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Abstract

Title of Thesis : On Image Coding and Understanding :
A Bayesian Formulation for the Problem of Template Matching
based on Coded Image Data

Name of degree candidate : Emmanuil N. Frantzeskakis

Degree and Year : Master of Science, 1990

Thesis directed by: John S. Baras,

Professor, Electrical Engineering Department

Some instances of the template matching problem, primarily for binary images cor-
rupted with spatially white binary symmetric noise, are studied. We use the pixel-
valued image data as well as data coded by two simple schemes, a modification of the
Hadamard basis and the coarsening of resolution. Bayesian matching rules residing
on M-ary hypothesis tests are developed. The performance evaluation of these rules

is studied.

This approach to the matching problem is intended to show the trade-off between the
quantization and extemnal noise with respect to the ability of detecting an object of
the image. We consider the case of the black square template in white background or
without known background as well as synthetic template without known background.
We call external noise the noise generated at the moment we receive the uncoded
image, in which case we have a “corrupt-code-detect system”, or the noise coming
as the effect of the transmission of the coded image over a noisy channel, in which

case we have a “code-corrupt-detect system”. In both cases the noise is assumed to



be white.

The sum-of-pixels and the histogram statistics are introduced in order to overcome
the computational load induced by the correlation statistic with the penalty of an

augmented probability of false alarm rate.

What is intended to be shown in the present work is the usefulness and ability of
combining an image coding technique with an algorithm for extracting some “base”

information used in image understanding. Numerical and simulation results are given.
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Chapter 1

The Template Matching
Capability as a Measure of
the Image Quality

1.1 The Template Matching as Part of the Image
Understanding Problem.

The “Image Understanding Problem” poses the question of understanding
what represents a given two-dimensional image. The scope of the problem can
further be expanded if we consider a sequence of such images at subsequent time
instances, and questioning about time-dependent events, like the relative motion
of the objects represented.

Consider now a special case of the problem for fixed time parameter and
a multiple gray level digital image. A general structure of a system proposed
by Marr [Ros90] for solving this special case of the understanding problem is
shown in figure 1.1. The input digital image usually is an array of pixels whose
values are the gray levels representing the brightness at a closely spaced grid of
points. Segmentation and feature detection can be regarded as assigning labels
to the image pixels indicating classes to which the pixels belong, like light/dark.
edges/non edges, being a member of some known pattern or not e.t.c. So, after
segmentation and feature detection, a symbolic image in which pixel values are

labels is obtained.



(Numerical) Image ~ 2-D scene

The pixel values are intensities

Feature Detection

Segmentation

Symbolic Image
The pixel "values” are labels

Resegmentation

Property Measurement

Relational Structure

Model Matching

Recognition Output

Object Description

Figure 1.1 Structure of a generic image understanding system as proposed by Marr



Labeled pixels satisfying some specific criteria are grouped together into
image parts resulting to a new (re)segmentation output and properties of these parts
like area, orientation e.t.c. are measured; in this way a relational graph is formed.
Now the object recognition problem can be viewed as finding subcollections of the
image parts whose properties and relations satisfy certain constraints. The image
understanding problem still requires information about the relations among these
objects in the given image, and this wouldn’t be difficult to find if the scheme

described so far could deal satisfactorily with real world images.

Unfortunately, this is not the case. Some of the reasons for this failure are :

1. The process discussed is a strictly bottom-up one; human vision has a mixed
top-down and bottom-up nature. That is we simultaneously process important
local characteristics as well as consider global features of an object when we
perform object recognition.

2. The algorithms which implement the tasks constituting the recognition process
discussed are often ad-hoc and heuristic and consequently do not admit sys-
tematic performance evaluation. Typically the latter is based on experiments
and simulations with small samples resulting to misleadingly optimistic per-
formance predictions.

3. The noise effects which are present in real world images usually are not

adequately or at all taken into account.



1.2 Approaches to the Template Matching Problem

Let I be an nxn-pixel multiple gray level image (with T gray levels) and T be
an m xm-pixel template pattern. The exact template matching problem amounts to
finding all (i,j) positions in I, i,j = 1,2,...,n-m+1, such that I[i+k,j+1]=T[k]], k,] =
0,1,...m-1. It is easy to see that this problem is equivalent to the string matching
problem with text string length : n;=n® and pattern string length m;=m?2. So, we
can take advantage of the existing literature on this problem and solve it in time
O(n;) [KMP77, BoMo77], or in time O(log<n;logm;) [FiPa74], where T is the
number of gray levels in the image.

Let’s consider now a binary image I, assigning 0 and 1 as the values of white
and black pixels respectively, which is corrupted by Binary Symmetric Noise
with pixel inversion probability equal to ¢. Suppose that given an image I and an
mxm window on it , call it Igp) (ie. Iap Jik1] = 1[i+k j+1], k J=0,1,....m-1), we
have to decide which one of two possible templates Ty, T, should be the original
noise-free image window, represented by the observed data Iy.We will follow a

statistical interpretation as in [DuHa73]. We have :

Py {Iw[u] I Tl} =(1-— 5)#0f matching ralues ~ f#nf non matching ralues
_ H (1-— 5)l—ll[i+k..i+1]—T1[k.l]l Mk +]~Ta[k.1]]
k1

and we can get a similar expression for Pr {I,, | T2} . In practice we have

F<b.5 and so the maximum likelihood rule :

decide Tyof Pr{le [ T1) > Pri{ly | To}.orclse decide Ta



reduces to

decide for the tamplatc with the least number of mismatees

with the window 1y

Pictorially we have the decision regions given on figure 1.2.:

The space of all binary m x m patterns

T decision L~
region

\

T  decision region

Figure 1.2 Picture of the decision regions for two candidate templates.

More practically, let us suppose that we are given only one template T in order
to decide whether it does or does not match the image window ly. Intuitively
a “maximum likelihood” way of thinking would lead us to a decision region
looking like a sphere in the space of m-" — binary pattems centered at T and
having radious some integer K. In simple words we will decide matching if the
number of mismatches is at most equal to K. The distance implied by the sphere
is the Hamming distance dy(lw,T) between Iy and T. This situation is pictorially
shown in the figure 1.3:

For the case of images corrupted by additive white noise our problem is

equivalent to the string matching problem with K mismatches and therefore it
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can be solved in time O(n;logm,) [AmFa89). Here we will not consider the
computational complexity of the problem; we will rather pose the question of
determining some “optimal” value for K, given some information about the source
of disruption we want to overcome by introducing a mismatch tolerance. More
specifically, in chapter 2 we find K as a function of the noise parameter e; this

question has to do with the reliability of the matching rule.

T decision region
——] The space af all binary mXm patterns

/7

Figure 1.3 Decision regions using Hamming distance

Let us return now to the case of multiple gray level images. We still have fast
algorithms for solving the K-mismatches problem as a string matching problem
(ime O (1 /mylogmy) [Abr87]). In [AmFa89] the problem of finding the
occurrences of a non rectangular pattern of height m and area o in an nxn text
with no more than K mismatches is considered and it is shown to be solved in
time O (Kn-/imlogm + K-m*-).

The number of mismatches is a descriptive statistic when applied to text

strings; given that all the letter transitions, e.g. an “a” tumed into “e”, an “a

tumed into “q” e.t.c., are treated the same way, the number of these transitions is



good enough to describe the corruption occurred. On the other hand for the case
of the template matching in multiple gray level images we wouldn’t like to treat
transitions among all gray levels the same way, since transitions among neighbor

gray levels are more likely to occur.

There are various metrics, or distortion measures used in classical template
matching approaches in order to account for the lack of uniformity just mentioned.

Some of them [DuHa73] are :

1. The absolute distance : > |I[i +A.j + ] — T [k.]]]

2. The Eucledian distance :k'lz(l [+ kj+0 =Tk

3. The cross correlation : R(klji.lj) =3 I+ kj+1xTk]
This is equivalent to the Eucledia’;, distance if we assume constant picture
energy in the window, i.e. that ::712 [i + k.j + 1] is independent from the

position (i,j). It can efficiently be computed by using FFT.

4. The normalized cross correlation : N (i, /) = R(i.j)/ S I3[i 4+ k.j+1]
k1

We can now repeat the previous method used with the Hamming distance.
That is suppose we are given two candidate templates Ty and T to associate with
Iw. We can use one of the above distortion measures in order to compare them
and come up with a decision. Second, if we have a single template to decide
about matching, we will compare the (generalized) distance d(lw,T) with some

threshold, which can be interpreted as the radius of some sphere centered at T.

If we introduce “maximum likelihood™” reasoning for the multiple gray level
image, with ¥ gray levels, the role of the metric (the Hamming distance for the

case of the binary image) is undertaken by the so called “transition probability”;



this is based on a vector of T2 different kind of matches /mismatches among the

gray levels, with T(Z-1) degrees of freedofn.

In chapters 2 and 4 the Bayesian reasoning is introduced for the template
matching problem and is further discussed in chapter 5. In the Bayesian approach
the “transition probability” metric is used and the decision regions for matching

are determined so that a cost function is minimized.

1.3 Performance Evaluation of “Matching” Algorithms
Acting Upon Noisy Image Data

Consider the following simple instance of the Template Matching problem: A
binary image represents a black square of size mxm pixels in white background.
We want to find the mxm windows on the image containing part or all of the
black square. Evidently it suffices to detect a single black pixel in the window.
We still can compute the correlation R of the test window with the “full black
template”, i.e. with a square template of size mxm pixels consisting entirely
of black pixels (value = 1); R actually gives the number of black pixels in the
window and at the same time it is a measure of overlap of the test window with
the black square. We can decide “part or all of the square detected” if R >0 and

“square not detected” otherwise.

Suppose now that the image is transmitted over a noisy channel; as an effect
of this several pixels are inverted. We model this phenomenon by saying that

the image is corrupted by White (in space) Binary Symmetric Noise with some

8



inversion probability ¢. From now on we will call this kind of noise “BSC noise”

since it comes as an effect of the Binary Symmetric Channel :

L3

1-¢

0- » . ()
£
£

1- > -1
1-¢

Figure 1.4 The Binary Symmetric Channel

Again, given a window of the noise corrupted image we want to infer about
the existence of the black square in it. Now it does not suffice to detect just one
black pixel. Though we remind the reader that when we are talking about the
noise free image the number of the black pixels in the window gives a measure of
the overlap of the window with the square. We will use this number in order to
answer the question about the decision for a square or not. Effectively, we have
to define some threshold t in the range of 070n:° which will determine the region
Ry=+t4+1...., m* for a positive answer to the question posed. We note that
in the noise free image we had 7 = 1 and R; = 1.2.....m"

For a given level of noise ¢ we want to determine the threshold value t in
such a way that the probability of erroneous decision be minimized; this error
probability will be a linear combination [Nar89] of

Pf,, = Pr{decide there isa squarcwlide it os not presenty and

Py = Pri{dccide thero is not a squarc while it os prescnt}



The performance evaluation we want to make for such an optimal rule amounts to:

1. Draw the (Pp,. P;) curve of the optimal Bayesian rules parametrized by the
noise parameter ¢, where Pr, stands for probability of “false alarm”, and P4
stands for probability of “detection”, i.e. probability of deciding there is a
square while it is present, Note that Py = 1 — Py,.

2. Draw the Receiver Operating Characteristic (ROC) curves of the test, ie.

the P, (Py,) curves, for certain values of .

In order to obtain the above we use a “hypothesis testing” approach, broadly
used in communications detection theory [Poo88, pp7]. A description of the
procedure used to build such decision tules is given in chapter 2. At this point
we will only state that the square detection problem initially leads to an M-ary
hypothesis test; M here equals the number of different Hamming weights! in all
possible windows of the noise free image. This test is in tum reduced to a binary
hypothesis test. The curves 1 and 2 required for the performance evaluation of
the test are given in plot 3 and plot 4 respectively in appendix B (the size of the
square used for them is m=8); a discussion of these curves will be done in the next
chapter. In the table 1.1 a set of (e,t) pairs is given showing the effect of noise
upon the threshold selected for the optimal Bayesian rules (recall : + < m” =G4

and in the ideal no noise case t = 1).

! Hamming weight of the window here is the number of black pixels in it. In the subsection
A.l it is shown that M = '_”_"_'u‘.‘ +1.

10



epsilon threshold
0.02 5
0.1 13
0.2 21
0.3 29
0.4 37

Table 1.1 The threshold as a function of the noise

1.4 Image Coding Techniques Approprlate for Input
to a Template Matching Algorithm

In the last few years a great variety of image coding techniques has appeared in
the literature. The interested reader should refer to [NeLi80], [NaKi88], [KIK85],
[KBL87]. The compression obtained reaches the level of 0.25 bpp (bits per
pixel), e.g. by using a technique of Entropy Coded Quantization for subband
Image Coding [TaFa86].

For our purposes however we need coding techniques producing data accept-
able as input to a template matching algorithm. But since such algorithms scan the
image and perform some kind of local operations on it (i.e. operations acting on a
window of the image and not on the entire extent of it) we should restrict ourselves
to coding techniques for which the coded data preserve the local characteristics
of the uncoded image; therefore we should invoke some block coding technique.

A block coding scheme splits the image into blocks of some size (e.g. block
size of 4 x4 pixels) and encodes each block separately of all the others as a vector

of random variables. The coded image will be a matrix of size ¢, x ¢, hlocks

11




, where ¢, ="original image dimension” / “block dimension” (both assumed to

be square). Each element of the matrix is the coded data for the corresponding

image block. For example a 256 x256-pixel image coded in blocks of size 4x4

pixels will result in a coded image of size ¢, x ¢, =64x64 codewords. There is

a number of different approaches to block coding that have been proposed. Here

we recall just a few; the ones which appear to be both common in the literature

and useful for the present work.

