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Wind turbine sizes have been steadily increasing to reduce the cost of gen-

erating electricity using wind energy. The increased wind turbine blade size has

led to increased interest in the accurate prediction of the aerodynamics of large

wind turbine blades. In this work, two-dimensional simulations of wind turbine

airfoils and three-dimensional simulations of the Sandia 100 m wind turbine blade

were conducted. The focus of the simulations was to evaluate improvements in tur-

bulence modeling for wind turbine applications. The flow field was modeled using

a Reynolds-Averaged Navier–Stokes flow solver. The turbulence model included

transition modeling to capture the significant regions of laminar flow found on wind

turbine airfoils and wind turbine blades. The turbulence model was also modified

to increase sensitivity to adverse pressure gradients. The effects of modifying the

turbulence modeling were quantified using lift and drag for two-dimensional simula-

tions while wind turbine thrust and power were used as metrics for three-dimensional

simulations. The two-dimensional studies showed that the adverse pressure gradient



correction lowered lift predictions post-stall by about 13%, significantly reducing lift

over-prediction and bringing simulations closer to experimental results. Transition

modeling lowered drag predictions by 30% to 50% at low angles of attack bringing

the predicted values into good agreement with experimental results. The addition

of transition modeling in the three-dimensional simulations increased the predicted

thrust by 1% to 3% and predicted power by 3% to 6%. The extent of laminar flow

was visualized using intermittency. Laminar flow was observed on large portions

of the Sandia 100 m blade at normal operating conditions. A preliminary study on

the effects of leading edge tubercles on the Sandia 100 m blade was performed, no

significant changes in wind turbine performance were observed at nominal operating

conditions.
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Chapter 1: Introduction

1.1 Motivation

The demand for energy is constantly increasing and wind based energy tech-

nology can be leveraged as an alternate source of sustainable energy to alleviate

the dependence on energy generation based on fossil fuels. Currently, the price of

electricity generated using wind based energy is still higher than the price of elec-

tricity generated using conventional methods, such as coal and natural gas [1]. One

of the primary goals of wind turbine research is to reduce the aforementioned cost

of generating electricity, and thus increase the economic viability of wind energy.

Because the amount of energy extracted by a turbine is proportional to the square of

the rotor diameter, an increase in rotor size leads to increased energy extraction per

turbine. Therefore, to reduce the cost of using wind energy to generate electricity,

the size of wind turbines has steadily increased. Current utility scale turbines have

rotors around 120 m in diameter and are rated to generate a maximum of 5 MW to

6 MW of power [2]. A representative illustration of the increase in wind turbines

sizes and their associated rated power is shown in Fig. 1.1.

The major limiting factor against increasing wind turbine size is based on the

square-cube law, which states that while the energy output of wind turbines increases

1



Figure 1.1 – Representative size, height, and diameter of several wind turbines (Re-

produced from Ref. [2])

with the square of the rotor diameter (i.e., proportional to the rotor swept area),

the mass and cost of the wind turbine, which are based on the volume of material

used, increases with the cube of the rotor diameter [1]. One problem with increasing

the blade mass is that the associated increase in gravitational loads causes the root

bending moment of the blade to grow. In fact, the root bending moment due to

gravitational loads increases with the rotor diameter to the fourth power while the

root bending moment due to aerodynamic loads increases with the rotor diameter

cubed. The result is that increasing blade size leads to a relative increase in the

importance of gravitational loads compared to aerodynamic loads. The implication

is that gravitational loads are becoming an increasingly important design constraint.

To overcome this, new blade materials and blade shapes are being investigated to

2



minimize increases in gravitational loads due to increases in turbine size. Advanced

carbon composites, such as carbon fiber [3], and modifications to the blade shape,

such as flatback airfoils [4]–[6], have been investigated as part of the drive to lower

the blade mass for a given rotor size. These technologies have resulted in an increase

in the wind turbine generation capacity with an associated decrease in the cost per

unit of power output [1].

Increasing the blade size has several important implications. An increase in the

length of wind turbine blades while minimizing the increase in mass tends to increase

the blade flexibility, which can affect the structural and aeroelastic properties of

the blades. Aerodynamically, an increase in blade length is accompanied by an

increase in both the tip Reynolds number and the tip speed (at the same rotational

frequency), which has several important effects on the flow characteristics along the

surface of the blade. For instance, compressibility effects on the blades are directly

associated with the operating tip speed of the turbine. Lower tip speeds imply

that the flow can be treated as incompressible, but as the tip speed increases, it

becomes more important to consider compressibility effects when predicting blade

aerodynamic performance. Reynolds number affects the extent of stalled flow on the

blade and is also a critical parameter in determining the transition between laminar

to turbulent flow along the blade surface. The Sandia 100 m blade is an example

of a next generation utility scale wind turbine blade and it operates with Reynolds

number between 3×106 and 5×106 and a tip Mach number between 0.136 and 0.233,

which is approaching the upper limit of Mach numbers where the incompressible

assumption is valid [7]. In an effort to reduce profile drag and maintain laminar

3



flow over the airfoil, wind turbine airfoils are designed with a high thickness-to-chord

ratio (e.g., the S809 wind turbine airfoil is 21% thick). Furthermore, thicker airfoils

allow for stiffer wind turbine blades. Flow transition has a significant effect on the

performance of wind turbine airfoils because of the large laminar regions (e.g. up to

50% of the chord on the S809 airfoil [8]) on the airfoil. Changes in the laminar to

turbulent transition location affect wind turbine performance by changing the skin

friction coefficient distribution along the surface, which affect the net airfoil drag,

and by extension the power produced by the wind turbine. Laminar to turbulent

transition can also affect the wind turbine performance by changing the location

and size of the laminar separation bubbles that form on the blade surface.

Performance of wind turbines can be evaluated by performing experiments on

wind turbine models or on full scale wind turbines in field tests. An advantage of

experimental studies is the ability to accurately capture effects of flow separation

and flow transition. However, experimental tests on modern utility-scale turbines

are not currently feasible because of physical limitations in size of wind tunnels. The

Full-Scale Aerodynamics Complex at NASA Ames Research Center is currently the

largest wind tunnel in the world [9], and it has a test section 24.4 m × 36.6 m, while

the latest generation of utility scale turbines have rotor diameters around 120 m.

The National Renewable Energy Laboratory (NREL) Unsteady Aerodynamics Ex-

periment Phase VI [10] is an example of the extensive data that can be gathered

using experiments on a geometrically scaled down wind turbine. The timeline of the

NREL Phase VI project involved several years for the planning the experiments, set

up the equipment, and the generation of data. Furthermore, it also required the
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use of the National Full-Scale Aerodynamics Complex, which is shown in Fig. 1.2

to illustrate the size of the wind turbine tested. The NREL Phase VI project high-

lights a major limitation of experimental studies, namely the amount of time and

infrastructure required for its implementation. Field tests, like those in the NREL

Combined Experiment Phase II [11], can be used to gather data on full scale tur-

bines while they are operating. However, a significant limitation in field studies is

the ability to control the incoming free-stream conditions, such as wind speed, direc-

tion and levels of free-stream turbulence. This lack of experimental control makes it

difficult to study specific operating conditions of interest, particularly for operating

points that occur outside the range of common wind speeds. Similar to experimental

studies, field tests are also limited by the amount of time and equipment necessary

to instrument a wind turbine.

The limitations of experiments and field tests, particularly during the wind

turbine design phase, are overcome using simplified aeroelastic models developed to

quickly evaluate the aerodynamic performance of wind turbine blades. Some exam-

ples include CAMRAD II [12, 13], a comprehensive rotorcraft analysis code, which

includes a lifting line model for the near-blade aerodynamics coupled to a free-vortex

wake method, and FAST [14,15], which utilizes the blade element momentum theory

code AeroDyn [15,16]. The aerodynamic models utilized in these simplified models

often require two-dimensional airfoil performance data, such as sectional lift, drag,

and pitching moment. Performance tables for two-dimensional airfoils used on wind

turbines have been generated experimentally in the past [8, 17]. However, even for

two-dimensional airfoils the amount of time and infrastructure required to perform
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Figure 1.2 – NASA Ames Research Center Full-Scale Aerodynamics Complex in the

24.4 m × 36.6 m mode of operation, note people for scale (Reproduced

from Ref. [10])
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experiments is significant. An alternative to experiments is to use computational

fluid dynamics (CFD) simulations as a relatively inexpensive and faster method for

generating the two-dimensional airfoil performance tables. Upon validation of the

CFD methods using data from experimental results for the desired flow regime, the

solver can then be used to produce performance data on a much larger range of

airfoils.

Increasing the overall blade size generally increases both the blade flexibility

and the aerodynamic loads on the blade [7]. The result is an increase in the im-

portance of aeroelastic effects, such as aeroelastic flutter. Flutter is of particular

concern because it can lead to the destruction of the wind turbine blade if the as-

sociated load fluctuations overcome the structural strength of the blade. Flutter

occurs when there is not enough structural or aerodynamic damping to dampen

relatively large vibratory motions caused by the interaction of aerodynamic forces

with the structural dynamics of the blade. As blades approach aeroelastic design

limits, such as when the margin between flutter onset speed and blade operating

speed is narrow, simplified aerodynamic models are no longer sufficient to predict

the complex flow fields and vortical structures around the blades [7, 18,19].

Instead of relying on simplified aerodynamic models to predict wind turbine

aerodynamic performance, full three-dimensional Navier–Stokes simulations can be

used. Three-dimensional CFD simulations offer a high fidelity method for evaluat-

ing the aerodynamic performance of wind turbine blade designs. Unlike simplified

models, CFD simulations can accurately capture non-linear and interactional aero-

dynamics, such as the spanwise flow along the blade. Three-dimensional CFD sim-
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Figure 1.3 – Comparison of computing power for GPUs and CPUs since 2002, given

as theoretical GFLOP/s (Reproduced from Ref. [20])

ulations also have advantages over experimental and field studies. One advantage

is a smaller amount of time and infrastructure required compared to experimental

and field studies. Another advantage of three-dimensional CFD simulations, par-

ticularly when compared to field studies, is the flexibility in the choice of operating

conditions. However, it is important to validate the CFD solver using experimental

data before relying on its predictions.

The cost of full three-dimensional Navier–Stokes simulations can be compu-

tationally expensive, especially for large intricate geometries. To reduce the com-

putational cost, Graphics Processing Unit (GPU) based hardware acceleration is

investigated. GPUs are designed to meet the demands of producing real-time,

high-definition three dimensional graphics. Consequently, they are highly paral-

lel processors with large numbers of cores and large memory bandwidth. It is useful
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Figure 1.4 – Comparison of memory bandwidth for GPUs and CPUs since 2002,

given as theoretical GB/s (Reproduced from Ref. [20])

to evaluate the advantages of GPU computing by comparing it with traditional

CPU computing. A comparison between GPU and CPU (Central Processing Unit)

computing power in shown in Fig. 1.3, where a single GFLOP/s is 109 FLOP/s

(Floating-point Operations per second). The trend in computing power shows that

GPUs have been equipped with higher computing power compared to CPUs since

2009, with current 2014 technology resulting in GPUs operating at over three orders

of magnitude greater in GFLOP/s than their CPU counterpart. Similarly, Fig. 1.4

compares the memory bandwidth of GPUs and CPUs, showing that the GPU mem-

ory bandwidth is significantly higher than CPU memory bandwidth, which implies

that GPUs can access data for computations at a significantly higher rate, improv-

ing computation speed. The combination of significantly higher memory bandwidth

and computational power allows for large decreases in simulation execution time by

properly utilizing GPU resources.
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In summary, the goal of reducing wind energy generation costs is the pri-

mary driver of increasing wind turbine sizes. The increasing blade size increases

the importance of accurately understanding the physical effects of transition and

separated flow. Large wind turbine blade sizes prevent full scale experimental tests

and performance tests at specific operating points cannot be performed on turbines

in the field, as a result alternative methods of evaluating wind turbine blades are

required. Simplified aeroelastic models are an alternative that allows for wind tur-

bine performance to be evaluated quickly. However, simplified aeroelastic models do

not capture transition and the increased blade sizes result in higher blade flexibil-

ity and larger aerodynamic loads on the blade, affecting the accuracy of simplified

aeroelastic model wind turbine performance predictions. Three-dimensional CFD

simulations are useful for investigating transition and capturing wind turbine perfor-

mance in situations where the simplified aeroelastic models are no longer applicable.

The additional computing power required by CFD simulations over the simplified

models can be offset by utilizing GPU based hardware acceleration.

1.2 Literature Review

The present work focuses on utilizing CFD to improve the aerodynamic per-

formance predictions for contemporary wind turbine blade designs. To ensure the

CFD simulations accurately predict the aerodynamics of the blade, the CFD solver

must be validated using experimental results. Results from NREL experiments on

wind turbine airfoils and full wind turbines are a key component of the validation.
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The limitations of simplified aerodynamic modeling from previous works have been

explored using a comparison of the model predictions of the NREL Phase VI wind

turbine to the experimental results. Previous works on transition modeling aimed

at improving the CFD aerodynamic predictions is investigated. In addition, back-

ground on the application of GPU based hardware acceleration to CFD is provided.

Finally, information on the geometry of the wind turbine blade studied in this work

is provided along with information on the usage of leading edge tubercles.

1.2.1 Experimental Studies

This section focuses on past experimental studies conducted on two-dimensional

wind turbine airfoils and full-scale wind turbines. Important results from the S809

and S827 wind turbine airfoil experiments are shown and discussed. In addition,

background on both the NREL Phase VI and the NREL Phase II experiments is

discussed, as well as the role of the NREL Phase VI in CFD validation.

1.2.1.1 Wind Turbine Airfoils

It should be noted that the design requirements for wind turbine airfoils do not

match the criteria of aircraft airfoils [8]. Typically, airfoils used in aircraft/rotorcraft

are designed with an emphasis on robustness as these airfoils are required to operate

efficiently in a wide range of aerodynamic and freestream conditions. Wind turbine

airfoils, however, are designed to operate highly efficiently at a ”point” design condi-

tion with much less emphasis on off-design performance. For instance, the primary
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Figure 1.5 – S809 experimental results at Re = 1× 106; (a) drag polar, and (b) lift

and pitching moment coefficient, for various angles of attack (Repro-

duced from Ref. [8])

design goals of the S809 airfoil are low profile drag and a restrained maximum lift [8],

while the primary goals of the S827 airfoil are docile stall characteristics and low

profile drag [17] which minimizes the power losses because of aerodynamic drag.

