
Handling Updates and Crashes in VoD Systems �Eenjun Hwang, Kemal Kilic and V.S. SubrahmanianComputer Science DepartmentInstitute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20770fhwang; kemal; vsg@cs.umd.eduAbstractThough there have been several recent e�orts to develop disk based video servers, these ap-proaches have all ignored the topic of updates and disk server crashes. In this paper, we present apriority based model for building video servers that handle two classes of events: user events thatcould include enter, play, pause, rewind, fast-forward, exit, as well as system eventssuch as insert, delete, server-down, server-up that correspond to uploading new movieblocks onto the disk(s), eliminating existing blocks from the disk(s), and/or experiencing a diskserver crash. We will present algorithms to handle such events. Our algorithms are provablycorrect, and computable in polynomial time. Furthermore, we guarantee that under certain rea-sonable conditions, continuing clients experience jitter free presentations. We further justify thee�ciency of our techniques with a prototype implementation and experimental results.
�This work was supported by the Army Research O�ce under Grant Nr. DAAH-04-95-10174, by the Air ForceO�ce of Scienti�c Research under Grant Nr. F49620-93-1-0065, by ARPA/Rome Labs contract F30602-93-C-0241(ARPA Order Nr. A716), by Army Research Laboratory under Cooperative Agreement DAAL01-96-2-0002 FederatedLaboratory ATIRP Consortium and by an NSF Young Investigator award IRI-93-57756.1

1 IntroductionOver the last few years, there has been a tremendous drop in digitization costs, accompanied by aconcomitant drop in prices of secondary and tertiary storage facilities, and advances in sophisticatedcompression technology. These three advances, amongst others, have caused a great increase in thequality and quantity of research into the design of video servers [2, 4, 11, 6, 10, 16].Most models of video servers to date assume the following parameters:1. Movies are stored, in part, or in their entirety, on one or more disks.2. The video-on-demand VoD system is responsible for handling \events" that occur. Client eventsthat have been studied include:� the enter of a new client into the system, requesting a movie,� the exit of an existing client from the system.� the activities of continuing clients (e.g. play, fast forward, rewind, pause).\Handling" an event refers to the process by which the VoD server assigns jobs to di�erent diskservers, so as to optimize some performance criterion. A variety of algorithms to \handle" theabove events have been studied by researchers.All the above events are \user" events, in the sense that they are invoked or caused by theactivities of a user of the VoD system. However, in reality, there is another class of events that mustbe accounted for, which we call system events, which includes events such as server-down (specifyingthat a certain disk server has crashed), server-up (specifying that a disk server that had previouslycrashed is \up" again), insert (specifying that the system manager wishes to include some newmovies (or blocks of movies) on a disk, and delete (specifying that the system manager wishes todelete some movies from a server's disk array). Most work to date on server crashes has focused onthe important topic of recovery of data on the crashed disk, but has not really looked into how tosatisfy clients in the VoD system who were promised service based, in part, on the expectation thatthe crashed disk would satisfy some requests. The main focus of this paper is to develop VoD serveralgorithms that can handle not just user events, but can also handle system events.The problem of updates in video servers is crucial for several applications where video data isbeing gathered at regular intervals and being placed on the VoD system. For example, a movie-on-demand vendor may, at regular intervals, include new movies in the repertoire of movies o�ered topotential customers. These movies need to be placed on the disk array that the vendor may be using,leading to an insert operation. Similarly, in news-on-demand systems, new news videos and audioreports may become available on a continuing basis, and these need to be made available to editorsof news programs for creating their current and up to date news shows. In many similar systemstoday, this is done by taking the system \down", accomplishing the update, and then bringing thesystem back \up" again. The obvious undesirable aspect of this way of handling updates is thatservice must be denied to customers who wish to access the server when it is down, thus leading tolost revenues for the VoD vendor. The algorithms proposed in this paper treat updates as (collectionsof) events, and schedule them to occur concurrently with user-events in a manner that ensures that:2

1. existing customers see no deterioration (under some reasonable restrictions) in the quality ofservice, and2. the update gets incorporated in a timely fashion. In particular, our algorithms will
exiblyadapt to the load on the disks, so as to incorporate as much of the update as possible whenresources are available, and to reduce the update rate when resources have been previouslycommitted.3. the system is not \taken down" in order to accomplish the update.Unlike the issue of updates, disk crashes have certainly been studied extensively over the years[2, 12]. However, consider the problem of a VoD server that has made certain commitments tocustomers. When a crash occurs, the VoD server must try to ensure that any client being serviced bythe disk that crashed be \switched" to another disk that can service that client's needs. Furthermore,the VoD server must ensure that the fact disk d has crashed be taken into account when processingnew events. In the same vein, when a disk server that had previously crashed comes back \up", thismeans that new system resources are available, thus enabling the VoD server to take appropriateactions (e.g. admit waiting clients, re-distribute the load on servers to achieve good load balance,etc.). We show how our framework for handling updates can handle such crashes as well (undercertain limitations of course).In particular, we propose an algorithm called the VSUC (\Video Server with Updates andCrashes") algorithm, that handles events (including user-initiated events, as well as update eventsand crashes) and has several nice properties. In particular:� VSUC guarantees that under certain conditions, it ensures continuous, jitter free service forclients, once they have been admitted. (We will make the conditions precise in Theorem 4.1).� VSUC also guarantees (again under certain conditions), that no client is denied service forarbitrarily long (cf. Theorem 4.2).� VSUC reacts to client initiated, as well as system (update/crash) events in polynomial time.2 System ArchitectureThroughout this paper, we will use the term video block (or just block) to denote a video segment.We will assume that the size of a block is arbitrary, but �xed. In other words, one VoD applicationmay choose a block to be of size 30 frames, while another may consider it to be of size 60 frames. Asour video data is stored on disk, this means that the start of each video block is located on a singlepage of any disk that contains the block.As data is laid out on a collection of disks, we will assume that this collection of disks is par-titioned into disjoint subsets DC1; : : : ; DCn. We will furthermore assume that all disks in DCi arehomogeneous (i.e. have identical characteristics) and a single disk server DSi regulates access tothe disk drives in DCi. It is entirely possible that DCi contains only one disk, but it could contain3

Disk
Server i

ROUTER

Disk Array Disk Array

Disk Array

Disk
Server 1

Disk
Server n

Client 1 Client 2 Client m-1 Client m

High Speed Network

Figure 1: System structure.more. Note that there is no requirement that two disk collections DCi; DCj need to have the samecharacteristics and hence, disks in DCi may have vastly di�erent characteristics than those in DCj{ this is what accomplishes heterogeneity.The design of disk servers is now well known [2, 4, 11, 6, 10, 16]. In its simplest form, a diskserver is a piece of software that, given a physical disk address, retrieves the object located at thataddress. In our case, disk servers DSi mediate access to a collection DCi of disks, which means thatgiven a disk-id and a physical disk address, the server retrieves the block located at the given diskaddress on the speci�ed disk. Figure 1 shows the structure of the system as described informallyabove.In our architecture, the video server is responsible for the following tasks:1. When an event (user event or system event) occurs, the video server must determine how tohandle the event. This may involve dispatching instructions to the disk servers. For example,such instructions could include: Fetch (for client cl id) the block starting on page p of disk d.Note that the disk server does not necessarily need to know the client's identity, cl id.2. In addition, the video server may need to \switch" clients from one disk server to another. Forexample, client cl id1 may be being served by disk server DS1. If a new client cl id20 requests amovie (or block) that is only available through disk serverDS1 and if disk server DS1 is alreadyfunctioning at peak capacity, then it may be possible to \switch" client cl id1 to another diskserver (say DS2) if disk server DS2 has the resources needed to satisfy client cl id1.4

