
 

 

ABSTRACT 

  

 

Title of Dissertation: DATA-DRIVEN RISK MODELING FOR 

INFRASTRUCTURE PROJECTS USING 

ARTIFICIAL INTELLIGENCE 

TECHNIQUES 

  

 Abdolmajid Erfani, Doctor of Philosophy, 2023 

  

Dissertation directed by: Professor Qingbin Cui, Civil & Environmental 

Engineering  

 

 

Managing project risk is a key part of the successful implementation of any large 

project and is widely recognized as a best practice for public agencies to deliver 

infrastructures. The conventional method of identifying and evaluating project risks 

involves getting input from subject matter experts at risk workshops in the early phases 

of a project. As a project moves through its life cycle, these identified risks and their 

assessments evolve. Some risks are realized to become issues, some are mitigated, and 

some are retired as no longer important. Despite the value provided by conventional 

expert-based approaches, several challenges remain due to the time-consuming and 

expensive processes involved. Moreover, limited is known about how risks evolve from 

ex-ante to ex-post over time. How well does the project team identify and evaluate risks 

in the initial phase compared to what happens during project execution? Using 



historical data and artificial intelligence techniques, this study addressed these 

limitations by introducing a data-driven framework to identify risks automatically and 

to examine the quality of early risk registers and risk assessments. Risk registers from 

more than 70 U.S. major transportation projects form the input dataset.  

Firstly, the study reports a high degree of similarity between risk registers for different 

projects in the entire document of the risk register, and the probability and consequence 

of each risk item, suggesting that it is feasible to develop a common risk register. 

Secondly, the developed data-driven model for identifying common risks has a recall 

of over 66% and an F1 score of 0.59 for new projects, i.e., knowledge and experience 

of similar previous projects can help identify more than 66% of risks at the start. 

Thirdly, approximately 65% of ex-ante identified risks actually occur in projects and 

are mitigated, while more than 35% do not occur and are retired. The categorization of 

risk management styles illustrates that identifying risks early on is important, but it is 

not sufficient to achieve successful project delivery. During project execution, a project 

team demonstrating positive doer behavior (by actively monitoring and identifying 

risks) performed better. Finally, this study proposes using a data-driven approach to 

unify and summarize existing risk documents to create a comprehensive risk 

breakdown structure (RBS). Study results suggest that acquired knowledge from 

previous projects helps project teams and public agencies identify risks more 

effectively than starting from scratch using solely expert judgments. 
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CHAPTER 1: INTRODUCTION  

1.1 Risk Management in Infrastructure Projects  

United States' economy and citizens' quality of life are reliant on the surface 

transportation network. According to American Society of Civil Engineers’ (ASCE) 

2021 report, the national grade for infrastructures in the country is C-. In its assessment 

of the infrastructure over recent decades, the ASCE emphasizes the need for 

government investment in major transportation projects (ASCE 2021). Federal 

Highway Administration (FHWA) defines major projects as projects requiring more 

than $500 million in federal funding (FHWA 2021). Despite their keen interest in 

participating in major public transportation projects or updating aging infrastructures, 

government agencies are generally not able to finish them on time under uncertain 

conditions or keep their expenses within budgets. Specifically, multiple stakeholders, 

a broader geographical area, and long-term projects have made infrastructure projects 

increasingly complex (Afzal et al. 2021; Creedy et al. 2010; El-Sayegh and Mansour 

2015). Some of the failed major U.S. public projects include California's high-speed 

rail, Maryland's Purple Line, South Carolina's I-73, and Texas's SH-288 (Linton 2018; 

Slowey 2019; Tuohy 2020). 

Risk management is considered a best practice for public agencies for ensuring 

successful project delivery by simultaneously considering time, cost, quality, safety, 

and environmental sustainability (Abdelgawad and Fayek 2010; Cui and Erfani 2021; 

Erfani and Tavakolan 2020). Risk detection is crucial to the risk management process 

because it forms the basis of risk assessment, response, and allocation (Jung and Han 

2017). It is common practice in risk management to rely heavily on Subject Matter 
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Experts (SMEs) for input during the identification and evaluation phases (Siraj and 

Fayek 2019). In major transportation projects, risk workshops are routinely conducted 

to develop risk registers that document all risks identified (Leva et al. 2017). 

Based on the FHWA risk management guideline, risk management processes in 

highway projects include five main stages: identification, assessment, planning, 

allocation, and monitoring (Molenaar 2006). Risk identification is the mechanism of 

determining which risk items may affect the project. Brainstorming, checklist analysis, 

literature and documentation review, workshops, Delphi technique, questionnaire 

survey, root cause analysis, and cause and effect diagrams are expert judgment-based 

tools to detect risks in highway construction projects (Taroun, 2014). Risk assessment 

centers on measuring the importance of each risk. Identified risks are compared in 

different scales of probability, cost, and schedule impact to find those risks that need 

more attention (Islam et al. 2019; Heravi et al. 2021). Risk assessment is conducted in 

both quantitative and qualitative approaches. Qualitative analysis involves assessing 

the probability and impact using risk matrix and categorical scales such as High, 

Medium, and Low (Siraj and Fayek 2019; Molenaar 2006). The quantitative analysis 

for probability and impact is conducted using numerical scales. Then risk allocation 

aims to determine which project party is most appropriate to bear any risk. The contract 

is used as the procedure to allocate the risks and consider the ex-post remedies for the 

risks if they occur (Nguyen et al. 2018; Wang et al. 2022). Finally, monitoring and 

controlling risks are repeated during the project implementation to update all the 

available information. 
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Many scholars have studied the risk management process in infrastructure projects, 

mostly focusing on the ex ante perspective and solely rely on expert judgment (Hastak 

and Shaked 2000; Iqbal et al. 2015). All these steps are completed before the project 

has started or when the project has not progressed significantly. While these studies 

focus on ex ante risks, few have focused on retrospective analysis of risks remaining 

after the project is completed, that is, ex post (Figure 1). 

 

Figure 1. Processes of ex ante and ex post risk management 

1.2 Problem Statement and Research Need  

While the expert judgement-based approach dominates construction, the application 

process and its costs are typically lengthy and expensive (Gondia et al. 2020; Sanni-

Anibire et al. 2020; Somi et al. 2021). Also, there are cognitive and subjective judgment 

biases associated with developed risk registries for public agencies with limited 

experience with major transportation projects (Duijm et al. 2015; Montibeller et al. 

2015). Additionally, an expert group with different backgrounds and knowledge may 

have different perspectives on risk assessment, which makes achieving a decision more 

difficult (Erfani et al. 2021a; Mohammadi et al. 2022; Monzer et al. 2019). These 

challenges must therefore be addressed in current risk management practices. 



4 
 

As well, most of the literature focuses on ex-ante risk identification and assessment 

performed at the beginning of the project, but there are gaps in measuring the 

performance of risk identification and its impact on project delivery. When compared 

with project execution, how well does the project team identify and evaluate risks in 

the initial phase? At the end of the project, what proportion of the risks identified ex 

ante have been realized, and what portion has been dismissed? Risk registers can be 

more effective if we develop a better understanding of this dynamic. 

1.3 Research Objectives  

As a result of discussed problems, this study proposes evaluating the uniqueness of risk 

registers through a data-driven approach. Next, it develops a predictive risk detection 

model based on historical data extracted from previous projects with similar features 

to create initial risk templates, based on risk similarity among risk registers. 

Furthermore, using automata theory, the study proposes a framework for measuring 

risk management performance. The risk life cycle in construction projects follows a 

state-transition logic that can be formalized mathematically as a finite state automaton. 

The automaton defines risk status states and transitions among those states as a project 

progresses. The study introduces new terms for risk management styles based on the 

project team performance during the initial and project execution stages. Finally, this 

study introduces a comprehensive data-driven risk breakdown structure with 

demonstrating the importance of evaluating the relationship between risks on a network 

basis. Figure 2 shows the dissertation framework.  
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Figure 2. Dissertation research objectives 

In summary, this study aims to accomplish the following objectives: 

1. Evaluating the uniqueness of risk registers in infrastructure projects by calculating 

similarity indexes to answer the question “RQ1: Are project risks really unique?” 

2. Developing a predictive data-driven risk detection model through the 

implementation of historical data extracted from previous projects with similar features 

to create initial risk templates to answer the question “RQ2: Can historical data be used 

to predict project risks?” 

3. Developing a framework to evaluate project risk performance by comparing risk 

register documents before, during, and after project execution to answer the question 

“RQ3: How well does current risk management perform?” 

4. Categorizing project team risk management style and behaviour to answer the 

question “RQ4: Does risk management style affect project delivery performance?” 
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5. Developing a unified risk breakdown structure to answer the question “RQ5: Can 

historical risk report can be used to develop a unified risk breakdown structure as a 

preliminary risk identification framework?” 

1.4 Natural Language Processing and Deep Learning  

Artificial Intelligence (AI) techniques, in particular, Natural Language Processing 

(NLP) models, formed the foundation for this study. Most risk registers include a huge 

amount of text and a multitude of risk items, and the project team describes the risks in 

its own words. Hence, manual comparison requires extensive time and resources, 

which can be efficiently accomplished by applying advancements from NLP 

techniques. 

NLP techniques first transfer human language to the structured text and then to numeral 

data for further analysis and modeling. Recent studies on NLP techniques significantly 

improved efficiency by using new algorithms that focus on semantic meaning and 

context (Di Giuda et al. 2020; Erfani and Cui 2021; Erfani et al. 2023a). Similarly, 

modern Machine Learning (ML) and Deep Learning (DL) algorithms effectively 

provide efficient methods to convert unstructured text data to machine-readable 

formats for analyses (Lauriola et al. 2022). With the emergence of word embedding 

models (neural networks) that convert higher dimension mathematical spaces into 

shallow word embodied vectors, tremendous opportunities have opened up (Zhang 

2019; Zhong et al. 2020). While capturing the semantic meaning behind words, models 

show each specific word in the corpus. Major artificial intelligence companies such as 

Google and Facebook established large pre-trained word embedding vectors. Google’s 

research team introduced Word2Vec as the first pre-trained vector model (Mikolov et 
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al. 2013). Facebook then released a pre-trained model, FastText (Bojanowski et al. 

2017), and the Stanford NLP group presented the GloVe model (Pennington et al. 

2014). Word embedding models are an application of DL, converting text into a vector 

by considering the semantic meaning behind the word. Several pre-trained word 

embedding models contain a set of two-layer neural networks to generate vectors for 

each word, for example, Word2Vec, one of the popular and powerful DL models, was 

trained using millions of words from Google news and, each word was converted into 

a 300-dimension vector based on the meaning.  

1.5 Dissertation Outline   

Figure 3 illustrates the dissertation's structure. The dissertation is organized as follows: 

Chapter 2 investigates the uniqueness of risk registers among infrastructure projects. 

Results will demonstrate that data-driven approaches can facilitate the development of 

a common risk register while still allowing project teams to focus on their unique risks. 

A systematic comparative analysis based on NLP and a state-of-the-art deep learning 

algorithm named Word2vec is used to calculate the similarity index at three levels, i.e., 

the entire document of the risk register, individual risk items, and probability and 

consequence of each risk. 

In chapter 3, the study presents a predictive risk modeling based on historical data 

instead of solely depending on expert judgment. A data-driven approach utilizes NLP 

and word embedding models to detect risks with similar terminologies from past risk 

registers. By considering both the prevalence and cost/time implications of risks and 

specific project characteristics, the model is able to capture critical risks. Furthermore, 

the model has been tested with five projects regarding risk prediction. 
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In chapter 4, performance metrics and framework for evaluating the project team's risk 

identification performance are presented. The framework is informed by automata 

theory to define risk states and transition functions to track risk life-cycles. Metrics are 

designed to determine the percentage of risks that occurred and were dismissed during 

the course of the project. The metrics are classified into three groups based on the 

performance of risk identification in the total, initial, and project execution phases. 

Finally, the study introduced new terms to categorize a project teams’ risk style based 

on their planning and doing behaviors. The fifth chapter covers developing a common 

risk breakdown structure as a preliminary risk identification framework and evaluating 

risk interdependencies based on co-occurrence of risk items in historical risk data. A 

summary of key findings and suggestions for future research were presented in Chapter 

6, along with managerial implications. 

 

Figure 3. Dissertation structure 
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CHAPTER 2: RISK SIMILARITY AMONG INFRASTRUCTURE 

PROJECTS  

The contents of Chapter 2 are published in the Journal of Construction Engineering and 

Management, ASCE. 

Citation: Erfani, A., Cui, Q., & Cavanaugh, I. (2021b). An Empirical Analysis of Risk 

Similarity among Major Transportation Projects Using Natural Language 

Processing. Journal of Construction Engineering and Management, 147(12), 

04021175. 

 

2.1 Abstract 

Risk management is widely recognized as a best practice for public agencies to ensure 

the successful implementation of major transportation projects. The conventional 

approach to identify and evaluate project risks is dominated by getting input from 

subject matter experts at risk workshops. However, the uniqueness of such a risk 

assessment approach remains unexamined. How different are the risks among various 

projects? Does the risk register reflect the unique feature of a project? The goal of this 

study is to measure the similarity of project risks across various groups by evaluating 

70 major transportation projects delivered under various methods. The similarity index 

is calculated at three levels, i.e., the entire document of the risk register, individual risk 

item, and the probability and consequence of each risk using a systematic comparative 

analysis based on NLP and a state-of-the-art deep learning algorithm named Word2vec. 

The study reports a high similarity of risk registers among different projects at all three 
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levels. The analysis does show a lower similarity of risk registers for PPP projects. The 

primary contributions of this study are (1) develop a new approach to analyze the risk 

registers at the project level as the main output of risk management practice. (2) 

establish the relation of risk uniqueness and project delivery method in transportation 

projects. Results suggest that a data-driven approach may be possible to help project 

teams develop a common risk register while allowing the teams to focus on each 

project’s unique risks. 

2.2 Research Design and Data 

As each project is unique; project risk should reflect this unique nature. To evaluate the 

uniqueness of risk management, this study utilizes NLP algorithms to calculate the 

similarity of risk register documents in three different levels. Main purpose compares 

differences and similarities between disparate projects’ risk registers. Risk registers 

document all the SME’s workshop output. Similarities provide a novel solution to 

reduce project teams’ efforts to conduct the risk analysis process in future steps.  

Three Level of Similarity Comparison are as follows: 

• Document Level 

The first similarity comparison is conducted at the document level. The purpose is to 

consider all the data inside a risk register document including risk categories, risk 

names, and risk descriptions. In this level of comparison, the words are considered 

without capturing the meaning and sequence.  The result indicates the similarity in the 

context of risk register documents. 
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• Individual Risk Item Level 

Second phase assesses individual risk items, incorporating semantic meaning behind 

each word. Sometimes project teams use different language to identify the same risk 

item. The purpose is to match those similar risks with different terminology in various 

projects. The result illustrates how similar the identified risks in different risk registers 

are overall.  

• Evaluation Level 

The third layer of comparison is used to compare the risk assessment for those matched 

risks in the second level of comparison. The project team evaluates the probability, cost 

impact, and schedule impact of identified risks in each project. In this step, these 

evaluations will be compared in both quantitative and qualitative risk analysis. The 

result indicates how project teams evaluate the same risks in different projects similarly 

in terms of consequences. 

