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Abstract

In this paper, we show that blocks-world planning is difficult, in the sense that finding
an optimal plan is NP-hard. This is true regardless of whether or not the goal state is
completely specified, and regardless of whether or not different blocks have different sizes.
However, the difficulty of blocks-world planning is not due to deleted-condition interactions,
but instead due to another kind of goal interaction, which we call a deadlock. For problems
that do not contain deadlocks, there is a simple hill-climbing strategy that can easily find
an optimal plan, regardless of whether or not the problem contains any deleted-condition
interactions.

The fact that deleted-condition interactions are easy and deadlocks are difficult is rather
surprising, for one of the primary roles of the blocks world in the planning literature has
been to provide examples of deleted-condition interactions such as creative destruction
and Sussman’s anomaly. This suggests that a good topic for future research might be to
investigate how easily such interactions can be handled in other planning domains.
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1 Introduction

Blocks-world planning has been widely investigated by planning researchers, primarily
because it appears to capture several of the relevant difficulties posed to planning sys-
tems. It has been especially useful in investigations of goal and subgoal interactions in
planning—particularly deleted-condition interactions such as creative destruction and Suss-
man’s anomaly [4, 9, 11, 13, 14, 15], in which a side-effect of establishing one goal or subgoal
is to deny another goal or subgoal.

The following version of the blocks world, which we call the Elementary Blocks World
(EBW), is especially well known. Our description is based on those in [9] and [11].

The objects in the problem domain include a finite number of blocks, and a
table large enough to hold all of them. Each block is on a single other object
(either another block or the table). For each block b, either b is clear or else
there is a unique block « sitting on b. There is one kind of action: move a single
clear block, either from another block onto the table, or from an object onto
another clear block. As a result of moving b {from ¢ onto d, b is sitting on d
instead of ¢, ¢ is clear (unless it is the table), and d is not clear (unless it is the
table).

A problem in this domain is specified by giving two sets of ground atoms,
one specifying an initial state of the world, and the other specifying necessary
and sufficient conditions for a state to be a goal state. A solution to this problem
is a plan (i.e., a sequence of “move” actions) capable of transforming the initial
state into a state satisfying the goal conditions.
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Other versions of the blocks world have also appeared in the ATl literature. For example,
the original version of the blocks world used by Winograd [16] contained blocks of different
sizes and colors, and also contained pyramnids.

This paper is an investigation of the complexity of planning in several different versions
of the blocks world. It contains the following results:?

1. In EBW, finding a non-optimal plan is quite easy. Finding an optimal plan is NP-hard,
but no worse than NP-hard.

Surprisingly. the difficulty of finding an optimal plan in EBW is due not to deleted-
condition interactions., but to a different kind of goal interaction which we call a
“deadlock™. For EBW problems that do not contain deadlocks, there is a simple hill-
climbing strategy that is guaranteed to find an optimal plan in time O(n®) where n is
the problem size, regardless of whether or not the problem contains deleted-condition
interactions. Classical examples of deleted-condition interactions, such as Sussinan’s
anomaly and creative destruction, do not contain deadlocks—and thus they are easily
handled by this planner.

*In this particular case. a ground atom is a predicate whose arguments are all constants denoting blocks
or the table.

2We stated preliminary versions of some of these results in [8]. However, at that point we had written
proofs only for the special case of EBW in which the goal state is completely specified.
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2.

Planning in EBW has been thought to be simpler in the special case where the goal
state is completely specified, but there has been disagreement on how much simpler.
In informal conversations with several prominent planning researchers, we posed the
problem of how to find shortest-length plans in this special case. Some thought it
obvious that the problem was easy, and others thought it obvious that the problem
was difficult.

It turns out that this special case is basically equivalent to the general case. There is
an algorithm which, given any EBW problem, will produce in time O(n3) a completely
specified goal state such that any optimal plan for reaching this goal state is also an
optimal plan for the original problem. Thus, the results we stated above for EBW
still hold even if the goal state is completely specified.

. The above results also hold for other related versions of the blocks world. For example,

they still hold when EBW is generalized to contain blocks, pyramids, and frustums of
pyramids, all of which may vary in size.

. Limiting the size of the table does not change the complexity much: finding a non-

optimal plan is still easy, and finding an optimal plan is still NP-hard but no worse.
However, if in addition to limiting the table size we allow different blocks to have
different sizes, then it is no longer possible to find optimal plans nondeterministically
in polynomial time, because there are some planning problems in which the shortest
plan has exponential length.

This paper is organized as follows:

Section 2 contains basic definitions.

Section 3 describes our algorithms for planning in EBW.

Section 4 shows that planning in EBW is NP-hard, and explains why this is due
to deadlocks rather than deleted-condition interactions.

Section 5 discusses the special case of EBW in which the goal state is completely
specified.

Section 6 describes what happens if EBW is generalized to allow limited table
size and/or objects of varying sizes including blocks, pyvramids, and frustums.

Section 7 summarizes the mathematical results.

Section 8, the concluding section, dicusses the significance of the results and
suggests topics for future research.

The proofs are contained in. appendices.

Basic Definitions

2.1 Formulas, States, Stacks, and Positions

An atom is a term of the form “on(z.y)” (meaning that 2 is on y) or “clear(z)” (meaning
that z is clear), where 2 and y are either constants (i.e., specific blocks or the table) or
variables. If r and y are constants, then the atom is a ground atom. The constant 7 denotes
the table.
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Initial state Goal formula
I = {clear(a),on(a,b),on(b, T}, clear(c),on(c, 7T)} G = {on(b,e)}
Block Position Position is a Position is
in [ maximal stack in I consistent with &
a {on(a,bd),on(b, 7)} yes no
b {on(b,7)} no no
¢ {on(e, T)} yes yes

Figure 1: Stacks and positions in a simple EBW problem.

A formula is any set F' of ground atoms. A formula F' is consistent if there is at least
one configuration of blocks that satisfies the meanings of the atoms in F. If ' and G are
formulas, then F' is consistent with G if FFU G is consistent.

A formula F is a state if it specifies the exact configuration of some set of blocks, (i.e.,
what blocks are clear, what blocks are on the table, and what blocks are on what other
blocks). An immediate consequence of this definition is that every state is consistent.

An EBW problem is an ordered pair B = (I,G), where [ is a state called the initial
state, and G is a formula called the goal formula. B is solvable if there exists at least one
plan for B.

Let F be any consistent formula. A stack in F is a formula F =
{on(by,b2),0n(bs, ba), . ..,on(b,—1,b,)} C F such that each b; is a block except for b,,, which
may be either a block or the table. Informally, we will write £ as “by on by on b3 on ... on
b,”. The top and bottom of E are by and b, respectively. E is a mazimal stack if it is not a
subset of any other stack in F. If F'is a state and b is a block in F', then b’s positionin F is
the largest stack in F' whose top is b, i.e., the stack in F’ whose fop is b and whose bottom
is the table. This stack is a maximal stack in F if and only if b is clear in F. Figure 1 gives
some examples of stacks and positions.

