall of the equations of motion for the TSS during
station-keeping obtained in Section 6.3. The possible constraints on the poles
placement and the nonlinear stability coefficient by using the stabilizing control
laws proposed in Chapter 6 are also discussed in Section 7.3.2. The stability
criterion for the fourth-order nonlinear critical systems and the Center Manifold
Theorem are then applied to design the new stabilizing control laws in Section
7.4. Compared with the results of Chapter 6, simulations presented in Section
7.5 demonstrate that a better performance can be achieved by smaller nonlinear
gains and small linear gains; while using the current approach. Moreover, the
variations of the in-plane angle and the tether length are found to be less than
the ones shown in Chapter 6. Finally, concluding remarks pinpoint the main

conclusions of this chapter.

7.2. Stability Criterion for a Class of Fourth-Order

Nonlinear Critical Systems

In Section 4.2.3, we have derived a stability criterion for the fourth-order
nonlinear critical systems given in (7.1) below by employing normal form for-

mulation.

n=An+ F(n), (7.1)
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where n := (z,y, z,wY', F(n) = (f(n), g(n), (1), (7)) and

0 € 0 0
-Q; 0 0 0
0 0 0 Qs
0 0 -4 0

A= (7.2)

Here, ;92,0384 > 0 and f,g,r,s are smooth, purely nonlinear scalar func-
tions. For the interest of this chapter, we consider a special case of system (7.1)
by letting f(n) = 0 and gzwzw being the only quadratic term for nonlinear
function g¢(n).

The next result readily follows from Corollary 4.5.

Corollary 7.1. Let f(n) =0, gzwzw be the only quadratic term for nonlinear
function ¢g(n), and 2,02 # a3y for each a € {%, %, 1,4,9}. Then the origin
is asymptotically stable for system (7.1) if S;,S; < 0, and S3,S5; < 0 or S

and S3 have nonzero values and of different sign, where

1

51= 39% + 2€109 + 3Q% {91(3Q2gyyy + ngzzy)
N gz @ 2rsn +2600000)] )
4029 — Q382 4Tzy 18zz T 23625yy) s .
1
SZ [94(33www + rzww) + Q3(3’I‘uz -+ Szzw)]

T 302 + 2050 + 392 {6

Q2
+ Sww(Q3szw - 2Q4Tww) - rzw(Q47'ww -+ Q37'.'1z) + Q_sszz(szw + 2"':.‘:)}
4

(7.4)
3 = (Ql + QZ) . (93 + Q4) 4gyww 30yz2 1> .
32 Q30
S - ’ z + w + Q T2 + zzWw
‘ (2 +Q22)- (U +Q) U (ryys + Syyw) a(r Szzw)
1 B
+ [Q3(R182z + Q28yy ) (820 + 2722) — Qu(Qu7rzz + Qaryy)(Tzw
Q:Q4
2039w
+ 25w )] - 4§18y — Slafly (Qurzy — 201822 + 28295,,)}. (7.6)
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7.3. TSS Dynamics During Station-Keeping

A point-mass model for the TSS during s'tation-keeping has been obtained
in Chapter 6 by invoking Lagrangian formulation. As shown in Chapter 6, the
out-of-plane angle is hard to stabilize and system is uncontrollable. Although
stabilizing feedback tension control laws can be obtained by using Hopf bifur-
cation stability criteria, the performance of the controlled system, that is, the
transient responses, are not good enough. It is considered in this section to
discuss the possible reasons and seek for another alternative to improve the
system performance.

First, the equations of motion for the TSS obtained in the previous chapter
are recalled. The stability criterion given in Corollary 7.1 is then applied to
check the stability of the uncontrolled model of the system. It is followed by
the discussions of the constraints on the poles placement and nonlinear stability
coefficient by using Hopf bifurcation theorem, which might contribute to the

reasons of ill performance of transient responses in Chapter 6.
7.3.1. System Dynamics for the TSS During Station-Keeping

By using several simplifying assumptions, we have derived a mathematical
model for the TSS in Chapter 6. The state space model given in Section 6.3 is
recalled in Eq. (7.7) below, where we assume the applied tension force T is the

only external force acting on the system and cos ¢ # 0.

¢ =wy (7.70)

2v Q%ry ro r
Wg =— A s1n(2¢)(we +Q)? - 7 oS Osin (1 — y (7.70)
6 =wg (7.7¢)

i 2 , Q2%rysind r3 ,
o == (o +9) +2tan §(wo + Qg = — == (1= ) (7.74)
¢ =v (7.7¢)

92 of
—-&ud, + Lcos? ¢p(wp + Q) —
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+ Q%r cos9cos¢(1-—-fg—)+z- (7.7
0 r?n m ‘\ * f)
where
rm =(r2 + £ 4 2ro€cos § cos ¢)* /2. (7.8)

By assuming the tether length is held constant (i.e., l=v=0,l=¢"=a
constant), we have only two equilibrium points of system (7.7): (0,0,0,0,£*,0)
and (0,0,7,0,£*). For simplicity, only the stability and stabilization of system
(7.7) at the equilibrium point (0,0,0,0,£*) is considered in the following. Sim-
ilar results for the stability and stabilization at the other system equilibrium
can easily be obtained by using the same approach.

Denote by zo = (0,0,0,0,£*,0)' the equilibrium point of (7.7) and let
X =z — z0= (¢, wg, 9, we, £, v)', where f ;= £ — ¢*. The Taylor series
expansion of the right hand side of Egs. (7.7) is, to third order in X,

d T
X = LoX + Qo(X, X) + Co(X, X, X) + eU + e (7.9)

where the matrix Lo, the quadratic form @q, the cubic form Cy, the vector e
and the scalar U are given in Section 6.3.
As shown in Section 6.3, the linearization at the equilibrium point zo (with

© = v = 0) has two pairs of pure imaginary eigenvalues:

3
— 4 T0q - To
A]’z = iZQ\/l + 7 (1 T?n’o
~ 420 for 1o > £°, (7.10)
. To 7‘8
/\34 = +iQ —-(1 -3
’ e rm,O
~4iV3Q for 1> £*, (7.11)
where
Tm,0 = 1o+ £*. (7.12)
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The appearance of these two pairs of pure imaginary eigenvalues suggests
the possibility of oscillations near the equilibrium point (0,0, 0,0). Application
of Corollary 7.1 to the uncontrolled model (7.7a)-(7.7d) gives S; = 0 for 1 =
1,---,4. Thus, no conclusion regarding stability is reached for the open-loop

system.

7.3.2. Constraints on Poles Placement and Nonlinear Stability

Coeflicient

In the previous chapter, we have shown that system (7.7) is uncontrollable
and obtained stabilizing feedback tension control laws by using Hopf bifurcation
stability criteria. In which, a linear state feedback control is first employed for
poles placement of those eigenvalues corresponding to the in-plane angle and
the tether length, while same linear feedback or another nonlinear feedback will
then drive the origin for the full model of the system to stable if the control
gains satisfy the Hopf bifurcation stability conditions. Similar results can also
be obtained by using center manifold reduction technique. Details of technique
can be referred to, for instance, Chapter 3.

At the expense of large nonlinear feedback gains and large variations of the
9 and Z, simulations given in Section 6.4 demonstrate the stability of the system .
with significant decaying of the time response for ¢. Nevertheless, the transient
responses of the system are not good enough. This might be attributed to the
fact that the stabilized eigenvalues are still close to the imaginary axis in the
complex plane, and linear and nonlinear feedback gains used in the simulations
are not large enough. Indeed, large linear feedback gains are shown below to
be necessary to place all stabilizable eigenvalues far from the imaginary axis in
the complex plane, which will propel a large increase of the quadratic feedback
gains for having a significant decaying of the transient response. Details are
given as follows.

Let the tension control law be governed by
T=—m{U+ k1¢ + kawg + k30 + ksws
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+ ks? + kev + u(¢,ws, 8,ws, £,v)}. (7.13)

So, the linearized model of (7.7) at equilibrium point zo becomes

0 1 0 0 0 0
—a®> 0 0 0 0 0
d, | 0 0 0 1 0 0
=X=| 0 ad 0 0 _2 X. (7.14)
0 0 0 0 0 1
—kl -—k2 —k3 -—k4 + 20%Q2 -—k5 + as ——ks

The characteristic equation of the closed-loop system is hence as follows

(A2 +a2) O+ ke A + 507 + b\ + b3) =0, (7.15)
where
by = ks — (2’"‘222:;;)92 - zgf L1402, (7.16)
by = FoCro J’(f:‘%f;;;r"e*z)m - 2?’“ 2, (7.17)
by = (3r + ?rrfi Z ;,e*? )02 (ks — (3r3 + 3rg€0++3z,f;2 + £3)02 }7.18)

It has been shown in Lemma 6.1 that the tension control force T given
in (7.13) with u = 0 stabilizes the Jacobian matrix of Eqs. (7.7¢)-(7.7f) if (i)
ke > 0, (ii) b; > 0, for i = 1,2,3 and (iii) keb1by — b2 — kZb3 > 0, where the
values of b; are given in (7.16)-(7.18). It is observed from Eq. (7.15) that the
linear control gains ky, k; do not influence the eigenvalues of the system. For
simplicity, we choose k; = k2 = 0 in the following discussions.

Consider the linearization of Egs. (7.7¢)-(7.7f) with ¢ = wg = 0, we have

6 0 1 o0 0 6 0

we | _[—a2 0o o0 -2 wg 0] . :

i1 Lo o o 1 ] tlo]® (719
v 0 20*Q a3 0 v 1
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The controllability matrix of (7.19) is calculated as

0 0 - 0
_|o -3 0 —22 (a3 — a3 — 40?) ,
€= 0 1 0 az — 40?2 ’ (7.20)
1 0 a3—402 0

where det(C) = %:f—% # 0. Thus, the Jacobian matrix of Eqs. (7.7¢)-(7.7f) is
linearly controllable, which implies that there always exist linear feedback gains

k; to place all the eigenvalues of Jacobian matrix (7.7¢)-(7.7f) to any positions

in the complex plane. However, as calculated, det(C) ~ 1334 when ry > £*.