The experimental results for the S809 show a restrained maximum lift and

low drag coefficients, which can be seen in the plots of lift coefficient and drag

coefficient in Fig. 1.5 for Re = 1 × 106. A comparison of the S809 and NACA

4421 lift and drag coefficients at Re = 3 × 106 is shown in Fig. 1.6, where it is

seen that the S809 generates lower lift coefficients and also has significantly lower

drag coefficients for most of the operating region. The differences between the

performance characteristics of the S809 and the NACA 4421 airfoils highlights how

wind turbine airfoils are designed for different operating conditions than typical
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Figure 1.6 – Comparison of the S809 results to NACA 4421 results at Re = 3× 106;

(a) drag polar, and (b) lift and pitching moment coefficient, for various

angles of attack (Reproduced from Ref. [8])

Figure 1.7 – S827 experimental results for Re = 1 × 106 to Re = 6 × 106; (a) drag

polar, and (b) lift and pitching moment coefficient, for various angles

of attack (Reproduced from Ref. [17])
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Figure 1.8 – S827 experimental results with a fixed transition location for Re =

1×106 to Re = 6×106; (a) drag polar, and (b) lift and pitching moment

coefficient, for various angles of attack (Reproduced from Ref. [17])

aerospace airfoils.

The lift and drag coefficients measured by the S827 experiment are shown in

Fig. 1.7, which also shows low drag coefficients as well as docile stall characteristics

for Re = 1×106 – 6×106. The effect of Reynolds number can be seen, increasing the

Reynolds number reduces lift coefficient (and by extension, angle of attack) required

to produce separated flow. The onset of significant levels of separated flow can be

seen as the sudden increase in drag coefficient. Another important issue highlighted

in the S827 experiments is the influence of transition on the lift curve. Figure 1.8

plots lift and drag coefficients for the S827 airfoil when the transition location is

fixed, illustrating that with the transition location fixed there is no longer a drop in

lift for angles of attack around 5◦ to 7◦.
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The NREL experiments on the S809 and S827 illustrate the current capabilities

for experimental generation of airfoil performance tables. In addition, the S827

experiments highlight the importance of laminar to turbulent transition for wind

turbine airfoils by showing significant differences in performance depending on if

the boundary layer is tripped to produce a fixed transition location.

1.2.1.2 Wind Turbines

NREL has performed several experiments on full wind turbines. The NREL

Combined Experiment Phase II [11] focused on utilizing an instrumented wind tur-

bine using blades based on the S809 airfoil, whose performance characteristics are

well documented. The NREL Phase II experiment produced data on aerodynamic

coefficients, unsteady aerodynamic data, flow-visualization, and blade loads. The

NREL Unsteady Aerodynamics Experiment Phase VI carried out experimental mea-

surements on a 10 m diameter turbine for a large range of operating conditions. The

data gathered during the NREL Phase VI included aerodynamic coefficients, pres-

sure data, blade loading, and flow visualization [10].

The NREL Phase II experiment conducted measurements to evaluate the wind

turbine at a range of operating wind conditions. The results were compared to values

predicted based on the S809 airfoil performance characteristics. Figure 1.9 compares

the normal force coefficient at the 80%(r/R) spanwise location for the NREL Phase

II experiment to the normal force coefficient predicted based on the S809 airfoil

characteristics. Comparing the predicted normal force coefficient to the measured
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Figure 1.9 – Comparison of normal force coefficient for predictions based on the S809

performance values to the values determined experimentally using the

NREL Phase II wind turbine (Reproduced from Ref. [11])

coefficient revealed that at low angles of attack the predicted values matched the

experimental results well [11]. However, at higher angles of attack, the normal force

coefficient remained high while the predicted value dropped off significantly, which

is shown in Fig. 1.9 for the high wind case. This trend indicated that stall onset

was delayed because of rotational effects, Dumitrescu and Cardos [21] have since

observed that the primary cause of the stall delay is the Coriolis forces affecting flow

in the boundary layer. In addition to stall delay, the NREL Phase II experiment

found that there were non-zero pressure gradients in separated flow regions on the

inboard region of the blade that did not occur in the airfoil wind tunnel testing.

Both these pressure gradients and the stall delay that occurs for the wind turbine

point to the importance of including the effects of spanwise flow when capturing
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Figure 1.10 – NREL Phase VI wind turbine blade (Reproduced from Ref. [10])

wind turbine performance.

The NREL Phase VI experiments utilized a two bladed wind turbine with a

10.06 m diameter, rotational speed of 72 RPM, and the S809 airfoil [10]. The wind

turbine blade dimensions are shown in Fig. 1.10. The NREL Phase VI experiment

provided a wide range of data, illustrated by the test matrix in Fig. 1.11. The

upwind baseline sequence, which has zero pitch angle and zero yaw angle, is of

particular interest as it offers a convenient data set for evaluating CFD solvers.

Flow separation occurs on the upper blade of the surface in this test sequence for

wind speeds of greater than 10 m/s [22]. The presence of stall portions on the blade

is useful for evaluating the predictive power of a CFD solver in capturing transitional

flow phenomenon, such as incipient separation. The NREL Phase VI experiment

provides a useful source of data for validating computational results under a wide

range of conditions.
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Figure 1.11 – NREL Phase VI test matrix, wind speed is varied within each test

sequence (Reproduced from Ref. [10])
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1.2.2 Computational Studies

Previous work on computational simulations of wind turbines and airfoils is

presented in this section. The application of simplified turbine modeling tools is

discussed. Background on utilizing CFD to generate two-dimensional wind turbine

performance characteristics is provided. Next, studies on simulating full wind tur-

bines using CFD are discussed. Finally, background on the implementation of GPU

based hardware acceleration is presented.

1.2.2.1 Wind Turbine Modeling

Aeroelastic codes utilizing simplified aerodynamic models are useful wind tur-

bine design tools. To evaluate the uncertainty in wind turbine models, Simms et

al. [23] performed a blind comparison of experimental and computational results.

Nineteen different modeling tools were used to model a subset of the operating condi-

tions investigated by the NREL Unsteady Aerodynamics Experiment Phase VI [23].

The wind turbine modeling tools ranged from blade element momentum models to

full three dimensional Navier–Stokes simulations. Wind tunnel and experimental

results were not given to the researchers before the blind comparison. The results

of the blind comparison showed significant differences in the predicted performance

between the different models, even at lower wind speeds. The results from various

codes for wind speeds ranging from 5 m/s to 25 m/s are shown in Fig. 1.12, with the

experimental data represented as the bold line. Figure 1.13 shows the same data

as Fig. 1.12 but focuses on the aeroelastic codes, illustrating that at higher wind
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Figure 1.12 – A comparison of predicted shaft torque for different codes used to eval-

uate the NREL Phase VI turbine, the experimental results are shown

with the bold lines and all the predictions are anonymized (Repro-

duced from Ref. [23])

speeds where blade stall is expected to occur, the spread of predicted shaft torque

between the various aeroelastic codes increases, ranging from 30% to 200% of the

experimental results. The wide range of predicted values highlights the difficulties

of modeling aerodynamic performance under stalled conditions.

Duque et al. [24] found that CAMRAD II [12, 13], which utilizes a lifting-line

model for aerodynamics, overpredicted aerodynamic loads on the blade even after

a stall delay model was included. Figure 1.14 shows the variation of power against

wind speed as measured by the NREL experiments and predicted by OVERFLOW-

D and CAMRAD-II. CAMRAD II did not capture the stalled rotor performance
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Figure 1.13 – A comparison of predicted shaft torque for different aeroelastic anal-

ysis codes used to evaluate the NREL Phase VI turbine (Reproduced

from Ref. [23])

Figure 1.14 – Comparison of power predictions by CAMRAD II and OVERFLOW-

D to measured power for the NREL phase VI rotor (Reproduced from

Ref. [24])
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Figure 1.15 – Comparison of predicted and measured normal force coefficient dis-

tribution for the NREL Combined Experiment wind turbine at 63%

span (Reproduced from Ref. [25])

at higher wind speeds, as shown in Fig. 1.14. Leclerc and Masson [25] performed

Navier–Stokes simulations on the NREL Combined Experiment [11] wind turbine

where the wind turbine was modeled as an actuator disk using a blade element

momentum model. Figure 1.15 compares the normal force coefficient predicted

by Leclerc and Masson [25] to the measured normal force coefficient distribution

for the NREL Combined Experiment wind turbine at 63% of span. Simulations

were performed both with and without a dynamic stall model, and Fig. 1.15 shows

that the dynamic stall model improved predictions of the normal force coefficient.

However, there were still significant differences between the predicted normal force

coefficient and the experimental data over the blade azimuthal range. The large

discrepancies seen when modeling stalled conditions highlights the need to improve
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performance predictions in the stalled regime by either improving stall models or

utilizing airfoil data to improve predictions of stalled performance.

1.2.2.2 Wind Turbine Airfoil Simulations

Two-dimensional simulations of wind turbine airfoils provides an avenue for

improving the predictive capability of comprehensive analysis codes. However, one

of the limitations of using CFD is the ability of current models to accurately capture

the effects of stall. The adverse pressure gradient (APG) correction [26] is a mod-

ification to the turbulence model that relies on empirical correlations between the

ratio of the magnitudes of local shear stress to wall shear stress and the presence of

adverse pressure gradients to predict earlier separation on airfoils. Medida et al. [26]

showed that the APG correction reduces the overprediction of lift typically seen in

simulations of airfoils in the stall regime. The lift coefficient predictions by the

several versions of the SA model are compared to experimental results in Fig. 1.16,

which shows that the APG correction reduces lift overprediction in the stall regime.

Another significant enhancement to the transition modeling is the addition of

transition modeling to reduce the over-prediction of drag at low angles of attack

and capture laminar separation bubbles, which is of particular importance in wind

turbine applications. It was shown by Medida et al. [27] that including transition

modeling in simulations of the S809 wind turbine airfoil significantly improved drag

prediction at low angles of attack. Figure 1.17 compares drag predictions by the
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Figure 1.16 – Comparison of predicted lift with and without the adverse pressure

gradient (APG) correction to experimental values for a NACA 0012

airfoil, Re = 6× 106, M = 0.15 (Reproduced from Ref. [26])

Figure 1.17 – Comparison of predicted drag with and without transition modeling

to experimental values for an S809 airfoil, Re = 2× 106 (Reproduced

from Ref. [27])
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Figure 1.18 – Comparison of predicted transition onset location to experimental val-

ues for an S809 airfoil, Re = 2× 106 (Reproduced from Ref. [27])

baseline SA model and the SA model with transition to experimental values, illus-

trating the improvements in drag prediction due to transition modeling. In addition,

the predicted transition location was compared to experimentally determined values

for a range of angles of attack, shown in Fig. 1.18.

Previous studies of two-dimensional airfoils using turbulence model improve-

ments including the APG correction and transition modeling show distinct improve-

ments in the predicted performance values for the S809 airfoil. Though the simula-

tions still show discrepancies for certain freestream conditions, such as high angle of

attack, the range of regimes where the CFD simulations accurately predict experi-

mental performance is increased compared to the baseline SA model.
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1.2.2.3 Three-dimensional Wind Turbine Rotor Simulations

Full three-dimensional Navier–Stokes simulations can be used to more accu-

rately predict wind turbine performance by capturing aerodynamic effects that may

not be captured in lower order fidelity simulations, such as a free-vortex method.

In a comparison of CAMRAD II and OVERFLOW-D, Duque et al. [24] found that

OVERFLOW-D (a full three-dimensional Navier–Stokes solver) predicted the power

produced by the NREL Phase VI wind turbine significantly better than the lifting

line model utilized in CAMRAD II, as shown previously in Fig. 1.14. However,

OVERFLOW-D still showed some discrepancies in the predicted aerodynamic loads

when compared to the experiments. The radial normal force coefficient predictions

of CAMRAD II and OVERFLOW-D are compared in Fig. 1.19, which shows larger

discrepancies occurring at wind speeds of 15 m/s and higher when compared to the

experimental results. In particular, OVERFLOW-D had trouble predicting the stall

delay present in the 13 m/s and 15 m/s wind speed cases.

Xu et al. [28] investigated the NREL Phase VI wind turbine using both the full

Navier–Stokes simulations and a hybrid method combining a Navier–Stokes solver

near the blade and potential flow for the background. Figure 1.20 shows the normal

force coefficient at the 30% r/R spanwise station, similar to the results obtained by

Duque et al. [24], the normal force coefficient near the root deviated by as much as

50% from the experimental data. The authors mention that one possible source for

the error is an inability to properly capture the massively separated flow at the root

when using the one equation Spalart-Allmaras turbulence model.
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Figure 1.19 – Comparison of radial normal force coefficient predictions by CAM-

RAD II and OVERFLOW-D to measured radial normal force coeffi-

cient for the NREL phase VI rotor at multiple wind speeds (Repro-

duced from Ref. [24])
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Figure 1.20 – Comparison of predicted and measured normal force coefficient at

30%R for the NREL phase VI rotor (Reproduced from Ref. [28])

Following the work by Xu et al. [28], Benjanirat et al. [29] also simulated the

NREL Phase VI wind turbine, focusing on the effect of turbulence modeling on

the predicted performance and aerodynamic loads. Four turbulence models were

investigated, the Baldwin-Lomax model, the Spalart-Allmaras model, the k − ε

model without near wall modeling, and the k − ε model with near wall modeling.

Figure 1.21 compares the low speed shaft torque predicted using a variety of tur-

bulence models to the experimental values for the NREL Phase VI, showing that

one of the turbulence models investigated, the k − ε model with wall treatment,

outperforms the other turbulence models at low wind speeds by correctly showing

an initial peak in torque. The k− ε model with wall treatment includes some crude

transition modeling by altering how the viscous sublayer region is modeled [30].

Furthermore, the calculations of the kinetic energy and dissipation were modified

to use experimentally determined relations for the viscous sublayer. The improved
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Figure 1.21 – Comparison of predicted and measured low speed shaft torque

(LSSTQ) for the NREL phase VI rotor (Reproduced from Ref. [29])

performance predictions of the k− ε model with wall treatment points to transition

modeling as an area of interest for wind turbine simulations.

1.2.2.4 GPU Based Hardware Acceleration

Utilizing GPUs for hardware acceleration can significantly reduce the amount

of time and computational resources required to complete CFD simulations. Thomas [31]

implemented a three-dimensional Navier–Stokes solver that utilizes GPU accelera-

tion. The work highlights the necessity of choosing algorithms that are both accurate

and can be parallelized, to fully utilize GPU resources, an area of particular concern

for implicit time stepping methods. Thomas found that as long as the number of

independent lines being solved by the implicit method is larger than the number of

cores on the GPU, the line implicit methods can fully utilize GPU resources.
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Figure 1.22 – Comparison of different GPU platforms used by Thomas to test the

GPU accelerated Navier–Stokes solver (Reproduced from Ref. [31])

Figure 1.23 – Comparison of serial computation speed (using a 3.1 GHz Intel Core

i5 CPU) to computation speed for different GPU platforms for the

Onera M6 test case (Reproduced from Ref. [31])
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Several validations cases were performed to evaluate the computational speedup

achieved through GPU acceleration. The flow over the Onera M6 wing was used

as one of the benchmark cases and the simulations were performed using different

GPU cards. Figure 1.22 compares the memory bandwidth and computing power for

different types of GPUs used to test the GPU accelerated flow solver. The highest

performing card, the GTX Titan, has approximately seven times the computing

power and ten times the memory bandwidth of the lowest performing card, the

GTX 640. Comparing the theoretical speedup of increasing the GPU computing

power to the actual speedup is useful for evaluating how well the performance gains

scale with increasing GPU power. Figure 1.23 shows the computational speedup

achieved using different GPU cards when compared to a single core CPU. In this

study, a 3.1 GHz Intel Core i5 CPU was used as a baseline for comparison. The

accelerated solver was nearly forty times faster in double precision than the serial

code when the GPU with the highest computing power was used, i.e., the GTX

Titan. The differences in the speedup between the other GPU cards are a result of

their hardware specifications and the number of parallel cores it contains.