2.2  Actions, Plans, and Deadlocks

We use move(z, y, =) to denote the action of moving x from y to z. A planis a finite sequence
of such actions. If P is a plan, then |P| is the number of actions in P, and P(5) is the state
produced by starting at 5 and applying the actions in P one at a time (if not all of them
are applicable, then P(S) is not defined). A plan for an EBW problem B = (/,G)is a plan
P such that P(I) is consistent with G. It is an optimal plan for B if every plan @ for B
has |Q] 2 |P].

The set of blocks {by,bs,...,b,} is deadlocked in the state S if there is a set of blocks
{dy,d,,....d,} such that the following three conditions hold:

1. In S, by is above dy, by is above dy, ..., b,—1 is above d,_1, and b, is above d,,.
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Initial state

I = {clear(a),on(a,b),on(b, c), G,Of_"l formula ‘
on(e, T), clear(d), on(d, €),on(e, T)} G = {on(a, e),on(e,b),on(d,c)}

Figure 2: A problem in which there are two deadlocked sets of blocks: {a,d} and {a}.

2. In G, b is above dy, by is above ds, ..., b,_y is above d,, and b, is above d;.

3. In 5, none of by, by, ..., b, is in its final position (if p > 1, then the other two conditions
entail this condition).

For example, in Figure 2, the initial state I contains two deadlocked sets of blocks:

1. ais above ¢ and d is above e in I, and « is above e and d is above ¢ in G, so {a,d} is
deadlocked in I;

2. aisabove bin both I and G, and ¢ is not in its final position in I, so {a} is deadlocked
in I.

suppose some set of blocks D is deadlocked in the state S. If A is an action applicable
to 5, then A resolves D if D is not deadlocked in the state produced by applyving A to
S. I any of the blocks in D is clear in S, then moving it to the table will always resolve
the deadlock—and it may resolve more than one deadlock simultaneously. For example, in
Figure 2, the action move(a, b, 7) will resolve both the deadlocked sets {a,d} and {a}.

3 Algorithms for EBW

From the meanings of the “on” and “clear” atoms in EBW, it follows that a formula F is
consistent if and only if the following conditions hold for every block b mentioned in I7: b
is not above itself, the table is not on b, b is on at most one object, at most one object
is on b, and nothing is on b if b is clear. One can verify whether or not these conditions
are satisfied in time O(n) as follows, where n is the number of atoms in F. Consider the
graph H{F) whose nodes are the blocks, and having an arc from block b to block ¢ if and
only if on(b.c) € F. Such a graph is called a Hasse diagram (e.g., see [12]), and it can
be constructed in time O(n) using a modification of a topological sorting algorithm such
as the one given in [10]. F is consistent if and only if F' contains no atoms of the form
“on(7,x)", and H(F') consists of one or more disjoint acyclic paths, with each clear block
at the beginning of a different path.

Let B = (I,G) be any EBW problem. Let m and n, respectively, be the number of
blocks and atomsin JUG. Since every alom contains at least one block, m < n. Since [ is a
state it is consistent, so it contains at most two atoms for each block. If G is consistent, then
G will also contain at most two atoms for each block, so n < 4m and thus O(m) = O(n).



One can check whether or not B is solvable in time O(nlogn), by checking whether or
not G is consistent, and whether or not G mentions any blocks not mentioned in I. If GG is
inconsistent or mentions a block not mentioned in I, then clearly B is not solvable. But if
G is consistent and only mentions blocks mentioned in I, then each of the paths in H(G)
represents one of the maximal stacks in G. One can produce a plan for B by moving all
blocks to the table, and then using H(G) to guide us in building these maximal stacks from
the bottom up. The length of this plan is at most 2m, and it takes time O(n) to produce
it.

In time O(n®) one can find a plan of length no more than twice the length of the optimal
plan. To see this, consider the algorithm Solve-EBW shown below. This is basically a simple
hill-climbing algorithm: any time a block can be moved directly to a position consistent
with the goal condition, it does so.

Algorithm Solve-EBW(I, G):

Step 1: If G contains any blocks not in I, then B is not solvable, so exit with
failure.

Step 2: Construct the graph H(G), and use it to check whether or not G is
consistent. If (G is inconsistent, then B is not solvable, so exit with failure.

Step 3: § « [.

Step 4: If S is consistent with G, then exit with success.

Step 5: If there is a block b such that b’s position is not consistent with G and &
contains on(b, ¢) for some ¢ and ¢’s position is consistent with G, then move
b to ¢ and go to Step 4.

Step 6: If there is a block b such that &’s position is not consistent with &
and there is no ¢ such that G contains on(b, ¢). then the position on(b,7) is
consistent with G, so move b to the table and go to Step 4.

Step 7: At this point, every clear block whose position is not consistent with &
is in a deadlocked set. Arbitrarily move one of these blocks to the table, and
then go to Step 4.

In Appendix A we prove that the plan ) produced by Solve-EBW satisfies the property
|@Q] < 2(m ~ q), where m is the total number of blocks in B, and ¢ is the number of blocks
whose positionsin I are consistent with . Since every plan for B must have length at least
m — ¢, this means that the length of @) is no more than twice the optimal length. Each of
the steps in Solve-EBW takes time at most O(n?) to execute. Since Solve-EBW exits after
O(m) = O(n) steps, this means it runs in time O(n?).

All of the moves made by Solve-EBW preserve plan optimality except for the moves
made in Step 7. In the algorithm Solve-EBW-Optimally shown below, Step 7 is modified to
make all possible choices nondeterministically. Thus, as proved in Appendix A, Solve-EBW-
Optimally is guaranteed to find an optimal plan—and the length of this plan is m — ¢ + 7,
where 7 is the minimum number of times that Step 7 is executed in any of the execution
traces of Solve-EBW-Optimally.

Algorithm Solve-EBW-Optimally(/.G):
Step 1: If G contains any blocks not in I, then B is not solvable, so exit with
failure.



Step 2: Construct the graph H((G), and use it to check whether or not G is
consistent. If G is inconsistent, then B is not solvable, so exit with failure.

Step 3: § — I.

Step 4: If S is consistent with G, then exit with success.

Step 5: If there is a block b such that b’s position is not consistent with &G and ¢
contains on(b, ¢) for some ¢ and ¢’s position is consistent with G, then move
b to ¢ and go to Step 4.

Step 6: If there is a block b such that b’s position is not consistent with G
and there is no ¢ such that G contains on(d, ¢), then the position on(b, 7) is
consistent with (7, so move b to the table and go to Step 4.

Step 7: At this point, every clear block whose position is not consistent with G
is in a deadlocked set. Nondeterministically move one of these blocks to the
table, and then go to Step 4.

