
 

 

 

ABSTRACT 

 

Title of Dissertation:          ORGANIC ANODES AND SULFUR/SELENIUM CATHODES 

FOR ADVANCED LI AND NA BATTERIES 

 

    Chao Luo, Doctor of Philosophy, 2015 

Directed By:                            Professor Chunsheng Wang 

                              Department of Chemical and Biomolecular Engineering 

 

To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent 

demand to develop sustainable, renewable, environmental benign, low cost and high capacity 

energy storage devices to power electric vehicles and enhance clean energy approaches such as 

solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot 

satisfy the critical requirements for next generation rechargeable batteries. The commercial 

electrode materials (graphite anode and LiCoO2 cathode) are unsustainable, unrenewable and 

environmental harmful.  

Organic materials derived from biomasses are promising candidates for next generation 

rechargeable battery anodes due to their sustainability, renewability, environmental benignity 

and low cost. Driven by the high potential of organic materials for next generation batteries, I 

initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-

ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-



 

 

benzoquinone disodium salt as models to investigate the effects of size and carbon coating on 

electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the 

minimization of organic particle size into nano-scale and wrapping organic materials with 

graphene oxide can remarkably enhance the rate capability and cycling stability of organic 

anodes in both Li-ion and Na-ion batteries.  

To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. 

However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle 

reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of 

sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile 

and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate 

sulfur, selenium and selenium sulfide. The resulting composites exhibit exceptional 

electrochemical performance owing to the high conductivity of carbon and effective restriction 

of polysulfides and polyselenides in carbon matrix, which avoids shuttle reaction.  
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Chapter 1 Introduction 

 

1.1 Lithium Ion Battery System 

Lithium ion batteries (LIB) are widely used as energy storage devices for portable electronics, 

and are potential to drive electric vehicles. The first commercial LIB was invented by Sony 

Corporation using LiCoO2 as cathode and graphite as anode in early 1990s 
[1]

. Since then, 

extensive research interest from academy and industry is invoked to develop advanced cathode 

and anode materials for high performance rechargeable LIB. In the last two decades, a large 

variety of cathode and anode materials were investigated, and the energy density of LIB is 

remarkably improved from 250 W·h L
-1

 to 650 W·h L
-1

 
[2]

. However, current LIB still cannot 

satisfy the high energy requirement from smart phones and electric vehicles. Therefore, it is of 

great significance to develop high energy density LIB. 

Coin cell, a widely used battery product in the market, is the simplest model for LIB. A typical 

coin cell consists of cathode, anode, electrolyte, separator, current collectors, two stainless steel 

spacers, spring and cases. The cathode material is casted on aluminum current collector, while 

the anode material is casted on copper current collector. Aluminum and copper are used as 

current collector, because they are highly electro-conductive and highly stable during cycling. 

Separator, a nonconductive polymer film, is used to separate cathode and anode to avoid the 

short circuit. Electrolyte, an ionic conductive, but electronic nonconductive liquid, is added 

between cathode and anode to facilitate the lithium ion transport inside the battery, so during 

charge/discharge process, lithium ions can transport between cathode and anode through the 

electrolyte, while the electrons move in the outer circuit of the battery as shown in figure 1.1. 
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Cathode and anode, which determines the energy density of the battery, are active materials in 

the coin cell, while the rest components are inactive materials, which lowers the energy density 

of coin cell. To build the high energy density LIB, it is very critical to find high capacity cathode 

and anode materials.  

 

Figure 1.1. A typical LIB. 

The energy density of LIB is determined by the total capacity and voltage of the battery. The 

calculation method of energy density is shown in equation 1.1. Energy density is equal to the 

product of total capacity and voltage of the battery, which is the voltage difference between 

cathode and anode. The total capacity of the battery is determined by the capacity of cathode and 

anode. As shown in equation 1.2, the reciprocal of total capacity is equal to addition of the 

reciprocal of cathode capacity and the reciprocal of anode capacity, so the total capacity is 

mainly determined by electrode with lower capacity. In the commercial LIB, LiCoO2 with the 

specific capacity of ~140 mAh g
-1

 is used as cathode 
[3]

, while graphite with the specific capacity 

of 360 mAh g
-1

 is used as anode 
[4]

. The low capacity of LiCoO2 cathode limits the total capacity 

of LIB. More importantly, cobalt is a rare, expensive and toxic metal element, which not only 

enhances the cost of LIB, but also induces serious environmental issues. Thus, considerable 
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research efforts have been devoted to developing high voltage and high capacity environmental 

benign cathode materials for LIB, and a large variety of high energy density, low cost and 

environmental benign cathode materials such as sulfur, selenium, lithium metal phosphates, 

lithium metal oxides and lithium rich metal oxides are investigated for next generation LIB. 

E = 𝐶𝑡𝑜𝑡𝑎𝑙 ∗ 𝑉                                           [1.1] 

E: energy density; Ctotal: total capacity of the battery; V: voltage of the battery. 

1

𝐶𝑡𝑜𝑡𝑎𝑙
=

1

𝐶𝑐𝑎𝑡ℎ𝑜𝑑𝑒
+

1

𝐶𝑎𝑛𝑜𝑑𝑒
                   [1.2] 

Ctotal: total capacity of the battery; Ccathode: capacity of cathode; Canode: capacity of anode. 

Though high voltage and high capacity environmental benign cathodes are desired for next 

generation rechargeable batteries, sustainable and renewable anodes are also required to match 

with the cathodes for LIB. The commercial anode is graphite with a maximum theoretical 

capacity of 372 mAh g
-1

, calculated based on equation 1.3. It cannot satisfy the requirement for 

sustainable and renewable anode. In the last two decades, considerable research efforts were 

devoted to developing advanced anode materials for next generation rechargeable batteries. 

There are a large number of low cost anode materials such as silicon, tin, metal oxide and metal 

sulfides with much higher capacity than graphite. They are very promising to replace graphite for 

the next generation commercial anode. Recently, carbonyl group based organic anodes attracted 

extensive research interest from battery field due to the low cost, sustainability and renewability 

of organic materials derived from biomass.  

𝐶𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝑛∗𝐹

𝑀𝑤
                      [1.3] 
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n: number of lithium ions or electrons react with electrode material; F: Faraday constant; Mw: 

molecular weight of the electrode material. 

The great success in the development of advanced cathode and anode materials in the last two 

decades enables LIB to dominate the market of portable electronics and electric vehicles. LIB are 

also considered as promising energy storage devices to restore renewable energies such as solar 

energy, wind energy, hydroenergy and so on. The high electrochemical performance, high 

stability and high reliability make LIB the most promising energy storage devices in the future 

market. 

 

1.1.1 Cathode Materials 

Since the commercial LiCoO2 cathode suffers from high toxicity and high cost, considerable 

research efforts have been devoted to developing low cost, high capacity and environmental 

benign cathode materials. In the last two decades, a large variety of high energy density, low cost 

and environmental benign cathode materials such as sulfur, selenium, lithium metal phosphates, 

lithium metal oxides and lithium rich metal oxides were investigated for advanced LIB cathode. 

Their advantages and disadvantages as cathode materials in LIB are discussed in this section. 

Sulfur is considered as one of the most promising cathode materials due to its low cost, 

abundance and high capacity 
[5-7]

. The theoretical capacity of sulfur is 1672 mAh g
-1

, calculated 

based on equation 1.3. Pristine sulfur exists as S8 molecules, which can reversibly react with 16 

lithium ions as shown in equation 1.4. The energy density of lithium sulfur batteries (LSB) is 

2600 Wh kg
-1

, which is three to five times higher than other cathode materials. Though LSB is 

considered as one of the most promising rechargeable batteries, there are still several challenges, 
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which impedes its large-scale application. (1) The shuttle reaction due to the dissolution of 

polysulfide intermediates during lithiation/delithiation process results in low Coulombic 

efficiency and rapid capacity fading; (2) Low utilization of sulfur induced by the extremely low 

electronic and ionic conductivity of S and Li2S reduces the capacity and power density of LSB; 

(3) The stress/strain induced by the large volume change of 76% between sulfur (2.03 g cm
-3

) 

and Li2S (1.66 g cm
-3

) during lithiation/delithiation destructs the integrity of sulfur cathode and 

resulting in fast capacity decline. Significant progress has been made to overcome the three 

challenges by infusing sulfur into electronic conductive porous carbon matrix such as porous 

carbon 
[8]

, carbon nanotube 
[9]

, graphene 
[10]

, graphene oxide 
[11]

 and carbon nanofiber 
[12]

. The 

detailed review for sulfur cathode is discussed in section 1.3.1. 

                         
   [1.4] 

Selenium was firstly reported as a cathode material for LIB by Dr. Khalil Amine’s group in 2012 

[13]
. As the congener of sulfur, selenium shares similar chemical and physical property as sulfur. 

As shown in equation 1.5, one Se8 molecule can reversibly react with 16 lithium ions, 

corresponding to a theoretical capacity of 678 mAh g
-1

. Though the gravimetric capacity of 

selenium is lower than sulfur, the volumetric capacity of selenium (3253 Ah L
-1

 based on 4.82 g 

cm
-3

) is comparable to sulfur (3467 Ah L
-1

 based on 2.07 g cm
-3

). In addition, selenium has 20 

orders of magnitude higher electrical conductivity than sulfur. These features make it a 

promising cathode material for both LIB. However, similar to sulfur, the selenium cathodes also 
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suffer from shuttle reaction triggered by the dissolution issue of high-order polyselenides in the 

electrolyte. To circumvent the shuttle reaction, selenium is infused into carbon matrix such as 

porous carbon 
[14]

, carbon nanotube 
[15]

, graphene 
[16]

, graphene oxide 
[17]

 and carbon nanofiber 

[18]
. Analogous to sulfur cathode, carbon/selenium composites show remarkably improved 

battery performance. The detailed review for selenium cathode is discussed in section 1.3.2. 

              
 [1.5]

 

Lithium metal phosphates such as lithium iron phosphate, lithium manganese phosphate and 

lithium vanadium phosphate were investigated as cathode materials for LIB 
[19-21]

. Among them, 

olivine LiFePO4 is the most promising cathode material due to its low cost, high cycling stability 

and environmental benignity. However, it suffers from low capacity and poor electronic 

conductivity. The theoretical capacity of LiFePO4 is 169.6 mAh g
-1

 with charge/discharge 

plateaus centered at 3.45 V, so the maximum energy density of LiFePO4 is 585 Wh kg
-1

, which is 

much lower than sulfur and selenium cathode. To overcome the drawbacks of LiFePO4, various 

synthetic methods are adopted to prepare LiFePO4 nano-particles with uniform carbon coating. 

In 2009, Prof. Ceder’s group reported nano-size LiFePO4 with particle size less than 50 nm, 

exhibiting ultrafast charging and discharging 
[22]

. The nano-size LiFePO4 can reach its theoretical 

capacity at the current density of 2 C, while its reversible capacity can maintain 130 mAh g
-1

 at 

high current density of 50 C. Recently, graphene coated LiFePO4 cathode reported by Dr. Lain-

Jong Li’s group delivers a reversible capacity of 208 mAh g
-1

, which is even higher than its 
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theoretical capacity, with first cycle Coulombic efficiency of ~100% 
[23]

. Therefore, carbon 

coated nano-size LiFePO4 cathodes are promising cathode materials for Li-ion batteires. 

Despite sulfur, selenium and lithium metal phosphates are promising cathode materials for next 

generation LIB, the simplest method to design and synthesize cathode materials to substitute for 

LiCoO2 is to partially or fully replace cobalt in LiCoO2 by other cheap and nontoxic transition 

metals such as Ni, Mn and Fe. As a result, a large number of lithium metal oxides, such as 

LiMnO2, LiMn1.5Ni0.5O4, LiMn0.5Ni0.5O2, LiMn1/3Co1/3Ni1/3O2, LiNi0.5Co0.5O2 and so on, are 

synthesized and investigated as cathodes in LIB. Among them, LiMn1/3Co1/3Ni1/3O2 is very 

promising to substitute for LiCoO2, because it has similar energy density as LiCoO2, and its cost 

is much lower than LiCoO2 after partially substitution by nontoxic Ni and Mn 
[24]

. More 

importantly, the electrochemical performance such rate capability and cycling stability of 

LiCoO2 is improved after Ni and Mn doping. Another promising cathode material is high voltage 

LiMn1.5Ni0.5O4 spinel, which has a discharge plateau at 4.7 V 
[25]

. Since LiMn1.5Ni0.5O4 is a 

cobalt-free cathode material, and it has higher energy density than LiCoO2, there is extensive 

research interest to synthesize high performance and high voltage LiMn1.5Ni0.5O4 spinel. 

However, the migration of Mn
3+

 in LiMn1.5Ni0.5O4 spinel induces structure distortion during 

cycling, resulting in fast capacity fading. Moreover, the commercial electrolyte is not stable at 

high voltage, which also contributes to the capacity fading. Recent research shows that 

LiMn1.5Ni0.5O4 spinel with (111) family of surface planes exhibits exceptional battery 

performance, and fluorinated electrolyte is stable up to 5 V. Therefore, high voltage 

LiMn1.5Ni0.5O4 spinel is a promising cathode material for LIB. 

Another group of promising cathode materials are lithium rich layered oxide cathodes such as 

Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.2Ni0.2Mn0.6O2 due to their high capacity and low cost 
[26]

. The 
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lithium rich cathodes can deliver a high reversible capacity of ~250 mAh g
-1

 with a sloping 

voltage plateau centered at 3.5 V so that their energy density is ~875 Wh kg
-1

, which is much 

higher than LiCoO2. The higher capacity and energy density are attributed to the excess lithium, 

exists in the Li2MnO3 phase of lithium rich cathodes. Nevertheless, the lithium rich cathodes 

suffers from voltage fading and poor long-term cycling stability due to the crystal structure 

change and Mn
3+

 dissolution during cycling. The phase transformation of lithium and manganese 

rich cathode from layered structure to defect spinel-like structure and then to disordered rock salt 

structure has been reported by Jiguang Zhang’s group 
[27]

. The voltage fading is related with 

lithium ion insertion into the octahedral sites in both defect spinel-like and disordered rock-salt 

structures. Therefore, a lot work needs to be done to improve the structure stability and prevent 

Mn
3+

 dissolution before the application of lithium rich cathodes in LIB. 

 

1.1.2 Anode Materials 

To match with state-of-the-art cathode materials, considerable research efforts have been devoted 

to developing low cost and high capacity anode materials. Up to date, a large variety of anode 

materials, such as silicon, tin, metal oxides, metal sulfides, lithium titanium oxide, red 

phosphorous, lithium metal so forth, are investigated for advanced LIB anode. Compared with 

the commercial graphite anode, the capacity of the new anodes are much higher. However, the 

high capacity results in large volume change during lithiation/delithiation process, which causes 

severe particle pulverization. As a consequence, the particle pulverization is a main reason for 

the fast capacity fading of anode materials. To circumvent this challenge, numerous synthetic 
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methods are reported to fabricate nano-structure anode materials, which exhibit superior 

electrochemical performance. 

The lithiation/delithiation process of anode materials undergoes three types of reaction 

mechanisms: insertion reaction, conversion reaction and alloying reaction 
[28]

. The anodes such 

as graphite and lithium titanium oxide react with lithium ions via insertion reaction 
[29]

. The 

volume change during insertion reaction is small compared to conversion reaction and alloying 

reaction, and the capacity generated from insertion reaction is also smaller than that of 

conversion reaction and alloying. Red phosphorous, metal oxide and sulfide anodes react with 

lithium ions via conversion reaction, while silicon and tin anodes react with lithium ions via 

alloying reaction. These anodes suffer from poor electronic conductivity and large volume 

change, so fabricating nanomaterial is an effective approach to improve the anode performance. 

Silicon is a very promising anode material for LIB due to its low cost and very high capacity 
[30]

. 

The theoretical capacity of silicon anode is 4200 mAh g
-1

 in that silicon can react with 4.4 

lithium ions to form Li4.4Si. However, silicon suffers from ~400% volume expansion during 

lithiation so that large silicon particles pulverize into small pieces, which loss contact with 

conductive carbon and become electro-inactive. More importantly, the large volume change of Si 

during cycling can continuously destruct the solid electrolyte interphase (SEI) layer formed on 

the surface of Si electrode, resulting in large irreversible capacity and low Coulombic efficiency. 

To overcome the challenge for Si anode, Prof. Yi Cui’s group makes significant contribution to 

prepare nano-Si anodes for high-performance LIB 
[31]

. Their results confirm that minimizing 

particle size can effectively improve the battery performance of Si anode. 
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As a congener of Si, tin anode also suffers from large volume change, but the advantage of Sn 

over Si is its high electro-conductivity. It is not necessary to add a large amount of conductive 

carbon in the electrode to enhance the conductivity, but carbon coating is required to avoid the 

Sn agglomeration. A lot of work has been done to prepare carbon coated nano-Sn anodes, which 

exhibit excellent battery performance 
[32-35]

. Recently, some researchers proposed to use SnM (M 

= Fe, Co, Ni) as anode material for next generation LIB 
[36]

, because SnM anodes with much 

smaller volume change than Sn and Si have higher reversible capacity than graphite, and the 

electro-inactive metal can alleviate the Sn agglomeration, so the long-term cycling stability of 

SnM is exceptional.  

Apart from Si and Sn, metal oxides and sulfides, such as Fe2O3, CuO, NiO, MoS2, SnS, SnS2 and 

so on, are also investigated as anode materials for LIB due to the low cost and high capacity 
[37-

39]
. However, the potential hysteresis of metal oxides and sulfides is over 0.5 V, resulting in low 

energy efficiency. Though preparing carbon coated nanocomposites can facilitate reaction 

kinetics and mitigate large volume change of metal oxides and sulfides during 

lithiation/delithiation process, the low energy efficiency caused by large overpotential hinders its 

application in advanced LIB. 

Lithium metal is the most promising anode material in LIB due to its lowest discharge potential 

and highest capacity in all the anodes. Lithium metal is the only suitable anode for LSB and 

lithium air batteries, which show highest energy density in rechargeable batteries. However, the 

formation of lithium dendrite during cycling can penetrate the electrolyte and separator, and 

directly contact with cathode material, resulting in short circuit of the battery 
[40]

. The long-term 

cycling of lithium metal anode not only causes the failure of Li battery, but also leads to the 

explosion of Li battery due to the large amount of heat generated from short circuit. The safety 
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issue is a big concern for the application of lithium metal. Recently, Prof. Yi Cui’s group 

synthesized carbon coated lithium metal to avoid the growth of lithium dendrite 
[41]

. They 

successfully used lithium metal anode to match with LiFePO4 cathode, which is a significant 

progress for the application of lithium metal anode. Therefore, the lithium metal anode is very 

promising for the future application in high energy density LSB and lithium air batteries. 

Up to date, LIB are the most promising rechargeable batteries in the market due to its high 

energy density, high cycling stability, high safety and high reliability. A lot of work needs to be 

done to increase the energy density and decrease the cost of cathode and anode. The high energy 

density, low cost and environmental benign LIB are demanded in the future market. 

 

1.2 Sodium Ion Battery System 

Na-ion batteries (NIB), which share similar chemistry with LIB, attract tremendous research 

interest from battery field in the last decade due to the abundance and low cost of sodium sources. 

The chemical and physical properties of sodium versus lithium are summarized in table 1.1 
[42]

. 

The cost of sodium carbonate is only 3% of lithium carbonate. More importantly, lithium sources 

are limited and unevenly distributed in the world, but sodium sources are abundant and 

everywhere. The large availability and low cost of sodium sources make NIB promising 

candidates to restore renewable energies such as solar energy, wind energy, hydro-energy and so 

on. However, the potential of sodium metal is 0.33 V higher than lithium metal and the 

theoretical capacity of sodium metal is merely ~30% of lithium metal, resulting in lower energy 

density of NIB than LIB. Moreover, the cation radius of sodium ion is 40% larger than lithium 
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ion. The larger cation radius causes more severe volume change and complicated reaction 

mechanism of NIB. 

Category Lithium Sodium 

Atomic Weight (g mol
-1

) 6.9 23 

Density (g cm
-3

) 0.534 0.968 

Cation Radius (Å) 0.76 1.06 

Potential (V) versus SHE -3.04 -2.71 

Cost, Carbonates ($/ton) 5000 150 

Theoretical Capacity (mAh g
-1

) 3829 1165 

Table 1.1. Sodium versus Lithium characteristics 
[42]

. 

In the last decade, considerable research efforts have been devoted to developing advanced 

cathode and anode materials for NIB. Due to the similar chemical and physical property of 

sodium to lithium, a large number of cathode and anode materials, used in LIB, can also be used 

in NIB. The promising cathode materials are sulfur, selenium, O3-type and P2-type sodium 

metal oxides, sodium metal phosphate and sodium metal sulfates, while the promising anode 

materials are nongraphitic carbonaceous materials, tin, antimony, red phosphorous and metal 

sulfides. Though significant progress has been made for NIB cathodes and anodes, more efforts 

are still required to further improve the cycling stability and energy density of NIB. 

 

1.2.1 Cathode Materials 

Analogous to LIB, sulfur and selenium can also be used as cathodes in Na batteries 
[43, 44]

. The 

shuttle reaction caused by the dissolution of polysulfides and polyselenides in the electrolyte also 

exists in Na sulfur/selenium batteries. Due to the larger ion size of sodium, larger volume change 
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occurs during sodiation/desodiation process. It is more difficult to stabilize Na sulfur/selenium 

batteries. Currently, there are few reports related with room temperature Na sulfur/selenium 

batteries. 

Apart from sulfur and selenium, O3-type and P2-type sodium metal oxides are also promising 

cathode materials in NIB. The crystal structure of O3-type and P2-type sodium metal oxides are 

shown in figure 1.2a and 1.2b 
[45]

. There are three faces (A, B, C) in O3-type metal oxides, and 

sodium ions are inserted in the space between two different faces, while there are two faces (A, 

B) in P2-type metal oxides, and sodium ions are inserted in the space between two same faces. 

The O3-type metal oxides such as NaMnO2, NaNiO2, NaFeO2 and NaNi0.33Mn0.67O2 contain one 

sodium ion in the molecular formula, which cannot be fully desodiated, while the P2-type metal 

oxides such as Na0.5VO2, Na0.5CoO2, Na0.67MnO2, Na0.67Ni0.33Mn0.67O2, and Na0.67Fe0.5Mn0.5O2 

contain less than 0.67 sodium ion in the molecular formula, which can be fully desodiated. After 

first desodiation, one mole of P2-type metal oxides can reversibly react with one mole of sodium 

ions, resulting in much higher reversible capacity (~200 mAh g
-1

) than O3-type metal oxides 

(~120 mAh g
-1

) 
[46]

. Therefore, P2-type sodium metal oxides are more promising than O3-type 

sodium metal oxides for NIB cathodes. However, the structure distortion exists in both O3-type 

and P2-type sodium metal oxides owing to the metal ion migration during sodiation/desodiation 

process. To improve the cycling stability of O3-type and P2-type sodium metal oxides, a lot of 

work needs to be done to maintain the crystal structure upon cycling. 

Sodium metal phosphate such as NaFePO4 and NaFePO4F, and sodium metal sulfate such as 

Na2Fe2(SO4)3 are also promising NIB cathodes due to the low cost, abundance and 

environmental benignity 
[47-50]

. Since NIB are designed to restore renewable energy, its cycle life 

is the most important factor. Sodium metal phosphate and sulfates show good cycling stability, 
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which makes them very suitable for NIB. The main drawback of these cathodes is the low 

capacity, which is less than 120 mAh g
-1

. Though a number of methods are adopted to synthesize 

nano-structured sodium metal phosphate, the energy density is much lower than P2-type sodium 

metal oxides. 

(a)  (b)  

Figure 1.2. Crystal structure of O3 type (a) and P2 type (b) sodium metal oxides 
[45]

. 

The state-of-the-art cathodes still cannot satisfy the critical requirement for advanced NIB. The 

cycling stability is the main concern for NIB. However, the cycle life of current cathodes are still 

far away from the requirement, especially for the cathodes with high reversible capability. 

Therefore, new cathode materials with high capacity and long cycle life are demanded for 

advanced NIB. 

 

1.2.2 Anode Materials 

Besides cathodes, there are also a lot of anode materials reported for NIB such as nongraphitic 

carbonaceous materials, tin, antimony, red phosphorous and metal sulfides. The volume change 

of NIB anodes is even larger than LIB anode due to larger ion size of sodium ion than lithium 
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ion, so more severe particle pulverization occurs during sodiation/desodiation process, resulting 

in worse cycle life. Furthermore, the commercial graphite anode and promising Si anode are 

electro-inactive in NIB. Considerable research efforts have been devoted to developing NIB 

anodes. 

The nongraphitic carbonaceous materials are promising anodes for NIB due to the low cost and 

high cycling stability. Though nongraphitic carbonaceous materials such as hard carbon 
[51]

, 

graphene 
[52]

 and expanded graphite 
[53]

 deliver low reversible capacity, which is less than 300 

mAh g
-1

, they exhibit excellent cycling stability. For instance, the expanded graphite anode can 

deliver a reversible capacity of 284 mAh g
-1

 at 20 mA g
-1

, and maintain a reversible capacity of 

184 mAh g
-1

, 73.92% of its initial capacity at 100 mA g
-1

 after 2000 cycles 
[53]

. The long cycle 

life of nongraphitic carbonaceous materials is desired for NIB anode, but more efforts are still 

required to achieve high capacity and high cycling stability anodes. 

To obtain high capacity and high cycling stability anodes, a lot of researchers change their 

research interest to tin 
[54]

, antimony 
[55]

, red phosphorous 
[56]

 and metal sulfides 
[57]

, which 

undergo either alloying reaction or conversion reaction with sodium ions. The high capacity (600 

mAh g
-1

 to 1000 mAh g
-1

) of these anodes leads to large volume change, resulting in severe 

particle pulverization. For example, tin anode with high capacity ~800 mAh g
-1

 suffers from 420% 

volume change during sodiation/desodiation process 
[54]

. The fast capacity decay caused by large 

volume change can be alleviated by carbon coating and minimizing the particle size. Thus, a lot 

of work has been done to prepare carbon coated tin nanocomposites to enhance the cycle life of 

tin anodes. Similar work has also been done to antimony, red phosphorous and metal sulfide 

anodes. The carbon nanofiber coated antimony anodes show improved cycle life due to 

accommodation of moderate volume change of nano-size antimony by carbon nanofiber 
[55]

. The 
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success of carbon coating and minimizing the particle size demonstrates that the high capacity 

and high cycling stability of NIB anodes can be achieved. 

 

1.3 Review of Previous Work in Sulfur and Selenium Cathodes 

LSB is a very promising candidate for the next generation rechargeable battery due to the low 

cost, abundance and high capacity of sulfur. However, there are three inevitable challenges for 

sulfur cathode as discussed in section 1.1.1. Firstly, to overcome the insulting property of sulfur, 

conductive carbon is added into sulfur cathode to increase the electro-conductivity. For the 

second challenge, a large number of physical and chemical methods are reported to mitigate the 

shuttle reaction induced by the dissolution of polysulfides 
[58-60]

. As shown in figure 1.3, pristine 

sulfur exists as S8 in the nature. During the lithiation, S8 will gain two lithium ions and two 

electrons to form Li2S8. Then, Li2S8 will gain electrons and lithium ions to generate Li2Sn (n=4-

7). Li2S4~8 are called lithium polysulfides, which are highly soluble in organic electrolyte. After 

dissolution, polysulfides can diffuse to the anode side, and react with lithium metal to be further 

reduced to lithium sulfides such as Li2S2 and Li2S, which are insoluble in the electrolyte and 

deposit on the surface of anode. After the anode is fully covered, the lithium polysulfides will 

react with the insoluble lithium sulfides and generate low order lithium polysulfide. When the 

concentration of low order lithium polysulfide is high enough, it will diffuse back to the cathode 

side due to the concentration gradient. This whole process is called shuttle reaction. The last 

challenge is the large volume change of sulfur during lithiation/delithiation process. Professor Yi 

Cui’s group reported hollow structure sulfur/TiO2 composites, in which the large volume change 
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of sulfur can be accommodated by hollow TiO2 shells 
[61]

. The resulting sulfur/TiO2 composites 

show excellent electrochemical performance in Li batteries. 

 

Figure 1.3. The shuttle reaction in LSB. 

As a congener of sulfur, selenium also suffers from shuttle reaction and large volume change, so 

a lot of methods used to stabilize sulfur cathode are useful in selenium cathode. Since the 

conductivity of selenium is higher than sulfur, and selenium is nonflammable, while sulfur is 

flammable, selenium is more promising than sulfur to build a safe cathode in Li batteries, which 

is a very critical concern in industry. The recent progress in sulfur and selenium cathodes are 

discussed in the following sections. 

 

1.3.1 Sulfur Cathode 

Currently, there are several methods to avoid the dissolution of polysulfides in organic 

electrolyte. Firstly, a variety of physical methods are harnessed to stabilize polysulfides in the 

cathode electrode. Professor Linda’s group fills sulfur into mesoporous carbon matrix by heating 

the mixture of carbon and sulfur at 155 
o
C 

[62]
.
 
The resulting sulfur and mesoporous carbon 

composites (SMCC) display good cycling stability and high specific capacity. Since mesoporous 
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carbon possesses good ionic and electronic conductivity, SMCC overcame the drawback of 

insulating sulfur material. The good conductivity of SMCC allows lithium ions and electrons to 

transfer inside the carbon matrix, and the small pores of mesoporous carbon could confine 

polysulfide in the carbon matrix. Although this material exhibits very good electrochemical 

performance, the low weight percentage of sulfur in the composite and high cost of mesoporous 

carbon impede its application in LIB. 

Professor Linda’s work provided a good concept to stabilize polysulfides in cathode electrode. 

Afterwards, a lot of other carbon matrixes have been used to trap polysulfides. For example, our 

group uses disorder carbon nanotubes (DCNTs) to constrain Polysulfides 
[9]

. DCNTs are 

fabricated by annealing polyacrylonitrile (PAN) in commercial anodic aluminum oxide (AAO) 

template at 600 
o
C. After PAN is carbonized, AAO template is dissolved in the NaOH aqueous 

solution. The resulting DCNTs are filled with sulfur by annealing in a sealed vacuum glass tube 

at 500 
o
C. Since DCNTs have very good electronic and ionic conductivity, the sulfur 

impregnated DCNTs material possesses very good conductivity. More importantly, DCNTs are 

able to constrain polysulfides inside the nanotube, because the pore size of carbon nanotube is 

too small to allow the diffusion of electrolyte. The polysulfides in DCNTs cannot dissolve into 

the electrolyte, so the electrochemical performance of this material is very good. Nevertheless, 

the low content of sulfur in this material and the difficulty to synthesize DCNTs hinder its 

application in LIB. 