In general, 2 ~ 0.001 and ¢* > 1, which implies that the determinant of the
controllability matrix C is very close to zero. Thus, the linear controllability
of the Jacobian matrix of Eqs. (7.7¢)-(7.7f) is nearly uncontrollable. In fact,
as shown in Lemma 7.1 below, large linear feedback gains are needed to move
those stabilizable eigenvalues of (7.7¢)-(7.7f) far from the imaginary axis in the
complex plane.

From the foregoing discussions, it is obvious to have following result.

Lemma 7.1. Suppose rg > £* and let 0* := min; |Re{o;}|, where o; denote the
eigenvalues of the Jacobian matrix (7.7¢)-(7.7f) after linear feedback control.
Then we have (i) 40* < kg, (ii) 60*? < ks +4Q% — 22ky, (iii) 40*° < 3Q%kg —
Whs, (iv) o < 3Q2(ks — 30Q2).

In general, 2 ~ 0.001 and £* > 1000 for expecting applications. It is
observed from condition (iv) of Lemma 7.1 that large value of k5 is needed to
have o* big enough. For instance, let o* = 0.1, then we need to have k5 > 3300
when 2 = 0.001. Moreover, according to condtion (iii) of Lemma 7.1 we also
need to have k¢ > 1000 (or |k3| > 2000 when £* = 1000). Thus, implied by
Lemma 7.1, large linear feedback gains are necessary to make the eigenvalues of

the Jacobian matrix (7.7¢)-(7.7f) stable and far from the imaginary axis. The
ill performances of the transient responses of the system given in Chapter 6,

where small linear gains are used, might be attributed to this degenerate result.

158



It has been shown in Theorem 6.2 that the tension control force T given by
T =m(—U — k38— kywy— ks — kev — Q1% —qrdwy — qgwi) will stabilize system
(7.7), while linear gains k; stabilize the eigenvalues of the Jacobian matrix

(7.7¢)-(7.7f) and the stability coefficient B, < 0, where (assuming ro > £*)

90 —q1 +as £ +q3, 5 £*
132 — 2(d§ + d%){( 9 +( 2 )al - (ks - a3)Z)d1
ay * .
+ 5 (=0 =~ Eke)da}, (7.21)
with
£*k )
dl = k3 -+ —é—ﬁg(éla% - a%) (\722)

£*(4af — af)

dy =2 — 2¢F
2 al(k4 2¢ Q) + 4a1(}!

(a3 + 4(1% - k5) (7.23)

According to Egs. (7.21)-(7.23), the magnitude of 3, decreases as linear
feedback gains increase. Moreover, since 2 2~ 0.001, g; is observed to be the one
of three quadratic feedbacks, which can drive 8; < 0 with smallest magnitude.
To improve the transient performance of system (7.7) by using Theorem 6.2,
one might need to have large quadratic feedback gains, for instance, to have a
better time response than the one of Example 6.3 ¢; must be greater than the

previous design value, say it, 1500.
7.4. Stabilization via Center Manifold Reduction

Motivated by the observations given in Section 7.3.2, we design a new
nonlinear stabilizing control law in this section for getting better performance
for system (7.7) without using large linear and nonlinear feedback gains. It relies
upon a linear feedback to preserve the two pairs of pure imaginary eigenvalues
of the uncontrolled linearized model, instead of stabilizing one of pairs of pure
imaginary eigenvalues. The linear feedback also provides the stability of the
remaining two eigenvalues of (7.7). A locally invariant manifold for system
(7.7) can then be derived by using Theorem 2.1, where Corollary 7.1 is applied

to the design of a stabilizing control law.
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7.4.1. Design of Stabilizing Control Laws

Let the tension control law T be as in (7.13) and suppose the two pairs
of pure imaginary eigenvalues of the uncontrolled system linearization are pre-

served, then we can rewrite Eq. (7.15) as follows

(A2 +a2)(A2 + a2)(A? + ke A + (ks —a3)) =0, (7.24)

which implies that k3 = 0 and k4 = 2£*Q. Moreover, according to Eq. (7.24)
and Hurwitz stability criterion, the eigenvalues of the Jacobian matrix for state
(€,v) in (7.7) are stable if ks > as and k¢ > 0.

As observed from the linearized model of system (7.14), there is a linear
coupling term between wg and v in the dynamics of wy. To apply the tech-
nique of center manifold reduction, i.e., Theorem 2.1, it is convenient to have
linearized model in block diagonal form.

Let 7 := (¢,wg,0,we), € i= (v, { := (2,y,2,w) = n+ P&, ki =0,
1 =1,2,3 and kg4 = 20*QQ.

By choosing

P1 P2 0 0
P3 P4 0 0 2
P e — _2ka(k5-‘aﬁ __2Q(k5‘_a3"'az) (7-25)
p5 p6 kh2 kh 2
pr Ds 2Q(k5—a3;:2)(k5—a3) _29::a2
with
kp = E*{a%ké + (ks — a3 — a2)?}, (7.26)

we can rewrite system (7.7) in a block diagonal form as follows

0 1 0 0 0 0 0
. ~a? 0 0 0 0 0 9(¢;6)
¢ 0 0 0 1 0 0 ¢ r(¢,€)
(=10 0 %o o o |(H)+]8 |an
0 0 0 0 0 1 0
0 0 0 0 —ks+as —ke v(¢,€)
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where

-~ 2 : - o
9(¢, &) = —2Qz(w — psv — prl — vt a122f) — z(w — psv — prf)?

w 2 . ~ ,
+ asz(z — pev — ps)® + Zzyﬂv + agzl?® + a72® + O(lI(¢, 6)]1*)(7.28)

(¢, €) = a138% + 2Q(w — pgv — prl) + £*(w — pgv — prf)?

+ ay(z — pev — psl)? + £*y% + asz? + a158°

+ #{(w — psv — pr8)? + a14(z — pev — psb)® + ¥ + ay1z°}

— 20*Qz®(w — pgv — prf) + u((, €) + O(I(¢, O)II) (7.29)
r(¢,€) = pev(¢,¢) (7.30)

' - » 207 2 ~
8(¢,€) = psv((, &) + Lar2(z — pev — pst) + 0{872 - K_*(w — psv — prb)}

2

72 Uw — pgv — prf)} + agl?(z — pev — psk)

2Q
+ 2Qzy — U{eTaZz

+ 2zy(w — psv — P7Z) + ag(z — pev — PSZ)3
+ a102(z — psv — psf) + O(I(¢, E)I1*). (7.31)

According to Theorem 2.1, there exists a locally invariant manifold for
system (7.27), which is given by the graph of a C? function ¢ = h((). As stated
in Theorem 2.2, we can solve for the approximation of function h. Let this

approximation of function h be given as follows

3V

= 2(hj . % + by oy + By g,z + Ry gy w) + y(Ry Y + Ry 2 + By w)

+ k.20 + by 2w + g, w? 4+ O(ll(2,y, 2,w)I1P) (7.32)
v = 2(hv,z22T + ho,zyy + ho,z22 + By zww) + Y(ho,gyy + hoyz2 + by yuw)

+ by, 222% + by sw2W + by wew® + O(||(z,y, 2, w)]||?). (7.33)

To employ the relationship (2.2), we can solve for h; ;. and hy,i; for all i,j €
{z,y,z,w}. Also, according to Theorem 2.1, the stability of the full model of
system (7.27) is known to be determined by the stability of the reduced fourth-
order model for ¢ (i.e., the submodel of (7.27)) only, with £ and v replaced
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by Egs. (7.32) and (7.33), respectively. To apply Corollary 7.1 to the reduced
model of system (7.27) by replacing Z and v with (7.32) and (7.33), respectively,

the stability coeflicients S; given in Corollary 7.1 are obtained as follows

1
S = ——— 3 2~ .,zz
T 34242 +3a§{ a19yyy F Gozy
20 | |
17— (—@ray + 2520 — 2aisyy)}, (7.34)
1 2
S, = 1 3a%3 37 ~ 9.
P T aag  gag e 3 S b i

Y 1 )
+ sww(szw - 2ag7'ww) - 7'zw(rzz + a:jrww) + ‘a—zszz(szw + 27'::)}(735)
2

1 . i |
5= AT ey e+ G} =0 (7.36)
1 ol ~ ~ ~
Sa {ag(ryyz + Syyw) + (Fzez + S:cxw)

T Q+ahI+d)

1
+ y[(s’:z + a%syy)(s,w + 27";;) - a%(rzz + a%ryy)(rzw + 23ww)]
2

20 ,
=(a3rsy — 2520 + 2alsy,)}. (7.37)

+ R,
4a? — a2

Here, tilde denote the new coefficients of the cubic terms after replacing £ and
v with Eqgs. (7.32) and (7.33), respectively.
As implied by Corollary 7.1 and Theorem 2.1, it is obvious to have following

result.

