Handling Updates and Crashes in VoD Systems *

Eenjun Hwang, Kemal Kilic and V.S. Subrahmanian

Computer Science Department
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20770
{hwang, kemal, vs}@cs.umd.edu

Abstract

Though there have been several recent efforts to develop disk based video servers, these ap-
proaches have all ignored the topic of updates and disk server crashes. In this paper, we present a
priority based model for building video servers that handle two classes of events: user events that
could include enter, play, pause, rewind, fast-forward, exit, as well as system events
such as insert, delete, server—-down, server-up that correspond to uploading new movie
blocks onto the disk(s), eliminating existing blocks from the disk(s), and/or experiencing a disk
server crash. We will present algorithms to handle such events. Our algorithms are provably
correct, and computable in polynomial time. Furthermore, we guarantee that under certain rea-
sonable conditions, continuing clients experience jitter free presentations. We further justify the
efficiency of our techniques with a prototype implementation and experimental results.

*This work was supported by the Army Research Office under Grant Nr. DAAH-04-95-10174, by the Air Force
Office of Scientific Research under Grant Nr. F49620-93-1-0065, by ARPA/Rome Labs contract F30602-93-C-0241
(ARPA Order Nr. A716), by Army Research Laboratory under Cooperative Agreement DAAL01-96-2-0002 Federated
Laboratory ATIRP Consortium and by an NSF Young Investigator award TRI-93-57756.

1 Introduction

Over the last few years, there has been a tremendous drop in digitization costs, accompanied by a
concomitant drop in prices of secondary and tertiary storage facilities, and advances in sophisticated
compression technology. These three advances, amongst others, have caused a great increase in the
quality and quantity of research into the design of video servers [2, 4, 11, 6, 10, 16].

Most models of video servers to date assume the following parameters:

1. Movies are stored, in part, or in their entirety, on one or more disks.

2. The video-on-demand VoD system is responsible for handling “events” that occur. Client events
that have been studied include:

e the enter of a new client into the system, requesting a movie,
o the exit of an existing client from the system.

e the activities of continuing clients (e.g. play, fast forward, rewind, pause).

“Handling” an event refers to the process by which the VoD server assigns jobs to different disk
servers, so as to optimize some performance criterion. A variety of algorithms to “handle” the
above events have been studied by researchers.

All the above events are “user” events, in the sense that they are invoked or caused by the
activities of a user of the VoD system. However, in reality, there is another class of events that must
be accounted for, which we call system events, which includes events such as server-down (specifying
that a certain disk server has crashed), server-up (specifying that a disk server that had previously
crashed is “up” again), insert (specifying that the system manager wishes to include some new
movies (or blocks of movies) on a disk, and delete (specifying that the system manager wishes to
delete some movies from a server’s disk array). Most work to date on server crashes has focused on
the important topic of recovery of data on the crashed disk, but has not really looked into how to
satisfy clients in the VoD system who were promised service based, in part, on the expectation that
the crashed disk would satisfy some requests. The main focus of this paper is to develop VoD server
algorithms that can handle not just user events, but can also handle system events.

The problem of updates in video servers is crucial for several applications where video data is
being gathered at regular intervals and being placed on the VoD system. For example, a movie-on-
demand vendor may, at regular intervals, include new movies in the repertoire of movies offered to
potential customers. These movies need to be placed on the disk array that the vendor may be using,
leading to an insert operation. Similarly, in news-on-demand systems, new news videos and audio
reports may become available on a continuing basis, and these need to be made available to editors
of news programs for creating their current and up to date news shows. In many similar systems
today, this is done by taking the system “down”, accomplishing the update, and then bringing the
system back “up” again. The obvious undesirable aspect of this way of handling updates is that
service must be denied to customers who wish to access the server when it is down, thus leading to
lost revenues for the VoD vendor. The algorithms proposed in this paper treat updates as (collections
of) events, and schedule them to occur concurrently with user-events in a manner that ensures that:

1. existing customers see no deterioration (under some reasonable restrictions) in the quality of
service, and

2. the update gets incorporated in a timely fashion. In particular, our algorithms will flexibly
adapt to the load on the disks, so as to incorporate as much of the update as possible when
resources are available, and to reduce the update rate when resources have been previously
committed.

3. the system is not “taken down” in order to accomplish the update.

Unlike the issue of updates, disk crashes have certainly been studied extensively over the years
[2, 12]. However, consider the problem of a VoD server that has made certain commitments to
customers. When a crash occurs, the VoD server must try to ensure that any client being serviced by
the disk that crashed be “switched” to another disk that can service that client’s needs. Furthermore,
the VoD server must ensure that the fact disk d has crashed be taken into account when processing
new events. In the same vein, when a disk server that had previously crashed comes back “up”, this
means that new system resources are available, thus enabling the VoD server to take appropriate
actions (e.g. admit waiting clients, re-distribute the load on servers to achieve good load balance,
etc.). We show how our framework for handling updates can handle such crashes as well (under
certain limitations of course).

In particular, we propose an algorithm called the VSUC (“Video Server with Updates and
Crashes”) algorithm, that handles events (including user-initiated events, as well as update events
and crashes) and has several nice properties. In particular:

o VSUC guarantees that under certain conditions, it ensures continuous, jitter free service for
clients, once they have been admitted. (We will make the conditions precise in Theorem 4.1).

e VSUC also guarantees (again under certain conditions), that no client is denied service for
arbitrarily long (cf. Theorem 4.2).

e VSUC reacts to client initiated, as well as system (update/crash) events in polynomial time.

2 System Architecture

Throughout this paper, we will use the term video block (or just block) to denote a video segment.
We will assume that the size of a block is arbitrary, but fixed. In other words, one VoD application
may choose a block to be of size 30 frames, while another may consider it to be of size 60 frames. As
our video data is stored on disk, this means that the start of each video block is located on a single
page of any disk that contains the block.

As data is laid out on a collection of disks, we will assume that this collection of disks is par-
titioned into disjoint subsets DC4,..., DC,,. We will furthermore assume that all disks in DC; are
homogeneous (i.e. have identical characteristics) and a single disk server DJS; regulates access to
the disk drives in DC;. It is entirely possible that DC); contains only one disk, but it could contain

Client 1 Client 2 Client m-1 Clientm

38 T8
NN

High Speed Network]
ROUTER
Disk « o e Disk o« oo Disk
Server 1 Server i Server n
Disk Array Disk Array

Disk Array

Figure 1: System structure.

more. Note that there is no requirement that two disk collections DC;, DC'; need to have the same
characteristics and hence, disks in DC’; may have vastly different characteristics than those in DC};
— this is what accomplishes heterogeneity.

The design of disk servers is now well known [2, 4, 11, 6, 10, 16]. In its simplest form, a disk
server is a piece of software that, given a physical disk address, retrieves the object located at that
address. In our case, disk servers D5; mediate access to a collection DC; of disks, which means that
given a disk-id and a physical disk address, the server retrieves the block located at the given disk
address on the specified disk. Figure 1 shows the structure of the system as described informally
above.

In our architecture, the video server is responsible for the following tasks:

1. When an event (user event or system event) occurs, the video server must determine how to
handle the event. This may involve dispatching instructions to the disk servers. For example,
such instructions could include: Fetch (for client ¢l_id) the block starting on page p of disk d.
Note that the disk server does not necessarily need to know the client’s identity, ¢l_ed.