Professor Yi Cui’s group successfully uses poly (ethylene glycol) (PEG) surfactant and mildly 

oxidized graphene coating layers to wrap sulfur particles 
[10]

. The amphiphilic PEG surfactant is 

harnessed to connect hydrophobic sulfur particles and hydrophilic graphene coating layers. 

Carbon black nanoparticles are decorated on the surface of graphene layers to increase the 
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conductivity of graphene wrapped sulfur composite, so this material has good electronic and 

ionic conductivity. More importantly, both PEG layers and graphene layers can trap polysulfide 

to avoid its dissolution in organic electrolyte. PEG layers can also accommodate the volume 

change of sulfur particles during the lithiation and delithiation. As a result, this cathode material 

shows high capacity and long cycle life. However, the graphene-sulfur composites are difficult to 

fabricate, and the use of graphene enhances the cost of this material. It is unable to use this 

material for large-scale application. 

Professor Yuegang Zhang’s group uses graphene oxide sheets (GOS) to immobilize sulfur and 

lithium Polysulfides 
[11]

. The sulfur nanoparticles are coated on the surface of GOS by simple 

chemical reaction deposition approach. Then, low temperature thermal treatment allows sulfur to 

diffuse into small voids of GOS, and removes sulfur particles from the surface of GOS. Since 

GOS had large surface area and good electronic and ionic conductivity, the electron and lithium 

ion transfer rate in the resulting sulfur-graphene oxide nanocomposite is very fast. Moreover, the 

functional groups on the surface of GOS can bind with polysulfides so that it prevents 

polysulfides from dissolving into the electrolyte. The sulfur-graphene oxide nanocomposites 

have excellent electrochemical performance in organic electrolyte. 

There are some other methods which are also extensively used to reduce the solubility of 

polysulfides in organic electrolyte. Conductive polymer such as polythiophene (PTH) is used to 

wrap sulfur particles 
[63]

. The sulfur particles are coated by PTH to form a core/shell structure. 

Since PTH had good electronic and ionic conductivity, PTH wrapped sulfur composite had good 

conductivity. PTH also acts as an absorbing agent which could immobilize polysulfides, because 

of the interaction between polysulfides and sulfur atoms in PTH. The PTH wrapped sulfur 

composites exhibit high specific capacity and good cycling stability. However, electrolyte could 
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penetrate porous structure of PTH shell to contact with polysulfides, so the polysulfides would 

still dissolve into the electrolyte in the long run. In addition, the low content of sulfur in the 

electrode material also limits the application of this material in LIB. 

Besides physical trapping, the other methods are also employed to mitigate the shuttle reaction in 

LSB. For instance, LiNO3 additive is added into the electrolyte to avoid the dissolution of 

polysulfides. At low potential, LiNO3 is irreversible reduced and formed a stable passivation film 

on the surface of lithium anode 
[64]

. It could protect lithium metal from reacting with polysulfides, 

so the shuttle reaction could be deterred from the anode side. However, the dissolution of 

polysulfides in the cathode side still takes place. The LiNO3 additive cannot be used to enhance 

the performance of LSB alone. The synergic effect of LiNO3 additive and carbon wrapping is 

used in LSB. 

Recently, a solvent-in-salt (SIS) electrolyte is used for sulfur cathode 
[65, 66]

. The concentration of 

LiTFSI in 1, 3-dioxolane (DOL) and dimethoxyethane (DME) (1:1 by volume) is 1 mol L
-1

 in 

normal electrolyte. However, the concentration of LiTFSI is improved to 5 mol L
-1

 in the SIS 

electrolyte. The ultrahigh concentration of lithium ions in the electrolyte not only increases mass 

transfer rate of lithium ion, but also decreases the dissolution of polysulfides. Since the solubility 

product of lithium polysulfides is a constant, the saturated concentration of polysulfides is very 

low when the concentration of lithium ion is ultrahigh in the electrolyte. More importantly, the 

ultrahigh concentration of LiTFSI in electrolyte can increase the viscosity of electrolyte, 

resulting in a low diffusion rate of polysulfides in electrolyte. As a consequence, the SIS 

electrolyte can successfully enhance the electrochemical performance of LSB. 
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Though tremendous work has been done to improve the battery performance of sulfur cathode, 

LSB are still far from practical application. More work is still needed to synthesize high loading 

content, high capacity and high cycling stability LSB. 

 

1.3.2 Selenium Cathode 

After selenium (Se) and selenium sulfides (SeSx) were reported by Dr. Amine’s group in 2012, 

Se cathode attracted considerable research interest from battery field due to its higher electrical 

conductivity than sulfur and similar volumetric capacity to sulfur. In the past three years, a lot of 

work was done to investigate selenium cathode, and great progress was made in lithium Se 

batteries. 

The lithiation/delithiation mechanism of Se and SeSx cathodes in ether-based electrolyte is 

confirmed by Dr. Amine’s group 
[67]

. A series of SeSx (x = 0-7)/carbon composites are 

synthesized and used as cathodes in Li batteries. During lithiation, Se reacts with lithium ions to 

generate lithium polyselenides, which is soluble in the electrolyte, and then lithium polyselenides 

are further reduced to Li2Se2 and Li2Se step by step. During delithiation, Li2Se is oxidized to Se 

with the formation of lithium polyselenide intermediates. This result confirms that selenium 

cathode also suffers from shuttle reaction, and the methods used to stabilize sulfur cathode are 

also useful for Se cathode. 

A lot of efforts have been made to avoid the dissolution of polyselenides in the electrolyte. Prof. 

Yuguo Guo’s group infuses Se into mesoporous carbon to trap polyselenides in the nanopores of 

carbon matrix, which avoid the contact of polyselenides with electrolyte 
[14]

. In addition, Se 

exists as cyclic Se8 molecules, which are converted to chain-structure Sen molecules in 
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mesoporous carbon after first cycle. The synergic effect of formation of chain-structure Sen 

molecules and confinement of mesoporous carbon remarkably suppresses the shuttle reaction. 

Therefore, the resulting Se/mesoporous carbon composite exhibits excellent electrochemical 

performance. 

In selenium cathodes, carbon coating and nanomaterial fabrication is used to encapsulate Se, thus 

circumventing the shuttle reaction. Reduced graphene oxide coated Se 
[17]

, nanofibrous Se 
[68]

, 

free standing graphene/Se film 
[69]

 and carbonized polyacrylonitrile coated Se 
[70]

 are also 

reported to demonstrate improved electrochemical performance. Up to date, it is confirmed that 

most of methods used in stabilizing sulfur cathode are also effective to stabilize Se cathode. 

Therefore, analogous to LSB, More work is still needed to synthesize high loading content, high 

capacity and high cycling stability lithium Se batteries to fulfill the practical application in the 

future. 

 

1.4 Review of Previous Work in Organic Electrodes 

Energy crisis induced by petroleum exhaustion is a critical issue for the development of world's 

economy and industry. To circumvent the negative impact of energy crisis, considerable research 

efforts have been devoted to sustainable and green energy such as solar energy, wind energy and 

so forth. However, these types of energy are unstable and vary with time and season. To make 

full use of the renewable energy, it is of great importance to develop an efficient energy storage 

system. Up to now, the best energy storage devices are LIB, which power most portable 

electronics 
[71]

. 
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LIB are considered as the most promising energy storage devices for emerging electric vehicles 

and smart grids due to the high energy density and high power density. Currently, LIB largely 

rely on inorganic compounds as electrodes such as LiCoO2 and LiFePO4. Most of these 

compounds are synthesized using non-earth-abundant resources via energy-demanding ceramic 

processes 
[72]

. Recycling of used batteries further consumes large quantities of energy and 

chemicals, releasing more CO2 and SO2. To satisfy the urgent demand for rechargeable energy 

storage devices in electric vehicles and smart grids, next generation battery electrodes should be 

made from renewable or recyclable resources via low energy consumption processes. One 

possible approach is to use biomass
 
or recyclable organic materials as electrode materials via 

solution phase routes 
[73]

. In addition, most of organic compounds are degradable in the 

environment, so the organic electrode materials are environmentally benign. 

Recently, carbonyl group based organic materials such as purpurin 
[74]

, tribrominated 

trioxotriangulene 
[75]

, perylenetetracarboxylic anhydride
 [76]

 and other compounds have been 

investigated as electrodes for LIB, and some organic materials can also been used for NIB 

electrodes due to the chemical similarity of sodium to lithium. Two or more carbonyl groups 

connected by conjugated carbon matrix can react with lithium ions and electrons to induce the 

electron and charge transfer in the battery. However, due to dissolution of organic compounds in 

electrolyte and very low electronic conductivity, the electrochemical performance of these 

sustainable organic electrode materials is much worse than their inorganic counterparts. The 

solubility of organic compounds could be reduced by enhancing their polarities via salt 

formation 
[77]

. Among the salts, carbonyl group based organic compounds such as dilithium 

trans-trans-muconate and dilithium terephthalate have been investigated as electrodes for Li ion 

batteries 
[77]

. Although use of organic salts can mitigate the dissolution issue 
[72]

, the low 
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electronic conductivity of organic salts and large volume change during lithiation/delithiation 

still limit the power density and cycling stability of organic electrodes. Due to the very low 

electrical conductivity of most organic compounds, up to 30 wt% of conductive carbon black is 

normally mixed into organic electrode to provide electron pathways for the electrochemical 

reactions and another ~5-10% (by weight) nonconductive polymer binders are also needed to 

mechanically bind all the components into an  electrode. Even adding 30 wt% of carbon black, 

there is only a portion of active materials contributes to the output power of a battery in organic 

electrodes due to large size of organic salt particles. A recent work of organic Li4C8H2O6 

nanosheets for LIB has demonstrated that nanosheet structure provides short Li
 
ion diffusion 

pathways and large contact areas for both conductive carbon and electrolyte, leading to high rate 

capability 
[78]

. Therefore, the fabrication of organic nanomaterials is a new direction for the 

battery performance improvement of organic electrodes. 

 

Scheme 1.1. Molecular structure of dilithium rhodizonate. 

In 2008, Professor Tarascon’s group reported a renewable organic electrode based on dilithium 

rhodizonate for sustainable LIB 
[73]

. The dilithium rhodizonate derived from biomass is the first 

small molecular organic salt used in LIB. Its molecular structure is shown in scheme 1.1. The 

formation of organic salt can remarkably reduce the solubility of organic material in the 

electrolyte. As a result, this organic salt shows good electrochemical behaviors. As a cathode 

material, its energy density is over 1000 Wh kg
-1

 at low current density, which is two times 
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higher than commercial LiCoO2 and LiFePO4 cathodes. This work sheds light on the 

development of organic electrodes. 

 

Scheme 1.2. Reaction mechanism of lithium salt of tetrahydroxybenzoquinone in LIB. 

Considerable research interest is attracted from battery field after the report of high energy 

density renewable dilithium rhodizonate cathode. The lithium salt of tetrahydroxybenzoquinone 

is synthesized by annealing dilithium rhodizonate at 400 
o
C 

[79]
. As shown in scheme 1.2, there 

are two carbonyl groups in the lithium salt, which are redox centers. They can reversibly react 

with two lithium ions and electrons, and deliver a reversible capacity of ~200 mAh g
-1

 with 

charge/discharge plateaus centered at 1.8 V. The good electrochemical performance of lithium 

salt of tetrahydroxybenzoquinone further confirms that sustainable and renewable LIB are very 

promising solve the environmental issue triggered by current LIB technology. 

 

Scheme 1.3. Reaction mechanism of dilithium terephthalate in LIB. 

Apart from cathodes, organic salts can also be used as anodes in LIB. The dilithium terephthalate 

is synthesized by neutralizing terephthalic acids with lithium hydroxide 
[77]

. The two carboxylic 

groups in dilithium terephthalate can reversibly react with two lithium ions and electrons in 

scheme 1.3. This organic anode delivers a reversible capacity of 234 mAh g
-1

 with 

charge/discharge plateaus centered at 0.8 V after 50 cycles. Therefore, this organic anode can 
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match with previous organic cathode materials to build an organic full cell. To fulfill the large-

scale application of sustainable and renewable LIB, the cycling stability of organic cathodes and 

anodes should be further improved. 

 

Scheme 1.4. Reaction mechanism of disodium terephthalate in NIB. 

Considerable organic materials have been investigated as electrodes for LIB, but only a few 

orginic materials were explored for NIB. These organic salts which normally contain more than 

two carbonyl groups, connected by conjugated carbon matrix, are similar as the organic 

electrodes in LIB. Recently, some sodium salts such as disodium terephthalate, tetrasodium salt 

of 2,5-dihydroxyterephthalic acid and so forth were reported as organic electrodes in NIB 
[80]

. 

Similar to lithium salt, disodium terephthalate (scheme 1.4) can also reversibly react with two 

sodium ions and electrons, but the sodiation/desodiation plateaus are 0.3 V lower than 

lithiation/delithiation plateaus due to the lower potential of sodium metal than lithium metal. 

This result confirms that the electro-active organic salts in LIB can also be used in NIB. 

 

Scheme 1.5. Reaction mechanism of tetrasodium salt of 2,5-dihydroxyterephthalic acid in NIB. 

Recently, Professor Jun Chen’s group reported the tetrasodium salt of 2,5-dihydroxyterephthalic 

acid which can be used as both cathode and anode in NIB 
[81]

. There are two types of redox 
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centers in this organic salt in scheme 1.5. One is the two carbonyl groups in the benzene ring, 

which can be used as cathode; the other one is the carboxylic group connected with benzene ring, 

which can be used as anode, so this salt is used to build an all organic NIB with good battery 

performance. Therefore, organic salts not only can be used to build sustainable and renewable 

LIB, but also can be used to build sustainable and renewable NIB. 

 

1.5 Motivation and Objective 

Sulfur and selenium are promising cathode materials for Li and Na batteries due to their high 

capacity and high energy density. The application of sulfur and selenium cathodes is desired to 

satisfy the industrial requirement for high energy rechargeable batteries. However, the severe 

shuttle reaction caused by the dissolution of polysulfides and polyselenides results in fast 

capacity decline of sulfur and selenium cathodes, impeding the large-scale application. Though 

numerous physical and chemical methods are used to trap polysulfides and polyselenides, sulfur 

and selenium cathodes are still far away from practical application due to the poor battery 

performance.  

My goal is to circumvent the three challenges in sulfur and selenium cathodes, using mesoporous 

carbon or carbonized organic compounds/polymer. Several different carbon/sulfur or selenium 

composites are prepared for advanced Li and Na batteries. The conductive carbon matrix cannot 

only enhance the conductivity of the electrodes, but also mitigate the shuttle reaction and 

accommodate large volume change of sulfur and selenium cathodes. 

To fulfill the large scale application of batteries for renewable energy, the low cost and 

environmental benignity of electrode materials are pivotal. Since lithium sources are expensive 
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and limited, the research interest initiates to transfer from LIB to its counterpart, NIB, in recent 

years.
 
The chemical similarity of sodium to lithium enables most electrode materials in LIB to be 

used in NIB. The low cost and abundance of sodium sources can satisfy the huge market of 

energy storage devices for smart grids. Therefore, searching for high capacity and long cycle life 

cathode and anode materials in NIB is essential for the storage of renewable energy. Besides 

storage of renewable energy, the trend of energy supply for portable electronics is to develop 

lightweight, flexible, transparent and green batteries. Organic compounds derived from 

biomasses are the most promising candidates as future energy supply for portable electronics due 

to their low density, sustainability, environmental benignity and low cost.
 

Most reported organic salts experience phase transformation during lithiation/delithiation as 

evidenced by a flat voltage plateau in charge/discharge profile and structure change in X-ray 

diffraction (XRD) patterns 
[77]

. The phase transformation is normally accompanied with volume 

change. The large volume expansion in the first lithiation can even change the crystal structure of 

organic salts into amorphous structure and retain amorphous structure in the following 

charge/discharge cycles 
[77]

,
 
which is also observed in Si anodes.

33
 The structure change of Si 

from crystal to amorphous structure is attributed to the large volume change (300%) of Si during 

lithiation 
[82]

. The severe volume change of Si pulverizes the Si particle, resulting in rapid 

capacity decline during charge/discharge cycles 
[83]

. Therefore, the volume change of organic 

salts during lithiation/delithiation may be also responsible for the capacity decay. 

In principle, the carbonyl group based organic electrode compounds used in LIB can potentially 

be applied to NIB. However, due to larger ion size of Na
+
 than Li

+
, only few organic salts are 

suitable for Na ion batteries. In addition, the larger ion size of Na
+
 causes much more severe 

volume change of organic salts, resulting in fast capacity decay of organic compounds in Na ion 
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batteries. Therefore, only few organic compounds are explored for NIB. Due to the large volume 

change, these organic compounds show quick capacity decline during Na insertion/extraction. 

My goal is to develop low cost, sustainable and green batteries based on high capacity and long 

cycle life organic electrodes. Several new organic nanomaterials are designed and synthesized to 

mitigate volume change of organic salts for high performance organic batteries. 

 

1.6 Dissertation Layout 

Chapter 2: The poor cyclic stability and low sulfur utilization of sulfur cathodes are 

significantly improved by forming oxygen stabilized C/S composite where sulfur is bonded with 

oxygen and uniformly distributed in carbon matrix in nano (or even in molecular) levels through 

annealing the mixture of sulfur and perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) at 

600 
o
C in a sealed vacuum glass tube. The oxygen stabilized C/S composites are promising 

cathode materials for Li-sulfur and Na-sulfur batteries. (Adv. Funct. Mater. Submitted; C.L., K.X. 

and C.W. conceived the experiments and wrote the paper; C.L., Y.Z., T.G. and Y.X. conducted 

the experiments; All authors participated in discussions.) 

Chapter 3: Selenium impregnated carbon composites were synthesized by infusing Se into 

mesoporous carbon at a temperature of 600 
o
C under vacuum. Ring-structured Se8 was produced 

and confined in the mesoporous carbon, which acts as an electronic conductive matrix. During 

the electrochemical process in low-cost LiPF6/EC/DEC electrolyte, low-order polyselenide 

intermediates formed and were stabilized by mesoporous carbon, which avoided the shuttle 

reaction of polyselenides. Exceptional electrochemical performance of Se/mesoporous carbon 

composites was demonstrated in both Li-ion and Na-ion batteries. (ACS Nano 2013, 9, 8003-
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8010; C.L. and C.W. conceived the experiments and wrote the paper; C.L., Y.X., Y.Z. and Y.L. 

conducted the experiments; All authors participated in discussions.) 

Chapter 4: Carbon bonded and encapsulated selenium composites have been synthesized by in 

situ carbonizing the mixture of perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) and 

selenium (Se) in a sealed vacuum glass tube. The shuttle reaction of selenium cathode was 

effectively suppressed by carbon bonding and encapsulation. The C/Se composites exhibit 

superior cycling stability and rate capability in commercial carbonate based electrolyte. (J. Mater. 

Chem. A 2015, 3, 555-561; C.L. and C.W. conceived the experiments and wrote the paper; C.L., 

J.W., L.S., J.M. and X.F. conducted the experiments; All authors participated in discussions.) 

Chapter 5: The SeSx molecules are confined by N-containing carbon (ring) structures in the 

carbonized PAN to mitigate the dissolution of polysulfide and polyselenide intermediates in 

carbonate-based electrolyte. In addition, formation of solid electrolyte interphase (SEI) on the 

surface of SeSx/CPAN electrode in the first cycle further prevents polysulfide and polyselenide 

intermediates from dissolution. The synergic restriction of SeSx by both CPAN matrix and SEI 

layer allows SeSx/CPAN composites to be charged and discharged in a low-cost carbonate-based 

electrolyte (LiPF6 in EC/DEC) with long cycling stability and high rate capability. (Adv. Funct. 

Mater. 2014, 24, 4082-4089; C.L. and C.W. conceived the experiments and wrote the paper; 

C.L., Y.Z., Y.W. and J.W. conducted the experiments; All authors participated in discussions.) 

Chapter 6: Croconic acid disodium salt (CADS) was used as Li-ion battery electrode, and 

CADS organic wires with different diameters were fabricated through a facile synthetic route 

using anti-solvent crystallization method to overcome the challenges of low electronic 

conductivity of CADS and lithiation induced strain. The CADS nanowire exhibits much better 

electrochemical performance than its crystal bulk material and microwire counterpart. The 
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theoretical calculation suggested that lithiation of CADS experiences an ion exchange process. 

The sodium ions in CADS will be gradually replaced by lithium ions during the lithiation and 

delithiation of CADS electrode, which is confirmed by Inductively Coupled Plasma test. (Nano 

Lett. 2014, 14, 1596-1602; C.L., R.H., H.H. and C.W. conceived the experiments and wrote the 

paper; C.L., R.H., P.K. and M.P. conducted the experiments; All authors participated in 

discussions.) 

Chapter 7: Croconic acid disodium salt (CADS), a renewable or recyclable organic compound, 

is investigated as sodium ion battery electrodes for the first time. The pristine micro-sized CADS 

suffers from fast capacity decay during charge/discharge cycles. The detail investigation reveals 

that the severe capacity loss is mainly attributed to the pulverization of CADS particles induced 

by the large volume change during sodiation/desodiation rather than the generally believed 

dissolution of CADS in the organic electrolyte. Minimizing the particle size and Wrapping 

CADS with graphene oxide can effectively suppress the pulverization, thus improving the 

cycling stability. (J. Power Sources 2014, 250, 372-378; C.L. and C.W. conceived the 

experiments and wrote the paper; C.L., Y.X., Y.Z., Y.L., T.G. and J.W. conducted the 

experiments; All authors participated in discussions.) 

Chapter 8: A new carbonyl group based organic compound, 2,5-Dihydroxy-1,4-benzoquinone 

disodium salt (DHBQDS), was used as an anode in Na-ion batteries. A unique role-to-role 

fabrication technology for organic nanorod electrode is reported for the first time. The organic 

nanorod electrode exhibits superior electrochemical performance in NaClO4-FEC/DMC 

electrolyte. (Nano Energy 2015, 13, 537-545; C.L. and C.W. conceived the experiments and 

wrote the paper; C.L., J.W., X.F., Y.Z., F.H. and L.S. conducted the experiments; All authors 

participated in discussions.) 
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Chapter 2 Activation of Oxygen-Stabilized Sulfur for Li and Na Batteries 

 

2.1 Introduction 

Li-ion batteries have been widely used to power the portable electronics. However, their 

penetration into the markets of vehicular electrification and grid-storage has been hindered by 

their moderate energy densities 
[2, 71]

, since the intercalation-type cathode materials in state-of-

the-art Li-ion batteries impose an intrinsic limit on device energy density 
[22, 84]

. Even though 

lithium rich metal oxides have been demonstrated to deliver the highest capacity (~250 mAh/g)
 

[85, 86]
 among all transition metal oxide materials, their structural stability over the long-term 

cycling still presents challenges to practical applications, so does their compatibility with the 

state-of-the-art anode materials such as Si- and Sn-based alloys 
[87, 88]

. 

At present, the most promising alternative cathode material is sulfur due to its high theoretical 

capacity (1672 mAh g
-1

), low cost, high abundance in nature and environmental benignity 
[89, 90]

. 

However, the rechargeable battery chemistry based on sulfur cathode still faces three intrinsic 

challenges 
[91-93]

: (1) the formation of intermediate polysulfide products and the parasitic shuttle 

reaction caused by them during lithiation/delithiation process, resulting in low Coulombic 

efficiency and rapid capacity fading; (2) the extremely low electronic and ionic conductivities of 

both starting material S and ending product Li2S, which are responsible for not only low capacity 

utilization but also poor power density; and (3) the stress/strain induced by the large volume 

difference (76%) between sulfur (2.03 g cm
-3

) and Li2S (1.66 g cm
-3

) during a complete 

lithiation/delithiation cycle, which destroys the physical integrity of sulfur cathode and results in 

fast capacity loss. Significant efforts have been made to address these challenges, the most 
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popular of which is to entrap sulfur into electronic conductive hosts of nano-structures, such as 

microporous carbon, carbon nanotube, graphene, graphene oxide and carbon nanofiber 
[94-102]

; 

nevertheless, commercialization of sulfur cathode remains remote. In fact, since these three 

challenges are closely entangled, it is difficult to circumvent all of them with a single strategy. 

For example, adoption of electrolytes with high solubility for high-order polysulfide effectively 

relieved the poor conductivity issue and reduced the stress/strain 
[103]

, but it also accelerated the 

parasitic shuttle reaction, while the sulfur–TiO2 yolk–shell nanoarchitecture with internal void 

space successfully accommodated the volume expansion of sulfur 
[61]

, but the lower electronic 

conductivity of TiO2-host further worsened the utilization and reaction kinetics of S-TiO2. 

Carbon coating on Li2S mitigated the stress/strain and the loss of active species due to the 

physical disintegration of the electrode, but the large particle size (500nm-2m) of Li2S reduce 

the utilization 
[104]

. 

In this work, oxygen stabilized sulfur in carbon matrix was formed in situ by heating sulfur in a 

sealed vacuum glass tube at 600 
o
C with 3,4,9,10-perylentetracarboxylic dianhydrid (PTCDA), 

an aromatic compound with the composition of minimum hydrogen, moderate oxygen but rich 

carbon (C24H8O6), makes it an ideal precursor for carbon. The carbonization of PTCDA ensures 

the formation of a carbonaceous matrix that is characterized of oxygen functionalities that might 

either covalently or Coulombically bonded to sulfur species. The transmission electron 

microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and 

Raman characterizations reveal that sulfur is uniformly immobilized in the carbon host at nano or 

even in molecular level, which should reduce the parasitic shuttle reactions incurred by 

unattached sulfur species and their intermediate reduction products. A portion of sulfur is 

strongly interacted with oxygen-functionalities in the carbon, which is inactive during normal 
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charge/discharge cycles between 1.0 and 3.0 V, the unbounded sulfur in the carbon provided a 

reversible capacity of 508 mAh/(g of S) for 2000 cycles with average loss of 0.0045% per cycle 

in carbonate-based electrolyte, which is lower than the best record by an order of magnitude. 

This excellent cycling stability, however, was realized at the expense of capacity utilization, 

because the 508 mAh/(g of S) only represents a small portion of S accessed by the cell reaction. 

To liberate electrochemically inactive S species that strongly interacted with oxygen-

functionalities, we reduced the lithiation potential down to 0.60 V for several cycles before 

normal charge/discharge cycling between 1.0 V~3.0 V started, and achieved in the subsequent 

cycles a remarkably high capacity of 1621 mAh/(g of S), which is close to the theoretical value 

of sulfur (1672 mAh/g). In the following long-term cycling, an effective capacity of 820 mAh/(g 

of S) was maintained for 600 cycles between 1.0 V to 3.0 V. 

 

2.2 Experimental Section 

Synthesis of C/S composites: All chemicals were purchased from Sigma Aldrich and used as 

received. Sulfur and perylene-3, 4, 9, 10-tetracarboxylic dianhydride were mixed with a ratio of 

1.5:1 by weight and sealed in a glass tube under vacuum. The sealed glass tube was annealed in 

an oven at 600 °C for 3 h, and it was cooled to room temperature in 24 h. Oxygen-stabilized C/S 

composites were collected as black powder. 

Material Characterizations: Scanning electron microscopy (SEM) images were taken by Hitachi 

SU-70 analytical ultra-high resolution SEM (Japan); Transmission electron microscopy (TEM) 

images were taken by JEOL (Japan) 2100F field emission TEM; Thermogravimetric analysis 

(TGA) was carried out using a thermogravimetric analyzer (TA Instruments, USA) with a 
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heating rate of 10 °C min
-1

 in argon; X-ray diffraction (XRD) pattern was recorded by Bruker 

Smart1000 (Bruker AXS Inc., USA) using CuKα radiation; Raman measurements were 

performed on a Horiba Jobin Yvon Labram Aramis using a 532 nm diode-pumped solid-state 

laser, attenuated to give ~900 µW power at the sample surface. The X-Ray Photoelectron 

Spectroscopy (XPS) analysis was performed on a high sensitivity Kratos AXIS 165 X-ray 

Photoelectron Spectrometer using monochronic Al Kα radiation. The elemental analysis was 

performed by ALS Environmental Company. 

Electrochemical measurements: The oxygen stabilized C/S composites were mixed with carbon 

black and sodium alginate binder to form a slurry at the weight ratio of 80:10:10. The electrode 

was prepared by casting the slurry onto aluminum foil using a doctor blade and dried in a 

vacuum oven at 60 °C overnight. The slurry coated on aluminum foil was punched into circular 

electrodes with an area mass loading of 1.2 mg cm
-2

. Coin cells for lithium sulfur batteries were 

assembled with lithium foil as the counter electrode, 1M LiPF6 in a mixture of ethylene 

carbonate/diethyl carbonate (EC/DEC, 1:1 by volume) and Celgard®3501 (Celgard, LLC Corp., 

USA) as the separator. Coin cells for sodium sulfur batteries were assembled with sodium metal 

as the counter electrode, 1M NaClO4 in a mixture of ethylene carbonate/dimethyl carbonate 

(EC/DMC, 1:1 by volume) and Celgard®3501 (Celgard, LLC Corp., USA) as the separator. 

Electrochemical performance was tested using Arbin battery test station (BT2000, Arbin 

Instruments, USA). Capacity was calculated on the basis of the weight of sulfur in C/S 

composites. Cyclic voltammograms were recorded using Gamry Reference 3000 

Potentiostat/Galvanostat/ZRA with a scan rate of 0.1 mV s
-1

. 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=7&cad=rja&ved=0CFMQFjAG&url=http%3A%2F%2Fwww.phi.com%2Fsurface-analysis-techniques%2Fxps.html&ei=pgNFUqutNonc4AOT2IH4CA&usg=AFQjCNFDraVeeCD4FLZiSoPbwhcm1BKkwA&bvm=bv.53217764,d.dmg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=7&cad=rja&ved=0CFMQFjAG&url=http%3A%2F%2Fwww.phi.com%2Fsurface-analysis-techniques%2Fxps.html&ei=pgNFUqutNonc4AOT2IH4CA&usg=AFQjCNFDraVeeCD4FLZiSoPbwhcm1BKkwA&bvm=bv.53217764,d.dmg
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2.3 Results and Discussion 

2.3.1 Material Characterization 

(a) (b)  

(c) (d) (e)  

Figure 2.1. SEM images of carbonized PTCDA (a) and oxygen-stabilized C/S composites (b); (c) 

TEM image of oxygen-stabilized C/S composites: elemental mapping images of the C/S 

composite: carbon (d) and sulfur (e). 

The neat PTCDA carbonized with and without sulfur are characterized by scanning electron 

microscopy (SEM) and TEM, respectively, as shown in Fig. 2.1. The carbonized PTCDA 

consists of elongated rectangular plates with a length about 20 µm and a width about 4µm. 

