
�����������	
������

����������������
���������
������
����������������
��
�����
�������
������
��������
�
�����
�����������������������
	���	��������� !���������!�����������
	�"���
���!�����#��$������

	�"���
������������%���������	
����������&�������'�������
��������������������
����
���������������
�������
��(������(��������#��$�������
	�"���
���'

�������������	
�����
���
���
����������

TECHNICAL RESEARCH REPORT

A Certificate-based Light-weight Authentication Algorithm
For Resource-constrained Devices

by Ayan Roy-Chowdhury, John S. Baras

CSHCN TR 2005-4
(ISR TR 2005-83)

A Certificate-based Light-weight Authentication
Algorithm For Resource-constrained Devices

Ayan Roy-Chowdhury, John S. Baras
Electrical and Computer Engineering
and Institute for Systems Research

University of Maryland
College Park, Maryland 20742

Email: {ayan, baras}@isr.umd.edu

Abstract— In this work, we analyze and extend a recently
proposed design of digital certificates called TESLA certificates.
Certificates are a necessary tool in today’s secure networks
to certify the identity of nodes taking part in communication.
Most prevalent certificate technologies make use of public-key
cryptography. Messages generated by the user are signed using
its private key, and the signature can be verified by any node
who knows the user’s public key via its certificate. Signature
generation and verification using public-key cryptography is
computationally expensive for devices with limited computation
power and energy resources. In this situation TESLA certificates
can be very useful to certify identity, since they rely on symmetric
cryptography which is computationally much more efficient. In
this paper we explain the concept of TESLA certificates and
provide a preliminary description of proposed modifications
to the original algorithm to strengthen its security. We extend
the original proposal by combining hash chains with TESLA
certificates and come up with an efficient source and message
authentication protocol based on symmetric key certificates. We
also propose a new type of TESLA certificates called Group
Certificates for use in multicast group communication. Through
analysis, we show that our protocol is secure against malicious
adversaries. We also give an initial estimate of the performance
of our algorithm and the related comparison to public-key
signatures, and we highlight network scenarios where the
TESLA certificates could be particularly useful.

Keywords: Source authentication, Message Authentication
Code (MAC), digital certificate, public-key cryptography,
TESLA, hash chain.

I. INTRODUCTION

Authentication is an essential building block in enabling
secure communication amongst a group of nodes. Some im-
portant reasons for authentication include the following.

• Source authentication guarantees receivers that a par-
ticular application message was originated by the node
indicated as the source in the message.

• Authentication is useful for message integrity checks - to
make sure that a message has not undergone unauthorized
modifications while in transit from the source to the des-
tination(s). In this case authorized nodes append certain
immutable fields to the message, in a process similar
to entity authentication, such that message tampering
violate the integrity of the immutable fields and is easily
detected.

• Authentication can be used to verify the identity of
nodes in order to allow them access to certain ser-
vices/applications in the network (access control).

• Authentication is necessary to establish a secure routing
path from the source to the destination, where the routing
control messages between any two pair of nodes (or
between the source and the destination) need to be
verified as coming from legitimate nodes in the path.
This is important in ad hoc networks, where intermediate
nodes that are not trusted act as routers.

The most light-weight form of authentication (and associ-
ated message integrity check) is possible when two communi-
cationg nodes A and B share a secret exclusively between
themselves and make use of this secret, or a key derived
thereof, to “sign” the messages between themselves. Since no
other node knows the secret, A can be assured that the message
originated at B, and vice versa. The secret or key used can
be based on symmetric cryptography that is fast, efficient, and
does not consume significant computation or energy resources
at the communicating nodes. The corresponding message
signature is usually a Message Authentication Code, or MAC
in short (for example, HMAC [1]), which is resource-efficient
to compute and to verify, and limited in size.