4 The Complexity of Planning in EBW

Below, we show that finding optimal plans in EBW is NP-hard. We show that the reason
for this is the difficulty of choosing how to resolve deadlocks, and we examine the difference
between deadlocks and deleted-condition interactions.

4.1 NP-Completeness

For use in proving NP-completeness results about EBW, we follow the standard procedure
for converting optimization problems into yes/no decision problems. We define EBW PLAN
to be the following decision problem:

Given an EBW problem (/,G) and an integer L > 0, is there a plan for this
problem of length L or less?

To show that EBW PLAN is NP-hard, we need to show that an NP-complete problem
reduces to EBW PLAN. For this purpose we use the FEEDBACK ARC SET problem,

which can be stated as follows:

Given a digraph (V, E) and a positive integer k, is there a set of edges F such
that |F| < k and the digraph (V, E — F') is acyclic?

This problem is known to be NP-complete ([6], p. 192). In Appendix B, we show that
EBW PLAN is NP-complete, by showing that FEEDBACK ARC SET reduces to EBW
PLAN and that EBW PLAN can be solved nondeterministically in polynomial time using
Solve-EBW-Optimally.

From the above. it follows that the problem of finding optimal plans in EBW is NDP-
hard. But the fact that Solve-EBW-Optimally will solve this problem nondeterministically
in polynomial time suggests that the problem is no worse than NP-hard. In Appendix B
we prove that this is true.

~1
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Initial state Goal formula
I = {clear(c¢),on(¢,a),on(a,7T),clear(b),on(b, 7)} G = {on(a,b),on(b, )}

Figure 3: Sussman’s anomaly.

4.2 The Difficulty of Resolving Deadlocks

The difficulty of planning in EBW is due to the difficulty of deciding the best way to resolve
deadlocks. Below, we explain why.

The reduction of FEEDBACK ARC SET to EBW PLAN produces an EBW problem B
having one deadlocked set for each cycle in the digraph (V, E'). Choosing a block to move to
the table to resolve a deadlock in B corresponds to choosing an arc from the corresponding
cycle in (V, ). But the NP-hardness of FEEDBACK ARC SET stems from the difficulty
of finding a small set of arcs such that every cycle in (V. E') contains at least one of these
arcs. Thus, the NP-hardness of planning in EBW stems from the difficulty of finding a
small set of blocks to move to the table to resolve all deadlocks.

Another way to see that deadlocks are what makes planning difficult in EBW is to note
that in Solve-EBW-Optimally, the only time nondeterminism is required is to resolve a
deadlock. For EBW problems that contains no deadlocks, Solve-EBW-Optimally will never
enter Step 7, which is the only step where nondeterminism occurs. Thus, for such problems,
the deterministic algorithim Solve-EBW will always find an optimal plan.

To illustrate this, below we consider two EBW problems: one without deadlocks, and
one with deadlocks.

Example 1. Consider Sussman’s anomaly (shown in Figure 3). a and b are not in dead-
locked sets, because there are no blocks below them in I, and ¢ is not in a deadlocked set,
because there is no block below it in (. Thus Sussman’s anomaly contains no deadlocks,
so Solve-EBW can solve it easily, as described below.

Suppose one invokes Solve-EBW on Sussman’s anomaly. Initially, none of the blocks are
in positions consistent with ¢, and neither a nor b can be moved to positions consistent with
(7. ¢ can be moved to a position consistent with G' by moving it to the table, so Solve-EBW
does this in Step 6. Once this is done, the positions of a and b are still inconsistent with
G, but b’s position can be made consistent with G by moving it to ¢, and Solve-EBW does
this in Step 5. At this point, a’s position is inconsistent with G but can be made consistent
with GG by moving it to b, and Solve-EBW does this in Step 5. Now the current state is
consistent with G, so Solve-EBW exits with success in Step 4.

Example 2. Consider the EBW problem shown in Figure 4. This problem contains
six deadlocked sets: {a}, {d}, {9}, {a.7}, {d,j}, and {g.j}. In the initial state, every
clear block is in one of these deadlocked sets. Moving a, d, or ¢ to the table resolves two
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Figure 4: A situation where deadlocks cause problems.

deadlocks, and moving j to the table resolves three deadlocks. Thus, moving j to the table
might appear to be the most attractive choice—but it will not result in an optimal plan.

Every plan for this problem that involves moving block j to the table contains at least
16 actions. However, there are plans for this problem that do not move j to the table and
contain only 15 actions. For example, below are two plans produced by different execution
traces of Solve-EBW-Optimally: one in which j is moved to the table and one in which it
is not.

move(j, k, T), move(a,b,T), move(b, ¢, T), move(k,l,b),
move(a, T, k), move(d,e,T), move(e, f,7), move(l, m, e),
move(d, 7, 1), move(g, h,T), move(h,i,7T ), move(m, T, h),
move(g, 7, m), move( f,7, 1), move(c, T, 1), move(j,7,c).

move(a, b, T), move(b.c,T), move(d,e,T), move(c, f,7T),
move(g, h, T ), move(h,i, 7). move( f,7, 7). move(c.7.i),
move(j, k, ¢). move(k, [, b), move(a, 7, k). move(l, m,€),
move(d,7,l), move(m, 7, ), move(g, 7, m).

The reason why moving j to the table is not part of any optimal plan is that although
moving j to the table resolves three deadlocks ({a,j}, {d,j}, and {g,7}), it leaves three
other deadlocks unresolved ({a}, {d}, and {g¢}), and the only possible way to resolve these
deadlocks is to move a, d, and g to the table. But moving a. d, and g to the table resolves
all of the deadlocks involving j, leaving no need to move j to the table.

4.3 Deadlocks Versus Deleted Conditions

It is important to understand that deadlocks are different from deleted-condition interac-
tions. In a deleted-condition interaction, the side-eflect of achieving one condition is to
delete some other condition that will be needed later. In contrast, in a deadlock situa-
tion there are several goal conditions left to be achieved, none of which can be directly
achieved. Of the actions available to achieve subgoals for these goals, some will achieve
several subgoals at once, and the question is which of these actions o use.

Below, we illustrate the difference between deadlocks and deleted-condition interactions,
by describing two planning problems: one that contains deleted-condition interactions but
no deadlocks, and one that contains a deadlock but no deleted-condition interactions.
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Initial state Goal formula
I = {clear(a),on(a, ¢),on(c, T), clear(b),on(b,d),on(d, T)} G = {on{b,c),on(a,d)}

Figure 5: A problem in which there is a deadlock but no deleted-condition interactions.

Example 3. Sussman’s anomaly (see Figure 3) is well-known as an example of a planning
problem in which deleted-condition interactions occur regardless of the order in which one
tries to achieve the goals:

1. Suppose one tries to achieve on(a,b) first and on(b,c) second. The way to achieve
on(a,b) is to move ¢ to the table and a to . But once this has been done, one must
undo ou(a,b) in order to achieve on(b, ¢).