Uniform wrinkles can be observed on the surface of the plates. However, C/S composites formed 

by in situ annealing the mixture of PTCDA and sulfur are revealed to be porous spheres with 

diameter around 15-20 m, which consist of aggregated secondary short plates with diameter of 
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500 nm. The drastically different morphology, because of the introduction of sulfur, indicates 

that possible chemical interactions are formed between carbonized PTCDA host and S guest. 

 

Figure 2.2. TG analysis for oxygen stabilized C/S composite. 

The distribution of carbon and sulfur in a secondary C/S particle (Fig. 2.1c) were analyzed using 

energy dispersive X-ray spectroscopy (EDS), as shown in Fig. 2.1d and 2.1e, in which carbon 

homogenously overlaps with sulfur, suggesting a uniform distribution of carbon and sulfur 

throughout the composite. The chemical composition of the composite was determined using the 

elemental analysis to be 56% of carbon, 38% of sulfur and 5% of oxygen, while 

thermogravimetric analysis (TGA) was also used to determine sulfur-content, which indicates 

that there is only 8% weight loss after heating up to 600 
o
C as shown in Fig. 2.2, much lower 

than the sulfur content determined using elemental analysis. Since TGA actually only detects the 

sulfur species that are simply chemisorbed in micropores and can be evaporated due to heat, the 

extra sulfur-content as determined by elemental analysis should reflect the fact that a substantial 

amount of sulfur in the C/S composite may be chemically bonded to the oxygen-functionalities 

(5%) in carbonaceous host, via either covalent or ionic interactions. 
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(a) (b)  

(c) (d)  

Figure 2.3. XRD patterns (a) and Raman spectra (b) for pristine S, carbonized neat PTCDA and 

oxygen-stabilized C/S composites; XPS spectra of oxygen stabilized C/S composites: (c) C 1s, (d) 

S 2p. 

The nature of bonding between oxygen and sulfur in C/S composites are further characterized by 

X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) (Fig. 

2.3). The carbonized neat PTCDA and oxygen-stabilized C/S composites show similar XRD 

patterns (Fig. 2.3a), where a broad peak at 26 degree indicates the existence of graphitic carbon 

in both samples. No sulfur peak is observed in C/S composites, suggesting that sulfur species 

fails to crystallize and remains in amorphous form, perhaps due to the strong interaction with O-

functionalities. Raman spectra of carbonized neat PTCDA and oxygen-stabilized C/S composites 

in Fig. 2.3b show two broad peaks at 1345 cm
−1

 and 1595 cm
−1

, respectively, confirming the co-
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existence of disordered graphite (D band) and crystalline graphite (G band). The valence states 

of sulfur in the composite could be determined from high resolution XPS, as shown in Fig. 2.3c 

and 2.3d, where elemental C 1s at 284.8 eV was used as reference binding energy. The 

asymmetry of C 1s spectra demonstrates the presence of both sp
2
 and sp

3
 carbon, which are 

ascribed to graphitic carbon and amorphous carbon in the composite, respectively. A host of 

peaks corresponding to the S 2p spectra are detected between 164 eV and 170 eV, among which 

the twin peaks located at 164.0 eV and 165.2 eV should be attributed to the S 2p3/2 and S 2p1/2 of 

sulfur species containing S-S bond, probably arising from short-chain Sx (x≤8), while a host of 

small peaks at higher binding energies starting from 165.5 eV should arise from sulfur in strong 

interaction with oxygen in varying manners (S-O, S=O etc), which were results of the reaction 

between sulfur and oxygen functionalities in PTCDA. The Brunauer-Emmett-Teller (BET) 

analysis (Fig. 2.4) revealed that C/S composite thus made has a dense structure with a surface 

area of 23.4227 m
2
 g

-1
. From the shape of N2 adsorption/desorption isotherms and pore-size 

distribution, one can conclude that the composite is not a porous structure, which might suggest 

that sulfur filled the micropores of carbon host and is tightly bonded to the carbon matrix. 

(a) (b)  

Figure 2.4. N2 adsorption/desorption isotherms (a) and pore-size distribution curve (b) of oxygen 

stabilized C/S composite. 
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2.3.2 Electrochemical Performance 

The electrochemical performances of oxygen-stabilized C/S composites are evaluated in coin 

cells with Li metal as anode. Fig. 2.5a shows their galvanostatic voltage profiles when cycled 

between 1.0 V ~ 3.0 V. In the first cycle, a short plateau at 2.4 V represents the reduction of Sx to 

Li2Sx, followed by a long plateau at 1.6 V corresponding to further reduction of shorter S chains 

to Li2S2/Li2S. During the delithiation a rather slopping plateau at 2.0 V is observed . In the 2
nd

 

cycle, the short plateau at 2.4 V completely disappears, indicating that Li2Sx is not stable in the 

electrolyte with carbonate solvents and LiPF6. Zhang et al. have reported that polysulfides can 

react with LiPF6, resulting in rapid capacity fading of sulfur cathode in carbonate based 

electrolyte 
[105]

. The long plateau at 1.6 V shifts to a slopping plateau centered at 1.7 V owing to 

the release of strain/stress in C/S composite in the first cycle. After 100 cycles, the strain/stress 

of C/S composite is completely absorbed, and the slopping plateau shifts to 1.8 V, which is the 

intrinsic reaction potential for the lithiation of short-chain sulfur molecules. The corresponding 

delithiation plateau is centered at 2.2 V after 100 cycles. Cyclic voltammograms in Fig. 2.5b 

show that there are two cathodic peaks at 2.4 V and 1.2 V and one anodic peak at 2.2 V in the 

first cycle, which coincide with galvanostatic tests. In the subsequent cycles, the cathodic peak at 

2.4 V disappears, and both cathodic peak at 1.2 V and anodic peak at 2.2 V shift to positive 

values, which is consistent with charge/dicharge behavior in Fig. 2.5a. The oxygen-stabilized 

C/S composites maintain a reversible capacity of 508 mAh/(g of S) at a current density of 150 

mA/g for 2000 cycles with a Coulombic efficiency close to 100% (Fig. 2.5c); however, poor 

electrochemical performance was demonstrated by the same composite in LiTFSI-DOL/DME, 

which is more typical electrolyte used in literature (Fig. 2.6). This anomaly is consistent with 

earlier report that a unique interphase can only be formed in carbonate-based electrolytes 
[106]

. 
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An excellent rate capability is also achieved by the composites as indicated by Fig. 2.5d. When 

current density increases from 60 mA g
-1

 to 6 A g
-1

, the reversible capacity remains at 180 

mAh/(g of S), which is over 30% of its initial capacity (580 mAh/(g of S)). After current density 

returns to 60 mA g
-1

, the reversible capacity recovers its initial level without any kinetic delay. 

(a)  (b)  

(c) (d)  

(e) (f)  

Figure 2.5. Electrochemical performance of oxygen-stabilized C/S composites. (a) The 

galvanostatic charge–discharge curves between 1.0 V and 3.0 V versus Li/Li
+
; (b) Cyclic 
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voltammograms at 0.1 mV s
-1

 in the potential window from 1.0 V to 3.0 V versus Li/Li
+
; (c) 

Delithiation capacity and coulombic efficiency versus cycle number at the current density of 150 

mA g
–1

; (d) Rate performance at various C-rates; (e) The galvanostatic charge–discharge curves 

between 0.6 V and 3.0 V in initial 5 cycles and between 1.0 V and 3.0 V after 5 cycles; (f) 

Delithiation capacity and coulombic efficiency versus cycle number at the current density of 150 

mA g
–1

 in the cutoff window from 0.6 V to 3.0 V in initial 5 cycles and from 1.0 V to 3.0 V after 

5 cycles. 

(a) (b)  

Figure 2.6. Electrochemical performance of oxygen stabilized C/S composite in LiTFSI-

DOL/DME electrolyte. (a) The galvanostatic charge–discharge curves between 1.0 V and 3.0 V 

versus Li/Li
+
; (b) Delithiation capacity and coulombic efficiency versus cycle number at the 

current density of 150 mA g
–1

. 

Despite the excellent cycling stability and rate capability, the low reversible capacity of 508 

mAh g
-1

 at a current density of 150 mA g
-1

 suggests that only part of the confined sulfur 

participates in the cell reaction and hence falls short of the promise of sulfur-based cathode. To 

liberate more sulfur that are harnessed by oxygen functionalities, we subjected the cathode to a 

pre-lithaition process down to the potential of 0.6 V, in the hope that electrochemical reduction 

0 200 400 600 800
0.8

1.2

1.6

2.0

2.4

2.8

3.2

V
o

lt
a
g

e
 (

V
) 

v
e
rs

u
s
 L

i+
/L

i

Specific Capacity (mAh g
-1
)

 1st cycle

 2nd cycle

 

 

0 200 400 600 800
0

200

400

600

800
 

Cycle Number

S
p

e
c
if

ic
 C

a
p

a
c
it

y
 (

m
A

h
 g

-1
)

0

30

60

90

120

 C
o

u
lo

m
b

ic
 e

ff
ic

ie
n

c
y
 (

%
)



43 

 

could break the strong interaction between sulfur and oxygen. The consequence of this deep 

lithiation is the release of extra sulfur species that are originally immobilized by oxygen and their 

subsequent electrochemical activity. As shown in Fig. 2.5e and 2.5f, the first five cycles are 

conducted between 0.6 V and 3.0 V. There are three plateaus observed at 2.4 V, 1.6 V and 0.7 V 

during the 1
st
 lithiation, while only one plateau centered at 2.0 V is observed during the 

delithiation immediate after. In the second cycle, the plateau at 2.4 V disappears, while the 

plateau at 1.6 V shifts to 1.8 V, and the plateau at 0.7 V becomes shorter. In the fifth cycle, the 

plateau at 0.7 V almost disappears, while the plateau at 1.8 V shifts to 1.9 V and becomes much 

longer than that in the second cycle. This dynamic change in the voltage profiles reflects that 

more and more sulfur is released in each cycle from the oxygen immobilization and then 

becomes available for the electrochemical reactions. After normal cycling protocol is resumed 

between 1.0 V and 3.0 V starting at the 6
th

 cycle, the newly-increased capacity remains at 1170 

mAh/(g of S), which is much higher than the delithiation capacity in Fig. 2.5a and 2.5c, and this 

capacity rapidly stabilizes to 820 mAh/(g of S), which is retained for 600 cycles with negligible 

fadings at a Coulombic efficiency close to 100%. To confirm the origin of such extra capacity 

incurred by pre-lithiation, a blank test was conducted using carbonized neat PTCDA without 

sulfur by pre-lithiating it in the range of 0.6 V and 3.0 V (Fig. 2.7), where a reversible capacity 

of only ~60 mAh g
-1

 was observed, probably contributed by Li
+
-intercalation into the graphitic 

portion of the carbon host as well as the surface non-Faradaic processes. Apparently, the extra 

capacity of > 1000 mAh/(g of S) is not contributed by the carbon host itself. 
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(a) (b)  

Figure 2.7. Electrochemical performance of carbonized PTCDA. (a) The galvanostatic charge–

discharge curves between 0.6 V and 3.0 V versus Li/Li
+
; (b) Delithiation capacity and coulombic 

efficiency versus cycle number at the current density of 150 mA g
–1

. 

 

2.3.3 Activation Mechanism of Pre-lithiation 

To understand the activation mechanism of oxygen-stabilized C/S composites in different 

potential windows, cyclic voltammetry (CV) and galvanostatic intermittent titration technique 

(GITT) are carried out. Fig. 2.8a shows the cyclic voltammograms of the composite in different 

potential windows at a scan rate of 0.5 mV s
-1

. The cell is initially cycled from 1.0 V to 3.0 V for 

two cycles, and then the potential window is widened from 0.8 V to 3.0 V for another two cycles, 

followed by an even wider potential window from 0.5 V to 3.0 V for five cycles with the purpose 

to fully lithiate S-species in the composite. After that, narrow window from 0.8 V to 3.0 V is 

resumed for two cycles and then from 1.0 V to 3.0 V for two cycles. Cyclic voltammograms of 

the last cycle in each potential window are displayed in Fig. 2.8a. With the discharge potential 

changed from 1.0 V to 0.8 V, and then to 0.5 V, the intensity of redox peaks becomes stronger 

with each cycle, consistent with the charge/discharge plateaus in Fig. 2.5e that more S is released 
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from carbon host upon deep discharging. The sharp rise of cathodic peaks at the end of each 

cathodic scan should be responsible for the formation of SEI layer and the continuous lithiation 

of sulfur-species immobilized by oxygen in the carbon host. With lower cut-off limit reverts to 

0.8 V and 1.0 V, the intensity of redox peaks becomes a little weaker due to the narrowed 

potential window, but it is much stronger than that of initial scan, indicating that extra sulfur has 

indeed been liberated from the carbon host during the deep lithiation process. The deeper the 

discharge, the more sulfur will be released. When the discharge potential maintains at 0.5 V, the 

released sulfur in each cycle gradually reduce as demonstrated in Fig. 2.9. Fig. 2.9a shows that 

with a lower cutoff limit of 0.5 V, the sharp CV peak at the end of cathodic scan becomes 

weaker, while the intensity of redox peaks at 1.7 V and 2.3 V increase from the 1
st
 scan to 30

th
 

scan. The voltage profiles in Fig. 2.9b also confirms that the slopping plateau below 1.0 V 

becomes shorter, but the slopping plateau centered at 1.7 V becomes longer upon cycling, further 

confirming that deep discharging to 0.5 V can release more sulfur from carbon host. The 

equilibrium potential during lithiation/delithiation process is evaluated by GITT (Fig. 2.10). The 

oxygen-stabilized C/S electrode is lithiated/delithiated by a series of constant current pulse of 

150 mA/g with an equal duration period of 1 h, and then rested for 12 h to reach the equilibrium 

potential after each current pulse. The colored symbol lines in Fig. 2.8b represent the equilibrium 

open circuit potentials (OCP). Upon lithiation/delithiation cycles from 0.5 V to 3.0 V, the 

equilibrium potential shift upward. The slopping potential line change into a plateau center at 1.7 

V at the expense of reducing the slopping plateau below 1.0 V. More importantly, the 

lithiation/delithiation equilibrium OCP plateaus centered at 2.0 V are extended and shifted to 

positive values upon cycling, while the equilibrium plateau centered at 0.9 V becomes shorter 

with each cycle, consistent with the changes of voltage plateaus in Fig. 2.5e. The equilibrium 
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potential curves of C/S composite change upon cycling, demonstrating that the deep lithiation 

process has changed the thermodynamics of C/S composite instead of kinetics. This fundamental 

change is due to the generation of new sulfur species produced by the reaction between Li
+
 and 

oxygen-stabilized sulfur. The reaction resistance of C/S electrode during lithiation/delithiation 

process is calculated by dividing the overpotential with pulse current amplitude as shown in Fig. 

2.8c and 2.8d. Compared to the subsequent charge/discharge cycles, the reaction resistance in the 

1st lithiation process is the largest, reflecting the largest strain/stress induced by the strong 

interaction and physical encapsulation of sulfur with oxygen-rich carbon matrix. The reaction 

resistance slightly decreases after 50% of lithiation, while the reaction resistance remarkably 

increases at the end of delithiation. The difference of reaction resistance during 

lithiation/delithation may be attributed to the electrical contact resistance change caused by the 

volume expansion/shrinkage during lithiation/delithiation process. Hence, both CV and GITT 

results confirm that pre-lithiating the composite at low potentials liberates sulfur species by 

changing their chemical valence states. 
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(c) (d)  

Figure 2.8. (a) Cyclic voltammograms of oxygen-stabilized C/S composites in different potential 

windows versus Li/Li
+
; (b) Equilibrium potential versus normalized capacity during GITT 

measurement; Reaction resistance of oxygen stabilized C/S composites during GITT 

measurement from 1
st
 discharge to 5

th
 discharge (c) and from 1

st
 charge to 5

th
 charge (d). Note: 

Current density was calculated based of the total weight of oxygen stabilized C/S composite; The 

charge/discharge capacity was normalized by dividing the discharge capacity. 

(a) (b)  

Figure 2.9. (a) Cyclic voltammograms of oxygen stabilized C/S composites in the cutoff window 

from 0.5 V to 3.0 V versus Li/Li
+
; (b) The galvanostatic charge–discharge curves between 0.5 V 

and 3.0 V versus Li/Li
+
.  
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(a) (b)  

(c) (d)  

(e)  

Figure 2.10. Potential response of oxygen stabilized C/S electrodes in the first cycle (a), second 

cycle (b), third cycle (c), fourth cycle (d) and fifth cycle (e) during GITT measurements. 

Electrochemical impedance spectroscopy is also used to monitor the impedance evolution upon 

cycling. The depressed semi-circle in the high frequency area represents interphasial resistance, 

including contact resistance of the composite particles, SEI layer and charge transfer resistance, 
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while the low frequency line stands for ion diffusion resistance in the composite particles. As 

shown in Fig. 2.11, the interphasial resistances is ~250 ohm for the fresh cell, while it increases 

to ~700 ohm once discharged to 1.5 V, due to the lithiation of sulfur in the composite. When the 

discharge lower limit becomes 1.0 V, two depressed semi-circle can be observed, and the 

interphasial resistance increases to ~900 ohm, owing to the growth of SEI layer and further 

lithiation of sulfur in the composite. The first semi-circle should represent the sum resistance of 

SEI layer and particle-to-particle resistance for the composite, while the second semi-circle 

stands for the charge transfer resistance. When the cell is further discharged to 0.6 V, the 

interphasial resistance decreases to 720 ohm. Though the resistance of SEI layer increases upon 

further discharging, contact resistance of the composite particles decreases due to the volume 

expansion, and more S is released by the lithiation process so that more active sites for sulfur and 

lithium ions are available, which helps reduce the charge transfer resistance. After the cell is 

charged to 3.0 V, the original value of ~250 Ohm interphasial resistance was restored, 

representing an ideal state of both excellent conductivity and good integrity of the electrode. In 

the following 5 cycles, the interphasial resistance maintains this initial value, ensuring the 

excellent cycling stability of the sulfur-based cathode. 

Besides the cell chemistry coupled with Li anode, the obtained oxygen-stabilized C/S composites 

is also coupled to Na anode. The electrochemical performance of the composites is measured 

between 0.8 V and 2.5 V versus Na/Na
+
. As shown in Fig. 2.12a, the sodiation and desodiation 

plateaus are centered at 1.4 V and 1.8 V, respectively, which are 0.4 V lower than the Li 

counterparts. Cyclic voltammograms in Fig. 2.12b confirm that there is only one pair of redox 

peaks at 1.15 V and 1.7 V respectively during sodiation/desodiation, revealing that the cell 

reaction consists of a one step mechanism between sulfur and Na in this composite. The oxygen-
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stabilized C/S composites deliver a reversible capacity of 500 mAh/g at the current density of 

150 mA/g initially, which reduces to 400 mAh/g after 150 cycles as shown in Fig. 2.12c. The 

rate capability of the composite is also measured by increasing the current density every five 

cycles, as shown in Fig. 2.12d, in which the desodiation capacity decreases from 550 mAh/g to 

130 mAh/g, when the current density increases by 20 times from 60 mA/g to 1.2 A/g. This 

combination of decent cycling stability and rate capability makes the electrochemical couple 

between Na and oxygen-stabilized C/S composite a promising cell chemistry for Na/S batteries.  

 

Figure 2.11. Impedance analysis for oxygen stabilized C/S cell before test and during discharge 

to 0.6 V and charge to 3.0 V. 
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(c)  (d)  

Figure 2.12. Electrochemical performance of oxygen-stabilized C/S composites. (a) The 

galvanostatic charge–discharge curves between 0.8 V and 2.5 V versus Na/Na
+
; (b) Cyclic 

voltammograms at 0.1 mV s
-1

 in the potential window from 0.8 V to 2.5 V versus Na/Na
+
; (c) 

Desodiation capacity and coulombic efficiency versus cycle number at the current density of 150 

mA g
–1

; (d) Rate performance at various C-rates. 
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composite is coupled with Na anode, where a reversible capacity of 400 mAh g
-1

 is maintained 

for 150 cycles. Therefore, the oxygen-stabilized C/S composites make promising sulfur-cathode 

materials for both Li-S and Na-S batteries. 
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Chapter 3 Selenium@Porous Carbon Composite with Superior Lithium and 

Sodium Storage Capacity 

 

3.1 Introduction 

High-energy lithium ion batteries and low-cost sodium-ion batteries are the most promising 

candidates for emerging electric vehicles and large-scale renewable energy storage, respectively. 

In current technology, the energy density of lithium ion batteries is mainly limited by the cathode 

material 
[22, 107]

. The same problem also impedes the development of sodium-ion batteries 
[108]

. 

Therefore, development of high energy density cathodes for both Li-ion and Na-ion batteries is 

critical for the success in electric vehicle and renewable energy storage. 

Sulfur is the only cathode material that has comparable capacity with Si anode material for Li-

ion batteries. However, sulfur cathodes face three major challenges, which limit its practical 

applications 
[9, 10]

: (1) sulfur has low electronic conductivity; (2) sulfur undergoes large volume 

change during lithiation/delithiation; (3) high-order polysulfide intermediates are soluble in 

carbonate electrolytes. The dissolution of high-order polysulfides is essential for progressive 

lithiation of S8 due to the non-conductive nature of elemental S8 and its reduction products 
[105]

.
 

However, the dissolved high-order polysulfides also cause a shuttle reaction, because dissolved 

high-order polysulfides in the cathode side can diffuse to and chemically react with Li anode to 

either form soluble low order polysulfides and then transport back to cathode side, causing a 

shuttle reaction, or form an insoluble dense sulfides (Li2S and Li2S2) layer on Li anode, 

increasing the resistance of Li anode. The shuttle reaction and deposition of Li2S on Li anode 

significantly reduce Coulombic efficiency and cycle stability of sulfur cathodes for both lithium- 
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and sodium-sulfur batteries 
[109, 110]

. Most effective ways to alleviate dissolution and shuttle 

reaction are (1) to physically trap the high-order polysulfides inside host materials (mostly 

conductive carbon) 
[111, 112]

, (2) to directly form insoluble low-order sulfides 
[102]

, and (3) to 

manipulate the solubility of polysulfides by selection of different electrolytes 
[65, 66]

. Our previous 

work showed that small sulfur molecules obtained at a high temperature (500 
o
C) can be infused 

into carbon nanotubes and stabilized to room-temperature 
[9]

. The small sulfur/carbon nanotubes 

composite can directly form insoluble low-order polysulfides, thus avoiding the dissolution and 

shuttle reaction. 

As a congener of sulfur, selenium has similar chemical properties, but higher electronic 

conductivity. Selenium can also react with lithium and sodium ions to generate selenides 
[13]

. 

Although the gravimetric capacity of selenium cathode (678 mAh g
-1

) is lower than sulfur (1672 

mAh g
-1

), the volumetric capacity of selenium (3253 Ah L
-1

 based on 4.82 g cm
-3

) is comparable 

to sulfur (3467 Ah L
-1

 based on 2.07 g cm
-3

). In addition, selenium has 20 orders of magnitude 

higher electrical conductivity than sulfur. These features make it a promising cathode material 

for both lithium- and sodium-ion batteries. However, similar to sulfur, the selenium cathodes 

also face the dissolution issue of high-order polyselenides, resulting in fast capacity fading and 

low Coulombic efficiency.  

In this study, using the same strategy of S/C cathode in Li-sulfur batteries, we broke Se12 into Se8 

at a high temperature of 600 
o
C and impregnated Se8 into mesoporous carbon to alleviate the 

dissolution of polyselenides. The Se8/C cathode in carbonate-based electrolyte demonstrated 

excellent electrochemical performance in both Li-ion and Na-ion batteries. It can deliver 

reversible capacity of 480 mAh g
-1

 in lithium-ion batteries, and maintains 1000 cycles without 

any capacity loss. The capacity of the Se/C composite for sodium ion batteries is as high as 485 
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mAh g
-1

 in the first cycle, and retains 340 mAh g
-1

 after 380 cycles. The Se8/mesoporous carbon 

composites also show excellent rate capability. As the current density increased from 0.1 C to 5 

C, the capacity retained about 46% in Li-ion batteries and 34% in Na-ion batteries. The 

charge/discharge mechanism of Se8/C was investigated by comparing the electrochemical 

behavior of Se8/C with 1M LiPF6 in a mixture of ethylene carbonate/diethyl carbonate (EC/DEC, 

1:1 by volume) and 1M LiTFSI in tetraethylene glycol dimethyl ether (TEGDME) electrolytes.  

The excellent battery performance of Li-Se and Na-Se batteries demonstrates that selenium is a 

promising alternative to sulfur and currently used cathode materials for large scale and high-

energy applications. 

 

3.2 Experimental Section 

Synthesis of mesoporous carbon spheres.  All chemicals were purchased from Sigma Aldrich and 

used as received. 0.66 g resorcinol (R), 0.38 g triblock copolymer (Pluronic F127) and 0.66 g 

HCl aqueous solution were dissolved in a mixture of 4.35 g distilled water and 5.75 g ethanol 

alcohol, where triblock copolymer and HCl functioned as soft-template and catalyst, 

respectively. When a clear solution appeared, 0.8 g 37% formaldehyde (F) aqueous solution was 

added. After 1 hour vigorous stirring, the solution was transferred into a teflon-lined autoclave 

and sealed. It was heated to 150 °C and maintained for 10 hours. After naturally cooling to room 

temperature, a light brown power was collected and dried in air for 24 hours, and then followed 

by further curing in an oven at 100 °C for 24 h in air. Finally, the resulting precursor was 

carbonized in flowing argon at 600 °C for 5 h, with a heating ramp of 2 °C min
-1

 to achieve 

mesoporous carbon spheres.  
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Synthesis of selenium impregnated carbon composite. Selenium and mesoporous carbon were 

mixed with a ratio of 1:1 by weight and sealed in a glass tube under vacuum. The sealed glass 

tube is annealed in an oven at 600 °C for 5 h. Selenium impregnated carbon composite was 

collected as black powder.  

Material Characterizations. Scanning electron microscopy (SEM) images were taken by Hitachi 

SU-70 analytical ultra-high resolution SEM (Japan); Transmission electron microscopy (TEM) 

images were taken by JEOL (Japan) 2100F field emission TEM; Thermogravimetric analysis 

(TGA) was carried out using a thermogravimetric analyzer (TA Instruments, USA) with a 

heating rate of 10 °C min
-1

 in argon; X-ray diffraction (XRD) pattern was recorded by Bruker 

Smart1000 (Bruker AXS Inc., USA) using CuKα radiation;  BET specific surface area and pore 

size and volume were analyzed using N2 absorption on Micromeritics ASAP 2020 

(Micromeritics Instrument Corp., USA). Raman measurements were performed on a Horiba 

Jobin Yvon Labram Aramis using a 532 nm diode-pumped solid-state laser, attenuated to give 

~900 µW power at the sample surface. 

Electrochemical measurements. The selenium impregnated carbon composite was mixed with 

carbon black and sodium alginate binder to form a slurry at the weight ratio of 80:10:10. The 

electrode was prepared by casting the slurry onto aluminum foil using a doctor blade and dried in 

a vacuum oven at 60 °C overnight. The same method is used to fabricate pure selenium electrode 

material. Coin cells for lithium selenium batteries were assembled with lithium foil as the 

counter electrode, 1M LiPF6 in a mixture of ethylene carbonate/diethyl carbonate (EC/DEC, 1:1 

by volume) or 1M LiTFSI in tetraethylene glycol dimethyl ether (TEGDME) as the electrolyte, 

and Celgard®3501 (Celgard, LLC Corp., USA) as the separator. Coin cells for sodium selenium 

batteries were assembled with sodium foil as the counter electrode, 1 M NaClO4 in a mixture of 
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ethylene carbonate/dimethyl carbonate (EC/DMC, 1:1 by volume) as the electrolyte, and 

Celgard®3501 (Celgard, LLC Corp., USA) as the separator. Cells with pure selenium electrodes 

were also fabricated using the same procedure. Electrochemical performance was tested using 

Arbin battery test station (BT2000, Arbin Instruments, USA). Capacity was calculated on the 

basis of the mass of selenium in selenium impregnated carbon composite. Cyclic voltammogram 

was recorded using Solatron 1260/1287 Electrochemical Interface (Solartron Metrology, UK) 

with a scan rate of 0.1 mV/s. 

 

3.3 Results and Discussion 

Figure 3.1a shows the SEM image of the mesoporous carbon. The mesoporous carbon has a 

spherical morphology with particle size of a couple of micrometers. The Brunauer–Emmett–

Teller (BET) analysis shows that mesoporous carbon has high porosity of 0.2 cm
3 

g
-1

 and large 

surface area of 462 m² g
-1

. The average pore size in mesoporous carbon is about 1.6 nm.  

As revealed in Figure 3.1b, no morphology change is observed after selenium is infused into the 

mesoporous carbon spheres, suggesting that most of the Se is filled inside the mesoporous 

carbon. The infusion of Se into mesopores of carbon is confirmed by the drastic decrease in 

surface area from 462 m² g
-1

 for as-prepared samples to 5 m² g
-1

 after Se infusion, while the 

average pore size increases from 1.6 nm to 4.1 nm, indicating that small pores are occupied by 

Se. The elemental mapping images (Figure 3.1d and 3.1e) reveal that selenium is uniformly 

distributed in the mesopores of carbon spheres. It is also confirmed by XRD pattern that 

selenium in mesoporous carbon maintains its crystal structure (JCPDS File NO. 86-2246). 
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Thermogravimetric analysis (figure 3.2) shows that the porous C/Se composite contains 30% 

selenium and 70% mesoporous carbon spheres. 

(a) (b)  (c)  

(d)  (e) (f)  

Figure 3.1. SEM images of mesoporous carbon spheres (a) and Se/C composite (b); (c) TEM 

image of selenium impregnated carbon composite; elemental mapping images of the Se/C 

composite: Se (d) and Carbon (e); (f) XRD pattern of the Se/C composite. 