However, when multiple parties are taking part in a com-
munication session, a shared secret between the parties is
not a solution. Since everyone knows the same secret, it is
impossible for the receivers to know for sure whether the
message originated at the alleged source, or was it spoofed
by another node in the group that knows the secret. At best,
a shared secret in this setting can assure the involved nodes
that the message originated from someone within the group
(assuming the secret has not been leaked to outsiders). It is
also possible that all the nodes do not share secret beforehand,
for example when a group of nodes with no prior knowledge
of one another take part in a communication session, and
erase the security information once the session terminates (this
is true even for two nodes with no prior history together).
In this situation authentication is done based on asymmetric
techniques where each node possesses a unique secret known
to no other node, and makes use of that secret to authenticate
itself, or the messages it generates. Public key cryptography

allows such asymmetric authentication to take place. In public-
key cryptography, each source uses its private key to sign
messages it generates, creating a digital signature that is
appended to the message [2]. The receivers can verify the
signature using the corresponding public key of the node,
which is known to everyone from the source’s certificate. The
primary requirement is that all users have access to a common
third party node called the Certificate Authority (CA) that is
universally trusted. The CA is responsible for binding a node’s
identity to its public key in the node’s public-key certificate
- for example, PGP [3] and X.509 [4], which are the two
most commonly used certificate formats. The certificate can be
freely distributed to all nodes in a network, and the correctness
of the certificate is verifiable by any node that has access to
the CA. Apart from facilitating secure authentication of nodes
and message integrity checks, public-key cryptography also
provides non-repudiation - a node cannot deny later that it
generated a message that has been signed using its private
key.

Public-key cryptography is a powerful tool that facilitates
authentication, message integrity and also data encryption.
However, it is computationally very expensive (both in CPU
cycles and energy expenditure) to generate digital signatures
for messages, and also to verify them. The public and private
keys are larger in size compared to symmetric keys, and the
certificates also take up considerable storage space. In wireless
networks where many of the nodes might have resource
constraints, public-key cryptography can be a severe burden.
For example, handheld devices have limited processor power,
storage capacity and available energy. Performing digital sig-
nature generation and verification frequently can consume
significant processor capacity and drain the battery quickly.
The issue has gained importance due to the proliferation
of wireless networks of mobile resource-limited nodes and
wireless sensor networks consisting of tiny sensor nodes with
severe resource constraints. Therefore, research efforts are
underway to design algorithms that allow secure authentication
and message integrity for such devices without relying on
public-key cryptography.

In this work, we focus on the above problem of authenti-
cation for resource-constrained devices. Several novel authen-
tication mechanisms have been proposed, some of which at-
tempt to mitigate the resource expenditure in public-key based
digital signatures, while others propose new approaches [5]–
[12]. A new type of certificate for authentication of compute-
constrained devices has been proposed in [13]. Named TESLA
Certificate, it is based on the TESLA broadcast authentication
protocol [14]. TESLA certificate is based on symmetric cryp-
tographic primitives - MAC computations using keyed hash
functions - and uses delayed disclosure of the key by the
CA, to achieve the asymmetry required for authentication in
group communication. Due to the use of MACs to generate
and verify certificates, the scheme is well-suited to mobile
nodes with limited resources. We make use of the TESLA
certificate concept to develop new authentication tools. In
particular, the work presented in [13] and the related paper

Sequence of key generation←−−−−−−−−−−−−−−
s0

F1←−−−− s1
F1←−−−− ...

F1←−−−− sn−1
F1←−−−− sn⏐⏐�F2

⏐⏐�F2 ...
⏐⏐�F2

⏐⏐�F2

K0 K1 ... Kn−1 Kn

Sequence of key usage−−−−−−−−−−−−→
Time−−→

Fig. 1. TESLA key generation

[15] has several security weaknesses and is limited in scope.
We attempt to fix these weaknesses and extend the algorithm
for entity authentication and message integrity for resource-
constrained devices.

The rest of this paper is organized as follows. In section
II, we briefly review the TESLA authentication protocol.
TESLA certificate and its proposed application to a hybrid
network topology is described in III, alongwith an analysis
of the strengths and weaknesses of the proposal. We describe
our modifications to correct the weaknesses in the original
TESLA certificate proposal in section IV. We extend the
scope of TESLA certificates by adding more features de-
scribed in sectionV. We discuss the security of our modifi-
cations/additions in section VI. A preliminary analysis of the
performance of our extended TESLA certificate algorithms
is given in section VII, alongwith highlights of some issues
involved. Section VIII outlines our current research efforts for
TESLA certificates. We conclude the paper in section IX.