2. In addition, the video server may need to “switch” clients from one disk server to another. For
example, client ¢/_id; may be being served by disk server D57. If a new client ¢l _tdyg requests a
movie (or block) that is only available through disk server DSy and if disk server D5 is already
functioning at peak capacity, then it may be possible to “switch” client ¢l_tdy to another disk
server (say DS3) if disk server D53 has the resources needed to satisfy client ¢l_id;.

3. Third, the video server may “split” a job into smaller, manageable jobs, and distribute these
smaller jobs to different servers, which leads to better system utilization.

4. Fourth, whenever an event (e.g. an update occurs), the video server must automatically create
a schedule to accomplish the update, and determine what instructions must be sent to the disk
server(s) involved to successfully handle the event.

5. Fifth, whenever events such as disk server crashes occur, the VoD server must re-assign the
existing clients to other servers (when possible) and schedule system generated recovery events
80 as to minimize the damage caused by the crash.

2.1 System Parameters

In any VoD system, the participating entities may be divided into the following components:

1. Servers: these are the disk servers that retrieve specified blocks from the relevant disks;
2. Clients: these are the processes that are making/issuing requests to the servers; and

3. Data: this includes the movie data laid out on the disks.

In order to successfully model a VoD system, and develop provably correct and efficient algorithms
for this purpose, we must model each of the above parameters, as well as the interactions between
the above components.

Tables 2,3,4 show the notations we use to denote the relevant parameters of servers, clients, and
movies, respectively.

Throughout this paper, we assume that there is a set MOVIE = {My,..., M,} of movies that
we wish to store on disk. Fach movie M; has bnum(M;) “blocks”. A block denotes the level of
granularity at which we wish to store and reason about the media-data. For example, a block may
be a single-frame (finest granularity) or a consecutive sequence of (100 frames). The application
developer is free to select the size of a block in any way s/he wishes, but once such a block size is
selected, s/he is committed to using the selected block size for the application. In other words, they
are free to choose their block size as they wish, but once they make the choice, they must stick to it.

3 State Transition Model

In this paper, we will develop a state transition model that has the following properties:

o A state is any feasible configuration of the system, and includes information such as: which
disk server(s) are serving a client, and what service they are providing the client, and what
resources are committed by the server to the client to accomplish the service provided.

‘ Symbol ‘ Meaning
buf(z, s) The total buffer space associated with the disk server ¢ at state s.
cyctime(?,s) The total cycle time for the server ¢ at state s.
dtr(i,s) The total disk bandwidth associated with the disk server ¢ at state s.
timealloc(t, 7, s) The time-slice allocated to client j at state s by server 1.
ps(7) The set of servers handling request by client ¢ at state s.
(M, b, s) The set of servers that contain block b of movie M; according to placement

mapping @ at state s.

d_active(s,s)

The set of all clients that have been assigned a non-zero time-allocation by
disk server 7 at state s.

server_status(i,s)

The status flag for server ¢. It is true when the server is working, false

otherwise.

switchtime(?,s)

The time required for the disk server i to switch from one client’s job to
another client’s job at state s.

bufreq(s, J,s)

The buffer space needed at the server ¢ to match the consumption rate of
client 7 at state s.

priority(e,s)

The priority of the event e at state s.

Figure 2: Server Parameters

‘ Symbol ‘ Meaning
cons(i,s) The consumption rate of client ¢ at state s.
data(i, 7, s) The set of data blocks that server ¢ is providing to client j at state s.
inuse(?,s) This set consists of 3-tuples, (j, My,b), it specifies that the server 7 is pro-

viding block b of movie My, to client j at state s.

active_client(s)

The set of all clients that are active at state s

m_active(s)

The set of all clients that are watching movie m at state s

rew_win(s, s)

The size of rewind window for client 7 at state s. This means the client can
not rewind the movie more than that many blocks.

ff win(¢, s)

The size of fast forward window for client ¢ at state s. This means the client
can not fast forward the movie more than that many blocks.

watchwin(M;, 7, s)

The time limit for client j to watch movie M; at state s.

pause_win(s, s)

The time limit for client ¢ to pause at state s.

Figure 3: Client Parameters

Symbol

‘ Meaning ‘

bnum(M;) | The number of blocks for a movie M. ‘

Figure 4: Movie Parameters

e The state of the system may change with time, and is triggered by events. Events include:

3.1

— Client-initiated events such as enter, exit, fast-forward, pause, rewind, play, as
well as

— Server-initiated events such as server-down, server-up where a server goes “down” or
comes back “up”, and

Manager-initiated events such as insert, delete. Note that manager events could either
be initiated by a human VoD system manager, or by a tertiary storage device that is staging
data onto disk (though we will not go into this possibility in detail in this paper).

What is a State ?

A system state s consists of the following components:

10.

. A set active_client(s) of active clients at state s.
. The current cyctime(i,s) of each server in the system.
. The consumption rates of the active clients (cons(7, s)) in state s.

. The time, timealloc(s, j, s), within cyctime(?, s) that has been allocated by server ¢ to client

7 in state s.

. The locations (p(m,b,s)) of each movie block, i.e. the set of all servers on which block b of

movie m is located in state s.

. The set of data blocks (data(¢,j,s)) being provided by server 7 to client j in state s.

. A client mapping ps which specifies, for each client €', a set of servers, us(C'), specifying which

servers are serving client C.

. A set down_servers(s) consisting of a set of servers that are down in state s.

. A set insert_list(s) consisting of a set of 3-tuples of the form (i,m,b) where m is a movie,

b is a block, and ¢ is the server where this block will be inserted. (This set is used to model a
set of insertion updates that are “yet to be handled.”)

A set delete_list(s) consisting of a set of 3-tuples of the form (7, m,b) where m is a movie, b
is a block, and 7 is the server where this block will be deleted. (This set is used to model a set
of deletion updates that are “yet to be handled.”) <&

For example, consider a very simple scenario where five movies my, ..., ms have been broken up
into 60, 80,50, 50,60 blocks each, and have been placed on the three disks as shown in Figure 5. FEach
disk hold some blocks of some movies, as indicated in the figure. An example of a state is the state
s5 shown below:

m1:[b41-b60]

m1:[b01-b20] m1:[b21-b40] :
m1:[b01-b20;
m2:[b31-b60] m2:[b01-b30] m2:{b61-b80%
m3:[b41-b50] m3:[b01-b20] m3:[b21-b40]
m4:[b01-b30] ma4:[b31-b50] ma4:[b01-b30]

m5:[b21-b40] m5:[b01-b20] m5:[b41-b60]

Server 1 Server 2 Server 3

Figure 5: Example placement mapping

. active_client(ss) = {c1, €3, ¢35, €4, C5, 6, €7, €5, Cg} indicates that 9 clients are currently being
served.

. cyctime(7, s) may be 8,10, 7 for the servers 1,2,3 respectively.

. The consumption rates of the clients involved might be given by:

cons(¢q,s5) = 15.
cons(c¢g, $5) 25.
cons(cs, S5) 15.
cons(cy, S5) 10.
cons(c¢s, S5) 40.
cons(c¢g, S5) 10.
cons(cz, $5) 25.
cons(cs, $5) 15.
cons(cg, s5) = 20.

These rates indicate, for example, that client ¢; is consuming data (e.g. outputting it on a
display device) at a rate of 15 units/sec.