Suppose that the pixel values in the block form an N-component vector X.

In [KIK85] the Karhunen-Loeve Transform (KLT) is dsed to produce a vector
Y of uncorrelated coefficients out of the vector X; then the coefficients of Y
are quantized by using the Loyd-Max quantizer, while the number of bits
assigned to each component is a function of its variance and the total number
of bits available for coding the vector Y. We will briefly explain how KLT
functions (note also that the Loyd-Max quantizer is presented in [Max60]) :
KLT amounts to the transformation : Y = A.X, where A is an NxN matrix
computed as follows :

First find the covariance matrix of X : CX=E[(X-EX)(X-EX)T]. The rows of
A are the normalized eigenvectors of the matrix Cy, i.e. they are solutions of
the equation CxX=X;X where the \;’s are the eigenvalues of Cx. If we want
to reject K out of N coefficients we may do so by leaving out the eigenvectors
which correspond to the K smaller eigenvalues of Cx. Then the mean square
reconstruction error? will be equal to the sum of these eigenvalues. This is

the minimum value we can obtain out of a transform of the form Y = AX

[ 2]

E[(X-A"'Y)T(X-A~'Y))

12



[NeLi80]. The KLT has two problems : It defines A in terms of the Cx matrix
which in general is not stationary. Also the eigenvectors of Cx are not always
distinct [NeLi80].

In [MAY82] the coefficients of X are normalized over their variances and
the output vector Y is vector-quantized. A review of Vector Quantization
(VQ) is presented in [Gra84], while applications in image coding are given
in [NaKi88]

A popular transform substituting to some extent the KLT is the Discrete
Cosine Transform (DCT) which overcomes the problems mentioned for the
KLT [ANR74]. |

In the DCT we have Y = A.X, where
o e 2L (1) T
A={ay}. = I~ 53
1/V2. i=1

K()y=11 =200 AY

0 otherwise
The Symmetric Hadamard Transform [NeLi80] for \" = 2"defined by
N-1

1 : . .
A= {.(t,‘,}. a, = —ﬁ(—l)“"”. hii.))= Z 0

1=0

where /. j; are the bit values in the binary representation of i and j respectively
in N bits. For example, for n=2 we have 1, = 0001.. 210 = 0010 (where

ki, stands for “representation of the number k in base b™).

L0004 004 1] l 1 00400410401
1—1) :—3‘ 4’1;:’—(‘—1)

4

1| —

1
= =
VE!

13



and similarly we can find 4, = 3 . If we take the 4

1 -1 -1 1
L -
row vectors and split each one into two columns we obtain the 2 x2 Hadamard

basis given in figure 1.5a. The 4x4 Hadamard basis is given in figure 1.5b.

Another constraint posed in the coding procedure is the requirement that all
the blocks should be represented by the same number of bits. In other words
we should not exploit the Information Theoretic properties of the blocks, as the
Huffman codes do [B1a87,pp64]. This is required becausé at the template matching
time we will need to know the precise location of each block in the image file. If
on-line search is required we will suffer considerable time delays. On the other
hand, if auxiliary pointers are used to avoid this delay, then the space advantage
may be lost. Anyway the trade-off between the speed and data compression will

not be considered at this point. At this point we will require fixed length code.

A final constraint, which is imposed due to the matching algorithm complex-
ity, is the requirement for the least possible size of the block-codebook. This will

be discussed further in chapter 3.

14



1 2 3 4

(a) 2 x 2-pixel block size

13 14 15 16
] -1/4

] +1/4

(b) 4 x 4-pixel block size

Figure 1.5 The Hadamard basis
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1.5 The Combined Compression — Feature Detection problem

Consider the following senario : We have a source image I, on which we
can perform a template matching algorithm A in order to extract some feature.
Alternatively we can compress the image producing the compressed version of it
Q(I); after this we can reconstruct it producing R(I) from Q(I) and we perform
again the algorithm A on R(I). We expect that a “good” compression procedure
will not affect the “quality of the image”, or it will not damage the “information
content of the image”. More explicitly we would like that the algorithm A acting

on I give the same output as acting on R(I).

|
source image compress | comprcssed hnage reconstruct reconstructed
I # —— ilnage
Aq ?
A A
features
detected

Figure 1.6 The feature detection problem

So the effect of the template matching algorithm can be used to check the
“information persistence”, i.e. the features identification detection capability after

the compression/reconstruction process. (We note that implicitly we admit here

16



that the “information” is also dependent on the detection algorithm A.) In general
we expect that R(I) will contain less information (will provoke more decision
errors when A is applied) than I contains.

Here we consider quantization as a simple form of compression. We also
implicitly assume that the primary purpose of compression is to speed up trans-

mission of the frame, or allow as to store it in an efficient way.

A matching
P> Jocations

/
template LOC(I)

matching
|
source image 1 noise corrupted quantized/coded \ matching
I - image image == locations
A
| N® QM 41 Loc@m)
quantization/
"external” noise process coding A
e.g. transmission over > templates
a noisy channel ’
Info required : @) T—priors
2) ——»transitions
|
I " g ”n .
p|.1re — dmy -—|L> blocks S quantized
pixels | pixels | Aq | templates

Information v l
required : priors | —» priors — 4 priors _ 1 priors
Y, transitions —— Y- transitions

L—» transitions

Figure 1.7 The ‘“corrupt-code-detect” model

As it is depicted in the figure 1.6 we are interested in feature detection

algorithms Aq acting on the coded data Q(I). More specifically: Can we have

17



any advantage if we apply a feature detection algorithm Aq on the coded data
Q(I) instead of applying A on the reconstructéd data R(I) ? Or still, can we have
any advantage if we apply Aq on the coded data Q(I) instead of applying A on
the original data 1 ? The first question may be answered positively even at an

intuitive level.We will argue for a positive answer to the second question as well.

Let us consider a more detailed diagram, see figure 1.7, in which we are not
interested in the reconstructed image R(I); the noise free multiple gray level image
can be characterized by its first order histogram, i.e. the relative frequencies of
the gray levels; these frequencies (normalized to sum to unity) will be called
prior probabilities or just priors. The introduction of noise means that several
pixels of certain gray levels will be changed into some other levels. We will call
the probabilities of such changes transition probabilities; these are determined
by the noise parameters. The compression procedure gives rise to some new
entities: the blocks, which have their own “priors” found rather experimentally,
and their “transitions”, which are determined by the pixel-level transitions and
the compression rule itself. What we want to argue about is that the distortion
introduced by the compression scheme may “kill” part of the external noise
(transmission channel noise) and therefore the compressed image Q(I) may be
more reliable than the noise corrupted N(I) one. Finally, the matching algorithms
A and Aq will be applied on data of the size of the template and give the positions
in the image where a “match” is decided. A window of an image having the size
of the template has also its “priors” and “transitions”, which are determined by

the ones of the block-level as well as the structure of the template.
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Figure 1.8 The noise effects for various scales of quantization

Suppose we use as coding scheme the Karhunen-Loeve transform described

earlier. The vector Y reresenting the data for an image block contains uncorrelated

coefficients which are real valued numbers. We scalar-quantize each one of

them. As we see in figure 1.8 too fine quantization with respect to the noise

19



parameter (e.g. the variance a2 for the case of Gaussian noise) is useless, since
precision is lost because of the external noise (large shaded areas correspond to
the error probabilities). Somewhat coarser quantization may “kill” part of the
error introduced by the channel. Finally, too coarse quantization means that the
quantization error dominates the channel error and we have even more loss in the
precision. Now, if we suppose that the coefficients in Y are independent random
variables, the quantized vector 1~ will also have independent components whose
transitions are known. So the block-transition probabilities can be found as the
products of the components (pixel level)-transition probabilities. Also the image
windows can be thought as vectors with independent block-components and so

we can find their “transition probabilities” as well as their “priors”.

Hamming weight quantization value
<2 white
>2 black
=2 flip a fair coin and quantize according
to the output value

Table 1.2 A simple quantization scheme

Although straightforward the above scheme of quantization/coding is unreal-
izable because of the very ‘largc size of the block codebook, which as described
at the end of the previous subsection should be small. A quantization scheme
which is simultaneously simple and realizable is the coarsening of the scale of

the image. Consider a binary image corrupted by BSC noise with parameter ¢
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and quantize each 2x2 pixel block into a full black or full white block as follows
described in table 1.2:

Here we have an effective compression rate equal to 0.25 bpp. The codebook
size is 2. The block-priors are both equal to 0.5. The transition probabilities are
derived in chapter 2. We can now use the compressed image to test for match
with the full black template. The ROC of the test is given in the plot 6. We note
that the ROC curve is closer to the point (0,1) than the one in the plot 4 (at the
specific noise level ¢=0.1), which shows that the test on the compressed image is

a “more reliable” test as it was anticipated.

1.6 Identification of the Problem Studied

Image compression and image understanding have been traditionally devel-
oped as separate fields of research. In image compression one is primarily in-
terested in designing efficient coding schemes which allow the transmission and
accurate reconstruction of images at low bit data rates. In image understanding
one is primarily interested in extracting high level or “content” information from
the image pixels. It is clear that both fields address the problem of efficient in-
formation extraction and that in principle they are strongly coupled. We believe
that in order to understand the top-down and bottom-up processing performed in
human vision, one needs to unify these two fields. It is the purpose of this the-
sis to perform an initial investigation in this direction. More specifically we are
interested in linking image coding and object recognition quantitatively in some
simple generic examples. Such progress is necessary for our long range goal of

unifying image compression and image understanding.
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To be more specific we have considered recognition based on a well structured
feature detection algorithm, which we developed, resembling Template Matching
algorithms. We first started discussing the template matching problem and we shall
present our feature detection algorithm in chapters four and five. In trying to link
image processing with image understanding we introduce a novel idea. Namely
the “numerical image” for us is not necessarily a pixel image but a block-coded
image. In this way the image compression (performed by the code) is linked
directly to image understanding. We can now expect to observe the two types of
interference or contamination induced on the image data; namely the “external
noise” introduced by the physical media (e.g. the transmission channel), and the
“Quantization noise” introduced by the coding procedure (see fig 1.6). What we
are interested to analyze is the process where image recognition can be performed
based on the reduced (coded) image data. It is clear that if we reduce the Aimage
beyond certain point, recognition capability will be affected. On the other hand it
is desirable from a practical poiﬂt of view to design schemes which can perform
object recognition on the basis of block-coded data and not requiring the full
image reconstruction. It is clear that what we need to understand and quantify
is the explicit relationship between code efficiency and image compression with
the required performance. So the reader should not expect to find in this work a
review of the image coding techniques or a proposed solution of the 2-D Image
Understanding problem.

In the first chapter we introduced the notions of image understanding, template
matching, hypothesis testing, image coding and block coding for images. We also

identified the problem we will focus on and put it in the broader perspective of
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the image understanding problem. We further gave examples of the particular
aspect we will follow throughout this work.

In the second chapter we show how the template matching problem in a
priori known background, based on non coded image data can be formulated as a
hypothesis testing problem and we describe the effects of noise on the reliability
of the matching test.

In the third chapter we describe a coding procedure upon which a feasible
matching test may be based; we give the block-priors and transitions. Related
coding schemes which can be used in the future for possible extensions are
mentioned.

In the fourth chapter the template matching problem on coded image data is
formulated as a hypothesis testing; the noise effects are studied.

In the fifth chapter the Bayesian nature of the developed tests is highlighted,;
several sample tests are numerically evaluated so that the noise, compression and
background knowledge effects be comparatively studied. Related problems are
specified and further questions are posed.

Explanations on the algorithms implemented in actual computer code and

performance evaluation plots summarizing our analysis are given in the appendix.
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Chapter 2
Template Matchmg on a
Binary Image

2.1 Binary Image Corrupted by AWGN:
Formulation of the Template Matching Problem as
a Hypothesis Testing Problem

We consider the following problem. A binary image represents a black mxm-
pixel square in white background. The image is transmitted over a noisy channel
that causes some alteration onto the pixel levels. We model this phenomenon by
saying that the image is corrupted by Additive White Gaussian Noise (AWGN)
of some variance o-; we will shortly show the interpretation of this assumption.
We want to find the mxm-pixél windows of the image containing part or all
of the black square. We will call this problem “the full-black template case in

background” of the template matching problem.

We first find the possible relative positions between the target square in the
noise free image and a test window scanning this image. Consider the case of
m=2. Then all the possible patterns of part of a black square that could appear
in a 2x2 test window are shown in figure 2.1.a.

Apart from the all-white window, we notice that all possible patterns are
constructed by placing the left-up comer of the window in each one of 3x3 =9
places of a square part containing the black square (see fig. 2.1.b) and reading all

possible 2 %2 squares. This observation applies for the general case too, so we get
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(2m-1)x (2m-1) non all-white windows of size m xm when searching for the m xm
black square. We also notice that for this case we have (2m — 1)y +1=M+1

« 2 .
distinct pattems out of the 2" possible ones.
P p

The M+] distinct window pattems may constitute a set of states
Hy.H,.---.H, (assign H, to the white pattern) in a likelihood ratio test
[Poo88,pp10]. The state H, will be characterized by a binary vector s; of length
m*. The observation will be the image window itself represented by a real valued
vector y of length m*. Corruption by AWGN means that for each component y!

of y we have :
y) = signal + noisc = 5! + n. o o~ N (0.02)

and all »/’s are mutually independent.