2.2.1 Data Collection and Preprocessing 

A dataset of risk registers of major infrastructure projects served as the primary source 

data of this study. The dataset comprises 70 major transportation projects with different 

project delivery methods and contract values from various states of the United States 

that were mostly delivered in the last decade. Table 1 lists detailed information about 

selected projects. These projects include highway projects which divide into two 

groups of (A) traditional delivery methods group (DB, DBB) and (B) PPP projects. In 

group A the contract award date reflects the first major awarded contract and in group 

B it indicates the major concessioner contract award date. Also, Figure 4 outlines the 
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process of preparing the dataset. The dataset includes risk categories, risk names, risk 

descriptions, and risk evaluation. Each risk evaluation includes probability, cost 

impact, and schedule impact. In order to compare the risk evaluation, the data is 

converted in a standard scale based on Virginia risk management guidelines 

(Partnerships 2015). The probability, normalized cost impact, and schedule impact 

converted to 1-5 standard Likert scales for more efficient quantitative comparison 

rather than using continuous numbers. In the same way by using (Partnerships 2015) 

scales, the combined probability, cost impact, and schedule impact are converted to the 

three levels of quantitative assessment including high, medium, and low assessments. 

This standardization of items prepares the dataset for further similarity calculations. 
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Table 1. Projects Detailed Information 

Project ID Jurisdiction Delivery 

Method 

Contract 

value 

(Million $) 

Number of 

risks 

Contract 

award year 

Group A: DB/DBB projects 

A-1 AZ DB 1773 54 2016 

A-2 DC DB 669 28 2017 

A-3 FL DB 1024 105 2007 

A-4 FL DB 1004 67 2015 

A-5 NY DBB 1079 55 2012 

A-6 FL DB 509 126 2016 

A-7 WI DBB 1625 135 2009 

A-8 AL DBB 746 18 2013 

A-9 CA DBB 166 69 2016 

A-10 CA DB 863 22 2014 

A-11 CA DBB 301 19 2008 

A-12 CO DBB 610 20 2018 

A-13 FL DB 852 233 2016 

A-14 IL DB 906 18 2013 

A-15 IA DBB 1131 17 2017 

A-16 KY DBB 583 35 2014 

A-17 MD DBB 814 44 2016 

A-18 MI DBB 2950 34 2015 

A-19 MN DBB 647 71 2013 

A-20 MS DBB 610 38 2012 

A-21 NV DBB 1237 113 2017 

A-22 NY DBB 1079 110 2014 

A-23 NY DBB 953 13 2010 

A-24 NY DB 4825 11 2012 

A-25 NC DB 731 104 2011 

A-26 CA DBB 850 32 2014 

A-27 PA DBB 678 28 2015 

A-28 PA DBB 1641 17 2014 

A-29 TX DB 1585 36 2011 

A-30 TX DB 693 38 2017 

A-31 VA DB 921 86 2016 

A-32 WA DB 534 243 2014 

A-33 WI DBB 1202 35 2012 

A-34 WI DBB 410 17 2014 

A-35 WI DBB 1550 15 2012 

A-36 CA DBB 584 38 2007 

A-37 WA DB 563 123 2010 

A-38 TX DB 743 22 2015 

A-39 CA DBB 986 134 2003 

A-40 IA DBB 2629 49 2008 

A-41 IL DBB 3628 11 2018 

A-42 TX DBB 4922 245 2011 

A-43 MS DBB 1296 81 2009 

A-44 CA DBB 1792 140 2010 
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Table 1. (Continued) Projects Detailed Information 

Project ID Jurisdiction Delivery 

Method 

Contract 

value 

(Million $) 

Number of 

risks 

Contract 

award year 

Group A: DB/DBB projects 

A-45 DE DBB 860 33 2015 

A-46 CA DBB 817 10 2013 

A-47 IL DBB 745 40 2014 

A-48 CA DB 1421 32 2013 

A-49 NV DB 955 51 2015 

A-50 CA DB 1492 27 2012 

A-51 CA DB 1910 116 2016 

Group B: P3 Projects 

B-1 OH DBFOM 3564 36 2016 

B-2 CO DBFOM 1204 101 2017 

B-3 FL DBFOM 4854 107 2014 

B-4 IN DBFOM 1064 73 2012 

B-5 MI DBFM 1137 97 2018 

B-6 NY & NJ DBFM 1116 131 2013 

B-7 TX DBFOM 899 63 2015 

B-8 CA DBFOM 488 42 2010 

B-9 FL DBF 880 181 2018 

B-10 GA DBF 764 29 2015 

B-11 GA DBF 834 19 2013 

B-12 PA DBFM 1213 18 2014 

B-13 VA DBFOM 3863 19 2016 

B-14 FL DBFOM 974 43 2008 

B-15 VA DBFOM 1400 174 2006 

B-16 TX DBM 1066 29 2015 

B-17 NC DBFOM 661 107 2004 

B-18 TX DBFOM 2146 56 2009 

B-19 TX DBFOM 1793 55 2009 
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Figure 4. Dataset preparation 

2.2.2 Similarity Calculation 

Automatic similarity calculation between two documents is one of the key NLP 

applications.  The most common approach is to convert text to numeral numbers based 

on their features to compute the level of similarity in a vector space (Shahmirzadi et al. 

2019). There are two common approaches for representing a text document in a vector 

space which was used in this study.  
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Bag of Words 

Bag of words offers the simplest method of representing text documents in numeral 

vector space (Hassan and Le 2020). This method does not consider the actual meaning 

behind the words and their orders in the sentences. All the words in the corpus are 

considered as one element and based on whether the corpus includes that word or not, 

represents it in a vector space. Another revised format is using the frequency of the 

words in the whole corpus and then converting the sentence to the vector space. Term 

frequency- invert document frequency (TF-IDF) is one of the most basic text 

vectorizations in this group (Shahmirzadi et al. 2019). The logic behind TF-IDF is to 

decrease the importance of common words which are repeated a lot in a document and 

cannot help to distinguish the difference between two documents (Sidorov 2019). TF-

IDF score for each term inside the documents is calculated as follows: 

                                  𝑇𝐹 − 𝐼𝐷𝐹𝑠𝑐𝑜𝑟𝑒 =
𝑛𝑡

𝑁
× (1 + log

𝑘

𝑘𝑡
)                                                           

(1) 

Where: 

           𝑛𝑡: Number of occurrence of terms t in the document 

           𝑁: Total number of terms in the document 

           𝑘: Total number of documents 

           𝑘𝑡: Number of documents containing the term t 

This approach is used in the first level of similarity comparison in this study. All the 

terms inside a risk register including risk categories, names, and descriptions are used 
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to calculate the TF-IDF scores. After removing the stop words, the vector which 

represents the whole risk register document is calculated. Then, the degree of similarity 

between two documents is computed using the cosine similarity term. Cosine similarity 

is a robust metric to calculate the level of similarity by measuring the cosine of the 

angle between two vectors as follows (Fan and Li 2013): 

      Similarity (Doc1, Doc2) = Cosine (v, w) = 
𝑉.𝑊

||𝑉||||𝑊||
=

∑ 𝑉𝑖.𝑊𝑖
𝑘
𝑖=1

√∑ 𝑉𝑖
2𝑘

𝑖=1 ×√∑ 𝑊𝑖
2𝑘

𝑖=1

            (2) 

Where: 

           V: vector representing the first document 

           W: vector representing the second document 

Pairwise comparison of risk registers in document level describes contextual similarity. 

Similarity level shows the overall matching of risk registers considered as one 

document.  

Word Embedding 

Word embedding models utilize neural networks and artificial intelligence to generate 

a vector to represent the semantic meaning behind every unique word inside the corpus 

(Sidorov 2019). Several pre-trained word embedding models exist, including 

Word2vec (provided by Google) (Mikolov et al. 2013), GloVe (provided by Stanford 

NLP group) (Pennington et al. 2014). The most important advantage of the Word2vec 

model is to capture the syntactic and semantic word relationships and meanings (Kim 

and Chi 2019).  Because of the small size of words in the corpus, Word2vec, a well-

known pre-trained Word embedding model is employed in this study. This approach is 
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used in the second layer of similarity comparison. Each risk item matched to the highest 

similar risk item from the second risk register document using Word2vec vectorization 

and cosine similarity calculation. The process includes lowercasing, removing stop 

words, tokenizing the risk items, converting each word to a vector using Word2vec, 

calculating the average vector representing the risk item, and finally computing the 

cosine similarity. For example, risk item 1 is selected from the first risk register and 

then compared to all risk items in the second risk register.  Then, risk item 2 is selected 

from the second risk register as the best match to explain one example of similarity 

calculation. Figure 5 describes the similarity calculation at the second level. After the 

completion of the matching process, the average similarity indexes indicate the overall 

similarity of risk registers in the risk level between two documents. 
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Figure 5. Cosine similarity calculation example using Word2vec 

The next step of similarity calculation, pooling approach, considers one risk register on 

one side and compares it to all other risk registers on the other. The result of this 

comparison will indicate what the possibility of finding at least a similar risk item in 

the individual risk level is from a large pool of individual risk items. The emphasis here 

focuses more on individual risk items rather than the entire project.  
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Output of the prior matching process determines the next level of similarity 

comparison. Firstly, the probability, cost impact, schedule impact is compared 

separately in the quantitative Likert scale (1-5) based on the following equation using 

the distance similarity index which converts to the percentage of similarity. The same 

process is completed for probability, cost impact, and schedule impact comparison. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  1 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 = [1 − (
|𝑥1 − 𝑥2|

4
)] ∗ 100                              (3) 

 Where:  𝑥1 is risk evaluation (probability or cost impact or schedule impact) of risk 

item 1 and 𝑥2: risk evaluation (probability or cost impact or schedule impact) of risk 

item 2  

Secondly, the combined probability, cost impact, combined probability, and schedule 

impact are compared for matched risks on a qualitative scale. The percentage of 

matching in the high, medium, and low scales is reported. In this comparison, when 

both evaluations are similar, the similarity will be considered as 100% if not 0%.  

In summary, the risk register documents of major infrastructure projects are compared 

based on three levels of similarity. First, at the document level using the TF-IDF 

method, second, at the risk level using the Word2vec method, and finally, at the 

evaluation level using distance and matching similarity indexes. The result will indicate 

the level of uniqueness in risk register documents. 
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2.3 Results and Discussion 

2.3.1 Similarity at Document Level 

Pairwise comparisons of risk registers at the document level describe that they are 

highly similar in the context. Without capturing the meaning and order of words inside 

each document, the average of cosine similarity at this level is 0.67 for the group A 

including traditional delivery method projects. The results are in the range of 0.39 to 

0.96, computed using TF-IDF methods as explained in bag of words section. For PPP 

projects, the average similarity is 0.52 and the range is 0.31 to 0.98.  

The comparison at this level shows that when selecting two random risk registers from 

the project delivered under DBB or DB, an average of 67% similarity context will be 

observed. However, for PPP projects, risk registers show high uniqueness, causing this 

similarity to be reduced to 52%. At the end of each section, a simple standardized T-

test is conducted to compare the mean difference in P3 and DB/DBB groups. At the 

document level, the P-value is 2.36e-11 (less than 0.05) which indicates there is a 

significant difference (De Winter 2013). This difference among PPP and DB/DBB 

groups indicates that more project-specific words and phrases are typically used in risk 

documents for the PPP projects group.   

2.3.2 Similarity at Individual Risk Item Level 

The similarity calculation at the document level shows that risk register documents use 

similar words. The second level of comparison is conducted at an individual risk item 

level to show how similar the identified risks are. The pre-trained Word2vec model is 

used to match the risks based on the meaning behind words and calculation of cosine 

similarity. Sometimes, project teams use different terminology for similar risk items. 
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Therefore, the purpose of similarity comparison at this level automatically locates 

matched risks.   

Firstly, the average of cosine similarity matching among those risk items considering 

the risk names is 0.51 for DB/DBB delivery project group. By considering the risk 

names plus risk description as one element for each risk item, the average is 0.64. This 

result illustrates that project teams use more similar words to propose the risk 

descriptions in risk register documents. However, based on the authors' evaluation of a 

sample of matching results, the intelligence of matching using the risk names alone is 

greater than risk name besides risk description. The first reason behind this is that 

project teams do not follow the same structures for describing risk descriptions, and the 

second reason is that when the number of the words increases, the accuracy of matching 

decreases. Therefore, we decided to make our model and analysis based on the risk 

names. The result for PPP projects is 0.48 similarity on average. Like the previous 

section, the PPP project risk registers are more unique in the individual risk item level 

as well as the P-value of the T-test is 0.00123 which supports the significant difference 

between two groups. The detailed result of comparison for randomly selected 7 projects 

in each group at this level is presented as a heatmap in Figure 3. In Figure 6, in each 

comparison, the risk items in the horizontal project are used to match to risks in the 

vertical project. Since projects contain an unequal number of risk items, the average 

comparison of A to B may not return results equal as B to A.  

Secondly, based on the result, a perfect matching of when the similarity index is 1 

occurred, meaning that the same risk item was repeated exactly in different projects. 

For those comparisons that have more than 0.7 similarity index, a strong matching is 
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observed. Also, based on the result of when the cosine similarity is more than 0.5, there 

is a meaningful connection between two risk items.  

 

Figure 6. Result of project pairwise similarity comparison at risk level 

Table 2 provides some examples for risk items in each level of similarity. Note that 

each risk item belongs to a different project and this table is a simple example of 

matching results.   

Table 2. Risk Matching Examples 

Risk 1 Similarity Risk 2 

Delay in ROW document internal approval 

process 

 

1 

Delay in ROW document internal approval 

process 

Contractor delays and default 1 Contractor delays and default 

 

Encountering unexpected subsurface 

conditions 

1 Encountering unexpected subsurface 

conditions 

Utility relocation may not happen in time 0.965 Utility relocation may not happen on time 

Determination of secondary impacts to 

wetlands 

0.963 Determination of wetlands impacts 

Changing geotechnical conditions 0.865 Changing geotechnical conditions in bridge 

approaches 

Negative community impacts cause delays 0.832 Negative community impacts expected 

Unsuitable / contaminated materials 0.816 Unanticipated hazardous materials or 

contaminated soils 

Unstable subsurface conditions 0.784 Encountering unexpected subsurface 

conditions 
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Design changes on bridge, roadway, or 

pond 

0.756 Design changes on bridge superstructure 

Delay in the ROW acquisition along 

 

0.738 ROW acquisition delays construction 

Change in contract packaging 

 

0.689 Construction contract packaging 

Concrete delivery 0.586 Materials delivery constraints (On-site) 

Opportunity to get low bids due to market 

conditions 

0.578 Market conditions 

Pooling approach, as mentioned, centers on individual risk items rather than entire 

projects. Each project is collectively compared to all other projects in that group. Then, 

the best match risk among those projects in the same group is selected for each risk 

item. The average result based on risk items similarity is shown in Figure 7 which 

includes detailed information about the percentage of risk matching in each level of 

similarity. There is a cumulative line that explains the cumulative result of pairwise 

similarity among each project and all other risk items together. As Figure 7 shows, the 

average possibility of finding at least one similar risk item (with more than 50% cosine 

similarity) for a new project from other projects in DB and DBB groups is 99% and 

97% in PPP groups. This result proves the development of new project risk registers 

can borrow from previous efforts. 