Proposition 7.1. Let the applied tension control force T is as in (7.13) with

k; =0, for 1 =1,2,3 and k4 = 2£*Q). Then the origin is asymptotically stable

for system (7.7) if ks > as, k¢ > 0, S1,52 < 0 and S4 < 0, where S; are given
in Eqgs. (7.34)-(7.35) and (7.37).

|

As discussed in Section 7.3.2, at least one of four stable (or stabilized)

eigenvalues will be very close to the imaginary axis, while one of the two pairs of

nonzero pure imaginary eigenvalues are pushed to be stable by a linear feedback.
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However, in the recent design, where a linear feedback is employed to preserve
the two pairs of nonzero pure imaginary eigenvalues and to provide the stability
of the remaining two system eigenvalues, there will be no such limitation on
the stable eigenvalues. In general, the two stable eigenvalues can be placed to
any positions in the open-left-half of complex plane by feedback gains k5 and
ke¢. However, as shown in the next two sections, the values of the stability
coefficients S; strongly depend on the values of the linear gains ks and k. In
order to prevent the high gains for the nonlinear controllers, the magnitudes
of ks, ke should not be too big, which implies that the two stable eigenvalues

should not be placed too far from the imaginary axis.
7.4.2. Linear Feedback Stabilization

First, consider the case in which the tension control force T' (given in (7.13))
is a linear state feedback, i.e, the nonlinear control input function u(({,¢) = 0.
Denote by S¢ ; the parameters S; given in (7.34)-(7.37) for the reduced model

of linear control system (7.27), we have
S = Z—i{32a392(€*af —as) + 2(4a? — a2) - [¢*?a®a;z
— £*(a12a5 + 6at) + 6a2as)}, (7.38)
Sca= %{ée*(ks — ag)[(ks — ag — a2)? + a3kZ] - [-£%arza

+ 0*(a1za4 + 4a3) — 4a2aq] — 320*Q%af (k2 + 4al)(—£*a} — a4)

— (ks — a3)?Q2[—12€*a2(—£*a2 + a4) — 16a2)

— 02a2(ks — a3) - [-240*a2(—£*a} — 3a4) + 3243]}, (7.39)
Sea== 92I’Za§ {4(ks — a3) - [(2a] — a3)€* + 2a5]
— 4(a2€* + a5)(4a? - a2)}, (7.40)
where
Hy = £*(4a? — a2){4a2k? + (ks — a3 — 4a})?}, (7.41)
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H2 = @*2(k5 ot ag){4a§k§(k§ + k5 _ (13) + 5a§k§(k5 - ag — 2a§)2
+[(ks — a3 — 2a3)" — a3(ks — a3)]*}, (7.42)
Hz = —£0*(ks — a3)(4a§ — a%){a%kg + (ks — a3 — a%)z}. (7.43)

It has been calculated that S¢; < 0, 1 = 1,2,4 if ks > a3 and k¢ > O.

Thus, we have following obvious result.

Theorem 7.1. The origin is asymptotically stable for the controlled system

(7.7) during station-keeping if the tension control law is governed by

T =-m(U + kyqwe + ksl + kev), (7.44)

with kg = 26*Q2, k5 > a3 and k¢ > 0.
|
Suppose 19 > £ during station-keeping, the values of S, ; can then be

approximately obtained as follows

—3968ke24
13{1692kZ + (ks — 19Q2)2}

Seae (7.45)

—144ke Q4
Sc.a z:{—&{BQZ’kg + (ks — 6.25Q%)? 4 1.43750*} (7.46)
4
~36ke! :
Sea = 13{3022k2 + (ks — 622)?} (7:47)
where
Hy =36k2Q4(k2 + ks — 3Q%) + 15k2(ks — 9Q2)?
+ {(ks — 99%)? — 6(ks — 3022)Q%}2. (7.48)

In general, the magnitude of the angular velocity of the satellite @ (~~
.001) is very small. As observed from Egs. (7.45)-(7.48), the magnitudes of
Sc,i, © = 1,2,4 are hence small for all k5 > a3 and k¢ > 0. As discussed in
Section 4.2.3, the small magnitudes of S¢ ; might lead to the small decaying for
the time response of system behavior. Simulation results given in Section 7.5

demonstrate this conclusion.
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7.4.3. Nonlinear Feedback Stabilization

Next, consider the case in which the nonlinear control input function u is
nonzero. Referring to Proposition 7.1, we have the nonlinear control function

u being a quadratic-plus-cubic function as follows
u = uu:v2 + UpyTY + U222 + UgpTw + uyyy2 T+ Uy Yz + uypyw
+ Uzz2” + UrwZW + U’ + UgezT® + (Uzayl + UzssZ + Uszuw)z
+ (Uayy® + Uyyy¥ + Uyyz2 + Uyyu)y® + Usy:TYZ + UzyuTyw
+ Uz zwT2W + UyowY2W + (UzzeT + UyazY + Uzze? + Upzw)2?
+ (Uzww? + Uywwl + Uzww? + Upwew )w?. (7.49)
Denote by Sur,; the parameters S; given in Egs. (7.34)-(7.37) for the re-
duced model of nonlinear control system (7.27), we have
Sn1 = Sc,1 + pruyy + patice + Patey, (7.50)
SN2 =8c2+ patizzz + pstUzww + PeUzzw + PrUwww + (PsUzz + Potizw
+ p10)Uzz + (Pr1%ww + P12)Uzw + P13ULy + PreYww, (7.51)
Sna = Sca+ prstyy: + pr6Uzzz + P17Uyyw + P18Uzzw
+ (p19 + p2otyy + P21Uzz)Uzz + (P22Uyy + P23Uzz + P24)Uzw
+ (P25 + p26tuyy + 21Uz )uww + P2stiyy + P2oUzy + P30Uzz,  (7.52)
where S ; are defined in Eqs. (7.38)-(7.40) and p; are functions of k5 and ks,
for: =1,--+,30, as given in Appendix 7.A. It is observed from the expressions
in Appendix 7.A that the values of |p;| decrease as the magnitude of k5 (or kg)

Increases.

The next result readily follows from Proposition 7.1.

Corollary 7.2. Suppose a nonlinear tension control law as in (7.13) is applied
to system (7.7) with k; = 0, 1 = 1,2,3 and k4 = 2¢*Q2, while the nonlinear
control function u is as in (7.49). Then the origin is asymptotically stable for
the system (7.7) during station-keeping if ks > a3, k¢ > 0, Spar1,Sx,2 < 0 and
Sna <0
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As observed from Egs. (7.50)-(7.52) and Corollary 7.2, only parts of the
quadratic and cubic feedback gains contribute to the stability conditions for
the system (7.7). Among them, uzz,uzy and uyy, play key roles in determining
the magnitude and the sign of Sy1, which corresponds to the stability of the
out-of-plane angle ¢; while the magnitudes and the signs for Sy/; and Spr 4 are
determined by some of quadratic and cubic feedback gains.

Referring to Egs. (7.50)-(7.52), we can have the following obvious result
from Corollary 7.2.

Theorem 7.2. Suppose the tension control law is governed by

T=m(-U — 20" Qug — ksz— kev + ugpz? + UzyZY + u,,yy2
F Uz 22 + UszW + Uppw? + (ugzz2z + u“ww)ac2 + (uyyz2

+ uyyww)y2 + (uzzzz + uzzww)22 + (uzwwz + uwwww)w2 (753)

during station-keeping. Then the origin is guaranteed to be asymptotically
stable for the system (7.7) if k5 > a3, k¢ > 0 and the quadratic and cubic
feedback gains u;; and u;jx in Eq. (7.53) are chosen such that Sy 1,Snv2 <0
and Sy 4 < 0, where Sni, 1 = 1,2,4 are given in Eqgs. (7.50)-(7.52).

7.5. Simulation Results

A TSS with the same characteristics as the one in Section 6.4 is considered
here: (i) nominal tether length £* = 100 km, (ii) orbital radius ro = 6598 km,
(iii) satellite mass m = 170 kg, (iv) orbital angular velocity = 0.0011781

radians/second.

Let the equilibrium point of (7.7) of interest be zo = (0,0,0,0,£*,0)".
Simulation results for the case in which no external tension control force is
applied to the system have been given in Figure 6.2. Here, we only present the
results which illustrate the system dynamics for the various types of control
studied in this chapter. Similar to Section 6.4, we choose the initial conditions

¢ = 0.01 radians, § = —0.01 radians, and wg = wg = 0.
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Ezample 7.5.1. (Linear stabilizing feedback control)

The tension controller is taken as T' = —m(U + 2£*Quwy + ksf + kev), with
ks = 18Q2, k4 = 0.00051, and U = 0.41019. The control law is stabilizing, as
can be checked using Theorem 7.1. Indeed, we have S¢; = —0.0452, Sz 2 =
—0.0047, S5 = 0 and Sg4 = —8.97 x 107° for the closed-loop system. The
time responses for the variables of ¢, 8, and the deviation ? of the tether length
are shown in Figure 7.1(a), (b) and (c), respectively. However, it is not easy
to see in Figure 7.1(a) and 1(b) any decaying of the oscillations for the out-of-
plane angle ¢ and in-plane angle 8. This may be attributed to the fact that
|Sc,il, ¢ =1,2,4 are too small. The applied tension force is also shown in Figure

7.1(d).
Ezample 7.5.2. (Linear-plus-cubic stabilizing feedback control)

Let the tension control law be of the form

T=m(-U —20*Qug — ksl — kev + (uzzzz + umww):c2 + (uyyz2

+ Uyyw)y? + (Uzze2 + Urzw)2® + (Uzww? + Ywwww)w?, (7.54)

where U = 0.41019. By choosing ks = 18Q2, k¢ = 0.00051, u,,, = 1000,
Uzzz = 10000 and letting the rest of cubic gains equal to zero, the in-plane
angle 6 is observed to decay in Figure 7.2(b) while the out-of-plane angle ¢ in
Figure 7.2(a) still has no significant decaying. This result may be attributed to
the fact of the large value of |Sx 2| and the small value of |Sar,1|. As calculated,
we have Sy = —0.0452, Sy = —41671, Sy;3 = 0 and Sy 4 = —1389 for the
closed-loop system. The deviations of the tether length and the applied tension
force are shown in Figure 7.2(c) and 7.2(d).