. The following simple table may capture the assignment of time (within a cycle) for each client.
Any client not explicitly assigned a time-slice by a server is assigned 0 time.

Server (¢) | Client (j) | timealloc(s, j, S5)
1 (&1 3
C4q 2
Cg 2
2 cy 2.5
Cx 2
Cg 1
cs 1.5
Cg 1
3 C3 1.5
Cx 2
c7 2.5

For example, the fact that server 1 does not explicitly list a time-allocation for client ¢5 means
that server 1 has assigned zero time for that client. Note that for each server i, it is the case
that

co
Ztimealloc(i,j,55) < cyctime(i,ss).

J=c1

For example, the allocation for server 1 is given by:

3+424+2=7 < cyctime(l,s5)=8.

5. The data data(i, j, s5) being provided by server ¢ to client j in state s; may, for example, be
represented as the table:

Server (¢) | Client (j) | data(s, j, s5)
1 € m1:[b2,b3]
Cq m2:[b30,b31]
C9 m4:[b4,b4]
2 Cy idle
Cx [b4 b4]
s m2:[b3,b3]
cs m5:[b7,b7]
¢y m4:[b5,b5]
3 e m2:[b67,b70]
cs m2:[b5,b5]
Cc7 [b5 b6]

6. Note that the preceding table fully specifies the client mapping. In this case, this mapping ps,
is given by:

,u55(61):,u55(64) = {1}

{2}.
{3}.
= {2,3}.
= {1,2}.

=
%)
&
~
o
w
~—
ll
=
%)
&
TN TN TN S
]
-3
— e e e
ll

Note that in the above table, some time has been allocated to clients that are idle, e.g. client ¢,
has been allocated 2.5 time units by server 2, even though it is idle. This may be because this
client has temporarily “paused” in which case, the reservations are still made for the client,
but the disk is not actually reading data shipped by the server.

7. In this example, down_servers(ss) = 0.
A system state s must satisfy certain simple constraints, that we list below.

1. For each server ¢ that is not down, the sum of the time-allocations assigned to the clients being
served by that server must be less than the cycle time of the server. This is captured by the
expression:

(Vi) (2 ¢ down_servers(s) — (Z timealloc(?,],s) < cyctime(i,s))) .
J

2. If a server is processing a request for some data, then that data must be available in the server.
This is captured by the expression:

(Vi)(V7) (m : [b1,b2] € data(i, j,s) — (Vb) (b1 < b < b2 — i € p(m,b,s))).

3. The sum of consumption rates of the clients being served by a given disk server must not exceed
the total disk bandwidth of the server. This is captured by the expression:

(Vi) (Vj) (> cons(j,s) < dtr(i,s)) .

jitimealloc(s,j,5)>0
4. For each server @ that is down, there is no active client. This is captured by the expression:

(Vi) (i € down_servers(s) — (d_active(i,s) =0)).

The above constraints specify the basic constraints that tie together, the resources of the VoD
disk server system, and the requirements of the clients.

10

3.2 Prioritized Events

Informally speaking, an event is something that (potentially) causes the VoD system to make a
transition from its current state to a “next” (or new) state. The study of the performance of disk
servers for multimedia applications varies substantially, depending upon the space of events that
are considered in the model. In our framework, the space of events that are allowed falls into two
categories:

e Client events: enter,exit,pause,play,fast-forward,rewind,;

¢ System events: server-up, server-down, insert, delete.

Each event has an associated integer called the priority of the event, and a set of attributes. For
example, the event server-up has an attribute specifying which server is up. Thus, server-up(2,s)
specifies that the event “server 2 is up” has occurred at state s, while the statement server-down(3,s)
specifies that the event “server 3 has gone down” has occurred at state s. Likewise, the event insert
has three attributes — a server id, movie id, and a block number, specifying which block of which
movie is being inserted and to which server this insertion is being made. For example, the event
insert(2,m1,b1) specifies that block b1 of movie m1 is being inserted onto server 2.

The priority of the event indicates how important the event is — the higher the priority, the
greater the importance of the event.

The occurrence of an event must be handled by the VoD system, by transitioning to a new state
that appropriately “handles” the event. Before specifying how events are handled, we specify some
new concepts.

3.3 Modeling Usage Constraints

In any VoD system, the system administrator may wish to enforce some “usage” constraints. In this
paper, we do not try to force constraints upon the system. However, we do make available to the
system administrator, the ability to articulate and enforce certain types of constraints that s/he feels
are desirable for his system.

¢ Pause time constraint: A pause time constraint associates, with each client ¢, an upper
bound, pause_win(c, s), on the amount of time for which the customer can “pause” the movie
s/he is watching. For example, suppose pause_win(John Smith,s) = 25. This means that as
far as the system is concerned, John Smith’s pause time cannot exceed 25 time units at state s.
In particular, if John Smith pauses the movie he is watching at time 75, then his pause window
will expire at time 75 + 25 = 100, and the resources allocated to him by the VoD system will
be “taken back” by the system to satisfy other users’ requests.

In general, when a customer “pauses”, the server(s) satisfying the customer’s request continues
to ‘hold” the resources needed by the system. Clearly, holding such resources for an indefinite
period is not wise. The pause window specifies, for each customer, an upper bound on the
period of time for which the customer can pause the movie.

11

¢ Fast-forward/Rewind window constraint: Just as in the case of pause windows discussed
above, each client ¢ has an associated fast forward and rewind window which specifies an upper
bound on how many data blocks the client can fast-forward to or rewind to, respectively. We
use the notation £f_win(c, s) and rew_win(c, s) to denote the fast-forward and rewind windows
associated with client ¢ at state s.

¢ Playing time constraint: In addition to the pause window, the system manager may wish
to specify that a user cannot watch a movie for arbitrarily long. As an example, consider our
client John Smith, watching movie m1 which has 4 blocks. John Smith’s transactions could be
highly redundant if, for instance, he were to execute the following transactions:

1. watch blocks b1,b2.b3
2. rewind to block bl. Return to step 1

In order to prevent “irresponsible” usage such as the above, the system manager may spec-
ify a total watch window for each user and any given movie. For example, specifying that
watch_win(M;j, John Smith) = 180 says that that John Smith has at most 180 time units to
finish viewing movie M.

3.4 Update Boundaries

Suppose s is a system state (at some arbitrary point in time) and j is a client being served by a
server ¢. As usual, the state s contains a data tuple specifying what data is being provided to the
client by that server. For example, consider the situation described in the example of Section 3.1. In
that example, in the state shown, server 1 is presenting blocks b2 and b3 of movie m1 to client ¢;.

Now, suppose the system administrator wishes to delete block b1 of movie m1 on server 1. Figure 6
shows this situation. While the system manager has the ability to make the request at any time, the
precise time at which the request is actually scheduled (i.e. the precise time at which deletion of the
block is scheduled) must take into account, the existing clients watching that movie w.r.t. the server
in question. In this case, the question that needs to be addressed is: What happens if the client ¢;
wishes to rewind 1 block? If the deletion is incorporated immediately upon receipt of the deletion
request, then the rewind request of the client will be denied — a situation that may or may not be
desirable. Thus, at any given point in time, each client has an associated rewind boundary associated
with each server, specifying “how far back” that server can support a rewind request issued by the
client. The rewind boundary may change with time. Rewind boundary, and their dual concept of a
similar fast-forward boundary, are defined below.