 

Figure 7. Result of pairwise similarity comparison at risk level using pooling 

approach 
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2.3.3 Similarity at Evaluation Level 

As discussed, comparing similarity at the evaluation level identifies whether or not 

similar risk items in different major transportation projects follow the same quantitative 

and qualitative assessment in terms of probability, cost, and schedule impact. Among 

pairwise comparisons, risks matched with at least 0.5 cosine similarity are filtered and 

the distance similarity index is calculated to compare the quantitative data for risk 

evaluation. The similarity index is a number between 0 and 100 with a number close to 

100 indicating that the risks follow the same evaluation. Table 3 provides the result of 

the similarity index in various levels of cosine similarity in both delivery method 

groups. 

Table 3. Similarity at Evaluation Level 

Cosine similarity 

level 

Probability Cost Schedule Probability + Cost Probability +Schedule 

Group A: DBB/DB Projects 

At least 0.5 59.7% 92.3% 76.1% 50% 51% 

At least 0.7 61.9% 91.6% 88.8% 63% 60% 

At least 0.8 62.8% 92.4% 88.2% 67% 64% 

Group B: P3 Projects 

At least 0.5 65.3% 98.3% 79.0% 79% 55% 

At least 0.7 67.4% 98.2% 79.1% 78% 56% 

At least 0.8 69.7% 99.3% 77.5% 72% 52% 

 

Results show that there is a considerable similarity at the quantitative evaluation level. 

All the similarity indexes exceed 50%, supporting that similar risk items among those 

major transportation projects return similar assessments too. Cost assessment offers 
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greater similarity than probability and schedule analysis. Difficulty to determine cost 

impacts, the role of existing schedule analysis tools, and higher knowledge of the 

project team provide potential key reasons behind this difference. In other words, 

probability and schedule analysis are more project-specific than cost evaluation.  

Additionally, increasing the cosine similarity will increase the similarity index. This 

supports that evaluations converge with higher cosine similarity. Even for cost analysis, 

the average similarity index closes to 100%, meaning the same cost evaluation applied 

for most of the matched risks with at least 0.7 cosine similarity. Finally, compared to 

non-PPP endeavors, average PPP projects lists include risk evaluation more unique 

assessment. However, level 3 results fail to support differences in levels 1 and 2. P-

value based on considering probability, cost, and schedule impact of each group 

together calculates at 0.941876, greater than 0.05 threshold.  

Similarity calculation for qualitative data also shows that the combined analysis of cost 

and probability in terms of high, medium, low returns similar values. Therefore, both 

cost and schedule analysis return similar results with schedule analysis more project 

specific than cost. Table 3 depicts the result of the matching index for the qualitative 

analysis of combined cost and schedule probabilities in different cosine similarity 

levels. In this level, the uniqueness of evaluation in both PPP and traditional delivery 

method groups is very close.  

In summary, the similarity comparison in the third level indicates that both quantitative 

and qualitative analyses are very close. On the other hand, cost estimation of risk 

impacts seems more difficult for project teams rather than delay prediction. Therefore, 
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the similarity in cost impact is more than schedule analysis. Uniqueness for both groups 

of delivery methods is similar and high in this level.   

2.3.4 Result Validation 

Cosine similarity, calculated using the Word2vec deep learning model, returns a 

number between 0 and 1 (0-100%). Decreasing the cosine similarity index, the 

associated probability mismatching risks increases. Determining meaningful threshold 

values drives the validity of research findings. Two members of the research team 

manually validated selected matched risks and assessed the model’s accuracy. Each 

member cross-checked and upon receiving the same label from both members, items 

were considered as final. For discrepancies, all research team members coordinated to 

finalize the label. Table 4 provides the result of model validation based on a sample of 

250 risk items. Accuracy calculates based on the number of accurate matches divided 

by all randomly selected matching risks. Results with at least 50% cosine similarity 

show that there is a meaningful relationship between matched risk items which supports 

that our model intelligently captured similar risks with different terminologies. 

Table 4. Model Validation 

Cosine similarity level Sample size Accuracy 

100 50 100% 

80-100 % 50 100% 

70-80 % 

60-70 % 

50-60 % 

50 

50 

50 

86% 

80% 

60% 
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2.3.5 Managerial Implication 

Risk management is one of the key components of project management. The current 

practice of risk management in highway construction relies on experts' opinions and 

discussions. While data-driven studies to extract valuable insights from available 

historical data of major transportation projects have steadily increased (Erfani et al. 

2021c; Hickey et al. 2022; Mohammadi et al. 2023; Morteza et al. 2023; Panahi et al. 

2022), comparable research in the risk management domain remains at an early stage. 

However, the explosiveness of available objective and factual data creates a great 

opportunity to capitalize on the data for better project performance. This study 

introduces a new approach to understanding risks in major transportation projects using 

natural language processing. A large number of major transport projects have been 

constructed; however, there have not been any studies evaluating the uniqueness of risk 

management practices in these projects. Similarity calculation offers practical benefits 

in many ways. Creating a data-driven tool capable of generating initial risk registers 

drafts for future major projects, reduces effort and time. The similarity result shows 

that although the project is unique, the risk items are not completely unique and can 

easily be borrowed from similar previous projects. Therefore, considering the 

importance of project feature qualifiers such as delivery method, size, location, 

timeline, etc. to find the most similar previous projects and using NLP techniques, 

future project teams benefit from a proven, reliable source of risk identification and 

assessment. 
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2.4 Conclusion 

Major transport projects contain a high level of risk and uncertainties due to the 

inherent characteristics of these projects. Therefore, cost overrun, and schedule delay 

present main problems in transportation agency project implementation. Risk 

management practices try to detect these challenges, evaluate them, and propose 

appropriate responses to manage the projects effectively. While numerous studies in 

the literature provide different tools and techniques to complete the risk management 

process, industry practices remain experience-based and rely on opinions from subject 

matter experts. This study develops a data-driven approach using NLP and deep 

learning to measure the similarity of project risks across various groups. Two groups 

of traditional delivery method projects (DB and DBB) and PPP comprised the main 

source of risk management data in this study. Analysis evaluates components from 70 

major transport projects at three different levels. Results of the similarity index at the 

document level illustrates that more than 60% of words and context in risk registers 

reflect high similarity. Further, risk and evaluation levels suggest that more than 50% 

of risk items in the projects appear with the same qualitative and quantitative 

assessment. Finally, the pooling approach suggests that more than 97% of risk items in 

each risk register can be found in other similar projects. Cost impact estimation returns 

the highest similarity between cost impact analysis, schedule impact analysis, and 

probability analysis of the risk items with DBB/DB consistently higher values than PPP 

projects. Study calculations indicate that although the projects are unique, the risk 

register documents contain repeated items. Therefore, future research based on the 

finding of this study can (1) investigate an automatic way of risk detection for highway 

projects using historical data and NLP and (2) measure similarity of risk registers under 
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various features such as project size and location. Further, expansion of the data set 

promises a more comprehensive set of common components, highlighted by those with 

frequent and high consequent risks under each project specification. Study limitation 

include using a pre-trained Word2Vec model. Future studies could increase volume 

risk registers for comparison and train deep neural networks using the words from a 

large construction database corpus to improve the model accuracy.  
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CHAPTER 3: PREDICTIVE RISK MODELING  

The contents of Chapter 3 are published in the Journal of Automation in Construction, 

Elsevier. 

Citation: Erfani, A., & Cui, Q. (2022). Predictive risk modeling for major 

transportation projects using historical data. Automation in Construction, 139, 104301. 

 

3.1 Abstract 

Most of the construction practices in the field of risk identification focus on the 

expertise, views, and judgments of subject matter experts. While the conventional 

expert-based approaches provide worth, several challenges exist due to time-

consuming and expensive aspects. Moreover, limited experience in major projects 

makes public agencies susceptible to subjective judgment biases. To address these 

limitations, this study introduced a data-driven framework for risk identification using 

historical data and artificial intelligence techniques, particularly word embedding 

models. The model matches various risk items in past projects by considering the 

semantic meaning of words to find high frequency and consequence risks. Risk 

registers from more than 70 U.S. major transportation projects form the input dataset. 

The model is tested with more than 66% recall and 0.59 F1-score for risk detection for 

new projects. Acquired knowledge from previous projects assists project teams and 

public agencies to be well-equipped with a risk identification model instead of starting 

from scratch. 
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3.2 Research Design and Data 

3.2.1 Data Collection and Preprocessing 

The general expectation is that risks are project-dependent and the unique nature of 

individual projects drives risk items. However, the authors’ research (Erfani et al. 

2021b), discussed in chapter 2, demonstrated a huge level of similarity among risk 

registers in major transportation projects. The risk similarity constructs the foundation 

of using historical data in this study to propose an initial risk template for major 

transportation projects. 

The main goal of this study is to introduce an NLP-based model that can automate the 

process of risk register template generation using historical data. This data-driven 

model considers both frequency and cost/schedule consequences as criteria for 

developing risk templates. Also, this approach allows risk register customization 

according to specific project characteristics. 

The Information Source for Major Transportation Projects (ISMP) developed by the 

University of Maryland researchers served as the data source for this study. The 

database is accessible at https://www.transportationproject.org (Zhang et al. 2022). 

Containing almost all major highway projects in the U.S. over the last two decades, the 

database comprises risk registers from 70 projects with more than 6,000 individual risk 

items. The dataset covers a range of project types, project sizes, delivery methods, and 

locations to enable the development of reliable risk templates. Figure 8 exhibits the 

data profile of the collected database. The authors collected risk registers from multiple 

Excel and pdf files and tabulated results into a comprehensive risk database. While 

most of the documents follow the standard structure defined by the FHWA including 

https://www.transportationproject.org/
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risk name, risk description, risk evaluation, risk response, and allocation, some 

documents report variations from the standard structure. We defined a comprehensive 

structure to capture all documents under the same database. 

Collected risk registers include the initial risk registers (i.e., ex-ante version) and 

updated risk registers through the project life-cycle. While the last-updated risk register 

(i.e., ex-post version) reflects higher data quality by documenting risk items’ final 

status, the authors lacked access to this information for incorporation into this study. 

The current dataset offers the best-gathered knowledge regarding the risk management 

practices in major highway projects in the U.S. It provides a valuable summary of 

diligent efforts by various agencies in the past 20 years to conduct risk studies. 

 

Figure 8. Data profile Summary 

3.2.2 Model Development 

Flow-Chart 

This section presents the methodology of the proposed major transportation projects 

risk identification model. In the first step, the user selects characteristics that filter 

projects retrieved from the database. The user could define characteristics such as type, 

delivery method, size, and location. For all characteristics, an option exists to select all 

instead of a specific choice. It should be considered that adding all filters could result 
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in decreasing the number of retrieved projects significantly which could result in bias 

in risk template performance. Then, the model utilizes word embedding models to 

generate the risk template based on the selected risk registers in the first step. The risk 

template might be sorted based on prevalence or consequences in terms of cost and 

schedule. Figure 9 illustrates the main steps of the proposed model, Figure 10 displays 

the pseudocode, and the following subsections describe the process in further detail.  

 

 

Figure 9. Proposed risk identification model 

Step 1: Customize modeling 

This model generates a risk register template filtering on user project characteristics 

preferences. In the first step, we define project characteristics including project type, 

size, location, and delivery method from the associated provided list. The project type 

list includes highway reconstruction, bridge and tunnel, new roadway, and interchange. 

Project sizes subdivide into less than $500M, $500M - $1B, and more than $1B. Project 
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delivery methods consist of design-bid-build, design-build, and public-private 

partnerships. By defining project characteristics, similar projects with required features 

are retrieved from the database to generate the initial risk template. The provided 

flexibility offers users multiple options to generate risk registers. In this way, users 

might evaluate multiple options of risk templates to customize their risk register 

accordingly.   
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Figure 10. Proposed risk identification model pseudocode 
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Step 2: Risk matching  

Since individual project teams utilize their own language and words to describe the 

risks, the first step implemented NLP modeling to identify similar risks with varying 

terminologies. NLP studies convert text into a numeric format for further calculations, 

called text vectorization (Li et al. 2021; Shahmirzadi et al. 2019).  

Data cleaning involves lowercasing, removing stop words, tokenization, and 

vectorization, creating a list of words. Each word represents a vector, and a risk item is 

expressed as the average vector of words in a vector space. In order to measure the 

similarity of two vectors, cosine similarity offers a general measure to calculate the 

cosine of an angle between two vectors. Eq. 4 displays the mathematic formula to 

compute the cosine similarity (Sidorov 2019): 

Similarity(Risk1, Risk2) = Cosine (v, w) = 
𝑉.𝑊

||𝑉||||𝑊||
=

∑ 𝑉𝑖.𝑊𝑖
𝑘
𝑖=1

√∑ 𝑉𝑖
2𝑘

𝑖=1 ×√∑ 𝑊𝑖
2𝑘

𝑖=1

                (4) 

Table 5 provides multiple examples of using the Word2Vec model to calculate the 

similarity between different risk items. The cosine similarity calculation provides a 

path to match similar risks with different terminologies from various risk registers to 

obtain common risks in major transportation projects.  A perfect match occurs when 

the similarity index equals 1, meaning that the same risk item repeats exactly in 

different projects. To define the threshold of meaningful matching, we selected a 

random sample of 250 risk matches. Two members of the research team manually read 

and evaluated the level of similarity among matched risks. Accuracy calculates as the 

number of accurate matches divided by the total number of samples. While Table 6 

indicates that the 60% cosine similarity established an acceptable threshold of 
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similarity to match risks, to keep consistency with the typical practice of considering 

70th percentile risk-based estimation at FHWA and put a stricter threshold, we set 70% 

as the threshold of similarity to match risks.  

Table 5. Risk matching examples using Word2vec 

Risk (1) Similarity Risk (2) 

Owner directed changes and design 

views 

1 Owner directed changes and 

design views 

Coordination with other projects and 

with adjacent property owners 

1 Coordination with other 

projects and with adjacent 

property owners 

Utility Relocations 1 Utility Relocations 

Determination of secondary impacts 

to wetlands 

0.95 Determination of wetlands 

impacts 

Asbestos and Lead Paint 0.94 Environmental issues - 

asbestos or lead paint 

Utility Relocations 0.85 Utility Relocations and 

conflicts 

Federal agencies may take longer 

than expected to review and issue a 

permit 

0.81 Permits or agency actions 

delayed or take longer than 

expected 

Handling of Contaminated Materials 0.78 Unanticipated Hazardous 

Materials or Contaminated 

Soils 

Unforeseen Utilities 0.72 Unknown Utilities 

Construction and utility costs 0.64 Lack of general maintenance 

during construction 

Extend time frame Proposer Request 

for Proposal Responses 

0.62 Utility agreements prior to 

final request for proposal 

Delay Claims 0.59 Delay in agreement  

Hazardous materials 0.54 Quality and availability of 

equipment, materials and labor 

Table 6. Similarity matching threshold selection 

Cosine similarity level (%) Sample size Accuracy (%) 

100 50 100 

80-100  50 100 

70-80  50 86 

60-70  50 80 

50- 60  50 60 
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A Python script exploits the word embedding model and performs automatic cosine 

similarity calculation. More than 6,000 risk items from 70 projects reside in the 

database. Code compares the first risk from the first selected project against all items 

from retrieved projects based on user preferences. If Risk 1 reaches 70% similarity to 

any risk in the database, they are classified into the same group. In the second loop, 

matches from previous loops are excluded, and the process continues until all items in 

the selected projects find their match. The result of this step returns a list of grouped 

risks with different wording and unique assessment by various project teams 

Group-level analysis 

The next analysis evaluates previously grouped risks, to find the text that represents the 

group and calculate the average probability of occurrence and consequences in terms 

of cost and schedule impact. Sometimes, different project teams use the same verbiage 

to describe risks. In each group, the text that was repeated more frequently by the 

project teams serves as the group representative. Results allow calculation of the 

average probability and cost and schedule impact. Table 7 provides an example of 

similar risk items with different terminologies in DBB projects and how the group-

level analysis automatically finds the final risk item. As 27 out of 31 DBB projects 

include a risk related to the timely utility relocation the prevalence of this risk equals 

87%. “construction impacts due to lack of right of way and timely utility relocation” 

will be selected as the representative risk, due to more usage by various project teams. 