3. Third, the video server may \split" a job into smaller, manageable jobs, and distribute thesesmaller jobs to di�erent servers, which leads to better system utilization.4. Fourth, whenever an event (e.g. an update occurs), the video server must automatically createa schedule to accomplish the update, and determine what instructions must be sent to the diskserver(s) involved to successfully handle the event.5. Fifth, whenever events such as disk server crashes occur, the VoD server must re-assign theexisting clients to other servers (when possible) and schedule system generated recovery eventsso as to minimize the damage caused by the crash.2.1 System ParametersIn any VoD system, the participating entities may be divided into the following components:1. Servers: these are the disk servers that retrieve speci�ed blocks from the relevant disks;2. Clients: these are the processes that are making/issuing requests to the servers; and3. Data: this includes the movie data laid out on the disks.In order to successfully model a VoD system, and develop provably correct and e�cient algorithmsfor this purpose, we must model each of the above parameters, as well as the interactions betweenthe above components.Tables 2,3,4 show the notations we use to denote the relevant parameters of servers, clients, andmovies, respectively.Throughout this paper, we assume that there is a set MOVIE = fM1; : : : ;Mrg of movies thatwe wish to store on disk. Each movie Mi has bnum(Mi) \blocks". A block denotes the level ofgranularity at which we wish to store and reason about the media-data. For example, a block maybe a single-frame (�nest granularity) or a consecutive sequence of (100 frames). The applicationdeveloper is free to select the size of a block in any way s/he wishes, but once such a block size isselected, s/he is committed to using the selected block size for the application. In other words, theyare free to choose their block size as they wish, but once they make the choice, they must stick to it.3 State Transition ModelIn this paper, we will develop a state transition model that has the following properties:� A state is any feasible con�guration of the system, and includes information such as: whichdisk server(s) are serving a client, and what service they are providing the client, and whatresources are committed by the server to the client to accomplish the service provided.5

Symbol Meaningbuf(i; s) The total bu�er space associated with the disk server i at state s.cyctime(i; s) The total cycle time for the server i at state s.dtr(i; s) The total disk bandwidth associated with the disk server i at state s.timealloc(i; j; s) The time-slice allocated to client j at state s by server i.�s(i) The set of servers handling request by client i at state s.}(Mi; b; s) The set of servers that contain block b of movie Mi according to placementmapping } at state s.d active(i; s) The set of all clients that have been assigned a non-zero time-allocation bydisk server i at state s.server status(i; s) The status
ag for server i. It is true when the server is working, falseotherwise.switchtime(i; s) The time required for the disk server i to switch from one client's job toanother client's job at state s.bufreq(i; j; s) The bu�er space needed at the server i to match the consumption rate ofclient j at state s.priority(e; s) The priority of the event e at state s.Figure 2: Server ParametersSymbol Meaningcons(i; s) The consumption rate of client i at state s.data(i; j; s) The set of data blocks that server i is providing to client j at state s.inuse(i; s) This set consists of 3-tuples, (j;Mk; b), it speci�es that the server i is pro-viding block b of movie Mk, to client j at state s.active client(s) The set of all clients that are active at state sm active(s) The set of all clients that are watching movie m at state srew win(i; s) The size of rewind window for client i at state s. This means the client cannot rewind the movie more than that many blocks.ff win(i; s) The size of fast forward window for client i at state s. This means the clientcan not fast forward the movie more than that many blocks.watch win(Mi; j; s) The time limit for client j to watch movie Mi at state s.pause win(i; s) The time limit for client i to pause at state s.Figure 3: Client ParametersSymbol Meaningbnum(Mi) The number of blocks for a movie Mi.Figure 4: Movie Parameters6

� The state of the system may change with time, and is triggered by events. Events include:{ Client-initiated events such as enter, exit, fast-forward, pause, rewind, play, aswell as{ Server-initiated events such as server-down, server-up where a server goes \down" orcomes back \up", and{ Manager-initiated events such as insert, delete. Note that manager events could eitherbe initiated by a human VoD systemmanager, or by a tertiary storage device that is stagingdata onto disk (though we will not go into this possibility in detail in this paper).3.1 What is a State ?A system state s consists of the following components:1. A set active client(s) of active clients at state s.2. The current cyctime(i; s) of each server in the system.3. The consumption rates of the active clients (cons(i; s)) in state s.4. The time, timealloc(i; j; s), within cyctime(i; s) that has been allocated by server i to clientj in state s.5. The locations (}(m; b; s)) of each movie block, i.e. the set of all servers on which block b ofmovie m is located in state s.6. The set of data blocks (data(i; j; s)) being provided by server i to client j in state s.7. A client mapping �s which speci�es, for each client C, a set of servers, �s(C), specifying whichservers are serving client C.8. A set down servers(s) consisting of a set of servers that are down in state s.9. A set insert list(s) consisting of a set of 3-tuples of the form (i;m; b) where m is a movie,b is a block, and i is the server where this block will be inserted. (This set is used to model aset of insertion updates that are \yet to be handled.")10. A set delete list(s) consisting of a set of 3-tuples of the form (i;m; b) where m is a movie, bis a block, and i is the server where this block will be deleted. (This set is used to model a setof deletion updates that are \yet to be handled.") 3For example, consider a very simple scenario where �ve movies m1; : : : ; m5 have been broken upinto 60; 80; 50; 50; 60 blocks each, and have been placed on the three disks as shown in Figure 5. Eachdisk hold some blocks of some movies, as indicated in the �gure. An example of a state is the states5 shown below: 7

Router

Server 1 Server 2

m3:[b21-b40]

m1:[b41-b60]
m1:[b01-b20]
m2:[b61-b80]

m4:[b01-b30]
m5:[b41-b60]

m1:[b21-b40]
m2:[b01-b30]
m3:[b01-b20]
m4:[b31-b50]
m5:[b01-b20]

m1:[b01-b20]
m2:[b31-b60]
m3:[b41-b50]
m4:[b01-b30]
m5:[b21-b40]

Server 3Figure 5: Example placement mapping1. active client(s5) = fc1; c2; c3; c4; c5; c6; c7; c8; c9g indicates that 9 clients are currently beingserved.2. cyctime(i; s) may be 8, 10, 7 for the servers 1,2,3 respectively.3. The consumption rates of the clients involved might be given by:cons(c1; s5) = 15:cons(c2; s5) = 25:cons(c3; s5) = 15:cons(c4; s5) = 10:cons(c5; s5) = 40:cons(c6; s5) = 10:cons(c7; s5) = 25:cons(c8; s5) = 15:cons(c9; s5) = 20:These rates indicate, for example, that client c1 is consuming data (e.g. outputting it on adisplay device) at a rate of 15 units/sec.4. The following simple table may capture the assignment of time (within a cycle) for each client.Any client not explicitly assigned a time-slice by a server is assigned 0 time.
8