Definition 3.1 (Rewind Boundary) The rewind boundary of a movie m w.r.t. server ¢ in state s
is defined as follows:

Rewind_Boundary(m,s)
=min { b - rewwin(j,s) | j €Em_active(m,s) and (m,[b:b’]) C U, data(k,j,s) }

12

Toclientcl

mi: [pf,b2,b3b4...620]

m1: [b1b2,63b4...b20]

m2: [b31-b60] delete m1:b1 m2: [b31-b60] ¢1 cannot rewind
—_— m3: [b41-b50]

md: [b01-b30]

m5: [b21-b40]

m3: [b41-b50]
m4: [b01-b30]
m5: [b21-b40]

Server 1 Server 1

Figure 6: Deletion of a block

If the above set over which the min is performed is empty, that is, m_active(m,s) is empty, then
Rewind_Boundary (7,m,s) = bnum (m).
<&

For example, let us return to the movie m2 at server 2 and the state s in which:

1. client ¢5 is reading block b4 of movie m?2;
2. client cg is reading block b3 of movie m2;
3. no other client is reading movie m2 (exactly what they are doing is not pertinent for this

example).

If the rewind window for client ¢5 is 2, and that of client ¢g is 1, then the rewind boundary associated
with server 2, movie m2 and state s is given by

min(4 —2,3—1) =2,

Let us try to see why this is the case, and what this statement means. (Figure 7 illustrates this
reasoning).

e Two clients, viz. cs, cg, are reading (parts of) movie m2 from disk server 2. If we try to update
the copy of movie m2 residing on disk server 2, the only clients who can be affected (in the
current state) are therefore clients ¢5 and cg.

o Client c¢s5 is currently reading block b4 and his rewind window is of length 2, which means he
can only go “back” 2 blocks in the movie by executing a rewind command. Effectively, this
means that he cannot access any blocks before block 2.

o Likewise. client cg is currently reading block 63 and his rewind window is of length 1, which
means he can only go “back” 1 block in the movie by executing a rewind command. Effectively,
this means that he cannot access any blocks before block b2.

e As the minimum of these two blocks is b2, this means that neither client has read access to
block b1 in this state.

13

bl b2 b3 b4

N\ \! block being read by c5
block being read by c6
bl b2 b3 b4

i
N

rewind window for c5

bl b2 b3 b4

DRI [- |

\\\\ rewind window for c6
rewind boundar:

(= min of the tw){) above boundaries))
this block can be updated

Figure 7: Rewind boundary computation

e Thus, if we wish to update block 1 which lies “below” this rewind boundary, then this is “safe.”
An analogous situation occurs w.r.t. fast forward boundaries which are defined as stated below.

Definition 3.2 (Fast forward Boundary) The fast forward boundary of a movie m in state s is
defined as follows:

FF_Boundary(m,s)
=maz { b+ ffwin(j,s) | j € m_active(m,s) and (m,[b:b’]) C U, data(k,j,s) }

If the above set over which the maz is performed is empty, that is, m_active(m,s) is empty, then
FF _Boundary (m,s) = 0.
<&

For example, consider the single disk server in Figure 8. This disk server, i, contains several
movies, but only one of these, viz. movie m4 is shown in the figure. Blocks 1-5,7-20 of this movie
are available on the disk server i. Suppose that in state s, we have four clients watching this particular
movie (other clients may be watching other movies) and that the blocks these clients are watching
and the fast forward windows of these clients are as given below:

Client | Block being watched | £f_win
(&1 5 2
Cy 9 1
3 10 2
C4q 8 3

Then, the fast forward boundary is given by:
FF_Boundary(i,m4,s)=max{s + 2,94+ 1,104+ 2,8 4 3} = 12.

14

current reading block

1 2 3 4 5 7 8 9 10 11 12 13 14 20
cl 4 c2 «c3
1 2 3 4 5 7 8 9 10 11 12 | 13 14 20

N\ ff boundary
c3'sff_window

c4'sff_window
c2'sff_window

cl'sff_window

Figure 8: Fast forward boundary computation

This means that only blocks 13-20 of the movie may be updated at this point of time.

The primary use of rewind boundaries and fast forward boundaries is to ensure that when an
update request is made by the system manager, that the users viewing the application have the
flexibility to rewind or fast forward, within the limits of their fast forward /rewind boundaries. Notice
that it is not always possible to guarantee this. For example, in figure 8, if client ¢; wishes to fast
forward to block 6, there is no way to satisfy this request without switching him to another disk
server, because the disk server in figure 8 does not have block 6.

With these definitions in mind, we are now ready to define how to handle events.

4 Handling Events

In this section, we provide detailed algorithms for handling events. We will first provide an abstract,
declarative specification of what constitutes an appropriate way of handling events. Then, we will
provide algorithms to successfully handle events.

4.1 Optimal Event Handling: Specification and Semantics

Suppose s is a valid state of the system, and e is an event that occurs. In this section, we will
first specify what it means for a state s’ to handle the event e occurring in state s. This will be
done without specifying how to find such a state s’. We will later provide algorithms to handle such
events.

Definition 4.1 (Event Handling) State s’ is said to handle event e in state s iff one of the following
conditions is true:

15

1. New clients: [e =New client ¢ enters with a request for movie m:]
(Fi)(i € psr(e) A m:[1,1] € data(i, ¢, s).

2. Old clients: [e =0ld client ¢ exits the system]
NS’(C) =0.

3. Continuing clients:

(a)

=Continuing client ¢ watches, in “normal viewing” mode, block b of movie m)
i)t € psr(e) A m:[b,b] € data(z,c,s)).

(b)

(¢

(3

(e =Continuing client ¢ pauses)

(Fi)(i € ps(c) A data(i,e,s’) = 0.
(¢) (e =Continuing client ¢ fast forwards from block b to block b + r where r < £f_win(c, s))
(F0)(i € pg(c) A m:[b,min(bnum(m),b+ r)] € data(i,c,s').
(d) (e=
(3

=Continuing client ¢ rewinds from block b to block b — » where r < rew_win(c, s))
i)(i € psr(c) A m:[max(0,b—r),b] € data(i, ¢, s).

4. Server status event:

(a) (e =disk server ¢ crashes)
i € down_servers(s') A —server_status(i) A (Ve)i & ps(c).

(b) (e =disk server ¢ comes back “up”)
up_server(i) A —~down_servers(z).

5. Update event status:

(a) (e = delete block b of movie m from server)

i¢ p(m,b,s") Vv (i €p(m,b,s) A (i,m,b) € delete 1ist(s'))).
(b) (e = insert block b of movie m into server ¢)

i € p(m,b,s") VvV (¢t & p(m,b,s") A (i,m,b) € insert_list(s')).

The handling of update events requires some intuition. Let us suppose, that we have a movie con-
taining 100 blocks which is stored, in its entirety, on one disk server, and we have 2 clients ¢y, ¢ who
are watching the movie, via this server. Let us say that ¢; is watching block 45, and ¢y is watching
block 50, and each of them is consuming 1 block per time unit (just to keep things simple). Let us
further say that the system manager now wishes to update the entire movie, replacing old blocks
by new ones (which may be viewed as a simultaneous insert and delete). Additionally, both clients
1, €3 have rewind windows and fast forward windows of 5 blocks each. Figure 9 shows this situation.

o At this stage, the rewind and fast forward boundaries for this movie are 40 and 55, respectively.

e This means that blocks 1,...,39 and 56, ...,100 may be safely updated right away (assuming
that enough bandwidth is available).

e The blocks b such that 40 < b < 55 can only be updated later, i.e. the updating of these blocks
must be deferred.