Note risk items residing in the same group report at least 70% semantic cosine 

similarity based on their text to be considered under the same group. 
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Table 7. Group-level analysis example 

Risk item Frequency 

(out of 27) 

construction impacts due to lack of right of way and timely utility 

relocation 

7 

right of way acquisition needed prior to utility relocations and 

construction 

5 

utility relocation at overcrossings 4 

utility relocation may not happen on time 3 

utility relocation may not happen in time 3 

delays in utility relocations due to delay in field work required from 

utility owners 

2 

global risk related to utilities relocation 2 

encounter unanticipated and unknown utilities or damage to utilities 

during construction 

1 

 

Furthermore, to generate a structured risk identification result, researchers utilized a 

risk classifier to detect the best risk type for each item. Authors classified the identified 

risks into ten groups including “environmental”, “structure and geotechnical”, 

“design”, “right of way”, “utilities”, “railroad”, “partnerships and stakeholders”, 

“management and funding”, “contracting and procurement”, and “construction” based 

on Washington Department of Transportation (WSDOT) risk breakdown structure. The 

authors first removed the stop words (e.g., the, is, and, but). Second, programming 

tokenizes each risk item into a list of words. After applying the same process for risk 

categories, the cosine similarity between risk names and risk categories was calculated. 

Each risk item was assigned to the group with the highest text similarity. Table 8 

provides some examples of how the risk type for risk items was detected. While one 

risk item might relate to the multiple risk type groups and not easily be considered 

under one group, the purpose of the classification detects the highest similar group. For 

example, the risk item “potential changes to geotechnical design for foundation” 
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contributes to both aspects of “structure and geotechnical” and “design”. Indeed, the 

similarity calculation ranked “structure and geotechnical” and “design” first and second 

respectively. The risk is assigned to the top similar group. 

Table 8. Risk classification examples 

Risk item Risk categories Similarity Selected type 

 

 

 

 

 

Additional right 

of way required 

Environmental 0.132  

 

 

 

 

Right of way 

Structure and geotechnical 0.231 

Design 0.162 

Right of way 0.778 

Utilities 0.222 

Railroad 0.108 

Partnerships and stakeholders 0.176 

Management and funding 0.263 

Contracting and procurement 0.171 

Construction 0.161 

 

 

 

Potential changes 

to geotechnical 

design for 

foundations 

Environmental 0.442  

 

 

 

Structure and 

geotechnical 

Structure and geotechnical 0.797 

Design 0.582 

Right of way 0.201 

Utilities 0.281 

Railroad 0.200 

Partnerships and stakeholders 0.326 

Management and funding 0.376 

Contracting and procurement 0.240 
Construction 0.479 

Step 4: Risk register template generation 

By grouping risks and computing the average consequences for each group, a variety 

of potential methods customize templates. Frequency in actual projects, average 

probability, or average cost and schedule consequences drive sorting and prioritization. 

Therefore, risk register development requires answering two main questions. First, 

what criteria should be applied for sorting, and second, how many unique risk items 

should be considered in the template? Multiple options can be considered in the model 
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to generate a risk template based on user preference. Users generate templates based 

on risk frequency or consequences. Also, justified by FHWA guidelines, an option 

exists to include the top 10-20-30 items in the risk template. No numerical limits exist 

in the template and the choice depends on the specific application. Template length 

should adequately consider all major risks while avoiding excessive detail to distract 

the project team focus from critical risk items. Therefore, 10 to 30 risk items in the risk 

register seem adequate. 

3.3 Results and Discussion 

3.3.1 Model testing and validation 

Word embedding model selection 

The main part of the proposed predictive risk model depends on the deployed word 

embedding technique because it plays an important role to find similar risks with 

different languages. Authors selected the best NLP approach to convert text to vectors 

to perform the study. A detailed experiment was conducted among NLP models (e.g., 

Word2vec, FastText). To set up the testing process, we collected the risk registers from 

five new projects excluded from the main database. Table 9 provides detailed 

information about the testing projects. 

Table 9. Testing projects detailed information 

Project ID Jurisdiction Delivery Method Project Type  Project size ($) Risk items 

A FL DB Bridge and Tunnel 500 M - 1 B 35 

B CA DBB Highway reconstruction More than 1 B 38 

C TX P3 Highway reconstruction More than 1 B 50 

D NJ DB New roadway 500 M - 1 B 13 

E WV DBB Interchange 500 M - 1 B 7 
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In the next step, each risk item for each testing project was compared to all of more 

than 6,000 risk items in the database and matched to the highest similar risk based on 

the cosine similarity calculation. The process was repeated using word embedding 

models including Word2Vec, FastText, and GloVe. The authors observed that while 

these three models found the same risks in many cases, in some cases the highest similar 

risk returned differently for different models. The question is which model is more 

intelligent to find better risks to match.  

Further action includes the human labeling process. Two members of the research team 

manually read the matched risks, dividing them into three groups of “high”, “medium”, 

and “low” similarity. High similarity represents risk items containing the same topic 

and application. Medium similarity infers that the risks share a similar concept but have 

different applications, while low similarity represents completely different risks. Each 

member cross-checked the matched risks and upon receiving the same label from both 

members, items were considered final. Otherwise, both team members read the risks 

together and selected the final label through discussion. Table 10 offers some examples 

of similarity under each group of “high”, “medium”, and “low”. 
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Table 10. Risk labeling examples 

Risk (1) Similarity 

level 

Risk (2) 

Coordination with other 

projects and with adjacent 

property owners 

High Coordination with other projects 

and with adjacent property 

owners 

Hazardous materials High Handling of contaminated 

materials 

Federal agencies may take 

longer than expected to review 

and issue a permit 

High Permits or agency actions 

delayed or take longer than 

expected 

Different site conditions Medium Encountering additional 

Archaeological Sites 

Oil lines Relocation and Right 

of Way 

Medium Reduce right of way corridor 

(outside the lanes) width in some 

areas 

Delay in agreements Medium Breach of obligations and 

agreements by private sector 

Structure Opportunity Low Additional right of way required 

Utility risk Low Structural steel price escalation 

 

Two main criteria need to be considered for the final model selection. First, the model 

should be intelligent, in other words, find the highest similar risk appropriately. Second, 

the model’s index should be accurately reflecting the level of similarity. In other words, 

the decreasing similarity between matched risks results in proportionally lower cosine 

similarity. Table 11 reveals that the Word2Vec model significantly outperforms the 

other two options over the same data points in terms of finding the highest similar risk.   

Table 11. Word embedding models’ performance comparison 

Level of similarity Word2Vec FastText Glove 

High 81.1% 66.9% 63.5% 

Medium 9.5% 12.2% 10.8% 

Low 9.5% 20.9% 25.7% 
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According to the authors’ observation, not only did the Word2Vec match risks more 

accurately but also the similarity index better reflected the similarity level. Among 

multiple risk item examples in Table 10, the similarity index range for Word2Vec 

appeared more accurate than the other two models. Therefore, researchers selected 

Word2Vec to be deployed in this study. Furthermore, for more than 81.1% of risk items 

in five testing projects, at least, one project in the database reported the same risk in 

their risk registers. It should be noted that 60% of high similarity matched risks even 

use the same language and verbiage. The results show a promising application of 

historical risk data to support risk analysis on new projects. This data-driven approach 

allows project teams to concentrate on project-specific risks by quickly offering 

common risk templates based on a comparison of early projects. 

Risk register template performance  

The purpose of the next experiment was to evaluate the performance of the developed 

risk template by using the initial five projects. This process included the following 

steps: 

1. Generate a risk template containing an intended number of risks, for instance, 

30 items 

2. Find the closest match for each one of the risks in testing projects to the risk 

template 

3. Manually cross-check to assess whether the match was high, medium, or low 

4. Score the risk template performance using metrics such as recall, precision, and 

F1-score 
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While we did not expect that all the risk items were covered in a short risk template, 

we anticipated that the common risks were detected by the developed risk template. To 

calculate the performance metrics, various outcomes need to be clarified. True-positive 

(TP) reflects risk items that exist in both the testing risk register and developed risk 

template (i.e., matched risks with high or medium similarity levels). False-negative 

(FN) occurs when risk registers items fail to appear in the template (i.e., matched risks 

with a low similarity label). Also, the False-positive (FP) contains the risks included in 

the risk template but has not been used for matching any risks in the testing risk register. 

Equation 5 calculates the performance metrics of the risk template.   

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
;  Precision =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
; 𝐹1 =

𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑁 + 𝐹𝑃)

(5) 

Table 12 and 13 depicts the results for testing projects compared to the general template 

with all 70 projects. Results include no definition of specific project features, including 

30 risk items in the template, and are sorted based on the prevalence in previous 

projects. 

Table 12. Risk matching outcomes 

Project ID High  Medium Low TP FN FP 

A 4 12 19 16 19 19 

B 12 9 17 21 17 19 

C 32 9 9 41 9 2 

D 9 3 1 12 1 18 

E 1 4 2 5 2 25 

Overall 58 37 48 95 48 83 

 

Among the metrics, recall reflects the performance of the risk template better due to a 

high cost associated with false negatives (i.e., risks from the testing project that fail to 
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be included in the template). Precision illustrates what portion of risks in the template 

is identified correctly. F1-score seeks a balance between precision and recall. 

According to the results, a simple and short risk template using objective historical data 

averages reports more than 66% recall. Results range from 92.3% to 45.7% of risk 

items covered by the risk template. It is expected that if the project team utilizes specific 

language or considers more unique risks the risk template performance decreases. The 

results suggest a great potential for a common data-driven risk template to initiate the 

preparation of risk registers for major transportation projects overall. In the following 

experiments, the authors applied tighter criteria, evaluated the impact of sorting the risk 

template based on the consequences, and added more specific project features on risk 

template performance. 

Table 13. Risk template performance 

Project ID Recall Precision F1-score 

A 45.7% 45.7% 45.7% 

B 55.3% 52.5% 53.8% 

C 82.0% 95.3% 88.2% 

D 92.3 % 40.0% 55.8% 

E 71.4 % 16.7% 27.0% 

Overall 66.4% 53.4% 59.2% 

Prevalence vs consequences  

The proposed data-driven model captures not only the critical risks based on the 

frequency of occurrence in actual historical project data but also the potential 

consequences in terms of cost and schedule. Therefore, in this sub-section, researchers 

repeated the previous experiment, but sorted the risk template based on cost and 

schedule impact. To do so, the risk group items are sorted based on average 

consequences calculated in the model based on previous similar projects. According to 
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the result (Table 14), risk template performance for the prevalence risk template 

outperformed the consequence-based (i.e., cost and schedule impact risk templates) by 

more than 10% in terms of recall and F1-score. However, the flexibility which is 

provided to sort the risk template based on the high consequent risks might be 

considered a valuable option provided by analyzing historical data. 

Table 14. Prevalence and consequence-based risk template comparison 

 

 

Project 

ID 

Recall F1-score 

Prevalence Cost 

impact 

Schedule 

impact 

Prevalence Cost  

impact 

Schedule 

impact 

A 45.7% 18.1% 20.0% 45.7% 18.5% 21.2% 

B 55.3% 34.2% 48.6% 53.8% 38.2% 45.9% 

C 82.0% 68.0% 70.0% 88.2% 69.4% 73.7% 

D 92.3% 84.6% 69.2% 55.8% 47.8% 41.9% 

E 71.4% 71.4% 42.9% 27.0% 27.0% 16.2% 

Overall 66.4% 55.3% 50.1% 59.2% 43.9% 45.1% 

Sensitivity analysis 

Key project feature features include type, delivery method, size, and location to identify 

previous projects with matching attributes. While there are other potential drivers such 

as site condition behind project risk selection, in this sub-section, researchers evaluated 

the risk template performance developed based on adding each characteristic of the 

testing projects. For each testing project, we retrieved cases that match the selected 

characteristic and developed the risk template following the proposed model. For 

example, if project A is located in the state of Florida, all projects in the database from 

that agency are retrieved to develop the risk template. Then a similar experiment to the 

previous sub-sections evaluated the risk template performance. Table 15 illustrates how 

the overall risk template performance has been changed in comparison to the developed 
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risk template in subsection 6.2 as the basis. According to the result, the project location 

significantly helps to improve the risk template performance in terms of recall, 

precision, and F1 score (an increase of 9.1%, 3.7%, and 5.9% respectively). The 

potential reason behind the observation is that public agencies typically work with the 

same consultants for major projects and those consultants build their knowledge 

through their previous experiences with risk studies. This observation emphasizes the 

importance of data quality in terms of replicating good practices and the danger of 

modeling previous projects’ mistakes. Other features such as project type and size 

report small improvements (2.1% and 0.7% increase in recall respectively). Also, 

choosing the delivery method failed to improve the risk template performance. 

Ultimately, the new project situation and project team evaluation determine the final 

decision. The proposed model provides suitable flexibility to consider various options 

to generate an initial risk template based on various project characteristics.   

Table 15. Project characteristics selection impact on risk template performance 

Project characteristic % of change in  

Recall 

% of change in 

Precision 

% change in  

F1-score  

Type + 2.1% + 0.2% + 0.9% 

Delivery Method - 1.4% -1.7% - 1.6% 

Size + 0.7% + 0.2% + 0.4% 

Location + 9.1% +3.7% + 5.9% 

 

3.3.2 Discussion 

The proposed predictive risk model capitalizes on historical data to produce risk 

templates for major transportation projects. Various advantages of this data-driven risk 

identification technique exist in comparison to expert judgment-based approaches. First 

of all, this approach provides significant flexibility for the customization of the risk 
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template based on various project characteristics. It also enables the user to consider 

cost/schedule consequences besides the frequency of risk items in historical data. 

Moreover, the proposed model requires less time and cost compared to traditional risk 

identification approaches. One of the main challenges of the subject matter experience-

based approach is subjectivity. Therefore, expert bias significantly influences the risk 

identification results. However, the data-driven approach expedites processing while 

capturing the subjectivity uncertainty of experts’ judgments using empirical data. 

Finally, the proposed model provides easy transmission of lessons learned from similar 

previous projects in terms of the risks and average consequences. The flexibility of this 

approach allows reuse for other project types with tabulated databases. In addition to 

all the theoretical contributions of this paper, the main benefit of the proposed model 

focused on its application in real highway projects. Project teams benefit from a tool 

that expedites risk identification, reducing the time required to identify common risks. 