Ezample 7.5.3. (Linear-plus-quadratic-plus-cubic stabilizing feedback control)

Let the tension control law be of the form as given in Eq. (7.53) with
U = 0.41019. Choose ks = 200%, k¢ = 0.0034, u .. = 10000, u,, = —1500 and

let the rest of quadratic and cubic gains equal to zero, the out-of-plane angle
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¢ in Figure 7.3(a) is observed to decay significantly, while the in-plane angle
in Figure 7.3(b) also has significant decaying.- This might be attributed to the
fact of the large values of |Sx;|, for i = 1,2. Indeed, we have Sy = —10251,
Sar2 = —32057, Sxar3 = 0 and Sar4 = —187 for the closed-loop system. The
deviations of the tether length and the applied tension force are shown in Figure

7.3(c) and 7.3(d).
Ezample 7.5.4. (Linear-plus-quadratic-plus-cubic stabilizing feedback control)

A further example by using (7.53) as a tension control law is depicted in
Figure 7.4. In this example, we set ks = 18Q2, kg = 0.00051, Uzr> = U, =
1000, u;, = —1000 and let the rest of quadratic and cubic gains equal to zero.
The stability coefficients Sxr,; are calculated as Sar;; = —41859, Snr2 = —4167,
Snr3 =0 and Sar4 = —1415 for the closed-loop system.

It is observed from the simulations in Figures 7.3 and 7.4 that the transient
responses of the system by using the recent approach is superior to the ones
given in Section 6.4. Moreover, the magnitudes of the nonlinear control gains
and the variations of the in-plane angle and the tether length are much smaller

than those in Section 6.4. The linear feedback gains used here are obviously

small.
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Figure 7.2. Simulation results for linear-plus-cubic feedback system
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7.6. Concluding Remarks

A new approach without using high linear and/or nonlinear feedback gains
for the design of the stabilizing control laws for the TSS during station-keeping
is presented in this chapter. A major difference between the recent approach and
the previous method in Chapter 6 is that the stabilization of both the in-plane
angle § and the out-of-plane angle ¢ are obtained by using nonlinear stability
criterion in this chapter, while linear stability criterion and Hopf bifurcation
theorem were employed in the previous chapter to guarantee the stability of
the in-plane angle § and the out-of-plane angle ¢, respectively.

It is found in this chapter that the quadratic feedback gains uzz, uzy, and
uyy, Which correspond to the quadratic function of ¢ and wg, play very impor-
tant roles in determining the stability of the out-of-plane angle ¢. This agrees
with the one obtained in the previous chapter by using Hopf bifurcation theo-
rem. To stabilize the in-plane angle 6, a linear feedback controller is designed
in Section 6.3. However, in this chapter, such regulation of the in-plane angle
@ is found to be achieved by a cubic feedback.

Although a purely linear feedback control can be designed to provide the
asymptotic stability of the TSS during station-keeping, however, nonlinear feed-
backs are needed in the stabilizing controller to get a better performance of the
regulation (i.e., better time response). Specifically, a three steps control algo-
rithm emerging from the approach proposed in this chapter can help to get
better performance as: (i) use a linear feedback control of ? and v to stabilize
the dynamics of the tether length, (ii) use a quadratic feedback control of ¢
and wy to regulate the out-of-plane angle ¢ by letting Sxr1 < 0, (iii) finally,
use a cubic feedback control of 8, wg, £ and v to regulate the in-plane angle 6

by letting Sar2 < 0 and Sy 4 < 0.
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Appendix 7.A
The values of p;, for i = 1,---,30 are as follows.
1
p1= —I':I',; . {320&02 + (—2(112(13 + 8&?&12)3 -+ (12&?&% — 480,‘;)}03 ke

A

2
ay

p2 =

p3 = —ItIl—; - {(~16a%(as — ks) — 64a3)Q* + ((a1202 — 4aasa)(az — ks)
4alaipal — 16ata12)l + (—6ata} + 24a1)(as — ks) — 24ata2 + 964t}
ps = ﬁls_ - {(24at + 24d%(as — ks))ké + 6(as — ks)?
+ 5402 (ag — ks)? + 144a5(as — ks) + 96a$ }£92
pg = His - {(8at(as — ks) + BaS)k? + 2a3(a — ks)?

+ 18a%(as — ks)* + 48a8(az — ks) + 32a5 14

po = ==~ {8043 + (26} (as — ks)* +10a3(a — ko) + 3202)ka} 0
8

pr = _}IL - {(6a%(as — ks)? + 48a3(as — ks) + 96a3)ke + 24a3kg Q)
8

P8 =" {(~32a2(as — ks)? — 32a3(as — ks))ks + (—8(as — ks)*
— 72a%(a3 — ks)® — 192a3(as — ks)* — 12848 (as — ks))ke }S¥°

pe = -1%6- . {~16d4(as — ks)ks — (48a5(as — ks) — 1242(as — ks)*)ka
+4(as — ks)® +40a3(as — ks)* + 132a%(a3 — ks)°
+ 160a(as — ks)* + 64a3(as — ks)}Q?

P10 = *-1—1_1—6— -{(3245K5 + (—36a5(as — ks)? + 72a3(as — ks) + 160a5)k3

+ (4d2(as — ks)* — 5603 (as — ks)® — 212aS(az — ks)® — 24a5(as — ks)
 198a10) k)2 — 16adas(as — k3) k3 + (8as(as — ks)* — 8afay(as — ks)*
—112a%as(as — ks)* — +96a5a4(as — ks))ks }2° + {—2a12a3(as — ks)kg
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P11

P12

P13

+ (—4ay2a2(as — k5)3 - 8a12a§(a3 — ks )2 — 4a12ag(a3 - ks))kg

+ (—2a12(as — k5)° — 8aiza2(az — ks)* — 12a12a%(as — ks)®

— 8ajza5 (a3 — ks)? — 2a12a5 (a3 — ks))ke 122 + {8aS(as — ks)k3

+ (16a3(as — ks)* + 32a5(as — ks)? + 16a5(az — ks))kS + (8a2(as — ks)°
+ 32a3(az — ks)* + 48a5(az — ks)® + 32a8(as — ks)? + 8al%(as — ks))ke }£

= _}%6_ - {~16a5(as — ks)ks + (12a3(as — ks)* — 48aj(as — ks))k3

+ 4a2(as — ks)® + 40a3(as — ks)* + 132aS(as — ks)®
+ 160a3 (a3 — k5)? + 6402’ (a3 — ks)}Q?

1
= -I;?—s— . ((-—-240,3((13 —_ ’(?5)](5%1 + (24&;((13 - k5)3 -_— 28&3((13 - k5)2

— 136a3(as — ks))kz + 20a3(as — ks)* + 120aS(a3 — ks)?

+ 18005 (az — ks)? + 80a3°(az — ks))2 — 16a3a4(as — ks)kg

+ (36a§a4(a3 - k'5)3 + 16a§a4(a3 - k5)2 — 80aga4(a3 - ks))kg
+ 4as(az — ks)° + 56a2a4(az — ks)* + 228a3a4(as — ks)®

+ 304aSas(as — ks)? + 128adas(as — k5))Q? + ((a12a3(as — ks)?
+ 4a12ag(a3 - k5))kg1 + (2a12a§(a3 - Ics)4 + 12a12a§(a3 — k5)3
+ 18a1zag(as - k5)2 + 801202(03 - k‘s))kz + alé(as - ks)s

+ 8a12a§(a3 - k5)5 + 22a12a§(a3 - Ic5)4 + 28a12ag(a3 - Ic5)3
+ 17a;205(az — ks)? + 4a;1203 (a3 — k5))€% + ((—4as(az — ks)®
— 16a5(as — ks))ks + (—8a3(as — ks)* — 48a5(az — ks)®

— 72a8(as — ks)® — 32a3°(as — ks))k2 — 4a2(az — ks)°

— 32a3(a3 — ks)® — 88aS(as — ks)* — 112a5(a3 — ks)*

— 68a3%(az — ks)? — 16a;°(as — ks))¢

1
= —F . {(32a§(a3 —_ k5) + 32&2(&3 - k5)2)kg + (803(03 — ks)4
6

+ 72aS (a3 — ks)® +192a8(az — ks)? + 1284510(as — ks))ke }2°
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1
P14 = -—Fs . {(32(13]{32 + (52ag(a3 - k5)2 + 120ag(a3 - k5) + 160(1%0)]62

+ (—4a3(as — ks)* + 72a3(as — ks)* + 35645 (as — ks )?

+ 408a3° (a3 — ks) + 128a3%)ke }£ + {80akas(as — ks)?
+64a3aq(as — ks))k3 + (8a3as(as — ks)* + 152a8a4(as — ks)?

+ 496a5a4(as — ks)? + 35208 aq(as — ks))ke } 2

+ {2a12a5(as — ks)k§ + (4a12a3(as — ks)® + 8arpaS(as — ks)?

+ 4a12a§(a3 - ks))kg + (2a12a§(a3 — k5)5 + 8a12a§(a3 - k5)4
+12a1z2a3(ag — ks)® + 8arza3(as — ks)? + 2a12a3° (a3 — ks))ke } €7
+ {—8a3(as — ks)kg + (—16aS(az — ks)® — 32a5(as — ks)?

— 160" (a5 — ks))k3 + (—8a3(as — ks)® — 32a5(as — ks)*

— 48a3(as — ks)® — 32a3%(a3 — ks)? — 8ai?(as — ks))ke }4

P15 = T a(ks — a2 — a3)
2 2
P16 =g (ks — a3 — a3)2
2 2 2
P11 = 'ﬁ; - (aya3ke2)
2
P18 = Hy (a3k6Q2)
1
P19 = p- {8(4a? — a3)(ks — af — a3)(as — ks )(£a? + a5)ks?}
1
pao = 7=+ {8(4} — a)(ks — o} ~ as)(as — ks)atke2?}
P20
P21 = E
1
pr = g {—4ai(da] — a)(as — ks)[~aki + (ks — o} — a3)*]0")
= P22
P23 = a%

P24 = Pza(eaf + as)
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2
P25 = —a3019

_ 2
P26 = —ay P20
P26
p21 = —5-
ay

1
pas = — = - {(8alal(as — ks) + afaf — 16aia)}

+ (8ala(as — ks)® + (20a%al + 16a%a?)(as — ks)?