2. Suppose one tries to achieve on(b, ¢) first and on(a,b) second. The way to achieve
on(b, ¢) is to move b to ¢. But once this has been done, one must undo on(b,c) in
order to achieve on(a,b).

However, as shown in Example 1, Sussman’s anomaly contains no deadlocks.

Example 4. Consider the planning problem shown in Figure 5. In the initial state, a is
above ¢ and b is above d, and in the goal state, a is above d and b is above ¢, so {a.,b} is a
deadlocked set. However, in this problem, neither goal ordering produces deleted-condition
interactions:

1. Suppose omne tries to achieve on(a,d) first and on(b,c) second. The way to achieve
on(a, d) is to move b to the table and then move a to d. Once this has been done, the
way to achieve on(b,c) is to move b to ¢, and this does not delete on(a,d).

2. Suppose one tries to achieve on(b.¢) first and on(a,d) second. The way to achieve
on(b, ¢) is to move a to the table and then move b to ¢. Once this has been done, the
way to achieve on{a,d) is to move a to d, and this does not delete on(bd, ¢).

5 Completely Specified Goal States

Primitive Blocks World (PBW) is the special case of EBW in which the goal formula specifies
a single state. PBW PLAN is the following decision problem:

Given a PBW problem (I,G) and an integer L > 0, is there a plan for this
problem of length L or less?

Although PBW has been thought to be simpler problem domain than EBW, it turns
out that planning in PBW is basically equivalent to planning in EBW. In particular, given
any solvable EBW problem, one can easily add additional conditions to the goal formula

10



G to produce a completely specified goal state G’, in such a way that any optimal plan for
the modified problem is also an optimal plan for the original problem.

Before describing how to do this in the general case, we first illustrate the idea using
Sussman’s anomaly (Figure 3). The desired goal state G’ must contain on(«, b) and on(b, ¢),
and it cannot mention any other blocks since no other blocks are mentioned in /. In G’, ¢ is
below the other two blocks, so ¢ must be on the table. Furthermore, « is above the other two
blocks, so @ must be clear. Thus, G’ must be the state {on(«,b),on(b, c),on(c, 7). clear(a)}.

For the general case, let B = (I,G) be any solvable EBW problem, and let F' be the
formula consisting of the following “on” atoms:

e every “on” atom in G}
e every atom on(b,c¢) in I such that b’s position in [ is consistent with G

¢ an atom on(b,7) for every block b such that nothing is below b in &' and b’s position
in J is inconsistent with G.

Then G is the state consisting of F plus an atom clear(b) for every block b at the top of a
maximal stack in F.

Since G C G, every plan for B’ = (I,G") is also a plan for B. As shown in Appendix C,
G is the final state produced by Solve-EBW(I, ) and by every execution trace of Solve-
EBW-Optimally(Z, G'). From this it follows that every optimal plan for B’ is also an optimal
plan for B.

What this means is that planning in EBW and planning in PBW are basically equivalent.
If you have a planner that will find optimal plans for PBW problems, and if you want to
find an optimal plan for an EBW problem B, then you can do this by computing B’ as
described above, and using your planner on B’.

From this, it follows that all of our results about EBW apply equally well to PBW: find-
ing non-optimal plans is easy, finding optimal plans is NP-hard, resolving deleted-condition
interactions is easy, resolving deadlocks is difficult, etc. In fact, the theorems and proofs in
Appendices A and B apply to PBW with no modifications, except for replacing “EBW” by
“PBW?”.

6 Generalizations of EBW

As mentioned in Section 1, EBW is not the only version of the blocks world discussed in
the Al literature. Introducing complications such as pyramids, blocks of different sizes, or
limited table size is usually thought to make planning more difficult. Below, we consider
three such planning domains:

o VBW. in which there can be blocks, pyramids, and frustums of pyramids, all of which
may vary in size;

o LBW/ in which the table size is limited;
¢ VLBW. which has the features of both VBW and LBW.

Our results for these planning problems can be summarized as follows:

11



1. Planning in VBW is so similar to planning in EBW that all of our results about
planning in EBW apply equally well to VBW.

2. LBW requires different planning algorithms than the ones we presented carlier for
EBW, but the complexity results are still similar: finding a non-optimal plan is easy,
finding an optimal plan is NP-hard but no worse, and optimal plans can be found
nondeterministically in polynomial time.

3. Planning in VLBW is more difficult. In particular, there are VLBW problems for
which the shortest plan has exponential length.

The details appear below.

6.1 Blocks World with Varying Block Sizes

A Varying Block-Size Blocks World (VBW) problem is like an EBW problem, except that
for each block b there is a positive integer k; that denotes the size of b’s bottom face, and
a nonnegative integer hy < ky that denotes the size of b's top face (b is a pyramid if hy = 0,
and it is a frustum of a pyramid if hy < k). Each block b may have any number of blocks
sitting directly on it, provided that the total size of their bottom faces is no greater than
the size of b’s top face. Thus, in addition to the usual preconditions for move(b, ¢, d), there
is the requirement that either d = 7 or else

ky + Z ky < hg. (1)

on(z.d)
VBW PLAN is the following decision problem:

Given a VBW problem (I.G, R) (where K is a list giving the sizes of the top
and bottom faces of each block) and an integer L > 0, is there a plan for this
problem of length L or less?

In VBW, a formula F is consistent if and only if the following conditions are satisfied:
F contains no atoms of the form “on(7,z)”, and H(F')is an acyclic graph in which no clear
block has a predecessor, no block has more than one immediate successor, and for every

block b,
Z{]Ca:lf is an immediate predecessor of b} < .

Thus, just as in EBW, one can check the consistency of a VBW formula in time O(n).
Using the above definition of consistency, all of the results we stated earlier for EBW
hold for VBW as well, with only minor modifications needed in the proofs (we leave these
modifications as exercises to the reader). A list of these results appears later. in Section 7.
It is easy to see that the same results also apply to other generalizations of EBW that
are not as general as VBW. For example, for each b we could require hy = kj, in which
case the blocks may vary in size but pyramids and frustums are not allowed. Or for each b
we could require &, = 1 and /iy, € {0, 1}, in which pyramids are allowed, frustums are not
allowed, and all blocks must be the same size. In such cases. the same results still hold.
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6.2 Blocks World with Limited Table Size

A Limited Table-5ize Blocks World (LBW) problem is like an EBW problem, except that
there is a positive integer h denoting the size of the table. In addition to the usual precon-
ditions for move(d, ¢, 7), the current state S must contain less than h atoms of the form
“on(z, 7).