0 1 2 3 1 2 3
o0 o0 o0 oo ) [} o 0
o0 o X X X X 0 4 5 6
4 5 6 o b ¢ x o
X X
7 8 9
° X x 0 X x ()
7 8 9
X X o o 0 )
0 o
| (b)
(a) "o" : white pixel, "x" : black pixel

Figure 2.1 Possible patterns in a 2x2-pixel test window

We now compute the prior :probabilities of the states H,. + = 0.1...... M.

For an nxn-pixel image we have a total of (11 — 1 + 1 X possible placements of
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the test image window; we also have (2 — 1) distinct placements, including

non all-white pattems. So the prior probabilities are :

1

1),':‘ "“‘”‘“,; :1),1212.4‘[
(4 1)
( S (2m —1)°
o = noom 4 1) (7'7)7 ) =1-2p
(n—m+1)

The distributions relating the observation Y with a specific state, i.e. the

probability of taking y as a noise corrupted version of s; are Gaussian:
Hi Y~ fl(y) : N (Si.ﬂzlmz)

where [,,. is the identity matrix of size m* x m*, so

. 1 1 7
fity) = exp {—27()' ~s;)f (y - Si)}

(202)m*/2
The detection of the black square problem amounts to deciding for one of
the M non all-white patterns, i.e. one of the states H,. ; = 1.2...../, or for
the white pattem, i.e. the state H,,. This situation can directly be formulated into
a composite binary hypothesis testing problem; for, we group together the states

H.i=12..... \/ into one that we will denote as H;. For the resulting binary

hypothesis test we will have [Poo88,pp43]:

1. The prior probabilities : j, = po=1=2Mp. p; = NMp.
2. The distribution of the observed data is:
f{“ : y*vf-:u(Y)Efu(y)

W
| 1 |
Elfiyi)=5 >t

=1

Hy =y~ fiiy)

I

0 1
3. The cost function (arbitrarily chosen): «(-. ) = [ J
1 0
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4, The decision rule :

decrde 0 & f‘ y) < 1= Wy =t
Joly) Mp

which can be reduced to :

M
decide 0 & Z(\i&\'l) (y]‘di) <t.

=1

for constant ;. 3;.1.

The generalized likelihood ratio list approach [Nar89] utilizes the max operator
instead of the expectation operator E[.] which was used in the previously presented
test. The resulting test in our application is :

Hy © y~foly)= foly)

Hy @y~ fily)=maxfi(y). i€{1.2-.0)

Although these tests guarantee some optimality given f1(-), they do not guarantee
any optimality given the distributions f;(-). / = 1.2..--.1/, which are the
actually given ones. This fact has led us to the following formulation of an M-ary

hypothesis testing problem.

We will not attempt to construct some pair of distribution functions (ﬂ.. f,)
as before; instead we will determine a cost function c(.,.) acting directly on the
statesH,. : = 0.1...... \/ , which will implicitly do the grouping we need. More
explicitly let :
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o1 ... M
olo 1 1 ... 1]
1|1

le(.,.)= 1
M| 1

We can now apply the theory supporting the M-ary test [Nar89]; this will
give the following decision rule :
d:diy)=i & ¢gily)<gjly). 0 < j < M. where

M
gily) =3 pile(ki) = (k)] fily). or

k#r

M i .
P> fely). =0

k=1

(1=Mp) foly). 1= 1.2, M

gr =

which minimizes the mean cost value : J (dy = FE [c(H.(l(Y))]. We note the
fact that all ¢,’s are identical for i=1,2,...,M, which causes an ambiguity in the

rule d. We resolve this ambiguity by defining
d: diy)=i=wuinik Lar (¥) S oy (). 05 <MY

which essentially is the intended binary decision rule.

The test can with minor changes to the prior data probabilities be applied to
detecting a general geometric pattf:m3 and not only the full black one. Never-
theless, it is very expensive computationally, as well as the previously mentioned

ones, since for each check we need to evaluate M inner products of size 11- ; we

3 We can give equations for squares and triangles parametrized over scale and orientation.
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note that such a product evaluation is inherit to the template matching problem.
However, since we are dealing with a specific template, the full black one, we will
show in chapter 5 that under mild conditions it suffices to use the sum-of-pixels
statistic instead of the template-vector as the input (the observation) for our test;
evidently the correlation in our case reduces to the sum of the values of all the
pixels in the image window, since we assign “1” as the value of the noise free
black pixel. But note that the equivalence of the correlation and the sum-of-pixels

statistic holds only when we have the full black or the full white template.

2.2 Hypothesis Testing Based on the Sum-of-Pixels Statistic

As described earlier the value (intensity) of each pixel in the noise corrupted
image is modeled as a random variable y/ = s/ + n/ where </ takes values in
{0,1} and the n’’s are identical, independently distributed (iid) random variables
such that : 7/ ~ N (0.0°) . Let us consider now the summation y of all the
pixel values in an image window. We will have :

y=1w+n. where y= Z . w= Z s
J€L €L,
where Iy = index set of the pixels of the image test window, « = the Hamming

weight or simply weight of the image window under question, and
n = Z o~ N{0.N S = (0. mea”)
1€L el
since n'’s are Gaussian iid random variables. We denote by « (/) the weight of

the i’th window pattem, as presented in the previous subsection. This parameter
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will characterize the states of the M-ary hypothesis test we will construct :
H : y~N (w(i).177202) 0 =0.10-- M

(M as defined in the previous subsection). In simple words different states cor-
respond to different levels of darkness. This property is sufficient to characterize
the all-white pattern, i.e. the one we want to single out and can be obtained as
the output of the correlating process with the full black template as described at

the end of the last subsection.*

The prior probabilities of the states, as well as the cost function, will be
identical to the ones found for the M-ary test on the rough data. The decision
rule induced will automatically group the states H,. H,.---.H; into one : H;.
So we have to distinguish the two states :

f}l cw>0
Hy : w=0

The M-ary hypothesis framework [Nar89] provides the rule:

d:dyy=1egi(y)<gly) . 0< <M.
M
where g, (y) =Y p,le(j.i) =D (0)

j=0
i#

which minimizes the mean cost E[c(i,j)]. If we use the cost function

4 Notice that « (/) will lie in the range 0. 1. " ; though as / ranges in the set of all
possible pattemns « (i) will not take all the values in (. 1..- - »~ and also certain duplicates
will rise up. So the #,’s will not all be distinct. This is not a problem since we just want to
distinguish //,, from all other states, which is feasible because - (/) exists and has no duplicates.
In the subsection A.1 we show how we can take advantage of the nature of the « (-) function in
order to reduce the complexity of our computations.
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0 11 1]
111

le(.,)= . | 1
M| 1

and make a trivial ambiguity waiving assumption we obtain the rule :

d: dly)y=7 € ¢ (y) <g1-:(y).
M
h=1

(1—Mp)fol(y). 1=1

gily)= .fh(y)~‘\‘(u'(h),m"'a"))

For all the sample tests we study in the present work (i.e. for various values
of the image and the square size parameters n and m) this rule can numerically

be reduced to
d: diy)=0 < y<w

for some threshold value y, . This threshold determines the tolerance we can
have when deciding the matching as a function of the noise level (¢°). In the

figure 2.2 we attempt to give pictorially the intuition of how y is found.

For performance evaluation we need the following :

Probability of false alarm .

Pry=Pr{d# 0|l =0}=Driy>u|Hl =

1 N K
Pj'u =1-¢ (—Ui)—) Lowhere i) = — /_I ("‘_IT’ Jt

nme V27, x
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Probability of detection :

M
Py=Pri{d#0|H#0} =) Pr{d#0|H=i}Pr{H=i|H#0}=
=]

\/ M
1 ¢ 1
— * __‘. = — — o l: .—__”
‘”,2-1 Prid#0|H=i}=1 M,E:]P?{( 0|H=i} =

M .
1 yo — w (1) 1 yo-—ll‘(h)>
=l-=>% ¢|{—]=1- & | ——— ] .
Fa M P ( mo ) > Ph ;1’1 ( mo

hes

where h ranges in the set S of all distinct non all-white patterns and p;, are the

prior probabilities of finding such a pattem.

4pN ( 4,462)

0 1 y0 2 3 4
decide 0, i.e. non matching <! decide 1, i.c. matching

Figure 2.2 The decision regions for a mxm = 2x2 template in the AWGN case
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In plot 1 the Py rs Py, curve, parametrized by the noise variance 2, for
optimal Bayesian tests is shown for both the theorctical analysis and the simulation
results. We observe that for little noise (small values of 52) Py, is small and Py is
high that happens for small values of the threshold yp. Adding more noise (letting
o2 get larger) causes P, to augment, while P4 gets smaller and yy gets larger; yo
getting larger means that the rule gets conservative i.e. it needs more evidence
(darkness) in order to infer “black square detected”. If the process of adding noise
is continued (c? gets large enough) y, gets large; this process gradually leads to
the rule “never decide black square detected”, i.e. to the point (0,0) of the plot
(Pta, Pa). In plot 2 the ROC of the test for m=5, 72=0.1 is shown. The simulation
results are produced by using one Monte Carlo run and assume that the optimal

thresholds are known from the theoretical analysis.

2.3 Testing Under the Effect of BSC Noise

Consider again the problem of finding a black square in a binary image
corrupted by noise; but now say that the noise comes as an effect of image
transmission over a memoryless binary symmetric channel. The BSC noise, as
presented in the previous chapter, will result in a distorted binary image. The
use of the sum-of-pixels statistic y is equivalent to counting the black pixels on
the image window we scan. A hypothesis testing approach which will give a
test with the property of minimizing the probability of an erroneous decision will

be described.
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Similarly to the AWGN case we construct an M-ary test for which the states
H,. weSU {()}

are characterized by the Hamming weight of each possible m xm pattern generated
by scanning the noise free image ; specifically S is the set of non all-white such
pattemns. The prior probabilities of these states are denoted as p;, and they are
equal to the ones computed in the previous paragraph. The cost function which

implicitly transforms the M-ary hypothesis into a binary one again is :

01 M

olo 1 1 1]
1|1
Le.(.,.)= . | 1
M| 1

The two hypothesis for the binary test are :
Hy: h=0
ffl coh > 1

The decision rule will look identical to the one derived for the AWGN case :

d: din =1 e gily) < gi-ity).
Pty =0
i (y) = hes
L AXNAR =1
where I, (). € SU {0}, correspond to the f, () for the AWGN case, and are

distributions which we still are missing in order to be able to evaluate our test.

Py (y) is the probability of observing an image window with 4 black pixels in it,

34



while the corresponding noise free window had /1 ones. As already discussed in

chapter 1 we call these discretized probabilities transition probabilities. We will

show now how to evaluate these probabilities.

h-vector Ph(y) y-vector
NN N f | =—— RN N N
0 oy 0 m
(@
<«—h —»
NN | h-vector
0 m
17
' <+ k—»
RN | k-vector k in [0,h]
Py,
Y <yk—»
AT AT B | y-vector y-k in [0,m-h]
(®)
Figure 2.3 The transition probabilities for the BSC noise case
The image window is represented as a binary vector of length /iv = m-. The

shaded region in the figure 2.3a represents 1’s and the blanc region represents

0’s. We want to find the probability of getting a configuration with y 1's if our

vector with /: 1’s passes through a BSC with bit inversion probability equal to ¢.

Since we are interested only in the “area” of common and non-common shaded

places between the /i— and —vectors and not the specific positions of black and
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white pixels we will assume that all the shaded area in the h—vector is stacked
on the left.

The key idea is as follows : The probability of getting a y—vector from an
i—vector is equal to the common probability of getting a k—vector from the
h—vector, where & < .y is the number of common shaded places between
the i— and y—vectors and getting a y—vector from the F—vector, where y — £
shaded places are not common with the )—vector. The 2—step process is depicted
on the figure 2.3b

Since the two events a and b (see fig. 2.4.b) are related with uncommon areas

(different bits) and the binary noise is white they are independent, i.e.

Pub(l") =D, (]‘) Pl»(]‘)

We have :
h PR
P(,(I\‘)z 8 (1—€) € .
= | o
Pk = (m I)G'U—L(l-—f)m h—y+k
y —k

with the constraints :

0<k<h
0<y—hk<m-h=h-m<k-y<0=h+y—-m<k<y

) =
k€ [max (0.7 + y — ) min(hoy)] = [Fuin. k)

So

Ll!l.\
Pyiyy=Y_ PutkrPithy =
L=k

nunlf.y)

h m—h = ; ey — 2k
Pyy) = Z (:/) ( 1/~A-)(1—“ h—yt2h hty=2k

k=max(O. h<4y—n)
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If we substitute this expression of I’ (y) in the decision rule then this
becomes:

f y) =0« 1 Z S: h m = e O\ < )
o . dly)= — o
] Do Pt o I8 y—k 1. )

hes

and by a further numerical simplification :
d: dly)=0&y<yo .

where i, is some threshold in the range from 0 to m.

For the performance evaluation of the test we need:

Probability of false alarm :
Pfa ———'Pl‘{d#O]H=O} =Pr{y>yo!H0} =
n m ;
P — . m—y Y
fu :E:: (: Slj) (1 €) €
y=yo+1

Probability of detection .