Server (i) Client (j) timealloc(i; j; s5)1 c1 3c4 2c9 22 c2 2.5c5 2c6 1c8 1.5c9 13 c3 1.5c5 2c7 2.5For example, the fact that server 1 does not explicitly list a time-allocation for client c5 meansthat server 1 has assigned zero time for that client. Note that for each server i, it is the casethat c9Xj=c1 timealloc(i; j; s5) � cyctime(i; s5):For example, the allocation for server 1 is given by:3 + 2 + 2 = 7 � cyctime(1; s5) = 8:5. The data data(i; j; s5) being provided by server i to client j in state s5 may, for example, berepresented as the table: Server (i) Client (j) data(i; j; s5)1 c1 m1:[b2,b3]c4 m2:[b30,b31]c9 m4:[b4,b4]2 c2 idlec5 m2:[b4,b4]c6 m2:[b3,b3]c8 m5:[b7,b7]c9 m4:[b5,b5]3 c3 m2:[b67,b70]c5 m2:[b5,b5]c7 m3:[b5,b6]6. Note that the preceding table fully speci�es the client mapping. In this case, this mapping �s5is given by: �s5(c1) = �s5(c4) = f1g:9

�s5(c6) = �s5(c8) = f2g:�s5(c3) = �s5(c7) = f3g:�s5(c5) = f2; 3g:�s5(c9) = f1; 2g:Note that in the above table, some time has been allocated to clients that are idle, e.g. client c2has been allocated 2.5 time units by server 2, even though it is idle. This may be because thisclient has temporarily \paused" in which case, the reservations are still made for the client,but the disk is not actually reading data shipped by the server.7. In this example, down servers(s5) = ;.A system state s must satisfy certain simple constraints, that we list below.1. For each server i that is not down, the sum of the time-allocations assigned to the clients beingserved by that server must be less than the cycle time of the server. This is captured by theexpression:(8i)0@i =2 down servers(s)! 0@Xj timealloc(i; j; s)� cyctime(i; s)1A1A :2. If a server is processing a request for some data, then that data must be available in the server.This is captured by the expression:(8i)(8j) (m : [b1; b2] 2 data(i; j; s)! (8b) (b1 � b � b2! i 2 }(m; b; s))) :3. The sum of consumption rates of the clients being served by a given disk server must not exceedthe total disk bandwidth of the server. This is captured by the expression:(8i)(8j)0@ Xj:timealloc(i;j;s)>0cons(j; s) � dtr(i; s)1A :4. For each server i that is down, there is no active client. This is captured by the expression:(8i) (i 2 down servers(s)! (d active(i; s) = ;)) :The above constraints specify the basic constraints that tie together, the resources of the VoDdisk server system, and the requirements of the clients.10

3.2 Prioritized EventsInformally speaking, an event is something that (potentially) causes the VoD system to make atransition from its current state to a \next" (or new) state. The study of the performance of diskservers for multimedia applications varies substantially, depending upon the space of events thatare considered in the model. In our framework, the space of events that are allowed falls into twocategories:� Client events: enter,exit,pause,play,fast-forward,rewind;� System events: server-up, server-down, insert, delete.Each event has an associated integer called the priority of the event, and a set of attributes. Forexample, the event server-up has an attribute specifying which server is up. Thus, server-up(2,s)speci�es that the event \server 2 is up" has occurred at state s, while the statement server-down(3,s)speci�es that the event \server 3 has gone down" has occurred at state s. Likewise, the event inserthas three attributes { a server id, movie id, and a block number, specifying which block of whichmovie is being inserted and to which server this insertion is being made. For example, the eventinsert(2,m1,b1) speci�es that block b1 of movie m1 is being inserted onto server 2.The priority of the event indicates how important the event is { the higher the priority, thegreater the importance of the event.The occurrence of an event must be handled by the VoD system, by transitioning to a new statethat appropriately \handles" the event. Before specifying how events are handled, we specify somenew concepts.3.3 Modeling Usage ConstraintsIn any VoD system, the system administrator may wish to enforce some \usage" constraints. In thispaper, we do not try to force constraints upon the system. However, we do make available to thesystem administrator, the ability to articulate and enforce certain types of constraints that s/he feelsare desirable for his system.� Pause time constraint: A pause time constraint associates, with each client c, an upperbound, pause win(c; s), on the amount of time for which the customer can \pause" the movies/he is watching. For example, suppose pause win(John Smith; s) = 25. This means that asfar as the system is concerned, John Smith's pause time cannot exceed 25 time units at state s.In particular, if John Smith pauses the movie he is watching at time 75, then his pause windowwill expire at time 75 + 25 = 100, and the resources allocated to him by the VoD system willbe \taken back" by the system to satisfy other users' requests.In general, when a customer \pauses", the server(s) satisfying the customer's request continuesto `hold" the resources needed by the system. Clearly, holding such resources for an inde�niteperiod is not wise. The pause window speci�es, for each customer, an upper bound on theperiod of time for which the customer can pause the movie.11

� Fast-forward/Rewind window constraint: Just as in the case of pause windows discussedabove, each client c has an associated fast forward and rewind window which speci�es an upperbound on how many data blocks the client can fast-forward to or rewind to, respectively. Weuse the notation ff win(c; s) and rew win(c; s) to denote the fast-forward and rewind windowsassociated with client c at state s.� Playing time constraint: In addition to the pause window, the system manager may wishto specify that a user cannot watch a movie for arbitrarily long. As an example, consider ourclient John Smith, watching movie m1 which has 4 blocks. John Smith's transactions could behighly redundant if, for instance, he were to execute the following transactions:1. watch blocks b1,b2,b32. rewind to block b1. Return to step 1In order to prevent \irresponsible" usage such as the above, the system manager may spec-ify a total watch window for each user and any given movie. For example, specifying thatwatch win(M1; John Smith) = 180 says that that John Smith has at most 180 time units to�nish viewing movie M1.3.4 Update BoundariesSuppose s is a system state (at some arbitrary point in time) and j is a client being served by aserver i. As usual, the state s contains a data tuple specifying what data is being provided to theclient by that server. For example, consider the situation described in the example of Section 3.1. Inthat example, in the state shown, server 1 is presenting blocks b2 and b3 of movie m1 to client c1.Now, suppose the system administrator wishes to delete block b1 of moviem1 on server 1. Figure 6shows this situation. While the system manager has the ability to make the request at any time, theprecise time at which the request is actually scheduled (i.e. the precise time at which deletion of theblock is scheduled) must take into account, the existing clients watching that movie w.r.t. the serverin question. In this case, the question that needs to be addressed is: What happens if the client c1wishes to rewind 1 block? If the deletion is incorporated immediately upon receipt of the deletionrequest, then the rewind request of the client will be denied { a situation that may or may not bedesirable. Thus, at any given point in time, each client has an associated rewind boundary associatedwith each server, specifying \how far back" that server can support a rewind request issued by theclient. The rewind boundary may change with time. Rewind boundary, and their dual concept of asimilar fast-forward boundary, are de�ned below.De�nition 3.1 (Rewind Boundary) The rewind boundary of a movie m w.r.t. server i in state sis de�ned as follows:Rewind Boundary(m,s)= min f b - rew win(j,s) j j 2 m active(m,s) and (m,[b:b']) � Sk data(k,j,s) g12