Noted the testing experience and sensitivity analysis underline the variation in model 

performance in different scenarios. Specifically, to implement the model, the potential 

bias in those scenarios in which the number of data points is low should be considered. 

But, the proposed tool is transparent in terms of sample size and accuracy. It plays as 

an advisory tool to help project teams as an initial step in conducting risk studies. 

One of the main limitations of the current study is the lack of access to ex-post risk 

data. Ex-post data would reflect what actually happened by project completion. That 

would significantly increase the value of the current study by considering the real 

values of delays and cost overruns besides how successful the project was. It should be 
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noted that the developed model in this study could be calibrated and applied to a new 

dataset of the ex-post risk data.    

  3.4 Conclusion 

This study offered predictive risk modeling using historical data from major 

transportation projects instead of relying on expert judgment solely. This data-driven 

approach utilizes NLP and word embedding models to detect similar risks with various 

terminologies from risk registers of similar previous projects. The model is able to 

capture critical risks considering both prevalence and cost/time consequences as well 

as specific project characteristics. 

The authors tested the application of the proposed model by evaluating the risk template 

over five sample projects. Results revealed that the model aids project teams in 

automatically detecting more than half of the common risk register items. Testing 

experiments suggest that adding project characteristics such as location, type (e.g., 

bridge, highway, interchange) and size improve the risk template performance.  

Results suggested that upon the high similarity in risk items for major transportation 

projects, the proposed model can offer an initial step in conducting risk studies to help 

project teams become equipped with knowledge and experience of similar previous 

projects. Project team judgment refines and finalizes the risk template in accordance 

with the unique nature of each project. Limitations to the proposed solution require 

future studies, highlighted by examination of the ex-post risk data incorporating the 

actual impact based on what happened and response application for new projects. Also, 

study limitations include a relatively small sample size and using a pre-trained 

Word2Vec model. Future studies could increase volume risk registers for comparison 
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and train deep neural networks using the words from a large construction database 

corpus. 
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CHAPTER 4: EX POST PROJECT RISK ASSESSMENT  

The contents of Chapter 4 are published in the Journal of Construction Engineering and 

Management, ASCE. 

Citation: Erfani, A., Ma, Z., Cui, Q., Baecher, G. (2023b). Ex post Project Risk 

Assessment: Method, and Empirical Study, Journal of Construction Engineering and 

Management, 149(2), 04022174. 

 

4.1 Abstract 

Project risk is an important part of managing large projects of any sort. The study 

contributes to the state of knowledge in project risk management by introducing a data-

driven approach to measure risk identification performance using historical data. In the 

early phases of a project, the identification and assessment of risk is based largely on 

experience and expert judgment. As a project moves through its life cycle, these 

identified risks and their assessments evolve. Some risks are realized to become issues, 

some are mitigated, and some are retired as no longer important. The study investigates 

the quality of early risk registers and risk assessments on large transportation projects 

in comparison to how those risks evolved on historical projects. It does so by using 

textual analysis of archival risk registers documents. Finite state automation methods 

akin to Markov Chain models are used to track the changes in risk attributes on these 

large infra-structure projects as the projects mature. The objective is to be better able 

to anticipate how such project risks will change as projects move forward and to be 

better able to forecast changes to the risk register from ex ante to ex post conditions. 
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Results from 11 major US transportation projects suggest that on average somewhat 

fewer than 65% of ex ante identified risks ultimately occur in projects and are 

mitigated, while somewhat more than 35% do not occur and are retired. In addition, 

more than half of the risks emerged during project execution when new information 

became available. Categorizing risk management styles illustrates that planning for 

identified risks in the initial phase of the project is necessary but not sufficient for 

successful project delivery. A project team with positive doer behavior (i.e., actively 

monitoring and identifying risks during project execution) performed better in 

delivering projects on time and within budget. 

4.2 Research Design and Data 

Finite state automation methods, akin to Markov Chain models, are used to track 

changes in risk attributes as a project matures. The objective is to be better able to 

anticipate how project risks change as a project moves forward and to be better able to 

forecast changes to the risk register from ex ante to ex post conditions.  

A finite-state automaton (FSA) is a simple computational model which defines a list of 

states a system can occupy and permissible transitions among those states. The system 

can be in one and only one state at a given time (the status of the system). The FSA 

transitions among states in response to some inputs. An FSA is fully specified by its 

set of states, an initial state, and the inputs that prompt transitions. The final state of the 

system is an output of the initial state and a series of inputs. The common representation 

of an FSA is a state-transition table. This indicates, for each state and input, what the 

next state will be. An FSA can be either deterministic or probabilistic. 
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Figure 11. Simple two-state system with two inputs 

The simple system of Figure 11 has two states, 𝒬 = (𝑆1, 𝑆2), and two possible inputs, 

𝛴 = (0,1). The state-transition table is given by Table 16. The system state changes if 

the input is 0 and remains the same if the input is 1. These transitions are represented 

as, 𝛿 = (𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝑐ℎ𝑎𝑛𝑔𝑒). Thus, using standard FSA notation, the system can be 

represented as, 

 FSA= (𝒬, 𝛴, 𝛿, 𝑞0, 𝐹)  (6) 

where,  

𝒬 = a finite set of states  

𝛴 = A finite set of inputs 

𝛿= a transition function, 𝒬 × 𝛴 → 𝒬 

𝑞0 = an initial state, 𝑞0 ∈ 𝒬 

𝐹 = set of final states, 𝐹 ∈ 𝒬 

The FSA starts at one initial state and ends at a final set of states resulting from the 

sequence of inputs.  
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Table 16. State-transition table 

Input 

Current state 

𝑆1 𝑆2 

1 𝑆1 𝑆2 

0 𝑆2 𝑆1 

The FSA computational model is widely used in computer science (Bahattacharya and 

Ray 2022; Shannon 1953; Vardi 1989), mathematics (Mackenzie 1995; Wen and Ray 

2012), biology (Chen and Mynett 2003; Ermentrout and Edelstein-Keshet 1993), 

linguistics (de Case et al. 2009, 2012), and engineering (Freire and DaCamara 2019; 

James 2019; Richter et al. 1999; Song et al. 2021). In recent years, applications have 

appeared in the project management literature. Shimura and Nishinari (2014) applied 

Cellular Automata, an extension of FSA, to network scheduling. Flood and 

Goodenough (2021) used cellular automata to represent the contracts in a 

computational format. Anari et al. (2013) used learning automata, another extension of 

FSA to optimize the risk management process. Baiardi et al. (2008) implement FSA to 

understanding sequences of complex cyber security risks.  

4.2.1 Risk life-cycle framework 

In construction, various risks arise at different stages of a project's life cycle and evolve 

dynamically. Risk identification refers to systematically and continuously identifying 

potential risks and their consequences on a project (Erfani et al. 2022; Siraj and Fayek 

2019). Risk identification is conducted by project teams using a variety of tools and 

techniques during planning and construction. Documentation reviews, information 

gathering techniques, checklists, and expert judgment, are some of these tools (Al-Al-



57 
 

Bahar and Crandall 1990; Iqbal et al. 2015). Moreover, federal highway and department 

of transportation agencies have developed various risk identification guidelines and 

standards for transportation construction projects (Curtis and Program 2012, Molenaar 

2006, 2010). A risk register documents the outcome of the risk identification and 

updates it as the project progresses. It is difficult to evaluate the interaction of risk 

factors in current risk management practices. Therefore, risk factors are identified 

independently and analyzed separately (Tavakolan and Etemadinia 2017).  

Project risks can be tracked through different states, transforming from one to another 

as the project progresses. Using the automata theory concept (O’Regan 2021), risk state 

refers to the risk status at various stages in a project's lifecycle and risk transition 

functions govern the transition between states. 

Risk states, In the present study, risk states are defined as registered, happening, and 

closed (Table 17). A risk is classified as registered once it has been identified. It 

transitions to happening when it begins impacting the project. During project 

execution, some risks might be realized (i.e., occur) and some risks might be dismissed 

(i.e., remain dormant or have no impact). These risks states are designated, closed. 

Table 17. Risk states and definitions 

Code Risk State Definition 

Reg Registered The risk item is identified, generated, and not start to happen 

Hap Happening The risk item is currently occurring and hasn’t been closed yet 

Clo Closed The risk item close after/without occurrence 
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Risk transitions, Risk states identified ex ante may change during project execution 

and new risks may emerge. The transition function defines how risks evolve (i.e., move 

from one state to another). The transitions are categorized in four types:  generate, 

occur, continue, and close (Table 18). In the symbology of FSA, these are represented 

as, 𝛿 = (𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒, 𝑜𝑐𝑐𝑢𝑟, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝑐𝑙𝑜𝑠𝑒). 

Table 18. Risk transition functions and definitions. ∅ indicates an initial state of 

before the risk is formally identified. 

Risk Transition Definition State transition 

Generate The risk item is generated and added to the risk register ∅ → Reg 

Occur The risk item happens Reg → Hap 

Continue The risk item continues the state 

Reg → Reg 

Hap → Hap 

Clo → Clo 

Close  The risk item is closed 

Reg → Clo 

Hap → Clo 

Generate refers to when a new risk identified during construction, occur refers to a risk 

that starts to happen. Continue refers to a risk that remains in the same state as the 

project moves forward. Close indicates refers to a risk has been mitigated or dismissed. 

All risks are classified as closed at project completion.   

Risk lifecycle. Each risk can have a unique lifecycle from the time that it has been 

initiated to the time it is closed. A Risk Life-cycle Automaton (RLA) can be represented 

as in Figure 12. The RLA includes the three risk states of registered, happening, or 

closed; and the four transitions of generate, continue, occur, and close. 
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Figure 12. Risk life-cycle automaton (RLA) 

The final state, marked with a double circle, will be reached if when the risk is closed, 

which occurs for all risks at the end of the project. In this model, the risk states are 

executed based on the set of operations the risk transitions enable, that is, the set of 

transitions for which their preconditions hold. Hence, using automaton 

characterization, the RLA can be written as, 

 FSA= (𝒬, 𝛴, 𝛿, 𝑞0, 𝐹)  (7) 

where,  

𝒬 = (Reg, Hap, Clo)  

𝛴 = information accruing during construction 

𝛿 = (occur, continue, close) 

𝑞0 = (Reg) 

𝐹 = (Clo) 
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Given the RLA, each risk is stored by the sequence of state combinations it follows. 

The RLA automated provides a clear and intuitive interpretation of a risk life-cycle. 

Figure 13 illustrates three examples of possible risk life-cycles. 

 

Figure 13. Risk life-cycle automata examples 

4.2.2 Procedure 

Ultimately, the goal was to measure risk management performance by risk 

identification and following risks from either their ex ante or during-project-execution 

beginnings to their ex post conclusions (which will always be Clo eventually). The 

approach was to use the proposed framework to follow evolving (or emerging) risk 

states through the project life cycle. This can be done by tracking the proportion of 

identified risks that is realized by the project’s end and the portion that is dismissed. 

Utilizing historical risk registers, the first step includes applying the proposed 

framework to identify individual risk life cycle, organize risks into two major 
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categories of initial and construction stage risks, and determine whether the risk 

occurred or was dismissed. 

The proposed framework was applied to 11 major US transportation projects. Table 19 

summarizes the project data. Risk registers developed by the project team were 

extracted from the annual financial updates document as inputs for our analysis. For 

each project, risk transitions were recorded among the project risk registers by tracking 

risk items (Figure 14). The process of RLA tracking was based on available data for 

each project, including risk descriptions, risk response strategies, and their respective 

likelihoods. For instance, a high occurrence probability (90%-100%) risk that 

accompanies a cost overturn will be classified to a Happening state in that year. All 

risks are considered as closed when the project is completed. Even though some risks 

were recorded as “Registered” status in the last updated risk register document, those 

risks are considered as “Closed” in the final year.
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Table 19. Ex post project dataset and characteristics. 

Project 

ID 

Project 

Type 

Jurisdiction Delivery 

Method 

Project 

Size (M $) 

Number of 

risk 

registers 

Number of 

risks in initial 

stage 

realized 

Initial risks 

Number of risks 

in construction 

stage 

Realized 

Construction risks 

1 Highway CA DB 1421 5 32 31 6 6 

2 Highway IA DBB 1131 4 24 21 22 22 

3 Highway TX DBB 4922 4 85 72 16 16 

4 Highway CA DBB 1792 4 43 39 103 68 

5 Highway CA DBB 986 4 19 15 28 17 

6 Highway FL DBB 684 5 131 24 193 188 

7 Bridge 

and 

Tunnel 

CA 

DB 1492 4 65 

36 24 9 

8 Highway MD DBB 814 2 15 9 30 11 

9 Bridge 

and 

Tunnel 

KY 

DBB 583 2 15 

3 1 0 

10 Highway TX DB 693 2 15 3 2 0 

11 Highway MI P3 1137 2 14 4 41 3 
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Figure 14. Project data and tabulation process. 

Sometimes recorded project data vary in structure and content because each project 

team may have a unique approach to keeping those data updated. Therefore, dealing 

with these unstructured data required reasonable assumptions.  These were kept 

consistent for all the projects. These assumptions were:  

1) The study assumed that those intermediate “Happening” risks would be considered 

as realized in the final year if no other information was provided.  

2) The study assumed that those intermediate “Registered” risks would be considered 

as dismissed in the final year if no other information was provided.  

3) The study assumed that all risks in the initial version should be “Registered” or 

“Happening”. Risks could not be considered as close in the initial step.  

4) The study assumed that all risks in targeted projects were closed in the last updated 

risk register. 

After examining each risk path, a risk was classified as realized or happened if it 

reached the "Happening" state. In other words, the language corresponding to the 

Automata language includes a state called "Happening". Risk A in Figure 13, for 

example, represents a realized risk identified in the initial stage. The risk would 

otherwise be dismissed and not happen. That means that the corresponding language 
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will never reach the "Happening" state in the automata framework. Figure 13 illustrates 

two dismissed risks, B and C. Risk B was identified during project execution, whereas 

risk C was identified at the beginning of the process.  

4.3 Results and Discussion 

4.3.1 Risk identification performance ratios 

Proposed indicators (performance ratios) by which to evaluate risk identification 

performance are shown in Table 20. With the established RLA datasets and classifying 

initial/construction risks to realized or dismissed categories, the ratios were 

automatically generated by predefined functions. As an example, in Project ID =4, 43 

risks were specified in the initial risk register. 39 of those risks actually happened and 

the rest were dismissed. According to historical records, the project team added 103 

risks during construction, and 68 of these risks eventually occurred (See Table 19). 