Pi=Pr{d#0|H#0}=)Y Pr{d#0|H=hPr{H=h|H#0}=

hes
DPh
1-—- Priy<ys|H=h =
IZ:' { ' | } Z Ph
1€ hes
1 Yo
ry=1- vy Pu(u)
* S o Z Z

iyl hes =0

The P; v~ Py, curve for optimal Bayesian rules parametrized by the pixel
inversion probability ¢ is given in plot 3 for the case of m=8. The shape of this
curve is similar to the one of plot 1, in the sense that for little noise we have

small Pg, and high P4, while if we add noise we gradually move towards the

point (P;=0, P4=0). The optimal Bayesian rules range from “decide black square
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detected if sum-of-pixels > 5” for =0.02 to “decide black square detected if sum-
of-pixels > 37” for ¢=0.4 and effectively “never decide black square detected”
(i.e. reach the point (0,0) of the curve (Pga,Pq) ) for even larger amounts of noise.
The stairs-like shape of the curve is due to the discrete nature of the threshold and
makes apparent the trade-off between the high P4 and low Py, that the optimal
Bayesian rule attempts to compensate. In plot 4 we see the ROC of the test
produced as a result of the above analysis for the case of m=8 and =0.1. The
ROC found by simulating is also given; again one Monte Carlo run is used, and

optimal threshold values are assumed to be known from the numerical analysis.

2.4 Testing Based on Image Data of a Coarsened Resolution

Consider a binary image corrupted by BSC noise with parameter e. We
can code each 2x2-pixel block of it with one bit indicating all-black or all-
white block, depending on the bit value. The noise of the original image will
“propagate” to the coded data, resulting in bit inversions. The white noise in the

original data will cause the noise to be white in the coded data too.

1-¢
0- 0 > - (
0
&
1 — - |
l—el

Figure 2.4 The Binary Channel transition diagram
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The relation of the noise-free-coded data and the noise-corrupted-and-then-
coded data is depicted in the ﬁgurc 2.4. The inversion probabilities ¢ and ¢
depend on the specific coding rule. If the coding (quantization) rule is the one
given in table 1.2 (subsection 1.3), then because of the symmetry of the rule we
will have eg=¢1=¢. So the noise on the coded data can be modeled again as BSC
noise with inversion probability ¢, which depends on the noise parameter ¢ of the
original data as follows :

¢ = Pr {have more than 2 bit inversions} + SPr {have 2 bit inversions}

4
4\ a—i | 1Y 4 2
:Z;(i)e(l—e) +§<2)e(1—e)

An analysis for the detection of the black square based on these coded data is
identical to the one we made in the last subsection. The performance evaluation
curves for this test are given in plots 5 and 6. We observe that they have the same
shape as the plots 3 and 4 respectively which were drawn for the uncoded data.
However note that the ROC cur\;e for €=0.1 is closer to the point (Pg=0, P4=1),
this means that tests acting on data of coarsened resolution are more reliable (for
this specific object target and amount of noise) than these acting on the original

pixel data. Similar observations are further discussed in the subsection 5.1.

2.5 Summary

In this chapter we described a simple instance of the template matching
problem using noise corrupted data. Initially we considered Gaussian noise and
tried to find some optimal matching test. We briefly examined three tests acting on

the rough data, starting from the most straightforward approach of the composite
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binary hypothesis test, continuing with the geﬁeralized likelihood ratio list test
and reaching the most structured M-ary hypothesis test.

- We noticed that for the case of the full black template we can avoid the com-
putational load of inner products, or equivalently of convolutions, and introduced
the sum-of-pixels statistic. We developed and evaluated a binary hypothesis test
“residing” on an M-ary test, which was using the sum-of-pixels statistic as its ob-
servation. This test designed for the AWGN case was properly modified for the -
case of the BSC noise and further modification to the latter gave a test based on
coarser resolution image data. Sample simulation results were given for both tests.

An attempt was made to show the steps followed which led to the specific,
described formulation of the BSC noise case of the problem. This formulation
will be expanded in the fourth chapter in order to implement a feature extraction
algorithm applicable to either multiple-gray level images or to block coded image

data.
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Chapter 3
Image Coding

3.1 Block Coding Techniques

A block coding technique transforms the nxn-pixel valued matrix representing
an image into a ¢, x c,—block code valued matrx (¢, = n/”block size”),
representing the encoded version of the original image; each block is encoded
separately from all the others; we consider multiple level gray images. The coding
process may be analyzed into three steps, namely preprocessing, quantization

and the coding itself, as shown in the table 3.1 for three different block coding

schemes.
scheme input preprocessing quantization source coding output
whitening
1 (KLT, DCT, scalar quant. u
. (Max-Loyd qu.) uffman
Hadamard basis) coding block image
pixel image
2 (nxn-pixel normalization vector quant. or . (C,xCy-
valued enumeration block code ‘
matrix) modified | valued matrix)
3 S Had d basis enumeration

Table 3.1 Block quantization / coding schemes applied to image data

For the schemes 1 and 2 the pixel values in a block form a vector of

random variables; the randomness is due to the image statistics and assumed to be
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sufficiently described by the first and second order histograms. In [HuSc63] the
block-vector, composed of 4 Markovian random variables, is whitened by using
the KLT (see paragraph 1.4, also [NeLi80],[San89]) and then each component
is separately quantized by the Max-Loyd quantizer [Max60]. It tums out that 8
bits are adequate for representing a quantized vector. In [LaS171] the 4 x4-pixel
blocks are coded by the Hadamard basis (see par. 1.4). It is shown that 32 bits
are adequate for representing a quantized block. Observe that both techniques
require a rate of 2 bpp (bits per pixel).

Vector Quantization (VQ) [NaKi88] can give better compression ratios for a
given performance than the scalar quantization. This is an information theoretic
result broadly used in several applications in the last few years. In [MAY82]
VQ is used for the image block-vectors while their components are normalized
over their variances. We should note that the VQ procedure has some underlying
distortion measure, applied on pairs of quantized vectors; the selection of this
distortion measure is application dependent [MRG85] and determines the VQ
performance to a great extent.

Both of the above schemes provide us with a block alphabet of quantized
vectors to which a code must be assigned. This code may amount to simply
enumerating the codewords or using a Huffman code, so that the information
theoretic properties of the alphabet may be exploited. However as pointed out
in chapter 1 we still require the same number of bits for coding each quantized
block-vector and therefore we should use simple enumeration in our application.

The scheme 3 of the table 3.1 is described in subsection 3.3 while the

reasoning that led us to admit it is given in the following paragraph.
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3.2 Constraints on the Block Alphabet Size Due
to the Matching Test
Let / be the number of bits assigned to each codeword (block) of the image

block-alphabet. The size of the alphabet will be A/ = 2!. We usually have
o << g® = # of possible non quantizcd blocks.

where ¢ is the number of gray levels in the original image and = is the size of the
blocks in pixels. So / parametrizes the quantization level of the original image
and therefore affects the quality of the image.

Suppose now that the original image has been corrupted by a noise charac-
terized by some parameter, e.g. ¢ or o~ as we have seen in the previous chapters.
Consequently we erroneously may take a codeword i to be some other, say j.
We remind the reader that we call these probabilities ¢;, transition probabilities.
Evidently the noise parameter (¢) affects the quality of the reconstructed image
as well.

As already discussed we intend to apply some feature extraction algorithm
(template matching) onto the coded data; we will obtain a performance evaluation
measure (°y,. ;) which will be interpreted as the image quality index; thereafter

we will exploit the effects of the two noise sources (having the parameters / and ¢)

quantization o 1 — [

'
1)’

\} - (P/,,.I),[)

crternal poisc 1 € — €

onto the (reconstructed) image quality. We will do so by formulating the template

matching as a hypothesis testing problem. In the next chapter it is shown that if the
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template is of size n blocks, then the complexity of the test will be parametrized

over the template codebook size

S(M.n)= <.U+n-—1).

n
We observe that :

1. The coding schemes presented in the previous paragraph will give rise to a
very large S(M,n) parameter to allow a test to be implememed.5

2. 'We cannot afford />4 (i.e. M>16) and n>9, since $(16.9) = 1.3 X 10°.

Note that in the numerical analysis implemented on a Sun work station the values
of the parameters are =4, n=4; so S(M,n)=3876. If we want to have a reasonable
size for our template, e.g. 12x12-pixel or equivalently 3 x3-block of 4 x 4—pixel
blocks we effectively need to restrict ourselves to the case of the binary image.
A quite different approach for solving the “image evaluation” problem as it
has so far been formulated, will be mentioned, even though it will not be examined
in the present work. This comeé from the VQ technique using the Itakura-Saito
measure [MRG85]; the performance evaluation of the matching test can then be
expressed through this distortion measure and thus help us avoid the formulation

of the hypothesis testing problem.

5 Nevertheless it is worthwhile to:

a.  Try to adapt the coding scheme of [TaFa86] to our problem since it furnishes rates up
to 0.25 bpp and it is robust to the noise.

b. Exploit the fact that most « 's equal 0 and thus the complexity may be reduced from
the order of the codebook size to the size of a “small” hypercube around the point of
interest.



3.3 A modified Hadamard Basis

The available 4-bit codeword for a block can represent 2! = 16 different
blocks. We assign all bits to one variable which is intended to map the 16 “most

possible” 4 x4 blocks.

a. binary pattern b. relative variance (&)
c. prior probability estimation ( pi )
a b| ¢ a b| c
0 - 1 1.00 |0.3594 | g E 9 E 0.038| 0.0137
2 l 3 0.098| 0.0352 lom 11U] 0.051{ 0.0183
0.087/0.0313 | 12 E 13E 0.048(0.0173
6 | 10.035/0.0126 145 E 0.034|0.0122

Figure 3.1 The modified 4x4 Hadamard basis

How to determine the 16 patterns : In [LaSI71} the Hadamard basis for

4 x4-pixel blocks is given (see also fig. 1.5), along with a measure of variance ¢,
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of the random variable corresponding to each element i. We will use this measure
for making an estimation of the prior probabilities of having these blocks. The
Hadamard basis is used for multiple gray level images; negative intensity factors
can reverse the pattern, e.g. a black block may be converted into a white one. In
our application we do not use such a factor; instead we use the first 8 pattems of the

Hadamard basis plus their reversed versions. We will take the prior probabilities

of them to be
P2 = Pyt = ii/z a=0,1,---.7
> &
J=0
N0 1234 56 78 910111213 1415
0/0|16/8|8[8|8[8|/8/8|8|8/8/8|8 |88
1 0[8(8|8/8|8 8/8|8/8/8(8(8 88
2 0{16/8|8 |8/8,8 (8|88 (88|88
3 0/8|8|8!8 8|8|8|8|8[8 |88
4 016888888888i8
5 0/8[8 8|8[8/8/8[8 8 8
6 016 8 /8|88 |8/8 8 8
7 0/8/8(8[8(8/8]/8 8
8 ' 0(16/8 |8 |88 '8 8
9 0[8(8|8[8[8.8
10/ symmetric ofi6[8|8 8 8
1 elements ol/giglsg 8
12 0[16/8 8
13 0!8 8
14 0 16
15 0

Table 3.2 The Hamming distances among the elements of the modified Hadamard basis
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The 16 patterns we will use and their prior probabilities are shown in the
figure 3.1. The Hamming distances between pairs of block patterns are shown

on the table 3.2

Transitions are caused by the white binary noise corruption. Nevertheless they
are governed by the quantization procedure, i.e. the rule used to map the noise
corrupted data back to the limited alphabet of the 16 blocks. These transitions

are discussed in the next paragraph.

3.4 The Quantization/Coding Procedure

We will start by making some observations : First the Hamming distance d(i,j)
between two different codewords i,j is at least 8 (see table 3.2); therefore we may
think of the codewords as the centers of spheres in the {0. 1}16 —space with radius
half the Hamming distance p=4. Secondly, not all codewords comming up from
the Hadamard basis are used; actually exactly half of them are considered in our

coding scheme.

The quantization rule :

For each 4 x4-pixel block (call it y) of the noise corrupted image do:

1. if d(y,i) < 4 for some codeword i then decode y—1

2. if d(y.i) > 4 for all i

a. if “weight of y” (w(y)) > 8 decode y—0 (full black block)

b. if w(y) < 8 decode y—1 (full white block)
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c. if w(y) =38,
decode y—0 with probability 0.5,

decode y—1 with probability 0.5

3. if d(y,i) = 4 for one or more i’s then

decode y—),,, where j,, = argmax {prior(j)}.
J

What are the transition probabilities :

We assume that the original scene of the image can accurately be represented
by the block alphabet we have, i.e. the image can be decbmposed into blocks
each of which represents an alphabet element, say i. The image is corrupted by
binary noise with parameter ¢ ; so the element i will be translated into a 4 x4
binary block (call it y) which may not be an alphabet element. Nevertheless,
the quantization rule given above will decode it into some alphabet element, say
J, which may be different from i. Once more we repeat that we call transition
probability Pr{i—j} =P(j/i)=Pr{d=j/H=i} the probability of deciding that the
element (codeword) j appears in some place of the image, given that the element
(codeword) i was at that place of the original image. We have to calculate the
probabilities P (7 |j). 7.j = 0.1.---.135 .