+ (16a%a3 — 32aia3)(as — ks) + 4a2al — 16a%ad)ke }£02°
pao = g - {(4a8(as — ke)? +4a(as — Ke))R2 + dab(as — o)’
+ 12a3(as — ks)® + 12a5(as — ks)? + 4a8(as — k5)}£Q?

ps0 = == - {(~8ab{as — s) + 4o} — 16aka} I

+ (—8a3(as — ks)* — (16a12a3 + 12a3)(as — ks)?
— 32a2a3(as — ks) + 4a5 — 16a2aS)ke 1202

where
Hs = (4a} — a2){4a2k? + ((as — ks) + 4a?)?}¢
Hg = (a3 — ks){—4adks + (—9a3(az — ks)? — 24aS(as — ks) — 2445k}
+ (—6a3(as — ks)* — 36a5(az — ks)® — 90aS(az — ks)?
— 96a3(as — ks) — 36a3°)kZ — (a3 — ks)® — 12a%(az — ks)® — 54at(az — ks)*
— 116a3 (a3 — k5)® — 129a3(az — k5)? — 72a1%(as — ks) — 1642}
Hr = (4a] — a3)(as — ks)(—a3k; — ((a3 — ks) + a3)*)* €
Hg = {4a3ks + (5a3 (a3 — ks)? + 16a3(a3z — ks ) + 20a8)k?
+ (a3 — ks)* + 10a%(az — ks)® + 33a%(as — ks)? + 40aS(as — ks) + 16a5 } £
Hg = —{a2k? + (ks — a2 — a3)?}¢.
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CHAPTER
EIGHT

CONSTANT ANGLE CONTROL FOR
DEPLOYMENT AND RETRIEVAL OF TSS

In this chapter, we continue our study of the control of tethered satel-
lite systems, specifically, the deployment and retrieval control for the Tethered
Satellite System (TSS). A constant angle control method is hypothesized for
~ subsatellite deployment and retrieval. It is proved that this control law results
in stable deployment but unstable retrieval. An enhanced control law for de-
ployment is also proposed, which entails the use of the constant angle method
followed by a station-keeping control law once the tether length is sufficiently
near the desired value. Finally, simulations are given to illustrate the conclu-

sions.
8.1. Introduction

Arnold [5] proposed a constant angle method for deployment and retrieval
of the subsatellite of the tethered satellite system. In [5], the satellite and

subsatellite are modeled as point masses and the tether is assumed massless and
of length small compared with the radius of the satellite’s orbit. Based on these
assumptions, Arnold obtained an approximate model of the TSS by applying
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the gravity-gradient method and argued that the constant angle scheme would
result in stable deployment and unstable retrieval.

One goal of this chapter is to give a proof of the validity of these conclusions.
Viewing the tether length as an input variable for deployment and retrieval of
the TSS, a constant in-plane angle control scheme is considered, which is based
on the mathematical model derived in Chapter 6. Within this setting, we
prove stability of constant-angle deployment and instability of constant-angle
retrieval. This is achieved through the construction of appropriate Liapunov-
like functions and by appealing to the finite-time stability theory. A new control
strategy for deployment of the subsatellite is also proposed. This control law
consists of the constant angle scheme followed by the stabilizing station-keeping
control proposed in Section 6.3.

Finally, simulation results are given to demonstrate the analytical conclu-

sions of this chapter.
8.2. Results on Finite-Time Stability

From the basic definitions and conditions for finite-time stability given
in Section 2.5, some extended results are proposed in this section. Then these
finite-time stability criteria are applied to prove the instability of constant angle -
retrieval in Section 8.4 and the stability of constant angle deployment in Section
8.5. Note that, the norm used throughout this chapter is the Euclidean norm.

Consider a system given by
T = f(t,:l?), (81)

where f: T' x IR" — IR" and I" := [tg,%0 + 7 ) for some t; € IR, T > 0. Let
zo denote the initial condition of (8.1) at o, and let ¢(¢; %0, o) be the solution
of (8.1) at time ¢ satisfying the initial condition. The basic definitions and
conditions of the finite time stability are given in Section 2.5. Those conditions
depend on the known bounds, say, a,8 and . But, stability properties of a
system may be investigated without reference to the specific bounds on the

states (i.e., a, # and 4). In the following lemma and theorem, two sufficient
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conditions are introduced for this type of stability. These provide a means for
finding the associated bounds «, 3,7. Lemma 8.1 gives a sufficient condition
for uniform finite-time stability. Theorem 8.1 then gives a relationship among

7T,a, B and v providing a sufficient condition for contractive stability.

Lemma 8.1. System (8.1) is uniformly finite-time stable with respect to

(a, 8,1, ]| - ||) for any given a and B8 with

k
0<a<,3\/k—lﬁﬂ$7', (8.2)
2

if there exist an r > 0 and a continuously differentiable function V(¢,z) with
V(t,z) <0,
ki|lz]|* S V(¢ 2) < kall2]]?, (8.3)
for all z eﬁ(ﬁ,tel‘. Here, 0 < k1 < ks.
Proof. The result follows directly from condition (2.34) of Lemma 2.8.

In the next theorem, we introduce a condition on (8.1) and a relationship

among 7, a, f and v guaranteeing finite-time contractive stability.

Theorem 8.1. System (8.1) is contractively stable with respect to (a, 8, v, T,
|| - ||) for any triple a, 8,v with

k k
a\/k—z-exp(——aT)S7<a< V‘lﬂ<ﬂﬁ7‘ (8:4)
kl k2 k2

if there exist an r > 0 and a continuously differentiable function V(¢,z) satis-
fying the conditions
killzll* < V(¢ ) < kalz]f?, (8.5)
ks|lz]|* < -V (¢, 2), (8.6)

for all ¢ € B(r), t € I'. Here, k; > 0, ¢ =1, 2, 3, and the time interval length

T 1is such that
ko kz_

22 1n22. 8.7
T>k3 lnlc1 (8.7)
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Proof: Condition (8.6) implies that
V(t,z) <0, forall z € B(B), t € T.

Hence, it is implied by Lemma 8.1 that (8.1) is uniformly finite-time stable with
respect to (o, 3,T, || - ||) for any a, B satisfying condition (8.4). Next, we prove
quasi-contractive stability of the system. From conditions (8.5) and (8.6), we

have

. k _
V(t,x)g—k—sV(t,x), forall z€ B(r), t € I.
2

Hence,

V(t, $(t;te, o)) < V(to,xo)exp(—%(t—to)), forallzg € B(r), t € T.
Then it follows from (8.5) that

é(t; 2o, zo)|J? < %on][zexp(—%(t—to)), forallzp € B(r), t € I

Thus, there exists a t; € I" such that ||¢(¢;¢0,20)|| <7, forall t € [t1,t0+T)
when conditions (8.4) and (8.7) hold. According to Definition 2.6, system (8.1)
is hence quasi-contractively stable with respect to (a,%,T,]|| - ||} for any a,v
satisfying (8.4).

|

According to Definition 2.4 for the finite-time instability, a sufficient con-
dition is given in the next lemma for finding the possible value for a such that
system (8.1) is finite-time unstable with respect to (a, 8,T,||-||), when the time
interval 7 and the bound for the trajectory S are given.

Lemma 8.2. System (8.1) is finite-time unstable with respect to (a, 3,T, || - ||)
for any a > ||zg|| and g < r, if there exist an r > 0, ||zo|| < r and a continuously

differentiable function V(t,z) with V(tg,z¢) > 0 and satisfying the following
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conditions:
V(t,z) < kzflz||* and killz||* < V(t,2) forall z e B(r), teT,(8.8)

k‘% 2 _ sz(to,.’I}o)
k1 V(to,zo)

and 7 > (8.9)

where kj, k2 are two positive real numbers.

Proof: Since V(tg, o) > 0, there exists a é§ > 0 such that V(ty,z¢) = k6.
Thus, according to the assumption of V(¢,z) > 0 we then have
V(t7 ¢(t1t0’$0)) 2> V(to,(l)o) 2> k2527 forall te F,

which (from (8.8)) implies that ||¢(¢;t0,20)|| = & for all ¢t € T.
Thus, for any given 8 < r and a > ||zy||, we have

V(to + T, ¢(to;t0,20)) = V(to,z0) + k16°T
> k2r2 2 k2,32 (810)

when the time interval 7 satisfies condition (8.9). Thus, there exists a ¢; € T
such that [|¢(t1;t0,20)|| = B. The conclusion is hence implied by Definition
2.4.

|

8.3. Constant In-Plane Angle Control

The stability and stabilization of the TSS during station-keeping have been
studied in the previous two chapters. In this chapter, we focus on the control
of the deployment and retrieval of the subsatellite of the TSS. By viewing £
as an external control input, we can write the state equations for the system

(6.6)-(6.8) as follows:

6 = we (8.11)
wg = —%é(we + Q) + 2tan ¢(ws + Q)wy — QZ?TT;G(I - %::) (8.12)
¢ =uwy (8.13)
g = —27‘}% - —;-sin(ZqS)(wg + Q) - QZ” cos B sin ¢(1 — :Tg). (8.14)
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At an equilibrium point (6rwp ¢rwy) of (8.11)-(8.14), if one exists, we have

wg =wi =0, ¢ must satisfy (from Eq. (8.12))

i = —lei-‘;—*sina*u = (f))"‘)’ (8.15)
and ¢* must satisfy either
sing* =0, or (8.16a)
cosg =~ (1 - =8 ( ) cos ", (8.160)
where
i (€) := (rs + £% + 2rof cos 6* cos ¢*)1/2. (8.17)

Remark 8.1. In fact, only the case sin ¢* = 0 is realistic. To see this, briefly
consider the possibility (8.16b), which, using (8.15), would imply that at equi-
librium ¢ obeys

£= %{ tan 6*. (8.18)

Since —§ < ¢* < I, we have cos¢* > 0 (see Figure 6.1). Considering the
possibilities 0 < ¢* < 7 and —F < ¢* < 0 separately, and referring to Figure
6.1 for the relative magnitudes of r},(€) and rq, we find that the left and right
sides of (8.16b) are then of opposite sign unless they both vanish. Hence, we

obtain ¢* = * = £, implying £ of (8.18) would be infinite.