 

Figure 3.2. Thermogravimetric (TGA) curve of selenium impregnated carbon composite in argon. 
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The nature of Se in the composite was investigated by Raman spectroscopy. For comparison, 

porous carbon, pristine Se and 600 
o
C-treated Se under the same conditions as those used for 

Se/C composite were also analyzed (Figure 3.3).  The pristine Se displays three peaks at 142 cm
-

1
, 235 cm

-1
 and 458 cm

-1
, respectively. The peaks at 142 cm

-1
 and 458 cm

-1
 represent Se12 with a 

ring structure 
[113]

; while the 235 cm
-1

 peak is attributed to chain-structured Se 
[114]

, indicating the 

pristine Se is a mixture of Se12 ring and chain-structured Se molecules. To examine the effects of 

the heat-treatment history on the structure of Se, the pristine Se was heat-treated using the same 

procedure used for the Se/C composite. Compared with the non-treated Se, there is no change in 

Raman spectra, indicating that the mixture of ring and chain-structured Se is a 

thermodynamically stable form at room temperature. However, the Se/C composite synthesized 

at 600 
o
C in vacuum doesn’t show these three peaks. Instead, a peak at 262 cm

-1
 which is 

assigned to the ring-structured Se8 appears 
[115]

. Therefore, the ring-structured Se8 is stabilized by 

porous carbon at room temperature. Two strong peaks at 1350 cm
-1

 and 1600 cm
-1

 which 

represent the D and G bands of mesoporous carbon, respectively, are observed for the composite, 

showing that the porous carbon is partially graphitized. The Raman spectra reveal that the 

mesopores of carbon can physically restrict Se in the form of small molecules of Se8, which is 

similar to sulfur in S/porous carbon composite 
[102]

. 

The electrochemical performance of the Se/C composite cathodes was examined for both 

lithium- and sodium-ion batteries using conventional carbonate-based electrolyte. Figure 3.4 

shows cyclic voltammograms (CV) and charge/discharge profiles of Se/C composite cathodes in 

Li-ion and Na-ion batteries. The CV curves show only one pair of reversible redox peaks for 

both lithium- and sodium-selenium batteries, indicating that the electrochemical process is a 

single phase-change reaction. For lithium-selenium batteries, cathodic peak and anodic peak 
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appear at 1.1 V and 1.8 V, respectively, in the first cycle. After the first cycle, the cathodic peak 

shifts to a higher voltage of 1.4 V, while the anodic peak remains at 1.8 V. Therefore, there is an 

electrochemical activation process during the first lithiation. This activation process is associated 

with the deformation of Se/C composite induced by the volume increase in the first lithiation. 

Similar phenomena have been reported in high capacity Si, MnOx and other high-capacity anode 

materials 
[116, 117]

. The stable anodic and cathodic peaks after the first cycle demonstrate good 

cycling stability of the Se/C composite. Figure 3.4b shows the CV curves of the Se/C composite 

in Na-Se batteries measured at a scan rate of 0.1 mV/s between 0.5 – 2.5 V. The Se/C composite 

in Na-Se batteries also shows similar activation behavior as in Li-Se batteries. The cathodic peak 

is at 0.7 V in the first cycle and shifts to a higher potential of 1.0 V in subsequent cycles, while 

the anodic peak at 1.4 V remains constant in all cycles. Therefore, the redox potentials in Na-Se 

batteries are about 0.4 V lower than those in Li-Se batteries, which is similar to Sn anodes where 

the potential in Na-ion batteries is also lower than that in Li-ion batteries 
[33]

. 

 

Figure 3.3. Raman spectra of pristine Se, heat-treated Se, Se/C composite and porous carbon. 
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(a)  (b)  

(c)  (d)  

Figure 3.4. Cyclic voltammograms of the Se/C composite in the initial 5 cycles vs Li (a) and Na 

(b); Charge/Discharge profiles at the 2
nd

 cycle of the Se/C composite in Li-ion (c) and Na-ion 

batteries (d). 

The charge/discharge profiles of Se/C cathodes at a current density of 0.25 C for both Li- and 

Na-Se batteries are shown in Figure 3.4c and 3.4d, respectively. As demonstrated in CV, ring-

structured Se8 cathodes present only one slope voltage plateau in both Li-ion and Na-ion 

batteries, which is in agreement with Yang’s results using the same electyrolyte 
[67]

. This 

charge/discharge behavior is different from previous reports on chain-structured Se12 cathodes 
[13, 

14]
, where multiple plateaus were displayed. Therefore, the difference in charge/discharge curves 
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between Se12 (a mixture of ring and chain) and Se8 indicates different reaction mechanisms in 

different electrolytes. The charge/discharge potentials are 1.8/1.6 V in Li-Se batteries, which are 

0.4 V higher than those in Na-Se batteries (1.4/1.2 V). 

 

Figure 3.5. Impedance analysis for Se/C cell before test and after cycling. 

The (De)lithiation mechanism of Se cathode in ether-based electrolyte has been reported by Cui 

etc.
25
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.
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. Yang etc. believed that Se/C in carbonate 
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ether-based electrolyte but a single-step reaction in carbonate-based electrolyte was also reported 

by Amine’s group 
[13, 14]

. Although the carbonyl groups of the carbonate electrolyte can react 

with Se anions, the mesoporous carbon host reduces this side reaction and the stable Se-O layer 

formed on LixSe protects LixSe from further reduction (Se-O layer functions as a SEI) as 

demonstrated by stable interface impedance during charge/discharge cycles (Figure 3.5) and long 

cycling stability (Figure 3.6).   

(a)  (b)  

(c)        (d)  

Figure 3.6. Cycling performance of the Se/C composite in Li-ion (a) and Na-ion (b) batteries; 

Rate capability of the Se/C composite in Li-ion (c) and Na-ion (d) batteries. (1C is defined as 

678 mA g
-1

 based on Se) 
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The cycling stability of the Se/C composite was investigated at a current density of 0.25 C for 

both Li-Se cells and Na-Se cells (Figure 3.6). The Se/C composite exhibits exceptional cycling 

stability in both lithium ion and sodium ion batteries. The Li-Se batteries deliver a reversible 

capacity of 480 mAh g
-1

 in the first cycle and no capacity decline is observed during 1000 cycles, 

demonstrating superior cycling performance. The Coulombic efficiency of Li-Se batteries is 

nearly 100%, demonstrating that the shuttle reaction has been effectively suppressed. It is worth 

noting that good cycling performance is also obtained for Na-Se cells. Normally, electrodes in 

Na-ion batteries show much worse reaction kinetics, lower capacity and poorer cycling stability 

than in Li-ion batteries due to the larger diameter of sodium ions compared to lithium ions 
[42]

. In 

this study, the Se/C composite shows similar reversible capacity (485 mAh g
-1

) in Na-ion cells to 

that (480 mAh g
-1

) in Li-ion cells and retains 340 mAh g
-1

 after 380 cycles which corresponds to 

70% of the first cycle.  

In addition to the good cycling stability, the Se/C composite also shows high rate capability in 

both Li-ion and Na-ion batteries. As current density increases from 0.1 C to 5 C, the capacity of 

Se/C composite in Li-Se batteries only decreases from 500 mAh g
-1

 to 229 mAh g
-1

, while the 

capacity of Se/C composite in Na-Se batteries reduces from 500 mAh g
-1

 to 168 mAh g
-1

. The 

impedances of Se/C cathodes before cycling, and after 50, 100, 150 cycles are compared in 

Figure 3.5. All EISs show a depressed semicircle in high frequency region and a slop line in the 

low frequency region, which is the same to the impedance of Se/C reported by Cui etc 
[67]

. The 

depressed high-frequency semicircle represents interface impedance (including contact 

impedance of Se/C particles, or SEI impedance, and charge transfer impedance), while the low-

frequency line is attributed to ion diffusion in the Se/C particles. The fresh Se/C cell possesses a 

small interface resistance of  100  and increase to 150  at 50 cycles and stabilize to 150  in 
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the flowing cycles. The initial increase in interface impedance in the first few cycles may be 

attributed to volume change of Se/C during charge/discharge cycles and side reaction between 

polyselenides and carbonate electrolyte 
[67]

. The stable interface impedance during 

charge/discharge cycles demonstrates that the formation of Se-O layer on polyselenides protects 

polyselenides from further side reaction. The low and stable interface resistance of Se/C in the 

charge/discharge cycles demonstrates that Se/C cathodes have fast reaction kinetics, which has 

been confirmed by the high rate capability (Figure 3.6c), while the stable interface resistance of 

Se/C during charge/discharge cycles is coincident with the long cycling stability (Figure 3.6a). 

The exceptional electrochemical performance reveals that the Se/C composite is a promising 

electrode material for both Li-ion and Na-ion batteries. 

(a)  (b)  

Figure 3.7. (a) SEM image and (b) XRD pattern of the Se/C composite after 1000 cycles in Li-

ion batteries.  

The good cycling stability of the Se/C composite is believed to be associated with the unique 

structure of the Se/C composite. Therefore, the morphology and structure of Se/C composite 

electrodes after 1000 cycles in Li-Se batteries are investigated by SEM, XRD (Figure 3.7) and 

TEM (Figure 3.8). Compared to Figure 3.1, no obvious morphology change is observed after 
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1000 cycles (Figure 3.7a), which demonstrates that a robust mesoporous carbon can effectively 

accommodate the large volume change of Se during lithiation/delithiation. After 1000 cycles, 

selenium in mesoporous carbon still retains the crystal structure as evidenced by the XRD pattern 

(Figure 3.7b). The extra peaks in XRD pattern may be assigned to the SEI film. The EDS 

mapping results (Figure 3.8) exhibit that Se is still uniformly dispersed in porous carbon after 

1000 cycles.  Similar results are also observed for Na-Se batteries as shown in Figure 3.9. 

(a)  (b)  

(c)  (d)  

Figure 3.8. (a) TEM image of Se/C composite after 1000 cycles; (b) EDS elemental mapping 

images of Se/C composite after 1000 cycles, for carbon (c) and selenium (d). 
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(a)  (b)  

Figure 3.9. (a) SEM images for selenium impregnated carbon composite vs Na after 380 cycles; 

(b) XRD patterns for selenium impregnated carbon composite vs Na after 380 cycles. 

The mechanism behind the exceptional cycling stability and high Coulombic efficiency of the 

Se8/C composite was investigated by comparing with the electrochemical performance of the 

pristine Se12 in the same electrolyte (LiPF6-EC/DEC). The pristine Se12 electrode was prepared 

by mixing Se12 with carbon black and binder at a component ratio of 80:10:10 (Se: carbon black: 

binder). The charge/discharge behaviors of Se12 electrodes are presented in Figure 3.10. Only 

very-short sloping lines can be observed in the charge/discharge curves, leading to a very low 

capacity of 10 mAh g
-1

, which is 48 times less than that of Se8/C electrodes. The side reaction 

between LixSe and carbonate electrolyte for less protective Se12/carbon black composite
 [67]

 and 

large particle size of Se12 may be responsible for the low capacity. It has been proposed that use 

of high soluble electrolyte can improve the utilization of insulating S cathode, thus leading to 

high capacity 
[105]

. Liquid electrolyte (LiTFSI in TEGDME) which has higher solubility for 

polysulfides than conventional carbonate electrolyte (LiPF6 in EC/DEC) is employed for Se 

cathode 
[105]

. Se12/carbon black cathode in LiFTSI-TEGDME electrolyte shows two plateaus at 

2.2 V and 1.8 V (shown in Figure 3.10b). The two plateau reaction was also observed for Se/C 
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cycling with LiTFSI in DOL/DME electrolyte by Cui ect 
[67]

. The lithiation plateau at high 

potential of 2.2 V is attributed to reduction of Se to the soluble polyselenides, Li2Sen (n≥4), 

while the plateau at a low potential of 1.8V is due to further reduction of soluble Li2Sen (n≥4), 

to non-soluble Li2Se2, and Li2Se 
[67]

. During the delithiation, Li2Se is firstly oxidized to Sen
2-

 (n

≥4), and then the high order polyselenide is further oxidized to Se 
[67]

. The high solubility of 

polyselenides in liquid LiTFSI-TEGDME electrolyte enhances the utilization of Se12, thus 

increasing the capacity to more than 200 mAh g
-1

 (Figure 3.10b), which is more than 20 times 

higher than that in LiPF6-EC/DEC electrolyte. However, the high solubility of polyselenides in 

LiTFSI-TEGDME electrolyte also causes severe shuttle reaction, as evidenced by the endless 

voltage plateau at 2.2 V. Since the mesoporous carbon host can reduce the side reaction between 

LixSe and carbonate electrolyte and the stable Se-O layer formed on LixSe can protect LixSe 

from further side reaction (Se-O layer function as a SEI), the low-cost LiPF6-EC/DEC electrolyte 

can be used for Se/C cathode which is prepared by infusing Se into mesoporous carbon at a high 

temperature.  

(a) (b)  

0 10 20 30 40 50

1.0

1.5

2.0

2.5

3.0

V
o

lt
a
g

e
 (

V
) 

v
e
rs

u
s
 L

i+
/L

i

Specific Capacity (mAh/g)

 1st cycle

 2nd cycle

 

 

0 200 400 600 800 1000

1.0

1.5

2.0

2.5

3.0

V
o

lt
a
g

e
 (

V
) 

v
e
rs

u
s
 L

i+
/L

i

Specific Capacity (mAh/g)

 1st cycle

 3rd cycle

 5th cycle
 

 



69 

 

(c) (d)  

Figure 3.10. Charge/discharge profiles of pristine Se in LiPF6-EC/DEC electrolyte (a) and 

LiTFSI-TEGDME electrolyte (b); Charge/discharge profiles of Se/C composite in LiPF6-

EC/DEC electrolyte for Li-ion batteries (c) and Na-ion batteries (d).  

The ideal structure of Se/C nanocomposite has been realized by infusing Se into mesoporous 

carbon at a temperature of 600
o
C. The exceptional electrochemical performance of Se/C 

composite in LiPF6-EC/DEC electrolyte (Figure 3.10c and 3.10d) is due to the uniform 

distribution of nano-Se8 in porous carbon and direct generation of insoluble polyselenides. 

Structure change of Se during charge/discharge cycles in Li-ion battery was measured using 

Raman spectroscopy. The Raman measurement for Se/C composite before cycling and after 1 

and 100 cycles is shown in Figure 3.11. The molecular structure of fresh Se in mesoporous 

carbon is ring-structured Se8. The ring-structured Se8 is converted to chain-structured Sen after 1
st
 

cycle, which is confirmed by the sharp peak at 235 cm
-1

 in Raman spectrum. It retains chain-

structured Sen after 100 cycle. The similar result is also reported in the work by Yang etc 
[14]

. It is 

believed that the formation of chain-structured Sen after 1
st
 cycle leads to the high 

electrochemical stability of Se/C composite. 
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Figure 3.11. Raman spectra of pristine Se, Se/C composite before test, after 1st cycle and after 

100 cycles. 

 

3.4 Conclusion 

Nano-Se8 impregnated mesoporous carbon composites for Li-ion and Na-ion batteries are 

synthesized by infusing Se into mesoporous carbon at 600 
o
C under vacuum. Mesoporous carbon 

is employed to constrain Se8 in its small pores to alleviate the shuttle effect. The Se8/C composite 

cathode in both Li-ion and Na-ion batteries exhibits excellent electrochemical performance in 

low-cost carbonate-based electrolyte. The Se8/C in Li-ion batteries can deliver a reversible 

capacity of 480 mAh g
-1

 and maintains 1000 cycles without any capacity loss. The initial 

capacity of Se/C composite for sodium ion batteries is as high as 485 mAh g
-1

, and maintains 340 

mAh g
-1

 after 380 cycles. The excellent battery performance of Se/C composite is due to (1) use 

of small molecular Se8 and its uniform distribution in mesoporeous carbon which allows most 

Se8 molecules to react with Li ions and to protect LixSe from side reaction with carbonate 
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electrolyte; (2) use of low-soluble and low cost LiPF6 in EC/DEC electrolytes which mitigate the 

dissolution of polyselenides. The exceptional electrochemical performance of the Se/C 

composite enables its application in lithium/sodium ion batteries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 

 

Chapter 4 In Situ Formed Carbon Bonded and Encapsulated Selenium 

Composites for Li-Se and Na-Se Batteries 

 

4.1 Introduction 

The emerging electric vehicles and smart grids require high power and high capacity energy 

storage devices 
[71]

.
 
The primary technological bottleneck of state-of-the-art Li-ion and Na-ion 

batteries comes from the low energy density of ceramic cathodes, which cannot satisfy the 

critical energy requirement of electric vehicles and smart grids 
[22, 84]

. Even though lithium rich 

metal oxide, which attracts considerable research interest due to its higher capacity than the 

commercial lithium metal oxide, can only deliver a reversible capacity of 250 mAh g
-1

 
[85, 86]

, it 

still cannot match with the anode counterparts such as graphite, Sn and Si 
[118, 119]

. 

Up to date, sulfur is the most promising cathode material due to its abundance, high theoretical 

capacity (1675 mAh g
-1

) and low cost 
[89, 91]

. However, lithium sulfur batteries suffer from two 

major challenges 
[90, 111]

: (1) the insulating nature of sulfur results in low utilization of sulfur 

cathode and sluggish kinetics of lithium sulfur batteries; (2) Severe shuttle reaction, triggered by 

the formation of high solubility polysulfide intermediates during lithiation/delithiation process, 

results in rapid capacity fading. Although tremendous advances in stabilizing sulfur cathodes 

have been achieved via carbon coating and nanomaterial fabrication 
[120, 121]

, the two challenges 

still cannot be resolved and sulfur cannot be commercialized as cathodes in Li-ion and Na-ion 

batteries. 
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The recent investigation on selenium opens up new opportunities to develop advanced cathode 

materials for lithium and sodium storage. Abouimrane et al. reported selenium, the congener of 

sulfur, is a promising cathode material for both lithium ion and sodium ion batteries due to 

comparable volumetric capacity (3253 Ah L
-1

) to sulfur (3467 Ah L
-1

) 
[67, 122]

. Though Se cathode 

suffers from similar dissolution issue with sulfur, its higher electrical conductivity than sulfur is 

advantageous since it may increase the utilization and power density of Se cathodes. In selenium 

cathodes, porous carbon as a conductive framework was used to encapsulate Se, thus 

circumventing the shuttle reaction 
[14, 123]

. Carbon coated Se, nanofibrous Se, free standing 

graphene/Se film and TiO2-Se composite were also reported to demonstrate improved 

electrochemical performance 
[124-128]

. In our previous work, we impregnated Se into mesoporous 

carbon that delivers a reversible capacity of 480 mAh g
-1

 for 1000 cycles without any capacity 

loss in Li-ion batteries and 340 mAh g
-1

 for 380 cycles in Na-ion batteries 
[44]

. The exceptional 

battery performance is ascribed to the synergic physical encapsulation by porous carbon and 

solid-electrolyte-interphase (SEI) formed from reduction of carbonate based electrolyte. Though 

such excellent electrochemical performance is achieved by filling Se into mesoporous carbon, 

the low loading content (30%) of Se in the composite impedes its widespread application in 

rechargeable batteries.  

In this study, the C/Se composites containing 54% of Se were in situ synthesized by annealing 

the mixture of PTCDA and Se in a sealed vacuum glass tube as shown in figure 4.1. One 

PTCDA molecule contains six oxygen atoms, which are active sites to react with selenium at 

high temperature. The resulting C/Se composites are collected as black power (figure 4.1b) in the 

vacuum glass tube after annealing at 600 
o
C. The high temperature treatment enables chemical 

bonding and physical encapsulation of Se by carbon. The in situ formed C/Se composites exhibit 
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very stable cycling performance in commercial carbonate based electrolytes. The C/Se 

composites with high loading content of Se maintains a reversible capacity of 430 mAh g
-1

 after 

250 cycles in Li-ion batteries and 280 mAh g
-1

 after 50 cycles in Na-ion batteries. 

(a)  

(b)  

Figure 4.1. (a) Schematic illustration for the in situ synthesis of C/Se composites; (b) Photograph 

of sealed vacuum glass tube after annealing. 

 

4.2 Experimental Section 

Synthesis of C/Se composites: All chemicals were purchased from Sigma Aldrich and used as 

received. Selenium and perylene-3, 4, 9, 10-tetracarboxylic dianhydride were mixed with a ratio 

of 1.5:1 by weight and sealed in a glass tube under vacuum. The sealed glass tube was annealed 

in an oven at 600 °C for 3 h, and it was cooled to room temperature in 24 h. C/Se composites 

were collected as black powder. 
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Material Characterizations: Scanning electron microscopy (SEM) images were taken by Hitachi 

SU-70 analytical ultra-high resolution SEM (Japan); Transmission electron microscopy (TEM) 

images were taken by JEOL (Japan) 2100F field emission TEM; Thermogravimetric analysis 

(TGA) was carried out using a thermogravimetric analyzer (TA Instruments, USA) with a 

heating rate of 10 °C min
-1

 in argon; X-ray diffraction (XRD) pattern was recorded by Bruker 

Smart1000 (Bruker AXS Inc., USA) using CuKα radiation; Raman measurements were 

performed on a Horiba Jobin Yvon Labram Aramis using a 532 nm diode-pumped solid-state 

laser, attenuated to give ~900 µW power at the sample surface. The X-Ray Photoelectron 

Spectroscopy (XPS) analysis was performed on a high sensitivity Kratos AXIS 165 X-ray 

Photoelectron Spectrometer using monochronic Al Kα radiation. 

Electrochemical measurements: The in situ formed C/Se composites were mixed with carbon 

black and sodium alginate binder to form a slurry at the weight ratio of 80:10:10. The electrode 

was prepared by casting the slurry onto aluminum foil using a doctor blade and dried in a 

vacuum oven at 60 °C overnight. The slurry coated on aluminum foil was punched into circular 

electrodes with an area mass loading of 1.2 mg cm
-2

. Coin cells for lithium selenium batteries 

were assembled with lithium foil as the counter electrode, 1M LiPF6 in a mixture of ethylene 

carbonate/diethyl carbonate (EC/DEC, 1:1 by volume) and Celgard®3501 (Celgard, LLC Corp., 

USA) as the separator. Coin cells for sodium selenium batteries were assembled with sodium 

metal as the counter electrode, 1M NaClO4 in a mixture of ethylene carbonate/dimethyl 

carbonate (EC/DMC, 1:1 by volume) and Celgard®3501 (Celgard, LLC Corp., USA) as the 

separator. Electrochemical performance was tested using Arbin battery test station (BT2000, 

Arbin Instruments, USA). Capacity was calculated on the basis of the mass of selenium in C/Se 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=7&cad=rja&ved=0CFMQFjAG&url=http%3A%2F%2Fwww.phi.com%2Fsurface-analysis-techniques%2Fxps.html&ei=pgNFUqutNonc4AOT2IH4CA&usg=AFQjCNFDraVeeCD4FLZiSoPbwhcm1BKkwA&bvm=bv.53217764,d.dmg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=7&cad=rja&ved=0CFMQFjAG&url=http%3A%2F%2Fwww.phi.com%2Fsurface-analysis-techniques%2Fxps.html&ei=pgNFUqutNonc4AOT2IH4CA&usg=AFQjCNFDraVeeCD4FLZiSoPbwhcm1BKkwA&bvm=bv.53217764,d.dmg
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composites. Cyclic voltammograms were recorded using Gamry Reference 3000 

Potentiostat/Galvanostat/ZRA with a scan rate of 0.1 mV s
-1

. 

 

 

4.3 Results and Discussion 

(a)  (b)  

(c)  (d)  

Figure 4.2. (a) SEM image of in situ formed C/Se composite; (b) TEM image of in situ formed 

C/Se composite and EDS elemental mapping images of the composites, marked by purple square, 

for carbon (c) and selenium (d). 

Figure 4.2 shows the morphology of C/Se composites that consist of irregular shape particles 

with a size about 1 µm. The Se is uniformly distributed in the C/Se composite (Figure 4.2b) as 
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demonstrated in the energy dispersive X-ray spectroscopy (EDS) (Figure 4.2c, and 4.2d). The 

content of Se in the composite is determined by thermogravimetric analysis (TGA) as shown in 

figure 4.3. The in situ formed C/Se composites contain 54% of Se, which is much higher than 

that (30%) of Se impregnated mesoporous carbon composite in our previous work 
[44]

. 

 

Figure 4.3. The TG analysis for In Situ Formed C/Se composites. 

The structure of C/Se was characterized using X-ray diffraction (XRD), as shown in figure 4.4a. 

It shows a broad peak at 26 degree and a few small peaks. The broad peak at 26 degree is 

attributed to graphitic carbon derived from carbonized PTCDA, while the small peaks are 

indexed to crystalline Se. Since the intensity of XRD peaks for crystal Se is very weak, only a 

small portion of Se exists in the form of crystal structure. 

The nature of interaction between C and Se was characterized using Raman spectroscopy and X-

ray photoelectron spectroscopy (XPS).  Se and carbonized PTCDA were used as control samples 

to identify the Raman spectra of C/Se composites. Figure 4.4b shows the Raman peaks of 

pristine Se, carbonized PTCDA and in situ formed C/Se composites. Two broad carbon peaks at 

1345 cm
-1

 and 1595 cm
-1

 appearing in both carbonized PTCDA and C/Se composites represent 

the disordered graphite (D band) and crystalline graphite (G band), respectively. The similar 
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peak intensity between D band and G band in C/Se composite is indicative of good electrical 

conductivity of the carbon matrix derived from carbonized PTCDA. No Raman peaks for pristine 

Se is observed in the C/Se composites, demonstrating that the small amount of crystal Se is 

encapsulated by carbon matrix since Raman spectroscopy only collects signals from the surface 

of material. The interaction between C and Se was characterized by XPS as shown in figure 4.4c 

and 4.4d. The asymmetry of C 1s peak of C/Se composite in Figure 4.4c indicates the co-

existence of sp
2
 and sp

3
 carbon owing to the graphitic structure of carbon matrix. The binding 

energies of elemental Se 3d 5/2 is in a range from 55.1 eV to 55.5 eV. However, the binding 

energies of Se 3d 3/2 and Se 3d 5/2 in C/Se composite are located at 57.0 eV and 56.2 eV, 

respectively, which are higher than that of elemental Se. The high binding energies of Se is 

attributed to the strong chemical bond between Se and carbon 
[129]

. The unique synthetic 

technique of sealed vacuum glass tube enables the formation of C-Se bond at high temperature. 

The absence of elemental Se in XPS spectrum further confirms that small amount of crystal Se is 

encapsulated by carbon matrix since XPS only collects signals from the surface of material. 

Therefore, the in situ formed carbon bonded and encapsulated selenium-carbon composites are 

obtained by using unique synthetic technique of sealed vacuum glass tube. 
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(c)  (d)  

Figure 4.4. XRD patterns (a) and Raman spectra (b) for pristine Se, and in situ formed C/Se composite; XPS 

spectra of in situ formed C/Se composite: (c) C 1s, (d) Se 3d. Note: the XPS peaks are calibrated by using C 1s 

peak at 284.8 eV. 

The electrochemical performances of C/Se composites in Li-ion battery and Na-ion batteries 

were measured in coin cells with carbonate-based electrolytes. Figure 4.5a shows the 

lithiation/delithiation behavior of C/Se composite in Li-C/Se cell. In the first cycle, two lithiation 

plateaus centered at 1.6 V and 0.9 V, and a long slopping delithiation plateau centered at 1.8 V 

are observed. The lithiation plateau at 1.6 V and delithiation plateau at 1.8 V represent the redox 

reaction between Se and Li-ions, while the plateau at 0.9 V corresponds to the formation of solid 

electrolyte interphase (SEI) layer and the lithiation of Se that is bonded with carbon. The low 

Coulombic efficienty of the first cycle (65%) is due to the growth of SEI layer. In the second 

cycle, the Coulombic efficiency increases to 94%, indicating very small amount of newly formed 

SEI layer. In the second lithiation, the capacities of plateaus at both 1.8 V and 0.9 V are reduced 

due to the dissolution of polyselenide caused by incompletely encapsulated Se. The physical 

encapsulation and chemical bonding of Se by carbon coating suppress the volume expansion in 

the first few lithiation/delithiation cycles, which require additional overpotential to overcome the 

stress/strain energy. After the activation process in the few cycles, the deformation of carbon 
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matrix releases the stress/strain of C/Se composite cathode, shifting the lithiation/delithiation 

potential to a higher value. After 20 cycles, the lithiation plateau at 0.9 V becomes very short, 

while the lithiation plateau at 1.6 V shifts to 1.9 V with higher capacity, demonstrating most of 

Se is activated. The delithiation plateau at 1.8 V also shifts to 1.95 V. The positive shift of both 

lithiation and delithiation plateaus indicates the relief of the strain/stress in the composite upon 

cycling. Cyclic votammograms (CV) scans in figure 4.5b confirm that there is only one pair of 

redox peaks during lithiation/delithiation process. The cathodic peak is at 1.6 V in the first scan, 

and then it shifts to 1.7 V in the subsequent cycles, while the anodic peak is at 1.83 V with a little 

positive shift upon cycling. The sharp cathodic peak at 0.8 V represents the formation of solid 

electrolyte interphase (SEI) layer and the cleavage of C-Se bond by electrochemical reaction 

between Se and Li-ion. The strong cathodic peak at 0.8 V is recovered in the second and third 

cycle, demonstrating the contribution of the growth of SEI layer is very small, because the 

growth of SEI layer mainly occurs in the first cycle. Figure 4.5c and 4.5d show the cycle life and 

rate capability of in situ formed C/Se composites. The composites deliver a charge capacity of 

560 mAh g
-1

 at a current density of 100 mA g
-1

 in the first cycle, and remain the reversible 

capacity of 430 mAh g
-1

 after 250 cycles. Besides superior cycling stability, the composites also 

exhibit excellent rate capacity. As shown in figure 4.5d, the reversible capacity of the composite 

is 600 mAh g
-1

 at a current density of 40 mA g
-1

, while the reversible capacity remains at 280 

mAh g
-1

 with the current density increases to 1.2 A g
-1

, and the reversible capacity recovers to 

600 mAh g
-1

 after the current density decreases back to 40 mA g
-1

. Therefore, the exceptional 

electrochemical performance of the C/Se composite demonstrates that it is a promising cathode 

for rechargeable lithium batteries. 
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(a)  (b)  

(c)  (d)  

Figure 4.5. Electrochemical performance of in situ formed C/Se composite. (a)The galvanostatic 

charge-discharge curves between 0.8 V and 3.0 V versus Li/Li
+
; (b)cyclic voltammograms at 0.1 

mV s
−1

 in the potential window from 0.8 V to 3.0 V versus Li/Li
+
; (c) delithiation capacity and 

Coulombic efficiency versus cycle number at the current density of 100 mA g
−1

; (d) rate 

performance at various C-rates. 

It was reported that Se cathodes have two potential plateaus at ~2.3 V and 3.75 V during 

delithiation 
[13]

. The plateau at ~2.3 V corresponds to the conversion of Li2Se to Se, while the 

plateau at 3.75 V is attributed to the redox shuttle reaction, triggered by the dissolution of 

polyselenide species in the electrolyte upon cycling. If the dissolution of polyselenide species 

can be avoided, the plateau at 3.75 V will disappear. Only one plateau at ~2.0 V was reported for 

carbon encapsulated Se cathode 
[14]

, because the small pores of mesoporous carbon confine the 
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polyselenide species and avoid the dissolution. In our work, Se is bonded and encapsulated by 

carbon so that the polyselenide species are restrained by carbon matrix, and the plateau at 3.75 V 

associated with shuttle effect was not observed. 