II. REVIEW OF TESLA AUTHENTICATION PROTOCOL

The TESLA broadcast authentication protocol [14], [16]
represents a fundamental paradigm shift in source authentica-
tion in a group setting. TESLA achieves asymmetric authen-
tication between a source and receivers through the use of
symmetric cryptographic MAC functions. The asymmetry is
obtained through the delayed disclosure of the authentication
keys. We give a brief description of TESLA in the following
paragraphs.

TESLA divides the time of transmission by the source into n
intervals of equal duration. The source generates a random key
seed sn for interval n, and computes a one-way hash chain by
repeatedly applying a one-way function F1 to sn. The number
of elements of the hash chain correspond to the number of
intervals that the source transmits. The source computes the
MAC computation key for each time interval by applying a
second one-way function F2 to each element of the hash chain.
The functions F1, F2 are publicly-available and known to all
the receivers. The algorithm is illustrated in fig. 1.

The sender uses the keys in the reverse order of their
generation, that is, starting with K1 in interval 1, followed by
K2 in interval 2, and so on. Owing to the one-way property
of F1 and F2, it is computationally infeasible for any node
to generate si knowing Ki, or to generate si+1 knowing si.

The sender bootstraps the hash chain by broadcasting to all
the receivers the anchor element of the chain, for example
s0, signed with its private key (in case of public-key based
bootstrapping), or by encrypting s0 with the secret key it
shares with each receiver in the network (for symmetric-key
based bootstrapping).

For each packet generated in time slot i, the source uses the
authentication key Ki to compute a MAC on the packet. The
MAC is then appended to the packet, which is transmitted to
the receiver(s). When a node receives a packet, it first checks
whether the packet is fresh, that is, it was sent in a time interval
whose corresponding TESLA key has not been disclosed.
This is the fundamental security criterion in TESLA. Each
receiver discards any packet that does not meet the security
criterion, and buffers only the packets that satisfy the fresh-
ness condition. The receiver cannot authenticate the packets
immediately since it does not know the corresponding key K i.
The sender discloses the key Ki at a later instant in time by
broadcasting the corresponding key seed s i. Upon receiving si,
each receiver first verifies the authenticity of si by checking
si

F1−→ si−1 (and therefore ultimately verifying against the
anchor element s0 which has already been authenticated). If
si verifies correctly, each receiver can compute K i : si

F2−→ Ki

and subsequently use the computed K i to verify the MAC on
the packets received during interval i.

Once si is disclosed, any node with knowledge of s i can
compute Ki and attempt to masquerade as the sender by
forging MACs using Ki. Therefore, Ki is used to compute
MACs on packets generated only during the interval i, other
time intervals use different keys to compute the MACs. The
key seed si is disclosed only d time slots after i so that no
malicious node can compute Ki and forge packets in the
intervening period. d is computed based on the maximum
network delay from the source to all the receivers. This is
the principle of delayed disclosure of keys.

The major advantage of TESLA in this regard is that it
allows similar authentication through the use of computation-
ally efficient MAC functions, and is therefore very attractive
for authentication in devices of limited capabilities.

The above is a basic description of TESLA. The algorithm
has several enhancements to mitigate various drawbacks, they
are described in [16].

III. REVIEW OF TESLA CERTIFICATE AND ITS

APPLICATION TO A HYBRID NETWORK TOPOLOGY

The idea of certificates based on TESLA was proposed in
[14]. The idea has been formalized to form a TESLA-based
PKI in [13]. In the algorithm described in [13], there is a
certificate authority CA who creates certificates for an entity
B. A low-powered device D contacts B to use its service.
The CA and B initially share a secret key KCA,B. During
time slot n, the CA generates authentication key aKBn for B
to use to compute the MAC on its messages in that interval.
The CA creates a certificate CertCAn (B) to bind aKBn to B
for interval n. The CA uses its TESLA key tKCAn to encrypt

aKBn in the certificate, and uses the same key to compute a
MAC on the different fields in the certificate.