To client c1

Server 1

read

delete m1:b1 c1 cannot rewind

Server 1

m5: [b21-b40]

m4: [b01-b30]

m3: [b41-b50]

m2: [b31-b60]

m1: [b1,b2,b3,b4...b20]

m5: [b21-b40]

m4: [b01-b30]

m3: [b41-b50]

m2: [b31-b60]

m1: [b1,b2,b3,b4...b20] Figure 6: Deletion of a blockIf the above set over which the min is performed is empty, that is, m active(m,s) is empty, thenRewind Boundary(i,m,s) = bnum(m). 3For example, let us return to the movie m2 at server 2 and the state s in which:1. client c5 is reading block b4 of movie m2;2. client c6 is reading block b3 of movie m2;3. no other client is reading movie m2 (exactly what they are doing is not pertinent for thisexample).If the rewind window for client c5 is 2, and that of client c6 is 1, then the rewind boundary associatedwith server 2, movie m2 and state s is given bymin(4� 2; 3� 1) = 2:Let us try to see why this is the case, and what this statement means. (Figure 7 illustrates thisreasoning).� Two clients, viz. c5; c6, are reading (parts of) movie m2 from disk server 2. If we try to updatethe copy of movie m2 residing on disk server 2, the only clients who can be a�ected (in thecurrent state) are therefore clients c5 and c6.� Client c5 is currently reading block b4 and his rewind window is of length 2, which means hecan only go \back" 2 blocks in the movie by executing a rewind command. E�ectively, thismeans that he cannot access any blocks before block b2.� Likewise. client c6 is currently reading block b3 and his rewind window is of length 1, whichmeans he can only go \back" 1 block in the movie by executing a rewind command. E�ectively,this means that he cannot access any blocks before block b2.� As the minimum of these two blocks is b2, this means that neither client has read access toblock b1 in this state. 13

b1 b2 b3 b4

������������
������������
������������
������������

��������
��������
��������
��������

block being read by c5

block being read by c6

b1 b2 b3 b4

rewind boundary

b1 b2 b3 b4

rewind window for c5

rewind window for c6

this block can be updated
(= min of the two above boundaries)Figure 7: Rewind boundary computation� Thus, if we wish to update block 1 which lies \below" this rewind boundary, then this is \safe."An analogous situation occurs w.r.t. fast forward boundaries which are de�ned as stated below.De�nition 3.2 (Fast forward Boundary) The fast forward boundary of a movie m in state s isde�ned as follows:FF Boundary(m,s)= max f b + ff win(j,s) j j 2 m active(m,s) and (m,[b:b']) � Sk data(k,j,s) gIf the above set over which the max is performed is empty, that is, m active(m,s) is empty, thenFF Boundary(m,s) = 0. 3For example, consider the single disk server in Figure 8. This disk server, i, contains severalmovies, but only one of these, viz. movie m4 is shown in the �gure. Blocks 1{5,7{20 of this movieare available on the disk server i. Suppose that in state s, we have four clients watching this particularmovie (other clients may be watching other movies) and that the blocks these clients are watchingand the fast forward windows of these clients are as given below:Client Block being watched ff winc1 5 2c2 9 1c3 10 2c4 8 3Then, the fast forward boundary is given by:FF Boundary(i;m4; s) = maxf5 + 2; 9 + 1; 10 + 2; 8 + 3g = 12:14

��������

��������

1 2 4 9 12 14 203 5 7 8 10 11

4 9 12 13 14 203 5 8 10 11

c1 c4 c2 c3

c3’s ff_window

c2’s ff_window

c4’s ff_window

c1’s ff_window

ff boundary

21

current reading block

7

13

Figure 8: Fast forward boundary computationThis means that only blocks 13{20 of the movie may be updated at this point of time.The primary use of rewind boundaries and fast forward boundaries is to ensure that when anupdate request is made by the system manager, that the users viewing the application have the
exibility to rewind or fast forward, within the limits of their fast forward/rewind boundaries. Noticethat it is not always possible to guarantee this. For example, in �gure 8, if client c1 wishes to fastforward to block 6, there is no way to satisfy this request without switching him to another diskserver, because the disk server in �gure 8 does not have block 6.With these de�nitions in mind, we are now ready to de�ne how to handle events.4 Handling EventsIn this section, we provide detailed algorithms for handling events. We will �rst provide an abstract,declarative speci�cation of what constitutes an appropriate way of handling events. Then, we willprovide algorithms to successfully handle events.4.1 Optimal Event Handling: Speci�cation and SemanticsSuppose s is a valid state of the system, and e is an event that occurs. In this section, we will�rst specify what it means for a state s0 to handle the event e occurring in state s. This will bedone without specifying how to �nd such a state s0. We will later provide algorithms to handle suchevents.De�nition 4.1 (Event Handling) State s0 is said to handle event e in state s i� one of the followingconditions is true: 15

1. New clients: [e =New client c enters with a request for movie m:](9i)(i 2 �s0(c) ^ m : [1; 1] 2 data(i; c; s0):2. Old clients: [e =Old client c exits the system]�s0(c) = ;.3. Continuing clients:(a) (e =Continuing client c watches, in \normal viewing" mode, block b of movie m)(9i)(i 2 �s0(c) ^ m : [b; b] 2 data(i; c; s0)):(b) (e =Continuing client c pauses)(9i)(i 2 �s0(c) ^ data(i; c; s0) = ;.(c) (e =Continuing client c fast forwards from block b to block b+ r where r � ff win(c; s))(9i)(i 2 �s0(c) ^ m : [b;min(bnum(m); b+ r)] 2 data(i; c; s0):(d) (e =Continuing client c rewinds from block b to block b� r where r � rew win(c; s))(9i)(i 2 �s0(c) ^ m : [max(0; b� r); b] 2 data(i; c; s0):4. Server status event:(a) (e =disk server i crashes)i 2 down servers(s0)^ :server status(i) ^ (8c)i 62 �s(c).(b) (e =disk server i comes back \up")up server(i) ^ :down servers(i).5. Update event status:(a) (e = delete block b of movie m from server i)i =2 }(m; b; s0) _ (i 2 }(m; b; s0) ^ (i;m; b) 2 delete list(s0))).(b) (e = insert block b of movie m into server i)i 2 }(m; b; s0) _ (i =2 }(m; b; s0) ^ (i;m; b) 2 insert list(s0)).The handling of update events requires some intuition. Let us suppose, that we have a movie con-taining 100 blocks which is stored, in its entirety, on one disk server, and we have 2 clients c1; c2 whoare watching the movie, via this server. Let us say that c1 is watching block 45, and c2 is watchingblock 50, and each of them is consuming 1 block per time unit (just to keep things simple). Let usfurther say that the system manager now wishes to update the entire movie, replacing old blocksby new ones (which may be viewed as a simultaneous insert and delete). Additionally, both clientsc1; c2 have rewind windows and fast forward windows of 5 blocks each. Figure 9 shows this situation.� At this stage, the rewind and fast forward boundaries for this movie are 40 and 55, respectively.� This means that blocks 1; : : : ; 39 and 56; : : : ; 100 may be safely updated right away (assumingthat enough bandwidth is available).� The blocks b such that 40 � b � 55 can only be updated later, i.e. the updating of these blocksmust be deferred. 16