1.2.3 Sandia 100 m Blade

Wind turbine blade sizes have consistently grown over the years to provide

more power per turbine. Currently prototype turbines with rotors approximately

80 m in radius are being tested [32]. The work by Sandia National Laboratories

seeks to develop a 100 m blade design to serve as a baseline for future blade de-
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Figure 1.24 – Sandia 100 m blade geometry (Reproduced from Ref. [7])

velopment [7]. Scaling laws are used to scale up a 64.5 m blade for 5 MW turbines

developed by DOWEC [33] to the 100 m blade intended for 13.2 MW turbines. Scal-

ing laws are a method of predicting how the blade length affects design trends such

as natural frequencies and bending moments by extrapolating existing wind turbine

properties to larger turbines [7]. The resulting blade geometry is shown in Fig. 1.24.

The chord at the tip of the blade is reduced from the scaled up DOWEC value to

0.1 m, creating a near point at the blade tip. The blade airfoil, chord, and twist

properties are shown in Fig. 1.25. No aerodynamic properties were considered dur-

ing the scaling of the blade because the design of the baseline 100 m blade is focused

on the composite layup and structural properties [7].

1.2.4 Leading Edge Tubercles

Leading edge tubercles, like those shown in Fig. 1.26, are a possible blade ge-

ometry modification that could provide improved aerodynamic performance under
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Figure 1.25 – Sandia 100 m blade airfoil and chord properties, thickness to chord

ratio is in parentheses for transition and modified airfoil descriptions

(Reproduced from Ref. [7])

33



Figure 1.26 – Leading edge tubercles on a humpback whale flipper (Reproduced

from Ref. [36])

specific flow conditions. Based on the position and spacing of the leading edge tu-

bercles on humpback whale fins, Fish and Battle [34] noted that the tubercles could

be functional adaptations that improve the hydrodynamic performance of these fins.

To evaluate the possibility of wing performance enhancements provided by leading

edge tubercles, Watts and Fish [35] utilized an inviscid three-dimensional panel

method to represent the aerodynamic effects of the wing and the associated tuber-

cles. At low angles of attack, the tubercles had nearly zero effect on the predicted

lift and drag. However, at an angle of attack of 10◦ performance improvements were

observed with a 4.8% increase in lift and 10.9% reduction in induced drag.

The primary advantage of leading edge tubercles is in the reduction of sepa-

ration occurring at high angles of attack. Modern utility scale wind turbines are
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typically pitch regulated, as a result the blades operate with the majority of the

blade in the attached flow regime when they are operating under steady flow condi-

tions. However, in situations where wind gusts or other sources of unsteady flow are

present, it is possible that portions of the blade could experience stall. The addition

of leading edge tubercles has the possibility to improve wind turbine performance in

unsteady conditions with minimal performance cost during normal operating con-

ditions.

1.3 Thesis Contributions

The contributions of this research include the following:

1. Evaluate the use of existing transition and turbulence modeling improvements

for wind turbine applications using two dimensional wind turbine airfoil sim-

ulations.

2. Perform three dimensional simulations of the Sandia 100 m reference blade to

evaluate the effects of improved transition and turbulence modeling on the

aerodynamic performance of large wind turbine blades.

3. Quantify the performance effects of leading tubercles at normal operating con-

ditions.
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1.4 Scope and Organization of Thesis

This thesis is focused on predicting performance characteristics for wind tur-

bine airfoils and blades. The rest of the thesis is organized as follows.

The second chapter describes computational methodology utilized for simula-

tions in this work. The various numerical algorithms associated with both Over-

TURNS and the GPU-RANS solver are described.

The third chapter focuses on the two dimensional wind turbine airfoil sim-

ulation results. The improvements gained by improved transition and turbulence

modeling are detailed using experimental results as a reference.

The fourth chapter evaluates the three dimensional wind turbine blade simu-

lation results. The predicted performance for the Sandia 100 m blade is compared to

other computational studies and the effects of transition modeling are explored. In

addition, the performance consequences of leading edge tubercles are investigated.

The fifth chapter summarizes conclusions from this work and also provides

recommendations for future work.
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Chapter 2: Methodology

This chapter presents the numerical methodology used to study the airfoil and

wind turbine aerodynamics. The simulations were performed using two different

structured Reynolds Averaged Navier–Stokes (RANS) solvers:

1. an overset structured RANS solver called OverTURNS (Overset Transonic

Unsteady Rotor Navier–Stokes)

2. a GPU-based RANS solver

Unless otherwise noted, the finite volume algorithms used in OverTURNS and the

GPU-RANS solver are the same.

The Navier–Stokes equations form a system of partial differential equations

that govern unsteady, compressible fluid flow in the Eulerian frame of reference.

To obtain the form of the equations used in the solvers several transformations are

applied to the three-dimensional Cartesian form of the Navier–Stokes equations.

The transformations are: non-dimensionalization the equations, Reynolds averag-

ing, and the curvilinear coordinate transformation. Non-dimensionalization helps

reduce numerical inaccuracies, Reynolds-averaging is required to avoid modeling all

turbulence scales, and the curvilinear coordinate transform simplifies the application

of numerical algorithms. The transformed equations are then discretized in space
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and time to form a system of coupled algebraic equations that are solved numerically

to obtain various properties of the flow.

2.1 Governing Equations

The Navier–Stokes equations are used to model fluid motion. The three-

dimensional, unsteady Navier–Stokes equations consist of time dependent equations

for the conservation of mass, momentum, and energy. It is assumed the the fluid

being modelled is a continuum. The system of equations is expressed in Cartesian

coordinates as,

∂Q

∂t
+
∂Fi

∂x
+
∂Gi

∂y
+
∂Hi

∂z
=
∂Fv

∂x
+
∂Gv

∂y
+
∂Hv

∂z
+ S (2.1)

where Q is the vector of conserved variables, Fi, Gi, and Hi are the inviscid flux

vectors, and Fv, Gv, and Hv are the viscous flux vectors. S represents the vector of

body forces and/or accounts for a change in reference frame (e.g. from the inertial

frame of reference to the rotational frame of reference). The vector of conserved

variables, Q, is given by,

Q =



ρ

ρu

ρv

ρw

E


(2.2)

where the density is given by ρ, the Cartesian velocity components are u, v, and w,

and E is the total energy per unit volume given by,

E = ρ

[
e+

1

2
(u2 + v2 + w2)

]
(2.3)

where e is the internal energy per unit mass.
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The inviscid flux vectors (Fi,Gi,Hi) are given by,

Fi =



ρu

ρu2 + p

ρuv

ρuw

u(E + p)


(2.4)

Gi =



ρv

ρvu

ρv2 + p

ρvw

v(E + p)


(2.5)

Hi =



ρw

ρwu

ρwv

ρw2 + p

w(E + p)


(2.6)

The viscous flux vectors (Fv,Gv,Hv) are given by,

Fv =



0

τxx

τyx

τzx

uτxx + vτxy + wτxz − qx


(2.7)

Gv =



0

τxy

τyy

τzy

uτyx + vτyy + wτyz − qy


(2.8)

Hv =



0

τxz

τyz

τzz

uτzx + vτzy + wτzz − qz


(2.9)

where qx , qy , and qz are the thermal conduction terms expressed as a function of

the temperature (T ) and the coefficient of thermal conductivity (k) as given by,

39



qi = −k ∂T
∂xi

(2.10)

The pressure, p, can be determined using the equation of state for a perfect

gas, given by,

p = ρRT (2.11)

where R is the specific gas constant. All flows studied in this work assume air

operating at standard temperature and pressure. Therefore the calorically perfect

gas assumption is valid, which assumes air is an ideal gas with constant specific

heats. The specific heats at constant volume (Cv) and at constant pressure (Cp) are

given by,

Cv =
R

γ − 1
; Cp =

γR

γ − 1
(2.12)

For a calorically perfect gas,

e = CvT (2.13)

Using the specific heats, Eq. (2.12), and the calorically perfect gas relation, (2.13),

the equation of state can be written as,

p = (γ − 1)ρe (2.14)

Combining Eq. (2.3) and Eq. (2.14),

p = (γ − 1)

[
E − 1

2
ρ(u2 + v2 + w2)

]
(2.15)

where the value of the ratio of specific heats (γ) is 1.4 for air at standard temperature

and pressure.
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The viscous stress tensor for Newtonian fluids, τij, formulated using Stokes’

hypothesis is given by,

τij = µ

[(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
(2.16)

The coefficient of molecular viscosity, µ, can be calculated using Sutherland’s for-

mula [37],

µ = C1
T

3
2

T + C2

(2.17)

where C1 = 1.4×10−6 kg/(ms
√

K) and C2 = 110.4 K for air at standard temperature

and pressure.

2.2 Non-Dimensional Form of the Navier–Stokes Equations

The Navier–Stokes equations are often solved in their non-dimensional form.

One advantage of the non-dimensional form is that all flow variables are normalized

to unity, which reduces the numerical inaccuracies that can result from numerical op-

erations on values of significantly different order of magnitude. The non-dimensional

variables used are given below (indicated by the * superscript) as,

x∗ =
x

L
, y∗ =

y

L
, z∗ =

z

L
, t∗ =

ta∞
L

(2.18)

u∗ =
u

a∞
, v∗ =

v

a∞
, w∗ =

w

a∞
, µ∗ =

µ

a∞
(2.19)

ρ∗ =
ρ

ρ∞
, p∗ =

p

ρ∞a2
∞
, T ∗ =

T

T∞
(2.20)

where the reference length L is typically chosen as the chord length of the airfoil, a

is the speed of sound, and a subscript∞ indicates free-stream values. The resulting

41



non-dimensional parameters are given below,

Reynolds number: Re∞ =
ρ∞V∞L

µ∞
(2.21)

Mach number: M∞ =
V∞L

a∞
(2.22)

Prandtl number:
µCp
k

(2.23)

where V∞ is the free-stream velocity magnitude, given by
√
u2
∞ + v2

∞ + w2
∞. Air at

standard temperature and pressure has a Prandtl number of 0.72.

The non-dimensional form of the Navier–Stokes equations are identical to

the dimensional form except for the viscous stress tensor and the heat conduc-

tion terms. The non-dimensional viscous stress tensor is given by Eq. (2.24) and

the non-dimensional heat conduction terms are given by Eq. (2.25),

τij =
µM∞
Re∞

µ

[(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
(2.24)

qj = − µM∞
Re∞Pr(γ − 1)

∂T

∂xj
(2.25)

2.3 Reynolds-Averaged Navier–Stokes (RANS) Equations

In the case of inviscid or laminar flows there are no further assumptions that

need to be made to solve the governing equations, Eq. (2.1). However, flows involv-

ing wind turbines are typically turbulent. One potential approach is to fully resolve

the turbulence at all spatial and temporal scales using a Direct Numerical Simu-

lation (DNS), but these simulations are prohibitively expensive with the current
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computing resources, except for relatively simple, lower Reynolds number problems.

Another approach that is significantly less computationally expensive is the use

of RANS equations. The RANS equations decompose the dependent variables in

the governing equations, Eq. (2.1), into the mean component and the fluctuating

component. The resulting equations are then averaged over a period of time.

The mean (time-averaged) component of a variable f is defined as,

f =
1

∆t

∫ t0+∆t

t0

fdt (2.26)

where t0 is the current time and ∆t is the timestep size. The time-average of the

fluctuating component is zero. The following relations hold for any two fluctuating

quantities f ′ and g′,

fg′ = 0, fg = fg, f + g = f + g (2.27)

f ′f ′ 6= 0 f ′g′ 6= 0 (2.28)

The dependent variables in the Navier–Stokes equations are written in terms of their

mean and fluctuating components as,

u = u+u′, v = v+v′, w = w+w′, ρ = ρ+ρ′, p = p+p′, T = T+T ′ (2.29)

The turbulence intensity (Tu) is defined as the ratio of the root-mean-square of the

velocity fluctuations and the mean velocity,

Tu =
U ′

U
(2.30)

U ′ =

√
1

3
[(u′)2 + (v′)2 + (w)2] and U =

√
(u)2 + (v)2 + (w)2 (2.31)
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Substituting the decomposed variables from Eq. (2.29) into the Navier–Stokes

equations given in Eq. (2.1) and time-averaging the equations results in the RANS

equations. The resulting system of equations is identical to the Navier–Stokes equa-

tions, except for the addition of several terms that are functions of the turbulent

fluctuating variables. The additional terms transport momentum through turbulent

fluctuations, a behavior mirroring that of a viscous stress tensor. These terms are

commonly referred to as the Reynolds stress tensor given by,

(τij)turb = −ρu′iu′j (2.32)

The Reynolds stress tensor adds six additional unknowns to the Reynolds-averaged

momentum equations since it is a symmetric 3×3 matrix. To avoid adding additional

independent variables the Reynolds stress tensor is represented using mean flow

quantities. Turbulence models are used accomplish to represent the Reynolds stress

tensor using mean flow quantities and achieve full closure for the RANS equations.

Details of turbulence modeling are presented in Section 2.5.3.

2.4 Curvilinear Coordinate Transformation

The Cartesian form of the Navier–Stokes equations is applicable to any com-

putational grid topology. However, the stencils for numerical spatial derivatives are

typically based on uniform grid spacing and are not suitable for grids with non-

uniform spacing, particularly in the presence of rapid mesh stretching. Because of

this limitation it is often necessary to utilize a curvilinear coordinate transformation,

Fig. 2.1 illustrates how the governing equations are mapped from the non-uniform
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spaced body conforming domain (x,y,z) onto a computational domain (ξ,η,ζ) with

equal grid spacing. Chain rule differentiation is applied to the Cartesian set of

equations Eq. (2.1), resulting in,

∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
+
∂H̃

∂ζ
= S̃ (2.33)

where

Q̃ =
1

J
Q

F̃ =
1

J
[ξtQ + ξx(Fi − Fv) + ξy(Gi −Gv) + ξz(Hi −Hv)]

G̃ =
1

J
[ηtQ + ηx(Fi − Fv) + ηy(Gi −Gv) + ηz(Hi −Hv)]

H̃ =
1

J
[ζtQ + ζx(Fi − Fv) + ζy(Gi −Gv) + ζz(Hi −Hv)]

S̃ =
1

J
S

(2.34)

and J is the Jacobian of the coordinate transformation, which is the determinant of

the 3 × 3 matrix, 

∂ξ

∂x

∂ξ

∂y

∂ξ

∂z

∂η

∂x

∂η

∂y

∂η

∂z

∂ζ

∂x

∂ζ

∂y

∂ζ

∂z


(2.35)

2.5 Numerical Algorithms

The various algorithms used for discretizing the governing equations, turbu-

lence modeling, and numerical boundary conditions are described in this section.