CertCAn (B) =(
IDB, {aKBn}tKCAn

, n + d, MACtKCAn
(..)

)
(1)

Equation 1 represents the TESLA certificate for node B.
aKBn is known only to the CA and B during period n,
while tKCAn is known only to the CA. n + d indicates the
time at which the CA will disclose tKCAn to the nodes, that
is, it is the expiration time of the certificate. The CA sends
CertCAn (B) to B alongwith aKBn , which is encrypted with
KCA,B.

In the time interval 〈n, n + d〉, D sends a request to B for
using B′s service:

D → B : (request) (2)

To authenticate itself to D, B sends an authentication packet
containing its certificate and a MAC on the request, computed
with aKBn .

B → D :
(
CertCAn (B) , MACaKBn

(request)
)

(3)

When D receives the authentication message, it checks
the timestamp of CertCAn (B) to make sure it has arrived
before time n + d, when the CA discloses tKCAn . If the
certificate is “fresh”, D buffers the authentication packet. At
time n + D, the CA discloses its TESLA key tKCAn . Upon
receiving the key, D verifies CertCAn (B) by checking the
MAC in the certificate using tKCAn . If the MAC verifies
correctly, D obtains B ′s authentication key aKBn from the
certificate by decrypting with tKCAn . Subsequently, D checks
MACaKBn

(request) to verify the authenticity of B. There-
fore, D is able to verify the identity of B only if it receives
CertCAn (B) before n+d. Once the CA discloses its TESLA
key tKCAn , any node could forge a certificate for the time
interval n.

The TESLA certificate algorithm described above has sev-
eral shortcomings. The authors propose that the CA should
generate the subject B ′s authentication key aKBn , and sub-
sequently send it to B securely, alongwith the corresponding
TESLA certificate. Therefore the CA could easily fake mes-
sages as coming from B. In traditional public-key cryptogra-
phy, the CA does not get to know the private key of any party.
Node B will only send the corresponding public key to the CA
for certificate generation. Also, the approach of CA generating
the authentication key of B makes it necessary to bootstrap the
CA and B with a shared secret KCA,B. In a network with a
large number of nodes, this bootstrap operation should ideally
be avoided.

A TESLA certificate allows a node B to add authentication
to packets for a single period in time. As the authors mention
in [13], the lifetime of the certificate is short. Therefore, a
source node B that transmits for multiple time intervals will
need several TESLA certificates from the CA. If there are
many sources that send data over long intervals, this can add
up to a substantial overhead.

The authors in [13] propose an algorithm for mobile node
handoff when node D moves from the range of access point
B to the range of access point B ′. To authenticate D with
node B′, the CA gives node D a certificate CertCA (D):

CertCA (D) =
(IDD, {aKAP,D}gKAP , TSA, SIGN−KCA (..)) (4)

CertCA (D) is used by D to establish a shared key KB′,D
with the new access point, as described in algorithm 1 in
[13]. This algorithm is not secure. The key gKAP is known
to all access points. Therefore any access point B with
whom D has communicated in the past, or who overhears
the communication between D and another access point, can
derive aKAP,D from CertCA (D). Consequently, any access
point B who eavesdrops on the handoff algorithm between D
and access point B ′, can obtain the new key KB′,D from the
message in step 3 of algorithm 1 [13].

The authors describe an application of TESLA certificates
for authentication in hierarchical ad hoc sensor networks in
[15]. The focus of the work is on authentication between
sensor nodes and the base stations/applications, that is, point-
to-point authentication between nodes of varying capabilities.
The paper does not address authentication between peer nodes,
or authentication in group communication.