������ ���� ���� ��������
������
������
������

���
���
���
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����
�����

rewind window

60

forward window
c1

1 40 50

 rewind ff
 boundary

100

c2 boundaryFigure 9: Example of deferred updates� For example, after one time unit, block 40 can be updated. After 2 time units, block 41 canbe updated, and so on.The skeptical reader will immediately wonder whether this de�nition allows us to postpone updateevents for an arbitrarily long time. The answer is that as stated above, update events could getdeferred for ever. To avoid this situation, and to also assign di�erent priorities to di�erent clients,we now introduce the notion of priority. Associated with each event (client initiated or systeminitiated, or deferred) is a priority. The higher the priority, the more important the event. Inparticular, if e is an update event, and e is deferred, then for each time unit that e is updated, wemust \increment" e's priority by a factor �e. Thus, di�erent events can have di�erent associated\prioritization steps" which may be selected by the system manager, based on the importance of theevent as determined by him/her. What this means is that the priority of an update events \graduallyrises" till it can be deferred no longer. We discuss this scheme in detail below, and also show howthe same idea applies to priorities on other (non-deferred) events.4.2 Priority Scheme for eventsWhenever an event occurs, that event is assigned an initial priority, either by the system, or by thesystem administrator. The system maintains a list of default priority assignments. In the event of adi�erent priority assignment being made by the system administrator, then the latter overrides theformer.Integers are used to represent \initial" priority assignments, though as we shall see, \non-initial"priority assignments may be real-valued. The precise integers used for initial priority assignment arenot really important. What is more important is the relative priority ordering.Default Initial Priority Assignments: Figure 10 shows the initial priority assignments. Therationale for these assignments is discussed below.1. System events have the highest priority. The reason for this is that a server crash, or a servercoming \back up" are events that are hard to control. It is not possible, for instance, to deferor delay a crash. If it occurs, the system must transition to a new state that \handles" thecrash as best as possible.2. Next, existing clients already being served by the system must have the highest priority. Thereason for this is that the VoD system has made a commitment to serve these clients well, and17

Event Type Event PrioritySystem Server down 9System Server up 9Client (old) Exit 7Client (continuing) Pause 6Client (continuing) Play 5Client (continuing) Fast - Forward 4Client (continuing) Rewind 4Client (enter) Enter 3Manager Delete 2{7Manager Insert 1Figure 10: Initial assigned priorities for di�erent eventsit must try to honor these commitments. However, each existing client may \spawn" di�erentevents, including exit, pause, play, fast forward, and rewind. Each of these events has adi�erent priority.(a) The highest priority is assigned to events that exit. Processing an exit event early isdesirable in general, because this can be done very fast, and furthermore, this frees upresources that may be used to satisfy other clients (continuing clients, as well as potentialnew clients).(b) The next highest priority in this class is assigned to pause events because: �rst theseevents request no new resources (and hence, they can be satis�ed immediately) and second,because of the pause window, these events may lead to future exit events that do in factfree up resources.(c) The next highest priority in this class is assigned to play events. The reason for this isthat in most cases, play events are relatively easy to satisfy as they merely require thatthe next block of the movie be fetched, and in most cases, the next block will be on thedisk(s) that are already serving the client.(d) The last two events in this category, with equal priority, are rewind and fast forward.These events may require substantial \switching" of clients (i.e. a client may be switchedfrom its current server to another, because when blocks are skipped, the current server nolonger has blocks that are several \jumps" ahead of the block currently being scanned.3. Of the system events, the delete event has the highest priority. The reason for this is thatdelete events can be accomplished by a very simple operation { just remove the pointers to theappropriate blocks. In contrast, insert events require greater resources (e.g. disk bandwidthis need to write onto the disk).Priority Steps: Suppose an update request is received for block b of movie m in server i.Furthermore, suppose rwb and fwb denote, respectively, the rewind boundary, and the fast forward18

boundary associated with the current state. It is not di�cult to see that we must have rwb � ffb.The update cannot be carried out immediately if rwb � b � ffb. As a consequence, we might needto defer the update. However, as mentioned above, deferring the update might cause the updateto be inde�nitely delayed. To ensure that this does not happen, the system administrator mayassociate with each update request u, a priority-step, �u. �u is a non-negative real number, and itsinterpretation is as follows:� Suppose s0 is the current state (in which the update u occurs with the priority p shown inFigure 10 (p must be either 1 or 2).� Suppose s1; s2; : : : ; sk are states that occur, consecutively after s0, all of which defer update u.� Then the priority pi of the update event u in state si is (p+ i� �u).Thus, for example, suppose u is a deletion request, and the system manager assigns a step of 0:2to u. Then, after 6 state changes (i.e. in state s6), the priority of this update will be 3:2, whichwould exceed the priority of a new event (which is 3) occurring in that state. What this means isthat if a new client enters the system in state s6, and requests a movie, then the server in questionwould be asked to consider the higher priority update request u, as opposed to serving the customer.By making the step size small, the system manager can allow a greater period of time to elapsebefore making the update have higher priority over new clients. For example, had the system managerset �u in the above example to 0:002, then 501 state changes would have to occur, before update u'spriority exceeded that of a new client.Furthermore, the system manager does not have to specify the same priority step for each update.Di�erent updates can have di�erent associated priorities, as would be expected in most real lifesystems.We are now ready to give an algorithm that manipulates the priorities, such as those shown inFigure 10, and the above priority steps, to handle events that occur at any given point in time.Video Server with Updates and Crashes (VSUC) Algorithmmain HandleEvents (NewEvents, OldEvents)f EvtList = sort events in NewEvents and OldEvents in decreasing order of priority ;WaitList = ; ; /* set of events that can't be scheduled in this cycle */DoneList = ; ; /* set of client events that have been scheduled successfully */While (!timeout and EvtList 6= ;)f evt = get the �rst event in EvtList ;switch (evt.type)f case down : handleServerDownEvents (evt)19

case up : handleServerUpEvents (evt)case play, rewind, fast-forward : handleContEvents (evt)case pause : handlePauseEvents (evt)case exit : handleExitEvents (evt)case enter : handleEnterEvents (evt)case insert: handleInsertEvents (evt)case delete: handleDeleteEvents (evt)ggIf (EvtList 6= ;)increase priority of each event in EvtList by �evt ;OldEvents = merge events from EvtList and WaitList ;return (OldEvents) ;gprocedure HandleServerDownEvents (evt)f for each data block bi in crashed server doupdate placement mapping so that bi is not visible ;for each event ei in crashed server doinsert ei into EvtList preserving the sorted order ;gprocedure HandleServerUpEvents (evt)f for each data block bi in recovered server doupdate placement mapping so that bi is visible ;gprocedure HandleExitEvents (evt)f release resources and data structures allocated for evt ;gprocedure HandleContEvents (evt)f Blocks = set of blocks necessary for servicing evt ;/* depending on event type, the way blocks are read from disks can be *//* different. For example, in play event, certain number of continuous *//* blocks should be read, but in rewind(�) event, some intermediate blocks *//* can be skipped to match the speed */if (servers that have been assigned to evt contain all blocks in Blocks)f update the data component of evt ;insert evt into DoneList ;return ;gDServers = set of servers that contain all blocks in Blocks ;20