A cell-averaged finite-volume technique is used to solve the curvilinear form of the

RANS equations, (2.33). The control volume is a cell created around each grid
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Figure 2.1 – The mapping of physical space to computational space using the curvi-

linear coordinate transform (Reproduced from Ref. [38]

point. The inviscid and viscous fluxes are evaluated at the interfaces between cells

and integrated over all the faces of a cell to determine the time rate of change

of conserved quantities within the cell at each timestep. The curvilinear form of

the RANS equations can be written in semi-discrete form using the finite volume

transformation as,

∂Q̃

∂t
= −

F̃j+ 1
2
− F̃j− 1

2

∆ξ
−

G̃k+ 1
2
− G̃k− 1

2

∆η
−

H̃l+ 1
2
− H̃l− 1

2

∆ζ
+ S̃j,k,l (2.36)

2.5.1 Inviscid Fluxes

The inviscid fluxes describe the convection of flow field variables between

computation cells. Two steps are involved in the calculation of the inviscid fluxes

Eqs. (2.4) – (2.6):
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Figure 2.2 – Schematic showing a one-dimensional piecewise reconstruction

1. The primitive variables, (ρ, u, v, w, p), are reconstructed at the cell faces

2. The fluxes are evaluated at the cell faces using the reconstructed primitive

variables

Upwind reconstruction schemes account for the direction of wave propagation

and ensure that only upstream information is used. In this work, the third-order

Monotone Upstream-Centered Scheme for Conservation Laws (MUSCL) [39] with

Koren’s limiter [40] is used for reconstructing the left and right states at each cell.

The left and right face states at each cell interface,
(
qL
i+ 1

2
, qR
i− 1

2

)
, are calculated

based on the current and neighboring cell-averaged values, i.e. qi−1, qi, and qi+1.

Figure 2.2 illustrates a one-dimensional piecewise reconstruction.

Using the reconstructed left and right states, the inviscid fluxes can be com-

puted at each face. Roe’s flux difference splitting scheme [41] with an entropy fix is

used to compute the left and right state fluxes, FL and FR,

F(qL, qR) =
F(qL) + F(qR)

2
− |Ã(qL, qR)|q

R − qL

2
(2.37)
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where Ã is the Roe-averaged Jacobian matrix. Harten’s entropy correction to the

eigenvalues, λ, of the flux Jacobian, Ã, is given by,

|λ| =


|λ|, if|λ| > δ

λ2+δ2

2δ
, if|λ| ≤ δ

(2.38)

where δ = max [0, (λi+1/2 − λi), (λi+1 − λi+1/2)].

2.5.2 Viscous Fluxes

The viscous fluxes in the curvilinear form of the governing equations include

derivatives of the following form,

∂

∂ξ

(
α
∂β

∂η

)
(2.39)

which are evaluated using second order central differencing,

1

∆ξ

([
αj+ 1

2
,k

(
βj+ 1

2
,k+1 − βj+ 1

2
,k

∆η

)]
−

[
αj− 1

2
,k

(
βj− 1

2
,k − βj− 1

2
,k−1

∆η

)])
(2.40)

where δj+ 1
2
,k =

δj,k + δj + 1, k

2
and δ = (α, β).

2.5.3 Turbulence Modeling

The RANS equations avoid the need to model all of the turbulent fluctua-

tions by splitting the dependent variables into a mean component and a fluctuating

component. The decomposition results in the addition of several terms that are

functions of the fluctuating component, these terms are called the Reynolds stress

tensor and is modeled using turbulence models. The most physically realistic turbu-

lence models are called Reynolds Stress Models [42] – [43]. These models solve six
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additional transport equations, one for each of the stress tensor components and one

for the energy dissipation rate. Transport equations describe how the convection

and diffusion for a variable transports it between computational cells. These models

are computationally expensive and have issues with robustness and convergence. It

is more common for turbulence models to relate the Reynolds stress tensor to the

mean strain rate using the Boussinesq eddy viscosity, as shown below,

(τij)turb = −ρu′iu′j =
2

3
ρkδij − µt

[(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
(2.41)

where k is the turbulent kinetic energy,

k =
1

2

[
(u′1)2 + (v′1)2 + (w′1)2

]
(2.42)

and µt is the turbulent viscosity or eddy viscosity. Utilizing Eq. (2.41) yields the

following form for the total viscous stress tensor,

(τij)turb =
2

3
ρkδij − (µ+ µt)

[(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
(2.43)

Turbulence modeling research has proposed a large variety of models for cal-

culating the turbulent kinetic energy and eddy viscosity as a function of mean flow

quantities. Most of the turbulence models are calibrated using theoretical solutions

and experimental data, resulting in a significant amount of empiricism inherent to

turbulence modeling. One widely used turbulence model, particularly in aerospace

applications, is the one-equation Spalart-Allmaras (SA) model [44]. It solves a

transport equation for the eddy viscosity. The SA model is used for all turbulent

simulations in this work, and the details of this model are presented in the next

section.
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2.5.4 Spalart-Allmaras (SA) Turbulence Model

The SA turbulence model is widely used turbulence model in aerospace appli-

cations. The SA model relates the Reynolds stresses to the mean strain using the

following isotropic relation,

u′iu
′
j = −2µtSij (2.44)

The eddy viscosity is related to a turbulence field variable ν̃ by the following equa-

tion,

µt = ρνt = ρν̃fv1 (2.45)

where fv1 is a function of ν̃ and the molecular viscosity, ν, as,

fv1 =
χ3

χ3 + c3
v1

(2.46)

where χ = ν̃/ν and cv1 = 7.1. The turbulence field variable ν̃ is determined by

solving the following PDE,

∂ν̃

∂t
+ uj

∂ν̃

∂xj
=

1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
+ cb1S̃ν̃ − cw1fw

(
ν̃

d

)2

(2.47)

where d is the distance to the nearest wall and

S̃ = max

[
Ω +

ν̃

κ2d2
fv2, 0.3Ω

]
(2.48)

fw = g

[
1 + c6

w3

g6 + c6
w3

]6

(2.49)

where Ω is the vorticity magnitude and fv2 and g are given by,

fv2 = 1− χ

1 + χfv1

(2.50)
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g = r + cw2(r6 − r) (2.51)

r = min

[
ν̃

S̃κ2d2
, 10

]
(2.52)

where the constants are

cb1 = 0.1355 cb2 = 0.622 κ = 0.41 σ =
2

3

cv1 = 7.1 cw1 =
cb1
κ2

+
1 + cb2
σ

cw2 = 0.3 cw3 = 2

(2.53)

The left hand side of Eq. (2.47) convects the turbulence field variable (ν̃) at

the mean flow velocity (u). On the right hand side of Eq. (2.47) the first term

represents diffusion of ν̃, the second term represents production of ν̃, and the final

term represents destruction of ν̃.

2.5.4.1 γ −Reθ− SA Transition Model

Transition modeling is used to improve performance predictions for simulations

involving significant amounts of laminar flow. This work utilizes the γ −Reθt− SA

transition model developed by Medida et al. [27]. To control boundary layer tran-

sition the production of turbulent kinetic energy is controlled using the local inter-

mittency, γ. The intermittency field is calculated using the intermittency transport

equation,

D(ργ)

Dt
= Pγ −Dγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
(2.54)

where

Pγ =ρFonsetGonsetmax

(
Ω

Flength

,
1.0

Flength,min

)
If γ > 1.0, Pγ = (1− γ)Pγ

(2.55)

Dγ = ρΩγ(1.0−Gonset) (2.56)
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Gonset =


1.0, if max(Fonset) > 1.0 at a given streamwise station

0.0, otherwise

(2.57)

Fonset = max(Fonset2 − Fonset3, 0) (2.58)

Fonset1 =
Reν

2.193Reθc
(2.59)

Fonset2 = min(max(Fonset1, F
4
onset1), 4.0) (2.60)

Fonset3 = max(2− (0.25RT )3, 0) (2.61)

Reν =
ρd2S

µ
, Reθc = 0.62Reθt, RT =

µ

µt
(2.62)

Flength = 40.0, Flength,min = 2.5 (2.63)

The critical Reynolds number, Reθc, determines the transition onset locations, which

is where intermittency starts to increase in the boundary layer. The length of the

transition region is determined based on the Flength function. Both of these values

are calculated using correlations based on the local transition momentum thickness,

Reθt. Another transport equation is solved to yield the Reθt field,

D(ρReθt)

Dt
= Pθt +

∂

∂xj

[
σθt(µ+ µt)

∂REθt
∂xj

]
(2.64)

where

Pθt = cθt
ρ

t
(Reθt −Reθt)(1.0− Fθt) (2.65)

Fθt = min
(
e−( dδ )

4

, 1.0
)

(2.66)

θBL =
Reθtµ

ρU
, δBL = 7.5θBL, δ =

50Ωd

U
δBL (2.67)

52



Experimental correlations are used to determine the value of Reθt, the value of Reθt∞

is based on the freestream turbulence using a piecewise linear interpolation of the

values given in Table 2.1. The value of Reθt is determined as follows,

Reθt = Reθt∞F (λθ) (2.68)

F (λθ) =


1− (−12.986λθ − 123.66λ2

θ − 405.689λ3
θ)e
−(Tu1.5)

1.5

, λθ ≤ 0

1 + 0.275(1− e−35λθ)e−
Tu
0.5 , λθ > 0

(2.69)

λθ =
ρθ2

µ

dU

ds
(2.70)

σf = 1.0, cθt = 0.03, σθt = 2.0 (2.71)

Tu% Reθt∞
0.01 1800.0

0.03 1135.0

0.51 894.0

1.33 392.0

2.00 252.0

5.25 165.0

6.50 100.0

Table 2.1 – Piecewise linear correlations between Tu and Reθt∞

2.5.4.2 Adverse Pressure Gradient Correction

To improve the sensitivity of the SA model to strong adverse pressure gradients

Medida et al. [26] developed the adverse pressure gradient (APG) correction. Strong

adverse pressure gradients primarily affect the defect layer, in the SA model the

behavior of the defect layer can be modified through the damping function fw, (2.49),
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in the destruction term of the turbulence transport equation, Eq. (2.47). To increase

turbulence destruction the von-Karman constant, κ, is lowered for non-equilibrium

boundary layers. The decrease in κ is only for numerical purposes and does not

reflect the nature of the log-law slope under strong APG. Recall that,

fw = g

[
1 + c6

w3

g6 + c6
w3

]6

, g = r + cw2(r6 − r), r = min

[
ν̃

S̃κ2d2
, 10

]
(2.72)

The APG correction modifies the calculation of r as follows,

r = min

[
ν̃

S̃α2d2
, 10

]
(2.73)

where

α = κ− 0.2β, β = min(max(δ8 − 1.0, 0.0), 1.0), δ =
µt|Sij|
1.5|τw|

(2.74)

The value of δ is based on the observation that the ratio of the local turbulent

shear stress magnitude to the wall shear stress magnitude does not exceed 1.5 for

equilibrium boundary layers.

2.5.4.3 Delayed Detached Eddy Simulation

Delayed Detached Eddy Simulation (DDES) is a hybrid RANS-LES method

developed by Spalart et al. [45]. DDES is based on DES, a modification of the

one equation SA model that reduces to a subgrid model outside the boundary layer

while maintaining RANS behavior inside the boundary layer. To accomplish this

DES replaces the length scale, d in the turbulence transport equation, (2.47), by d̃,

which is given by,

d̃ = min(d, CDES∆) (2.75)
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where CDES is a constant and typically,

∆ = max(∆x,∆y,∆z) (2.76)

The implementation used in this work has been further modified based on the

anisotropic grid correction of Scotti et al. [46]. The correction modifies the defi-

nition of ∆ to be the following,

∆ = cosh

(√
4

27
[ln(a1)2 − ln(a1)ln(a2) + ln(a2)2]

)
× (∆x×∆y ×∆z)

1
3 (2.77)

This formulation for d̃ depends only on d and ∆, which are both grid quantities.

In cases with thick boundary layers or shallow separation regions, this can cause an

issue known as modeled stress depletion (MSD). MSD is where the DES limiter

is activated within the boundary, but the grid is not fine enough to handle the

associated LES content. The result is a reduction in the modeled Reynolds stress,

which can lead to premature separation, known as grid induced separation. The

DDES formulation modifies d̃ to also depend on the eddy viscosity, the new definition

is given by,

d̃ = d− fdmax(0, d−DDES∆) (2.78)

fd = 1− tanh([8rd]
3) (2.79)

rd =
νt + ν√
Ui,jUi,jκ2d2

(2.80)

The added eddy viscosity dependence ensures that the DES limiter is not activated

inside the boundary layer. LES behavior is still maintained for massively separated

flows.
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2.5.5 Time Integration

Time integration is used to calculate values for the flow variables at the next

timestep based on their current values. After the inviscid Eqs. (2.4) – (2.6) and vis-

cous fluxes Eqs. (2.7) – (2.9) on the right hand side of the semi-discrete RANS equa-

tions, Eq. (2.36), are evaluated, the semi-discrete RANS equations are integrated

using an implicit (backwards-in-time) time marching method. An implicit method

is employed as these methods have superior stability and convergence characteris-

tics when compared to explicit time marching methods. Implicit methods require

the fluxes and source terms on the right-hand side of the semi-discrete equations

to be evaluated at the current time level. The semi-discrete equations, Eq. (2.36),

discretized using using an implicit method are expressed as,

∂Q̃n+1

∂t
= −

F̃n+1
j+ 1

2

− F̃n+1
j− 1

2

∆ξ
−

G̃n+1
k+ 1

2

− G̃n+1
k− 1

2

∆η
−

H̃n+1
l+ 1

2

− H̃n+1
l− 1

2

∆ζ
+ S̃n+1

j,k,l (2.81)

In this work a first-order accurate implicit method (Euler implicit) is used, so the

left-hand side can be written as follows,

∂Q̃n+1

∂t
' Q̃n+1 − Q̃n

∆t
+O(∆t) (2.82)

By linearizing the non-linear equation around Q̃n using a Taylor series expansion

the (n + 1)th state can be expressed in terms of the previous state. The resulting

equations are as follows,

F̃n+1 = F̃n + Ã∆Q̃ +O(∆t2) (2.83)

G̃n+1 = G̃n + B̃∆Q̃ +O(∆t2) (2.84)
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H̃n+1 = H̃n + C̃∆Q̃ +O(∆t2) (2.85)

where ∆Q̃ = Q̃n+1 − Q̃n and Ã, B̃, and C̃ are the flux Jacobians given by ∂F̃
∂Q̃

, ∂G̃
∂Q̃

,

and ∂H̃
∂Q̃

. The linearized equations can be expressed in terms of the solution update

∆Q̃ as follows,

[I + ∆t(δξÃ
n + δηB̃

n + δζC̃
n)]∆Q̃ = −∆t(δξF̃

n + δηG̃
n + δζH̃

n − S̃n) (2.86)

The right-hand side of Eq. (2.86) represents the physics of the problem while the

left-hand side of Eq. (2.86) represents the numerics of the problem, which deter-

mines solution stability and convergence. The system of equations results in a

sparse banded matrix of algebraic equations. While it is not computationally fea-

sible to directly invert the matrix, therefore approximate factorization methods are

used to make the inversion computationally efficient, even though there may be a

degradation in stability and convergence. The two methods utilized in this work are

the Lower-Upper Symmetric Gauss-Seidel (LUSGS) algorithm and the Diagonalized

Alternating Direction Implicit (DADI) algorithm. All OverTURNS simulations uti-

lize the LUSGS algorithm while all of the GPU-RANS solver simulations utilize the

DADI algorithm, this is because the DADI algorithm is more amenable to paral-

lelization in the GPU framework than the LUSGS algorithm.

