A Comparative Study of Branch Predictors

Aparna Kotha
Graduate Student
University of Maryland,College Park
www.ece.umd.edu/~akotha

10 Dec 2007

1 Introduction

A branch predictor is the part of the processor that determines whether a conditional branch in the instruction
flow of a program is likely to be taken or not. Almost all pipelined processors have branch predictors, because
they must guess the address of the next instruction to fetch before the current conditional instruction has
been executed [1]. Hence, attempts have been made to design accurate branch predictors. This project
attempts at modeling different branch predictors and comparing their performances for a set of benchmarks.

2 Branch Predictors

The intuition behind designing a branch predictor is that the behavior of typical branches is far from random.
Most branches are either usually taken or usually not taken [4]. This intuition led to the design of many
branch predictors of which four have been modeled and studied as a part of this project; they are
Bimodel: The lower order bits of the branch address are used to index the branch history table of 2-bit
values. An entry of 0 or 1 in the branch history table predicts a "not taken” for the branch and an entry
of 2 or 3 predicts a "taken”.The 2-bit values are updated as 2-bit counters with 0 indicating ”strongly not
taken” and 3 indicating ”strongly taken”. Every time a branch is taken the corresponding 2-bit counter is
incremented saturating at 3 and when it is not-taken the counter is decremented saturating at 0.

If two branches have the same lower order bits for their branch addresses, then the two branches will
have the same entry in the bimodel predictor. This is called aliasing and it reduces the prediction accuracy.
To increase the prediction accuracy, global schemes have been proposed.

Gshare: The intuition for this branch predictor is that the prediction of this branch depends on the most
recently predicted branches.i.e. the prediction for a branch is dependent on the global history of branch
predictions. In this predictor the lower order of the branch address xored with the global history is used to
index the branch history table of 2-bit values. An entry of 0 or 1 in the branch history table predicts a "not
taken” for the branch and an entry of 2 or 3 predicts a ”taken”.These 2-bit values are updated and used
similar to the bimodel predictor. If a branch is "taken” then the counter is incremented saturating at 3 and
if it is "not taken” then the counter is decremented saturating at 0.

YAGS: YAGS [3] is the acronym for ”Yet Another Global Scheme”. The motivation behind YAGS is the
observation that for each branch we need to store its bias and the instances when it does not agree with its
bias. It is implemented as a choice table and two direction caches, one each for "taken” and "not-taken”.
When a branch occurs in the instruction flow, the choice table is accessed. If the prediction indicates ”taken”,
the not-taken direction cache is accessed to check if it is a special case where the prediction does not agree
with the bias. If there is a miss in the "not-taken” cache, the choice table is used for prediction. If there is
a hit in the "not-taken” cache it supplies the prediction. A similar set of actions is taken if the choice table
indicates "not taken” but this time the check is done in the ”taken” cache.

Both the choice tables and the direction caches have 2-bit entries which are updated as 2-bit counters
saturating at 0 and 3. The choice table is updated whenever it is used to predict. It is also updated when
the direction cache is used, but its prediction is wrong. The direction caches are updated when predictions

from them are used. They are also updated when the choice table is used to predict, but its prediction is
wrong. i.e. for this particular branch the outcome is not the same as the bias stored in the choice table and
hence we need to add this branch to the direction caches.

Meta-Predictor: The idea of the Meta-predictor is that different predictors predict better for certain
branches. Hence, a scheme that combines predictors intelligently choosing between predictors will have a
higher prediction accuracy. Meta-predictors proposed combine two predictors and choose between them.
The Meta-predictor table is indexed with the lower order bits of the address and has 2-bit for each of them.
An entry of 0 or 1 in the table indicates that the first predictor should be used to predict this branch and
an entry of 2 or 3 indicates that the second predictor should be used to predict this branch.

This table is updated as follows. When both the predictors predict the branch with the same outcome no
change is made to the entry in the table. If the first predictor mis-predicts and the second predictor predicts
correctly the 2-bit counter is incremented saturating at 3. The 2-bit counter is decremented saturating at 0
if the first predictor predicts the branch correctly and the second predictor mis-predicts it.For this project a
Meta-predictor has been designed by combining Gshare and YAGS.

3 Performance Study
3.1 Methodology

The four benchmarks that were used to test the performance of the Branch Predictors are:

e JPEG Encoder
e (G721 Speech Encoder
e Mpeg Decoder
e Mpeg Encoder

Simplescalar [2] tool set was used to generate the branch trace files for each of these benchmarks. The
sim-safe.c file was modified to generate the trace files. For each conditional branch there are two entries in
the trace file. The first entry is the Program counter(PC) at which this branch instruction is present and the
second entry is the outcome of this branch instruction. If the second entry is 71”7 this branch was ”taken”
and if it is 70”7 this branch was "not taken”.

The four Branch Predictors described in Section 2 were modeled using C. The inputs required by the
model are

e Branch predictor: This input indicates the branch predictor to be used from the four predictors
that have been modeled. ”bi”, ?gs”, ”yg”, ”"mp” indicate bimodel, gshare, yags and meta-predictor
in that order.

e Predictor Table size: This input indicates the table size in KB to be used for this predictor. The
valid inputs for table size are 717, 72", 747 78" ”16”. The size of the table is the number of bits(in
case of 1kb, it is 10 bits) used to index the branch history table (in bimodel and gshare) , the choice
table (in YAGS) and meta-predictor table(for Meta-predictor).

e Input trace file: This is the trace file that is the input to the predictor. The entries in the trace file
are as described above in this section.

e Output file: This is the output file into which the prediction results are written.