(a) (b)  

Figure 4.6. (a) XRD patterns for carbon black, Al foil, fresh C/Se electrode and cycled C/Se 

electrode; (b) Raman spectra for carbon black, selenium, fresh C/Se electrode and cycled C/Se 

electrode. 

The phase structure of C/Se electrodes before cycling and after fully lithiation/delithiation was 

characterized using XRD and Raman measurements as shown in figure 4.6. The fully discharged 

C/Se electrode is prepared by disassembling Li-C/Se cell in the Ar filled glovebox after 

discharging the cell to 0.8 V and maintaining at 0.8 V for 24 h. The fully charged C/Se electrode 

is prepared after charging the electrode to 3.0 V and maintaining at 3.0 V for 24 hours. Both 

electrodes are immersed in dimethyl carbonate for 24 h to remove the LiPF6 salt before XRD and 

Raman measurement. The fresh C/Se electrode shows typical characteristic XRD peaks. All 

these characteristic XRD peaks of Se disappear in fully discharged C/Se electrode, 

demonstrating the lithiated Se becomes amorphous Li2Se after fully lithiation. However, the 

characteristic XRD peaks of Se recover after fully delithiation, demonstrating the crystal 

structure of Se recovers upon cycling. The formation of Li2Se after fully lithiation of C/Se 
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cathodes was also reported in previous studies
 [13, 14]

. The Raman spectra of fresh and cycled 

C/Se electrodes are shown in figure 4.6b. In the fresh electrode, two broad carbon peaks at 1345 

cm
-1

 and 1595 cm
-1

 can be observed, and the characteristic peak for cyclic Se8 disappears due to 

the encapsulation and bonding of Se by carbon matrix. After one change/discharge cycle, a small 

peak at 256 cm
-1

 representing to the chain-structured Sen appears. The formation of chain-

structured Sen after the first cycle enhances the electrochemical stability of C/Se composite. 

(a)  (b)  

(c)  (d)  

Figure 4.7. Electrochemical performance of in situ formed C/Se composite. (a)The galvanostatic 

charge-discharge curves between 0.5 V and 2.5 V versus Na/Na
+
; (b)cyclic voltammograms at 

0.1 mV s
−1

 in the potential window from 0.5 V to 2.5 V versus Na/Na
+
; (c) desodiation capacity 

and Coulombic efficiency versus cycle number at the current density of 100 mA g
−1

; (d) rate 

performance at various C-rates. 
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The unique C/Se composites can also be used as a cathode for sodium ion batteries. Figure 4.7 

shows the charge/discharge profiles of C/Se composite in NaClO4-EC/DMC electrolyte. Two 

plateaus centered at 1.3 V and 0.6 V are observed during the first sodiation, while one slopping 

plateau centered at 1.5 V is observed during the first desodiation, which are 0.3 V lower than 

lithiation/delithiation plateaus in lithium ion batteries due to the lower potential of sodium metal 

than lithium metal 
[130]

. The plateau centered at 0.6 V becomes very short from 2
nd

 cycle to 10
th

 

cycle, while the plateau centered at 1.5 V becomes longer from 2
nd

 cycle to 10
th

 cycle, 

demonstrating that most of Se in C-Se composite is activated after 10 cycles. The positive shift 

of both sodiation and desodiation plateaus indicating the relaxation of the strain/stress in the 

composite upon cycling. The CV scans in figure 4.7b show that there is only one pair of redox 

peaks during sodiation/desodiation process. In the first scan, there are a broad cathodic peak at 

1.05 V and a conspicous cathodic peak at 0.5 V, corresponding to the two plateaus at 1.3 V and 

0.6 V in the first sodiation curve, and an anodic peak at 1.55 V, corresponding to the plateau at 

1.5 V in the first desodiation curve. In the following scans, both cathodic peak at 1.05 V and 

anodic peak at 1.55 V shift to the positive values, and the intensity of the sharp cathodic peak at 

0.5 V becomes weaker upon cycling, coincident with the changes in charge/discharge profiles. 

The long term cycling performance and rate capability are shown in figure 4.7c and 4.7d. The in 

situ formed C/Se composites deliver a charge capacity of 605 mAh g
-1

 in the first cycle at a 

current density of 100 mA g
-1

, while it decreases to 258 mAh g
-1

 after 50 cycles. The cycle life in 

sodium cell is poorer than that in lithium ion cell due to the more severe volume change induced 

by larger size of sodium ion. When the current density increases from 40 mA g
-1

 to 1.2 A g
-1

, the 

desodiation capacity remains 138 mAh g
-1

. Therefore, the good electrochemical performance of 
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in situ formed C/Se composite paves the way for the feasibility of high-performance Na-ion 

batteries. 

 

4.4 Conclusion 

In conclusion, carbon bonded and encapsulated C/Se composites with 54% of Se were 

synthesized by in situ carbonizing the mixture of PTCDA and Se in a sealed vacuum glass tube. 

The unique synthesizing technique enables physical encapsulation and chemically bonding of Se 

by carbon, which greatly enhances the charge/discharge cycling stability in both lithium and 

sodium batteries. The exceptional electrochemical performance of in situ formed C/Se composite 

demonstrates that it is a promising cathode material for rechargeable lithium and sodium 

batteries. 
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Chapter 5 Carbonized Polyacrylonitrile Stabilized SeSx Cathodes for Long 

Cycle Life and High Power Density Lithium Ion Batteries 

 

5.1 Introduction 

Lithium ion batteries which drive most portable electronics are promising energy storage devices 

for electric vehicles and smart grids 
[2]

. To fulfill the large-scale application of lithium ion 

batteries, energy density and cycle life of current Li-ion batteries have to be improved 
[71]

. Anode 

materials such as Si and Sn can provide theoretical capacities of 3579 mAh g
-1

 and 993 mAh g
-1

 

respectively 
[34, 83]

, while the capacities of commercial LiCoO2 (137 mAh/g) and LiFePO4 (170 

mAh g
-1

) are much lower than counterpart anodes 
[22, 84]

. The energy density of current lithium 

ion batteries is mainly limited by cathode materials. Due to a high theoretical capacity of 1672 

mAh g
-1

, sulfur has been considered as the next generation cathode for high energy Li-ion 

batteries 
[131-133]

, and it has attracted considerable research interest from both academy and 

industry. However, lithium sulfur batteries suffer from two major problems 
[111]

: (1) low 

utilization of sulfur and poor power density due to the insulating property of sulfur and lithium 

sulfide; (2) the dissolution of polysulfide intermediates triggers severe shuttle reaction, resulting 

in rapid capacity fading during lithiation/delithiation process. Nevertheless, the dissolution of 

insulating polysulfide intermediates into electrolytes also allows full lithiation of sulfur, thus 

increasing the sulfur utilization and capacity. The current strategy to achieve both long cycling 

stability and high capacity is to use highly polysulfide-soluble electrolyte, but physically restrict 

dissolved polysulfides inside sulfur cathode to prevent shuttle reaction. The most effective 
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method is to employ conductive porous carbon as a host to constrain polysulfide intermediates 

and enhance the conductivity of sulfur 
[62, 112]

. 

Recently, selenium, the congener of sulfur, is introduced as the cathode material for lithium ion 

batteries due to its higher electrical conductivity than sulfur and its comparable volumetric 

capacity (3253 Ah L
-1

) to sulfur (3467 Ah L
-1

) 
[13, 14]

. As demonstrated in our previous work, 

selenium impregnated mesoporous carbon composite exhibits excellent capacity retention that 

there is no capacity loss after 1000 deep charge/discharge cycles 
[44]

. However, the mass capacity 

(480 mAh g
-1

) of selenium, is lower than the mass capacity of sulfur (from 800 mAh g
-1

 to 1000 

mAh g
-1

). Since selenium possesses high cycling stability, but low reversible capacity, and sulfur 

has high reversible capacity, but poor cycling stability, it is desirable to develop a cathode 

material that combines the advantages of S and Se. As a consequence, selenium sulfide (SeS2) 

has been explored as a cathode material for lithium ion batteries 
[67]

. 

Since SeS2 has similar chemical properties with sulfur and selenium, it is believed that the 

method used to stabilize sulfur and selenium should be also effective for SeS2. It was reported 

that PAN could react with sulfur at 300 
o
C to form a stable and conductive heterocyclic 

compound which could confine elemental sulfur and stabilize polysulfides 
[100, 101]

. When the 

carbonization temperature increases to 600 
o
C, the N-containing carbon (ring) structures in 

carbonized polyacrylonitrile (PAN) is able to constrain lithium sulfide species 
[99]

, which further 

enhances the cycling stability and electronic conductivity. In this study, we synthesized 

SeSx/CPAN composites by annealing the mixture of SeS2 and PAN at 600 
o
C under vacuum. The 

x in SeSx/CPAN is less than 2 due to the property difference between Se and S in high 

temperature of 600 
o
C. SeSx is uniformly distributed in the carbonized PAN spheres with a 

particle size of 200 nm, and the carbonized PAN matrix can effectively confine lithium 
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polysulfide and lithium polyselenide intermediates, thus improving the cycling stability of 

SeSx/CPAN composites in commercial electrolyte (LiPF6 in EC/DEC). The SeSx/CPAN 

composite delivers a reversible capacity of 780 mAh g
-1

 at the current density of 600 mA g
-1

, and 

maintains the capacity of 780 mAh g
-1

 for 1200 cycles. As the current density increased from 60 

mA g
-1

 to 6 A g
-1

, the capacity retains 50% of the capacity at 60 mA g
-1

, demonstrating its 

exceptional rate capability. The superior electrochemical performance of SeSx/CPAN composite 

is owing to synergic restriction of SeSx by both CPAN matrix and SEI layer. This is the first 

report on detailed electrochemical performance of selenium sulfide cathode. Our results 

demonstrate that SeSx/CPAN composite is a promising cathode material for long cycle life and 

high power density lithium ion batteries. 

5.2 Experimental Section 

Synthesis of SeS0.7/CPAN composites: All chemicals were purchased from Sigma Aldrich and 

used as received. Selenium sulfide and polyacrylonitrile were mixed with a ratio of 1:1 by weight 

and sealed in a glass tube under vacuum. The sealed glass tube was annealed in an oven at 

600 °C for 3 h, and it was cooled to room temperature in 24 h. SeS0.7/CPAN composites were 

collected as black powder. PCPAN is also synthesized in a sealed glass tube at 600 
o
C for 3 h in 

vacuum. 

Material Characterizations: Scanning electron microscopy (SEM) images were taken by Hitachi 

SU-70 analytical ultra-high resolution SEM (Japan); Transmission electron microscopy (TEM) 

images were taken by JEOL (Japan) 2100F field emission TEM; Thermogravimetric analysis 

(TGA) was carried out using a thermogravimetric analyzer (TA Instruments, USA) with a 

heating rate of 10 °C min
-1

 in argon; X-ray diffraction (XRD) pattern was recorded by Bruker 
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Smart1000 (Bruker AXS Inc., USA) using CuKα radiation; Raman measurements were 

performed on a Horiba Jobin Yvon Labram Aramis using a 532 nm diode-pumped solid-state 

laser, attenuated to give ~900 µW power at the sample surface. The X-Ray Photoelectron 

Spectroscopy (XPS) analysis was performed on a high sensitivity Kratos AXIS 165 X-ray 

Photoelectron Spectrometer using monochronic Al Kα radiation. 

Electrochemical measurements: The SeS0.7/CPAN composites were mixed with carbon black 

and sodium alginate binder to form a slurry at the weight ratio of 80:10:10. The electrode was 

prepared by casting the slurry onto aluminum foil using a doctor blade and dried in a vacuum 

oven at 60 °C overnight. The slurry coated on aluminum foil was punched into circular 

electrodes with an area mass loading of 1.2 mg cm
-2

. The same method is used to fabricate 

pristine selenium sulfide electrode and carbon black electrode. The pristine selenium sulfide 

electrode was made by mixing selenium sulfide, carbon black and sodium alginate binder at a 

weight ratio of 26:64:10. The carbon black electrode was made by mixing carbon black and 

sodium alginate binder at a weight ratio of 90:10. Coin cells for lithium selenium sulfide 

batteries were assembled with lithium foil as the counter electrode, 1M LiPF6 in a mixture of 

ethylene carbonate/diethyl carbonate (EC/DEC, 1:1 by volume) or 1M LiTFSI in tetraethylene 

glycol dimethyl ether (TEGDME) as the electrolyte, and Celgard®3501 (Celgard, LLC Corp., 

USA) as the separator. Electrochemical performance was tested using Arbin battery test station 

(BT2000, Arbin Instruments, USA). Capacity was calculated on the basis of the mass of 

selenium sulfide in SeS0.7/CPAN composites. Cyclic voltammograms were recorded using 

Gamry Reference 3000 Potentiostat/Galvanostat/ZRA with a scan rate of 0.1 mV s
-1

. Impedance 

analysis was also performed by Gamry Reference 3000 Potentiostat/Galvanostat/ZRA. 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=7&cad=rja&ved=0CFMQFjAG&url=http%3A%2F%2Fwww.phi.com%2Fsurface-analysis-techniques%2Fxps.html&ei=pgNFUqutNonc4AOT2IH4CA&usg=AFQjCNFDraVeeCD4FLZiSoPbwhcm1BKkwA&bvm=bv.53217764,d.dmg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=7&cad=rja&ved=0CFMQFjAG&url=http%3A%2F%2Fwww.phi.com%2Fsurface-analysis-techniques%2Fxps.html&ei=pgNFUqutNonc4AOT2IH4CA&usg=AFQjCNFDraVeeCD4FLZiSoPbwhcm1BKkwA&bvm=bv.53217764,d.dmg


90 

 

5.3 Results and Discussion 

 (a) (b)  

Figure 5.1. SEM images for PCPAN (a) and SeSx/CPAN composites (b). 

The scanning electron microscope (SEM) images in Figure 5.1 show the morphology of pre-

carbonized PAN (PCPAN) and SeSx/CPAN composites. As shown in figure 5.1 (a), PCPAN 

synthesized under vacuum at a high temperature (600 
o
C) consists of irregular-shape particles 

with a size about 3 μm. The SeSx/CPAN composites, synthesized by annealing the mixture of 

SeS2 and PAN (1:1 by weight) at the same temperature of 600 
o
C under vacuum, are composed 

of round-shape particles with a small particle size of 200 nm. The morphology difference is 

attributed to the reaction between PAN and SeS2. SeS2 can dehydrogenate PAN to form a 

conductive main chain, in the meanwhile, –CN functional groups in PAN are cyclized to form a 

stable heterocyclic ring at the high temperature 
[100]

. The heterocyclic ring can confine SeSx and 

accommodate the volume change caused by the lithiation/delithiation. The transmission electron 

microscopy (TEM) image of SeSx/CPAN composites (Figure 5.2a) shows that primary particles 

are in round-shape with a size about 200 nm, and these particles aggregate into a large cluster, 

which is consistent with the SEM images. High resolution transmission electron microscopy 

(HRTEM) and selected area electron diffraction (SAED) are also carried out to investigate the 

microstructure of the SeSx/CPAN composite. From the HRTEM image and SAED pattern in 

figure 5.3, it can be clearly observed that SeSx/CPAN composite has an amorphous structure. 
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The energy-dispersive X-ray spectroscopy (EDS) elemental mapping images in figure 5.2b-d 

reveal that the carbon elemental mapping image overlaps with sulfur and selenium mapping 

images, demonstrating the uniform distribution of SeSx in the carbon matrix. Moreover, the EDS 

mapping also indicates that the ratio of selenium and sulfur is 1:0.7, as shown in figure 5.4, so x 

is 0.7. The content of SeS0.7 in the SeS0.7/CPAN composites is 33% as shown in the 

thermogravimetric analysis (TGA) in figure 5.5. 

(a) (b)  

(c) (d)  

Figure 5.2. TEM image of SeSx/CPAN composites (a) and EDS elemental mapping images of 

the SeSx/CPAN composites, marked by purple square, for carbon (b), sulfur (c) and selenium (d). 
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(a)  (b)  

Figure 5.3. HRTEM (a) and SAED pattern (b) for SeSx/CPAN composite. 

 

Figure 5.4. EDS analysis for SeS0.7/CPAN composites. 

 

Figure 5.5. The TGA analysis for SeS0.7/CPAN composites. 
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The phase structure of SeS0.7/CPAN composites was investigated by X-ray diffraction and 

Raman spectroscopy. Figure 5.6a and 5.6b show the XRD pattern and Raman spectrum of 

SeS0.7/CPAN composites. XRD patterns and Raman spectra of pristine SeS2 and PCPAN are also 

showed in Figure 5.6 as controls. The XRD pattern shows that SeS0.7/CPAN composite has an 

amorphous structure, while pristine SeS2 possesses a crystal structure. One broad peak at 26 

degree in the XRD pattern of SeS0.7/CPAN composites is attributed to the carbon matrix formed 

through carbonization of PAN. The amorphous structure of SeS0.7 in SeS0.7/CPAN composite 

may be due to the uniform distribution of SeS0.7 at a molecular level in CPAN matrix, leading to 

strong confinement of SeS0.7 in CPAN. Similar to the XRD pattern, characteristic Raman peaks 

of SeS2 are not observed in SeS0.7/CPAN composites, and only two broad carbon peaks at 1345 

cm
-1

 and 1595 cm
-1

 representing the disordered graphite (D band) and crystalline graphite (G 

band), respectively, appear in the Raman spectrum of SeS0.7/CPAN composites. Both XRD and 

Raman measurements confirm that SeS0.7 molecules are constrained by CPAN to form an 

amorphous structure. The X-Ray Photoelectron Spectroscopy (XPS) analysis was also used to 

obtain valuable information about the surface of SeS0.7/CPAN composites. The peaks for carbon-

carbon bond and carbon-nitrogen bond are observed in figure 5.6c. Since CPAN consists of well-

formed N-containing carbon (ring) structures 
[134]

, the C 1s XPS spectrum is in well agreement 

with the structure of CPAN. The S 2p and Se 3p XPS spectrum in figure 5.6d shows the XPS 

peaks for S 2p 1/2, S 2p 3/2, Se 3p 1/2 and Se 3p 3/2, which further confirms the existence of 

selenium sulfide in SeS0.7/CPAN composites. Moreover, the composition of SeS0.7 is obtained 

from the peak fit using relative sensitivity factors from the Kratos vision library, and atomic ratio 

of S to Se is calculated to be 0.7, which is coincident with the result of EDS analysis. It was 

reported that sulfur can react with selenium to generate selenium sulfide at a high temperature 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=7&cad=rja&ved=0CFMQFjAG&url=http%3A%2F%2Fwww.phi.com%2Fsurface-analysis-techniques%2Fxps.html&ei=pgNFUqutNonc4AOT2IH4CA&usg=AFQjCNFDraVeeCD4FLZiSoPbwhcm1BKkwA&bvm=bv.53217764,d.dmg
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[135, 136]
. Moreover, the heterocyclic sulfur-selenium molecules such as Se5S2, Se5S3 and Se3S2 do 

exist as ring molecules with a majority of Se atoms 
[137]

. Therefore, in the SeS0.7/CPAN 

composite, SeS0.7 can exist as molecules in the frame of CPAN. 

(a) (b)  

(c) (d)
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Figure 5.6. XRD patterns (a) and Raman spectra (b) for pristine SeS2, PCPAN and SeS0.7/CPAN 

composites; XPS spectra of SeS0.7/CPAN composites: (c) C 1s, (d) S 2p and Se 3p. 

The galvanostatic charge–discharge behaviors of SeS0.7/CPAN composites in LiPF6-EC/DEC 

electrolyte are shown in figure 5.7a. During the first lithiation, a small plateau at 2.35 V and a 

long flat plateau at 1.7 V are observed. However, the short plateau at 2.35 V disappears, while 

the flat plateau at 1.7 V becomes a little steeper and shifts to 1.8 V in the subsequent cycles. The 
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plateau at 2.35 V is assigned to the conversion of SeS0.7 to polysulfides/polysenelides and the 

plateau at 1.7-1.8 V is atributed to conversion of polysulfides to Li2S and polyselenides to Li2Se 

[67]
. The disappearence of the small plateau at 2.35 V is probably owing to the dissolution of 

high-order polysulfide/polyselenide intermediates into the electrolyte 
[67]

. The long sloping line 

from 1.5 V to 0.8 V in the first lithiation becomes much steeper in the following lithiation cycles, 

resulting in large irreversible capacity in the first cycle. The large irreversible capacity induced at 

the potential range from 1.5 V to 0.8 V may be attributed to the formation of SEI layer on the 

surface of electrode. The low Coulombic efficiency (~58%) in the first cycle quickly increases to 

95% in the second cycle, suggesting that SEI layer is well-formed after the first cycle. The SEI 

layer on SeS0.7/CPAN electrode can prevent polysulfides/polysenelides from reacting with 

carbonate-based electrolyte. Similar SEI formation process is also observed in carbon black 

electrode. As shown in figure 5.8, a long potential plateau between 1.0 V and 0.8 V in carbon 

black electrode is observed in the first cycle, but it disappears in the second cycle, resulting in a 

large irreversible capacity. The large irreversible capacity is ascribed to the formation and 

growth of SEI layer on the surface of carbon black, which is coincident with the result of 

SeS0.7/CPAN electrode. During delithation, only one sloping plateau centered at 2.1 V can be 

observed, and this peak remains stable during following lithiation/delithiation cycles. The CV 

curves in figure 5.7b are consistent with the charge–discharge curves. In the first scan, there are a 

small anodic peak at 2.45 V, a sharp anodic peak at 1.5 V and a cathodic peak at 2.2 V. The 

small peak at 2.45 V dissappears after the first scan, while the sharp peak at 1.5 V shifts to 1.75 

V in the subsequent scans. The peak shift indicates that there is an activation process due to 

volume expansion of SeS0.7 in the first lithiation process, and then the peaks become very stable, 

demonstrating high cycling stability of SeS0.7/CPAN composites. Figure 5.7c shows the cycling 
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stability of SeS0.7/CPAN composites. It delivers a reversible capacity of 780 mAh g
-1

, and retains 

for 1200 cycles. The Coulombic efficiency of SeS0.7/CPAN electrode is nearly 100%. Its high 

reversible capacity, long cycle life and high Coulombic efficiency demonstrate that CPAN can 

effectively confine SeS0.7 and stabilize polysulfide and polyselenide intermediates. The rate 

performance of SeS0.7/CPAN composite is shown in figure 5.7d. At a current density of 60 mA g
-

1
, its reversible capacity can reach 900 mAh g

-1
. As the current density increases from 60 mA g

-1
 

to 6 A g
-1

, the reversible capacity retains about 50% of the capacity at 60 mA g
-1

. With the 

current density increased to 12 A g
-1

, the capacity decreases to 80 mAh g
-1

, but the reversible 

capacity recovers to 900 mAh g
-1

 after the current density returns to 60 mA g
-1

, demonstrating its 

superior robustness to tolerate current changes. The excellent electrochemical performance of 

SeS0.7/CPAN composites demonstrates that CPAN is a good carbon host to enhance the kinetics 

and cycling stability of SeS0.7 cathode material. Therefore, the SeS0.7/CPAN composite is a 

promising alternative to sulfur for long cycle life and high power density lithium ion batteries. 

(a)      (b)  
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(c) (d)  

Figure 5.7. Electrochemical performance of SeS0.7/CPAN composites. (a) The galvanostatic 

charge–discharge curves between 0.8 V and 3.0 V versus Li/Li
+
; (b) Cyclic voltammograms at 

0.1 mV s
-1

 in the potential window from 0.8 V to 3.0 V versus Li/Li
+
; (c) Delithiation capacity 

and coulombic efficiency versus cycle number at the current density of 600 mA g
–1

; (d) Rate 

performance at various C-rates. 
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Figure 5.8. Charge/Discharge profile for carbon black at a current density of 200 mA g
-1

. 

It was reported that selenide anions can react with the carbonyl groups in the carbonate solvent  

and form an insulating SEI layer on the cathode surface 
[13, 67]

. The SEI layer on Se/C cathode 

continuesly grows during charge/dishcarge cycles, reducing the cycling stability of Se/C cathode. 
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By the contrary, SeS0.7/CPAN electrode shows exceptional cycling stability in carbonate-based 

electrolyte. To investigate the mechanism behind the long cycle life, XPS, a surface-sensitive 

spectroscopic technique, was employed to obtain the SEI information on SeS0.7/CPAN electrode 

at a fully charged state (3.0 V) after the 1st deep charge/discharge cycle. To remove LiPF6 salt, 

cycled SeS0.7/CPAN electrode was immersed in propylene carbonate for 48 h before XPS 

analysis. A control experiment was carried out with a fresh SeS0.7/CPAN electrode. As shown in 

figure 5.9, the XPS peaks for Na and N, resulting from sodium alginate binder and CPAN matrix, 

are clearly observed in the fresh SeS0.7/CPAN electrode, but disappear in cycled SeS0.7/CPAN 

electrode. The sulfur peaks cannot be observed in both fresh and cycled SeS0.7/CPAN electrodes 

because the sulfur peaks overlap with selenium peaks in XPS spectrum. The disappearance of 

peaks for Na and N in cycled SeS0.7/CPAN electrode is attributed to the formation of SEI layer 

on the surface of SeS0.7/CPAN electrode that covers the sodium alginate binder and CPAN 

matrix. XPS is a surface-sensitive technique (10 nm). If SeS0.7/CPAN electrode was covered by 

SEI layer, XPS cannot detect the material inside SeS0.7/CPAN electrode, resulting in the 

disappearance of XPS peaks for Na and N. The formation of an insulating layer on the surface of 

Se cathode in carbonate-based electrolyte after the 1st cycle was also reported by Dr. Amine's 

group 
[13, 67]

. To further investigate the role of SEI layer in SeS0.7/CPAN electrodes, LiTFSI-

TEGDME is employed as an electrolyte in SeS0.7/CPAN coin cells, because TEGDME solvent in 

LiTFSI-TEGDME electrolyte is stable and will not be reduced to form SEI layer during the 

lithiation process 
[138]

. As shown in figure 5.10, SeS0.7/CPAN electrode in LiTFSI-TEGDME 

electrolyte suffers from quick capacity decline comparing to the highly stable cycling behavior 

of SeS0.7/CPAN electrode in carbonate-based electrolyte. Moreover, the Coulombic efficiency 

(calculated based on lithiation capacity over delithiation capacity) in the initial 40 cycles is larger 
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than 100% due to the dissolution of polysulfides and polyselenides. It demonstrates that CPAN 

matrix cannot effectively confine polysulfides and polyselenides without a stable SEI layer. 

Therefore, though the formation of SEI layer induces a large irreversible capacity in the first 

lithiation/delithiation cycle of SeS0.7/CPAN electrode (Figure 5.7a), it can prevent the SeS0.7 

from reacting with carbonate-based electrolyte, leading to the enhancement of cycling stability.  

 

Figure 5.9. XPS spectrum of fresh SeS0.7/CPAN electrode and cycled SeS0.7/CPAN electrode. 

 

Figure 5.10. Electrochemical performance of SeS0.7/CPAN composites in LiTFSI-TEGDME 

electrolyte. Lithiation capacity and coulombic efficiency versus cycle number at the current 

density of 600 mA g
–1
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The highly stable SEI layer during charge/discharge cycles was confirmed by electrochemical 

impedance spectroscopy (EIS). As shown in figure 5.11, the impedance curve of fresh 

SeS0.7/CPAN cathodes exhibits two depressed semi-circles in the high and middle frequency 

regions, and a sloping line in the low frequency region. The two depressed semicircles in the 

high and middle frequency regions merge into a single depressed semicircle after first 

charge/discharge cycle, and it remains stable during the rest of cycles. The high-frequency 

semicircle stands for contact resistance of SeS0.7/CPAN particles in fresh SeS0.7/CPAN cathode, 

and sum of SEI layer resistance and particle-to-particle resistance for cycled SeS0.7/CPAN 

cathode. The middle-frequency semicircle is attributed to charge transfer resistance. The low 

frequency line represents ion diffusion resistance in the SeS0.7/CPAN particles. The fresh 

SeS0.7/CPAN cell displays a large charge transfer resistance and ion diffusion resistance due to 

limit access of liquid electrolyte into SeS0.7/CPAN electrode film. After volume 

expansion/shrinkage in the first cycle, more electrolytes can penetrate into electrode film, leading 

to lower charge transfer resistance and shorter ion diffusion distance in the following cycles. The 

reduced impedance in the second cycle decreases the overpotential, and shifts the lithiation 

potential to a higher value as demonstrated in the CV curves in Figure 5.7b. The slightly 

impedance increase in the high-frequency semicircle is attributed to the formation of SEI layer. 

However, the formed SEI layer is very stable during following charge/discharge cycles, as 

evidenced by the overlapped impedance curves. The low and stable resistance of SEI layer and 

charge transfer reaction is coincident with the exceptional rate capability of SeS0.7/CPAN 

composites (in figure 5.7d), demonstrating its fast kinetics. 
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Figure 5.11. Impedance analysis for SeS0.7/CPAN cell before test and after fully charge to 3.0 V 

and rest for 2 h. 

The morphology change of SeS0.7/CPAN composites during 100 deep charge/discharge cycles 

was studied by using TEM. From the TEM image in figure 5.12, it can be observed that the 

cycled SeS0.7/CPAN composites still consist of round-shape particles with a size about 200 nm, 

which is similar to the fresh SeS0.7/CPAN composites (Figure 5.2a). It demonstrates that 

SeS0.7/CPAN composite maintains its morphology after 100 cycles, and the good morphology 

maintenance guarantees high cycling stability of SeS0.7/CPAN composite. The rough surface of 

the SeS0.7/CPAN particles is due to formation of the SEI layer. As shown in figure 5.12, A 20 

nm SEI layer can be observed on the surface of SeS0.7/CPAN electrode after 100 cycles in LiPF6-

EC/DEC electrolyte. Moreover, the fuzzy SEI image of cycled SeS0.7/CPAN in figure 5.13 is 

attributed to the low electronic conductivity of SEI layer. Figure 5.14 shows the TEM image of 

SeS0.7/CPAN electrode after first cycle in LiTFSI-TEGDME electrolyte. A clean surface of 

SeS0.7/CPAN electrode without SEI layer is observed. To further confirm that SEI layer is not 

formed on this electrode, TEM EDX mapping is employed to check the elemental distribution of 

this electrode. As shown in figure 5.15, C, S and Se can still be observed in the cycled electrode, 
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but F which is a main component of SEI layer cannot be observed, demonstrating that SEI layer 

is not formed on electrodes in LiTFSI-TEGDME electrolyte. The elemental distribution in 

carbon black and binder (Sodium alginate), surrounding SeS0.7/CPAN spheres, is also 

investigated by TEM EDX. As shown in figure 5.16, C, S and Se are observed in the outside of 

SeS0.7/CPAN spheres. The C peak results from carbon black and binder. The S and Se peaks 

result from the dissolution of polysulfides and polyselenides in LiTFSI-TEGDME electrolyte, 

which triggers the shuttle effect. F peak is not observed, further demonstrating the absence of 

SEI layer. 