2.5.5.1 Lower-Upper Symmetric Gauss-Seidel (LUSGS) Algorithm

The LUSGS algorithm is an approximate factorization method that factorizes

the left-hand side of the linearized form of the semi-discrete RANS equations [47],

given by Eq. (2.86). This factorization groups terms into a lower diagonal (L), an
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upper diagonal (U), and a main diagonal (D) with the following form,

[L+D+U ]∆Q̃n ≈ [D+L]D−1[D+U ]∆Q̃n = −∆t(δξF̃
n+δηG̃

n+δζH̃
n−S̃n) (2.87)

where

L = ∆t(−Ã+
j−1,k,l − B̃+

j,k−1,l − C̃+
j,k,l−1)

U = ∆t(Ã−j+1,k,l + B̃−j,k+1,l + C̃−j,k,l+1)

D = I + ∆t(Ã+
j,k,l − Ã−j,k,l + B̃+

j,k,l − B̃−j,k,l + C̃+
j,k,l − C̃−j,k,l)

(2.88)

The solution update (∆Q̃) can be determined by using two steps to solve the system

defined by Eq. (2.87) and Eq. (2.88) as follows,

[D + L]∆Q = −∆t(δξF̃
n + δηG̃

n + δζH̃
n − S̃n) (2.89)

[D + U ]∆Q̃ = D∆Q (2.90)

L, D, and U are block matrices with a size of 5 × 5 for the three dimensional

Navier–Stokes equations, and consequently it is computationally expensive to invert

the [D + L] and [D + U ] terms. The spectral radius approximation is used for the

flux Jacobian matrices (Ã, B̃, C̃) to reduce the main diagonal (D) to a diagonal

matrix. The spectral radius approximation implementation is given by,

Ã+ =
1

2
(Ã + σξ), Ã− =

1

2
(Ã− σξ)

B̃+ =
1

2
(B̃ + ση), B̃− =

1

2
(B̃− ση)

C̃+ =
1

2
(C̃ + σζ), C̃− =

1

2
(C̃− σζ)

(2.91)
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where Ã+−,B̃+−, and C̃+− are the left and right flux Jacobians and,

σξ = |Uξ|+ c+
2µ(ξ2

x + ξ2
y + ξ2

z )

ρ

ση = |Uη|+ c+
2µ(η2

x + η2
y + η2

z)

ρ

σζ = |Uζ |+ c+
2µ(ζ2

x + ζ2
y + ζ2

z )

ρ

(2.92)

where Uk is the contravariant velocity in the k-direction. Errors associated with

the approximate factorization are reduced using a dual time stepping method with

Newton-like sub-iterations, which is described in Section 2.5.5.3.

2.5.5.2 Diagonalized Alternating Direction Implicit (DADI) Algo-

rithm

The DADI algorithm developed by Pulliam and Chaussee [48] can be used to

invert the left-hand side of the linearized form of the semi-discrete RANS equations,

given by Eq. (2.36). Since the simulations are in three dimensions the left-hand side

of Eq. (2.36) is split into three factors as follows,

[I + ∆t(δξÃ + δηB̃ + δζC̃)]∆Q̃ ≈ [I + ∆tδξÃ][I + ∆tδηB̃][I + ∆tδζC̃]

= −∆t(δξF̃
n + δηG̃

n + δζH̃
n − S̃n)

(2.93)

A further simplification can be made by diagonalizing the inviscid components of

the flux Jacobians, resulting in the following terms,

Ã = TξΛξT
−1
ξ

B̃ = TηΛηT
−1
η

C̃ = TζΛζT
−1
ζ

(2.94)

59



where Λξ is the set of eigenvalues for matrix, Tξ is set of left eigenvectors, and T−1
ξ

is the set of right eigenvectors for matrix Ã. Similar expressions are obtained for

matrices B̃ and C̃. After substituting the diagonalized flux Jacobians, Eq. (2.94),

for the flux Jacobians in Eq. (2.86) the left-hand side of Eq. (2.86) can be written

as,

[TξT
−1
ξ + (I + ∆tδξTξΛξT

−1
ξ )][TηT

−1
η + (I + ∆tδηTηΛηT

−1
η )]

[TζT
−1
ζ + (I + ∆tδζTζΛζT

−1
ζ )]∆Q̃ = ∆t(δξF̃

n + δηG̃
n + δζH̃

n − S̃n)

(2.95)

Assuming the inviscid flux Jacobian eigenvectors are locally constant results in the

following,

[Tξ(I+∆tδξΛξ)T
−1
ξ ][Tη(I+∆tδηΛη)T

−1
η ][Tζ(I+∆tδζΛζ)T

−1
ζ ]∆Q̃ = ∆t(δξF̃

n+δηG̃
n+δζH̃

n−S̃n)

(2.96)

The system can now be inverted using the following seven steps,

S1 = T−1
ξ ∆t(δξF̃

n + δηG̃
n + δζH̃

n − S̃n)

S2 = (I + ∆tδξΛξ)
−1S1

S3 = (T−1
ξ Tη)

−1S2

S4 = (I + ∆tδηΛη)
−1S3

S5 = (T−1
η Tζ)

−1S4

S6 = (I + ∆tδζΛζ)
−1S5

∆Q̃ = TζS6

(2.97)

The resulting process reduces the inversion of the left hand side of Eq. (2.86) into four

matrix vector products for each cell and five scalar tridiagonal solves per coordinate

line, Eq. (2.97).
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The algorithm is only rigorously valid for the Euler equations as the viscous

flux Jacobians cannot be diagonalized simultaneously along with the inviscid flux

Jacobians. To overcome this limitation, the viscous Jacobian eigenvalues, Λv, are

approximated as follows,

Λv(ξ) = γµRe−1ρ−1J−1

Λv(η) = γµRe−1ρ−1J−1

Λv(ζ) = γµRe−1ρ−1J−1

(2.98)

which results in the following equation that can be solved using the same seven step

method in Eq. (2.86),

[Tξ(I + ∆t(δξΛξ − δξξΛv(ξ)))T
−1
ξ ][Tη(I + ∆t(δηΛη − δηηΛv(η)))T−1

η ]

[Tζ(I + ∆t(δζΛζ − δζζΛv(ζ)))T−1
ζ ]∆Q̃ = ∆t(δξF̃

n + δηG̃
n + δζH̃

n − S̃n)

(2.99)

The second derivatives in the above equation are computed using second order cen-

tral differencing. Errors associated with the approximate factorization are reduced

using a dual time stepping method with Newton-like sub-iterations, which is de-

scribed in Section 2.5.5.3.

2.5.5.3 Dual Time Stepping

Sub-iterations can be carried out at each physical timestep to remove factor-

ization errors and recover accuracy in time. To perform subiterations, Eq. (2.33)

can be modified to include a term that includes a fictitious pseudo time τ [49].

∂Q̃

∂τ
+
∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
+
∂H̃

∂ζ
= S̃ (2.100)
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Discretizing Eq. (2.100) results in the following,

Q̃p+1 − Q̃p

∆τ
+
Q̃p+1 − Q̃n

∆t
= −

F̃p+1

j+ 1
2

− F̃p+1

j− 1
2

∆ξ
−

G̃p+1

k+ 1
2

− G̃p+1

k− 1
2

∆η
−

H̃p+1

l+ 1
2

− H̃p+1

l− 1
2

∆ζ
+ S̃p+1

j,k,l

(2.101)

where the physical time level is denoted by n and the sub-iteration time-level is

denoted by p. Q̃p is set to Q̃n for the first sub-iteration. The system of equations

in Eq. (2.100) can be linearized about time level n, resulting in,[
1

∆τ
+

1

∆t
+ (δξÃ

p + δηB̃
p + δζC̃

p)

]
∆Q̃ =

−

(
δξF̃

p + δηG̃
p + δζH̃

p − S̃p +
Q̃p − Q̃n

∆t

) (2.102)

which can be rewritten as,[
I + h(δξÃ

p + δηB̃
p + δζC̃

p)
]

∆Q̃ =

− h

(
δξF̃

p + δηG̃
p + δζH̃

p − S̃p +
Q̃p − Q̃n

∆t

) (2.103)

where h =
∆t

1 + ∆t
∆τ

. The resulting equation is similar in form to Eq. (2.86) and can

be solved using either LUSGS or DADI, outlined in Sections 2.5.5.1 and 2.5.5.2,

respectively. The unsteady residual is given by,

δξF̃
p + δηG̃

p + δζH̃
p − S̃p +

Q̃p − Q̃n

∆t
(2.104)

The unsteady residual should drop towards zero in the sub-iterations to recover

time accuracy. A drop in the unsteady residual of one to two orders of magnitude is

typically sufficient to ensure that the factorization error is lower than the remaining

discretization errors.
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2.5.6 Low Mach Number Preconditioning

The methodology as laid out so far is designed to solve the compressible

Navier–Stokes in the subsonic and transonic flow regimes. When applied to low-

Mach number regimes, i.e. essentially incompressible flows, the rate of convergence

is reduced because of the large differences between the acoustic wave speed and the

convective wave speed of the Euler equations. Also, the dissipation terms in the

Roe’s flux difference splitting scheme do not scale down accurately at low Mach

numbers, which increases the solution error by causing excessive numerical dissipa-

tion. Turkel’s preconditioning [50] has been implemented in OverTURNS to over-

come this limitation. The GPU-RANS solver does not include low Mach number

preconditioning.

2.5.7 Initial and Boundary Conditions

The unsteady Navier–Stokes equations are an Initial Boundary Value Problem,

which means that the evolution of the solution is influenced by the initial conditions

and boundary conditions of the simulation. To initialize a simulation the primitive

variables (ρ, u, v, w, p) must be set at each grid point. In the present work, the

entire flow field is initialized to free-stream values. Because of the choice of reference

quantities used to non-dimensionalize the RANS equations ρ∞ = 1.0, p∞ =
1

γ
, and

(u, v, w) are based on the free-stream Mach number components.

The boundary conditions specify the treatment of the boundary cells of the

computational domain. The boundaries can be physical, artificial, or numerical. An
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example of a physical boundary condition is the solid wall boundary that enforces

a no-slip condition. The requirement of having a finite computational domain re-

sults in artificial inlet and outlet boundary conditions at the outer boundary of the

computational domain. Numerical boundary conditions include the wake-cut found

in C-topology meshes and periodicity. The boundary conditions associated with a

C-mesh are illustrated in Fig. 2.3.

OverTURNS uses a cell-vertex scheme while the GPU-RANS solver utilizes a

cell-centered scheme, Fig. 2.4 illustrates that the difference between the two schemes

is the location where flow variables are calculated. Consequently, OverTURNS and

the GPU-RANS solver utilize different methods for setting the boundary conditions.

OverTURNS explicitly sets the primitive variables at the grid points that lie on the

boundary. In the GPU-RANS solver, the boundaries occur on the outer faces of

the boundary cells. To set the values at the face a layer of ghost cells surrounding

the physical domain is used, the conservative variables inside these ghost cells are

extrapolated from interior cells to enforce the desired boundary condition at their

associated boundary face.

2.5.7.1 Wall Boundary

At wall boundaries, the density is extrapolated from the interior and the pres-

sure is either extrapolated or calculated using the normal momentum equation. The

velocity vector, (u, v, w), is set at the wall boundary to satisfy the no-penetration

condition for inviscid walls or the no-slip condition for viscous walls. To enforce a

64



Figure 2.3 – Boundary conditions on a structured C-topology mesh

no-penetration condition the wall-normal component of the velocity is set to match

the wall-normal component of the surface velocity at that point, the flow velocities

tangent to the surface are unaffected. The no-slip condition is enforced by setting all

of the velocity components to match their respective surface velocity components.

2.5.7.2 Wake Cut Boundary

In a C-mesh topology the wake cut appears adjacent to the solid wall where the

grid planes overlap in the same physical space, as shown in Fig. 2.3. The wake cut

is an artifact of topology and not the physical problem. Therefore, flow continuity

needs to be ensured across the wake cut. In OverTURNS, flow values along the

wake cut are explicitly set to the average of the solution on either side of the wake

cut. In the GPU-RANS solver, the conservative variables in the ghost cell are set

to match their physical counterparts on the other side of the wake cut.

65



(a) Vertex Centered (OverTURNS) (b) Cell Centered (GPU-RANS)

Figure 2.4 – Control volumes used for vertex centered schemes and cell centered

schemes, the red outline is a control volume and the black lines are the

computation mesh

2.5.7.3 Periodic Boundary

Some simulations, such as hovering rotors, can be simplified by assuming pe-

riodicity in a coordinate direction. To implement the periodic boundary condition,

the density and pressure in the ghost cell is set to match the associated physical

cell. The velocity vector is also set to match the physical cell, after performing an

appropriate coordinate rotation.

2.5.7.4 Far-field Boundary

In external flow simulations an artificial boundary is created when the flow do-

main is truncated to a finite size. The boundary condition needs to be implemented

such that outgoing waves are not spuriously reflected back into the domain, and
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only physical disturbances are propagated in the domain from the exterior. Non-

reflecting boundary conditions based on the Riemann invariants are used to ensure

waves are properly propagated into and out of the domain. On one hand, when the

flow is outgoing the Riemann invariants are extrapolated from the interior cells. On

the other hand, if the flow is incoming the Riemann invariants are prescribed based

on the free-stream values. In the absence of strong flow gradients in the conserva-

tive quantities, this boundary condition allows small disturbances to pass through

the far-field boundary. In addition, mesh stretching is employed to dissipate strong

flow gradients numerically before they reach the far-field boundary. The far-field

boundary is typically placed far from the any body surfaces or other regions of flow

activity. Two dimensional airfoil simulations typically place the far-field boundary

between 20 and 50 chord lengths away from the airfoil surface. Three dimensional

rotor simulations typically place the far-field boundary 10 rotor radii from the rotor.