The executable developed for this project is called ”branch_predictor.exe”. An example for using this
executable will be to run the following at the command prompt

#./branch_predictor.exe bi 1 trace_test.txt out.txt

This simulates a bimodal predictor of 1KB size using trace_test.txt as the input trace file and writes
the output into a file called out.txt

3.2

Results

Simulations were performed for the four modeled branch predictors using the four benchmarks. The results
of the simulations are shown in the Figure.

Parts (a) to (d) show the performance of the different predictors for the four benchmarks with the increase
in predictor size. Part (e) shows the performance of different predictors for the four benchmarks when the
prediction table size is 8Kb. Part (f) shows the performance of different benchmarks with the increase of
tag size in YAGS. Observations from the data are

The prediction accuracy increases with the increase in predictor size and saturates.

The global predictors such Gshare, YAGS and Meta-predictor perform better than the local bimodel
predictor.

The Meta-predictor predicts better than Bimodel, Gshare and YAGS.

The prediction accuracy is dependent on the application. For e.g. The average prediction accuracy for
the Mpeg decoder using any of the branch predictors is higher than the prediction accuracy for the
other benchmarks.

With the increase in tag-size for YAGS, the prediction accuracy increases and saturates with tag-size.

4 YAGS Neo Branch Predictor

An intuition that global predictors do better that local predictors, led me to design the YAGS Neo predictor
using the YAGS predictor. Instead of using only the lower order bits of the branch address to index the
choice table, I propose to use the lower order bits of the address xored with the global history to index the
choice table. Incorporating this change into the YAGS code the following were simulated.

The YAGS predictor as described in [3].

The YAGS Neo predictor as described above.
A Meta-predictor using YAGS and Gshare

A Meta-predictor using YAGS Neo and Gshare
A Meta-predictor using YAGS and YAGS Neo

The percentage of branches predicted correctly for each is shown in Figure 1.

4.1

Observations

From the data in Table 1 the following observations were made

The YAGS Neo predictor gives a higher performance than YAGS for Jpeg and Speech Encoder.
For Jpeg the Meta-predictor with YAGS and Gshare performs best.

For Speech Encoder the Meta-predictor with YAGS and YAGS Neo performs best.

For Mpeg Encoder the Meta-predictor with YAGS and Gshare performs best.

For Mpeg Decoder the Meta-predictor with YAGS and YAGS Neo performs best.

Benchmark Table Size | YG YG Neo | YG-GS | YG Neo-GS | YG-YG Neo
Jpeg 1 89.938 | 90.138 90.452 | 90.383 90.227
2 90.052 | 90.288 90.598 | 90.546 90.351
4 90.208 | 90.425 90.744 | 90.685 90.488
8 90.254 | 90.513 90.825 | 90.787 90.547
16 90.312 | 90.589 90.907 | 90.868 90.613
Speech Encoder | 1 91.347 | 91.706 91.439 | 91.720 91.813
2 91.652 | 91.948 91.870 | 91.978 92.068
4 91.982 | 92.024 92.077 | 92.060 92.087
8 92.003 | 92.065 92.092 | 92.083 92.107
16 92.086 | 92.119 92.160 | 92.137 92.150
Mpeg Encoder 1 79.763 | 79.713 81.417 | 80.077 81.165
2 80.539 | 80.348 81.891 | 80.693 81.650
4 80.955 | 80.773 82.184 | 81.102 81.955
8 81.253 | 81.088 82.387 | 81.428 82.173
16 81.478 | 81.319 82.539 | 81.655 82.312
Mpeg Decoder 1 95.805 | 95.7 95.645 | 95.543 95.825
2 95.89 | 95.843 95.738 | 95.686 95.909
4 95.918 | 95.839 95.759 | 95.717 95.937
8 95.929 | 95.851 95.776 | 95.743 95.948
16 95.939 | 95.949 95.848 | 95.817 95.988

Figure 1: Simulation Results

4.2 Summary

The results from simulations for the YAGS Neo branch predictor show that there is an improved performance
for some applications. Even 0.1% increase in performance could be valuable for Bracnh Predictors as the
typical number of branches in an application is of the order of millions. For e.g. The total number of
branches in the Mpeg Decoder benchmark used for this project was 19675743. So, a 0.1% increase would
result in ~20,000 more branches being predicted correctly.

References
[1] http://en.wikipedia.org/wiki/Branch prediction.

[2] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating future microprocessors: The simplescalar
tool set. Technical Report CS-TR-1996-1308, 1996. citeseer.ist.psu.edu/burger96evaluating.html.

[3] A. N. Eden and T. Mudge. The yags branch prediction scheme. In MICRO 31: Proceedings of the
31st annual ACM/IEEE international symposium on Microarchitecture, pages 69—77, Los Alamitos, CA,
USA, 1998. IEEE Computer Society Press.

[4] Scott McFarling. Combining branch predictors. Technical Report TN-36, June 1993. citeseer.ist.psu.
edu/mcfarling93combining.html.