16

cl Hl rewind window
M forward window

1 40 50 60 100
%—m‘ﬂmm% (L[] ---- [T
[)gm\ggry c2 Lgundary

Figure 9: Example of deferred updates

o For example, after one time unit, block 40 can be updated. After 2 time units, block 41 can
be updated, and so on.

The skeptical reader will immediately wonder whether this definition allows us to postpone update
events for an arbitrarily long time. The answer is that as stated above, update events could get
deferred for ever. To avoid this situation, and to also assign different priorities to different clients,
we now introduce the notion of priority. Associated with each event (client initiated or system
initiated, or deferred) is a priority. The higher the priority, the more important the event. In
particular, if e is an update event, and e is deferred, then for each time unit that e is updated, we
must “increment” e’s priority by a factor 6.. Thus, different events can have different associated
“prioritization steps” which may be selected by the system manager, based on the importance of the
event as determined by him/her. What this means is that the priority of an update events “gradually
rises” till it can be deferred no longer. We discuss this scheme in detail below, and also show how
the same idea applies to priorities on other (non-deferred) events.

4.2 Priority Scheme for events

Whenever an event occurs, that event is assigned an initial priority, either by the system, or by the
system administrator. The system maintains a list of default priority assignments. In the event of a
different priority assignment being made by the system administrator, then the latter overrides the
former.

Integers are used to represent “initial” priority assignments, though as we shall see, “non-initial”
priority assignments may be real-valued. The precise integers used for initial priority assignment are
not really important. What is more important is the relative priority ordering.

Default Initial Priority Assignments: Figure 10 shows the initial priority assignments. The
rationale for these assignments is discussed below.

1. System events have the highest priority. The reason for this is that a server crash, or a server
coming “back up” are events that are hard to control. It is not possible, for instance, to defer
or delay a crash. If it occurs, the system must transition to a new state that “handles” the
crash as best as possible.

2. Next, existing clients already being served by the system must have the highest priority. The
reason for this is that the VoD system has made a commitment to serve these clients well, and

17

Event Type ‘ Event Priority

System Server_down 9
System Server_up 9
Client (old) Exit 7
Client (continuing) | Pause 6
Client (continuing) | Play 5
Client (continuing) | Fast - Forward | 4
Client (continuing) | Rewind 4
Client (enter) Enter 3
Manager Delete 2-7
Manager Insert 1

Figure 10: Initial assigned priorities for different events

it must try to honor these commitments. However, each existing client may “spawn” different
events, including exit, pause, play, fast forward, and rewind. Each of these events has a
different priority.

(a)

The highest priority is assigned to events that exit. Processing an exit event early is
desirable in general, because this can be done very fast, and furthermore, this frees up
resources that may be used to satisfy other clients (continuing clients, as well as potential
new clients).

The next highest priority in this class is assigned to pause events because: first these
events request no new resources (and hence, they can be satisfied immediately) and second,
because of the pause window, these events may lead to future exit events that do in fact
free up resources.

The next highest priority in this class is assigned to play events. The reason for this is
that in most cases, play events are relatively easy to satisfy as they merely require that
the next block of the movie be fetched, and in most cases, the next block will be on the
disk(s) that are already serving the client.

The last two events in this category, with equal priority, are rewind and fast forward.
These events may require substantial “switching” of clients (i.e. a client may be switched
from its current server to another, because when blocks are skipped, the current server no
longer has blocks that are several “jumps” ahead of the block currently being scanned.

3. Of the system events, the delete event has the highest priority. The reason for this is that
delete events can be accomplished by a very simple operation — just remove the pointers to the
appropriate blocks. In contrast, insert events require greater resources (e.g. disk bandwidth
is need to write onto the disk).

Priority Steps: Suppose an update request is received for block b of movie m in server i.
Furthermore, suppose rwb and fwb denote, respectively, the rewind boundary, and the fast forward

18

boundary associated with the current state. It is not difficult to see that we must have rwb < ffb.
The update cannot be carried out immediately if rwb < b < ffb. As a consequence, we might need
to defer the update. However, as mentioned above, deferring the update might cause the update
to be indefinitely delayed. To ensure that this does not happen, the system administrator may
associate with each update request u, a priority-step, 6,. 6, is a non-negative real number, and its
interpretation is as follows:

e Suppose sg is the current state (in which the update w occurs with the priority p shown in
Figure 10 (p must be either 1 or 2).

e Suppose sq, Sg,..., S, are states that occur, consecutively after sg, all of which defer update u.

e Then the priority p; of the update event u in state s; is (p+ 7 X 6,).

Thus, for example, suppose u is a deletion request, and the system manager assigns a step of 0.2
to u. Then, after 6 state changes (i.e. in state sg), the priority of this update will be 3.2, which
would exceed the priority of a new event (which is 3) occurring in that state. What this means is
that if a new client enters the system in state sg, and requests a movie, then the server in question
would be asked to consider the higher priority update request u, as opposed to serving the customer.

By making the step size small, the system manager can allow a greater period of time to elapse
before making the update have higher priority over new clients. For example, had the system manager
set 6, in the above example to 0.002, then 501 state changes would have to occur, before update u’s
priority exceeded that of a new client.

Furthermore, the system manager does not have to specify the same priority step for each update.
Different updates can have different associated priorities, as would be expected in most real life
systems.

We are now ready to give an algorithm that manipulates the priorities, such as those shown in
Figure 10, and the above priority steps, to handle events that occur at any given point in time.

Video Server with Updates and Crashes (VSUC) Algorithm

main HandleEvents (NewFEvents, OldFvents)

{

FEvitList = sort events in NewFEvents and OldFEvents in decreasing order of priority ;
WaitList =) ; /* set of events that can’t be scheduled in this cycle */
DoneList = 0 ; /* set of client events that have been scheduled successfully */

While ("4imeout and EviList # 0)
{

evt = get the first event in FvtList ;
switch (evt.type)

{

case down : handleServerDownEvents (evt)

19

case up : handleServerUpEvents (evt)

case play, rewind, fast-forward : handleContEvents (evt)
case pause : handlePauseEvents (evt)

case exit : handleExitEvents (evt)

case enter : handleEnterEvents (evt)

case insert: handlelnsertEvents (evt)

case delete: handleDeleteEvents (evt)

1

If (Evtlist £ 0)

increase priority of each event in EvtList by 6.0 ;

OldFEvents = merge events from FvtList and WailList ;
return (OldEvents) ;

1

procedure HandleServerDownEvents (evt)

{

for each data block b; in crashed server do
update placement mapping so that b; is not visible ;

for each event e; in crashed server do
insert e; into FvilList preserving the sorted order ;

1

procedure HandleServerUpEvents (evt)

{

for each data block b; 1n recovered server do
update placement mapping so that b; is visible ;

1

procedure HandleExitEvents (evt)

{
}

procedure HandleContEvents (evt)

{

release resources and data structures allocated for evt ;

Blocks = set of blocks necessary for servicing evt ;

/* depending on event type, the way blocks are read from disks can be */

/* different. For example, in play event, certain number of continuous */

/* blocks should be read, but in rewind(ff) event, some intermediate blocks */
/* can be skipped to match the speed */

if (servers that have been assigned to evt contain all blocks in Blocks)
{

update the data component of evt ;

insert evt into Donelist ;

return ;