We have :

Prid=j|H=1i}=Y DPriohscrvec y|H=:} (1)

yell,

where 17, is the decision region for the codeword j; note that

Pr {)- =y l H = /-} _ Ftl!llAI)‘l _ t()lh—,]“‘,_,.
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The decision regions, according to the quantization rule are :

Ro={y:(d(y.0) <) Veondoiy)} (2)
cond0(y) = (((w(y) >8)V (w(y)=8w.pl/2)A(d(y.t)>4.i=0.---.15))
Ri={y:(d(y.1) < 4)Vcondl(y)} (3)
condl(y Hy) <8)V ir(y) = 8w pl/2))A(d(y.i) > 4.i=0,---.15) )

{ (d(y.i) <3)V(d(y.i) = 4) A (i = arg max prior (J))} (4)
JEIY)

where 1=2.3.---,15 and Iy)={j:d(y.)) =4}
For j =0:

Since d{y.0) < 4 & w(y) > 12 we get :

(1).(2)= Pr(0]:)= Z Priyl|i}+ Z Priy|i}

ywfy)>12 wdly,y)>4,0=0..15
- w{y)>h or wlyl=kw.p.1/2

=Pr{y:w(y)>212|/} + Pri{y:d(y.j) >4, j=0.---,15]7} x

1
P> 810+ 5Prlein =8 1) (5)
For the first term of (5) we have :
16
Priy:w(y) 212} =Pri{iv(i)— w.w=12.--- .16} = Z Py (1)
=12

and
Puiy(i)=Priget a 16— bit length word with j 1's

w

out of a same length word with w(i) 1's)

minf{w{).}

_ Z w (e ?) <16 - u'(i)) (1 ()1()‘—/—(1'11)+'.’l-‘ ety =2k
I -k

k=max{0.w{1)+1-16}
j=12.....16

Ifi =23,.,15 then :

b N N N— [ N
Pl:-(r)(.i):P<(./): Z </'><j—/->t1—F) ’+-’(+./ 2k

k=g

= [(1—€)F]K(]




Ifi = 0 then :

J
16 0 L
P (i) = Pis ) Z ( ) (} o ) (1 F)J 2 6=k

k=,

= <1G) (1- f)j (16=)
J

Ifi =1 then :

0O
' /0 16 a0k ik
Pu(l)( ) PfJ( ) Z(A) <}_l>(1—(‘)l( J+2k el 2k

L‘::H
16 .
= ( . )(1 —e) e
J

Now we will evaluate the second term of (5). Let’s return to the spheres
concept. The 16—element original Hadamard basis along with the “complements”
of these elements may be thought as the centers of spheres which constitute a
32—partition of the {0. 1}"5 space in which y lies. If i is the element we originally
have and if due to the noise corruption it is translated into a y such that d(i,y)
> 4, y will lie with the same probability in any of the rest 32-2 = 30 regions of
the partition. Note that we exclude the complementary block which is unlikely
to occur. If y lies in one of the 16-2 = 14 left regions with center one of the
alphabet elements we use, then we decode y as being this element. If not we

dacode it into “0” or “1” depending on its weight w(y). Therefore we have :

Priy:dy.j) >4 =0 15[} =

Priy:diy.ny >4 Priucdungy 4y =0 - 0l diy.ny >4} =
= i 16) i1 r)“;_'l\) =
- — d /30
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Also
16

Priw(y)>8]0} =) (1}.0> oI (1—¢)

j:?l

Priw(y)=8]0}= <1G

8)5“(1—6)8=P1'{11'(g/)=8 | 1}

16
16\ ; 16—
Priw(y)>8]|1 :Y‘< .)61(1—6) J
| 1} 2\
and by symmetry

. 1 , 1 .
Pr{w(y)>8|1}+3Pr{uv(y)=8|1}=-‘; =2 15
By putting them all together now we get :
16
16 e
P(0]0)= }:( _)(1—e)~'e”"~' +
j=12 N
14 |1 /16 15 /16 . /16
— — ¥ e 16— Ry d _y\16-d
% 2(8>(1 e)e+,>;(j>e (1—e¢) xZ(d>e(1 €) (6)
16
16 16.-
P(0l1)=§:( _)(1_5) e+
j=12 N/
14 |1 /16 /16 % /16
=2 & 8 ] _ 16— d _ 16—d -
3 2(S>(1 €) +Z(wi>e(1 €) xZ((l)e(l €) (7)
16 J 8 -2k
K € 8 8 €
polin=-ad' 3 (75) Z(k)(j—k)<1—e> !
j=12 h=)~8
16
14 1 16 d 16—d -9 -
30 2’_((])6(1—6) . i =23 15 (8)
For j=1:

Because of symmetry we have :

Pl|lLy="Prw]m
P(1]0)=Pr0}|1
Pilln=Prw0ln. 1=23.--.15
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For j = 2,3, ..., 15 :

Piiliv= Y. Plulit+ S Pyl

u:l(u))"\'{ pdty,)=4.
; : - i=arg i grrort 1), €10yY)

< Z Plyli} = Priy:diy.j)<4li} .
ydiy.)<4
where I(yy={j:diy.j) =4}

The bound above is adequate for our needs since the transition probabilities
are treated as error probabilities. Therefore from now on we will approximate
the transition probability with its corresponding bound. We expect that this
approximation will lead to slightly more pessimistic results than the actual ones

we would obtain via simulations.
Let’s now call ; the “complementary element” of i. Then :

Prijj#ili}=Priy:dyi) <] idiy.) >4 x Pridly.i)> 4} =

Pr{y € in 30 equaly Likely regions} x Pr{d{y.1) > i} =
16, .

Pru’li)Z’s%?;(lf)‘“ﬂ—n‘“"“. =215 jFLFET (9

Finally we have :

Pr(; | 1) = Priy:dy.1) > 12} =

16

R 16\ & -k .
P,-(;|i)=Z(A_>e‘¢1-f>“ Foi=2.010 (10)
k=12
(I].\() -
1 -
pmyf):Z(f’)e‘n«u“ b= 20000 (11)
k=0

A summary of the transition probabilities is given in the table 3.3.
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P(jji)

~ given by formula
0
0 (6)
1
° N
1 0
2,..,15 0.1 ¥

2,..15 2,..,15,jZ i1 )

2,...15 i (11)

2,..,15 i (10)

Table 3.3 Block transition probabilities summary

3.5 Summary

In this chapter we first saw how a matrix representing a multiple gray level
pixel image can be converted into one representing a block coded image, so that
the image can efficiently be stored and transmitted. We recalled that template
matching can be considered as a quality measure for the reconstructed image.
Based on a result presented in the next chapter we showed that in order to be
able to implement such a matching test acting on coded image data we need to
compress the image more than the storage and transmission schemes allow; this
effectively leads to some restricted class of images (binary images representing

objects which can be described by the modified Hadamard basis). We developed
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a coding scheme meeting our needs and calculated its statistical properties (block

priors and transitions) in terms of the noise characteristics.
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Chapter 4
The Histogram Matchmg
Problem

4.1 The Template Histogram

In the previous chapter we introduced a block coding scheme transforming a
binary image into a matrix of codewords in the range 0, ..., 15; we also computed
the transition probabilities among the blocks in terms of the probability of bit
inversion in the original image which also was the cause of .these transitions.
In this way a 12x12-pixel image window is transformed into a 3 x3-code sub-
matrix, since 4x4—pixel blocks were considered. The 9 elements of this sub-
matrix are independent random variables, because the BSC noise was supposed
to be white (in space) and their values define a configuration which will be called
the original state. If we now group together all the original states having the
same (1st order) histogram (i.e. all sub-matrices having the same multitude of
each element) then we come up with a new set of states. We will call this new
set the histogram alphabet. Evidently the size of this set is much smaller than
the one of the original .set; the size of the histogram alphabet will be discussed
in the next chapter.

Let M be the number of all possible distinct components (block codes) which
may constitute the template. Let also n be the length of the template in blocks (in
the example above we had n =9 = 33 blocks). We will denote by S(M.n) the

size of the histogram alphabet. Call h the M-vector representing the histogram
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of the noise-free coded template of size n; call also y the M-vector representing
the histogram of a noise corrupted and afterwards coded image window of size
n. The vector h represents some feature we want to detect on the image; our
problem amounts to comparing the two histograms h and y and infer a decision
about their matching.

We will formulate this matching as an M-ary hypothesis testing problem which
will efficiently lead to an optimal binary decision rule. To do so we will assume we
are given the prior probabilities and the transition probabilities of the histogram
elements (i.e. the block priors p,. ¢ = 0.1.---. M~ 1 and block transitions
€. 1. =010+, M — 1) so that we will be able to find the histogram priors
and histogram transitions.

Observe that if we set M = 2, i.e. if we have a binary code, then the
histogram reduces to the “sum-of-pixels” statistic we discussed in chapter 2. In the
subsection 4.2 we develop a rule which is a generalization of the one developed
in chapter 2. This rule can be applied to compare arbitrary histograms, provided

we have the information about the histogram elements mentioned above.

4.2 The Histogram Matching as an M-ary Hypothesis Test

4.2.1 The Histogram Alphabet

Let {ap.ap.- .y} be the block alphabet. Evidently we will have 1/”
possible n-tuples of blocks. We introduce an equivalence relation onto this set of
n-tuples. An equivalence class will be composed of all n-tuples having the same

histograms, i.e. two n-tuples are in the same class if one is a permutation of the
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elements of the other. A representative element of an equivalence class will be

called a histogram pattern.

Consider now the following power expansion [Spi68] :

l

.

(ap+oy+-+apy-y) = Z Tyl 700y SRy
RTHLT R T S

{n.}:Z‘n,:n
Observe that :

1. Each term in the summation above can be considered as a histogram pattern,
ie.

ng Ny . NAI-1
Gy Car-1

represents an n-tuple in which we have ny times the element ay, 1y times
the element a; and so on; note that if 1; = 0 for some i, then «; is not in
the n-tuple.

2. The size of each equivalence class will be equal to

n!

nolny ! nar-y!
3. If p; is the prior probability for a;.7 = 0,1,---.M —1, then the independence
assumption implies that the prior probability for a specific element in the

equivalence class will be

no Ny naAr—1

Po Py Py -

while the prior for the class itself. i.e. the prior of the histogram pattern will

be

n'
[’““['”’ R .1,"\1_|
”“!”I!"'”‘\l—l! 0 1 M-1
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We can systematically construct the histogram patterns with the following

procedure :

a. Find all integer partitions of the number n in at most M places (see

subsection A.2)

{nocna.-ma—1}

b. For each such partition find all the distinct permutations of 1;’s in M

places. Note that we have

(Z\I- M —nyg ) MAr—-1
1y ny NA-1
of them.

Each permutation will determine a set of exponents in the expansion formula
and therefore a histogram pattemn.
The number of histogram pattems, i.e. the size of the histogram alphabet,

S(M.n) will be equal to the number of summands and therefore

]\I—}-n—l)

n

S(M.n)= (

Note that in the case of the binary block alphabet (e.g. black/white) we get
S(2,n) = n+1 = the number of possible variations of black-white mixtures in

a pattern of size n.

In the table 4.1 we see the integer partitions of the number n = 9. the number

of classes generated and the size of each class (number of original states grouped

together) for the special case of M = 16.
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The equivalence classes described (histogram patterns) will determine the

states for the M-ary test we will develop; the state space will be denoted by H.

integer # of size of integer # of size of
partition classes class partition classes class
generated generated
54 240 126 33111 43680 20160
531 3360 504 3111111 80080 | 60480
522 1680 756 222111 160160 45360

5211 21840 1512 2211111 | 240240 90720
51111 21840 3024 21111111 ] 102960 181440

441 1680 630 111111111} 11440 362880
4311 21840 2520 22221 21840 22680
4221 21840 3780 63 240 84
42111 21840 7560 621 3360 252

411111 48048 15120 6111 7280 504
432 3360 1260 72 240 36
3312 21840 50 40 711 1680 72
3222 1680 7560 81 240 9
32211 131040 15120 9 16

321111 240240 30240

Table 4.1 The histogram pattern classes
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4.2.2 The Observation and the Cost Function

The observation data in our test correspond to some n-vector of block code-
words. This information can equivalently be represented by an M-vector y being
the histogram pattern of the image window we scan. For example ifn=4and M
= 16 we may have the observation [ 5 15 1] which is equivalent to the histogram
patem y = [0200010000000001].

We introduce a partition H,, H, of the state space H. Given an observation
y we want to decide “matching” (H;) or “not matching” (Hy). We will do so
by imposing the cost function :

{0‘, i f both h,y belong to either Hy or Hy
clh,y)=
1. if h.y do not belong to the same set H,. ¢=0.1
Note that H, is not necessarily a singleton. This means we may consider matching

with multiple histogram pattems simultaneously.

4.2.3 The Transitions Among the Histogram Patterns

A block alphabet of size M = 3 will first be considered and afterwards we
will generalize our result.

Let’s summarize our notation and introduce some new one. We have :
h : Histogram pattem, h € H; e.g. for n = 4 : the template [] 0 2 2] gives
histogram h = [I 1 2]
h,.i = 0.1.2 : Number of occurrences of the block / in the pattem. e.g.
hy=1.hy=1h,=2

y . Observation pattem : it has the same format as h and is subject to
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comparison with it.
yi. i = 0.1.2 : Number of occurrences of the block i in the observation vector.
€, : Block transition probability Pr{i—j}.
ki : Number of (original) blocks i in h “transformed” (as a result of noise
corruption) into blocks j in the observation pattemn y.
We want to evaluate the histogram transition probabilities :
DoY) = Py, ) o, yay2))
= Pr{y is composed by yy elements (bocks) of type 0.
y1 elements of type 1.
Y2 elements of type 2/
h is composcd by hy elements (blocks) of type 0,
hy elements of type 1,
hy elements of type 2}

X the size of the histogram class of y
All pairs of ( h, y ) can be represented in the form shown in figure 4.1.
Note that :

o hpp=hy =k =k =012

- /"_’I = ][] _ /-'", — ]-'|,_ ;= “Al._

So the free parameters are @ L. kg byn. by
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Figure 4.1 Transition probabilities for the case of temary (M=3) image

Compute the probabilities P,.P;.P. : The number of combinations of

oo, ko1, ko2 elements of type 0, 1, 2 respectively in i places is :

< IIU ) (l"(l - A’UU)
’r‘uu Ry

For a specific configuration of the ), first elements of the y-pattemn we have the

transition probability

koo _koy _ho—koo—koy
€0 €91 €o2 .