 

Figure 5.12. TEM image of the SeS0.7/CPAN electrode after 100 cycles in Li-ion batteries. 

 

Figure 5.13. SEM image of the SeS0.7/CPAN electrode after 100 cycles in Li-ion batteries. 
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Figure 5.14. TEM image of the SeS0.7/CPAN electrode after first cycle in LiTFSI-TEGDME 

electrolyte. 

To investigate how the in-situ carbonization of PAN affects the cycling stability, the 

electrochemical performance of ex-situ carbonized SeS2/pre-carbonized PAN (PCPAN) 

composite and pristine SeS2 was also measured as controls to compare with in-situ formed 

SeS0.7/CPAN composite. The SeS2/PCPAN composite was synthesized by pre-carbonization of 

PAN (PCPAN in Figure 5.1a), and then infusing SeS2 into PCPAN under the same condition as 

SeS0.7/CPAN composite. TG analysis shows that only 13% of SeS2 is infused into PCPAN 

(figure 5.17), which is much lower than the content (33%) of SeS0.7 in in-situ formed 

SeS0.7/CPAN composite. The low SeS2 content in ex-situ formed SeS2/PCPAN composite is 

because the well-formed N-containing carbon (ring) structures in PCPAN hinder the diffusion of 

SeS2 into carbonized PAN matrix. The first lithiation/delithiation curves of SeS2/PCPAN 

composites in Figure 5.18 (a) exhibit higher overpotential and larger irreversible capacity (~62%) 

than SeS0.7/CPAN composite (Figure 5.7a). The charge/discharge potential of ex-situ formed 

SeS2/PCPAN in the following charge/discharge cycles is also slightly lower than that of in-situ 

formed SeS0.7/CPAN. The reversible capacity of SeS0.7/PCPAN composite is 1050 mAh g
-1

, 

which is higher than that of SeS0.7/CPAN composite. As shown in figure 5.18 (b), SeS2/PCPAN 
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composite also exhibits excellent cycling stability. Although ex-situ formed SeS2/PCPAN 

composite can maintain reversible capacity of 1050 mAh g
-1

 for 700 cycles, the low SeS2 loading 

significantly reduces the overall capacity. Therefore, the in-situ formed SeS0.7/CPAN composite 

is a more advanced cathode material than ex-situ formed SeS2/PCPAN composite. As another 

control, the pristine SeS2 electrode (figure 5.19a) shows much worse battery performance than 

both in-situ formed SeS0.7/CPAN and ex-situ formed SeS2/PCPAN electrodes. It delivers high 

irreversible capacity (~70%) and low lithiation capacity in the first cycle due to the low 

conductivity of SeS2. Nevertheless, the formation of SEI layer stabilizes the pristine SeS2 and 

increases the Coulombic efficiency to almost 100% by preventing the shuttle reaction. 

(a)  (b)  

(c) (d) (e)  

Figure 5.15. TEM EDX mapping for SeS0.7/CPAN electrode after first cycle in LiTFSI-

TEGDME electrolyte. TEM image of SeS0.7/CPAN composites (a) and EDS elemental 
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distribution (b) and mapping images of the SeSx/CPAN composites, marked by purple square, 

for carbon (c), sulfur (d) and selenium (e). 

(a) (b)  

Figure 5.16. TEM EDX for SeS0.7/CPAN electrode after first cycle in LiTFSI-TEGDME 

electrolyte. TEM image of SeS0.7/CPAN composites (a) and EDX elemental distribution (b) of 

the marked purple line. 

The effect of SEI layer on preventing the shuttle reaction was investigated by comparing the 

charge/discharge behaviors of pristine SeS2 in carbonate-based electrolyte and LiTFSI-

TEGDME electrolyte. The sloping lithiation plateau of pristine SeS2 in LiPF6-EC/DEC 

electrolyte centered at 1.7 V shifts to flat plateaus centered at 2.0 V in LiTFSI-TEGDME 

electrolyte (figure 5.19b). LiTFSI-TEGDME is a standard electrolyte for S and SeS2 cathodes 

because it does not react with polysulfides/polyselenides 
[13, 67]

. The reversible capacity of 

pristine SeS2 in LiTFSI-TEGDME electrolyte continuously decreases from 1
st
 cycle to 10

th
 cycle, 

while its reversible capacity in LiPF6-EC/DEC electrolyte remains stable after the first cycle. 

Thus, the SEI layer formed in carbonate-based electrolyte stablizes the SeS2 electrode and 

increases the Coulombic efficiency. 
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Figure 5.17. The TGA analysis for SeS0.7/PCPAN composites. 

(a) (b)  

Figure 5.18. (a) The charge-discharge profiles for SeS0.7/PCPAN composite in LiPF6 electrolyte; 

(b) cycle life for SeS0.7/PCPAN composite in LiPF6 electrolyte at a current density of 1.5 A g
-1

. 

 (a) (b)  

Figure 5.19. The charge-discharge profiles for pristine SeS2 in LiPF6-EC/DEC electrolyte (a) and 

LiTFSI-TEGDME electrolyte (b) at a current density of 60 mA g
-1
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5.4 Conclusion 

The SeS0.7/CPAN composites are synthesized by annealing the mixture of SeS2 and PAN at 

600 °C under vacuum. The CPAN matrix can enhance the electrical conductivity of SeS0.7 

material and constrain the polysulfide and polyselenide intermediates during the 

lithiation/delithiation process, leading to superior electrochemical performance of SeS0.7/CPAN 

composites. The formation of stable SEI layer on the surface of SeS0.7/CPAN electrode further 

contributes to the long cycle life and high Coulombic efficiency. The composite delivers a 

reversible capacity of 780 mAh g
-1

 and retains for 1200 cycles. As the current density increases 

from 60 mA g
-1

 to 6 A g
-1

, its capacity retention is about 50%, demonstrating its high rate 

capability. Therefore, SeS0.7/CPAN composite is a promising cathode material for long cycle life 

and high power density lithium ion batteries. 
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Chapter 6 Self-assembled Organic Nanowires for High Power Density 

Lithium Ion Batteries 

 

6.1 Introduction 

Lithium ion batteries, the best power sources for portable electronics, are considered as the most 

promising energy storage devices for emerging electric vehicles and smart grids 
[2, 71]

. Currently, 

lithium ion batteries largely rely on inorganic compounds as electrodes such as LiCoO2 and 

LiFePO4 
[22, 139]

. Most of these compounds are synthesized using non-earth-abundant resources 

via energy-demanding ceramic processes 
[72]

. Recycling of used batteries further consumes large 

quantities of energy and chemicals, releasing more CO2. To satisfy the urgent demand for 

rechargeable energy storage devices in electric vehicles and smart grids, next generation battery 

electrodes should be made from renewable or recyclable resources via low energy consumption 

processes. One possible approach is to use biomass
 
or recyclable organic materials as electrode 

materials via solution phase routes 
[73]

. In addition, most of organic compounds are degradable in 

the environment, so the organic electrode materials are environmentally benign.  

Recently, carbonyl group based organic materials such as purpurin 
[74]

, tribrominated 

trioxotriangulene 
[75]

, perylenetetracarboxylic anhydride
 [76]

 and other compounds
 [140-151]

 have 

been investigated as electrodes for Li-ion batteries, and some organic materials can also been 

used for Na-ion battery electrodes 
[80, 130]

. However, due to dissolution of organic compounds in 

electrolyte and very low electronic conductivity, the electrochemical performance of these 

sustainable organic electrode materials is much worse than their inorganic counterparts. The 

solubility of organic compounds could be reduced by enhancing their polarities via salt 
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formation
 [77]

 and solubility of organic salt in organic electrolyte can be further reduced by 

increasing the concentration of lithium salt in organic electrolyte that has effectively suppressed 

dissolution of polysulfide in lithium sulfur batteries 
[66]

. Although use of organic salts such as 

lithium salt of tetrahydroxybenzoquinone
 [79] 

can mitigate the dissolution issue 
[72]

, the low 

electronic conductivity of organic salts and volume change during lithiation/delithiation still 

limits the power density and cycling stability of organic electrodes. Due to the very low electrical 

conductivity of most organic compounds, up to 30 wt% of conductive carbon black is normally 

mixed into organic electrode to provide electron pathways for the electrochemical reactions and 

another ~5-10% (by weight) nonconductive polymer binders are also needed to mechanically 

bind all the components into an  electrode. Even adding 30 wt% of carbon black, there is only a 

portion of active materials contributes to the output power of a battery in organic electrodes due 

to large size of organic salt particles. A recent work of organic Li4C8H2O6 nanosheets for Li-ion 

batteries has demonstrated that nanosheet structure provides short Li
 
ion diffusion pathways and 

large contact areas for both conductive carbon and electrolyte, leading to high rate capability 
[78]

. 

 

Scheme 6.1. Molecular structure of croconic acid disodium salt. 

In this study, croconic acid disodium salt (CADS) wires are used as models to investigate the 

size effect on the battery performance of organic electrodes. CADS has a cyclopentene backbone 

with three carbonyl groups, and two of them are connected by a conjugated chemical bond as 

shown in scheme 6.1. The two carbonyl groups in CADS can participate in the reversible 

reaction with lithium ions 
[73]

, providing a theoretical capacity of 288 mAh g
-1

. According to the 
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reported reaction mechanism for carbonyl group based organic electrodes, only carbonyl groups 

that are connected by conjugated structure such as carbon-carbon double bond or benzene ring 

can participate in the lithiation reaction 
[77]

. There are three carbonyl groups in CADS. Only two 

of them are connected by conjugated structure, thus active for the lithiation reaction. In addition, 

the specific capacity of CADS nanowire shown in figure 6.5 also support the reaction 

mechanism. The specific capacity of CADS nanowire is 200 mAh g
-1

 at a low current density of 

0.1 C, which is close to the theoretical capacity (288 mAh g
-1

) of CADS based on lithiation 

reaction of two carbonyl groups. CADS nanowires with diameter size ranging from 150 nm to 4 

m were synthesized by anti-solvent crystallization method to reduce the strain and Li-ion 

diffusion length. 150 nm CADS nanowire exhibits the superior capacity, rate capability and 

cycling stability. The theoretical calculation for lithiation and delithiation of CADS suggests that 

sodium ions in CADS will be gradually replaced by lithium during the lithiation and delithiation 

of CADS electrode, which is confirmed by Inductively Coupled Plasma test. Since Li croconate 

has a more stable crystal structure than Na croconate, the formation of Li croconate further 

enhances the cycling stability of CADS electrode. To our best knowledge, CADS nanowires 

demonstrate one of the best battery performances for reported organic compounds in terms of 

cycling stability and rate performance at a low carbon content 
[144]

. 

 

6.2 Experimental Section 

Fabrication of CADS nanowires: all materials are purchased from Sigma Aldrich, and used 

without further purification. 0.75 mL CADS aqueous solution with a concentration of 0.8 mg 

mL
-1

 was added into 12 mL acetone with bath sonication. After 10 minutes sonication, the 

yellow precipitation was collected through filtration. Several bottles of above sample were 
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collected for further characterization. CADS microwire was prepared with the same method, but 

a higher concentration (2 mg mL
-1

) of CADS aqueous solution was used. 

Fabrication of CADS micropillar: the as received CADS powder was directly dissolved in water 

to prepare 5mg/ml CADS water solution. Then, the 5mg/ml CADS water solution was cast on 

the stainless steel foil and kept at room temperature for 48 hours to evaporate water. The 

resulting sample was collected for further characterization. 

Material Characterizations: Scanning electron microscopy (SEM) image was taken by Hitachi 

SU-70 analytical ultra-high resolution SEM (Japan). X-ray diffraction (XRD) pattern was 

recorded by Bruker Smart1000 (Bruker AXS Inc., USA) using CuKα radiation.  

Inductively Coupled Plasma test: Inductively Coupled Plasma (ICP) test was performed on 

PerkinElmer Optima 4300 DV ICP-Optical Emission Spectrometer. Both the fresh and cycled 

electrodes were dissolved in deionized water by sonication. Before ICP test, the cycled electrode 

was immersed in diethyl carbonate for 48 h to remove the LiPF6 salt. Six standard solutions with 

the Li
+
 or Na

+
 concentration of 0.0 mg L

-1
, 0.025 mg L

-1
, 0.05 mg L

-1
, 0.1 mg L

-1
, 0.25 mg L

-1
, 

0.5 mg L
-1

 were prepared to obtain a standard curve of peak intensity vs. ion concentration 

(relationship between peak intensity and the concentrations of lithium ion or sodium ion). The 

concentrations of lithium ion and sodium ion in fresh and cycled electrodes were obtained by 

comparing the peak intensity of fresh and cycled electrodes to the standard peak intensity in the 

standard curve of peak intensity vs. ion concentration. 

Electrochemical Measurements: The recrystallized CADS, CADS microwire and CADS 

nanowire were mixed with carbon black and Polyvinylidene fluoride (PVDF) binder to form 

slurry at the weight ratio of 70:20:10, respectively. The electrode was prepared by casting the 

slurry onto aluminum foil using a doctor blade and dried in a vacuum oven at 100 °C overnight. 
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The electrode was cut into circular pieces with diameter of 1.2 cm for coin cell testing, and the 

area mass loading of the electrode is ~0.8 mg cm
-2

. Li ion batteries were assembled with lithium 

metal as the counter electrode, 1 M LiPF6 in a mixture of ethylene carbonate/diethyl carbonate 

(EC/DEC, 1:1 by volume) as the electrolyte, and Celgard®3501 (Celgard, LLC Corp., USA) as 

the separator. Electrochemical performance was tested using Arbin battery test station (BT2000, 

Arbin Instruments, USA). Capacity was calculated on the basis of the mass of CADS micropillar, 

CADS microwire or CADS nanowire. Cyclic voltammogram were recorded at a scan rate of 0.1 

mV/s between 0.8 – 2.8 V using Solatron 1260/1287 Electrochemical Interface (Solatron 

Metrology, UK). Impedance analysis was also performed by Solatron 1260/1287 

Electrochemical Interface. 

Calculations were performed with the Amsterdam Density Functional (ADF) suite of softwares 

[1], using a triple-zeta with polarization basis set. ADF uses Slater-type orbitals (STOs), as 

opposed to most quantum-chemistry codes which use Gaussian-type orbitals. STOs feature 

correct decay at long distances and correctly describe the nuclear-electron cusp. 

 

6.3 Results and Discussion 

(a) (b)
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(c)  (d)

Figure 6.1. SEM images for CADS micropillar (a), CADS microwire (b) and CADS nanowire (c, 

d). 

Crystal CADS micropillars with the width of 10 μm and length longer than 100μm (Figure 6.1a) 

were prepared by directly recrystallizing CADS from water, and are used as control samples. 

Due to the insulating nature of CADS, the large particle size will significantly increase the 

transportation resistance of Li-ion and electron in the CADS micropillars. The large size and 

small surface area of CADS micropillar also results in poor contact between CADS and 

conductive carbon, thus remarkably reducing the charge transfer reaction kinetics. To improve 

the lithiation/delithiation kinetics, CADS microwire with an average diameter about 4 μm 

(Figure 6.1b) and CADS nanowire with a mean diameter about 150 nm (Figure 6.1c & 6.1d) 

were fabricated at room temperature using anti-solvent crystallization method, a facile synthetic 

route. The growth of CADS nanowires is driven by the reduction of the solubility of CADS 

when CADS aqueous solution is added into acetone (a poor solvent for CADS). Under bath 

sonication, CADS starts to crystallize within a few minutes due to the poor solubility in the 

water/acetone mixture solvent and self-assemble into nanowires, which is possibly due to - 

interaction between CADS molecules 
[152]

. The CADS wires synthesized by anti-solvent 

crystallization method have very uniform diameters (Figure 1b and1c). The diameter of CADS 
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wires can be manipulated by tuning the concentration of CADS in aqueous solution. The lower 

concentration CADS aqueous solution yields thinner CADS nanowires.  

 

Figure 6.2. XRD patterns of CADS micropillar, CADS microwire and CADS nanowire. 

The crystal structures of three CADS samples are identified by X-ray diffraction (XRD). The 

XRD patterns in figure 6.2 reveal that the CADS micropillar, CADS microwire and CADS 

nanowire have the same crystal structure. No impurity peak is observed in all three CADS 

samples. The peak intensity of CADS nanowire is stronger than that of CADS micropillar and 

CADS microwire, demonstrating that CADS nanowires have high crystallinity and relatively 

uniform crystal size.  
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(c) (d)   

Figure 6.3. Electrochemical performance of CADS micropillar, CADS microwire and CADS 

nanowire. (a) Charge and discharge curves of CADS micropillar, CADS microwire and CADS 

nanowire for the second cycle; Cyclic voltammograms for CADS micropillar (b), CADS 

microwire (c), CADS nanowire (d). 

The charge and discharge profiles for CADS micropillar, CADS microwire and CADS nanowire 

in the second cycle were measured at a current density of 0.2 C (1 C is defined as 288 mA g
-1

) 

and are shown in Figure 6.3a. The lithiation potential decreases and delithiation potential 

increases with the size of CADS nanowire increases from 150 nm to 4 m and then to 10 m. 

The cyclic voltammetry (CV) of three CADSs with different diameter in figure 6.3b-d shows a 

peak at 1.6 V with a small shoulder at 2.1 V during lithiation, and a peak at 2.0 V with a small 

shoulder at 2.6 V during delithiation, demonstrating that CADS undergoes a two-step reaction 

with lithium ions. The two carbonyl groups connected by carbon-carbon double bond react with 

lithium ions step by step. The potential hysteresis (ΔV) between the cathodic peak and anodic 

peak is 0.62 V for CADS micropillar, 0.47 V for CADS microwire and 0.30 V for CADS 

nanowire, indicating that the overpotential of CADS nanowire is smaller than CADS micropillar 

and CADS microwire. The increase of potential hysteresis with wire size confirms that 

lithiation/delithiation kinetics decreases with the increase of wire size. The equilibrium potentials 
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of CADS are estimated by averaging the lithiation and delithiation potential. The equilibrium 

lithiation potentials of CADS are 1.8 V and 2.35 V. As shown in CV curves in Figure 6.3, the 

lithiation peak potential slightly increases to more positive value with lithiation and delithiation 

cycles. To explore the mechanism for two-step reaction and potential shift, the first principle 

DFT calculation is applied to calculate the lithiation process. Table 6.1 collects the values of the 

total electronic bonding energy of various species involved in the reduction of CADS. Table 6.2 

collects the calculated reduction potential of the CADS with respect to a lithium electrode 

potential. Figure 6.4 schematically reports the energy levels of Na and Li croconate for the three 

reduced forms considered. The potentials in Table 6.2 indicate that the one-electron and the two-

electron reduction of CADS occur at very similar potentials. The sequential one-electron 

reductions are estimated to be 2.42 V and 2.36 V, which is higher than the equilibrium potential 

demonstrated by CV scans (2.35 V and 1.8 V). The large potential difference (2.36-1.8=0.56V) 

in second step reaction is probably attributed to the strain overpotential induced by the volume 

expansion at high lithiation levels. A large strain overpotential of 0.6 V was reported for 

lithiation of Sn 
[153]

. Due to the low strain at low lithiation level, the calculated potential in the 

first step reaction is similar to measured potential in CV. However, the calculations are unable to 

ascertain whether the electrochemical potentials are due to a concerted two-electron process or 

two sequential one-electron processes. Analyzing the overall stability of the sodium and lithium 

croconate indicates (see Table 6.1) that lithium croconate forms a more stable crystal than the 

sodium salt. Thus, it is possible that the CADS undergoes a chemical exchange from sodium 

croconiate to lithium croconate. For this reason, additional simulations were carried out for the 

reduction of lithium croconate. The simulations show that the reduction potential for Lithium 

croconate is 2.56 V and 2.49 V for the single one-electron processes, respectively. Thus, if a 
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counter ion exchange occurs during the CV scans, the reduction potential should slightly 

increases, which is in well agreement with CV scans in Figure 6.3. The simulations qualitatively 

reproduce the potentials determined experimentally and predict a possible Sodium-Lithium 

exchange during the lithiation and delithiation of CADS electrode. Such a prediction is further 

confirmed by Inductively Coupled Plasma (ICP) test. A fresh CADS electrode and a CADS 

electrode after first cycle are dissolved in water separately, and then Li
+
 and Na

+
 concentration in 

water was measured by ICP. The result shows that the concentrations of Li
+
 and Na

+
 in fresh 

electrode are 0 and 0.135 mg L
-1

, respectively, while the concentrations of Li
+
 and Na

+
 in cycled 

electrode are 0.103 mg L
-1

 and 0.020 mg L
-1

, demonstrating that most of sodium ions in CADS 

are exchanged by lithium ions. 

Compound Bonding Energy (eV) Homo-Lumo gap (eV) 

Na2CA -96.2954 3.39 

Li2CA -98.4320 3.88 

Li3CA -101.4177 2.13 

Na2LiCA -99.1397 1.25 

Na3LiCA -100.6417 0.61 

Na2Li2CA -101.9261 0.96 

Li4CA -104.3329 1.94 

Li -0.4295  

Table 6.1. Total bonding energy and HOMO-LUMO gap in eV. 
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Electrochemical process Potential # of electrons 

Na2CA + Li  Na2LiCA 2.42 1 

Na2LiCA + Li  Na2Li2CA 2.36 1 

Na2CA + 2Li  Na2Li2CA 2.39 2 

Li2CA + Li  Li3CA 2.56 1 

Li3CA + Li  Li4CA 2.49 1 

Li2CA + 2Li  Li4CA 2.52 2 

Table 6.2. Summary of the calculated electrochemical potentials from the energies in Table 6.1. 

The formation and growth of solid electrolyte interphase (SEI) layer on the surface of CADS is 

also evidenced by CV in Figure 6.3b-d. A sharp peak at 0.8 V in the first anodic scan without 

corresponding cathodic peak is observed in the cyclic voltammograms of CADS micropillar, 

CADS microwire and CADS nanowire. The sharp peak at 0.8 V becomes weaker after each 

cycle, suggesting that stable SEI layer is formed during the first cycle. 

 

Figure 6.4. Calculated energy levels of NaCA and LiCA. Potentials shown are referenced to the 

Li electrode. 

The cycling performance of CADS electrodes is shown in figure 6.5a. The specific capacities of 

CADS micropillar, CADS microwire and CADS nanowire decrease a little in the first 20 cycles, 
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and then it becomes very stable for CADS micropillar, and even increase back to original 

capacity at 110 cycles for CADS nanowires, and slightly lower than initial capacity at 110 cycles 

for CADS microwires. This kind of cycling behavior is also observed in nano-Si/C composite 

[154]
. As indicated by Fig. 6.3b-d, the reductive peak at 0.8 V, corresponding to the formation of 

SEI layer, decays rapidly during the initial cycles, resulting in capacity decline. To identify the 

mechanism for capacity increase of CADS after 20 cycles, the charge/discharge profiles of 

CADS nanowire, CADS microwire and CADS micropillar from 5
th

 cycle to 30
th

 cycle are shown 

in figure 6.6. From the charge/discharge curves of CADS nanowires at different cycles in figure 

6.6 (a), it can be clearly observed that the lithiation plateau and delithiation plateau shift close to 

each other upon cycling, indicating smaller overpotential and faster kinetics. At initial cycles, the 

electrolyte does not fully penetrate to the entire electrode, leading to large overpotential and slow 

kinetics. Upon cycling, the large volume expansion and shrinkage of CADS increase the porosity 

of the CADS electrodes, allowing electrolyte to penetrate the entire electrode, thus shortening the 

ion diffusion pathway and lowering the overpotential after 30 cycles. The fast kinetics enhances 

the utilization of organic electrode, resulting in increase of capacity. However, for micro-size 

CADS electrode, the large volume change also generates cracks, resulting in capacity decline in 

the initial cycles. The formation of cracks offsets the kinetic enhancement induced by electrolyte 

penetration so that the overpotential change from 5
th

 cycle to 30
th

 cycle is very small as 

evidenced by the little plateau shift in figure 6.6 (b) and (c). The reversible capabilities of CADS 

micropillar, CADS microwire and CADS nanowire measured at a current density of 0.2 C are 85 

mAh g
-1

, 132 mAh g
-1

 and 177 mAh g
-1

, respectively. CADS nanowire retains its initial capacity 

after 110 deep charge/discharge cycles.  
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(a) (b)  

Figure 6.5. Cycle life (a) and rate capability (b) of CADS micropillar, CADS microwire and 

CADS nanowire. (1 C is defined as 288 mA g
-1

) 

(a) (b)  

(c)  

Figure 6.6. The charge/discharge profiles from 5
th

 cycle to 30
th

 cycle for CADS nanowire (a), 

CADS microwire (b) and CADS micropillar (c). 
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Since CADS is an insulating material, lithium ions and electrons cannot be easily transported 

into the inside of bulk CADS material, but the smaller size and larger surface area of CADS 

nanowire enables more CADS to react with lithium ions, and lithium ions can quickly transfer to 

inside of CADS, so the specific capacity and rate capability of CADS nanowire is much higher 

than that of CADS micropillar and CADS microwire. The rate capability of CADS micropillar, 

CADS microwire and CADS nanowire is shown in figure 6.5b. With the current density 

increases from 0.1 C to 0.75 C, the specific capacity of CADS micropillar decreases rapidly from 

125 mAh g
-1

 to 7 mAh g
-1

.  Although the capacity of CADS microwire is still 48 mAh g
-1

 at the 

current density of 0.75 C, the specific capacity of CADS microwire decreases from 160 mAh g
-1

 

to 11 mAh g
-1

 when the current density increases from 0.1 C to 2 C, indicating the inferior rate 

performance of CADS microwire due to the large diameter (~4 μm) of microwire. On the 

contrary, the smaller size and larger surface area of CADS nanowire can shorten the lithium ion 

diffusion length and enables better contact between CADS and conductive carbon. Therefore, 

CADS nanowire retains 50% of its initial capacity (200 mAh g
-1

) subjected to the current density 

up to 6 C. After the current density returns to 0.1 C, the capacity of CADS nanowire recovers to 

its initial capacity immediately. Hence, from the electrochemical performance of CADS 

micropillar, CADS microwire and CADS nanowire, we can conclude that nanowire structure 

makes great contribution to the high capacity and high power density of CADS material. 
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Figure 6.7. EIS spectra for CADS micropillar electrode, CADS microwire electrode and CADS 

nanowire electrode. (The inset is magnification of the semi-circle of CADS Nanowire)  

The reaction kinetics of CADS materials was investigated using electrochemical impedance 

spectroscopy. The high frequency semicircle represents interface resistance includes contact 

impedance or SEI impedance, and charge transfer impedance, while the low frequency line 

stands for ion diffusion resistance. As shown in figure 6.7, both the interface and diffusion 

impedances of CADS nanowire are much lower than that of CADS micropillar and CADS 

microwire, indicating the lower interface resistance and better kinetics of CADS nanowire. The 

interface resistance of CADS nanowire is about 50 Ohm, while that for CADS micropillar 

electrode and CADS microwire electrode have much higher value of 300 Ohm and 750 Ohm, 

respectively. The impedance results convince that the high capacity and superior rate capability 

of CADS nanowire is due to the large electrochemical reaction interface and short Li diffusion 

pathway. 
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(a) (b)     

(c)  

Figure 6.8. SEM images for CADS micropillar (a), CADS microwire (b) and CADS nanowire (c) 

after 100 cycles. 

The morphology of CADS micropillar, CADS microwire and CADS nanowire after 110 cycles 

were investigated by SEM. As shown in figure 6.8a, there are a number of micro-size short rods 

around the large size CADS micropillar, demonstrating severe pulverization occurs after 110 

charge/discharge cycles. The CADS microwires maintains its morphology after 110 cycles 

(Figure 6.8b), but few short CADS rods and microcracks induced by the large strain during 

repeated charge/discharge cycles can still be observed. Different from CADS microwires, CADS 

nanowire preserves its morphology after 110 cycles in figure 6.8c, no cracks and pulverization 

can be observed. The good morphology maintenance of CADS nanowires enables its high 

cycling stability. 
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Scheme 6.2. Schematic illustration of lithiation/de-lithiation mechanism for croconic acid 

disodium salt. 

 

6.4 Conclusion
 

In summary, during repeated lithiation/delithiation, CADS will gradually convert to croconic 

acid dilithium salt through ion exchange (Scheme 6.2), as suggested by theoretical calculation 

and evidenced by the potential shift in CV scans and reduction of Na
+
 concentration in cycled 

CADS electrode. More importantly, CADS nanowire with small size (150nm) and large surface 

area, can effectively avoid pulverization and enables stable contact between CADS and carbon 

black, providing high capacity, high rate capability and long cycling stability. Due to the large 

size of CADS microwire, large volume change exists and leads to the formation of cracks and 

microcracks, as evidenced by SEM images of cycled CADS microwires. The microcracks which 

lose contact with carbon black are not electroative, resulting in capacity decline in the initial 

cycles. Therefore, nano-size CADS has much better electrochemical performance than micro-

size CADS. 
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The CADS wires with diameters from 10 m to 150 nm were synthesized using a facile anti-

solvent crystallization method. The CADS nanowire with small diameter and large surface area 

shows high capacity, long cycle life and excellent rate capability due to its short Li-ion and 

electron diffusion pathway, large surface area and low strain. CADS nanowire can retain its 

initial capacity after 110 deep charge/discharge cycles at a low current density of 0.2 C, and 

deliver a high capacity of 100 mAh g
-1

 at 6 C. The theoretical calculation shows that the CADS 

gradually changes into more stable lithium croconate through ion exchange process during 

lithiation/delithiation. The ion exchange process is confirmed by ICP result, which shows the 

high content of lithium ion and low content of sodium ion in the cycled CADS electrode. Since 

the nano-organic material exhibits superior electrochemical performance, our research work 

paves the way for further improvement of organic battery performance in the future.
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Chapter 7 Graphene Oxide Wrapped Croconic Acid Disodium Salt for 

Sodium Ion Battery Electrodes 

 

7.1 Introduction 

Sodium ion batteries are the most promising alternatives to lithium ion batteries due to the low 

cost and abundance of sodium element in the earth 
[155]

. The chemical similarity of sodium ion 

toward lithium ion enables some electrode materials used in Li ion batteries to be applied for Na 

ion batteries 
[34, 47]

. Inorganic materials synthesized through energy-demanding ceramic 

processes 
[72]

 are the most common Li ion electrode materials. However, to satisfy the emerging 

large-scale applications of energy storage, next generation battery electrodes should be made 

from renewable or recyclable resources via low energy consumption processes. One possible 

approach is to use electrode materials fabricated from biomass or recyclable organic materials 

via solution phase routes 
[73]

. 