In view of the Remark, we let ¢* = 0. Eq. (8.15) now implies that, at

equilibrium, ¢ satisfies

. QT‘O 3
=——1- 6*, 8.19
14 5 1 i (Z))*" —)sin (8.19)
where
F2(0) := (r2 + €% + 2rol cos §*)M/2. (8.20)

181



This control law, which is a constant in-plane angle control method, has the
feature that it results in the existence of an equilibrium point of (8.11)-(8.14).
Moreover, the associated equilibrium point of system (8.11)-(8.14) will then be
(6%, 0,0,0), where 6* is the desired in-plane angle.

8.4. Stability Analysis of the TSS During Retrieval

Suppose for simplicity that £ < 0 throughout retrieval. From Eq. (8.19)

we have
QT’Q 7‘8

2 1 Gy

(<0 < — )sin6* < 0.

Denote by £; the initial (pre-retrieval) tether length. Then the condition for
£ < 0 is that 6* satisfies either 0 < §* < 7 or — < 8* < 0, (see Figure 8.1),
where 6; = 6,(¢;) is such that

H T
cosb; = “oe - < b < —3 (8.21)
A
v
T - / -
N

Figure 8.1. Retrieval regions for 6* with ¢* =0

Thus, the set of the candidates of the desired in-plane angle 6* for constant

angle retrieval is given as follows
S, :={6l0 < 6 < g or —1<8<8,(6)), (8.22)

182



where 6;(¢;) is defined in (8.21). From the discussion above, we have ¢ < 0 and

£ > 0 during retrieval. In addition, ¢ = 0 occurs only at £ = 0. Hence, ¢ must

approach 0 asymptotically.

Denoting § := 6 — 6* and z := (6, wy, $,wg)', we can then write the series

expansion of system (8.11)-(8.14) at the equilibrium point (6*, 0,0, 0) as follows

0 = wy
Wp =ny(t)0 + na3(t)we + fi(t, z)
¢ =wsy

Lb¢ = nz(t)¢ + n3(t)w¢ + fZ(t, .’D)

where
Y, . 3Q2r0 .
ni(t) = 2QZ cot 0* + X0 sin® 6*,
2 1 90t cot 6"
na(t) := —Q° + 2QZcot0 ,
¢
na(t) := —22,
2/
filt,z) = ——Q + 2tan ¢(wg + Q)wy
Q% sin(6* + 6) (1 _1:3_ — nay(t)0
£cos ¢ A e
02
Faltyz) = —3 sin(24)(we + Q) — "
rd
cos(8* + ) sin ¢(1 — L) — ny()4,
with

P 1= (75 + £2 + 2roLcos(6”* + 6) cos(4))'/2.
Here, we have

(T, .
lim sup ————————If( 2)] =0, for:=1,2.
lizl—0 >0 |zl
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It is shown below that the system (8.11)-(8.14) is not only unstable as the
tether length £ approachs 0, but also unstable in the sense of finite-time stability
during the process of constant in-plane angle retrieval, where the tether length
£ might not be small. Details are given as follows.

First, by invoking an instability criterion given in Lemma 8.3 below, we
can prove the equilibrium point (6*,0,0,0) is unstable for retrieval when the

tether length £ approachs 0.

Lemma 8.3 (e.g., [86]) Consider a system

€= Aot + F(t,8), (8.30)

where Ay is a constant matrix and F is continuous differentiable with F'(¢,0) = 0

and

: [|F(t, €)||
lim sup ————— =0.
lell=0 t>p 1€l

Then the equilibrium point £ = 0 of (8.30) is unstable if at least one of the
eigenvalues of Ay has a positive real part.
I

Now, we can apply Lemma 8.3 to show the instability of system (8.11)-
(8.14) as the tether length £ approachs 0 in the next theorem.

Theorem 8.2. Let the tether length £ be governed by the constant in-plane
angle retrieval law as in (8.19). Then (6*,0,0,0) is an unstable equilibrium point
of the system (8.11)-(8.14) as the tether length approachs 0.

Proof: Denote by € := ;% the ratio of the tether length with respect to the

radius of the satellite’s orbit. We can combine the dynamics of £ as in (8.19)
with (8.23) to describe the behavior of the TSS during constant in-plane angle

retrieval by a mathematical model as follows

(t) = Ao (‘:) + F(z,¢), (8.31)
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where

0 1 0 0 0
39"’(Sin2 6* —cos? 6*) ay 0 0 0
Ao = 0 0 0 1 0 [8.32
0 0 —Q*(1+4+3cos?6*) ay O
0 0 0 0 %
and ag := 3Qcos §*sinf*. Here, F(z,¢) denotes a purely nonlinear function

with F(0,0) = 0. Since ag > 0 for all the desired in-plane angle §* € S, (given
in (8.22)), there are at least two of the eigenvalues of the constant matrix A4,
(given in (8.32)) having positive real parts. According to Lemma 8.3, the origin
is hence unstable for (8.31). Referring to the foregoing discussion, we know
that the tether length £ approachs 0 asymptotically. Thus, the state variable €
is stable in system (8.31). Consequently, the only possibility for the unstable
state variables in (8.31) are then some of the elements of x, which implies that
(6%,0,0,0) is an unstable equilibrium for the system (8.11)-(8.14) as the tether
length approachs 0.
|
In the rest of this section, we intend to apply Lemma 8.2 to show that the
system (8.23) is finite-time unstable during the process of the constant angle
retrieval.

We choose

V(8,ws, $,ws) =p16” + 2p20ws + pswi + pad® + 2psdwy + pew?, (8.33)

as a testing function for proving the finite-time instability of system (8.23),
where p; are constant scalars for i = 1,---,6.
By taking the derivative of V along the trajectory of system (8.23), we

have
V(6,we,$,w4) = 2{p2n1(£)6* + (p1 + p2na(t) + pana(t))buws
+ (P2 + pana(t))wf + psna(t)$® + (ps + pena(t))wy
+ (pa + psna(t) + pona(t))pws + (20 + pawe) f1(, =)
+ (ps¢ + pews) f(t, 2)}. (8.34)
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In order to apply Lemma 8.2 to study the instability of system (8.23), we

make the following arrangement. First, we choose p;,ps such that

p1 = — 3paQ cos 6* sin 6* — 3p3 22 (sin? 6* — cos? 6%), (8.35)

ps = — 3p5Q cos §* sin 6* + psN?(1 + 3cos? 6*), (8.36)

for any given desired in-plane angle 8* € S, and given p; for : = 2,3, 5,6, where
Sy is as in (8.22).

Then it is obvious to have the following result.

Proposition 8.1. There exist an » > 0 and scalars k;,k; > 0 such that
condition (8.8) of Lemma 8.2 holds if p; and p, are as in (8.35)-(8.36) and the

remaining scalars p; satisfy the following requirements:

(1) p2na(t) > 0; p2 +pana(t) > 0; 4pena(t)(p2 + pans(t)) > (psvi(t) + p2vs(t))?,

(ii) psna(t) > 0; ps +psns(t) > 0; dpsna(t)(ps + pens(t)) > (peva(t) + psva(t))?,

forall t € T' = [0,T), where n;(t) for 1 = 1,2,3 are as in (8.24)-(8.26) and

v1(t) =ny(t) — 3Q%(sin®6* — cos® 6*), (8.37)
v2(t) =na(t) + Q%(1 + 3 cos? %), (8.38)
v3(t) =n3(t) — 3Q cos 6 sin §*. (8.39)

|

Remark 8.2. It is observed from Eq. (8.24) that we have the following condi-
tions to provide the definiteness of n;(t) along the constant angle retrieval:
(i) na(t) > 20%(sin*0* — cos? 0*), for T < 6* < mor F < 6* < 6, if
£ < ¢ (sin® 8* — cos? %),
(i) ni(t) < 2Q%(sin® 6* — cos®6*), for 0 < 6* <

—Lo—(sin2 9* — cos? 9*),

orm < 6* < Bife<

Lk

(iil) n1(2) < —7 £ = when §* = T as well as ny(¢) > 2\/- when 6* = 2x,
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Similarly, from Egs. (8.25)-(8.26), we have n(t) < —? and n3(t) > 2Q cos* sin*
along the constant angle retrieval if £ < %Q tan 6*.

|

By employing Proposition 8.1, Remark 8.2 and Lemma 8.2, we can prove

the finite-time instability of system (8.23) along the constant angle retrieval as

1n the next theorem.

Theorem 8.3. Let the tension control law be as in (8.19). Then there exists
an B > 0 such that system (8.23) is finite-time unstable with respect to (o, 8, T,
|| - 1]) for any @ < B along the retrieval, if the time interval 7 is large enough
as well as the desired in-plane angle 8* and the tether length satisfy either of
the following relationships:
(i) if £ < min{(—sin?6* + cos? 6*), Z tan 6*, 1 sin 26*v/cos 20*} when
0<6*<Zorm<f* <2,

(i) if £ < min{{;, Z tang*} when §* = Z or §* = &

ro 4 4 or

(i) if r—lo- < min{ 35 (sin® 6* —cos? 6*), £ tan 6*, L sin 26*+/— cos 26*} when <
6* < or 3% < 6* < 6,(£;), where 6;(£;) is as in (8.21).