1

DServers = set of servers that contain all blocks in Blocks ;

20

*/

if (DServers =)) /* placement mapping error */

/* make evt considered after block insertions */
decrease evt’s priority by beu: ;
insert evt into FuvtList preserving the sorted order ;

return ;

1

RServers = set of servers in DServers satisfying resource constraints ;
if (RServers =0)
{

if (evt’s priority has been decreased previously)

Finished = false ;

Svlist = DServers ;
while (Svlist £ 0 and ! Finished) do

s = select one server randomly from Svlist ;

Sulist = Svlist - { s } ;

Switchables={e| event e is served by s and there exists s'(#s) that satisfies e } ;
while (Switchables # § and !Finished) do

{

¢/ = select one event randomly from Switchables ;
Switchables = Switchables - {e'} ;
if (evt can be served using the resources that will be released from e’)
{
release resources from ¢’ and update resource allocation of s ;
allocate resources to evt and update resource allocation of s ;
allocate resources to ¢’ and update resource allocation of s’ ;
put evt into Donelist ;

Finished = true ;

if (1Finished)
{

/* make evt scheduled prior to other clients in next cycle; */

i

increase evt’s priority by é
insert evt into WaitList ;

evt

}
} else

{

/* make evt considered after scheduling other normal continuing clients

decrease evt’s priority by 6., ;
insert evt into FuvtList preserving the sorted order ;
}
} else

{
MazFEval = -1 ;

21

for each server s; in RServers do
{
FEval = evaluate s; for the specified criteria ;
if (Pval > MazFEval)
{
MazFEval = Bval ;
BestSv = s; ;
}
}

allocate resources to evt from BestSv ;
update resource allocation of BestSv ;
insert evt into Donelist ;

1

procedure HandlePauseEvents (evt)

{
yield disk bandwidth to update events for next cycle ;
keep the other status unchanged ;

1

procedure HandleEnterEvents (evt)
/* enter event can be handled in a way similar to handling continuous events. */
/* The difference is that in the case of enter events, resources have not */
/* been assigned previously. Therefore, checking if already assigned server */
/* can handle the event is not necessary for enter events. */

1

procedure HandleInsertEvents (evt)
{
Seyt = server that data block is inserted into ; /* specified in evt */
Dsize = the size of data that is inserted into seqy¢ ;
Msize = maximum data size that server s.,; can handle using available resources ;
if (Msize > Dsize)
{
allocate resources to evt ;
update resource allocation of s.,¢ by Dsize ;
update placement mapping information of s.,; ;

} else
{
/* Dsize can’t be inserted in its entirety */
allocate resources to evt ;
update resource allocation of s.,; by Msize ;
reduce evt’s data size by Msize ;
increase evt’s priority by 8eq: ;
insert it into WazetLust ;

1

procedure HandleDeleteEvents (evt)

{

22

beyt = block number that is deleted ;

calculate the rewind and fast forward boundary of the movie ;

if (beyt < rewind boundary or b.,; > ff_boundary)
delete b,y and update placement mapping information ;

else

{

/* evt is deferred to next cycle */
increase evt’s priority by 8eq: ;
insert it into WazetLust ;

It is easy to prove that the VSUC algorithm described above has a number of nice properties, as
stated in the theorems below. An informal description of these properties is as follows:

o Under certain reasonable conditions, clients who have already been admitted to the system
experience no jitter, independently of what other events occur. This result applies when (1) if
the placement mapping is “full” (i.e. either the entire movie is available through a server, or
none of it is), and (2) when the client watches a movie entirely in “normal” viewing mode, and
(3) no server outages occur.

o Fvery event eventually gets handled as long as servers that go “down” eventually come back

&, 2

up

o The VSUC algorithm runs in polynomial time, i.e. if the current state is s and if ev is the set
of events that occur, then a new state s’ (together perhaps with deferred events) is computed in
polynomial time.

Theorem 4.1 (Continuity of Commitments) Suppose s is the current state of the system, and
C; 1s a continuing client in state s who is watching movie m in “normal” mode. Furthermore,

suppose that:

1. movie m is contained in its entirety in each server sv € ps(i) and
2. no server in py(1) goes “down” at this time and

3. for all updates u (before client C; entered the system,) that were deferred when client C; enters,
pry, <5 and 6, < é¢, where pry, is the priority of the update u when client C; enters the system,
0,, 1s the priority step associated with the update, and dc, is the priority step associated with
.

4. for all updates u (before client C; entered the system,) that enter the system after client C;
enters, newpr, < 5 and 6, < éc, where newpr, is the priority of the update v when it enteres
the system.

Then client C;’s movie request event will be satisfied by the VSUC algorithm.

23

Proof Sketch. In the VSUC algorithm, the only event that diminishes the system’s resources and
that has a higher priority than a continuing client is a Server_down event or a deferred update event.
However, by the assumption in the statement of the theorem, no servers serving client C; go down,
and hence, the highest priority events are either deferred updates or continuing clients.

Suppose a server sv is serving client C;’s request (in part or in full). If no deferred events occur,
then the same server can continue servicing client C';’s request for “next” blocks. However, if deferred
events occur, then there are two possibilities:

1. Suppose the deferred update u was requested before client C; entered the system. As pr, <5
and as 6, < d¢;, it follows that throughout the normal playing of the movie, client C’;’s priority
is higher than that of the update w. Thus, server sv continues to serve client C; without
allowing deferred events to obtain priority over the client C;.

2. On the other hand, if the deferred update was requested after client C; entered the system,
then client C' is guaranteed to obtain priority over the update because newpr, < 5 and as
0, < é¢,. Hence, client C; can continue to be served by server sv. a

The above theorem has important implications for admission control, both of new clients and of
new updates.

¢ Client Admission: To guarantee continuity of service, a new client ; should be admitted
to the system only if for all deferred updates u that need to be handled when client C; enters
the system, we must know that pr, <5 ¢, < é¢;.

¢ Update Admission: To guarantee continuity of service to existing clients, a new update u
should be admitted to the system only if newpr, <5 and as ¢, < é¢;.

Theorem 4.2 (All update events get handled eventually) Suppose s is the current state of
the system and ev is any update event that requires a set SV of servers. Further suppose that for all
times t > now and all servers in SV, if there exists a time t' > t at which one or more servers in
SV go down, then there exists a time t* > t' at which all servers in SV come back up. Then: for
any update event ev that occurs now, there exists a time t., > now such that ev gets handled at time

tey.

Proof Sketch. If update event ev does not get handled now, then, as é., > 0, in each execution of
the VSUC algorithm, event ev’s priority strictly increases till it exceeds 7, at which point ¢ in time,
it will be handled unless one or more servers that are needed to service event ev are down. By the
restriction in the statement of the theorem, there exists a time t* > t' at which all servers in SV are
“up” simultaneously. We are guaranteed that this event will be handled latest at time ¢*. O

Theorem 4.3 Suppose ev(t) is a set of events that occur at time t. The time taken for the the
VSUC algorithm to terminate is polynomial in the sum of the number of events in ev(t) and the

number of deferred events.