Therefore we get

ha ' ']ln — Koo
L' 0 ,\‘r ’ —L ﬂ—L'
I)u (]"(th A’Ul ) = ( enrf (()iyl ((;; " o

I~'m) 1"01
Similarly )
]} ’ ]l — ]- )
T O G B
1 1
/I» ’/lw-—]." " .
P (kg koy By by = ( ) ) ( i -”> ‘ﬁ(}“‘f'il"{:3»":"_1"'-
l"_'u /~'.'l

l(']l('l'( ]\'_)n = iy — /-'|m - lu'm. /w'_»] =1 — A'n[ - /n'”,
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We can now compute the probability

| .
n.
Py(y) = —— Z L) Py () Pe ()
‘U” Ul : 'l/" * AN neeeptable combinations
of kun Koy ko kiy

provided we have the ranges for the elements in the 4—tuple of k’s.

From the figure 4.1 we get the following constraints :

0< hon+ ko <o

—
-y
~—

0<kon+hkn<n (2)
0 < (hy — koo — ko1) + (hy — ko — ki) S 2 (3)
0 < koo + Koy < Dy (4).
0< ky+hkyy <y (5)

0 < (yo — koo — ~ro) + (y1 = koy — k1) < g2 (6)
The inequalities (1), (2), (4) and (5) are the conditions for kyy. k2. kay by
respectively to be positive numbers. The inequalities (3) and (6) are necessary

for k2> to be a positive number but they are not sufficient.

We also have to impose the following reasonable constraint :

kij >0, 1.)=0.1. (

-~1

We have :

(2).(6) = 0<yo~hko—F<h = koo + ko = yo = I (8)

(1).(8) = ]"lrl(l)i“ = wax {um — " 0F < boo + ko 2 om (9)

Similarly we also get :

l-':?;lll = ax {'/] — /I_VH} - /,'(,‘ + ].'” oMy 1101
It = max {hy — w2 0) = oo + ko = Iy (11
l\':.l:m = 1max {/'l - !/_._()} <o b+ by < by (12)
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The inequalities (7) and (9)-(12) constitute a set of necessary conditions for
kij = 0. 6.0 =0. 1,2; they become sufficient if the induced value for /., is also
checked to be a positive integer. In the figure 4.2 the inéqualities are pictorially
summarized. The summations of the row elements as well as the summations of
the column elements have to lie in the ranges provided; the minimum values are

given up and left, while the maximum values are at the bottom and right.

min min
ch kcl
kmin + ok
0 k00 o1 | Mo
+ +
min k
krl 10 + kll h1
y
0 yl

Figure 4.2 The parameter (k’s) constraints for the case of the ternary (M=3) image

Now we can generalize the result produced for the special case of alphabet
size M = 3 to hold for a block alphabet of arbitrary size. The problem amounts

to finding the transitions probabilities
Puty)=Pribh="{h by ) — vo=[uue ) )

where i, (or y,) are the numbers of occurrences of a symbol in the vector h
(or y) and ny.ny. (hpty = \/[) are the numbers of non zero bars in theh and

y histograms.



First we will find the probabilities I (), i = 1,2,---.ny, which correspond
to the probabilities P, (-), P, (). I.(-) for the case of M = 3. As a direct

extension of the special case we get :

Ny

hi hi — kit Z ki
Pj (],11 »',2.....1.‘1'"y__1) fned (]. L X

V11 12 l'n,,—l

— ng — 1 —

ny~—1
hi= Yk,
I\rl ,*12 .. J=1
X €y G Giny

— n y -—

For i = ny, i.e. for P,, (-), the above formula holds but we we also have

nn—1

n;,} =Y — E 1'1) S ~2-"‘-”y

and therefore P,, (-) depends on all };; , ¢ = 1.2.---.n — 1, ] =

1.2,---iny = 1.

The probability P, (y) will be of the form :

Ph(y‘—'wl y) - Z HP 11 I" "'-l"iny—l)

J"V all necoptatde
Himﬂm

The necessary conditions to be satisfied from the k’s are summarized in the figure

43. An additional condition providing sufficiency is that the induced /i, ,,

element be a positive integer.®

6
k’s.

In the subsectior A.3 a systematic way is described for producing the acceptable tuples of
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Figure 4.3 The parameter (k’s) constraints for the
case of multiple valued image cells (blocks or pixels)

4.2.4 The Decision Rule

Given the histogram alphabet, the prior probabilities of the histogram patterns
(states), the transitions among them (conditional probabilities) and the cost func-
tion performing the desirable grouping of the states, we may find a decision rule
which minimizes the mean cost of the “matching”/"non matching”™ decision. The

rule d(.) as an application of the M-ary hypothesis testing is as follows :

Let y be the observation pattem, p, . € H be the prior probabilities for

the histogram pattemns and 7}, (v). h.y ¢ H be the transition probabilities.
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Then the rule is

Z I’qpq(y% =1
dy)=i=d(y)<q 7yl ¢'(y)= acll -
: - - Z PPy ly). i =10
q€ Hy

We can numerically determine a partition { Ry, %, } of H (see appendix) such that
diy)=ieyeRi. i=0.1.
We recall that

1 if we decide matching
d{y)= ,
0 if we decide non matching
Note also that the calculation of the partition {Ry. R} corresponds to the calcu-
lation of a threshold value in the case of the binary block alphabet as we have

seen in chapter 2.

4.2.5 Performance Evaluation of the Decision Rule

We will calculate the (P, . ;) pair for our rule.

Probability of false alarm
P;,=Pr{de H |heH}= S Pr{d=ilhe Hy}

Prid=ilhe Hi}= Y Prid=ilh=jrr{h=jlhe Hul
e Ha

Po= > S Prid=ilh=j}Prib=jlhe Hl =

lEH\_iE”n
P, =Y Prib=j he Hl Noprld=ilh=l

JEHY 1€ 11y

whore Prid=1lh=jl= > DIy
YEi-;i
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for some decision region R?;. So

L D3P AT

1611" JE’[" lel{' Yel“

Pf(l.= ZI)JZP

lE” JGUn YER

Similarly the probability of miss P, is found to be

P, = Z]’lzp

v
‘7 Viem  yeRa

and as usually the probability of detection Py is Py =1 - P, .

In the plot 9 the Receiver Operating Characteristic (ROC) curve is given for
various values of the inversion probability ¢ in the original image data. The curves
are drawn for the 2-block template shown in figure 5.1. The subset of the first
four elements of the modified Hadamard basis was used as the block codebook.
We observe that these ROC curves are much closer to the point (Pg=0, P4=1)
than the ROC curves we already have seen (plots 2 and 4); this is surprising since
in those tests we assumed we knew the background of the target object while here
we do not. Certainly the coding procedure we used may have contributed to the
amelioration of the decision rule but still this does not seem to be a satisfactory
explanation. We can find an answer for this question if we think that here the
detection region H, is a singleton which contains the target object itself, while in
the previous tests it was containing the target object (the black square) as well as
all the patterns representing part of it in white background. For example the four
patterns containing only one black pixel of a comer of the black square belong

in H; and contribute to the probability of miss in case they are not detected. On
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the other hand the fact that such patterns belong in H, implies a low decision
threshold yg, which forces Pg to augment.

In plot 10 the Pi,—P4 curve (for the optimal Bayesian rules) parametrized
by the pixel inversion probability in the original image is given. The modified
Hadamard basis is used for the coding of the image data; the curve is drawn
for the 2x2-block full black template. Further discussion on the comparison of

decision rules is made in subsections 5.1 and 5.2.

4.3 Summary

In this chapter we introduced the notion of the histogram and discused
the histogram alteration as a result of the alteration of bar elements. We also
developed a decision rule for inference about the matching of such histograms.
Our rule actually resides on an M-ary hypothesis test and is optimal in the sense
of minimizing the probability of taking an erroneous decision. The performance
evaluation characteristics of this rule can be computed numerically. Sample results
are given.

In the next chapter we will comment on the discrimination power of the
histogram matching test and compare it with the template matching test in terms

of complexity and reliability.
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Chapter 5
Discussion
5 1 Review : Detection in Background

Several instances of the two dimensional matching problem have been studied.
xr intention was to show the dependence of the detection capability on the noise
<evel that the image suffers and the effect of quantization on the image data.
Throughout all the preceding analysis we primarily concentrated oﬁ the 8 x 8—pixel
a1 hlack template as the prototype geometrical object to be recognized. In chapter
: we first considered a binary uncoded image corrupted by AWG noise. In that
2~ we knew we had white background and therefore took advantage of the
s priori known possible positions of the image window scanning the image in
te:ation with the target black square. This background knowledge gave rise to an
M arv test, for which the distinct states represented the possible image window

utionings (see fig. 2.1) ie.

completely white : view the background
- :nmpletely black : view the target square

' partially black : view the neighborhood to the target square pattem.

Afrervards we grouped together the 2— and 3-type states. forming thus the binary
'=11 which we eventually treated in a Bayesian framework. We gave an insight on
how the noise affects the decision making (see figure 2.2 and plot 1). The ROC

24 the test was also given for noise variance equal to a*=0.1 (plot 2).
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A similar formulation was presented for the case of the detection in back-
ground with BSC noise. The noise effect was studied (plot 3) and the ROC curve
for pixel inversion probability e=0.1 was given (plot 4). We will use the notation
(2,64)-KB to characterize the test for matching a 64—clement pattern of 2-val-
ued elements (bits) in known background. In both cases above the sum-of-pixels
statistic (equivalent to the Hamming weight for the BSC noise case) was used.
This essentially means that we do not take into account the positions of the pixels;
we simply count the white and the black ones and use this information for our
test. Evidently this affects the reliability of the test when the positioh information
for the template carries important additional information; this will be discussed
in the next subsection. Note though that position information is assumed to be of

no interest for the case of the full black template.

A simple way of compacting the image data, the coarsening of resolution, is
presented at the end of chapter 1. Based on the coded data a rule for detection in
background is developed for which the 8 x8—pixel template of the previous two
cases is replaced by a 4x4-block template of 2 x2—pixel blocks. This detection
rule tums out to be more robust to the noise than the rule based on uncoded
data, provided we do not have much noise (compare the plots 3 and 5 for pixel
inversion probability €<0.05). The result is reversed for large values of ¢, since the
Pta(e)—Py(¢) curve for the uncoded case is higher and closer to the P4 axis. This
otservation is further validated by the ROC curves for «=0.1 (plot 11 : (2,16)-
KB test better) and «=0.3 (plot 12 : (2,64)-KB test better). We will characterize
this test as a (2,16)-KB test since it matches a |6—element pattem of 2—valued

elements.
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In chapter 4 we developed another test acting on coded image data. This time
we used a modification of the 4 x4 Hadamard basis to code the image data (see
fig. 3.1). The detection of the black square in white background eventually is
equivalent to the previous scheme, since we have zero prior probabilities for all
but the first two elements of the base; though here the original 8 x 8-pixel template
is treated as a 2x2-block template of 4 x4—pixel blocks, i.e. we have an even
coarser quantization. The ROC for this test, which is treated as a (2,4)-KB test,
is rather worse than the one for the (2,16)-KB test, while the optimal Bayesian
rules (plot 7) give considerably lower P4 values from the previous tests even for

=0.1 (see plot 8).

In plots 13 and 14 a comparison of these three tests acting on data with
different resolutions is attempted. It is apparent that at certain noise level the
compression of data favors detection capability, while for higher noise level
better detection results are obtained by a rule based on the uncoded data. More
specifically in plot 14 the (2,16)-KB test has higher P, at three distinct intervals
of ¢ (around the points ¢=0.02, ¢=0.14 and €=0.22). Also the (2,4)-KB test is
superior to the other two tests for heavily noise corrupted data (¢>0.15). In plot
13 however it becomes evident that these superiorities of the coarsened resolution
data always are penalized with peaks of the «—Pg, curve. Nevertheless. note that
for ¢<0.05 the (2,16)-KB test performs better than the (2,64)-KB test in terms of

both Pg, and Py.
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5.2 Review : Detection Without Known_Background

When we are looking for an object in an image we usually do not have the
luxury of knowing what we expect to find around it and also we do not look
only for such a uniform object as the full black template is. These facts led us
to the modification of the Hadamard basis (in chapter 3) and to the general type
(M,n)-UB test acting on n-element pattems of M-valued elements (in chapter 4)
in unknown background. This type of test relies on the histogram statistic, which
is the generalization of the sum-of-pixels statistic for the case of the M-valued

elementary image data.

In this subsection we will see the results of two kinds of experiments. In the
first one the image elements in the (M,n)- UB test are the codewords of the modified
Hadamard basis or some subset of this. So we will continue the discussion on
the noise effects as opposed to the quantization effects on the detection capability
in the more general and practical case where we have more than two distinct
codewords. The resulting tests will usually have M>>n. In the second kind of
experiments we will have multiple valued pixels which may be thought as multiple
gray level pixels or multiple color pixels. The experiments are relevant to the
classification of patterns according to their color. The resulting tests usually
have M<<n. In both types of tests we assume we have no knowledge of the

background. This means that :

1. When scanning the image we cannot take advantage of the windows viewing
the target partially; note that this was the reason that induced the M-ary

hypothesis test for the full black template case in the (2,n)-KB type test.
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2. We need to know the prior probabilities of the image elements we use.For the
case of the image elements which are codewords we derived these probabilities
based on statistical results given in [LaS171]. Therefore the results of this
analysis apply for searching in natural (not synthetic) images as well. For the

case of multiple valued pixels we arbitrarily assume uniform distribution.