if (DServers = ;) /* placement mapping error */f /* make evt considered after block insertions */decrease evt's priority by �evt ;insert evt into EvtList preserving the sorted order ;return ;gRServers = set of servers in DServers satisfying resource constraints ;if (RServers = ;)f if (evt's priority has been decreased previously)f Finished = false ;Svlist = DServers ;while (Svlist 6= ; and !Finished) dof s = select one server randomly from Svlist ;Svlist = Svlist - f s g ;Switchables=fe j event e is served by s and there exists s0(6=s) that satis�es e g ;while (Switchables 6= ; and !Finished) dof e0 = select one event randomly from Switchables ;Switchables = Switchables - fe0g ;if (evt can be served using the resources that will be released from e0)f release resources from e0 and update resource allocation of s ;allocate resources to evt and update resource allocation of s ;allocate resources to e0 and update resource allocation of s0 ;put evt into DoneList ;Finished = true ;gggif (!Finished)f /* make evt scheduled prior to other clients in next cycle; */increase evt's priority by �0evt ;insert evt into WaitList ;gg elsef /* make evt considered after scheduling other normal continuing clients*/ decrease evt's priority by �"evt ;insert evt into EvtList preserving the sorted order ;gg elsef MaxEval = - 1 ; 21

for each server si in RServers dof Eval = evaluate si for the speci�ed criteria ;if (Eval > MaxEval)f MaxEval = Eval ;BestSv = si ;ggallocate resources to evt from BestSv ;update resource allocation of BestSv ;insert evt into DoneList ;ggprocedure HandlePauseEvents (evt)f yield disk bandwidth to update events for next cycle ;keep the other status unchanged ;gprocedure HandleEnterEvents (evt)f /* enter event can be handled in a way similar to handling continuous events. *//* The difference is that in the case of enter events, resources have not *//* been assigned previously. Therefore, checking if already assigned server *//* can handle the event is not necessary for enter events. */gprocedure HandleInsertEvents (evt)f sevt = server that data block is inserted into ; /* specified in evt */Dsize = the size of data that is inserted into sevt ;Msize = maximum data size that server sevt can handle using available resources ;if (Msize � Dsize)f allocate resources to evt ;update resource allocation of sevt by Dsize ;update placement mapping information of sevt ;g elsef /* Dsize can't be inserted in its entirety */allocate resources to evt ;update resource allocation of sevt by Msize ;reduce evt's data size by Msize ;increase evt's priority by �evt ;insert it into WaitList ;ggprocedure HandleDeleteEvents (evt)f 22

bevt = block number that is deleted ;calculate the rewind and fast forward boundary of the movie ;if (bevt < rewind boundary or bevt > � boundary)delete bevt and update placement mapping information ;elsef /* evt is deferred to next cycle */increase evt's priority by �evt ;insert it into WaitList ;ggIt is easy to prove that the VSUC algorithm described above has a number of nice properties, asstated in the theorems below. An informal description of these properties is as follows:� Under certain reasonable conditions, clients who have already been admitted to the systemexperience no jitter, independently of what other events occur. This result applies when (1) ifthe placement mapping is \full" (i.e. either the entire movie is available through a server, ornone of it is), and (2) when the client watches a movie entirely in \normal" viewing mode, and(3) no server outages occur.� Every event eventually gets handled as long as servers that go \down" eventually come back\up."� The VSUC algorithm runs in polynomial time, i.e. if the current state is s and if ev is the setof events that occur, then a new state s0 (together perhaps with deferred events) is computed inpolynomial time.Theorem 4.1 (Continuity of Commitments) Suppose s is the current state of the system, andCi is a continuing client in state s who is watching movie m in \normal" mode. Furthermore,suppose that:1. movie m is contained in its entirety in each server sv 2 �s(i) and2. no server in �s(i) goes \down" at this time and3. for all updates u (before client Ci entered the system,) that were deferred when client Ci enters,pru � 5 and �u � �Ci where pru is the priority of the update u when client Ci enters the system,�u is the priority step associated with the update, and �Ci is the priority step associated withCi.4. for all updates u (before client Ci entered the system,) that enter the system after client Cienters, newpru � 5 and �u � �Ci where newpru is the priority of the update u when it enteresthe system.Then client Ci's movie request event will be satis�ed by the VSUC algorithm.23

Proof Sketch. In the VSUC algorithm, the only event that diminishes the system's resources andthat has a higher priority than a continuing client is a Server down event or a deferred update event.However, by the assumption in the statement of the theorem, no servers serving client Ci go down,and hence, the highest priority events are either deferred updates or continuing clients.Suppose a server sv is serving client Ci's request (in part or in full). If no deferred events occur,then the same server can continue servicing client Ci's request for \next" blocks. However, if deferredevents occur, then there are two possibilities:1. Suppose the deferred update u was requested before client Ci entered the system. As pru � 5and as �u � �Ci , it follows that throughout the normal playing of the movie, client Ci's priorityis higher than that of the update u. Thus, server sv continues to serve client Ci withoutallowing deferred events to obtain priority over the client Ci.2. On the other hand, if the deferred update was requested after client Ci entered the system,then client C is guaranteed to obtain priority over the update because newpru � 5 and as�u � �Ci . Hence, client Ci can continue to be served by server sv. 2The above theorem has important implications for admission control, both of new clients and ofnew updates.� Client Admission: To guarantee continuity of service, a new client Ci should be admittedto the system only if for all deferred updates u that need to be handled when client Ci entersthe system, we must know that pru � 5 �u � �Ci .� Update Admission: To guarantee continuity of service to existing clients, a new update ushould be admitted to the system only if newpru � 5 and as �u � �Ci .Theorem 4.2 (All update events get handled eventually) Suppose s is the current state ofthe system and ev is any update event that requires a set SV of servers. Further suppose that for alltimes t > now and all servers in SV , if there exists a time t0 > t at which one or more servers inSV go down, then there exists a time t? > t0 at which all servers in SV come back up. Then: forany update event ev that occurs now, there exists a time tev � now such that ev gets handled at timetev.Proof Sketch. If update event ev does not get handled now, then, as �ev > 0, in each execution ofthe VSUC algorithm, event ev's priority strictly increases till it exceeds 7, at which point t0 in time,it will be handled unless one or more servers that are needed to service event ev are down. By therestriction in the statement of the theorem, there exists a time t? > t0 at which all servers in SV are\up" simultaneously. We are guaranteed that this event will be handled latest at time t?. 2Theorem 4.3 Suppose ev(t) is a set of events that occur at time t. The time taken for the theVSUC algorithm to terminate is polynomial in the sum of the number of events in ev(t) and thenumber of deferred events.Proof. It follows immediately that each function call in the main algorithm runs in time polynomialw.r.t. the above sum. 224