Several organic materials have been investigated as electrodes for Li ion batteries 
[140-144]

, but 

very few organic materials were explored for Na-ion batteries. The organic electrodes face two 

major challenges in organic electrolyte batteries: (1) low power density due to poor electronic 

conductivity of organic compounds, (2) fast capacity decay during charge/discharge cycles 

which is generally attributed to dissolution of organic compounds into organic electrolytes 
[72]

. 

One way to mitigate the dissolution of organic materials in organic electrolytes is use of organic 

salts 
[72]

. Among the salts, carbonyl group based organic compounds such as lithium salt of 

tetrahydroxy-benzoquinone 
[79]

, lithium ethoxycarbonyl-based compound 
[147]

, dilithium trans-

trans-muconate and dilithium terephthalate
 [77]

 have been investigated as electrodes for Li ion 
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batteries. These organic salts normally contain more than two carbonyl groups which are 

connected by conjugated carbon matrix. These carbonyl groups are redox centers which enable 

the electrochemical reaction to take place in the electrodes. During the discharge process, each 

carbonyl group can obtain an electron and a lithium ion that induces electron transfer in the 

conjugated carbon matrix. The reaction between carbonyl group and lithium ion enables the ion 

transfer and electron transfer in Li ion batteries. Although the solubility of organic salts in the 

electrolyte has been reduced, these organic salts still suffer from fast and continuous capacity 

decline during charge/discharge cycles 
[77, 79]

. The mechanism behind the fast capacity decline is 

still not fully understood.  

Most reported organic salts experience phase transformation during lithiation/delithiation as 

evidenced by a flat voltage plateau in charge/discharge profile and structure change in X-ray 

diffraction (XRD) patterns 
[77]

. The phase transformation is normally accompanied with volume 

change. The large volume expansion in the first lithiation can even change the crystal structure of 

organic salts into amorphous structure and retain amorphous structure in the following 

charge/discharge cycles 
[77]

,
 
which is also observed in Si anodes 

[82]
. The structure change of Si 

from crystal to amorphous structure is attributed to the large volume change (300%) of Si during 

lithiation 
[82]

. The severe volume change of Si pulverizes the Si particle, resulting in rapid 

capacity decline during charge/discharge cycles 
[83]

. Therefore, the volume change of organic 

salts during lithiation/delithiation may be also responsible for the capacity decay. 

In principle, the carbonyl group based organic electrode compounds used in lithium ion batteries 

can potentially be applied to sodium ion batteries 
[156, 157]

. However, due to larger ion size of Na
+
 

than Li
+
, only few organic salts are suitable for Na ion batteries. In addition, the larger ion size of 

Na
+
 causes much more severe volume change of organic salts, resulting in fast capacity decay of 
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organic compounds in Na ion batteries 
[157]

. Therefore, only few organic compounds were 

explored for Na-ion batteries. Due to the large volume change, these organic compounds showed 

quick capacity decline during Na insertion/extraction 
[157]

. However, how the volume change of 

organic salts affects the cycling stability has not been investigated yet. 

 

Figure 7.1. Schematic illustration for pristine CADS, sCADS and GO-CADS. 

In this paper, croconic acid disodium salt (CADS) is used as a model electrode to investigate the 

capacity decline mechanism of organic salt electrodes in Na ion batteries. To our best knowledge, 

CADS has never been studied as a battery electrode material in Li-ion and Na-ion batteries. In 

addition, this is also the first effort to study the effects of phase change on capacity decay of 

organic salt electrodes in Na ion batteries. As shown in figure 7.1, three CADS samples, micro-

sized pristine CADS, submicrometer-size CADS (sCADS), and graphene oxide wrapped CADS 

(GO-CADS), are employed to investigate their electrochemical behaviors toward Na. sCADS 

and GO-CADS are fabricated by ultrasonic spray pyrolysis. Our results show that the particle 

pulverization is a main reason for capacity decline. Minimizing particle size and wrapping 

CADS with graphene oxide can effectively stabilize the electrodes during Na ion 

insertion/extraction, thus improving the cycling stability. 
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7.2 Experimental Section 

All chemicals were purchased from Sigma Aldrich and used as received. The CADS with small 

particle size of 0.5-1.0m (denote as sCADS) was prepared by an ultrasonic spray pyrolysis 

method 
[158]

. The ultrasonic spray pyrolysis apparatus consisted of ultrasonic droplet generator, 

tube furnaces, and filtration system for particle collection. The ultrasonic generator operated 1.7 

MHz frequency atomized the precursor solution to droplets with average diameter of 

approximately 1 microns. Two tube furnaces were connected in series with a total length of 81 

cm. Particle collection was set at the end of the system, allowing gas to pass through and 

collecting particles from 10 nm to 100 µm. 200 mg CADS with average particle size of 5m 

were dissolved into 10 mL water. Aerosol droplets containing the dissolved precursors were 

generated using compressed nitrogen gas at a pressure of 35 psi in a collision type atomizer. The 

geometric mean diameter of the droplets was measured to be ~1 μm by a laser aerosol 

spectrometer. The produced aerosol droplets passed through a silica-gel diffusion dryer and a 

tube furnace preheated to 200 °C to remove most of the solvent. The products were collected on 

a 0.4 μm (pore size) DTTP Millipore filter and dried in a vacuum oven at 100 °C overnight. 

Graphene oxide was synthesized following the modified hummer’s method 
[159]

. The graphene 

oxide wrapped CADS was also synthesized using ultrasonic spray pyrolysis. 100 mg CADS were 

dissolved in 100 mL graphene oxide aqueous solution to prepare the precursor. Nitrogen gas (2.5 

L min
-1

 flow rate) was used to carry the solution droplets to the furnace series which was 

operated at 200 °C. In the furnace, water was evaporated, and then graphene wrapped CADS 

particles were generated in a residential time around 1.5 s. 

Scanning electron microscopy (SEM) image was taken by Hitachi SU-70 analytical ultra-high 

resolution SEM (Japan); Transmission electron microscopy (TEM) images were taken by JEOL 
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(Japan) 2100F field emission TEM; X-ray diffraction (XRD) pattern was recorded by Bruker 

Smart1000 (Bruker AXS Inc., USA) using CuKα radiation; Fourier transform infrared 

spectroscopy (FTIR) was recorded by NEXUS 670 FT-IR Instrument; UV/vis spectra were 

recorded on an UV-1700 spectrophotometer; Thermogravimetric analysis (TGA) was carried out 

using a thermogravimetric analyzer (TA Instruments, USA) with a heating rate of 10 °C min
-1

 in 

argon. 

The CADS and sCADS were mixed with carbon black and Polyvinylidene fluoride (PVDF) 

binder to form slurry at the weight ratio of 45:45:10, separately. The GO-CADS was mixed with 

carbon black and Polyvinylidene fluoride (PVDF) binder to form slurry at the weight ratio of 

70:20:10. The electrode was prepared by casting the slurry onto copper foil using a doctor blade 

and dried in a vacuum oven at 100°C overnight. The electrode was cut into circular pieces with 

diameter of 1.2 cm for coin cell testing. Na ion batteries were assembled with sodium metal as 

the counter electrode, 1 M NaClO4 in a mixture of ethylene carbonate/dimethyl carbonate 

(EC/DMC, 1:1 by volume) as the electrolyte, and Celgard®3501 (Celgard, LLC Corp., USA) as 

the separator. Electrochemical performance was tested using Arbin battery test station (BT2000, 

Arbin Instruments, USA). 0.7 V and 2.0 V (vs. Na/Na
+
) were used as low and high cutoff 

voltages for the galvanostatic tests. After the cell reached the cutoff voltage, it was rested for 10 

min for subsequent charge or discharge. Both the charge-discharge current density and specific 

capacity were calculated on the basis of the mass of CADS in the electrode. Cyclic 

voltammogram at a scan rate of 0.1 mV s
-1

 between 0.7 – 2 V (versus Na/Na
+
) was recorded 

using Solatron 1260/1287 Electrochemical Interface (Solatron Metrology, UK). 
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7.3 Results and Discussion 

7.3.1 Morphology and Structure 

 

Scheme 7.1. The sodiation/de-sodiation mechanism for croconic acid based molecule. 

Croconic acid disodium salt has a five-member ring structure with three carbonyl groups and a 

carbon-carbon double bond (scheme 7.1). Its chemical structure is very similar to dilithium 

rhodizonate which has been reported as an organic electrode for Li ion batteries 
[73]

. The 

carbonyl groups in this compound are redox centers which can react with Na ions and gain 

electrons through the reaction as shown in scheme 7.1. During the sodiation, each carbonyl 

group, connected by the carbon-carbon double bond, gains a sodium ion and an electron. At the 

meanwhile, the carbon-carbon double bond is broken, and two new carbon-carbon double bonds 

are generated. During the desodiation, CADS molecule is recovered. The reversible reaction 

between CADS molecule and sodium ions enables CADS to be an electrode material for Na ion 

batteries. 

(a) (b)  
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(c)  

Figure 7.2. The SEM images of pristine CADS (a), sCADS(b), and GO-CADS(c). 

Three CADS samples, micro-sized pristine CADS, submicrometer-size CADS (sCADS), and 

graphene oxide wrapped CADS (GO-CADS), were used to investigate the capacity decline 

mechanism. The sCADS particles were synthesized by dissolving pristine CADS into water, and 

then rapidly evaporating the CADS solution using the ultrasonic spray pyrolysis. The GO-

CADSs were synthesized by rapidly drying the graphene oxide and CADS aqueous solution at 

200 
o
C using the ultrasonic spray pyrolysis. The morphology of three CADS samples was 

characterized by scanning electron microscopy (SEM) as shown in Figure 7.2. The pristine 

CADS consist of long bars and some irregular-structured particles which tend to aggregate to 

form micro-size particles (Figure 7.2a). As shown in Figure 7.2b, the sCADS particles have 

spherical morphology with the particle size of 0.5-1.0 µm, which is about ten times smaller than 

that of pristine CADS. Figure 7.2c shows the SEM images of GO-CADS, in which all the CADS 

particles are encapsulated by the folded and winkled graphene oxide. The morphology of the 

GO-CADS composite is very uniform with particle size typically less than 1µm, which is similar 

to sCADS. This is attributed to the unique ultrasonic spray pyrolysis. As water evaporates, the 

amphiphilic GO sheets would migrate to the surface of the droplets to form a shell. Since the 

diameter of the precipitated CADS particles was much smaller than that of the aerosol droplets, 
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further water evaporation could collapse the GO shell, resulting in a crumpled morphology that 

encapsulates the CADS particles 
[160]

. The transmission electron microscopy (TEM) images of 

GO-CADS in Figure 7.3 also confirm that all the CADS particles are encapsulated by the folded 

and winkled graphene oxide. The energy-dispersive X-ray spectroscopy (EDS) elemental 

mapping images (Figure 7.3c, 7.3d and 7.3e) reveal that CADS is uniformly distributed in the 

GO shell since sodium mapping image overlaps with carbon and oxygen mapping images. The 

content of CADS in GO-CADS is 37 wt% as determined by thermogravimetric analysis (TGA) 

results for GO, CADS and GO-CADS as shown in Figure 7.4. The GO is treated by ultrasonic 

spray pyrolysis under the same condition as GO-CADS. For GO-CADS, the Na ion can penetrate 

through the defects and open-end of GO to react with the inner CADS 
[161]

. 

(a) (b)  

(c) (d) (e)  

Figure 7.3. TEM images of GO-CADS (a, b) and EDS elemental mapping images of the GO-

CADS particle, marked by purple square in (b), for carbon (c), oxygen (d) and sodium (e). 
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Figure 7.4. The TGA analysis for graphene oxide (GO), CADS and graphene oxide wrapped 

CADS (GO-CADS). 

 

Figure 7.5. The XRD patterns for CADS (black line), sCADS (red line), and GO-CADS (blue 

line). 

The structures of three CADS samples are identified by the XRD. The XRD patterns of sCADS 

and GO-CADS are the same as the pristine CADS as shown in Figure 7.5, indicating that the 

sCADS, GO-CADS and pristine CADS have the same crystal structure. However, the XRD peak 

of pristine CADS is slightly sharper than that of sCADS and GO-CADS, demonstrating the 
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crystalline structures of CADS were not well-developed due to rapid precipitation (1.0 s of 

residential time) in ultrasonic spray pyrolysis process. 

 

7.3.2 Sodiation/Desodiation Behaviors 
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(c)  (d)  
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(e)  (f)  

Figure 7.6. Electrochemical performances of materials. The galvanostatic charge–discharge 

curves of pristine CADS (a), sCADS (b) and GO-CADS (c) between 0.7 V and 2.0 V versus 

Na/Na
+
 at room temperature. Cyclic voltammograms of pristine CADS (d), sCADS (e) and GO-

CADS (f) at 0.1 mV s
-1

 in the potential window from 0.7 V  to 2.0 V versus Na/Na
+
. 

The charge/discharge behaviors of pristine CADS, sCADS and GO-CADS in different cycles at 

a current density of 20 mA g
-1

 are shown in Figure 7.6. The voltage profiles of all three CADS 

samples show serials voltage plateaus and the potentials of first sodiation plateau are lower than 

that in the subsequent sodiation process, demonstrating that all three CADS samples experience 

successive and reversible phase transformations during sodiation/desodiation and the stress/strain 

due to large volume expansion in the first sodiation induces a large overpotential. The large 

overpotential is significantly reduced in the subsequent cycles due to the introduction of defects 

in the first sodiation. The sCADS has larger overpotential than pristine CADS, because more Na 

ion (250 mAh/g) is inserted into sCADS in the first plateau than that (150 mAh/g) in pristine 

CADS. Minimization of the CADS particle size from 5.0-10 m to 0.5-1.0 m does not change 

the voltage plateaus (Figure 7.6a and 7.6b), but the capacity (287.8 mAh g
-1

) of sCADS is larger 

than that (246.7 mAh g
-1

) of pristine CADS due to the reduced particle size and consequently 
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improved kinetics of the former. The capacity of sCADS is very close to the theoretical capacity 

(288 mAh g
-1

) of CADS, which is calculated based on one CADS molecule can react with two 

sodium ions. Since GO can reversibly react with Na
+
, and deliver a reversible capacity of 39 

mAh g
-1

 (Figure 7.7), the initial capacity of CADS in GO-CADS after subtracting the capacity of 

GO is about 293 mAh g
-1

, which is higher than theoretical capacity, probably due to the fact that 

carbon black additive is also active for Na ion storage. The high capacity of CADS in GO-CADS 

demonstrates that GO shell can effectively enhance the utilization of inside CADS due to the 

core shell structure and the higher conductivity of GO than CADS. The slight change in the 

voltage profile of GO-CADS compared with that of CADS is attributed to the sloping voltage 

curves of GO capsular 
[162]

. The voltage plateaus and reaction reversibility of CADS, sCADS, 

GO-CADS can be more clearly observed in cyclic voltammogram profiles (Figure 7.6d, 7.6e and 

7.6f). In the first sodiation/desodiation cycle of CADS, there are three clear cathodic peaks at 

1.42 V, 1.0 V, 0.85 V and a shoulder at 1.15 V, and four anodic peaks at 1.15 V, 1.25 V, 1.7 V 

and 1.8V are also observed. However, the shoulder at 1.15 V disappears after the first cycle, and 

the cathodic peak at 1.42 V in the first cycle shifts to high voltage to split into two new peaks at 

1.5 V and 1.65 V in the following cycles. This result suggests that the CADS experiences an 

activation process during the first sodiation, which has been observed in many high capacity 

electrodes with large volume changes such as Sn and Sb 
[33, 55]

. The activation process 

characterized by the high overpotential in the first sodiation process is induced by the high 

stress/strain raised by the first sodiation. The high stress/strain in the first sodiation generates a 

large amount of defects (cracks, dislocations, plastic deformations, etc) in host to release the 

strain/stress. Therefore, the relaxation of the strain/stress in the first solidation decreases the 

overpotential and moves solidation potential to more positive values in the following sodiation 
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process. After the first cycle, there are four peaks in the desodiation scans, which are 

corresponding to the four peaks in the sodiation scans, demonstrating the high reversibility of 

sodiation and desodiation of CADS. The cyclic voltammograms of sCADS and GO-CADS are 

similar with pristine CADS. There is a broad shoulder at 1.1 V in the first sodiation process of 

GO-CADS owing to the irreversible reaction on the surface of GO. After the first sodiation, GO-

CADS displays similar anodic and cathodic peaks as pristine CADS and sCADS. The highly 

reversible peaks in the cyclic voltammetry curves and the highly reversible plateaus in the 

galvanostatic charge–discharge curves suggest that CADS experiences highly reversible phase 

transformation during sodiation/desodiation. 

(a) (b)  

Figure 7.7. Electrochemical performance of graphene oxide. Charge and discharge capacity 

versus cycle number (current density: 20 mAh g
–1

) for GO; (b) The galvanostatic charge–

discharge curves of GO. 

The reversible phase change during sodiation/desodiation is also confirmed by XRD (Figure 7.8). 

In the full sodiation state, the original peaks of pristine CADS at 28 degree and 30 degree shift to 

24 degree and 26 degree. Moreover, the two peaks at 32 degree of pristine CADS salt merge 

together to form a new peak at ~28 degree after full sodiation. Therefore, XRD data confirm the 
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phase change of CADS during sodiation. After the desodiation, the XRD peaks of CADS shift 

back to their original positions, and maitain the positions after 50
th

 full desodiations, illustrating 

that the phase transformation is highly reversible. Comparing to fresh CADS, a few extra XRD 

peaks in full desodiated CADS might imply the uncompleted phase transformation in the active 

material. 

 

Figure 7.8. The XRD patterns of pristine CADS (black line), the first fully discharged CADS 

(red line), the first fully charged CADS (blue line) and the 50th fully charged CADs (green line). 

 

7.3.3 Cycling Stability and Mechanism for Capacity Decay 

The cycling stability of three CADS samples is tested at a current density of 20 mA g
-1

 (Figure 

7.9). The capacity of pristine CADS quickly decreases from 250 mAh g
-1

 to 50 mAh g
-1

 after 60 

cycles. If the dissolution of organic salts into organic electrolyte is responsible for the fast 

capacity decay, the capacity decline of sCADS should be much faster than pristine CADS due to 

the reduced particle size and thus enhanced contact surface between sCADS and electrolyte. 

However, the sCADS has much better cycling stability, demonstrating that the dissolution of 
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CADS is not the major reason for the capacity decay. The insolubility of CADS in electrolyte is 

directly tested by comparing the Fourier transform infrared spectroscopy (FTIR) spectra of fresh 

electrolyte and the electrolyte after 50 sodiation/desodiation cycles. Figure 7.10a shows the FTIR 

spectrum of CADS. There is a very sharp peak at 1500 cm
-1

 which represents the stretching 

vibration of the carbonyl groups and carbon-carbon double bond in CADS. If CADS dissolves in 

the electrolyte, there should be a peak at 1500 cm
-1

 in the FTIR spectrum of the electrolyte after 

50 cycles, whereas the spectra of the electrolyte before test and after 50 cycles are nearly the 

same in the range from 800 to 2000 cm
-1

 in Figure 7.10b. UV-vis spectroscopy is also employed 

to measure the active material in the electrolyte. As shown in figure 7.11, the UV-vis spectra of 

cycled electrolyte (50 cycles) are almost the same to that of the fresh electrolyte, indicating no 

active material is dissolved in the electrolyte during cycles. Thus, this evidence confirms that 

CADS is not dissolved in the electrolyte during the charge and discharge. 

  

Figure 7.9. Desodiation capacity versus cycle number (current density: 20 mA g
–1

) for pristine 

CADS, sCADS and GO-CADS, respectively. 
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(a)  (b)  

Figure 7.10. (a) FTIR spectrum for CADS; (b) FTIR spectra for the electrolyte used in CADS 

coin cell before test (red line) and after 50 cycles (black line). 

 

Figure 7.11. UV-vis spectra for fresh electrolyte and electrolyte after 50 cycles in N-Methyl-2-

pyrrolidone solution. 

Another possibility for capacity decline is the pulverization of CADS particles due to the volume 

change induced by repeating phase transformation during sodiation/desodiation process. 

Pulverization-induced capacity decay has been observed in high capacity anodes such as Sn in 

Na-ion battery 
[163]

. The pulverization of CADS particles will demolish the integrity of electrode 
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structure, resulting in poor cycling stability. The morphology change of CADS before and after 

50 sodiation/desodiation cycles is observed by SEM. As shown by SEM images in Figure 7.12a 

and 7.12b, the pristine CADS in the electrode has the long bar-like shape, but after 50 cycles the 

long bar is severely cracked. The long bar is broken into numerous small fragmentations, most of 

which do not connect with conductive carbon. The most effective method to reduce the particle 

pulverization is to minimize the particle sizes 
[83]

. Figure 7.12c and 7.12d show the SEM images 

of the fresh sCADS material and cycled sCADS. sCADS particles maintain the similar particle 

morphology after 50 cycles and no cracks are observed, thus the sCADS has much better cycling 

stability than CADS as demonstrated in Figure 7.9. The GO encapsulation of sCADS can further 

enhance morphology stability of sCADS as demonstrated in Figure 7.12e and 7.12f. After 50 

charge/discharge cycles, no obvious morphology change can be observed. The good morphology 

stability of GO-CADS is consistent with the best cycle life of GO-CADS electrode as shown in 

figure 7.9. The FTIR, UV-vis and SEM images in Figure 7.10, 7.11 and 7.12 demonstrate that 

the capacity fading is not due to the dissolution of sCADS and GO-CADS in the electrolyte, but 

the large stress/strain of CADS during repeating phase changes. 

Since the particle pulverization will isolate the small pulverized CADS particles from carbon 

additive and current collector during sodiation/desodiation process, the isolated CADS particles 

are not able to electrochemically react with Na
+
 in the following cycles, thus dramatically 

decreasing the battery performance. However, if CADS particles are encapsulated by a 

conductive graphene oxides, the void in the crumpled graphene oxide coating can accommodate 

the volume expansion of CADS upon sodiation and maintain the connection between inner 

CADS particles and outer graphene oxide cover (even they are pulverized), thus improving 

cycling stability. As demonstrated in Figure 7.9, the graphene oxide encapsulated CADS shows 
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the best cycling stability. Further improvement for cycling stability is under investigation by 

optimizing the ratio of graphene oxide and CADS, increasing the aerosol spray temperature, and 

adjusting the residential time. 

(a) (b)  

(c) (d)  

(e) (f)  

Figure 7.12. SEM images of the pristine CADS electrode materials before test (a) and after 50 

cycles (b); SEM images of the sCADS electrode materials before test (c) and after 50 cycles (d); 

SEM images of GO-CADS electrode materials before test (e) and after 50 cycles (f). 
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7.4 Conclusion 

Croconic acid disodium salt, a carbonyl group based organic compound, was used as an anode 

material for the first time. It is shown that the rapid capacity fading of pristine CADS in sodium 

ion batteries is due to the particle pulverization rather than the dissolution in organic electrolyte. 

The CADS experiences a serial phase transformations during sodiation/desodiation process. The 

volume change during phase transformations triggers the particle pulverization, which is 

confirmed by SEM results. The sCADS and GO-CADS fabricated by ultrasonic spray pyrolysis 

have much smaller particle size than pristine CADS, and provide much better cycling stability 

due to the suppression of pulverization and improvement of electronic conductivity. Hence, 

minimizing the CADS particle size and encapsulating CADS particles by graphene oxide are two 

effective methods to enhance the electrochemical performance of CADS. 
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Chapter 8 One-step Fabrication of Organic Nanorod Electrodes for Sodium 

Ion Batteries 

 

8.1 Introduction 

Li-ion batteries (LIB) are the promising energy storage devices for emerging electric vehicles 

and smart grids. However, the high cost and limited availability of lithium sources hinder the 

large-scale application of LIB for renewable energy storage 
[42, 155]

. Na-ion batteries (NIB), 

which share similar chemistry as LIB, are the most promising energy storage devices for 

renewable energy due to the low cost and abundance of sodium sources 
[108]

. Recently, 

considerable research efforts have been devoted to developing advanced cathode materials for 

NIB 
[130]

. Among them, sulfur 
[110, 164]

, selenium 
[13, 44]

, O3-type and P2-type sodium metal oxides 

[45, 165]
, sodium metal phosphate

 [47, 48]
 and sodium metal sulfate

 [49]
 cathodes showed excellent 

electrochemical performance. However, there are only a few reports on the anode materials. 

Although the nongraphitic carbonaceous materials 
[166, 167]

, tin 
[33, 168]

, antimony 
[169]

, red 

phosphorous
 [170, 171]

 and metal sulfides
 [57, 172]

 anodes show promising performance in NIB, the 

high energy-consuming synthetic process, material scarcity, and high cost limit the wide 

application of these anode materials in NIB. As a consequence, it is of great significance to 

explore energy- and cost-effective organic anode materials for NIB. 

Organic materials derived from biomasses are the best candidates for next generation green NIB 

due to their abundance, sustainability, environmental benignity and low cost 
[72]

. Although 

several carbonyl group based organic anodes have been reported for NIB 
[173-175]

, the limited 

cycling stability, low capacity and inferior rate capability impede the application of these 
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carbonyl based organic anodes. The organic anodes face three major challenges 
[176-178]

: (1) The 

extremely low conductivity of organic materials seriously reduces reaction kinetics, resulting in 

large overpotentials; (2) Particle pulverization induced by large volume change during sodium 

ion insertion/extraction accelerates capacity decay; (3) The high solubility of organic materials in 

organic electrolyte induces active material loss upon cycling, resulting in fast capacity fading. 

Due to the very low conductivity of organic anodes, 20 wt%~30 wt% of conductive carbon has 

to be added into organic electrodes and the particle size of organic materials has to be reduced 

into nano-scale to increase the contact surface among organic materials, conductive carbon and 

electrolytes, thus enhancing electrochemical reaction kinetics 
[78]

. The decrease of organic 

particle size into nano-scale can also alleviate particle pulverization, further improving cycling 

stability. Current technology to reduce the solubility of organic compounds in the electrolyte is 

to increase the polarity of organic compounds by formation of organic salts. Up to date, only 

nano-size organic salt electrodes show reasonable performance. As battery electrode, the nano-

size organic salt electrodes are fabricated through two steps: (1) Synthesizing nano-size organic 

salts using chemical/physical process; (2) Mixing nano-size organic salts with conductive carbon, 

binder and solvent to form a slurry-ink, and then casting onto current collector. 

 

Figure 8.1. Schematic illustration of nanorod electrode preparation process. 
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In this work, 2,5-Dihydroxy-1,4-benzoquinone disodium salt (DHBQDS) nanorod anodes were 

in situ fabricated for the first time by one-step process through integrating the nanomaterial 

synthetic process into electrode casting process, simplifying the electrode preparation process. 

Due to the high solubility of DHBQDS and sodium alginate binder in water, the DHBQDS-

carbon black-sodium alginate aqueous slurry was casted on the Cu foil, and the DHBQDS 

nanorod crystals and nano-size sodium alginate were uniformly co-precipitated on the carbon 

surface during the electrode drying process as shown in figure 8.1. Due to the fast ionic and 

electronic conductivity of DHBQDS nanorod-carbon nanocomposite and uniform distribution of 

DHBQDS, sodium alginate and carbon black, the DHBQDS nanorod electrodes deliver a 

reversible capacity of 167 mAh g
-1

 at a high current density of 200 mA g
-1

 after 300 cycles, 

which is 87% of its initial capacity (capacity decay rate of 0.051% per cycle). To reduce the 

dissolution of DHBQDS in the electrolyte upon cycling, a thin layer of Al2O3 with thickness of 1 

nm or 2 nm was coated on the DHBQDS nanorod electrodes using ALD. The reversible capacity 

of Al2O3 coated DHBQDS nanorod electrodes remains at 212 mAh g
-1

 at a low current density of 

50 mA g
-1

 after 300 cycles with a very low capacity decay rate of 0.049% per cycle. The Al2O3 

coating remarkably suppresses the dissolution issue as evidenced by the fact that the Coulombic 

efficiency achieves ~100% for Al2O3 coated electrodes after first few cycles. The ALD enhanced 

organic nanorods represent the best organic anode in Na-ion batteries in terms of reversible 

capacity and cycle life. 
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8.2 Experimental Section 

Synthesis of 2,5-Dihydroxy-1,4-benzoquinone disodium salt: All chemicals were purchased from 

Sigma Aldrich and used as received. 2,5-Dihydroxy-1,4-benzoquinone was dispersed in ethanol 

alcohol with sodium hydroxide powders in 5% excess. The solution was stirred at room 

temperature for 24 h, and then the solution was filtered to collect the precipitation. The 

precipitation was washed with ethanol and dried in the vacuum oven at 100 
o
C overnight. 2,5-

Dihydroxy-1,4-benzoquinone disodium salt was collected as orange powder. 

Atomic Layer Deposition: The DHBQDS electrodes were placed into an atomic layer deposition 

system (Beneq TFS 500) for Al2O3 deposition. High-purity nitrogen at 150 
o
C was used as 

carrier gas for the whole process. To obtain the Al2O3 layer with a thickness of 1 nm or 2 nm, 10 

or 20 precursor pulse cycles of ALD-Al2O3 were performed. Each cycle included alternating 

flows of trimethylaluminum (TMA, 4 sec, Al precursor) and water (4 sec, oxidant) separated by 

flows of pure nitrogen gas (4 and 10 sec, respectively, carrier and cleaning gas). The thickness of 

Al2O3 layer was about 1 Å for each precursor pulse cycle. 

Material Characterizations: Scanning electron microscopy (SEM) images were taken by Hitachi 

SU-70 analytical ultra-high resolution SEM (Japan); Thermogravimetric analysis (TGA) was 

carried out using a thermogravimetric analyzer (TA Instruments, USA) with a heating rate of 

5 °C min
-1

 in argon; X-ray diffraction (XRD) pattern was recorded by Bruker Smart1000 (Bruker 

AXS Inc., USA) using CuKα radiation. An XRD sample holder with cover is used for the fully 

sodiated DHBQDS nanorod electrode to avoid its contact with air. 

Electrochemical measurements: The DHBQDS powder was mixed with carbon black and 

sodium alginate/PVDF binder to form a slurry at the weight ratio of 60:25:15. The electrode was 
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prepared by casting the slurry onto copper foil using a doctor blade and dried in a vacuum oven 

at 100 °C overnight. The slurry coated on copper foil was punched into circular electrodes with 

an area mass loading of 1.0 mg cm
-2

. Coin cells for sodium ion batteries were assembled with 

sodium foil as the counter electrode, 1M NaClO4 in a mixture of ethylene carbonate/dimethyl 

carbonate (EC/DMC, 1:1 by volume) or fluoroethylene carbonate/dimethyl carbonate 

(FEC/DMC, 1:1 by volume) and Celgard®3501 (Celgard, LLC Corp., USA) as the separator. 