Main performance ratios are calculated as follow: 

Initial realization ratio =  
Number of realized risks in year 1

Number of identified risks in year 1
=

39

43
= 0.91 (8) 

Further realized ratio =  
Number of realized risks from risks after year 1

 Number of identified risks after year 1 
=

68

103
= 0.66 (9) 

New item ratio =  
Number of identified risks after year 1

Total Number of identified risks
=

103

43 + 103
= 0.71 (10) 

Total realization ratio =  
Number of realized risks

Number of identified risks
=

39 + 68

43 + 103
= 0.73 (11) 

Initial efficiency ratio =  
Number of realized risks in year 1

Number of identified risks
=

39

39 + 68
= 0.36 (12) 
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Table 20. Risk performance ratio definitions 

Scope Ratio  Ratio Formula 

Overall 

performance 

Total realization ratio 
Number of realized risks

Number of identified risks
 

Total dismissed ratio 
Number of dismissed risks

Number of identified risks
 

Initial 

performance 

Initial realization ratio  
Number of realized risks in year 1

Number of identified risks in year 1
 

Initial dismissed ratio  
Number of dismissed risks in year 1

Number of identified risks in year 1
 

Initial efficincy ratio  
Number of realized risks in year 1

Number of realized risks 
 

Construction 

phase  

performance 

New item ratio  
Number of identified risks after year 1

Total Number of identified risks 
 

Further realized ratio  
Number of realized risks from risks after year 1

 Number of identified risks after year 1 
 

 

The suggested performance ratios consider three phases of risk identification 

performance during the project life: overall, initial, and construction phase. First, to 

evaluate the overall risk identification performance, the “total realization ratio” is 

measured as a fraction of the number of total realized risks divided by the total of 

identified risks. The “total dismissed ratio” is calculated from the other side of risk 

management performance through the dismissed numbers. The sum of these two 

metrics must equal one.  

Risk planning is essential in the initial project phase. In the literature, this is called 

proactive risk management. The project team tries to identify most of the risks in the 
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early phase of the project (Kaliprasad 2006). To capture this initial planning, the present 

study computed the proportions of realized and dismissed initial risks through the 

“initial efficiency ratio,” “initial realization ratio” and “initial dismissed ratio.” These 

focus on the project’s initial year based on the number of realized or dismissed risks 

only in the first year. 

Regardless of initial risk identification performance, risk monitoring and planning 

during project execution is essential. This reactive behavior which is sometimes 

considered as planning for risks that are newly identified or start happening during 

project execution (Pavlak 2004).  To analyze the project risk management performance 

during execution, the study calculates the percentage of new risks over total risks, 

named “new item ratio.” Another indicator, the “further realized ratio” was considered 

to estimate the effectiveness of responses for the group of new risks. Note that, the 

proposed framework could be applied in future studies to track risk assessment 

performance also with respect to cost and schedule consequences compared to actual 

values. The cur-rent study only tracks metrics related to risk occurrence frequency. 

The average risk identification realization ratio was 0.64. This indicates that 64% of 

identified risks on average in these testing projects happened during the project life-

cycle.  That is, 36% of identified risks did not occur. Thus, the total dismissed ratio was 

0.36. The performance variation among different project teams was significant. 

Projects were sorted on the realization ratio to identify potential drivers behind a good 

or bad performance. The results based on the testing pro-jects show among the top 

projects with a high total realization ratio the important similar factor is a high further 

realized ratio. In other words, projects that identify risks that occur during the project 



67 
 

execution well typically reported a better overall risk identification performance. The 

second group of projects is those projects with a high new item ratio, whether those 

risks all happened or not. During the project construction, these projects were active in 

identifying new potential risks, with an acceptable overall risk realization performance. 

Finally, projects with low performance in risk identification during project execution 

reported low overall performance.  

Secondly, the initial realization ratio was 0.56 on average. About half of identified risks 

in the first step did not happen. That is potentially related to the lack of detailed 

information in the initial phase of the project which makes risk identification more 

generic rather than project-specific. However, the further realized ratio, which is related 

to the occurrence of identified risks during the construction process, is higher, on 

average 0.73. While the overall realization ratio and further realization ratio are higher 

than the initial realization ratio, the efficiency ratio was 0.43 on average. The potential 

reason may be that project teams do not take the project risk monitoring and updating 

seriously. In other words, teams may identify a few risks in the first step and not update 

the risk registers through project execution. This observation can be found with the new 

item ratio reported as 0.50 on average. That means 50% of identified risks were 

considered during the project execution as new risk items. Similarly, the variation is 

high, reported as between 0.06-0.75. 
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Figure 15. Risk identification performance 

4.3.2 Risk Management Styles 

Analyzing the risk identification performance metrics suggested categories of potential 

risk management styles. The study introduces new terms for risk management styles 

based on the project team performance during the initial and project execution stages. 

Based on the observed behaviors, generally, project teams can be categorized into two 

main groups “planners” and “doers”. Planner behavior is associated with those teams 

that mostly try to identify risks in the initial phase of the project and be well prepared 

for the future. Those teams are not significantly active during project execution to 

update the risk registers. On the other hand, doer behavior describes project teams that 

are conducting risk identification actively during project execution. A sign of a doer 

behavior is found in the new item ratio. Those teams reporting high values for the new 

item ratio are those who constantly add new risks to the risk register during project 

execution. 
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It is important that how the project team’s behavior attitude. If a team had planer 

behavior did they identify a large number of risks realized at the final stage of the 

project? Or if they were active during project execution how well do they identify risks? 

Project teams are divided into two major categories, careful and excessive teams. If a 

team performed well in the initial risk identification it was categorized as “Careful 

planners.”  A careful planner team has a high initial realization rate, meaning they 

identify many risks early on that ultimately occurred.  “Excessive planners” are those 

project teams that identify a large number of risks in the initial stage that did not finally 

occur, an indication of a low initial realization ratio. Similarly, project teams with 

careful doer behavior were called “Careful doers.” A careful doer team identifies more 

risks during project execution and those risks finally occurred. While the excessive 

doer did not perform well in identifying risks during project execution in terms of 

occurrence with a low further realized ratio. Figure 16 demonstrates the risk 

management styles considering the proposed metrics, assigned to each project.  
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Figure 16. Project delivery performance and risk management style 

4.3.3 Project performance vs risk management styles 

The purpose of this section is to evaluate the relationship between risk performance 

metrics, risk management styles, and project delivery performance. Figure 14 provides 

the project delivery performance metric comprising “Total cost growth,” and “Total 

time growth.” Total cost/time growth represents the growth from the engineer’s 

estimate to actual cost/time. In this regard, for example, -0.10 as total cost growth 

means the project delivered with 10% lower cost than the engineer’s estimate. On the 

other hand, 0.17 as total time growth represents the project delay of 17% compared to 

the engineer’s estimate. 

While it is accepted that there are several drivers behind good or bad project delivery, 

the purpose of this analysis is to evaluate the potential relationship between risk 

identification style and project delivery performance. According to Figure 16, 
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successful project teams that deliver projects under budget and within schedule are 

mostly “doer” groups in the current definition. Specifically, careful doers (Projects 4,5, 

and 6) delivered their projects with good performance metrics. Even projects 11 and 8 

which were among the excessive doers delivered their projects well. On the other hand, 

the more unsuccessful project deliveries (Projects 1, 2, 7, and 9) were planners. This 

observation indicates careful planning is necessary to deliver a project on time and 

within the targeted budget but not sufficient.  Active risk identification and monitoring 

behavior during project execution is also required for successful project delivery.  

We performed a quantitative analysis to evaluate the statistical significance of the 

average difference between the performances of the “doer” and “planner” teams. Visual 

inspection of the data in Figure 16 suggests a distinct difference, but the numbers of 

data are small. First, the labelled data were clustered into two groups for the doer and 

planner teams, respectively. The data were normalized into z-scores by dividing by the 

respective standard deviations to create a common variance. Then Hotelling’s T2 test—

a generalization of the Student t test in one dimension (Rencher 2002)—was applied to 

test the significance of the difference between the bivariate mean performances of each 

of the two clusters. This led to the result 𝑇2 = 27.8, compared with the p=5% limit 

𝑇𝜈=6,𝑝=0.05
2 = 13.9. To test the proposition that project P7 is potentially an outlier, that 

datum was removed and the analysis performed again.  Absent P7 the Hotelling statistic 

became  𝑇2 = 17.9, compared with the 5% limit 𝑇𝜈=5,𝑝=0.05
2 = 17.3.  Thus, even with 

this possible outlier removed, the difference between the average performances of the 

doers and planners remains statistically significant at p=5%.  
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4.3.4 Discussion  

As a best practice to ensure project success, risk management has been widely 

implemented in major transportation projects. However, the current risk management 

practice and most of the previous research studies completed only considered the ex-

ante analysis. There is a lack of study to evaluate how the current risk management 

practice performs in terms of identifying the risks and how its performance link to the 

project delivery performance. The study introduces a novel framework to track risk 

item evolving paths that provide an opportunity to evaluate the risk identification 

performance.  

Capitalizing on a data-driven approach this study identifies potential drivers behind a 

good risk identification practice and a successful project delivery. The main output of 

this research is that considering risk management as a compliance requirement to 

complete in the initial phase of a project is a big mistake by project teams. Active and 

careful risk monitoring during project execution is an essential requirement of 

successful project delivery. Analyzing the risk management behaviors motivates 

authors to introduce new terms as project team risk identification styles. Findings 

revealed that careful planning is necessary for successful project delivery but not 

enough. A careful doer plan is an essential component of a good risk management 

practice. Those teams that were active in project execution to identify new risks and 

monitor the project changes were delivered the project under planned budget and 

schedule mostly. While inactive teams in terms of risk monitoring delivered projects 

mostly with huge delay and cost overrun. The main objective of the study is to help 

project teams be better able to anticipate how such project risks will change as projects 
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move forward and to be better able to forecast changes to the risk register from ex-ante 

to ex-post conditions. 

4.4 Conclusion  

The study offers a data-driven framework to evaluate risk identification performance 

using historical risk data. The framework is informed by automata theory to define risk 

states and transition functions to track risk life-cycles. Risk states are categorized as 

registered, happening, and closed. The risk transition functions were categorized as 

generate, continue, occur, and close. Through tracking individual risk life-cycles, the 

study introduces new metrics to measure risk identification performance. Performance 

metrics are designed to figure out the percentage of risks that occurred or were 

dismissed as the project evolved. These metrics are categorized to measure the risk 

identification performance in total, initial, and project execution levels.  

The authors provided the application of the proposed framework by testing 11 major 

transportation projects built in the U.S. The results revealed that on average about 64% 

of identified risks occur through the entire life-cycle of projects. Project teams reported 

significantly different risk management styles. While some teams try to identify most 

of the risks in the first step at the initial phase, some teams were significantly active 

during project execution to identify new risks and update the risk registers.  

The study introduced new terms to categorize a project teams’ risk style based on their 

planning and doing behaviors. A careful planner style identifies many risks that are 

realized at the end of the initial stage. A careful doer style identifies many risks that 

happen during project execution. On the other hand, excessive planners and doers stand 

for teams that report low performance in initial realization ratio and further realized 
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metrics, respectively. Finally, the study also examined how doer and planner teams 

perform differently when it comes to project delivery by applying statistical test. We 

found that project teams with active and careful doer styles to monitor risks during 

project execution performed better final cost and time performance that the project 

delivered compared to the engineer’s estimate.  

Study limitations include relatively small sample size and limited risk occurrence 

metrics. Future studies could increase the number of risk registers for comparison and 

consider the actual consequences of risks in cost and schedule as compared to 

estimations by the project team. Noted, in the current practice, risk data is limited or 

not well documented. The study encourages practitioners and researchers for more 

transparent practice in risk management domain. 
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CHAPTER 5: A COMMON RISK BREAKDOWN STRUCTURE 

AND RISK INTERDEPENDENCIES 

The contents of Chapter 5 are accepted to be published by IEEE Transactions on 

Engineering Management. 

Citation: Erfani, A., Cui, Q., Baecher, G., Kwak, Y. H. (2023c). Data-driven approach 

to risk identification in major transportation projects: A common risk breakdown 

structure, IEEE Transactions on Engineering Management. 

5.1 Abstract 

Identifying and evaluating risks is one of the most essential steps in risk management 

in construction projects. When technical and managerial complexity increases in major 

transportation projects, this becomes even more important. Currently, project teams are 

assumed to identify risks mostly based on their experience and expertise. It is a major 

issue that some state departments of transportation (DOT) project teams lack the risk 

management experience. This study proposes using a data-driven approach to unify and 

summarize existing risk documents to create a comprehensive risk breakdown structure 

(RBS). As a preliminary risk identification framework, a consolidated RBS were 

developed, using content analysis of public risk reports by various DOTs.  Then, 

comparison was made between the developed RBS with 70 US transportation projects' 

risk registers. Natural language processing techniques, Bidirectional Encoder 

Representations from Transformers (BERT), was employed to calculate semantic text 

similarity to determine what percentage of risks are covered by generic RBS. The 

results showed that 70 generic risk templates cover almost 81% of the identified risks 

in the database of 70 major projects which is about 6,000 individual risks. Project 
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parties can use these results to discuss and identify context-specific risks as a starting 

point. The study also determined the interactions between risk items based on their co-

occurrence using historical data. Research findings revealed the importance of 

considering interdependencies between risks in future studies. 

5.2 Research Design and Data 

Figure 17 illustrates the research flowchart for this study. Data collection, RBS 

development, RBS testing, and risk interdependencies examination are the four major 

steps in the development of this study. The following sections provide more details. 

 

Figure 17. Data-driven risk breakdown structure development outline 
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5.2.1 Data Collection  

A review of DOT websites across the US and other resources was conducted to find 

out if they have risk management guidelines, reports, or best practices for risk 

management in construction transportation publicly available. We included risk reports 

with RBSs among our sample. DOT reports summarize decades of project delivery 

experience. The final sample includes data from Washington, Texas, Montana, 

California, Nevada, Michigan, New Jersey, Oregon, and Minnesota, as well as a report 

from the Federal Highway Administration (FHWA). The raw data, including risk 

reports and RBS samples, can be found at https://github.com/data-driven-

RBS/usingreports. 

5.2.2 Risk Breakdown Structure (RBS) Development  

DOTs’ risk reports group risks into level 1 (risk categories) and level 2 (risk items). 

Using content analysis, we summarized the risk data into one comprehensive RBS. The 

content analysis was conducted using a bottom-up approach (Sigmund and Radujković 

2014). Risk items were grouped into themes to identify potential categories (level 1) 

and risk items (level 2) (Rasool et al. 2012). A continuous grouping process similar to 

(Beardmore and Molenaar 2021) was followed, and iterations continued until: (1) all 

the categories and items were mutually exclusive and exhaustive, so there could be no 

unit that falls into two categories or has two points representing it (Krippendorff  2018); 

(2) each group consisted of a logical quantity so that the grouping was easy to recall 

(Wicks 2017); (3) ensure diversity of risk factors; and (4) balance the frequency of risks 

coded to each category (Beardmore and Molenaar 2021, Krippendorff  2018). As soon 

https://github.com/data-driven-RBS/usingreports
https://github.com/data-driven-RBS/usingreports
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as all four conditions are met, the RBS is prepared by combining the final categories 

and risk items. 

For example, our first step in developing level 1 is to extract all risk categories and risk 

items themes within those categories. The initial list includes environmental, design, 

right-of-way, construction, external, organizational, management, stakeholder, scope, 

financial and economic, contracting and procurement, railroads, utilities, traffic, market 

conditions, and structure and geotechnical issues. Our initial grouping process showed 

that external and stakeholder risks are the same, so we merged them. As there were few 

risks under scope, railroad, market conditions, and financial and economic, we 

followed other project solutions and brought those risks to level 2 and merged them 

with other related categories to balance risk categories. This example demonstrates how 

content analysis is performed. 