1 Total Number of Video Clips 800number of 10 minutes video 400number of 20 minutes video 200number of 40 minutes video 100number of 80 minutes video 1002 Size of Video Segment 10-80 minutes3 Size of Block 0.2 seconds' compressed video data4 Number of Requests 800-20005 Request Pattern Based on actual data referenced in [5]6 Number of Disk Servers 307 Types of Disk Servers 48 Bu�er size Avg. 50 MB per server9 Disk Bandwidth Avg. 20 MB combined per serverTable 1: parameters Used For Simulation5 Experiments5.1 Crash Handling vs Survival rateIn this paper, our video server consists of multiple disk servers with possibly di�erent performancecharacteristics. Table 1 shows several parameters related to the experiment.In the �rst set of experiments, we examined the resilience of our video server against disk servercrashes, i.e. how well does our video server perform when crashes occur? To compare, we usedthree di�erent types of disk server con�gurations { homogeneous disks of evenly high performancecharacteristics, homogeneous disks of evenly low performance characteristics, and heterogeneous diskservers [3].We generated client requests and disk crashes randomly (but in accordance with certain param-eters described below) for each case. To compare the resilience of our video server against servercrashes, we �rst measured the average number of continuing clients. Disk server crashes were gener-ated randomly in respect to crashed server or crash time. Also, the crashed server will eventually be�xed or replaced and put into operation. We used same crash recovery time during experiment. Tosee the e�ect of server crashes on the system, we changed the frequency of server crashes measuringcontinuing clients.Figure 11 shows the e�ect of server crash handling on the number of continuing clients. Regardlessof disk server con�guration, our crash handling approach supported more streams than without crashhandling. However, depending upon the performance characteristics of the servers involved, di�erencenumbers of continuing clients could be supported; the most notable improvement was measured inthe case of the homogeneous, high-performance disk con�guration.As the frequency of disk crashes increases, the system will experience much more di�culty25

Crash Handling
No Crash Handling

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
120

140

160

180

200

220

240

260

280

300
Effect of Server Crashes on Average Number of Continuing Client

Probability of Server Crash

A
ve

ra
ge

 N
um

be
r

of
 C

on
tin

ui
ng

 C
lie

nt

Heterogenous

Homogenous−low

Homogenous−high

Figure 11: E�ect of the server crashes on average number of continuing clients.
0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100

120
Effect of Server Crashes on Survival Rate

Period of Server Crashes

S
ur

vi
va

l P
er

ce
nt

ag
e

Heterogenous

Homogenous−low

Homogenous−high

Figure 12: E�ect of the server crashes on survival rate.26

scheduling clients because disk or bu�er resources and video data at the crashed servers are notavailable during crash recovery time. We measure the survival rates of clients when crashes oc-curred. Here, survival rate refers to the ratio of clients who continue to be served, as comparedto the total number of clients in the system. As is easily seen from �gure 12, both systems withhomogeneous capacity disk servers showed a stable survival rate w.r.t. disk crashes. However, in thecase of heterogeneous capacity disk servers, there was a noticeable
uctuation in the survival rate.In the second experiment, we used heterogeneous disk servers and examined the e�ect of crasheson di�erent capacity disk servers. For the experiment, we assumed four di�erent groups of disk serverswith di�erent server capacity. Servers with the highest capacity belong to group 1 and servers withthe lowest capacity belongs to group 4. Under normal operation, servers with higher capacity storemore video segments and provide more concurrent streams to clients than those with lower capacity.Therefore, the e�ects of disk crashes will vary depending on the capacity of the server that crashes.
number of clients before server crash

number of clients after crash handling

number of clients after no crash handling

600 800 1000 1200 1400 1600 1800 2000 2200
700

800

900

1000

1100

1200

1300

1400

1500

1600
Continuing Clients Before/After Server Crash in Group1

Clients in the system

N
um

be
r

of
 c

on
tin

ui
ng

 c
lie

nt
s

number of clients before server crash

number of clients with crash handling

number of clients after no crash handling

600 800 1000 1200 1400 1600 1800 2000 2200
700

800

900

1000

1100

1200

1300

1400

1500

1600
Continuing Clients Before/After Server Crash in Group2

Clients in the system

N
um

be
r

of
 c

on
tin

ui
ng

 c
lie

nt
s(a) number of continuing clients in Group 1 (b) number of continuing clients in Group 2

number of clients before server crash

number of clients after crash handling

number of clients after no crash handling

600 800 1000 1200 1400 1600 1800 2000 2200
700

800

900

1000

1100

1200

1300

1400

1500

1600
Continuing Clients Before/After Server Crash in Group3

Clients in the system

N
um

be
r

of
 c

on
tin

ui
ng

 c
lie

nt
s

number of clients before server crash

number of clients after crash handling

number of clients after no crash handling

600 800 1000 1200 1400 1600 1800 2000 2200
700

800

900

1000

1100

1200

1300

1400

1500

1600
Number Of Continuing Clients Before/After Server Crash in Group4

Clients in the system

N
um

be
r

of
 c

on
tin

ui
ng

 c
lie

nt
s(c) number of continuing clients in Group 3 (d) number of continuing clients in Group 4Figure 13: continuing clients after server crashFigure 13.a to 13.d show how many clients on the crashed server continue to be served evenafter disk crash (under varying system load). To facilitate comparison, we showed together both thenumber of continuing clients after crash handling and without crash handling. Here, \without crashhandling" means that the streams on the crashed server(s) will be discontinued unconditionally.Figure 13.a shows the e�ect of crash handling when the crashed disk server belongs to group 1.In this �gure, the di�erence between the top line and the bottom line is the number of clients on the27

crashed disk. On the average, our crash handling VoD server algorithm can satisfy about half theclients a�ect by the crash by rescheduling their streams to other available servers.5.2 Performance vs SegmentationIn this experiment, we examined the performance of the video server for di�erent segmentations {here a segment refers to a continuous sequence of video blocks. We assumed that video objects aredivided into several segments of equal size. These segments are placed in the disk servers in a waythat adjacent segments should be placed in the di�erent disk servers (otherwise multiple segmentsare merged into one large segment on a single server). Video segments were placed on the servers in amanner proportional to the size of the disk storage available,i.e. the probability that a video segmentis placed on a disk having capacity 5 GB is 5 times the probability that the vide segment in placedon a 1 GB disk. Under this segment placement scheme, any two disk servers with adjacent segmentsshould be synchronized for the continuous display of video. That is, as soon as a segment is consumedfrom the �rst server, the next segment should be delivered from the second server without delay.If the second server can't deliver next segment stream, then clients may experience degradation inquality. This constraint can be relaxed if we increase bu�er space for each stream.
number of segments: 1

number of segments: 2

number of segments: 4

number of segments: 8

800 1000 1200 1400 1600 1800 2000 2200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Normal Continuing Clients Without Any Glitch