Remember that in the (M,n)-UB test we have to match an n-element pattern of
M-valued elements. We assume that only the number of the distinct element
values and not the specific positions is important. Consequently we have to
match a histogram of M bins whose bars sum up to n. Eacﬁ such distinct
histogram constitutes a hypothesis of the M-ary test. Recal that we will have
S(M.n)= (‘” '*1:"’) such hypotheses. We may define one or more of them as
target histograms and group the hypotheses into two parts. The resulting binary

test distinguishing these two sets is what we call the (M,n)-UB type test.

Figure 5.1 A sample template

Consider the (2,4) test we mentioned in the previous subsection with the
difference that now we have no knowledge about the background. In plot 10
the noise effect is shown for the corresponding (16.4)-UB test. Note how the

performance of the test worsens as the pixel inversion probability « in the original
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image ranges from 0.05 to 0.35. For ¢=0.35 the optimal Bayesian rule is “never

decide square”.’

Consider the template of the figure 5.1. A (4,2)-UB test for this template has
been studied; the ROC curve for a number of different values of ¢ is given (see plot
9). The first four elements in the modified Hadamard basis with normalized prior
probabilities are used. Note that although the blocks constituting the template are
selected to be the ones least a priori favored, the test is quite reliable (the ROC is

close to the P4 axis) even for ¢=0.4. This was discussed in the subsection 4.2.5.

5.3 The Code-Corrupt-Detect System and the
Multiple Gray Level Images

In the model we studied so far the noise process affects the uncoded image
and the noise effect propagates in the coded version of the image. In this way we
can exploit the effect of the noise generated at the moment we receive the image

and thus this model may be called “the corrupt-code-detect system”.

A related problem is that of introducing the noise after the image has been
coded; this is the case of the degradation of an image during the transmission
of the coded version of it over a noisy channel. For the case of the modified

Hadamard basis we use the source coding shown in table 5.1.

This specific code is selected because it retains the low transition probabilities

between the elements 1 and 2, 3 and 4, e.t.c. in the coded version of the image.

7 For this test the ROC cannot be computed due to the memory requirements for such a

computation. Notice that the decision region which is recursively computed must range from 0
to S(16,4)=3876.
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In the plots 15-23 results similar to the ones found for the code-corrupt-detect

case are illustrated. It is worthwhile to note that

. The optimal Bayesian rules based on the pixel data always perform better
(have higher probability of detection) than the rules based on the coded data.
.  However there is a small range for ¢ (close to ¢=0.06) where the (2,4)-KB
test with compression rate 1/ 16 bpp performs better than both the (2,16)-KB

and (16,4)-UB tests with compression rate 1/4 bpp.

base element code base element code
1 0000 9 0100
2 1111 10 1011
3 0001 11 0101
4 1110 12 1010
5 0010 13 0110
6 1101 14 1001
7 0011 15 0111
8 1100 16 1000

Table 5.1 Source coding for the modified Hadamard basis elements

In order to study the histogram matching problem in the case of multiple gray
level images now, we need to define a pixel transition matrix, for instance the

one in table 5.2 for the case of 3 gray levels.
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0 1 2
0 |1-g-¢? € g2
1 € |-g-g? € € = noise parameter
2 g? € 1-g—¢€?

Table 5.2 Ternary pixel transition probability matrix

The prior probability mass function as already discussed is assumed to be
uniform. The Pg—Pg curve parametrized by € for the optimél Bayesian rule,
concemning the test of 2 x3-pixel template of 3—valued pixels, i.e. the (3,6)-UB

test is given in plot 24.

5.4 The Bayesian Approach with “Position Independent”
Statistics v.s. the Bayesian and Maximum Likelihood
Approaches with “Position Dependent” Statistics

The tests we have examined so far rely on the sum-of-pixels or the histogram
statistic. As already indicated the common characteristic of these two statistics is
that they do not take into consideration the position information, as other statistics
like the correlation statistic, do. We will call position independent the tests or rules
related to tl;e first kind of statistic and position dependent the tests or rules related
to the second kind of statistic. In this subsection we will see how these statistics
compare with the position depended ones in terms of computational complexity

and the reliability of the related tests.
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Consider the case of a dxd-element template (note : d*=n) of M-valued
elements. The set of possible templates is of size M® = A" (for instance d=8,
M=2, M[" = 18- 10!® and d=2, M=16, M"=65536) which reflects the size of
the state space of a position dependent test. As we have seen in chapters 2 and
4 the template size determines the computational complexity for computing the
Bayesian rule, as well as the complexity and memory requirements for evaluating
the rule. Consequently for problems where from a practical point of view it is not
desirable to develop Bayesian rules, we usually prefer the maximum likelihood
(ML) approach (see subsection 1.2) which gives reasonable results. Still both ML
and Bayesian position dependent rules imply computationally expensive matching

tests, since at each time instant of the image scanning they need O(n?) operations.

On the other hand the state space size of the position independent tests is
S(Many = (M4, (for instance d=8, M=2, SMm)=65 and d=2, M=16,
S(M,n)=3876), which is considerably smaller from the one of the other Bayesian
rules®. So the histogram related rules as opposed to the position dependent
Bayesian rules, turn out to be more computationally feasible for a wider range

of templates.

* By using Stirling's approximation for the factorials one can easily show that for the hard
case of M>>n we have

SoVomy o\
N M (7)
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0o X1 %2 - X4 X

Figure 5.2 One time instant sliding of the scanning image window

Furthermore, the matching test requires O(min(max(d.M ),d2 )) operations, as
opposed to the O(d?) operations for both ML and Bayesian position dependent
rules : Consider two consequent positions X!, X**! of the dxd window scan-
ning the image (see fig. 5.2). Let hy.hy.---,hy_y and Iy hy, - hy repre-
sent the histograms of the elements of the column vectors Xp. Xy. -+ Xd—| and
X{.Xz.---.x4 of X' and X"*!.The values of the histogram statistics for the two

consequent positions are
h! = he + h)+---+ hy_,. llH'l =by+h+ 4+ hy

note that ' *! = h' 4+ h, — hy. which requires O(d) operations. Afterwards we
have to compare the M-vector h**! with the template histogram. This is an O(M)

operation; but since only the non zero elements of the M-vector count and these
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cannot be more than d?, the overall test requires O(min(max(d.M ),d2 )) operations.
Note though that this is a conservative estimate; we expect that the complexity
will practically be reduced to O(d) because of the smoothness of the image, but
this certainly requires simulation verification.

The penalty for the reduced complexity of the position independent statistics
is a higher probability of false alarm compared to that of the position dependent
ones. Let us suppose that among the d?=n elements of X' we have k distinct ones

namely np of type 0, n; of type I, ..., ng of type k, so that
np+m A+ np=n o

This histogram corresponds to

( ) n n —ngp n-—mny—ni niy.
cin) = BN
g ny 9 Ny

possible template patterns. Suppose that among these ¢ = c(n) patterns is the
one we want to detect. Ideally our rule will respond positively each time it scans
one of these patterns. Consequently, each time we scan our target pattern, the
rule will recognize it; but it will recognize all the ¢ — 1 pattems sharing the same
histogram with our target as well. So if we denote by . Py,. P;. h. ﬁf(,.f’,, the
state and performance evaluation parameters for the position independent test and

the position depended test respectively, we expect by intuition that
Y Py=TDyand Dpo=Do+te =11

We shall see though that things are slightly different.

Let us denote with d the decision outcome 0 or / from now on. In figure 5.3

we can see the relations of the regions characterized by the values of /. / and d.
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fa

Figure 5.3 Comparison of the performance characteristics
for the position dependent and position independent tests.

We know make the following assumption : Given that an image element lies
in a template the probability mass function of the random variable indicating its
position and ranging over all the allowable positions is a uniform pmf. In other
words if c(n) distinct patterns result in the same histogram n (and no other does),

given the histogram n any pattern resulting it may occur with probability 1/c(n).

From the figure 5.3 we induce that the above assumption implies :
- 1
Ah=1y==-Pr{h=1 1
P {1 1} il {h } (1)
. 1
Pl'{d: 1.h = 1} =-Prid=1.0h= 1. (2

From equation 2 we get :
L {d=1h=1}DPr{h =1}

¢ I‘[IZ 1
Pll 1]

3)

f),/:PI'{J:]_‘/I:l}:
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as it was expected. We also have :
pr{i = 0} =Pr{h =0} +Pr {h=10= 0}
= Prih=0}+Pr{h= 1}—P1'{il =1}
=Pr{h=0}+Pr{h=1}— %Pr {h=1}
= Pr (=0} 4+ (1 - %) Pr{h=1)

and similarly
- 1
Pr {(1:1.11 :0} =Pr{d=1.h=0}+ (1——> Pr{d=1.h=1} .
C .

So
Pr {d =1.h= ()}

Pr{iz:()}
Prid=1h=0}+(1-4Pr{d=1.h =1}
N Prih=0}+(1=1)Pri{h=1
aPp, + 3Py 1 1-1
=0t d (\:m , /3:m .

This is a convex combination of Ps, and P4, which is not exactly what we

ﬁf,,zPr{(lzlliz:O}:

were expecting to find. We may observe that as n gets larger ¢ gets larger and
consequently ;J gets larger, so Isf(, gets larger. Note also that the prior knowledge
Pr{h=1i}. i = 0,1, explicitly affects I~’f(, . For the full black template we
have c(n)=1; so for equal priors we have f’Iu = P, . This result holds for the
all-white template as well. The Pg, probability for optimal Bayesian rules as a

function of the noise parameter ¢ is given in plot 13.

Thus our position independent tests :

- Are faster but tend to have higher probability of false alarm than both ML

and Bayesian position dependent tests.
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«  Accept analytic performance evaluation and are more powerful than the ML
position dependent tests, since they have the same power with the Bayesian
position dependent tests.

. Are more attractive from the computational complexity point of view than
the position dependent Bayesian tests, but still not adequately attractive for
non trivial templates.

«  Are equivalent with the Bayesian position dependent tests, in terms of the P¢,
and P4 characteristics, for the case of the full black and all-white templates,

under mild conditions.

5.5 Overview

The template matching problem for noise corrupted binary images was con-
sidered. We attempted a Bayesian formulation of the problem that resulted in
the use of simplifying statistics. In this way the complexity of determining the
optimal Bayesian rule is reduced at the cost of a higher false alarm rate. Match-
ing rules for the original pixel image, as well as data of a coarser resolution and
data coded by a modification of the Hadamard basis were developed. These rules
gave an intuition of how the data compression and the noise affect the detection
capability. Our concl;xsion is that a certain amount of noise is “killed” by ap-
propriate data compression. Another issue studied was the knowledge about the
background surrounding the target object; such knowledge was shown to enhance

the reliability of the matching rule.
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Practically in “Bayesian template matching”, given a target template (or set

of target templates) and certain level of noise, we should :

1. Determine the set of pattems for which we decide “matching”; this is in
general a very time consuming process.
2. Given this set the search for an object is reduced to searching in the coded

image, and checking if the pattern lies in our set.

An application of this process could be characterized as “searching in a bank
of images”, for a given object. Since we know that we suffer a high false alarm
rate but the probability of detection is still high, we can precede the first selection
of candidate matching patterns by an ML position dependent test (see subsection

1.2); this second test may be slower but more reliable (lower Pg,).

From what we have seen so far our approach has a major weakness: We
restrict ourselves to small templates (of size n=4, or 8 x 8—pixel) of binary images,
i.e. we can describe just a small class of possible target objects. This happens
because optimal Bayesian rules require computations of mean values over all
the possible pattemns, which run up to M™ for a matching rule based on position
depended statistics and up to S (M. n) = (M +ﬂ""> for the rule based on the
histogram statistic. For instance 16" ~ 6.9 - 10", while S(16.9) = 1.3 - 10" for
n=9. Consequently the object we are looking for must belong to some restricted
class of such objects. An example of such a class is found by Knudson; in [Knu75]
he shows experimentally that only 62 out of 254 8 x 8 binary block patterns suffice
to give a good quality for newspaper text and graphics. A matching test for

8 x 8—pixel templates can be implemented with a codebook of size S(62,1)=62. A
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test for a 2 x2-block template of 8 x8-pixel blocks with a template codebook of
size S(62,4)=677,040 is feasible as well. (Note that the corresponding position

dependent test has a codebook of size larger than 11 million codewords).

The “bar code” patterns may constitute some other class of objects to be
identified. Nevertheless, the use of a Bayesian matching rule is worthwhile only

in the case where we have heavy noise corruption.

An attempt to expand the scope of the Bayesian template matching rules in
the class of arbitrary multiple gray level objects can be made by using some
efficient coding scheme like one discussed in [TaFa89]. Compaction rates up to
0.25 bpp are achieved by using subband coding [WoNe86]; it is shown that the
lowest frequency subband (LFS) contains the most important data needed for the
reconstruction of the image; Huffman code is’ used to encode 4 x4-pixel blocks
in each subband. Although a fixed length code would give a codebook of size
24x4x0.25216 the size of the codebook used for the variable length code must be

much larger. The compromise we have to make amounts to :

« Use only the data of the lowest frequency subband.