5.2.3 RBS Testing  

This section evaluated the performance of the developed RBS by using the 70 

transportation projects (Figure 8). Using Natural Language Processing (NLP) 

techniques, we identify the risks in testing projects that match the RBS the closest. RBS 

performance was measured using semantic text similarity calculations. As different 

project teams use different words and phrases to describe risks, implementing NLP 

modeling enables us to identify similar risks automatically. 

An initial step in NLP studies is text vectorization, which involves converting text into 

numeric form for further calculations (Ge and Moh 2017, Panahi et al. 2023). Artificial 

intelligence companies such as Google and Facebook built large pre-trained word 

embedding vectors. Word embedding models show each particular word in the corpus 
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while capturing the semantic meaning behind words. One of the most widely used 

vector models in the literature is Word2Vec introduced by Google's research team 

(Mikolov et al. 2013). The Word2vec model was trained with millions of words from 

Google news, which were converted into 300-dimension vectors based on their 

meaning. 

The deployment of deep learning models with transformer architecture to generate 

contextualized word embeddings has led to a tremendous improvement in NLP models 

in recent years. BERT (Bidirectional Encoder Representations from Transformers) is a 

state-of-the-art pre-trained language model developed by Google. BERT has the 

advantage of generating contextualized embeddings when compared to word2vec. 

Using word2vec, each word is represented by a fixed vector in a high-dimensional 

space, which does not capture its context-specific meaning. By contrast, BERT 

generates word embeddings based on the context of words in sentences or paragraphs 

using a transformer architecture. Thus, BERT can accurately represent words in various 

contexts by capturing the nuances of language (Kenton et al. 2019; Reimers and 

Gurevych 2019). BERT has been applied to tasks such as information retrieval, 

sentiment analysis, and document classification in construction-related studies. Using 

BERT, Fang et al. (2020) classified texts related to construction safety in a recent study. 

BERT was used by Moon et al. (2022) for automatic risk identification in contracts. 

SBERT (Sentence-BERT) is a variant of BERT (Bidirectional Encoder 

Representations from Transformers) that is specifically designed for computing 

sentence embeddings and measuring semantic similarity between pairs of sentences 

(Reimers and Gurevych 2019). First, the input sentences are preprocessed to add 
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special tokens that indicate the beginning and end of the sentences, along with a 

separator token that distinguishes them. Using a large corpus of text data, the pre-

trained BERT model is fine-tuned for similarity or paraphrasing tasks. As soon as the 

model is fine-tuned, it can be used for generating embeddings of any input sentence by 

passing the sentence through the model and extracting the embedding from the output. 

A pooling layer is applied to the BERT model to obtain sentence-level embedding. The 

embedding vector of a text with 768 dimensions is what we get after the pooling layer. 

Using pairwise distances or cosine similarity, these embeddings can be compared. 

Cosine similarity is a general measure of assessing the similarity of two vectors by 

calculating the cosine of their angles. A calculated example showing the semantic 

similarity calculation process between two risk items is shown in Figure 18. Cosine 

similarity calculations facilitate the matching of similar risks within RBS and testing 

risk registers that measure RBS performance. 

 

Figure 18. Semantic similarity calculation example using BERT 
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Ideally, the similarity index should equal 1, meaning the same risk item repeats exactly 

the same. The threshold for text similarity matching using BERT depends on the 

specific use case and the level of similarity required. A threshold of 60% cosine 

similarity is often used by BERT to identify sentences that are similar or paraphrased 

(Reimers, N. and Gurevych 2019; Kasnesis et al. 2021; Zhang et al. 2019). We found 

that 60-70% similarity is an appropriate threshold for matching risk across different 

texts. It should be noted that our text similarity matching approach has potential 

limitations in terms of mislabeling, especially if the similarity is between 50-70% for 

both risks incorrectly considered as cover and the reverse. 

5.2.4 Risk Co-occurrence Examination 

With a comprehensive RBS and historical data, we can measure the co-occurrence of 

risks across 70 major transportation projects. Based on the developed RBS in step B 

and the result of matching risks to closet risks in step C, we get an output of each risk 

in RBS occur on which projects. Our next step was to develop a Python script that 

would perform a pairwise comparison of all the risks in the RBS to determine how 

many co-occurrences there were between them. 

5.3 Result and Discussions 

5.3.1 Risk Breakdown Structure 

A total of 70 risk items and 11 risk categories are included in the final RBS. A visual 

representation of the risk categories in level 1 is shown in Figure 19. Based on the 

DOT's report, we discuss the detail of risks in each category and their definitions. 
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Environmental 

The 'Environmental' risk category includes risks associated with processes and permits 

related to the National Environmental Policy Act and State Environmental Policy Act, 

hazardous material (Washington DOT 2018). This category includes following major 

risk items: “Environmental permitting and requirements”, “National Environmental 

Policy Act Review (NEPA) process and documentation”, “Hazardous Materials”, 

“Wetlands and endangered species”, “Archaeological and cultural sites”, 

“Environmental regulation change”, “Additional environmental analysis required”, 

“Water Quality”, “Noise mitigation”, and “Unidentified contaminated soils”.  

Construction 

The ‘Construction’ risk category includes risks associated with construction phase of 

the project with emphasize on schedule related, safety and earth work issues (Dicks 

and Molenaar 2022; Washington DOT 2018). Many of the identified risks in the 

Construction category overlapped with those in other categories but could be classified 

as construction risks due to when they occurred (Dicks and Molenaar 2022). This 

category includes following major risk items: “Contractor access”, “Different site and 

subsurface condition”, “Construction Safety”, “Schedule uncertainty”, “Coordination 

Figure 19. RBS level 1 for transportation projects in US 
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with adjacent projects”, “Work windows”, “Material and resources availability”, 

“Construction incorporates new or unproven technology”, “Contractor and 

subcontractor performance”, “Weather related issues”, “Buried man-made objects”, 

and “Construction quality assurance and control issues”.  

Management and funding 

The ‘Management and funding’ risk category includes risk associated with managerial 

aspect, decision making, workforce limitation, economic and financial management 

(Dicks and Molenaar 2022; Washington DOT 2018). This category includes following 

major risk items: “Delayed decision making”, “Project purpose change”, “Cash flow 

restrictions”, “Labor disruptions”, “Force majeure”, “Economic change and 

availability of funding”, and “Political or policy changes”. 

Design 

In the 'Design' risk category, there are risks associated with the design process, 

approval, errors, changes, and deviations. There were multiple possible scenarios 

during the planning phase of the risk workshop, which is usually cited as a reason to 

include this risk (Dicks and Molenaar 2022; Washington DOT 2018). This category 

includes following major risk items: “Design changes”, “Design requirement”, “Design 

incomplete”, “Delay in design approval”, “Design exceptions”, and “Aesthetic issues”.  

Right of Way 

The ‘Right of way” risk category includes associated with land acquisition, limited 

access, and right of way planning. While there may not be as many separate risks 



84 
 

identified here, they are undoubtedly one of the costliest risks. As these projects 

typically require dozens of land acquisitions and the possibility of any of them requiring 

settlement in court could delay the project timeline (Dicks and Molenaar 2022; 

Washington DOT 2018). This category includes following major risk items: “Right of 

way acquisition issues”, “Right of way cost uncertainty”, “Additional Right of way is 

required”, “Right of way plan”, “Railroad and right of way entry”, and “Right of way 

relocation”.   

Utilities  

The ‘Utilities’ risk category includes risks associated with utility relocations that 

typically require coordinating with local municipalities and utility companies as well 

as discovery of unexpected utilities that may need to be moved (Dicks and Molenaar 

2022; Washington DOT 2018).  This category includes following major risk items: 

“Utility coordination”, “Utility requirement”, “Utilities conflicts”, “Utility funding 

may be inadequate”, and “Utility relocation”. 

Stakeholder  

In the 'Stakeholder' risk category, there are risks associated with third parties and public 

involvement (Dicks and Molenaar 2022; Washington DOT 2018). This category 

includes following major risk items: “Public involvement”, “Additional Scope for third 

parties”, “New stakeholders emerge and demand new work”, “stakeholders request late 

changes”, “Objection from local communities and agencies”, and “Communication 

with stakeholders”.  
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Procurement and Contracting  

In the 'Procurement and Contracting' risk category, there are risks associated with 

delivery of the project, the execution of the contract, and market conditions that may 

affect the level of competition before awarding the contract (Dicks and Molenaar 2022; 

Washington DOT 2018). This category includes following major risk items: “Change 

in delivery method”, “Market condition”, “Contract language and legal issues”, 

“Change order and claim”, and “Delays in procurement”. 

Organizational  

'Organizational' risks are related to policies, guidelines, procedures, and cultures within 

organizations (Washington DOT 2018). An organization's ability to navigate risk-

taking and risk-reduction activities is essential for their success in delivering projects 

(Crispim et al. 2018). This category includes following major risk items: “Change in 

leadership”, “Organizational resources”, “Project dependencies”, and “Organizational 

policy and prioritization”. 

Structure and Geotechnical   

Risks associated with foundation design, excavation and geotechnical activities, and 

soil conditions fall into the ‘structure and Geotechnical’ category (Dicks and Molenaar 

2022; Washington DOT 2018). This category includes following major risk items: 

“Soil and geotechnical conditions”, “Construction excavation”, “Pile driving noise and 

vibration”, and “Structural foundation design”.  
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Traffic 

The 'Traffic' risk category relates to future highway users, traffic growth and revenue 

specifically for public-private partnerships (PPP) projects (Montana DOT 2016). This 

category includes following major risk items: “Traffic growth”, “Toll related issues”, 

“Bicyclist and pedestrian recommendations may not be supported”, “Unanticipated 

Mobility and/or traffic delays”, and “Land use changes”. 

Table 21 provides an overview of the complete RBS, including the frequency of risk 

reports in risk documents. Frequency refers to the number of occurrences of risk across 

10 collected risk reports. 

Table 21. Risk breakdown structure for major transportation projects in U.S. 

 Level 1 Level 2 Frequency (across 10 

reports) 

 

 

 

 

 

Environmental 

Environmental permitting and requirements 10 

National Environmental Policy Act Review 

(NEPA) process and documentation 

8 

Hazardous materials 6 

Wetlands and endangered species 5 

Archaeological and cultural sites 4 

Environmental regulation change 5 

Additional environmental analysis required 7 

Water quality 4 

Noise mitigation 5 

Unidentified contaminated soils 4 

 

 

 

 

 

 

 

Construction 

Contractor access 4 

Different site and subsurface condition 7 

Construction safety 5 

Schedule uncertainty 5 

Coordination with adjacent projects 3 

Work windows 4 

Material and resources availability 8 

Construction incorporates new or unproven 

technology 

3 

Contractor and subcontractor performance 7 

Weather related issues 3 

Buried man-made objects 3 
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Construction quality assurance and control 

issues 

3 

 

 

 

Management 

and Funding 

Delayed decision making 3 

Project purpose/scope change 6 

Cash flow restrictions 3 

Labor disruptions 6 

Force majeure 3 

Economic change and availability of funding 6 

Political or policy changes 8 

 

 

Design 

Design changes 7 

Design requirement 3 

Design incomplete 2 

Delay in design approval 3 

Design exceptions 3 

Aesthetic issues 4 

 

 

 

Right of Way 

Right of way acquisition issues 9 

Right of way cost uncertainty 5 

Additional Right of way is required 5 

Right of way plan 4 

Railroad and right of way entry 8 

Right of way relocation 3 

 

 

Utilities 

Utility coordination 6 

Utility requirement 2 

Utilities conflicts 2 

Utility funding may be inadequate 2 

Utility relocation 6 

 

 

 

 

Stakeholder 

Public involvement 8 

Additional Scope for third parties 5 

New stakeholders emerge and demand new 

work 

4 

Stakeholders request late changes 5 

Objection from local communities and 

agencies 

7 

Communication with stakeholders 6 

 

 

Procurement 

and contracting 

Change in delivery method 3 

Market condition 9 

Contract language and legal issues 9 

Change order and claim 5 

Delays in procurement 4 

 

Organizational 

Change in leadership 5 

Organizational resources 4 

Project dependencies 3 

Organizational policy and prioritization 4 

 

Structure and 

Geotechnical   

Soil and geotechnical conditions 3 

Construction excavation 3 

Pile driving noise and vibration 3 

Structural foundation design 7 

 

 

Traffic growth 9 

Toll related issues 4 
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Traffic Bicyclist and pedestrian recommendations 

may not be supported 

4 

Unanticipated Mobility and/or traffic delays 3 

Land use changes 3 

 

5.3.2 Risk Breakdown Structure Testing 

We compared 70 transportation project risk registers with RBS to see how well it 

performs as a starting point for identifying common risks and giving the project team 

more time to focus on project-specific risks. Using semantic text similarity calculation, 

each risk in the risk register is matched with the highest similar risk in the RBS. As 

explained in the methodology section, when project teams use their own language and 

add more project-specific terms, the two risks are similar, but they share a lower text 

similarity. For example, the risk "Utility conflicts on arterials near Sheridan street" is 

similar to "Utility conflicts", or the risk "Worker injury during construction or OSHA 

violation" is similar to "Construction safety" but has more project-related context.  

According to our observation, 60% text semantic similarity is the threshold for 

meaningful matching of a generic risk from RBS with a project specific context risk. 

In Table 22, a variety of risk-matching examples are presented for different levels of 

semantic similarity.   

Risks matched with a risk with more than 60% textual semantic similarity can be 

divided by all risks to calculate the RBS coverage of the risk register database. The 

findings show that RBS covers almost 81% of the risks in the database. Figure 20 

illustrates in detail the percentage of database risks that match RBS at different 

semantic similarity levels. As part of our analysis of RBS's performance, we evaluated 

whether high-impact costs and schedule risks were covered by RBS or not. Based on 
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the project size, cost and schedule impacts of risks are normalized. Covered risks by 

RBS have an average cost impact of 6.08 Million $, while not covered projects risks 

have an average cost impact of 1.53 Million $. The schedule impact of covered risks is 

on average 1.71 months, whereas the impact of not covered risks is 0.84 months. 

According to findings, data-driven RBS covers 81% of project risks, as well as 

impactful risks in terms of cost and schedule. 

Table 22. Risk matching examples using BERT 

Risk (1): Project risk Similarity Risk (2): RBS risk 

Right of way acquisition issues 1 Right of way acquisition issues 

Market condition 1 Market condition  

Excavation operation 0.95 Construction excavation 

Third Party Utility Relocation 0.92 Utility Relocation  

Unanticipated cultural or 

archaeological findings 

0.84 Archaeological and cultural sites 

Subsurface Conditions  0.81 Different site and subsurface 

condition 

Traffic and Revenue 0.79 Traffic growth 

Poor Soil Permeability Rates 0.76 Soil and geotechnical conditions 

Delay to record of decision - 

Cost of Schedule Recovery 

0.72 Delayed decision making 

No areas for Contractor use 

identified and cleared.  