2.5.8 Overset Mesh Connectivity

OverTURNS includes an overset mesh capability. Overset (or chimera) mesh

systems are a set of independent computational meshes, and can be used in situations

where a single mesh is not feasible. The overset mesh capability also allows for

adaptive mesh refinement and modelling complex geometries without requiring the

use of an unstructured mesh. Typical uses of overset meshes include multi-element

airfoils and for capturing the wake of rotor systems. An important component of the

overset methodology is the connectivity and data transfer mechanism. There are

67



three main steps: hole cutting, receiver point identification, and determining donor

cells and interpolation weights. Hole cutting defines regions, called holes, that lie

inside solid boundaries. These hole regions are excluded from the solution and a list

of receiver points surrounding the hole region is determined. These receiver points

are known as hole fringe points, which ensure that points adjacent to hole regions

have numerical boundary conditions and are used to propagate information between

overlapping meshes. The other receiver points occur on the body mesh (typically

towards the outer boundary) where information from other meshes is required. Once

receiver cells have been determined, donor cells are chosen with a search algorithm

and are used to provide information to the receiver cells. Typically, donor cells are

chosen to have similar cell volumes to their associated receiver cells. A weighted

sum based on linear interpolation is used to pass information from donor cells to

receiver cells. The overset technique is illustrated in Fig. 2.5. A more detailed

discussion of the Implicit Hole Cutting algorithm used in OverTURNS is presented

in [51] and [52].

2.5.9 Parallelization Techniques

As simulations increase in computational expense, it becomes increasingly im-

portant to utilize parallel computing power to decrease the time required to perform

these simulations. Two forms of parallelization are presented in this work. The first

is used by OverTURNS and is intended to be used with computing clusters. The

second is the GPU-acceleration utilized by the GPU-RANS solver, which is targeted
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Figure 2.5 – Schematic of the implicit hole cutting technique. Red circles: Hole

points, Blue circles: Receiver (hole fringe) points, Black circles: Re-

ceiver (Chimera boundary) points. (Reproduced from Ref. [52])
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at increasing simulation speeds for a single computer utilizing graphics cards.

2.5.9.1 MPI

The OverTURNS code is capable of running on multiple processors simultane-

ously by using the Message Passing Interface (MPI) library. The simulation is split

using domain decomposition, which splits the computational domain into multiple

similarly sized blocks. The governing equations are then solved independently on

each of the sub-domains and each sub-domain is assigned its own processor, allowing

all of the sub-domains to be solved in parallel. After a timestep has been completed

for all of the sub-domains, data is exchanged between blocks that have a common

interface using MPI. Figure 2.6 shows the domain decomposition of the Sandia 100m

blade computational mesh utilized in the wake capturing results. It should be noted

that the blade mesh is only split in the spanwise direction since splitting in the other

directions can adversely affect solution convergence and accuracy. This degradation

in solution quality arises when there are strong gradients across a domain split,

which occurs in regions like the boundary layer where there are strong gradients in

the wall-normal direction.

2.5.9.2 GPU

GPUs have been developed to produce real-time, high-definition graphics, as

a result they are highly parallel processors with large memory bandwidths. Current

high-end GPUs have thousands of cores that can run concurrently allowing for large
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Figure 2.6 – Spanwise domain decomposition of the C-O topology Sandia blade

mesh, each sub-domain is represented by a different color

numbers of calculations to be handled in parallel. Applying the capabilities of GPUs

to the RANS solver results in a significant speedup of the solver run speed.

The GPU-RANS solver is written using the CUDA programming language [20],

which allows programs to utilize the GPU computing resources. Because of memory

bandwidth considerations, which determines the speed at which can be passed to

and from the GPU, the solver is written to execute almost entirely on the GPU with

minimal data transfers to and from the host system. Within the solver there are

two types of parallelism.

The first type is fine-grain parallelism. Fine-grain parallelism is used for oper-

ations that can be performed independently on all of the cell volumes. Algorithms

that can be parallelized in a fine-grain manner include inviscid fluxes, viscous fluxes,

and some reconstruction schemes. These calculations are completed by spawning a

GPU thread for each cell and running them all in parallel.
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Figure 2.7 – Flowchart for the GPU-RANS solver, the level of parallelism (fine-grain

vs. coarse-grain) is indicated by the number of arrows

Coarse-grain parallelism is the second type of parallelism found in the GPU-

RANS solver. Some operations, such as implicit time stepping, require inverting

a linear system that is composed of multiple cells. Each linear system is assigned

a GPU thread and all of the systems are solver in parallel. Though schemes that

require coarse-grain parallelism suffer from some performance penalty, the advan-

tages associated with the implicit schemes typically offset it. Figure 2.7 shows the

structure of the GPU solver and the level of parallelism (fine-grain vs. coarse-grain)

is indicated by the number of arrows, with more arrows corresponding to fine-grain

parallelism and fewer arrows corresponding to coarse-grain parallelism.
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2.6 Summary

The present chapter focused on the governing equations and numerical method-

ology utilized by OverTURNS and the GPU-RANS solver. The flow field is modeled

using the RANS equations, which are discussed in Section 2.3. Reconstruction of

the flow variables at cell interfaces was accomplished using the MUSCL scheme.

The inviscid fluxes were calculated using Roe’s flux difference splitting scheme. The

viscous fluxes were evaluated using second order central differencing. The Spalart-

Allmaras model, discussed in Sec. 2.5.4, was used for turbulence modeling. The

following modifications to the Spalart-Allmaras turbulence models were used:

1. The γ − Reθ−SA transition model was used to model laminar to turbulent

transition (Sec. 2.5.4.1)

2. An adverse pressure gradient correction was utilized to improve the sensitivity

of the SA model to adverse pressure gradients (Sec. 2.5.4.2)

3. DDES modeling was included to prevent the production of excess modeled

turbulence (Sec. 2.5.4.3)

Turkel’s low Mach preconditioner was utilized to improve the accuracy and con-

vergence rate for simulations of low speed flows. Connectivity between meshes in

the overset mesh system was accomplished using the implicit hole cutting technique

outlined in Section 2.5.8. OverTURNS utilizes MPI, discussed in Section 2.5.9.1,

to split simulations across multiple computers in a computing cluster. The GPU-

RANS solver utilizes GPU acceleration to decrease simulation run time, which is
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discussed in Section 2.5.9.2.
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Chapter 3: Two Dimensional Airfoil Computational Simulations

In this chapter improved turbulence and transition models (discussed pre-

viously in Sec. 2.5.4) were used to simulate several wind turbine airfoils. Two-

dimensional simulations of steady flow past the S809 and S827 wind turbine airfoils,

shown in Fig. 3.1, were performed for a range of angles of attack and for Re = 1×106

and Re = 2×106. Airfoil performance data was then extracted from the simulations

and was compared to experimental results for lift, drag, skin friction coefficient, and

pressure coefficient produced by Somers [8], [17].

(a) S809 Airfoil (b) S827 Airfoil

Figure 3.1 – Geometric profiles of the S809 and S827 airfoils
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(a) View of entire mesh (b) View of near airfoil region

Figure 3.2 – C-mesh utilized for the S809 simulations

3.1 Computational Grids

All two-dimensional simulations utilized structured, body-fitted, C-meshes,

such as the one shown in Fig. 3.2. The outer boundary of the meshes was located

40 chords away from the airfoil surface to avoid spurious wave reflections, discussed

previously in Sec. 2.5.7.4. The mesh has 491 points in the wrap around direction,

with 403 points on the airfoil surface. There are 131 points in the wall-normal

direction and the wall grid spacing is chosen to ensure a y+ value under 1 for all

Reynolds numbers simulated.

3.2 S809 Results

The S809 airfoil is a 21% thick airfoil designed to maintain laminar flow over

large portions of its surface. The NREL Phase VI wind turbine rotor utilizes the
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S809 airfoil exclusively [10]. Experimental performance data was available from

NREL [8]. Two-dimensional flow past an S809 airfoil was simulated at a Mach

number of 0.1 and Reynolds numbers of 1 × 106 and 2 × 106. Multiple angles of

attack between 0◦ and 20◦ were investigated.

(a) Re = 1× 106 (b) Re = 2× 106

Figure 3.3 – Comparison of lift for S809 airfoil between CFD and experimental data

(a) SA-Turbulent (b) SA-Transition

Figure 3.4 – S809 streamlines at Re = 1× 106 and a 6◦ angle of attack

Figure 3.3 shows plots of the predicted lift coefficients compared to experimen-
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(a) SA-Transition (b) SA-Transition-APG

Figure 3.5 – S809 trailing edge streamlines at Re = 1×106 and a 13◦ angle of attack

tal results. At angles of attack above 8◦ the SA-Turbulent model (hereafter referred

to as baseline SA model) significantly over-predicted the angle of attack for stall

onset and the maximum lift. The addition of the APG correction lowered predicted

lift values at angles of attack above 10◦ by about 13%, improving agreement of the

lift predictions with the experimental results. At angles of attack below 12◦ the

addition of the transition model increased predicted lift slightly, about 5% to 10%

compared to the baseline SA model. Figure 3.4 shows streamlines over the S809

airfoil for the baseline SA model and the SA model with transition, which illus-

trates the lack of separated flow at a 6◦ angle of attack. The addition of transition

modeling captured the laminar separation bubbles on the airfoil, which can be seen

in Fig. 3.4b. The lift increase that was observed can be attributed to the laminar

separation bubbles increasing the effective camber of the airfoil. Because increasing

Reynolds number reduces laminar separation bubble size, the lift increase due to

transition modeling is lower for Re = 2× 106 compared to Re = 1× 106. The APG
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correction increased the amount of separation predicted at the trailing edge as the

airfoil approached stall, shown by the streamlines at the trailing edge plotted in

Fig. 3.5 for a 13◦ angle of attack. There was also a small laminar separation bubble

captured on the lower surface, which can be seen in Fig. 3.5, due to the shape of

the airfoil creating an adverse pressure gradient that led to the transition onset.

(a) Re = 1× 106 (b) Re = 2× 106

Figure 3.6 – Comparison of drag for S809 airfoil between CFD and experimental

data

Focusing on the drag polars for Re = 1 × 106 and Re = 2 × 106 plotted in

Fig. 3.6 it can be seen that at low values of Cl the baseline SA model over-predicted

the drag because it was treating the boundary layer as fully turbulent. Adding

the transition modeling allowed the region of laminar flow to be captured, lowering

predicted drag by 30% to 50%, bringing the predicted drag at low Cl into better

agreement with the experimental data. Increasing the Reynolds number reduced

the predicted drag for low Cl, which was expected since the increase in Reynolds

corresponds to a reduction in the viscous effects responsible for skin friction. The

79



(a) Re = 1× 106 (b) Re = 2× 106

Figure 3.7 – Comparison of surface pressure profiles for S809 airfoil between CFD

and experimental data at a 13◦ angle of attack

(a) Re = 1× 106 (b) Re = 2× 106

Figure 3.8 – Skin friction profiles for S809 airfoil at a 13◦ angle of attack

drag polars also show that increasing Reynolds number decreases the Cl at which the

boundary layer transitions to mostly turbulent flow, indicated by the point where

Cd starts increasing.

The flow at an angle of attack of 13◦ was in the incipient stall region, which

provides a useful comparison of different turbulence modeling options. Instanta-
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(a) SA-Transition (b) SA-Transition-APG

Figure 3.9 – S809 leading edge streamlines at Re = 1×106 and a 13◦ angle of attack

neous pressure distributions on the airfoil surface are plotted in Fig. 3.7 at an angle

of attack of 13◦. The improvement in the predicted surface pressure profile was

dominated by the APG correction, which brought the predicted pressures along

the upper surface significantly closer to their experimentally measured values. Skin

friction profiles are plotted at an angle of attack of 13◦ in Fig. 3.8. The overall

skin friction levels are noticeably reduced with the addition of the transition model,

which was expected in regions of laminar flow. In addition, the transition location on

the lower surface can be seen where the skin friction coefficient temporarily switches

sign. This location corresponds to the laminar separation bubble on the lower sur-

face seen in Figs. 3.5a and 3.5b. The oscillations in skin friction near the leading

edge of the are due to a series of bubbles of reversed flow. Figures 3.9a and 3.9b

shows streamlines over the airfoil at the leading edge, the series of reversed flow bub-

bles corresponds to the oscillations in skin friction seen in Fig. 3.8. The transition

location measured by the experiments occurred below a chordwise location of 0.05,
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but for angles of attack above 10◦ no data on the presence of laminar separation

bubbles was available [8].

3.3 S827 Results

The S827 airfoil is a 21% thick airfoil intended for use on stall-regulated hori-

zontal axis wind turbines. The airfoil is designed to maintain laminar flow over large

portions of its surface. Experimental performance data is available from experimen-

tal studies by NREL [17]. Two-dimensional flow past an S827 airfoil is simulated for

multiple angles of attack between 0◦ and 20◦ at a Mach number of 0.1 and Reynolds

numbers of 1× 106 and 2× 106.

(a) Re = 1× 106 (b) Re = 2× 106

Figure 3.10 – Comparison of lift for S827 airfoil between CFD and experimental

data

The predicted lift coefficients are plotted and compared to experimental results

in Fig. 3.10. The baseline SA model significantly over-predicted the angle of attack

for stall onset and the maximum lift. Similar to the S809 airfoil, predicted lift
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(a) SA-Transition (b) SA-Transition-APG

Figure 3.11 – S827 streamlines at Re = 1× 106 and a 13◦ angle of attack

(a) Surface pressure profile (b) Skin friction profile

Figure 3.12 – Skin friction and surface pressure profiles for S827 airfoil at a 6◦ angle

of attack

values at angles of attack above 8◦ were decreased by about 13% by the addition

of the APG correction, which increased the amount of predicted separation, shown

by the trailing edge streamlines at a 13◦ angle of attack in Fig. 3.11. Below an

angle of attack of 7◦ the baseline SA model under-predicted the lift. The addition of

transition modeling was important when simulating the S827 airfoil as it increased
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(a) Surface pressure profile (b) Skin friction profile

Figure 3.13 – Comparison of skin friction and surface pressure profiles for the S809

and S827 airfoils at a 6◦ angle of attack

the predicted lift by 14% to 20%, improving the agreement of lift predictions with

experimental results at angles of attack below 7◦. Figure 3.12 shows the surface

pressure profiles and the skin friction profiles for the S827 airfoil at a 6◦ angle of

attack, illustrating that the increased accuracy of lift predictions below a 7◦ angle

of attack was caused by a reduction in the surface pressure along the upper surface

between the leading edge and the 90% chord location. The surface pressure profiles

for the S827 and S809 airfoils at a 6◦ angle of attack are compared in Fig. 3.13

with and without transition modeling. Figure 3.13 shows that for both the S809

airfoil and S827 airfoil there was a difference in surface pressure predictions on the

upper surface upstream of the transition onset location when the baseline SA model

was compared to the SA model with transition. The primary difference was that

in the case of the S809 airfoil the difference in surface pressure profiles diminished

significantly after the transition onset while the difference in surface pressure profiles
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continued to the 90% chord location for the S827 airfoil.