Given an LBW problem B = (I, G, h) (where h is the size of the table), checking whether
or not B is solvable is somewhat more complicated than for EBW and VBW problems, but
it can still be done in low-order polynomial time. Below, we explain how to test whether
B is solvable, and how to find a (not necessarily optimal) plan for B if it is solvable:

1. If h = 2, then B is solvable if and only if I contains at most two maximal stacks, G
mentions no block not mentioned in I, and I can be transformed to a state consistent
with G by moving blocks from one of these stacks to the other. If this can be done,
then it yields a plan of length at most m, and this is an optimal plan.

2. If h > 3, then B is solvable if and only if (/, G)is a solvable EBW problem and neither
I nor G contains more than h atoms of the form “on(z,7)”. If these conditions are
satisfied, then by examining the Hasse diagram H(G) it is easy to find a state G’
consistent with G such that G’ contains at most h maximal stacks. Any plan for
(I,G") is also a plan for (I,G). Let My, M,,..., M) be the maximal stacks in G’,
where i/ < h. We can produce a plan for (/,G’) in the following manner:

o Move all blocks to two temporary stacks 77 and T,. This will take less than m
moves.

o Construct the stacks My, Mo, ..., M _o, by moving blocks back and forth be-
tween T3 and T3 to expose blocks that can be moved directly to their final posi-
tions. The number of moves this will require is less than m-{m—1)4+.. . +(k+1) =
m{m + 1) — k(k + 1), where k is the total number of blocks in M _; and M.

¢ Move all remaining blocks in 77 to the top of M, and all remaining blocks in
T, to the top of My, creating temporary stacks 7] and T3 on top of My and M,
respectively. This will take less than k& moves.

o Construct My _y and M}/, by moving blocks back and forth between 7] and T3
to expose blocks that can be moved directly to their final positions. The number
of moves this will require is less than A+ (b~ 1)+ ...+ 1= k(k+1).

The length of the above plan is less than m{m + 1) + 2m.

The above technique can be modified to produce a plan of length O(mlogm) = O(nlogn),
by sorting the blocks in 7y and T3 into an appropriate order before starting to construct
the stacks M;. The details of this modification are left to the reader.

LBW PLAN is the following decision problem:

Given an LBW problem (I.G,h) and an integer L > 0, is there a plan for this
problem of length I or less?

Since EBW is a special case of LBW, it is clear that LBW PLAN is NP-hard. But optimal
plans for LBW problems can be found nondeterministically in polynomial time. Thus, LBW
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PLAN is NP-complete, and it can be shown that LBW is no worse than NP-hard. These
results are proved in Appendix D.

6.3 Blocks World with Varying Block Sizes and Limited Table Size

A Varying Block-Size, Limited Table-Size Blocks World (VL.BW) problem is like an EBW
problem except that for each block b, the top and bottom faces have sizes hy and ky respec-
tively, and the table has a size hy. In addition to the usual preconditions for move(b, ¢, d),
there is the following additional requirement:

ot S ke < ha (2)
on{z.d)

VLBW PLAN is the following decision problem:

Given a VLBW problem (I,G. A) (where L is a list giving the table size and
the sizes of the top and bottom faces of each block) and an integer L > 0, is
there a plan for this problem of length L or less?

VLBW PLAN includes VBW PLAN as the special case in which hr > 3 k. Thus since
VBW PLAN is NP-hard, so is VLBW PLAN.

In EBW, VBW and LBW, the problem of finding an optimal plan is NP-hard, but it
can be solved nondeterministically in polynomial time. In contrast, there are some VBW
problems for which nondeterminism will not enable us to produce a plan in polynomial
time, because the shortest plan has exponential length. We prove this in Appendix E, by
showing how to reduce the Towers of Hanoi problem to VLBW in polynomial time, in a
manner that preserves plan length.

The above consideration suggests that VLBW PLAN is not in NP. but does not demon-
strate it conclusively. Even though one cannot produce an optimal plan nondeterministically
in polynomial time, it still might be possible to determine the length of that plan noude-
terministically in polynomial time. This can be done in certain special cases, such as the
Towers of Hanoi Problem [1] and certain generalizations of it [7], but whether or not it can
be done in general is a question that we have not explored. Thus, we do not know whether

or not VLBW PLAN is in NP.

7 Summary of Results

First, we have examined a well known class of planning problems which we call the Ele-
mentary Blocks World (EBW). For EBW, we have the following results:

1. Given an EBW problem, one can tell in time O{nlogn) whether or not it is solvable.
If it is solvable, then one can produce in time O(n) a plan that moves no block more
than twice, and in time O(n®) a plan whose length is no more than twice optimal.

2. Given a positive integer L, the problem of answering whether there is a plan of length
L or less is NP-complete. Thus, the problem of finding an optimal plan is NP-hard.
However, it is no worse than NP-hard, and there is a nondeterministic algorithm than
can solve it in time O(n?).
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3. If the problem contains no deadlocked sets, then one can find an optimal plan deter-

ministically in time O(n3). Thus, the NP-hardness of finding an optimal plan is due
to deadlocks.

. Deadlocks are different from deleted-condition interactions. In particular, there are

some problems that contain deadlocks but no deleted-condition interactions, and other
problems that contain deleted-condition interactions but no deadlocks.

. In time O(n3), one can formulate additional conditions to add to the goal formula,

to produce a completely specified goal state such that any optimal plan for achieving
this state is also an optimal plan for the original problem. Thus, each of the above
results holds for the special case in which the goal state is completely specified.

Second, we have examined several generalizations of EBW:

¢ VBW, in which there can be blocks, pyramids, and frustums of pyramids, all of which

may vary in size;

¢ LBW, in which the table size is limited;

¢ VLBW, which incorporates both of the above generalizations.

For these versions of the blocks world, we have the following results:

8

1. The results we stated above for EBW also apply to VBW. Furthermore, they also

apply to other versions of the blocks world intermediate between EBW and VBW (for
example, if we restrict VBW to disallow frustums, or to allow pyramids but require
all blocks to have the same size).

2. In low-order polynomial time, one can tell whether or not an LBW problemn is solvable,

and produce a plan of length O(nlogn) if the problem is solvable.

. Given an LBW problem and a positive integer L, the problem of answering whether
p g g

there is a plan of length L or less is NP-complete, so the problem of finding an
optimal plan is NP-hard. However, the problem is no worse than NP-hard, and there
is a nondeterministic algorithm that can solve it in polynomial time.

4. Given a VLBW problem and a positive integer L, the problem of answering whether

there is a plan of length L or less is NP-hard. There is no nondeterminstic polynomial-
time algorithm to find optimal plans for VLBW problems, because there are some
VLBW problems in which the shortest plan has exponential length.

Conclusions

One of the primary roles of the blocks world in planning research was in the discovery and
investigation of deleted-condition interactions such as creative destruction and Sussman’s
anomaly [4, 9, 11, 13, 14, 15}, in which the plan for achieving one goal or subgoal deletes
another goal or subgoal. But blocks-world planning problems can also contain another kind
of goal interaction, which we call a deadlock.