« Use the M most frequent block codewords, where M is sufficiently large to
make the class of the target wide, and at the same time small enough to make
the template codebook S(M,n) small.

« The size of the template in blocks is expected to be n=1. since Information
Theoretic results imply that M (or /og2M) must be large if small compaction _

distortion is to be obtained”.

9  See Shannon’s first coding theorem [B1a87, pp74]
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An application of the matching test based on the histogram statistic is the
detection of patterns based on color information. This rule being faster than the
ordinary template matching, refiects the human ability of recognizing the color

faster than the shape of an object [Chr75]'°.

A Bayesian approach which is not as straightforward as the one already studied
could incorporate some probabilistic model for the image (e.g. an Autoregressive
model). Under this treatment the matching rule could be formulated as a sequential
detection rule, thus avoiding the large state space. However this approach requires
the assumption of stationarity for the image statistics, a situation that is not

realistic.

10 Experimental results concerning the time required to locate color targets relative to the time for
shape targets localization are given in figures 8-12. It is (experimentally) shown that identification
based on color information is faster than the one based on achromatic information, provided the
awareness of the color of the targets (i.e. in our formulation, provided we have a known target

color histogram).
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Appendix A Algorithms

A.1 The Hamming weight of the mxm-pixel
patterns of the test in 2.1

In the subsection 2.1 we have seen that apart from the all-white pattern (2m-
1)? possible patterns for the test window are considered. For the special case of
m=2 the Hamming weights (i.e. the number of black pixels in the pattern) for the

9 possible pattems (see fig. 2.1) are given in figure A.la .

1\-~\—2I 1 1-——2—3—4——5I 4 3 2 1
2 4 2 2 4 6 8 IIO 8 2
1 2 3 69 3
(a) m=2 8 4
5

. 15

symmetric triangles ——<—» 10— <

1 .o 5 Coe 1

Figure A.1 Hamming weights for some pattern samples

The weights for the case of m=5 are given in figure A.1b. One can observe
that all distinct weights appear in the triangle “1-5-25". This property holds for

the general case of an arbitrary value of m, because of the symmetric overlaps
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between the black square on the image and the scanning test window. So we

may have at most

m{m+1)
—

=

m+(m-1)+---4+1=

distinct weight values. This leads to a reduction of the number of the states of
the corresponding M-ary test from (2m-1)> + 1 to m(m+1)/2 + 1 of them, i.e.
a reduction by a factor close to 8. The set S of all possible weights we may

have is :
S=UL Vim {4}

duplications in S can be exploited for fixed values of m.

If we are interested in the number of occurrences of each weight value in the
set of the (2m-1)2 patterns, we may observe that we have one time the weight m?,
4 times the weights belonging to the set U}";f {mj,j*}, and 8 times the weights

belonging to the set U™ * U;'l__—il] {17}

A.2 The integer partitions of a nonnegative integer n

The problem is posed as follows: Given a natural integer n (i.e.
n € N = {1.2.--}) find all the finite sequences of the form

{n,/ :n, =n.n, €N for all i’.s}

1
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The key idea is as follows!! : We consider the product:
Plr)y=(14axc+aje’+--) (1 +or? ket 4o+ (1:}::'2’\ + - )
(1 + a,‘.;rk + (\‘,“:;1"“”" + - )
=14+ (a)tal? a4+ D

Observe that the term

my nz Nk
(]] (‘2 OI\'

which appears in the coefficient of x" is such that ny + 21y + -+ kng = n and

thus it determines the following partition of » :

n=ktk+. Ak + .+ 242442 + 141+ +]

- N — a N e A—n —
" 2

We are interested in the sum-of-products expansion of the n-th coefficient in
the polynomial P (x) = a;(x)az(x) --- ap(x) --- given above. Obviously

this coefficient is not affected by :

1. any multiplicand a;(x). ¢ > n

2. any summands in o;(r). / < n with order greater than n.

Therefore we can eliminate all these terms, without the resulting partitions to be

affected.

' The solution we propose is an expansion of the solution proposed in [ToMe85, pp174] for

finding the number of the integer partitions of a nonnegative integer n.
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A.3 Solution for a system of inequalities in the
domain of nonnegative integers

We have the following system of inequalities :

i .. . .. i _
Uig < Riv + kiz 4+ 4 i < Umax + = 1.---om

b’

min

where all variables belong in the set {0,1,2,...}.

<kt <V 7 =10

The algorithm we use performs an exhaustive search for the solutions of the
system :
1. foreachiin I,...m

for each @' in ai,,.;,,, ey aim

determine the set of integer partitions {kj}, k; = [ki1. kiz.- -, ki), of &
in no more than n places
and all permutations of these partitions in n places.

comment : each m-tuple for which the i-th element belongs to {k;} satisfies the
first set of inequalities, and no other m-tuples do.
2. for each m-tuple constructed as described in the comment above

check if the second set of inequalities is satisfied;

if yes obtain a solution [k k2. - . ky]

A.4 Determining the decision region R, of the subsection 4.2.4

We want to determine the set of histograms

Bi=qy:ftyi= Z/)'l‘p‘l(y’_ ZI"IP'I‘-V)—\”

i g€l
={y: fly)=Si(y) = Saty) >0}

90



which is the region for deciding that the test window matches with the given

template.

Consider the case in which the set of target templates H; is a singleton
H;={yo). The key idea is that the condition f(y)=0 can be satisfied only by
the points close to yo; in other words R; will be a neighborhood of ye. Stepping
away from yp (the given template) will cause f(y) to get gradually smaller and
at some point to become negative. Let us define the set of closest neighbor of a
vector y to be the set of vectors differing at only one coordinate from y. Note
that if y has n coordinates and each coordinate may take one of M possible values

then y has n(M-1) closest neighbors.

The algorithm, which we call “stepping process”, functions as follows :

1. Check if f(yo)20. If not we have the trivial case of the identity decision rule
d(y)=0 for every y; exit the algo. Else “put yo in R; and mark a tag on it
as “unchecked”.

2. Check which of the closest neighbors of yg satisfy the condition f(yg)20 and
put them in R; with their tags marked as “unchecked”.

3. Mark yo’s tag as “checked”.

4. For the “unchecked” vectors in R; repeat steps 2 and 3 until all vectors in

R; are “checked”.

Let us refine the second step of this process : Changing one of the coordinates

of yo, say from y'=k to yi=l has the following effects:

1. The yg vector is transformed into some other, say yy vector differing only at

the i-th position from yo.
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2. The §y(.) term in f(.) gets smaller (usually by several orders of magnitude),

since Si(yg) will be substituted by

P (k)

S(y1) = S(yv) < Silyo) .

where P (1) and Py(k) are the block transition probabilities for which we have
Pi(1)<Pi(k) (unless we have a pathological case of noise).

3. the So(.) term of f(.) gets larger since Y1 € Hy by construction and the
summand in So(.) corresponding to it will get significantly larger while the

other summands will approximately retain their values.

This monotonicity property of f(.) implies that R; has to be a neighborhood of
Yo. The algorithm presented has a recursive nature since each vector entering in
the R; decision region becomes a starting point whose “closest” neighbors are

to be checked.

Figure A.2 The flow graph of the “stepping process"”
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The flow of the stepping process is schematically given in figure A.2. If H;
is not a singleton we must repeat the proposed algorithm once for each element
of H; resulting to the decision regions Rﬁ, ! =0,---,k The decision region R;
will be the union of them Ry = R)UR{U---U Rf. An one step instance for

the special case of M=4, n=2 is given in the figure A.3.

0 ie. 2 places:2x0
ie. 2places: 1x0,1x1
ie. 2places:2x1
et.c.
%

2(4-1) = 6 neighbors

O 00 N o W A W N -

Figure A.3 An example for the “stepping process”

Let us define N! to be the set of closest neighbors of yo. N? the union of the
closest neighbor sets of all the elements in N ! and similarly define the sets N3,
N*, e.t.c. The ROC plots found in the present work are based on the performance
evaluation of a sequence of tests with decision regions N!, N2, N* e.t.c. Note that

the recursive nature of the algorithm presented implies vast memory requirements
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when the decision region R; or N! is relatively large (experimentally found that
it should not contain more than 100 elements), that poses limitations to the set of

tests for which the ROC curves can be obtained.
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Appendix B Performance
evaluation plots |

The results given concem 64 x 64—pixel binary images. For the Gaussian noise
case we used a 5x5—pixel full black template, while for the BSC noise case we
used an 8x8—pixel (or equivalent coded) full black template except otherwise
stated.

The compression rates in bits per pixel (bpp) for the tests we studied are

given in table B.1

test ; compression rate (bpp)
(2,64) 1
(2,16) 1/4
@.4) 1/16
4,2) 1/4
(16,4) 1/4
(3,6 1

Table B.1 Compression rates for the tests studied

A list of the plots is given below. ROC stands for Receiver Operating
Characteristic curve, KB stands for “known background”, and” UN stands for
“unknown background”. Most of the results presented are based on the analysis

described in chapters 2 and 4. The simulation results are produced by one Monte
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Carlo run for which the optimal thresholds found by the theoretical analysis are

assumed to be known.
[J uncoded image data

Plot 1: Gaussian noise; Pa(c?)-Psa(0?) curve; KB;
Plot 2: Gaussian noise; ROC, +2=0.1; KB;
Plot 3: BSC noise; (2,64)-KB test; Pq(¢)-Pra(€) curve;

Plot 4: BSC noise; (2,64)-KB test; ROC, ¢=0.1;
O the corrupt-code-detect system

Plot 5: (2,16)-KB test; Py(¢)-Pga(¢) curve;

Plot 6: (2,16)-KB test, ROC, =0.1;

Plot 7: (2,4)-KB test; Py(¢)-Pga(€) curve; equivalently: (16,4)-KB test;

Plot 8: (2,4)-KB test; ROC, e=(.1; equivalently: (16,4)-KB test;

Plot 9: (4,2)-UB test; synthetic template (see fig. 5.1); ROC, ¢=0.05, =0.1,
e=0.2, =0.3, =0.4;

Plot 10: (16,4)-UB test; P4(¢)-Pta(€) curve;
O comparative plots

Plot 11: (2,64), (2,16)-KB tests; ROC, =0.1;

Plot 12: (2,64), (2,16)-KB tests; ROC, ¢=0.3;

Plot 13: (2,64), (2,16), (2,4)-KB (equiv. (164)-KB), (16.4)-UB tests; ¢—Pg,
curve for optimal Bayesian tests:

Plot 14: (2,64), (2,16), (2,4)-KB (equiv. (164)-KB). (16.4)-UB tests; «—Py

curve for optimal Bayesian tests;
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[0 the code-corrupt-detect system

Plot 15: (2,16)-KB test; Pq(¢)-Pra(¢) curve;
Plot 16: (2,16)-KB test; ROC, ¢=0.1;
Plot 17: (2,4)-KB test; Pg4(¢)-Psa(€) curve;
Plot 18: (2,4)-KB test; ROC, =0.1;
Plot 19: (16,4)-KB test; Pg4(¢)-Pga(€) curve;
Plot 20: (16,4)-KB test; ROC, e=0.1;

Plot 21: (16,4)-UB test; Py(¢)-Pra(€) curve;

[0 comparative plots

Plot 22: (2,64), (2,16), (2,4)KB (equiv. (16,4)-KB), (16,4)-UB tests; e—Pp
curve for optimal Bayesian tests;
Plot 23: (2,64), (2,16), (2,4)-KB (equiv. (16,4)-KB), (16,4)-UB tests; e—Pq

curve for optimal Bayesian tests;

[0 multiple gray level pixels

Plot 24: (3,6)-UB test; Py(¢)-Pra(€) curve.
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Plot 1: Pfa—Pd graph parametrized

by sigma?;

noise model: AWG; Known Background

...... theoretical result

simulation result
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6 ¥-optimal Bayesian rule

- . theoretical result

- ____ simulation result

- Plot 2: The ROC for the AWGN case;

- sigrna2

= 0.1; Known Background

=

—- threshold = rx12+sigma"‘pi

threshold = —sigma*pi]

v
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epsilon = 0.02

... theoretical result

— Simulation result

(2,64)—KB test

Plot 3: Pfa-Pd graph parametrized by epsilon
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optimal Bayesian test

— e theoretical result
- simulated result

_ threshold = m®

- (2,64)-KB test; epsilon=0.1

threshold = 0 -

—

-

~ Plot 4: ROC for the case of the uncoded image

data
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epsilon = 0.02

(2,16)-KB test.

7/ epsilon = 0.4
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Plot 5: Pfa—Pd graph parametrized by epsilgn;
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Pfa
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threshold = 0

...... theoretical result

—__ simulated result

- threshold = nfa

e

-Plot 6: ROC for the case of coarsening the
resolution; (2,16)—KB test; epsilon=0.1
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threshold = 0

Plot 8: ROC for the case of coarsening
the resolution;
(2,4)-KB test; epsilon=0.1

...... theoretical result

simulated result

threshold = n12
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Plot 13: epsilon-Pfa graph
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power of the test
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— Plot 17: The code—corrupt-detect system:
The Pfa—Pd graph parametrized
B by epsilon; (2,4)-KB test

f—

— epsilon = 0.02
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Plot 18: ROC for the case
of coarsening the resolution;
(2,4)-KB test; epsilon=0.1;
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...... theoretical result

___ simulated result

threshold = m®
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pdwer of the test

- Plot 23: epsilon—-Pd graph;
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