(a) Re = 1× 106 (b) Re = 2× 106

Figure 3.14 – Comparison of drag for S827 airfoil between CFD and experimental

data

(a) Re = 1× 106 (b) Re = 2× 106

Figure 3.15 – Surface pressure profiles for S827 airfoil at a 13◦ angle of attack

Drag polars are plotted in Fig. 3.14, showing that adding transition modeling

decreased predicted drag by about 50%, significantly increasing the agreement of

drag predictions with experimental results at low angles of attack. The skin friction
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coefficient profile at a 6◦ angle of attack is plotted in Fig. 3.12b, illustrating that

the drag decrease was due to dramatically lower skin friction coefficients in the

laminar region on the upper surface. Even utilizing transition modeling and the

APG correction, it was difficult to accurately capture the first lift bucket that occurs

near an angle of attack of 7◦. The experimental results for the S827 illustrated the

importance of transition in creating the lift bucket, which suggests that improving

the transition model further should improve predictions of the lift bucket.

(a) Re = 1× 106 (b) Re = 2× 106

Figure 3.16 – Skin friction profiles for S827 airfoil at a 13◦ angle of attack

At angles of attack above 8◦ the effects of transition modeling and the APG

correction on surface pressure profiles and skin friction profiles were similar to the

effects seen in the S809 airfoil case. Surface pressure profiles are plotted in Fig. 3.15,

which shows that the APG correction improved the pressure profile at angles of at-

tack above 8◦. The skin friction profile in Fig. 3.16 showed a reduction in overall

skin friction levels for a significant portion of the blade. The presence of a lami-

nar separation bubble on the lower surface can be seen in the skin friction plot in
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(a) SA-Transition (b) SA-Transition-APG

Figure 3.17 – S827 leading edge streamlines at Re = 1 × 106 and a 13◦ angle of

attack

Fig. 3.16, which also shows that increasing the Reynolds number decreased the size

of the laminar separation bubble. The laminar separation bubble observed in the

skin friction plot corresponds to the small separated region that can be seen with

the help of the streamlines in Fig. 3.11a and 3.11b. The oscillations in the skin

friction coefficient near the leading edge were again due to some small separated

regions, illustrated by the streamlines at the leading edge in Fig. 3.17a and 3.17b.

3.4 GPU Acceleration

This section details several modifications that were made to the GPU-RANS

solver originally developed by Thomas [31]. The transition model presented in Chap-

ter 2, Section 2.5.4.1 was implemented in the GPU solver to enable it to produce

the same results as OverTURNS for the two-dimensional airfoils. The implementa-

tion of the flux routines and reconstruction routines was modified to handle caching

87



data on the GPU more efficiently, resulting in a 10% to 15% speedup of the solver.

The runtime of the GPU-RANS solver and OverTURNS were compared for the

two-dimensional airfoils. It was found that the GPU-RANS solver was a 5 times

faster than OverTURNS, completing the two-dimensional simulations in 19% of

the time required by OverTURNS. In addition, extending the GPU code to full

three-dimensional wind turbine rotor simulations was explored. Terms required to

simulate arbitrary motion of the grid were added, which allows for the rotation

required to perform the rotor simulations. Instead of overset meshes, the hybrid

FVM-RANS methodology was implemented to model the wind turbine wake, the

details of this implementation are presented in Appendix A.

3.5 Summary

In this chapter the S809 and S827 wind turbine airfoils were simulated to

evaluate the advantages of transition modeling and the APG correction when applied

to wind turbine airfoil simulations. The baseline SA model over-predicted drag at

low angles of attack and at high angles of attack it over-predicted the stall onset

angle and maximum lift. Applying the transition model brought drag predictions

at lower angles of attack into line with the experimental data. Including the APG

correction decreased the maximum predicted lift and the predicted stall angle of

attack, bringing the simulation predictions closer to the experimentally determined

values. The next chapter presents the results from three dimensional simulations of

the Sandia 100 m blade.
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Chapter 4: Sandia 100 m Blade Computational Simulations

In this chapter, simulation results from the Sandia 100 m wind turbine blade

are presented. The effects of adding transition modeling and DDES were investi-

gated at several wind speeds. Results obtained using both transition modeling and

DDES were compared to results from Corson et al. [53] for the full range of wind

speeds between 6.0 ms-1 and 17.0 ms-1.

4.1 Computational Grids

These simulations utilized an overset mesh system consisting of a C-O topology

blade mesh and a cylindrical wake mesh, as shown in Fig. 4.1. The implicit hole

cutting method described in Chapter 2 (Section 2.5.8) was used to pass information

between the different overset meshes. The computational expense was significantly

reduced by taking advantage of the rotational periodicity of the 3-bladed rotor and

modeling only one blade and the corresponding third (120◦) of the wake cylinder

and using periodic boundary conditions.

The background mesh extended from 0.03 rotor radii (R) to 3.5R in the radial

direction and from 3.0R above the rotor to 8.0R below the rotor in the axial direc-

tion. The background mesh dimensions were 184×104×160 in the azimuthal, radial,
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(a) Cylindrical wake mesh (b) Side view

(c) Top view (d) C-O blade mesh

Figure 4.1 – Sandia 100 m blade overset mesh system with the blade mesh in green

and background mesh in red

and axial directions, respectively. Points in the background mesh were clustered to

provide a high mesh resolution (with a radial spacing of 0.05 root chord lengths)

in the radial regions where the tip and root vortices convect. In the axial region

near the blade, points were clustered to provide an axial spacing of 0.1 root chord
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(a) Baseline blade (b) Blade with leading edge tubercles

Figure 4.2 – Comparison of outer 10% of the blade surface with and without leading

edge tubercles

lengths between 0.1R and 0.5R above and below the blade, respectively. The mesh

utilized for the simulations with leading edge tubercles has the same dimensions as

the baseline blade mesh, the only difference is a modification of the blade surface to

add tubercles to the outer 10% of the blade. The resulting mesh at the surface of

the blade tip is shown in Fig. 4.2 with the baseline blade for comparison.

The blade mesh is a structured, body-fitted C-O mesh. The dimensions are

171×101×75 in the wrap-around, spanwise, and wall-normal direction, respectively.

There are 100 points along the airfoil surface in the wrap-around direction. The wake

cut extends approximately 1 root chord lengths downstream. The outer boundary

in the wall-normal direction is about 1 root chord lengths from the surface. The

wall-normal spacing at the blade surface is chosen to ensure a y+ value under 1.0.
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4.2 Wake Capturing Results

The simulations were performed for a range of wind speeds between 6.0 ms-1

and 17.0 ms-1. The wind speeds simulated as well as the associated rotor RPM and

blade pitch are given in Table 4.1. The associated tip Mach numbers range from

0.1361 to 0.2332 and the tip Reynolds numbers range from 3.093×106 to 5.301×106.

Wind Speed (ms-1) Rotor Speed (RPM) Collective Pitch (degrees)

6.0 5.650 0.0

7.0 6.590 0.0

8.0 6.933 0.0

9.0 7.036 0.0

10.0 7.157 0.0

11.0 7.291 0.0

11.3 7.401 0.0

12.0 7.438 3.231

13.0 7.438 6.166

15.0 7.438 10.12

17.0 7.438 13.26

Table 4.1 – Operating points used for simulations

All cases were executed until the thrust and power varied less than 0.2% during

a revolution. The number of revolutions required for convergence changed depend-

ing on the wind speed, ranging from 20 revolutions for low wind speed cases to 8

revolutions for the high wind speed cases. The additional revolutions for low wind

speed cases were required to allow the transients in the wake to convect downstream

and become fully developed.
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4.2.1 Wind Turbine Performance Comparison

The rigid blade results produced by Corson et al. [53] are used as a reference

for the predicted wind turbine performance. Corson et al. utilized AcuSolve, which

is a flow solver based on the Galerkin/Least-Squares finite element method. The

flow was assumed to be incompressible due to the low Mach numbers involved. The

SA model was used for turbulence modeling and the rigid blade simulations did not

utilize transition modeling or DDES.

OverTURNS was run with and without transition modeling and DDES to

determine their effect on the predicted performance values for three cases spanning

the range of wind speeds. The predicted thrust and power, shown in Table 4.2,

show that including transition modeling and DDES increased the predicted thrust

by 2% to 4% and increased the predicted power by 4% to 7%. The spanwise airloads

both in-plane and out-of-plane are shown in Fig. 4.3 along with airloads calculated

by Corson et al. [53] using AcuSolve, as a reference. The addition of transition

modeling and DDES increased both in-plane and out-of-plane loadings, but the

effect was more pronounced for the in-plane load distribution, as shown in Fig. 4.3.

The other wind speeds investigated showed a similar pattern. The predicted in-plane

load distribution was not as smooth as the values given by Corson et al., shown in

Fig. 4.3, this was due in part to the coarseness of the mesh on the inner two-thirds

of the blade.

The effect of leading edge tubercles on the performance was investigated. Only

three of the cases were used for this comparison in order to investigate the effect
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Wind Speed (ms-1) Turbulence Modeling Thrust (kN) Power (MW)

6.0 SA 609.7 2.063

6.0 SA-Transition-DDES 623.8 (+2.29%) 2.220 (+7.33%)

11.3 SA 1738 13.44

11.3 SA-Transition-DDES 1777 (+2.18%) 13.93 (+3.58%)

15.0 SA 969.5 12.13

15.0 SA-Transition-DDES 1004 (+3.51%) 12.83 (+5.61%)

Table 4.2 – Comparison of OverTURNS predicted performance with different turbu-

lence modeling options

(a) In-plane loadings (b) Out-of-plane loadings

Figure 4.3 – Comparison of in-plane and out-of-plane sectional airloads at an

11.3 ms-1 wind speed for OverTURNS and AcuSolve results

of tubercles for a representative set of wind speeds without requiring a full sweep

of wind speed. Both transition modeling and DDES were enabled for these cases.

Table 4.3 shows that the tubercles had a minimal effect on the performance values,

decreasing thrust and power by less than 1% in all three cases. The spanwise airload

distributions, shown for an 11.3 ms-1 wind speed in Fig. 4.4, reflect this effect, with
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(a) In-plane loadings (b) Out-of-plane loadings

Figure 4.4 – Comparison of in-plane and out-of-plane sectional airloads at an

11.3 ms-1 wind speed for OverTURNS for the baseline blade and the

blade with leading edge tubercles

very little difference except in the immediate vicinity of the tubercles, a pattern that

was also seen in the other wind speeds investigated. A comparison of the spanwise

loadings for the outer 15% of the blade is shown in Fig. 4.5. The addition of tubercles

primarily affected the in-plane airload distribution by introducing large oscillations

in the sectional airloads near the tip. The oscillations were due to pressure differences

along the leading edge on the upwind side, with the surface pressure significantly

higher at tubercle crests compared to pressures in the tubercle troughs.

The performance predictions of OverTURNS and AcuSolve are shown in Fig. 4.6.

Both OverTURNS and Acusolve showed the proper trend of increasing power in the

speed controlled region (3.0 ms-1 to 11.3 ms-1). In the pitch controlled region (above

11.3 ms-1) there was a slight drop in power, this occurs because the blade pitches
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(a) In-plane loadings (b) Out-of-plane loadings

Figure 4.5 – Comparison of in-plane and out-of-plane sectional airloads at an

11.3 ms-1 wind speed on the outer 15% of the blade for OverTURNS

for the baseline blade and the blade with leading edge tubercles

Wind Speed (ms-1) Blade Thrust (kN) Power (MW)

6.0 Baseline 623.8 2.220

6.0 Tubercles 623.6 (−0.03%) 2.204 (−0.73%)

11.3 Baseline 1777 13.93

11.3 Tubercles 1776 (−0.06%) 13.88 (−0.37%)

15.0 Baseline 1004 12.83

15.0 Tubercles 1001 (−0.30%) 12.76 (−0.54%)

Table 4.3 – Comparison of blade with and without leading edge tubercles using Over-

TURNS with transition modeling and DDES

were calculated by FAST to generate constant power in that region, shown by the

constant power that FAST maintains. The drop can be attributed to the CFD

solvers capturing losses that were not captured by the simplified aerodynamic model

in FAST. To maintain constant power in the pitch controlled region the collective
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(a) Rotor power (b) Rotor thrust

Figure 4.6 – Performance comparison of OverTURNS, AcuSolve, WT perf, and

FAST results

was lowered as wind speed increased to maintain constant power, this lowered the

angle of attack of the blade and led to lower thrust levels in the pitch controlled

region. OverTURNS consistently predicted thrust values 4% to 5% lower than the

AcuSolve results. The predicted power was generally within 3% of the AcuSolve

results, except at 6.0 ms-1 and 7.0 ms-1 where the predicted power was 5% higher

than the AcuSolve results. A transition model was not used in the AcuSolve simu-

lations, as such the consistently lower predicted thrust values can be attributed at

least partly to the inclusion of transition modeling in OverTURNS.
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4.2.2 Flow Field

This section will take a more detailed look at the flow fields generated by

OverTURNS. First, the effects of improved turbulence modeling on the wake ge-

ometry are detailed. Second, the consequences of adding leading edge tubercles are

investigated.

4.2.2.1 Turbulence Modeling Comparison

The effects on the flow field due to the addition of transition modeling and

DDES are investigated in this section. The comparisons focus on a single case, the

6.0 ms-1 wind speed case, because the effects were essentially the same for the other

two wind speeds where the comparisons were made, 11.3 ms-1 and 15.0 ms-1.

Simulated oil flows and intermittency plots were used to evaluate the effect

of adding the transition model. The simulated oil flows were generated by plotting

streamlines on a surface that was two computational cells away from the wall. Fig-

ure 4.7 shows the simulated oil flow at a wind speed of 6.0 ms-1, showing that there

was a significant region of separated flow on the upwind surface of the blade. The

addition of the transition model did not significantly affect the extent of separated

flow near the root on the upwind side. Based on the two dimensional airfoil simu-

lations in Section 3.2 of Chapter 3, this outcome was expected since the transition

model did not significantly affect the predicted stall angle. The intermittency plot

shown in Fig. 4.8 shows that there were significant amounts of laminar flow near

the root and in the outer 10% of the blade radius.
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(a) SA

(b) SA-Transition-DDES

Figure 4.7 – Simulated oil flow on the blade surface at 6.0 ms-1 wind speed

Figure 4.8 – Intermittency on the blade surface at 6.0 ms-1 wind speed

Focusing on the tip region, it be can seen in Fig. 4.9 that including the transi-

tion model allowed the laminar separation bubble near the tip to be captured. The
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(a) SA

(b) SA-Transition-DDES

Figure 4.9 – Simulated oil flow at the blade tip at 6.0 ms-1 wind speed, highlighting

the laminar separation bubble (LSB)

Figure 4.10 – Intermittency at the blade tip at 6.0 ms-1 wind speed

location of the laminar separation bubble is reflected in the intermittency plot in

Fig. 4.10 where the laminar to turbulent transition occurs at the same location. The

laminar separation bubble did not extend along the entire transition region.