Proof: In the following, we will employ the observations given in Remark 8.2
to construct the scalars p; for ¢ = 1,...,6 such that the sufficient conditions
of Proposition 8.1 hold. Then we apply Lemma 8.2 to prove the conclusion of
theorem. Details of this are given as follows.

First, by choosing p; = —Q cos6* sin *, pg = 1 and p,4 being calculated by
(8.36), we can check that the condition (ii) of Proposition 8.1 will hold for each
6* € S, with the assumption of £ < 2{-'59 tan 6*.

It is more complicated to construct the scalars p;, for 7 = 1,2,3 such
that condition (i) of Proposition 8.1 holds. Indeed, in the following, we choose
different values for the scalars p; under the different situations of the desired
in-plane angle. For instance, we choose p; = —Qcos#® sinf*, p3 = 1 and p;
is calculated by using the formula (8.35) for the cases in which the desired

in-plane angle * satisfies the condition: 0 < 8* < Torw < 6* < 5E. Tt is
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not difficult to check that these p;’s satisfy the condition (i) of Proposition 8.1

by invoking the observations in Remark 8.2, while ﬁ < min{:t(- sin® 6* +

cos? 6*), ili sin 26*v/cos 26* }.
For the cases in which the desired in-plane angle 6* = T and 6* = —53"[, we

can choose p; = —{cos#*, p3 = 1 and p; is calculated by using Eq. (8.35).

Similarly, the condition (i) of Proposition 8.1 holds when £ < {&.

Let p; = Qcos 8*sin 6*, p; = 1 and p; be calculated from (8.35). By invok-

ing the observations in Remark 8.2 and assuming that £ < min{ & (sin® 6* —
0

cos? 6*), = sin 26*/— cos 26* }, we can then show that these p;’s satisfy the con-
dition (i) of Proposition 8.1 for the cases in which the desired in-plane angle 6*
satisfies the condition: I < 6* < 7 or 5F < 6* < 6,(¢;), where 6;(¢;) is as in

(8.21).

As implied by Proposition 8.1, there exists an r > 0 and real scalars ki,ks >
0 such that condition (8.8) holds. Moreover, according to the foregoing choice
of p3 = p¢ = 1, we always have an initial state ¢ = (O,wg,O,wg)' of system
(8.23) arbitrarily close to the origin such that V(¢,z¢) > 0, where function V
is as in (8.33). Thus, as implied by Lemma 8.2, system (8.23) is finite-time
unstable with respect to (a,3,T,]]| - ||) for any given a < f < r during the
constant angle retrieval, if the time interval T is large enough and one of the
conditions (i)-(iii) of Theorem 8.3 holds.
|

Note that, it is not difficult to observe from the proof of Lemma 8.2 that
not only system (8.23) is finite-time unstable as claimed in Theorem 8.3, the
state disturbances of system (8.23) will also diverge as long as the time interval

T is large enough.
8.5. Stability Analysis of the TSS During Deployment

In this section, we consider the application of the constant in-plane angle

strategy of Section 8.3 to subsatellite deployment. For simplicity, suppose that
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£> 0 for all ¢ > to. Since ¢ is always positive in this consideration, one might
expect that the tether length £ increases without bound. In reality, only a
finite final tether length is meaningful for deployment. Stability of the TSS
is hence only considered in a finite time interval, where standard Liapunov
stability criteria cannot be employed. Results from finite-time stability shall be
applied to study the behavior of the TSS during deployment. Especially, the
contractive stability criteria are used to study the stability of the TSS during
constant in-plane angle deployment. In addition to the proof of finite-time
stability of deployment, a switching type control law combining constant angle
deployment and station-keeping control is also proposed to achieve asymptotic
stability. Details of this are given as follows.

In the following discussion, we consider the deployment of the subsatellite of
the tethered satellite system. For simplicity, let £ > 0 throughout deployment.
By Eq. (8.19), we have

3
QT‘O T'O

>0 = -3 -FEor

)sin6* > 0.

From the discussion above and Eq. (8.20), the condition on §* for £ > 0 is that
either 6(£5) < 0* < 7, or —F < 6* < 0 (see Figure 8.2), where 6;({;) solves

cosfy = —;—f, 0<6; <m, (8.40)
To

and £; is the desired post-deployment tether length.

Two strategies for deployment are considered here. The first consists of
the constant in-plane angle control law for deployment, and the second involves
the constant in-plane angle control law followed by a stabilizing station-keeping

control once the desired in-plane angle is close enough to 0 radians or 7 radians.
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02(lf')f
T -

Figure 8.2. Deployment regions for 8* with ¢* =0

Strategy 8.1: Constant Angle Control Only

We now consider application of the constant in-plane angle control law

discussed above to subsatellite deployment. In the following, £; denotes the de-

sired final tether length and ¢; denotes the initial tether length, which accounts

for support by a boom.
From (8.19), we have

¢_ _M( —
¢ 2¢ (P (6))®
_Qsing* 1o (7 (0)8 —r§

2 € (P (0)[rg + (Fr(0)]
> —Qsinf* cosf* >0

for any 6* € Sgand £; < £ < ;liro, where (in radian measure)

Sa:={0"|-068<6*<0, or2.5< 6" <}

(8.41)

Hence, % is bounded below for all £; < £ < £y < 5157'0 and 6* € Sy, and similarly

for £. Thus, for any ¢ § > £;, £ will increase past £; at some 7 > 0. Theorem

8.4 below asserts that the system will be finite-time contractively stable during
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deployment over the interval [t, % + 7), near the equilibrium point (8*, 0,0, 0)
with §* € S,.

Theorem 8.4. Suppose 2 < 1, &y < 22 3570, and I := [tg,t9g + 7). There is
an r > 0 such that system (8.11)-(8.14) is finite-time contractively stable with
respect to (a,,v,T, ||+ ||) at the equilibrium point (6*,0,0,0) for any a, 8, v
and 7 satisfying (8.4) and (8.7), if either of the following two conditions on the
desired in-plane angle 6* holds:

(i) —0.68<6* <0,
(i) 2.5 < 6* < .
Proof: Denote m := Qsin26*. It is clear from (8.41) that

_g;gm<0, forall te€T,

if either (i) or (ii) holds and £ < £5 < Z5ro. Invoking the finite-time stability
criterion given in Theorem 8.1, the stability of the TSS during constant angle
deployment can be proved as follows.

Using a general construction [54] for a class of second order linear time- .
variant system, we prove the finite-time contractive stability of (8.11)-(8.14)
during deployment by employing the Liapunov-like function

- 20 ny(t) « ~ 1
V(t’07w0’¢’w¢) = (7 + —#)92 + 20wg — 'T;wz

2_. 1£%) (t)

G+ b 2gus——uf,  (842)

where ni(t) for i = 1,2 are given in (8.24)-(8.25).
Then corresponding to the original system (8.11)-(8.14), we have

V(t b, ws, $,ws) = na(t)0% + ns(t)$? + 2(1 + ) (wp +wi)
+2(0 - Z)filt,2) + 26 - Dfa(tya),  (843)
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where ¢ := (é’wm ¢,ws),

d 26 1 dn1 (t)

n4(t)=2n1(t)+dt{£} — (8.44)
ns(t) = 2nat) + d{’jf} . drall), (8.45)

and fi(t,z) for ¢ = 1,2 are given in (8.27)-(8.28).

First, consider the case in which 6* satisfies condition (i). After some
calculations using Eqs. (8.24)-(8.25) and (8.42), we find that there exist &y 1,
k1,2 > 0 (given in the Appendix 8.A) such that

kiallz]|® < V(t,0,ws, ¢,wy) < k1 a)lz|[?, forall teT. (8.46)

Moreover, by choosing k3 := 0.132Q2 and

mk13HIL'|| mkl 3H$H
_ : < Mkysiizil d 8.47
we have

——V(t,é,wo,qﬁ,wd,) > k1,3”13“2, forall tel, ze€ B(r). (8.48)

Thus, conditions (8.5)-(8.6) are satisfied and the conclusion follows from The-
orem 8.1.

Similarly, for the case in which 6* satisfies condition (ii), we have
ka1||z]|? < V(¢,6,we, ¢,w4) < kopo||z||?, forall teT, (8.49)

where k31, k2,2 > 0 are also specified in the Appendix 8.A. By choosing ky 3 :=
0.0442Q2? and

mks,3||z| mkz,3|lz|

"=§IEIII3{ Hzl|l - |fllﬁm and |fy] < 2(m )}, (8.50)

we guarantee that
—V(t,0,ws, $,wy) > kasllz]|?, forall tel, z€ B(r). (851)
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The conclusion again follows from Theorem 8.1.

The finite-time contractive stable regions of the desired in-plane angle 6*
for constant in-plane angle deployment are given in Theorem 8.4. In addition,
a relationship between the time-interval 7, the bound of initial disturbances
and the final contracted region is set up in Theorem 8.1. Furthermore, the
simulation results given in Section 8.6.2 show that the criteria given in Theorem

8.4 are not vacuous.

Strategy 8.2: Station-Keeping Control Inchided

A tension control law has been designed in Chapter 6 to regulate the tether
length, while ensuring the out-of-plane angle ¢ = 0 and the in-plane angle
6 = 0 or (§ = m). Combining the result of Theorem 8.4 with the station-
keeping control strategies of Theorems 6.1 and 6.2, a switching control law for

deployment is constructed as follows:

Step 1. Apply the constant angle control law (8.19) for the first step subsatellite
deployment, in which the desired in-plane angle 8* satisfies the conditions
of Theorem 8.4 and is close to 0 (or ).

Step 2. Apply the tension control law given in Theorem 6.1 (or Theorem 6.2)
once the tether length is sufficiently near the desired length £¢.