Proof. It follows immediately that each function call in the main algorithm runs in time polynomial
w.r.t. the above sum. a

24

1 | Total Number of Video Clips | 800
number of 10 minutes video 400
number of 20 minutes video 200
number of 40 minutes video 100
number of 80 minutes video 100

2 | Size of Video Segment 10-80 minutes

3 | Size of Block 0.2 seconds’ compressed video data

4 | Number of Requests 800-2000

5 | Request Pattern Based on actual data referenced in [5]
6 | Number of Disk Servers 30

7 | Types of Disk Servers 4

8 | Buffer size Avg. 50 MB per server

9 | Disk Bandwidth Avg. 20 MB combined per server

Table 1: parameters Used For Simulation

5 Experiments

5.1 Crash Handling vs Survival rate

In this paper, our video server consists of multiple disk servers with possibly different performance
characteristics. Table 1 shows several parameters related to the experiment.

In the first set of experiments, we examined the resilience of our video server against disk server
crashes, i.e. how well does our video server perform when crashes occur? To compare, we used
three different types of disk server configurations — homogeneous disks of evenly high performance
characteristics, homogeneous disks of evenly low performance characteristics, and heterogeneous disk
servers [3].

We generated client requests and disk crashes randomly (but in accordance with certain param-
eters described below) for each case. To compare the resilience of our video server against server
crashes, we first measured the average number of continuing clients. Disk server crashes were gener-
ated randomly in respect to crashed server or crash time. Also, the crashed server will eventually be
fixed or replaced and put into operation. We used same crash recovery time during experiment. To
see the effect of server crashes on the system, we changed the frequency of server crashes measuring
continuing clients.

Figure 11 shows the effect of server crash handling on the number of continuing clients. Regardless
of disk server configuration, our crash handling approach supported more streams than without crash
handling. However, depending upon the performance characteristics of the servers involved, difference
numbers of continuing clients could be supported; the most notable improvement was measured in
the case of the homogeneous, high-performance disk configuration.

As the frequency of disk crashes increases, the system will experience much more difficulty

25

Effect of Server Crashes on Average Number of Continuing Client
300 T T T T T T T T T

280

Homogenous=high

= N N N N
fos} o N B (o2}
o o o o o

Average Number of Continuing Client

=
[e2]
o

X . Crash Handling —
O No Crash Handling

o
iy
o

T
!
a

120 1 1 1 1 1 1 1 1 1
0 0.01 002 003 004 005 006 0.07 0.08 0.09 0.1

Probability of Server Crash

Figure 11: Effect of the server crashes on average number of continuing clients.

Effect of Server Crashes on Survival Rate

120 T T T T T
1001 : W/i
Homogenous-high
80

Heterogenous

Survival Percentage
D
o
T

40 b
20} Homogenous-low
O L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Period of Server Crashes

Figure 12: Effect of the server crashes on survival rate.

26

scheduling clients because disk or buffer resources and video data at the crashed servers are not
available during crash recovery time. We measure the survival rates of clients when crashes oc-
curred. Here, survival rate refers to the ratio of clients who continue to be served, as compared
to the total number of clients in the system. As is easily seen from figure 12, both systems with
homogeneous capacity disk servers showed a stable survival rate w.r.t. disk crashes. However, in the
case of heterogeneous capacity disk servers, there was a noticeable fluctuation in the survival rate.

In the second experiment, we used heterogeneous disk servers and examined the effect of crashes
on different capacity disk servers. For the experiment, we assumed four different groups of disk servers
with different server capacity. Servers with the highest capacity belong to group 1 and servers with
the lowest capacity belongs to group 4. Under normal operation, servers with higher capacity store
more video segments and provide more concurrent streams to clients than those with lower capacity.
Therefore, the effects of disk crashes will vary depending on the capacity of the server that crashes.

Continuing Clients Before/After Server Crash in Groupl Continuing Clients Before/After Server Crash in Group2

1500 1500

1400 1400

1300 1300

inuing clients
inuing clients

1200 1200

1100 1100

1000 1000
X number of clients before server crash X number of clients before server crash
900 - number of clients after crash handling 900 number of clients with crash handiing
© number of clients after no crash hanidiing number of clients after no crash handiing

Number of conti
Number of conti

o+

600 800 1000 1200 1400 1600 1800 2000 2200 600 800 1000 1200 1400 1600 1800 2000 2200
Clients in the system Clients in the system

(a) number of continuing clients in Group 1 (b) number of continuing clients in Group 2

Continuing Clients Before/After Server Crash in Group3 Number Of Continuing Clients Before/After Server Crash in Group4

1500 1500

1400 1400

1300 1300

ng clients

5 1200] 1200

1100 1100

1000 1000
X number of clients before server crash X number of clients before server crash
900 + - number of clients after crash handling N N 900 -+ number of clients after crash handling
© number of clients after no'crash handling O number of clients after no crash handiing

Number of continuing clients

Number of contini

600 800 1000 1200 1400 1600 1800 2000 2200 600 800 1000 1200 1400 1600 1800 2000 2200
Clients in the system Clients in the system

(¢) number of continuing clients in Group 3 (d) number of continuing clients in Group 4

Figure 13: continuing clients after server crash

Figure 13.a to 13.d show how many clients on the crashed server continue to be served even
after disk crash (under varying system load). To facilitate comparison, we showed together both the
number of continuing clients after crash handling and without crash handling. Here, “without crash
handling” means that the streams on the crashed server(s) will be discontinued unconditionally.

Figure 13.a shows the effect of crash handling when the crashed disk server belongs to group 1.
In this figure, the difference between the top line and the bottom line is the number of clients on the

27

crashed disk. On the average, our crash handling VoD server algorithm can satisfy about half the
clients affect by the crash by rescheduling their streams to other available servers.

5.2 Performance vs Segmentation

In this experiment, we examined the performance of the video server for different segmentations —
here a segment refers to a continuous sequence of video blocks. We assumed that video objects are
divided into several segments of equal size. These segments are placed in the disk servers in a way
that adjacent segments should be placed in the different disk servers (otherwise multiple segments
are merged into one large segment on a single server). Video segments were placed on the servers in a
manner proportional to the size of the disk storage available.i.e. the probability that a video segment
is placed on a disk having capacity 5 GB is 5 times the probability that the vide segment in placed
on a 1 GB disk. Under this segment placement scheme, any two disk servers with adjacent segments
should be synchronized for the continuous display of video. That is, as soon as a segment is consumed
from the first server, the next segment should be delivered from the second server without delay.
If the second server can’t deliver next segment stream, then clients may experience degradation in
quality. This constraint can be relaxed if we increase buffer space for each stream.

Normal Contining Clients Without Any Glitch Average Interrupt Time Experienced by Clients

20001 x number of segments: 1
number of segments: 2

~
3

B

g

8
.

' number of Segments: 1

o

number of segments: 4
number of segments: 8

3
3
7

number of segments: 2

g
8
*

o

number of segments: 4
number of segments: 8

5
H
8
@
g
*

2 8 B
g 8 8
8 8 8

Interrupt length in cycles
'Y
3

Number of clients who experienced no glitch
2
2
8

800 1000 1200 1400 1600 1800 2000 2200 1000 1200 1400 1600 1800 2000 2200
Clients in the system Clients in the system

(a) number of continuing clients (b) average blocked time

Number Of Updates Executed

Average Initial Response Time

number of segments: 1
160 800+
number of segments: 2

+ox

140] ©.. number of segments: 4.

number of segments: 8

2

8
g
8

number of segments: 1
number of segments: 2
number of segments: 4
number of segments: 8

Number of updates executed
+ %

Response time in cycles

s
H
8

% o

8
8

2001 i 1 i H i i i
800 1000 1200 1400 1600 1800 2000 2200

800 1000 1200 1400 1600 1800 2000 2200 Clients in the system
Clients in the system

(c) average initial waiting time (d) number of updates executed

Figure 14: experiment results

Figure 14.a shows how many streams will experience intermediate stream delay due to server

28

switches for retrieval of adjacent segments. When video objects are stored in their entirety, then
there is no need for server switches for the ongoing streams. But as the number of segments are
increased, the number of clients experiencing intermediate stream delays due to server switch is
increasing.