Clients in the system

N
um

be
r

of
 c

lie
nt

s
w

ho
 e

xp
er

ie
nc

ed
 n

o
gl

itc
h number of segments: 1

number of segments: 2

number of segments: 4

number of segments: 8

1000 1200 1400 1600 1800 2000 2200

0

10

20

30

40

50

60

70

80
Average Interrupt Time Experienced by Clients

Clients in the system

In
te

rr
up

t l
en

gt
h

in
 c

yc
le

s(a) number of continuing clients (b) average blocked time
number of segments: 1

number of segments: 2

number of segments: 4

number of segments: 8

800 1000 1200 1400 1600 1800 2000 2200

0

20

40

60

80

100

120

140

160

180

200
Average Initial Response Time

Clients in the system

R
es

po
ns

e
tim

e
in

 c
yc

le
s

number of segments: 1

number of segments: 2

number of segments: 4

number of segments: 8

800 1000 1200 1400 1600 1800 2000 2200

200

300

400

500

600

700

800

900

1000
Number Of Updates Executed

Clients in the system

N
um

be
r

of
 u

pd
at

es
 e

xe
cu

te
d(c) average initial waiting time (d) number of updates executedFigure 14: experiment resultsFigure 14.a shows how many streams will experience intermediate stream delay due to server28

switches for retrieval of adjacent segments. When video objects are stored in their entirety, thenthere is no need for server switches for the ongoing streams. But as the number of segments areincreased, the number of clients experiencing intermediate stream delays due to server switch isincreasing.In Figure 14.b, we examined average intermediate stream delay experienced by the clients. Itshows that once video objects are segmented, the average stream delay decreases as the number ofsegments increases. This is mainly due to the fact that smaller segments stay at the server for ashorter time than larger segments. With shorter stays at the servers, resource availability for diskservers increases and therefore server switching can be done more easily and frequently.>From �gure 14.a and 14.b, we might conclude that storing video objects in its entirety on onedisk server is the best scheme. But two other criteria show that this scheme has some disadvantagesas well. Figure 14.c shows the server response time specifying how long each client has waited tillthe �rst frame of the video object was displayed. Under a moderate to large number of clients in thesystem, the system response time increases sharply as the number of segments increases. Also, thenumber of updates done during the simulation time increases as the number of segments increases.Figure 14.d shows how many update requests has been done during the simulation.Furthermore, as mentioned earlier, intermediate stream delays due to server switches can becompensated to a certain degree if we increase bu�er space for streams. From �gure 14.b, averagestream delay is less than 30 cycles when the total number of clients is 1800. Therefore, as we increasethe bu�er space for streams, the number of clients experiencing actual intermediate display delaywill be reduced.6 ConclusionsThough there has been extensive work on handling disk crashes most such work has occurred in thearea of recovery of data on the crashed disk. Likewise, though there has been extensive work ondeveloping systems support for handling VCR-like functions in video servers, this work has ignoredtwo possibilities:1. That during the operation of such a video server, updates might occur. The problem of handlingsuch updates has not been adequately addressed in the literature.2. Similarly, during the operation of such a video server, one or more servers might crash and/orotherwise become inaccessible. This means that any clients currently being served by thoseservers must be satis�ed in some other way. To date, there has been no formal theoretical workon extending VoD servers to handle this possibility.The primary aim of this paper is to provide a formal model of VoD systems that is capableof handling such events, as well as to provide the VSUC algorithm that can neatly handle thevariations in resource availability that may arise as a consequence of such events. In particular, theVSUC algorithm has many nice properties that, to our knowledge, have been proposed for the �rsttime. 29

� First, the VSUC algorithm guarantees that under certain reasonable conditions, users to whomthe VoD server has already made commitments, will experience no disruption or jitter in serviceas long as they watch the movie in \normal" mode.� Second, the VSUC algorithm guarantees (again under certain reasonable restrictions) that norequest made by a continuing client will be denied service \forever", i.e. it will eventually behandled.� Third, the VSUC algorithm reacts to events, both user-initiated, and system-initiated, inpolynomial time.AcknowledgementsThis work was supported by the Army Research O�ce under Grants DAAH-04-95-10174 and DAAH-04-96-10297, by ARPA/Rome Labs contract F30602-93-C-0241 (ARPA Order Nr. A716), by ArmyResearch Laboratory under Cooperative Agreement DAAL01-96-2-0002 Federated Laboratory ATIRPConsortium and by an NSF Young Investigator award IRI-93-57756. We are grateful to Dr. B. Prab-hakaran for a careful reading of the manuscript and for making many useful comments and critiques.

30

References[1] S. Berson and S. Ghandeharizadeh. (1994) Staggered Striping in Multimedia Information Sys-tems, Proc. 1994 ACM SIGMOD Conf. on Management of Data, Minneapolis, MN, pps 79{90.[2] S. Berson, L. Golubchik and R. Muntz. (1995) Fault Tolerant Design of Multimedia Servers,Proc. 1995 ACM SIGMOD Conf. on Management of Data, San Jose, CA, pps 364{375.[3] K.S. Candan, E. Hwang and V.S. Subrahmanian. An Event-Based Model for Continuous MediaData on Heterogeneous Disk Servers, ACM Multimedia Systems Journal, accepted, to appear.[4] M.-S.Chen, D.D. Kandlur, and P.S. Yu. (1994) Support for Fully Interactive Playout in aDisk-Array-Based Video Server, Proc. ACM Multimedia 1994, pps 391{398.[5] A. Dan and D. Sitaram, "A Generalized Interval Caching Policy for Mixed Interactive andLong Video Workloads", Multimedia Computing and Networking, San Jose, January 1996.[6] A.L. Drapeau, D.A. Patterson, and R.H. Katz. (1994) Toward Workload Characterization ofVideo Server and Digital Library Application, ACM Sigmetrics Conference on Measurementand Modeling of Computer Systems, Nashville, May 1994.[7] C. Federighi and L. Rowe. (1994) A Distributed Hierarchical Storage manager for a Video-on-Demand System, Proc. of the 2nd SPIE Symp. on Storage and Retrieval of Video Databases,pps 185{197.[8] Shahram Ghandeharizadeh and Cyrus Shahabi. (1994) On Multimedia Repositories, PersonalComputers, and Hierarchical Storage System, Proceedings of ACM Multimedia 1994.[9] G. Miller, G. Baber, and M. Gillilana. (1993)News-on-Demand for Multimedia Networks, Proc.ACM Multimedia 1993, pps 383{392.[10] Antoine N. Mourad 1996. Issues in the Design of a Storage Server for Video-On-Demand,ACM/Springer-Verlag Multimedia Systems, 1996[11] A.L. Narasimha Reddy. (1995) Scheduling and Data Distribution in a Multiprocessor VideoServer , Proceedings of IEEE Multimedia 1995.[12] D. Patterson, G. Gibson, and R. Katz. (1988) A Case for Redundant Arrays of InexpensiveDisks, Proc. ACM SIGMOD Conf. on Management of Data 1988.[13] C. Ruemmler and J. Wilkes. (1994) An Introduction to Disk Drive Modeling, IEEE Computer,pps 17{28, March 1994.[14] K. Salem and H. Garcia-Molina. (1986) Disk Striping, Proc. 1986 IEEE Conf. on Data Engi-neering.[15] J.L. Sharnowski, G.C. Gannod, and B.H.C. Cheng. (1995) A Distributed, Multimedia Environ-mental Information System, Proceedings of IEEE Multimedia 1995.[16] R. Tewari, R. Mukherjee, D.M. Dias, and H.M. Vin, Design and Performance Tradeo�s inClustered Video Servers. 31

[17] P. Venkat Rangan, H. Vin and S. Ramanathan. (1992) Designing and On-Demand MultimediaService, IEEE Communications Magazine, pps 56{64, July 1992.[18] H. Vin, S.S. Rao and P. Goyal. (1995) Optimizing the Placement of Multimedia Objects onDisk Arrays, Proc. 1995 IEEE Intl. Conf. on Multimedia Computing Systems, pps 158{165.[19] B. Worthington, G. Granger and Y. Patt. (1994) Scheduling Algorithms for Modern DiskDrives, Proc. 1994 ACM SIGMETRICS Conference.

32