Electrochemical performance was tested using Arbin battery test station (BT2000, Arbin 

Instruments, USA). Capacity was calculated on the basis of the mass of DHBQDS. Cyclic 

voltammograms were recorded using Gamry Reference 3000 Potentiostat/Galvanostat/ZRA with 

a scan rate of 0.1 mV s
-1

. 

 

8.3 Results and Discussion 

 

Scheme 8.1. The molecular structure of DHBQDS. 

2,5-Dihydroxy-1,4-benzoquinone disodium salt is synthesized by neutralizing 2,5-Dihydroxy-

1,4-benzoquinone (DHBQ) with sodium hydroxide in ethanol alcohol solution. DHBQDS 

contains two carbonyl groups, connected by a benzene ring, and two sodium ions, bonding with 

phenol groups, as shown in scheme 8.1. The 1,4-benzoquinone structure provides two active 

sites for the redox reaction with electrons and sodium ions, while the sodium-oxygen ionic bonds 

remarkably decrease its dissolution in organic electrolyte, but maintain high solubility in water. 
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The pristine DHBQDS precipitated from sodium hydroxide-ethanol alcohol solution has a crystal 

structure as demonstrated by the X-ray diffraction (XRD) pattern in figure 8.2a. As shown in 

Figure 8.2b, the pristine DHBQDS particles have irregular rods and particles morphology with 

an average size about 1 µm. The thermal stability of pristine DHBQDS is measured by 

thermogravimetric analysis as shown in figure 8.2c. Decomposition of DHBQDS molecules 

starts at the temperature of 150 
o
C. The DHBQDS lose 4% of weight from 150 

o
C to 450 

o
C and 

15% of weight from 450 
o
C to 550 

o
C during heating in argon. 

(a)  (b)  

(c)  

Figure 8.2. (a) XRD pattern for DHBQDS; (b) SEM image of DHBQDS; (c) Thermogravimetric 

analysis (TGA) curve of DHBQDS in Ar. 
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To investigate the role of carbon black and sodium alginate in precipitation of  nano-size 

DHBQDS, the pristine DHBQDS was recrystallized from four different aqueous 

solutions/slurries due to the high solubility of DHBQDS in water: (1) DHBQDS-carbon black-

sodium alginate aqueous slurry with the weight ratio of 60:25:15; (2) DHBQDS-carbon black 

aqueous slurry with the same weight ratio (70:30) of DHBQDS to carbon black as in (1); (3) 

DHBQDS-sodium alginate aqueous solution with the same ratio (80:20) of DHBQDS to sodium 

alginate as in (1), and (4) aqueous DHBQDS solution. Each slurry/solution was casted on Cu 

foils and then dried in the vacuum oven at 100 
o
C for 12 h that is the same procedure as the 

electrode fabrication process. As shown in figure 8.3, DHBQDS precipitated from DHBQDS-

carbon black-sodium alginate aqueous solution has nanorod structure with a diameter of 200-300 

nm and a length of ~1 µm. However, the DHBQDS precipitated from other three aqueous 

slurry/solutions have irregular shapes (Figure 8.4a-c), demonstrating the synergic effect of 

carbon black and sodium alginate in the formation of DHBQDS nanorods. Therefore, carbon 

black and sodium alginate binder not only enhance the conductivity and integrity of the electrode, 

but also assist the growth of DHBQDS nanorods. The exact synergic mechanism of carbon black 

and sodium alginate for the formation of DHBQDS nanorods is still under investigation. The 

high solubility of DHBQDS and sodium alginate in water enables the uniform distribution of 

DHBQDS nanorods, sodium alginate and carbon black in the electrode, which will contribute to 

the robustness of electrode and superior rate performance of DHBQDS nanorod electrodes. 
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(a)  (b)  

Figure 8.3. SEM images of DHBQDS nanorod electrode. 

(a)  (b)  

(c)  (d)  

Figure 8.4. SEM images of recrystallized DHBQDS from aqueous DHBQDS solution (a), 

DHBQDS recrystallized from aqueous DHBQDS-carbon black suspension (b), DHBQDS 

recrystallized from aqueous DHBQDS-sodium alginate solution (c) and DHBQDS electrode with 

PVDF and carbon black (d). 
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As shown in figure 8.5a, the quinone-based DHBQDS molecule has two carbonyl groups, 

connected by conjugated structure. Both carbonyl groups can react with sodium ions during 

sodiation/desodiation process. Therefore, single DHBQDS molecule can reversibly react with 

two sodium ions and electrons, providing a theoretical capacity of 291 mAh g
-1

. The cyclic 

voltammogram (CV) of DHBQDS nanorod electrodes in FEC-based electrolyte in figure 8.5b 

clearly show two desodiation peaks at 1.39 V and 1.62 V possibly due to the two active carbonyl 

groups, and two corresponding sodiation peaks can be observed at 1.10 V and 1.16 V after two 

activation cycles (in the third cycles). The two sodiation peaks are very close to each other, so 

that they overlap and merge into one broad peak in the following cycles. CV scans demonstrate 

two pairs of redox peaks, representing two active sites in DHBQDS. The two active carbonyl 

groups react with sodium ions and electrons step by step to undergo a two-phase transition 

process. 
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Figure 8.5. (a)The sodiation/desodiation mechanism for DHBQDS; (b) Cyclic voltammogram of 

DHBQDS electrode with sodium alginate binder in NaClO4-FEC/DMC electrolyte at 0.1 mV s
−1

 

in the potential window from 0.5 V to 2.5 V versus Na/Na
+
. 

The electrochemical performance of DHBQDS nanorod electrodes is measured in the coin cells 

at a current density of 50 mA g
-1 

using sodium metal as a counter electrode. Two electrolytes 

(NaClO4-EC/DMC and NaClO4-FEC/DMC) are used to investigate the role of FEC on the 

performance of DHBQDS electrodes. DHBQDS micro-electrode with PVDF binder (Figure 8.4d) 

is used as a control to compare with the DHBQDS nanorod electrode. The galvanostatic charge-

discharge curves of DHBQDS electrodes at different sodiation/desodiation cycles are shown in 

figure 8.6. One sloping sodiation plateau centered at 1.2 V and two flat desodiation plateaus at 

1.3 V and 1.6 V are observed for DHBQDS electrodes in both electrolytes after the first 

charge/discharge activation cycle, which is consistent with the CV scans in the Figure 8.5. In the 

first sodiation curve, only one sodiation plateau at 1.2 V is observed in the EC-based electrolyte, 

while an extra slopping sodiation plateau centered at 1.4 V followed by the regular flat sodiation 

plateau at 1.2 V can be found in the FEC-based electrolyte, which could be associated to the 

formation of a thick solid electrolyte interphase (SEI) layer, as evidenced by the larger potential 

hysteresis between sodiation/desodiation plateaus. Table 8.1 summarizes the capacity and 

Coulombic efficiency of DHBQDS nanorod electrode and micro-electrode in NaClO4-

FEC/DMC and NaClO4-EC/DMC. The first cycle Coulombic efficiencies of DHBQDS nanorod 

electrode and micro-electrode in NaClO4-FEC/DMC electrolyte are lower than that in EC-based 

electrolyte, indicating formation of thick SEI layer in FEC-based electrolyte. Moreover, larger 

overpotential of sodiation/desodiation plateaus can be observed in FEC-based electrolyte owing 

to the thicker insulating SEI layer. However, SEI layer can reduce the dissolution of DHBQDS 
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and stabilize the electrode, which is beneficial to the long-term cycle life. Table 8.1 also 

demonstrates that the reversible capacity of DHBQDS nanorod electrode is higher than that of 

DHBQDS micro-electrode due to the uniform distribution of DHBQDS nanorods and carbon 

black after recrystallization. 

(a) (b)  

(c) (d)  

Figure 8.6. The galvanostatic charge-discharge curves between 0.8 V and 2.5 V versus Na/Na
+
 

for DHBQDS micro-electrode with PVDF binder in NaClO4-EC/DMC electrolyte (a) and 

NaClO4-FEC/DMC electrolyte (b) and DHBQDS nanorod electrode with sodium alginate binder 

in NaClO4-EC/DMC electrolyte (c) and NaClO4-FEC/DMC electrolyte (d). 
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DHBQDS 

Capacity (decay rate per cycle) 1
st
 Coulombic efficiency 

FEC-based 

Electrolyte 

EC-based 

electrolyte 

FEC-based 

Electrolyte 

EC-based 

electrolyte 

DHBQDS micro-electrode 

with PVDF binder 

203 mAh g
-1

 

(0.64%) 

201 mAh g
-1

 

(0.85%) 

26% 86% 

DHBQDS nanorod 

electrode with sodium 

alginate binder 

276 mAh g
-1

 

(0.13%) 

246 mAh g
-1

 

(0.27%) 

40% 60% 

Table 8.1. The capacity decay rate and Coulombic efficiency of DHBQDS micro-electrode and 

DHBQDS nanorod electrode at a current density of 50 mA g
-1

 in NaClO4-FEC/DMC and 

NaClO4-EC/DMC. 

The cycling stability of DHBQDS electrodes using PVDF and sodium alginate binders was 

measured in NaClO4-EC/DMC and NaClO4-FEC/DMC electrolytes (Figure 8.7). As shown in 

figure 8.7a, DHBQDS micro-electrodes using PVDF binder suffers from fast capacity decline in 

both electrolytes. However, the capacity decay rate of DHBQDS in FEC-based electrolyte is 

slower than that in EC-based electrolyte, demonstrating that FEC-based electrolyte can improve 

the cycling stability. Analogous to DHBQDS micro-electrodes with PVDF binder, the cycling 

performance of DHBQDS nanorod electrodes with sodium alginate binder in the FEC-based 

electrolyte is also better than that in the EC-based electrolyte (Figure 8.7b). The reversible 

capacity of DHBQDS nanorod electrodes in EC-based electrolyte decreases from initial 220 

mAh g
-1

 to 92 mAh g
-1

 after 240 cycles, while the reversible capacity of DHBQDS electrodes in 

FEC electrolyte remains at 190 mAh g
-1

 after 240 cycles corresponding to a low capacity decay 

rate of 0.13% per cycle. The DHBQDS nanorod electrode using sodium alginate binder show 

better cycling stability than DHBQDS micro-electrode using PVDF binder in both electrolytes, 

and DHBQDS nanorod electrodes show the best performance in FEC-based electrolyte. The 

DHBQDS nanorod formed with the assistance of sodium alginate and carbon black provides 

larger surface area and shorter ionic/electronic diffusion pathways compared to micro-sized 
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DHBQDS, resulting in fast reaction kinetics. Moreover, the nanostructure can accommodate the 

volume expansion/shrinkage during sodiation/desodiation process, alleviating the particle 

pulverization. Since DHBQDS nanorod electrode in FEC-based electrolyte exhibits the best 

cycle life, it is selected to measure the rate capability. As shown in figure 8.7c, with the current 

density increases from 20 mA g
-1

 to 1 A g
-1

, the reversible capacity decreases from 290 mAh g
-1

 

to 68 mAh g
-1

, while the reversible capacity recovers to 290 mAh g
-1

 after the current density 

returns to 20 mA g
-1

, demonstrating the excellent robustness and integrity of DHBQDS nanorod 

electrode at various current densities. After 45 cycles, the current density is increased to 200 mA 

g
-1

 for long term cycling stability test as shown in figure 8.7d. By comparing figure 8.7b and 

figure 8.7d, we can conclude that both the cycling stability and Coulombic efficiency of 

DHBQDS nanorod electrode increase with the elevated current density. The Coulombic 

efficiency improves from 94% at 50 mA g
-1

 to 100% at 200 mA g
-1

, while the reversible 

capacity remains at 167 mAh g
-1

 at 200 mA g
-1 

after 300 cycles (255 cycles after the rate 

capability test), which is 87% of its initial capacity (capacity decay rate of 0.051% per cycle). 

The improved Coulombic efficiency and cycle life at a high charge/discharge current density 

demonstrate that DHBQDS nanorods still slightly dissolve into the FEC-based electrolyte even 

SEI protection layer is formed. At low current density, more DHBQDS nanorods can dissolve 

into the electrolyte, resulting in capacity fading, while the dissolution of DHBQDS nanorods in 

the electrolyte becomes much slower at high current density due to the shorter charge/discharge 

period. 
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(a) (b)  

(c)  (d)  

Figure 8.7. Electrochemical performance of DHBQDS electrode. Desodiation capacity and 

Coulombic efficiency of DHBQDS micro-electrode with PVDF binder (a) and nanorod electrode 

with sodium alginate binder (b) in NaClO4-EC/DMC electrolyte and NaClO4-FEC/DMC 

electrolyte at the current density of 50 mA g
−1

; (c) rate performance of DHBQDS nanorod 

electrode with sodium alginate binder in NaClO4-FEC/DMC electrolyte at various current rates; 

(d) Desodiation capacity and Coulombic efficiency after rate measurement at the current density 

of 200 mA g
−1

. 

The impedance analysis for DHBQDS nano-electrode and micro-electrode in FEC-based 

electrolyte was performed using electrochemical impedance spectroscopy (EIS). In the 

impedance plots, the depressed semi-circle in high frequency region represents interface 

resistance including contact impedance or SEI impedance, and charge transfer impedance, while 
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the low frequency line stands for ion diffusion resistance. As shown in figure 8.8, both the 

interface and diffusion impedances of DHBQDS nano-electrode are much lower than that of 

DHBQDS micro-electrode, indicating the lower interface resistance and better kinetics of 

DHBQDS nanorods. The interface resistance of DHBQDS nano-electrode is about 140 Ohm, 

while that for DHBQDS micro-electrode has much higher value of 280 Ohm. The impedance 

results convince that the high capacity and superior rate capability of DHBQDS nanorod 

electrode is due to the large electrochemical reaction interface and short lithium ion diffusion 

pathway. 

 

Figure 8.8. Impedance analysis for DHBQDS nanorod electrode and micro-electrode. 

To prevent the DHBQDS nanorods from dissolution into the electrolyte, ALD is employed to 

deposit a thin layer (1 nm or 2 nm) of Al2O3 on the surface of DHBQDS nanorod electrode at 

150 
o
C under vacuum. As shown in figure 8.9, negligible morphology change can be observed 

after uniform Al2O3 deposition. The electrochemical performance of Al2O3 coated DHBQDS 

nanorod electrode at a low current density of 50 mA g
-1

 in NaClO4-FEC/DMC electrolyte is 

shown in figure 8.10. The charge/discharge curves of Al2O3 covered DHBQDS nanorod 

electrodes in figure 8.10a and 8.10b are similar to that of bare DHBQDS nanorod electrodes in 

figure 8.6d, but the sodiation plateaus shift to negative value and a larger potential hysteresis can 
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be observed, demonstrating the worse reaction kinetics after insulating Al2O3 coating. Figure 

8.10c and 8.10d show the cycle life of ALD treated DHBQDS nanorod electrodes. The reversible 

capacity of both ALD treated electrodes increases in the first twenty cycles due to poor reaction 

kinetics after insulating Al2O3 coating, but the Coulombic efficiency of two electrodes with 1nm 

and 2nm Al2O3 increases from 94% of bare DHBQDS to 100% after nano-layer Al2O3 coating, 

demonstrating the dissolution is alleviated by Al2O3 coating. More importantly, the reversible 

capacities of DHBQDS nanorod electrode with 1nm and 2 nm Al2O3 layer remain at 209 mAh g
-

1
 and 212 mAh g

-1
 after 300 cycles. The improved Coulombic efficiency and cycle life are 

attributed to the encapsulation of DHBQDS nanorod by Al2O3 layer, which prevents the 

dissolution of DHBQDS upon cycling. Therefore, a high capacity and long cycle life organic 

anode is obtained by using organic nanorod material in NaClO4-FEC/DMC electrolyte with 

Al2O3 deposition. 

(a)  (b)  

Figure 8.9. SEM images of DHBQDS nanorod electrode covered with 1 nm Al2O3 (a) and 

DHBQDS nanorod electrode covered with 2 nm Al2O3 (b). 
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(a) (b)  

(c) (d)  

Figure 8.10. The galvanostatic charge-discharge curves between 0.8 V and 2.5 V versus Na/Na
+
 

for DHBQDS nanorod electrode covered with 1 nm Al2O3 layer (a) and 2 nm Al2O3 layer (b) 

with sodium alginate binder in NaClO4-FEC/DMC electrolyte at the current density of 50 mA 

g
−1

; Desodiation capacity and Coulombic efficiency of DHBQDS nanorod electrode covered 

with 1 nm Al2O3 layer (c) and 2 nm Al2O3 layer (d). 

The ex situ XRD is performed to study the phase change of DHBQDS nanorod electrode upon 

sodiation/desodiation process. The fully sodiated DHBQDS nanorod electrode is prepared by 

sodiating the electrode to 0.8 V and maintaining the voltage at 0.8 V for 12 h. Similarly, the fully 

desodiated DHBQDS nanorod electrode is prepared by desodiating the electrodes to 2.5 V and 

maintaining the voltage at 2.5 V for 12 h. Both fully sodiated and fully desodiated electrodes are 

immersed in dimethyl carbonate for 48 h to remove NaClO4 from the surface of the electrode. 
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From figure 8.11, we can observe that the three XRD peaks for fresh DHBQDS at 12.5, 15.5 and 

17 degree disappear after sodiation, while a small shoulder at 13.3 degree appears, demonstrating 

the phase change occurs after sodiation. After desodiation, the small shoulder at 13.3 degree 

disappears, and the three XRD peaks for fresh DHBQDS recover, demonstrating DHBQDS 

nanorods can maintain its crystal structure upon solidation/desolidation cycles. Therefore, the 

result of ex situ XRD confirms that phase change occurs during sodiation/desodiation process, 

and the crystal structure of DHBQDS nanorod can be maintained after sodiation/desodiation. 

 

Figure 8.11. XRD patterns for fresh DHBQDS electrode, fully sodiated DHBQDS electrode and 

fully desodiated DHBQDS electrode. 

 

8.4 Conclusion 

A new organic anode material, 2,5-Dihydroxy-1,4-benzoquinone disodium salt, was synthesized 

by neutralizing 2,5-Dihydroxy-1,4-benzoquinone with sodium hydroxide in ethanol alcohol 

solution. For the first time, DHBQDS nanorods were in situ synthesized in the electrode 

fabrication process, which uniquely integrates the nanomaterial synthetic procedure into 

electrode fabrication process. With the assistance of carbon black and sodium alginate, crystal 
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DHBQDS nanorods were recrystallized from DHBQDS aqueous solution during electrode 

drying process. The in situ formed carbon black-sodium alginate-DHBQDS nanorod composite 

electrodes have high electronic and ionic conductivity, less particle pulverization, thus high rate 

capability and excellent cycling stability in NaClO4-FEC/DMC electrolyte. The DHBQDS 

nanorod electrodes deliver a reversible capacity of 190 mAh g
-1

 at a high current density of 200 

mA g
-1

 and maintain 87% of its initial capacity after 300 cycles with capacity decay rate of 0.051% 

per cycle. ALD is employed to deposit a thin layer (12 nm) of Al2O3 on the electrode surface, 

which greatly enhances the Coulombic efficiency from 94% to almost 100% even at a low 

current density of 50 mA g
-1

. The reversible capacities of DHBQDS nanorods covered with 1 nm 

and 2 nm Al2O3 layer remain at 209 mAh g
-1

 and 212 mAh g
-1

 after 300 cycles, which represent 

the best battery performance among all organic anodes. The excellent electrochemical 

performance of DHBQDS anode demonstrates that it is a promising candidate for advanced NIB. 

This in situ fabrication method can apply to other electrodes if the active materials in electrodes 

are highly soluble in the solvent of casting slurry. 
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Chapter 9 Summary and Future Work 

 

9.1 Summary of Work 

9.1.1 Sulfur Cathode 

Li-sulfur and Na-sulfur batteries are considered as promising energy storage devices for 

emerging electric vehicles and smart grids due to the low cost and high capacity of sulfur. 

However, sulfur cathodes for both Li-S and Na-S batteries still suffer from poor cyclic stability 

and low sulfur utilization. The poor cyclic stability and low sulfur utilization of sulfur cathodes 

were significantly improved by forming oxygen stabilized C/S composite where sulfur is bonded 

with oxygen and uniformly distributed in carbon matrix in nano (or even in molecular) levels 

through annealing the mixture of sulfur and perylene-3, 4, 9, 10-tetracarboxylic dianhydride 

(PTCDA) at 600 
o
C in a sealed vacuum glass tube. The strong interaction between sulfur and 

oxygen requires extra energy (low potential) to activate sulfur. During initial deep 

lithiation/delithiation pre-cycles, the strong interaction between sulfur and oxygen is vanished, 

and the S becomes active even if the discharge potential increased back to normal 1.0 V. The 

pre-activation of the oxygen stabilized C/S composites also increases the S utilization for Na-

sulfur batteries. Therefore, the oxygen stabilized C/S composites are promising cathode materials 

for Li-sulfur and Na-sulfur batteries. 

9.1.2 Selenium Cathode 

Selenium (Se) impregnated carbon composites were synthesized by infusing Se into mesoporous 

carbon at a temperature of 600 
o
C under vacuum. Ring-structured Se8 was produced and 
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confined in the mesoporous carbon, which acts as an electronic conductive matrix. During the 

electrochemical process in low-cost LiPF6/EC/DEC electrolyte, low-order polyselenide 

intermediates formed and were stabilized by mesoporous carbon, which avoided the shuttle 

reaction of polyselenides. Exceptional electrochemical performance of Se/mesoporous carbon 

composites was demonstrated in both Li-ion and Na-ion batteries. The Se8/mesoporous carbon 

composites also showed excellent rate capability. As the current density increased from 0.1 to 5 

C, the capacity retained about 46% in Li-ion batteries and 34% in Na-ion batteries. 

As high capacity cathodes for Li-ion and Na-ion batteries, carbon bonded and 

encapsulated selenium composites (C/Se) with high loading content of 54% Se were 

synthesized by in situ carbonizing the mixture of perylene-3, 4, 9, 10-tetracarboxylic 

dianhydride (PTCDA) and selenium (Se) in a sealed vacuum glass tube. Since Se is 

physically encapsulated and chemically bonded by carbon, the shuttle reaction of 

polyselenide is effectively mitigated. The in situ formed C/Se composites exhibit 

superior cycling stability for both Li-ion and Na-ion batteries in carbonate-based 

electrolytes. The reversible capacity of the in situ formed C/Se composites maintains at 

430 mAh g
-1

 after 250 cycles in Li-ion batteries and 280 mAh g
-1

 after 50 cycles in Na-

ion batteries at a current density of 100 mA g
-1

. 

9.1.3 Selenium Sulfide Cathode 

A facile synthesis of selenium sulfide (SeSx)/carbonized polyacrylonitrile (CPAN) composites is 

achieved by annealing the mixture of SeS2 and polyacrylonitrile (PAN) at 600 
o
C under vacuum. 

The SeSx molecules are confined by N-containing carbon (ring) structures in the carbonized 

PAN to mitigate the dissolution of polysulfide and polyselenide intermediates in carbonate-based 
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electrolyte. In addition, formation of solid electrolyte interphase (SEI) on the surface of 

SeSx/CPAN electrode in the first cycle further prevents polysulfide and polyselenide 

intermediates from dissolution. The synergic restriction of SeSx by both CPAN matrix and SEI 

layer allows SeSx/CPAN composites to be charged and discharged in a low-cost carbonate-based 

electrolyte (LiPF6 in EC/DEC) with long cycling stability and high rate capability. The superior 

electrochemical performance of SeSx/CPAN composite demonstrates that it is a promising 

cathode material for long cycle life and high power density lithium ion batteries. 

9.1.4 Organic Electrodes 

The electroactive organic materials are promising alternatives to inorganic electrode materials 

for the new generation of green Li-ion batteries due to their sustainability, environmental 

benignity and low cost. Croconic acid disodium salt (CADS) was used as Li-ion battery 

electrode, and CADS organic wires with different diameters were fabricated through a facile 

synthetic route using anti-solvent crystallization method to overcome the challenges of low 

electronic conductivity of CADS and lithiation induced strain. The CADS nanowire exhibits 

much better electrochemical performance than its crystal bulk material and microwire 

counterpart. The nanowire structure also remarkably enhances the kinetics of croconic acid 

disodium salt. The CADS nanowire retains 50% of the 0.1 C capacity even when the current 

density increases to 6 C. In contrast, the crystal bulk and microwire material completely lose 

their capacities when the current density merely increases to 2 C. Such a high rate performance 

of CADS nanowire is attributed to its short ion diffusion pathway and large surface area, which 

enable fast ion and electron transport in the electrode. The theoretical calculation suggested that 

lithiation of CADS experiences an ion exchange process. The sodium ions in CADS will be 
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gradually replaced by lithium ions during the lithiation and delithiation of CADS electrode, 

which is confirmed by Inductively Coupled Plasma test. 

Croconic acid disodium salt (CADS), a renewable or recyclable organic compound, is 

investigated as an anode material in sodium ion battery for the first time. The pristine micro-

sized CADS delivers a high capacity of 246.7 mAh g
-1

, but it suffers from fast capacity decay 

during charge/discharge cycles. The detail investigation reveals that the severe capacity loss is 

mainly attributed to the pulverization of CADS particles induced by the large volume change 

during sodiation/desodiation rather than the generally believed dissolution of CADS in the 

organic electrolyte. Minimizing the particle size can effectively suppress the pulverization, thus 

improving the cycling stability. Wrapping CADS with graphene oxide by ultrasonic spray 

pyrolysis can enhance the integration and conductivity of CADS electrodes, thus providing a 

high capacity of 293 mAh g
-1

. 

Since organic materials have very low electronic conductivity, they are normally synthesized 

into nano-scale and mixed with conductive carbon before electrode fabrication. I firstly reported 

a unique one-step fabrication technology by taking advantage of the high solubility of organic 

materials in water. The synthetic process of nano-size organic materials is merged into the 

organic electrode fabrication process. 2,5-Dihydroxy-1,4-benzoquinone disodium salt (DHBQDS) 

is used as a model, and the DHBQDS nanorod electrode is in situ formed by precipitating 

DHBQDS nanorods from DHBQDS-sodium alginate-carbon black aqueous slurry film on a Cu 

current collector during electrode drying process. To reduce the dissolution of DHBQDS in the 

electrolyte upon cycling, a thin layer of Al2O3 with thickness of 1 nm or 2 nm is coated on the 

DHBQDS nanorod electrodes using ALD. The ALD enhanced organic nanorods exhibit the best 

reversible capacity and cycle life among the organic electrodes reported for Na-ion batteries. 
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9.2 Future Work 

High capacity organic compounds based on carbonyl groups (Figure 9.1) will be investigated as 

electrode materials for Na-ion batteries. In proposed organic Na-ion batteries, pre-sodiated 

rhodizonic acid disodium salt and 2,5-dihydroxy-1,4-benzoquinone disodium salt will be used as 

cathode and anode in the sodium ion full cell, respectively. The structures of proposed organic 

electrode materials are shown in Figure 9.1. 

 

Figure 9.1. Structures of four carbonyl based organic compounds for Na-ion batteries. (a) 

Squaric acid disodium salt; (b) Croconic acid disodium salt; (c) 2,5-Dihydroxy-1,4-

benzoquinone disodium salt; (d) Rhodizonic acid disodium salt. 

The organic compounds in figure 9.1 a-c are candidates for anodes, while the organic compound 

in figure 9.1 d is a candidate for cathode. Since all these compounds are water soluble, the anti-

solvent recrystallization method will be used to fabricate organic nanomaterials. Several different 

electrolytes such as NaClO4-EC/DMC, NaClO4-FEC/DMC, NaPF6-EC/DMC and NaPF6-

FEC/DMC will be utilized to compare the electrochemical performance of organic electrodes, 

and the best electrolyte will be used in the all organic sodium ion full cell. In addition, several 

different binders such as polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC) and 

sodium alginate (SA) will be used to prepare the electrodes. The battery performance of cathode 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPolyvinylidene_fluoride&ei=_t4bU477Cub80wHTooGAAg&usg=AFQjCNG87OFrSaYqrtFPlbYPMf0VxhAKjQ&bvm=bv.62578216,d.dmQ
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPolyvinylidene_fluoride&ei=_t4bU477Cub80wHTooGAAg&usg=AFQjCNG87OFrSaYqrtFPlbYPMf0VxhAKjQ&bvm=bv.62578216,d.dmQ
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPolyvinylidene_fluoride&ei=_t4bU477Cub80wHTooGAAg&usg=AFQjCNG87OFrSaYqrtFPlbYPMf0VxhAKjQ&bvm=bv.62578216,d.dmQ
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and anode with different binders will be compared, and the best binder will be used in the all 

organic sodium ion full cell. After obtaining electrochemical stable and high capacity cathode 

and anode materials, an all organic sodium ion full cell will be assembled. As shown in figure 

9.2, the organic cathode will be pre-sodiated before use due to the lack of sodium ions. The 

weight of cathode and anode electrodes will be calculated based on the capacities of each 

electrode and the first cycle coulombic efficiency of anode. The battery performance of the all 

organic full cell will be recorded by Arbin battery test station and Gamry Reference 3000. A 

high performance all organic sodium ion full cell will be achieved for future application in 

lightweight, flexible, transparent and green batteries. 

 

Figure 9.2. An all organic sodium full cell. 

Task 1. The electrochemical performance of the proposed organic compounds will be evaluated 

by galvanostatic charge-discharge tests, cyclic voltammetry, electrochemical impedance 

spectroscopy and galvanostatic intermittent titration technique. 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPolyvinylidene_fluoride&ei=_t4bU477Cub80wHTooGAAg&usg=AFQjCNG87OFrSaYqrtFPlbYPMf0VxhAKjQ&bvm=bv.62578216,d.dmQ
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPolyvinylidene_fluoride&ei=_t4bU477Cub80wHTooGAAg&usg=AFQjCNG87OFrSaYqrtFPlbYPMf0VxhAKjQ&bvm=bv.62578216,d.dmQ
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Task 2. The electrochemical performance will be enhanced by optimizing the electrolyte, binder 

and morphology of electrode materials. Nano-structure organic materials will be fabricated to 

improve the kinetics of Na-ion batteries. 

Task 3. The reaction mechanism of the proposed organic compounds will be investigated by in-

situ XRD, TEM and Raman spectroscopy. 

Task 4. The all organic sodium ion full cell will be assembled based on the proposed organic 

compounds, and the electrochemical performance of the full cell will be evaluated. 
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