The addition of DDES primarily affected the tip and root vortex. Comparing

the eddy viscosity contours at the blade tip shown in Fig. 4.11, it is observed that

the addition of DDES significantly lowered eddy viscosity levels in the resulting tip

vortex. On the other hand, vorticity levels at both the root and tip were similar
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(a) SA (b) SA-Transition-DDES

Figure 4.11 – Blade tip eddy viscosity contours at 6.0 ms-1 wind speed

(a) SA (b) SA-Transition-DDES

Figure 4.12 – Blade tip vorticity contours at 6.0 ms-1 wind speed

whether or not DDES was enabled. Figure 4.12 shows contours of vorticity magni-

tude at the blade tip. Enabling DDES primarily affected the dissipation of the tip

vortex, allowing it to convect with less dissipation by lowering modeled turbulence
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(a) SA (b) SA-Transition-DDES

Figure 4.13 – Blade root eddy viscosity contours at 6.0 ms-1 wind speed

(a) SA (b) SA-Transition-DDES

Figure 4.14 – Blade root vorticity contours at 6.0 ms-1 wind speed

levels. Figure 4.13 shows the eddy viscosity levels at the root of the blade and il-

lustrates that enabling DDES drastically lowered eddy viscosity levels in the root

vortex. The reduction in eddy viscosity increased the vorticity in the root vortex,
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which is shown by the vorticity magnitude contours in Fig. 4.14.

Figure 4.15 – Wake structure at a wind speed of 6.0 ms-1, shown by a vorticity

magnitude iso-surface colored by non-dimensional pressure

(a) SA (b) SA-Transition-DDES

Figure 4.16 – Eddy viscosity contours 35.8◦ behind blade at 6.0 ms-1 wind speed
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(a) SA (b) SA-Transition-DDES

Figure 4.17 – Vorticity contours 35.8◦ behind blade at 6.0 ms-1 wind speed

The helical wake structure generated using the SA model with transition mod-

eling and DDES is shown in Fig. 4.15. To compare wakes generated with the baseline

SA model and with the SA model using the transition model and DDES, eddy vis-

cosity contours are shown in Fig. 4.16 for a slice of the flow field 35.8◦ behind the

blade. As expected the addition of DDES modeling decreased the eddy viscosity

in the wake of the blade. While higher eddy viscosity levels were still maintained

in the region directly downstream of the separated flow, Fig. 4.16 shows that the

tip vortex and root vortex experienced reduced levels of eddy viscosity, particularly

near their core regions. Figure 4.17 shows vorticity magnitude contours for a slice of

the flow field 35.8◦ behind the blade, illustrating that both the root and tip vortices

experience less dissipation due to modeled turbulence.
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4.2.2.2 Tubercle Effects

The performance values predicted for the blade with leading edge tubercles

only differed slightly from the baseline blade, so it was expected that the flow fields

will not be drastically different. Once again, the analysis is focused on the 6.0 ms-1

case because the 11.3 ms-1 and 15.0 ms-1 cases show the same effects.

Figure 4.18 – Simulated oil flow on the tubercle blade surface at 6.0 ms-1 wind speed

Figure 4.19 – Intermittency on the tubercle blade surface at 6.0 ms-1 wind speed

As expected, comparing the simulated oil flow on the blade with tubercles in

Fig. 4.18 to the baseline blade in Fig. 4.7 shows that tubercles did not significantly

affect the flow inboard along the blade. Similarly the transition location, shown by
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the intermittency plot in Fig. 4.19, was only affected in the vicinity of the tubercles.

Figure 4.20 – Simulated oil flow at the tubercle blade tip at 6.0 ms-1 wind speed

Figure 4.21 – Intermittency at the tubercle blade tip at 6.0 ms-1 wind speed

Figure 4.20 focuses on the simulated oil flow at the blade tip, showing that the

location of the laminar separation bubble with respect to the local chord changed

with the same wavelength as the tubercles. The change in the laminar separation

bubble location was reflected in the intermittency plots in Fig. 4.21. These results

were even more clear for the 11.3 ms-1 wind speed case. On the upwind surface, the

changes in the location of the laminar separation bubble can be seen more clearly in

Fig. 4.22, which shows the simulated oil flow as well as velocity magnitude contours.

The laminar separation bubbles were larger behind the tubercle troughs, possibly

due to higher pressure gradients in those locations.

On the downwind surface the transition location varied in sync with the varia-

tion in leading edge location. This can be seen in the intermittency plot in Fig. 4.23
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Figure 4.22 – Simulated oil flow and velocity magnitude at the tubercle blade tip at

11.3 ms-1 wind speed

Figure 4.23 – Intermittency at the tubercle blade tip at 11.3 ms-1 wind speed

Figure 4.24 – Comparison of Mach number at tubercle crest and trough at 11.3 ms-1

wind speed

and also in the velocity magnitude contours in Fig. 4.22, where the sharp increase

in near wall velocity occured due to the start of the turbulent boundary layer. Fig-

ure 4.24 compares Mach number contours for two slices, one at a tubercle crest and

one at a tubercle trough. The tubercles funnelled the flow, leading to significantly
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higher velocities in the tubercle troughs, shown in Fig. 4.24. The higher velocities

led to lower surface pressures in the tubercle troughs and areas of incipient separa-

tion at the trailing edge, which can be seen as small pockets of low surface velocity.

(a) Baseline (b) Tubercle

Figure 4.25 – Blade tip eddy viscosity contours at 6.0 ms-1 wind speed

Looking at the tip vortex formation, it can be seen in Fig. 4.25 that eddy

viscosity levels are slightly increased by the presence of tubercles. Similarly, Fig. 4.26

shows that vorticity levels are also slightly higher when the blade includes leading

edge tubercles. However, when comparing the both the eddy viscosity and the

vorticity in the wake, shown in Figs. 4.27 and 4.28 respectively, it is apparent that

the small differences near the tip did not cause significant changes to the wake

structure.
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(a) Baseline (b) Tubercle

Figure 4.26 – Blade tip vorticity contours at 6.0 ms-1 wind speed

(a) Baseline (b) Tubercle

Figure 4.27 – Eddy viscosity contours 35.8◦ behind blade at 6.0 ms-1 wind speed
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(a) Baseline (b) Tubercle

Figure 4.28 – Vorticity contours 35.8◦ behind blade at 6.0 ms-1 wind speed

4.3 Summary

In this chapter the Sandia 100 m blade was simulated to evaluate the effect of

transition modeling and DDES modeling on the predicted performance values. The

addition of transition and DDES modeling increased both the predicted torque and

predicted power. The predicted performance matched well with the performance

predicted by Corson et al. using AcuSolve [53]. The addition of DDES modeling

lowered the amount of dissipation experienced by tip vortices, improving predictions

of vortex strength in the wake. The effect of adding tubercles was investigated at

several wind speeds. It was observed that tubercles have a very slight performance

penalty at normal operating conditions. The performance penalty was small because

tubercles primarily affect flow in the post-stall region, but pitch-controlled turbines

are designed to operate below the stall angle of attack.
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Chapter 5: Conclusions

5.1 Summary

The drive to reduce wind energy generation costs has led to a constant drive

for increased wind turbine sizes. The large scale of modern wind turbines make full

scale experimental tests challenging using current facilities, which has significantly

increased the importance of computational simulations. In the past simplified aero-

dynamic models have been widely used in conjunction with structural models as

a relatively quick way to evaluate wind turbine performance. However, the higher

aerodynamic loads on the blade and its increased flexibility has led to wind turbine

operating conditions outside the range where these simplified aeroelastic models are

valid. An alternative is the use of three-dimensional CFD simulations to accurately

evaluate wind turbine performance for realistic operating conditions.

The present work evaluates the use of CFD simulations for both two-dimensional

wind turbine airfoil simulations and three-dimensional wind turbine rotor simula-

tions. Specifically, the effects of including transition modeling and other improve-

ments to turbulence modeling were investigated for both two-dimensional and three-

dimensional simulations. The S809 and S827 wind turbine airfoils were simulated

and validated against experimental results produced by NREL. The Sandia 100 m
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blade was simulated and the performance and flow predictions were compared to

previous experimental and numerical works. A preliminary evaluation of the effects

of leading edge tubercles on the Sandia 100 m blade was performed for its nominal

operating conditions.

5.2 Observations

This section summarizes the key observations and conclusions from this work.

5.2.1 Two-Dimensional Airfoil Simulations

1. The baseline Spalart-Allmaras model over-predicted lift at high angles of at-

tack and over-predicted drag at low angles of attack.

2. Including transition modeling significantly improved the drag predictions for

the two-dimensional airfoils. Large regions of laminar flow were seen on both

the S809 and S827 airfoils at low angles of attack. Capturing the laminar

regions with transition modeling lowered the predicted drag by 30% to 50%

compared to the baseline SA model.

3. The transition modeling also improved lift predictions at low angles of attack

by capturing laminar separation bubbles on both the upper and lower surfaces

of both airfoils. The result was a 5% to 10% increase in predicted lift compared

to the baseline SA model for angles of attack where the laminar separation

bubbles were present.
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4. The APG correction improved performance predictions in the post stall region

by reducing the predicted angle of attack for stall. The angle of attack where

stall was predicted for the S809 airfoil was reduced by 2◦ compared to the

baseline SA model, resulting in a 13% reduction in the maximum predicted

lift.

5. The S827 lift predictions were lowered by the inclusion of the APG correction

for angles of attack above 6◦, but the drop in lift at 6◦ was still not captured.

5.2.2 Three-Dimensional Rotor Simulations

1. Transition modeling noticeably changed the wind turbine performance predic-

tions for the Sandia 100 m blade. The predictions of both power and thrust

were increased by the inclusion of transition modeling, particularly at low wind

speeds.

2. The transition model captured significant regions of laminar flow, particularly

on the upwind surface. Capturing the laminar flow on the downwind surface

led to lower surface pressures on the downwind surface, accounting for some

of the difference in predicted performance.

3. Significant amounts of separated flow were predicted for the inboard third of

the Sandia 100 m blade. The extent of separated flow was not significantly

affected by the transition model.

4. Tubercles were found to have a minimal impact on wind turbine performance
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at normal operating conditions, reducing predicted power and thrust by less

than 1% compared to the baseline blade.

5. Adding tubercles significantly changed the spanwise distribution of in-plane

sectional airloads in the region of the tubercles. Peaks in the sectional airloads

occurred behind the tubercle troughs where there were isolated regions of low

surface pressure. Higher surface pressures behind the tubercle crests led to

lower sectional airloads at the crests. The low surface pressures in the tubercle

troughs occurred because the flow going through the tubercle troughs was

accelerated due to the tubercle geometry.

5.3 Key Contributions

The key contributions of this work are the following:

1. The GPU-RANS solver turbulence model was extended to include the γ −

Reθ − SA transition model.

2. Improvements in data caching on the GPU were implemented in the GPU-

RANS solver. A 10% to 15% speedup was achieved by utilizing shared memory

to cache data in the flux routines and the reconstruction routines.

3. The GPU-RANS solver was modified to include terms that allow arbitrary

grid motion to be simulated. The grid motion terms can be used for modeling

the rotation of wind turbine rotors.

4. The turbulence modeling modifications were validated for use with wind tur-
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bine airfoils using the S809 experimental data. The need to further refine

thetransition modeling and APG correction were highlighted by the inability

to fully capture the performance characteristics of the S827 airfoil.

5. The importance of transition modeling for capturing large blade aerodynamic

performance was demonstrated.

6. Leading edge tubercles were evaluated for a large pitch-controlled blade. It was

shown that tubercles have minimal effect on turbine performance at nominal

operating conditions.

5.4 Future Work

There are several directions in which this work could be extended:

1. The current transition model depends on empirical correlations and has only

been rigorously validated for two dimensional flow and three dimensional flow

without significant crossflow. Additional work investigating the transition

modeling for crossflow and features like tubercles is needed for studying wind

turbine performance in off design conditions.

2. The APG correction utilizes empirical correlations that have only been vali-

dated for two dimensional flows. The APG correction needs to be validated

for three dimensional flows before it is can be applied with confidence to wind

turbine simulations.

3. It was shown that leading edge tubercles do not significantly affect normal
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operating performance. Since there are no significant performance penalties,

the next step is to evaluate if leading edge tubercles provide any advantages

to off design performance or blade structural dynamics. Conditions involving

yawed flow and wind gusts are of particular interest.

4. It was observed that low speed simulations converged slowly, requiring two to

three times as many timesteps for convergence. Improving the low Mach pre-

conditioning should improve the convergence rate, decreasing the turnaround

time for generating results for low wind speeds.

5. In this work, a rigid blade was assumed. In actuality, significant blade deflec-

tions are typically found on large blades. Coupling the aerodynamics predic-

tions with a method to model the blade deflections and structural dynamics

would improve predictions of wind turbine performance and provide important

information about the aeroelastic behavior of the blade.
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Chapter A: Appendix A: Hybrid FVM-RANS

RANS simulations typically require large numbers of mesh points, in part

because it is necessary to extend the domain to prevent the creation of unrealistic

numerical boundaries, as discussed in Section 2.5.7.4. It is possible to reduce the

required size of the RANS domain by utilizing RANS only in regions where viscous

and turbulent phenomena need to be accurately resolved. The reduced sized RANS

domain can then be connected to a lower fidelity model that can be used for the

rest of the flow domain. In the past, Sitaraman et al. [54] simulated flow through a

helicopter rotor using a RANS model to simulate the near blade region and coupling

it to a free-vortex method (FVM) that simulated the wake structure.

A.1 Free-Vortex Method (FVM)

The free vortex method utilized in this work discretizes the wake geometry into

vortex filaments. The filament strength is calculated based on the bound circulation

of the rotor blade. The bound circulation is determined based on the spanwise

distribution of aerodynamic loading along the blade. The Biot–Savart law is used

to calculate the mutual influence between vortex filaments. Filament convection

velocity is calculated by combining the influences of all the other vortex filaments
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with the free-stream velocity. The initial free wake structure is computed based on

the aerodynamic loads calculated in the wake capturing simulations.

A.2 Wake Coupling

To couple the free wake structure to the RANS solver the far-field boundary

condition in the RANS solver is modified. The far-field boundary is based on the

combination of the free-stream velocity and the combined effects of the free wake

structure. The vortex filament positions and strengths are input from the free wake

structure. Then the field velocities are computed using the Biot–Savart law. The

pressure is determined based on the velocity field using Bernoulli’s equation. Density

is calculated using the pressure field and isentropic relations. The Riemann invariant

discussed in Section 2.5.7.4 is constructed using these calculated primitive variables

instead of the free-stream values.
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