In Figure 14.b, we examined average intermediate stream delay experienced by the clients. It
shows that once video objects are segmented, the average stream delay decreases as the number of
segments increases. This is mainly due to the fact that smaller segments stay at the server for a
shorter time than larger segments. With shorter stays at the servers, resource availability for disk
servers increases and therefore server switching can be done more easily and frequently.

JFrom figure 14.a and 14.b, we might conclude that storing video objects in its entirety on one
disk server is the best scheme. But two other criteria show that this scheme has some disadvantages
as well. Figure 14.c shows the server response time specifying how long each client has waited till
the first frame of the video object was displayed. Under a moderate to large number of clients in the
system, the system response time increases sharply as the number of segments increases. Also, the
number of updates done during the simulation time increases as the number of segments increases.
Figure 14.d shows how many update requests has been done during the simulation.

Furthermore, as mentioned earlier, intermediate stream delays due to server switches can be
compensated to a certain degree if we increase buffer space for streams. From figure 14.b, average
stream delay is less than 30 cycles when the total number of clients is 1800. Therefore, as we increase
the buffer space for streams, the number of clients experiencing actual intermediate display delay
will be reduced.

6 Conclusions

Though there has been extensive work on handling disk crashes most such work has occurred in the
area of recovery of data on the crashed disk. Likewise, though there has been extensive work on
developing systems support for handling VCR-like functions in video servers, this work has ignored
two possibilities:

1. That during the operation of such a video server, updates might occur. The problem of handling
such updates has not been adequately addressed in the literature.

2. Similarly, during the operation of such a video server, one or more servers might crash and/or
otherwise become inaccessible. This means that any clients currently being served by those
servers must be satisfied in some other way. To date, there has been no formal theoretical work
on extending VoD servers to handle this possibility.

The primary aim of this paper is to provide a formal model of VoD systems that is capable
of handling such events, as well as to provide the VSUC algorithm that can neatly handle the
variations in resource availability that may arise as a consequence of such events. In particular, the
VSUC algorithm has many nice properties that, to our knowledge, have been proposed for the first
time.

29

o First, the VSUC algorithm guarantees that under certain reasonable conditions, users to whom
the VoD server has already made commitments, will experience no disruption or jitter in service
as long as they watch the movie in “normal” mode.

e Second, the VSUC algorithm guarantees (again under certain reasonable restrictions) that no
request made by a continuing client will be denied service “forever”, i.e. it will eventually be

handled.

e Third, the VSUC algorithm reacts to events, both user-initiated, and system-initiated, in
polynomial time.

Acknowledgements

This work was supported by the Army Research Office under Grants DAAH-04-95-10174 and DAAH-
04-96-10297, by ARPA/Rome Labs contract '30602-93-C-0241 (ARPA Order Nr. A716), by Army
Research Laboratory under Cooperative Agreement DAAL01-96-2-0002 Federated Laboratory ATIRP
Consortium and by an NSF Young Investigator award IRI-93-57756. We are grateful to Dr. B. Prab-
hakaran for a careful reading of the manuscript and for making many useful comments and critiques.

30

References

[1] S. Berson and S. Ghandeharizadeh. (1994) Staggered Striping in Multimedia Information Sys-
tems, Proc. 1994 ACM SIGMOD Conf. on Management of Data, Minneapolis, MN, pps 79-90.

[2] S. Berson, L. Golubchik and R. Muntz. (1995) Fault Tolerant Design of Multimedia Servers,
Proc. 1995 ACM SIGMOD Conf. on Management of Data, San Jose, CA, pps 364-375.

[3] K.S. Candan, E. Hwang and V.S. Subrahmanian. An Event-Based Model for Continuous Media
Data on Heterogeneous Disk Servers, ACM Multimedia Systems Journal, accepted, to appear.

[4] M.-S.Chen, D.D. Kandlur, and P.S. Yu. (1994) Support for Fully Interactive Playout in a
Disk-Array-Based Video Server, Proc. ACM Multimedia 1994, pps 391-398.

[65] A. Dan and D. Sitaram, "A Generalized Interval Caching Policy for Mixed Interactive and
Long Video Workloads”, Multimedia Computing and Networking, San Jose, January 1996.

[6] A.L. Drapeau, D.A. Patterson, and R.H. Katz. (1994) Toward Workload Characterization of
Video Server and Digital Library Application, ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, Nashville, May 1994.

[7] C. Federighi and L. Rowe. (1994) A Distributed Hierarchical Storage manager for a Video-on-
Demand System, Proc. of the 2nd SPIE Symp. on Storage and Retrieval of Video Databases,
pps 185-197.

[8] Shahram Ghandeharizadeh and Cyrus Shahabi. (1994) On Multimedia Repositories, Personal
Computers, and Hierarchical Storage System, Proceedings of ACM Multimedia 1994.

[9] G. Miller, G. Baber, and M. Gillilana. (1993) News-on-Demand for Multimedia Networks, Proc.
ACM Multimedia 1993, pps 383-392.

[10] Antoine N. Mourad 1996. Issues in the Design of a Storage Server for Video-On-Demand,
ACM/Springer-Verlag Multimedia Systems, 1996

[11] A.L. Narasimha Reddy. (1995) Scheduling and Data Distribution in a Multiprocessor Video
Server , Proceedings of IEEE Multimedia 1995.

[12] D. Patterson, G. Gibson, and R. Katz. (1988) A Case for Redundant Arrays of Inexpensive
Disks, Proc. ACM SIGMOD Conf. on Management of Data 1988.

[13] C. Ruemmler and J. Wilkes. (1994) An Introduction to Disk Drive Modeling, IEEE Computer,
pps 17-28, March 1994.

[14] K. Salem and H. Garcia-Molina. (1986) Disk Striping, Proc. 1986 IEEE Conf. on Data Engi-
neering.

[15] J.L. Sharnowski, G.C. Gannod, and B.H.C. Cheng. (1995) A Distributed, Multimedia Environ-
mental Information System, Proceedings of IEEE Multimedia 1995.

[16] R. Tewari, R. Mukherjee, D.M. Dias, and H.M. Vin, Design and Performance Tradeoffs in
Clustered Video Servers.

31

[17] P. Venkat Rangan, H. Vin and S. Ramanathan. (1992) Designing and On-Demand Multimedia
Service, IEEE Communications Magazine, pps 56-64, July 1992.

[18] H. Vin, S.S. Rao and P. Goyal. (1995) Optimizing the Placement of Multimedia Objects on
Disk Arrays, Proc. 1995 IEEE Intl. Conf. on Multimedia Computing Systems, pps 158-165.

[19] B. Worthington, G. Granger and Y. Patt. (1994) Scheduling Algorithms for Modern Disk
Drives, Proc. 1994 ACM SIGMETRICS Conference.

32