In a deadlock situation, there are several goal conditions to be achieved, none of which
can be achieved directly. Of the actions available to achieve subgoals for these goals, some
will achieve several subgoals at once, making it easier to achieve the other goals later. Thus,
tradeofls arise in choosing which is the best set of actions to use.

Our results show that blocks-world planning is difficult, in the sense that finding an
optimal plan is NP-hard. However, the difficulty of the problem is due to deadlocks rather
than deleted-condition interactions. If the problem does not contain deadlocks, then there
is a simple hill-climbing strategy that will easily find an optimal plan, regardless of whether
or not the problem contains any deleted-condition interactions.

This work suggests several topics for future research:

1. The fact that deleted-condition interactions are easy to handle and deadlocks are hard
to handle in blocks-world planning is rather surprising, for two reasons. First, deleted-
condition interactions are hard to handle in general, and much previous planning
research has focused on this difficulty. Second, the idea of a deadlock interaction
does not appear to have heen developed or investigated until now. This raises several
questions—for example, whether or not there are any other important kinds of goal
and subgoal interactions, and how easily various kinds of interactions might be handled
in other planning domains. If one could characterize conditions under which various
kinds of interactions are easy or difficult to handle, this might make it possible to
produce more efficient planners for various problem domains.

2. Our results are true across a number of variations of the blocks world: they hold
regardless of whether or not the goal state is completely specified, whether or not
the world contains pyramids and/or frustums of pyramids, and whether or not the
objects may vary in size. However, if we not only allow blocks of varying sizes but
also limit the table size, this produces a significantly harder planning domain—one
which might turn out to be useful for investigating various issues in planning. For
example, it would probably be a good idea to investigate how easily deadlocks and
deleted-condition interactions can be handled in this domain.

3. Many other questions can be raised about the complexity of planning. For example,
we are currently looking at the time and space complexity of planning with various
kinds of Strips-like operators. Our results on this topic will appear in a forthcoming
paper [5].
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A Theorems and Proofs for Section 3

Theorem 1 Let B = (I,G) be any solvable EBW problem, and P be any plan for B. Then
there is a plan Q for B such that |Q| < |P| and Q has the following properties:

1. For every block b whose position in I is consistent with G, b is never moved in ().
2. ) mowves no block more than twice.

3. For every block b that is moved more than once, the first move is to the table.

4. For every block b that is moved to a location d # T, on(b,d) € G.

5. For every block b that is moved more than once, in the state immediately preceding the
first move, no block whose position is inconsistent with G can be moved to a position
consisient with G.

Proof. Suppose there is a block b whose position in I is consistent with ¢ such that P
moves b. Below, we prove by induction that there is a shorter plan P for B. By applving
this argument repeatedly, it follows that there is a plan P that satisfies Property 1. The
induction proof is as follows:

Base case: I contains on(b, 7). Then by removing from P all actions that move b, we still
have a plan for G.

Induction step: Suppose X contains on(b,c) for some block ¢, and suppose our proof
holds for all blocks below b. ¢’s position in S must be consistent with G, so from the
induction assumpption, there must be a plan P’ for G with |P'| < |P|, such that ¢ is
not moved. In P’, first remove all actions that move b, and then replace all occurrences
of ¢ by occurrences of 7. Then the resulting plan P” is a plan for G.

Suppose that some b is moved more than twice in P, and let move(b,u.v) and
move(d, z, y), respectively, be the first and last actions in P, that move b. If we replace
them by move(b,u.7) and move(b,7,y), respectively, and remove all other. actions that
move b, then the resulting plan Ps is a plan satisfying Property 1 such that | P3| < |P,|. By
applying this argument repeatedly, we can produce a plan Py satisfying Properties 1 and 2.

Let & be any block that is moved more than once in Py. Then from Property 2, b
is moved exactly twice, so let the two actions that move b be A; = move(b,u,v) and
A = move(b, v, w). There are two cases:

1. w= 7. Then aplan Ps shorter than P4 can be produced by removing A; and replacing
Ay with move(b,u, 7).

2. w # 7. Then replacing A; by move(b,u,7) and Ay by move(b, 7, w) will produce
another plan Ps for B having length no greater than that of P.

By applying the above argument repeatedly, it follows that there is a plan Pg satisfying
Properties 1. 2. and 3.

In Fg, for every action A = move(b.c,d) such that d # 7T, this is the last time that
b is moved in Ps. Therefore, unless on(b,d) € G. replacing this action with move(b, ¢, 7)

18



will produce another plan P; for B having length equal to that of P’. By applying this
argument repeatedly, it follows that there is a plan Py satisfying Properties 1, 2, 3, and 4.

Let b be any block in Fg that is moved more than once, Ay = move(b,c,7) be the first
action that moves b, and S be the state immediately prior to this action. Suppose that
in §, there is a block e whose position is inconsistent with G’ but which can be moved to
position consistent with . Then later in FPg, there must be an action A, = move(e, f, ¢)
that moves e to a position consistent with G. There are two cases:

1. g = 7. Since it is possible to move e in §, it is certainly possible to move it to the
table, and this cannot possibly interfere with any of the remaining actions in P; other
than the action Aj itself. Thus, removing A, from Ps and reinserting it just before
Ay will produce another plan Py for B having length equal to that of Fs.

2. ¢ # 7. Then from Property 4, on(e,g) € G. But if our supposition is true that in
S, e can be moved to a position consistent with G, then it must be that ¢’s position
in S is consistent with G. It follows from Property 1 that in the portion of Py that
comes after 5, neither g nor any of the blocks below it is moved.. Therefore, moving
¢ from f to g before the action move(b,c,7) cannot possibly interfere with any of
the remaining actions in Pg other than the action A, itself. Thefore, removing the
action Ag from Pg and reinserting it just before A; will produce another plan Py for
B having length equal to that of Ps.

By applying the above argument repeatedly, it follows that there is a plan @ satisfying
Properties 1-5. In none of the above steps did we increase the number of actions in the
plan, so it follows that |@| < |P|. W

Corollary 1 Any plan @ satisfying Properties 1-5 also has m — ¢ < |Q] < 2(m — g), where
m 18 the total number of blocks and q is the number of blocks in I whose positions are
consistent with G.

Proof. Every block whose position in [ is inconsistent with G' must be moved at least once.
There are m — ¢ such blocks, so |Q] > m — ¢. But @ moves no block whose position in [ is
consistent with G, and the other blocks it moves at most twice. Therefore, |@| < 2(m — q).
|

Corollary 2 B has an optimal plan satisfying Properties 1-5.

Proof. Let P be any optimal plan for B. From the theorem, |Q| < |P], so @ is also
optimal. M

Corollary 3 All plans produced for B by Solve-EBW and Solve-EBW-Optimally satisfy
Properties 1-5.