Theorem 8.4 implies that the initial disturbance in the state of the TSS can
be attenuated. Specifically, with the desired in-plane angle sufficiently near 0
or 7, the system state can be steered to the domain of attraction of the station-
keeping control mode in Step 1. Hence, the tether length will be regulated to
the desired length upon switching to the station-keeping stabilization control
when the tether length is sufficiently near the desired value. Simulation results
of a typical system given in Section 8.6.2 demonstrate the asymptotic stability

of the TSS using this algorithm.

193



8.6. Simulation Results

Many simulation examples for tethered satellite systems in the station-
keeping mode have been presented in Section 6.4. In this section, we present

simulation results only for deployment and retrieval.

A TSS with following characteristics is considered :

- Orbital radius ro = 6598 km,
- Subsatellite mass m = 170 kg,
- Orbital angular velocity §2 = 0.0011781 rad/sec.

In the following discussion, § = § — §* denotes the differential of the in-
plane angle, £; denotes the desired final tether length, f=0—-1¢ 7 denotes the
differential of the tether length and T' denotes the applied tension control force.

8.6.1. Retrieval

As discussed in Section 8.4, the set of candidate in-plane angles for constant
angle retrieval S, is as in (8.22). Let the initial state of the system be ¢ = 0.01,
6 = —0.01, and wg = wyg = 0. The initial tether length ¢; is assumed to
be 10 km. It is observed from Figures 8.3 and 8.4 that the equilibrium point
(6*,0,0,0) is unstable during retrieval with a desired in-plane angle of * = —3.0
and 6* = —1.6, respectively. As mentioned in Chapter 6, since the tether is
not in reality rigid, the applied tension control force cannot be positive (to rule
out compression). However, Figure 8.4(d) shows that a positive tension control
force T occurs during some time interval. Thus, if a constant angle control law
is applied during retrieval, then not only will the system be unstable, but tether
compression may also occur.

It is also found that when the desired in-plane angle satisfies 6* € $; :=
{—2.1 < 6* < 6,(¢;)} for constant angle retrieval, the applied tension control
force T can assume positive values during some time-intervals, i.e., compression

may occur. The system response for 6 = —2.1 and constant angle retrieval is

depicted in Figure 8.5, where T is found (see Figure 8.5(d)) to at times be very
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close to 0 but is never positive.

Similar simulation results are found for the region 0 < 8* < 7 for constant
angle retrieval. The equilibrium point (8*, 0,0, 0) is found to be unstable during
retrieval and compression of the tether may occur in case 1.0 < 8* < 7. The

system responses are not shown.
8.6.2. Deployment

According to Theorem 8.4, the set of candidate 8* for stable deployment is
Si={0]-068<0<0, or 25<8<n}.

Let the initial disturbance of the system be ¢ = 0.01, 6 = —0.01,and wy = we =
0. The initial tether length is assumed to be £; = 10 m, which is provided by
a boom. First, the system response during deployment (applying constant in-
plane angle control only) are depic‘ted in Figures 8.6 and 8.7, with 6* = —0.68,
and §* = 2.5, respectively. It is observed from the system responses that, for
instance, the differential of the in-plane angle 6 and the out-of-plane angle ¢
decay during deployment.

The switching control strategy, which involves both constant angle con-
trol and station-keeping control, is applied to deploy a subsatellite from the
satellite with the desired final tether length £; = 10 km. The first example con-
cerns deploying the subsatellite upward (i.e., away from the Earth) by applying
constant angle control with 8* = —0.015 for the first 260,500 seconds, and ap-
plying the station-keeping control thereafter. The applied tension control force

for station-keeping is governed by

T = —m(U + hi€ + hyb), (8.52)

where U = 0.041019, h; = 3.1Q2 and hy; = 0.0034. The responses of the system
during constant angle deployment are shown in Figure 8.8. At time ¢ = 260, 500

geconds, we have
- out-of-plane angle ¢ = —7.01636 x 10~%, and é = 1.70633 x 108 rad/sec
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- in-plane angle § = —0.0150051,and 8 = 5.61812 x 10~1° rad/sec
- actual tether length £ = 9.97617 km and £ = 2.63603 x 10~ km/sec.

With these values, the applied tension control law is switched to the station-
keeping control and governed by Eq. (8.52). The system responses governed
by (8.52) are depicted in Figure 8.9.

Another example for deploying the subsatellite downward (i.e., toward the
Earth) is implemented by applying constant angle control for the first 235,300
seconds with §* = 3.125, then switched to the station-keeping control governed

by Eq. (8.52). At time t = 235,300 seconds, we have

- out-of-plane angle ¢ = —2.01378x 108, andq.ﬁ = —2.35517x10~® rad/sec
- in-plane angle 8 = 3.1250, and 6 = 8.96566 x 10~? rad/sec
- actual tether length £ = 9.88531 km and £ = 2.90670 x 10~ km/sec.

The system responses are shown in Figures 8.10 and 8.11.
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Figure 8.3. Simulation results for constant angle retrieval

with 6* = —3.0 radians
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Appendix 8.A

The values of k; ;,7 = 1,2 and j = 1,2 are given as below.

0.295575407 csc? 26*
k11 = :
1,2
E o — Lh+b+/(h+13)2+4
1,2 = >
0.498328311 csc? 26*
ka1 = P
2,2
- li+1ls++/(la+1)2 +4
2,2 =
’ 2

where

li = —-3Qcos §* sin 6* — 0.5Q sin 6*
_ °(3cos® 6* +0.5cos6*) +1

I, =

2 Q sin 20*

I — Q2(3 cos? 8* + 0.5 cos 6*) -1
37 Q sin 26*

ly = —3.68961 cos 8* sin 8*
_ 3.689606102 cos? 6* + 1

ls = 1sin 26*
I - _3.689606192 cos? 6* —1
6~ ) sin 26*
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CHAPTER
NINE

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

Among the topics studied in this dissertation is a detailed consideration
of the applications of the Center Manifold Theorem to the stability analysis
and stabilization of nonlinear critical systems. For these systems, the Jaco-
bian matrix has eigenvalues lying on the imaginary axis; while the remaining
eigenvalues are either stable or stabilizable by feedbacks. The feedback stabiliz-
ing control laws have been designed for both linearly controllable and linearly
uncontrollable cases for the critical modes (i.e., for the eigenvalues which lie
on the imaginary axis). A linear transformation has been introduced to play
a key role in linear and linear-plus-quadratic feedback designs for the linearly
uncontrollable case, facilitating application of the Center Manifold Theorem to
system stabilization. In the linearly controllable case, we have focused on the
design of purely nonlinear feedback stabilizing control laws.

The stabilization of two simple critical cases in which the linearized system
model has one zero eigenvalue or a pair of nonzero pure imaginary eigenvalues
have been obtained to demonstrate the applications. Moreover, a nonlinear

transformation, the so-called “normal form formulation”, was employed to sup-
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plement the study of the stability and stabilization of nonlinear systems with
compound criticalities. The compound criticalities considered in this disserta-
tion are the cases in which the linearized system model has two zero eigenvalues
with geometric multiplicity one; one zero eigenvalue and one pair of nonzero
pure imaginary eigenvalues; or two distinct pairs of nonzero pure imaginary
eigenvalues, along with the assumption of the remaining eigenvalues being sta-
ble or stabilizable. We have obtained the stability conditions and have designed
feedback stabilizing control laws in terms of the original nonlinear system dy-
namics for these critical systems, as an alternative to those given in terms of
system dynamics in normal form [10]. Moreover, our results do not restrict the

dimensionality of the noncritical modes.

In this thesis, we have also proposed a technique to construct Liapunov
function candidates for general nonlinear critical systems in which the center
manifold reduction technique is employed to simplify the complexity of the
design. To demonstrate the applications of the proposed technique, we have
constructed stability conditions for the simple critical cases and those for the
compound critical cases by using the proposed composite Liapunov function
approach. The stability results were found to agree with those obtained by
using normal function reduction. Furthermore, families of Liapunov functions
for these critical cases have also been obtained. The center manifold reduction
results presented in this thesis may be easily coded using a symbolic algebra
package.

In the practical applications, we have studied the mathematical model and
the control of the Tethered Satellite Systems (TSS). A point-mass model of
the TSS was derived based on several simplifying assumptions. Linear and/or
nonlinear state feedback stabilizing control laws for the TSS during the station-
keeping mode have been obtained by using the Hopf bifurcation theorem. It was
found that such stabilizing control laws can also be implemented by using center
manifold reduction. Another approach, using application of center manifold

reduction for the stabilization of double critical systems whose linearized model
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has two distinct pairs of nonzero pure imaginary eigenvalues, was also proposed
to guarantee the stability of the TSS during station-keeping and to improve the
system performances. Simulations indicate that the transient response of the
system by using this new method is superior to that obtained from the design via
the Hopf bifurcation stability criterion. The stability of the constant in-plane
angle control for the deployment and the retrieval of the subsatellite of the TSS
have also been addressed in this thesis. By invoking the “finite-time stability”
criteria, we have proved that the TSS will be unstable during retrieval, but
stable during deployment. A new switching type controller, which combines
the constant in-plane angle control and the station-keeping control, was also
designed to guarantee the asymptotic stability for subsatellite deployment.

To further extend the researches covered in this thesis, we note several
possible directions. First, the stabilization techniques proposed in this thesis
using center manifold reduction can be applied to study the local stabilization
of parametrized families nonlinear systems, specifically, bifurcating systems and
multiple time-scale systems. Secondly, the proposed method for constructing
families of Liapunov functions can be used to study the optimization-based
nonlinear controller design (for instance, the requirements of optimal transient
- performance and the largest attraction domains), specifically, for the critical
nonlinear systems. A third possible direction for future research is to further
study the stabilization and control of the TSS. Application of existing control
techniques and development of new control ideas in this area are important.
In this thesis, we only focused on the stability analysis and the control for the
simple point-mass model of the TSS. More complicated models, which include
flexibility, mass of the tether and other possible factors, should be addressed in

future research.
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