0.69 Contractor access 

Change in tolling equipment 

technology 

0.64 Toll-related issues 

Termination of DB contract 0.59 Contract language and legal 

issues 

Opportunity to reduce 

shoulders width 

0.52 Additional right of way is 

required 

Security requirements 0.44 Design requirement 
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Figure 20. RBS coverage of risk database 

We also evaluated the coverage of risk categories and groups among RBS's covered 

risks. Construction, environmental, and right-of-way risks are among the most 

prevalent covered risk categories, as shown in Table 23. In addition, the risk categories 

in actual risk registers allow us to compare our risk categories based on RBS's level 1 

risk groups with the risk classes defined by the project team. Most project teams also 

use the same structure and language to cover risk groups. The purpose of developed 

RBS was to include a comprehensive list of risk groups. Some scenarios differ from 

our developed RBS’s level 1, including using different terms for risk groups, moving 
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risk items between levels 2 and 1 as classes, and grouping risk classes. For example, 

projects might refer to stakeholder risk groups under different terms such as 

partnerships, externals, or third parties. Secondly, project teams sometimes move risk 

items from level 2 to a risk category like railroads or legal issues, depending on the 

project. Finally, sometimes there is a difference in how the project team combines some 

risk classes, such as management and planning, design and construction, and 

management and design. With these few different scenarios, in over 87% of cases, we 

validated our RBS with a detailed matching of the RBS at level 1 and the project testing 

risk classes. 

Table 23. Level 1 of RBS risk coverage 

Risk Category Coverage (%)  

Construction 23.38 

Environmental 14.70 

Right of way 11.33 

Management and funding 8.84 

Design 7.85 

Utilities 7.42 

Structure and geotechnical 7.16 

Procurement and contracting 5.66 

Traffic 5.20 

Organizational 4.48 

Stakeholder 3.98 

 

5.3.3 Risk Co-occurrence Result 

By matching the risk database with RBS, it is possible to evaluate how risks co-

occurred in the past. From 70 risk registers, we looked at the number of times risks co-

occurred; Table 24 gives details on the top and bottom 10 co-occurring risks. 

Considering risk interaction in risk assessment and preventing risk interdependency in 



92 
 

risk treatment is important due to the vast difference in co-occurrence rate. According 

to table III, a higher co-occurrence rate indicates that the risks occur more frequently 

and are also more dependent on each other in terms of occurrence. The results also 

show that risk type and nature play a significant role in co-occurrence rates. There is a 

higher co-occurrence rate for technical and engineering risks, while the co-occurrence 

rate for managerial risks is lower. The higher the rate of co-occurrence, the more likely 

it is that there is a correlation between risks, but to model interdependencies, logical 

relationships between risks need to be evaluated. Analyzing co-occurrence rates and 

logical relationships ultimately assists Monte-Carlo risk simulation by considering risk 

interdependency. In our study, risk co-occurrence rates were determined using 

historical data, significant differences were demonstrated, and possible directions were 

identified for assessing risk interdependencies in future study. 

Table 24. Risk co-occurrence out of 70 risk registers 

Risk (1) Risk (2) Rate 

Right of way plan Utility relocation 40 

Delay in procurement Utility relocation 36 

Contractor Access Utility relocation 36 

Right of way plan Delay in procurement 34 

Design changes Utility relocation 33 

Contractor Access Right of way plan 33 

Contractor Access Different site and subsurface condition 32 

Contractor Access Delay in procurement 32 

Hazardous Materials Utility relocation 32 

Right of way acquisition issues Utility relocation 31 

Design changes Right of way plan 31 

Contractor Access Hazardous Materials 30 

Contractor Access Design changes 30 

Contractor Access Construction Excavation 30 

Hazardous Materials Right of way plan 30 

Risk (1) Risk (2) Rate 

Change order Unidentified contaminated soils 1 

Change order Organizational policy and prioritization 1 
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New stakeholders emerge and 

demand new work 

Construction safety 1 

Delayed decision making Organizational policy and prioritization 1 

Different site and subsurface 

condition 

Organizational policy and prioritization 1 

Cash flow restriction Objection from local communities and 

agencies 

1 

Environmental regulation 

change 

Unidentified contaminated soils 1 

Bicyclist and pedestrian 

recommendations may not be 

supported 

Objection from local communities and 

agencies 

0 

Land use changes Organizational policy and prioritization 0 

Bicyclist and pedestrian 

recommendations may not be 

supported 

Organizational policy and prioritization 0 

New stakeholders emerge and 

demand new work 

Organizational policy and prioritization 0 

Organizational resources Additional Scope for third parties 0 

Change in delivery method Organizational policy and prioritization 0 

Organizational resources Change order and claim 0 

Aesthetic issues Objection from local communities and 

agencies 

0 

 

5.4. Discussion  

The current risk identification practices heavily rely on input from subject matter 

experts. Project teams perform risk analysis using their expertise and experience. A 

major challenge of current risk management practices is the lack of organized historical 

data, the failure to learn from past experiences, and the reliance on experts only. 

Therefore, data-driven objective approaches can be applied for risk detection with the 

advancement of technology and the availability of historical data. The purpose of this 

study was to develop a data-driven RBS by using risk management guidelines and 

reports from several DOTs. Using a comprehensive RBS, findings showed that lessons 

learned in the previous project could be used to identify more than 80% of risk items 

in 70 testing transportation projects. In addition to covering frequent risks, RBS also 
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covers high cost/schedule impact risks.  Project risks covered by RBS report a higher 

cost and schedule impact on average than those not covered. Utilizing lessons learned 

from past projects, data-driven risk modeling provides project teams with an advisory 

tool to complete their expert evaluation. Furthermore, data-driven RBS provides a 

mechanism that can be compared to actual risk registers to identify potential risk 

networks and co-occurrences, which ultimately helps in modeling risk 

interdependencies. 

When comparing the performance of developed RBS based on different project 

characteristics, project delivery method and project type have greater influences on risk 

detection than project size. The comprehensive RBS covered 83.6% of risks in Design-

Build-Build (DBB) projects, and 80.4% of risks in Design-Build-Build (DB) projects, 

but only 75.4% of risks in PPP projects. This observation concurs with our previous 

study in terms of the higher risk uniqueness of PPP projects compared to traditional 

delivery methods projects [40]. As for project types, highway projects perform the best 

with 84.4% and roadway projects with 82.1%, while interchange projects, bridges and 

tunnels only have 75.2% and 72.7% risks covered by RBS, respectively. The reason 

for this observation is that most source reports relate to highway and roadway projects, 

resulting in less coverage of specific context risks in bridge and tunnel projects. By 

looking at the project size, RBS covers 82.3%, 81.9%, and 78.5% of risks in projects 

under 500 M$, over 1 B$, and 500 M$- 1 B$. No matter how large or small a project 

is, RBS provides consistent risk coverage on average.  

When compared to actual risk registers, "Design changes", "Utility relocations", 

"Additional Right of Way is required", "Delays in procurement", and "Hazardous 
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materials" are among the most frequent covered risks in developed RBS. With a few 

exceptions, considering the project characteristics resulted in a similar pattern of high 

frequent risks. Bridges and tunnels projects, for example, place “construction access” 

at the top of the list, while PPP projects place more emphasis on “economic change and 

funding availability”. In order to identify some possible trends in uncovered risks, we 

examine them in detail. In the first instance, adding a lot of context to a risk item may 

cause it to be uncovered by the similarity calculation while the generic example is 

included in the template. As an example, while "Toll related issues" is listed in RBS, 

the risk "Segment tolling vs. trip building Tolling strategy may change the signage 

requirements for the projects" is labeled uncovered. Among other examples, one 

solution is to make sub-lists of context-specific risks under each generic risk in RBS. 

A number of other risks uncovered, such as "Awareness campaign", "Removal of snow 

and ice due to shading", "Pleasing everyone", "Inadequate lane closures notice to road 

users", "Culvert replacement", "Air quality", "Union jurisdiction/labor agreements," 

and several others, could be listed as a group of other risks to provide the users with 

some less frequent risks as well.  

The risks listed in the RBS can be used by any transportation project team conducting 

a risk analysis. Two possible uses of the RBS might be considered in discussions 

regarding its implementation: first, to stimulate a discussion about the themes and 

identify project-specific risks associated with them; second, to serve as a ''back pocket'' 

checklist once the initial round of risk identification is completed to ensure all major 

items are covered. Further, historical risk co-occurrence data reveals the importance of 

modeling risk interactions and interdependencies in risk management. Risk type plays 
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a significant role in the co-occurrence of risks, particularly technical and engineering 

risks reporting a higher co-occurrence rate than managerial risks. Additionally, by 

incorporating a network view into risk assessment, the current hierarchy view of risk 

management can be improved. To update prior information on causal effect 

relationships between risks, future studies need to utilize historical evidence. 

5.5. Conclusion 

The inherent characteristics of major transport projects make them highly risky and 

uncertain. Consequently, cost overruns and delays are major concerns for 

transportation agencies when implementing these projects. To manage projects 

effectively, risk management practices seek to detect these challenges, evaluate them, 

and propose appropriate responses. There are numerous studies that provide different 

tools and techniques to complete the risk identification process, but industry practices 

are still based on experience and subject matter experts' opinions. A comprehensive 

RBS is developed in this study in order to develop a data-driven approach to risk 

detection. Using natural language processing, we evaluated RBS's performance in 

detecting early risks in 70 transportation projects. Nearly 81% of risks in the database 

were covered by the developed RBS. Based on the findings, it is evident that common 

risks occupy a large portion of the risk register and can be adapted from similar past 

project experiences using objective data to allow the project team more time to develop 

project context risks. Moreover, the risk interdependency examination of RBS using 

historical risk registers illustrates the importance of risk interaction considerations 

when treating risks.  
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By using historical real-risk data and incorporating a data-driven RBS, this study 

contributes to the body of knowledge concerning risk management in transportation 

projects. One limitation of the study is the use of general word embedding models in 

semantic similarity calculation. Future research could focus on developing word 

corpora based on construction context. Furthermore, the RBS developed in this study 

only include information regarding risk occurrence and do not address the 

consequences and mitigation strategies. Data-driven approaches could be used in future 

studies to summarize lessons learned from historical risk mitigation strategies and risk 

assessment results.  As well as this, the availability of relevant risk reports from the 

DOTs further limited this study. Finally, identifying risks using data-driven methods 

would be more effective if a larger pool of data were available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

CHAPTER 6: CONCLUSION  

6.1. Major findings and novelty 

In most cases, risk management of major transportation projects involves expert 

opinion through risk workshops. This study introduced a novel risk management 

strategy based on data and artificial intelligence techniques. Despite the fact that each 

project is unique, a comparison of risk similarity reveals that historical projects have 

faced a great deal of the same risks. A higher risk similarity is observed among major 

transportation projects that are of the same type and come from the same area. 

Therefore, a predictive risk model can be developed to advise project teams about 

potential risk items and their impacts considering project characteristics such as type, 

delivery method, location, and size. Findings illustrated that project type and location 

are major drivers behind risk similarity among major transportation projects. The 

predictive risk model has been tested on several projects with more than 65% recall 

rate. In other words, instead of starting from scratch, a team could use the predictive 

risk model to start with over half of their risks from similar past projects. 

Additionally, despite decades of research on risk identification, there have been no 

empirical studies demonstrating the performance of risk identification and its 

relationship with project delivery performance. Using automata theory, this study 

proposed a new framework for tracking individual risk item lifecycles in order to 

evaluate risk identification performance. The study found that project teams identified 

45% of risks out of total risks during the implementation phase when new information 

about the project became available. Teams with doer behavior, i.e., actively updating 
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risk registers and identifying risks, performed better in delivering the project. 

Therefore, better risk identification directly contributes to better project delivery.   

Lastly, the study investigates whether all historical risk records can be summarized into 

a comprehensive risk breakdown structure (RBS). Based on content analysis and 

available risk reports developed by several departments of transportation (DOT), a 

comprehensive RBS has been developed to include the most frequent risk categories 

and risk items. There are 70 generic risk items and 11 generic risk categories in the 

comprehensive RBS, which covers almost 80% of the risks in the database. 

6.2. Managerial implication 

Furthermore, in addition to the study's contribution to theories in risk management by 

defining data-driven risk identification and risk management performance 

measurement frameworks, the study also has several immediate implications for 

practice. To begin with, the RBS and predictive risk model can be used as advisory 

tools to help project teams identify risks based on similar past projects. Predictive risk 

models can be extended to web-based tools via a current version of the model 

developed in Excel. 

Secondly, the developed framework based on automata theory can be applied in 

practice for measuring risk identification performance. The project team can use risk 

life-cycle modeling to assess their risk identification performance, model their project 

risk management style, and evaluate the impact of risk management on project delivery. 

Finally, data driven risk management might work as a complementary tool to help all 

stakeholders. This may be used by the sponsor of the project to verify the completeness 

of the risk registers, while it may be used in two ways by the project team: first, to 
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stimulate a discussion and identify project-specific risks associated with the themes; 

second, to make sure all major items are covered after the initial round of risk 

identification has been completed. 

6.3. Future research directions 

Results of this study demonstrate the potential application of historical data and 

artificial intelligence techniques to infrastructure management. There is potential for 

extending this concept to risk allocation, risk response, and risk documentation in 

contracts. An important area of research focuses on the automatic detection of risks in 

a contract and the way they are allocated. Therefore, natural language processing 

techniques can streamline contract risk reviews. There is also the potential to make a 

roadmap for a cloud-based shared data-driven risk model that hosts a large dataset of 

risks and different stakeholders will be able to add new data to improve algorithms 

(Figure 21). 

 

Figure 21. Roadmap of AI-based Risk Management 
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Glossary 

Cosine Similarity A popular method used to measure the similarity between 

two documents by calculating the cosine value. 

Deep Learning A machine learning technique that is often built on 

multiple 

layers of artificial neural networks. 

F1-score A combination of Precision and Recall, which is used to 

measure the classification performance on each class. 

FastText A word embedding technique released by Facebook’s AI 

Research lab in 2017, which uses the Continuous Bag of 

Words (CBOW) model to configure the word 

representation 

and a hierarchical classifier and N-gram features to 

improve training efficiency 

Global Vector 

(GloVe) 

A word embedding technique developed at Stanford 

University in 2014, in which the resulting representations 

showcase the structures of the word vector space trained 

on the co-occurrence probabilities of words. 

Recall The fraction of true positives over all the cases that 

actually 

are positive 

TF-IDF A statistical measure assigned to each word in a document 

(e.g., a sentence, or a tweet in this study), which can be 

used to estimate the importance of a word appears in a 

document given a corpus of documents. 

Text Vectorization A process of converting the text into numerical 

representation (e.g., a vector or a matrix of real numbers). 

Word Embedding A word representation technique in NLP in which words 

or phrases are mapped into dimensional vectors of real 

numbers. 

Risk Identification The mechanism of determining which risk items may 

affect the project 

Finite state automation Finite State Automaton (FSA) is a mathematical model 

used to describe and represent systems that have a finite 

number of states and transition between those states based 

on input from a defined set of symbols. 

Word2vec Word2Vec is a word embedding model developed by 

Google that aims to learn continuous vector 

representations, or embeddings, for words from large 

amounts of text data. Word embeddings are dense vector 

representations that capture the semantic meaning and 

syntactic relationships between words, making them 

useful for a wide range of natural language processing 

(NLP) tasks. 
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BERT BERT is a natural language processing (NLP) model 

developed by Google in 2018. BERT is a type of 

transformer-based model, which is a neural network 

architecture that is particularly effective at processing 

sequential data, such as text. Unlike traditional language 

models that process text in one direction (either left-to-

right or right-to-left), BERT is designed to capture 

contextual information from both the left and right context 

of a word. 

Text classification A machine learning technique that classifies a set of 

textual data into targeting classes. 
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