Proof. This follows immediately from an examination of the algorithms’ steps. I
Corollary 4 Solve-FEBW-Optimally will find an optimal plan for B.

Proof. Solve-EBW-Optimally generates every plan for [ satisfying Properties 1-5. Thus
[rom Corollary 2, Solve-EBW-Optimally will find an optimal plan.
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Corollary 5 The length of an optimal plan for B is m — q + r, where r is the minimum
number of times that Step 7 is executed in any of the czecution iraces of Solve-EBW-
Optimally.

Proof. Immediate from Corollary 4. W

B Theorems and Proofs for Section 4.1

Lemma 1 EBW PLAN is in NP.

Proof. The following nondeterministic algorithm solves EBW PLAN in polynomial time.

Algorithm Solve-EBW-PLAN(I.G, L)
If Solve-EBW-Optimally(7, G') finds a plan P such that |P| < L, then return
True. Otherwise return False.

[ |

If (V.E)is a digraph, then without loss of generality we may assume that V' is the set
of integers {1,2,...,p} for some p. If (V. E,k)is an instance of FEEDBACK ARC SET,
then we define M(V, E.k) to be the following instance (/,G, L) of EBW PLAN, where
L=(2p+2)p+k,Iand G are as defined below:

e For each v € V, I contains stack of 2p + 3 blocks, whose names (from the top of the
stack to the bottom) are [v,0,p],[v,0,p -1}, ..., [¢,0,0], [v,1.0],..., [v,],p], and
[v,I,p+ 1] (for example, see Figure 6). Thus, I consists of p stacks of 2p + 3 blocks
each, for a total of 2p% + 3p blocks.

o Forevery edge (2,y)in E, G contains the atom on{{2, 0, y],[y. I, z]). For every other
block b mentioned in I, G contains on(b, 7). For every block b mentioned in I such
that there is no block ¢ such that on(b, ¢) € G, G contains clear(b). Thus, G specifies
a state consisting of | E| stacks of 2 blocks each, and 2p* + 3p — | E| blocks sitting on
the table by themselves.

M(V,E. k) can easily be computed in polynomial time.

For the rest of this section, we let (V, E.k) be any instance of FEEDBACK ARC SET.
and (I, G, L) = M(V, E, k). Note that in I, the only blocks that are in their final positions
are [1,I,p+ 11,2, I,p+1],....[p. I,p+ 1]. Thus, there are 2p? + 2p blocks that are not in
their final positions.

Lemma 2 For each cycle in (V| E) there is a corresponding deadlocked set in (I,G), and
vice versa.

Proof. Suppose (V, E) contains a cyvcle (v1,v9,...,0p,v1). Then the edges (v1,vs),
(v2,03)y ..., (vp,1q) are in E, so in G, we have [v;,0,v] on [vg, ], 1), [vg,0,v3)
on [v3, I,v9), .... and [v,,0,v1] on [v1.1.v,). But in I, we have [v;,0,vs] above

[01.1, 1), [v2, O vs] above [ve, 1, 1], ..., and [v,, 0, vy] above [v,, [, v,-1]. Thus the set
{Ir1,0,29], [12. O, v3], . .. . Jv,, O. 0]} is deadlocked.
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1,02| 2,02
1,01 (2,01
1,0.0| [2.00
1,10 12,00

1.1.1 2,11
1,1.2 21.2 1,02 2,0,1 all other blocks
1=92 1,1.3 2.1,3 2,11 1.1,2 are on the table
The graph (V, E) The initial state 7 The goal state G

Figure 6: A graph (V, F'), and the EBW problem (I,G) produced by M(V, E k).

Conversely, suppose a set of blocks D is deadlocked. Then in G, each block b € D
must be on some other block ¢. But {rom the definition of (I, ), this means there are
v,w such that b = [v,0,w] and ¢ = [w,0,v]. Thus, there are z;,z29,...,2, such that
D = {[z,0,2)],[22,0,z3),....[2p, O, z1]} and G contains the following stacks: [z1,0., z2] on
(22,1, 7], [22,0, 23] on [z3,1, 23}, ..., [2,0, z1] on [21,], z,). From the definition of (I, G),
this means that (z1,22,...,2p,21) is a cycle in (V, E). W

As an example of Lemma 2, note that in Figure 6, the cycle (1,2,1)in (V, E') corresponds
to the deadlocked set of blocks {[1,0,2],[2,0,1]}in (I.G).

Lemma 3 (I,G) has a plan of length L or less iff (V, E) has a feedback arc set of size k
or less.

Proof. (—): Suppose (I,G) has a plan of length L or less. Then from Corollary 2, there
is an optimal plan P of length L or less that satisfies the properties of Theorem 1. Let T
be the set of all blocks that are moved more than once in P, and U be the set of all blocks
that are moved exactly once. Then from Theorem 1, each block in T is moved exactly twice
(once to the table and once to its final position), so |P| = 2|T| + |U]. But since 2p? + 2p
blocks are not in their final positions, |T|+ |U| = 2p? + 2p. Therefore,

T = |P| - (2p* +2p) < L — (2p* +2p) = k.

For each deadlocked set D, P resolves the deadlock by moving some block b € D to the
table. From the definition of deadlock, b’s final position must be on top of some other
block, so b € T'. From the proof of Lemma 2, b = [v, O, w] for some edge (v,w) € E. Thus,
T' contains blocks [v1,0.,wq),...,[v;,0,w;] such that every deadlocked set D contains at
least one of these blocks. Irom the proof of Lemma 2, it follows that every cycle in (1, E)
contains one of the edges (vy,wq), ..., (v;,w;), so (V,E) has a feedback arc set of size
JE T <k

(—): Suppose (V. E') has a feedback arc set F' = {(v1,wy),....(vq, wy)} such that ¢ < k.
In the operation of Solve-EBW-Optimallv(], &), Step 6 will never be executed, because (¢
specifies the position of every block. Thus. since I contains 2p® + 2p blocks that are not in
their final positions. Step 5 of Solve-EBW-Optimally will be executed 2p* 4 2p times. Bach
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time Solve-EBW-Optimally enters Step 7, the set of all blocks b that are at the top of their
stacks and are not in their final positions form one or more deadlocked sets. From Lemma 2,
each such deadlocked set D corresponds to a cycle in (V, E'), so at least one block [v,, O, w;] €
D corresponds to an edge (v;, w;) € F. But moving [v;, O, w;] to the table will resolve the
deadlock. Thus, there is an execution trace for Solve-EBW-Optimally(/,G') in which all
deadlocks are resolved by moving to the table blocks in the set {{vy, O, wr],...,[vy, O, wy]},
whence Step 7 is executed at most ¢ times. Thus, one of the execution traces for Solve-
EBW-Optimally finds a plan P of length [P| <2p? +2p+¢<2p*+2p+k=L1L. R

Theorem 2 EBW PLAN is NP-complete.

Proof. Lemma 3 shows that M reduces FEEDBACK ARC SET to EBW PLAN. Since
M runs in polynomial time, this means that EBW PLAN is NP-hard. But Lemma 1 shows
that EBW PLAN is in NP. Thus, EBW PLAN is NP-complete. W

Theorem 3 Finding opltimal plans for EBW problems is NP-hard, but no worse.

Proof. If one can find an optimal plan for an EBW problem, then for any L one can
immediately tell whether there is a plan of length L or less. Thus from Theorem 2, finding
an optimal plan is NP-hard.

To prove that finding optimal plans in EBW is no worse than NP-hard, we show that
it is Turing-reducible to EBW PLAN.? Suppose we have an oracle which, given an instance
(I,G,L) of EBW PLAN, tells whether the answer is yes or no. Then given any EBW
problem B = (I,G), we can find the length L of the optimal plan for B by repeatedly
guessing a value for L and asking the oracle to solve (I,G, L). Once we know L, we can
identify the first action in an optimal plan by repeatedly guessing a first action A and asking
the oracle to solve (I',G, L — 1), where I’ is the state produced by applying A to /. Once
we have identified the first move, we can identify the subsequent moves in a similar manner.
This will involve at most polynomially many calls to the oracle. M

C Theorems and Proofs for Section 5

Theorem 4 Let (I, G) be any solvable EBW problem. Then every execution trace of Solve-
EBW-Optimally(I,G) produces the same final state G' = Gy U Gy U G3U Gy, where

G1 = {onlb,c)lon(b,c) € G};

Gy {on(b,¢) € I|b’s position in I is consistent with G};

Gs = {on(b,T)|b’s position in I is inconsistent with G and for all y, on(b,y) & G'};
Gy = {clear(D)|b is the top of a mazimal stack in G1 U G2 U Gs}.

Proof. Let G’ be a final state produced by any of the execution traces of Solve-EBW-
Optimally(I,G). For each block b, G' contains exactly one atom of the form “on(b,y)”.
There are three cases for what this atom is:

*For more details on how to do this kind of proof, we refer the reader to pp. 115-117 of [6].



1. If on(b,c) € G, then y = ¢, for otherwise G is inconsistent with G.

2. If b’s initial position is consistent with &, then Solve-EBW-Optimally never moves b,
so y is the block b was on in I.

3. If b’s initial position is inconsistent with G but G contains no atom of the form
“on(b, z)”, then Solve-EBW-Optimally moves b to the table in Step 5 and never moves
b again,soy="7T.

From the above, it follows that the set of all “on™ atoms in G’ is G; U G5 U G'3. The clear
blocks in G’ are precisely those blocks that are at the tops of maximal stacks in G, so the
set of all “clear” atoms in G’ is G4. Thus, G’ = G UG, UG3UG4. R

Corollary 6 Solve-EBW(I,G) produces G' in time O(n3), and G' is consistent with G.

Proof. The execution trace of Solve-EBW(I, G) is identical to one of the execution traces
of Solve-EBW-Optimally(7, G), and Solve-EBW runs in time O(n?). Thus Solve-EBW(J, G)
produces G’ in time O(n®). Thus G’ is consistent with G, because Solve-EBW(I, G) does
not exit until its current state is consistent with G. W

Corollary 7 PBW PLAN is NP-complete.

Proof. From Corollary 6, it follows that Solve-EBW can be used to reduce any instance
(I,G,L)of EBW PLAN to an instance (I,G’, L) of PBW PLAN in polynomial time. Thus
PBW PLAN is NP-hard. Since every PBW problem is an EBW problem, it follows from
Lemma 1 that PBW PLAN isin NP. W

Theorem 5 Finding optimal plans for PBW problems is NP-hard, but no worse.

Proof. The proof of this theorem is basically the same as the proof of Theorem 3. The
details are left to the reader. M

D Theorems and Proofs for Section 6.2
Theorem 6 LBW PLAN is NP-complete.

Proof.  Given any EBW problem (/,). one can easily produce an equivalent LBW
problem (I, G, k) by letting & be the total number of blocks in I. Thus since EBW PLAN
is NP-hard, so is LBW PLAN.

To see that LBW PLAN is in NP, consider the following nondeterministic algorithm:

Algorithm Solve-LBW-Optimally(1, G, k):

Step 1: § — 1.

Step 2: If S is consistent with G, then exit with success.

Step 3: If Step 4 has been executed more than m® + 3m times. then exit with
failure.

Step 4: Nondeterministicallv select any clear block b whose position is not con-
sistent with ¢, and nondeterministically choose where to move it. Then go
to Step 2.
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For any LBW problem (I, G, k), Solve-LBW-Optimally will find an optimal plan P nonde-
terministically in polynomial time. One can tell whether or not there is a plan of length L
or less by checking whether or not |P| < L. W

Theorem 7 Finding optimal plans for LBW problems is NP-hard, but no worse.

Proof. The proof of this theorem is basically the same as the proof of Theorem 3. The
details are left to the reader. M

E Theorems and Proofs for Section 6.3

The Towers of Hanoi problem can be described as follows: there are p disks dy,ds,. .., d,,
and three locations py,py, p3. Initially, all the disks are at location py, with dy on d; on
...on dy. The goal is to get all the disks to p3 by moving them one at a time, with the
restriction that one cannot put a disk d; onto a disk d; unless ¢ < j. It is well known (for

example, see [1]) that the shortest plan for solving this problem has length 27 — 1.

Theorem 8 In polynomial time, the Towers of Hanoi problem can be reduced to VLBW in
a manner that preserves plan length.

Proof. Suppose we are given an instance H of the Towers of Hanoi problem, in which
there are disks dy,dy,...,d,. We will map this into the VLBW problem B defined below.

B contains blocks 01,b9,...,b, corresponding to H’s disks, and three more blocks
c1,€3,c3 to represent the locations pq, po, ps, respectively. To insure that a block b; can
be put onto a block &; if and only if ¢ < j, we need to make k;, < hy, if and only if ¢ < j;
and to insure that only one block can be placed on each b; we must make all the blocks
close enough in size that it will be impossible to fit more than one block onto any other
block. We satisfy these requirements by setting

hy, = kp, = p?,
hy, = ky, = p*+ 1,
hy, = ky, = p?+p—1,
hey = key = hey = key = hey, = key = p? + p.
To insure that there can never be more than three maximal stacks, we let the table size be
hy =3p* + 3p. The initial state contains three maximal stacks:

by on by on...on b,y onb,oncy;
€23
c3.
The final state also contains three maximal stacks:
€13
€23
byonbyon...onb, g onb,on cs.
Given H . one can produce B in polvnomial time. Clearly, each plan for A corresponds

move-for-move Lo a plan for B, with the optimal plan for H corresponding to the optimal
plan for B. W
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