The correct operation of TESLA certificates depends on
the secure delayed disclosure of signing key tKCAn by the
CA. Neither paper mentions how the key disclosure message
from the CA will be trusted by the nodes - a mechanism
for bootstrapping the messages from the CA is required, but
it is not explicitly mentioned. It would be possible, given
the assumptions and constraints in the papers, that the CA
authenticates the key disclosure message with the secrets it
shares with every node in the network, but this approach is
not scalable. The rest of this section discusses security issues
concerning the algorithms presented in [15].

The authentication framework in [15] requires a trusted third
party (TTP) to generate the initial certificate iCertTTP (.) for
every node. A node D needs a different iCertTTP (D) for
every AP it communicates with; unless D knows in advance
all the APs it will talk to in the network and therefore
obtains corresponding iCertTTP (D)s from the TTP, it needs
to contact the TTP every time it moves to a new AP. The
framework has different entities generating the certificates,
either public key-based or TESLA-based, for different nodes -
there are hence multiple CAs at different levels in the network.
This leads to a complex setup at best, and incompatible
security policies at worst. We believe this structure can be
simplified greatly, with only one CA. Also, the paper mentions
that the application A generates the key KB,D to be used
between a base station B and sensor node D. While this is
acceptable if B and D trusts A completely, it is preferable
that the key be generated by the parties that will use it, if they
have the resources to do so without additional overhead (B
can certainly generate the key easily).

We found problems with the data origin authentication

algorithms - both the weak mode and the assured mode. Since
the source and the destination are D and A respectively, it
is sufficient to include MACKA,D (..) only in the message
- addition of MACKB,D (..) adds overhead without adding
security. Also, the reason for allowing base station B to add
MACKA,B (..) is unclear - B is only a forwarding node in this
scenario and does not generate or modify the message in any
way. It is not necessary for verification at A that B has checked
the message - it would suffice for B to drop the message if it
could not verify (or allow A to do all the verification itself).
This can lead to a denial of service (DoS) attack at A from
a malicious B, which can send a large number of intercepted
or spoofed messages with incorrect MACs. Also, even if the
message from D is correct and has not been modified at all,
A can reject the message if the MACKA,B (..) is incorrect for
some reason.

In the assured mode of data delivery, the shared key KC,D

is not needed if the forwarding node (FN) C uses TESLA
certificates also, which is desirable. However, the authors make
the strong assumption that the FNs have enough capabilities
to support public key cryptography. Encrypting the random
nonce rn using both KC,D and KB,D is wasteful. Instead,
it would be better to have two random nonces rn and r′n,
separately encrypted with KB,D and KC,D, so that D can
be assured the data was correctly received by both FN and
AP when it gets back the nonce responses from both. In
either mode, A does not send any information to D on
successful acceptance of the message from D, a message is
sent on reject only. Even in the reject message, the reason for
including MACKA,B (dRej, B) is unclear, and the addition
of MACKB,D (dRej, B) is superfluous.

An important point to note here is that TESLA certificates
do not provide non-repudiation; once the keys are disclosed,
anyone can forge MACs on spoofed messages and therefore
the authenticity of messages created in the past cannot be guar-
anteed. The authors also mention that revocation of certificates
is another outstanding issue.

IV. MODIFICATIONS TO THE ORIGINAL TESLA
CERTIFICATE APPROACH

We propose several modifications to the algorithms in [13],
[15] to make the authentication framework using TESLA
certificates more secure. In the following description, D is a
sensor node, B is an access point (AP) and A is an application.
We assume that all nodes in the network, including sensors and
access points, know the public key +KCA of the CA.

A. Creation of TESLA Certificate CertCAn (D) for Node D

The authentication key aKDn that D uses to compute the
MACs in time period n, is generated by D itself using a one-
way function F , applied to a secret seed sl:

sl
F−→ aKDn (5)

D applies a collision-resistant hash function H to aKDn

and generates the hash aK ′
Dn

:

aKDn

H−→ aK ′
Dn

(6)

We assume that F and H are publicly available.
Subsequently D sends aK ′

Dn
to the CA for certificate

generation. This message can be broadcast in the clear, since
knowledge of aK ′

Dn
does not allow any other node to generate

aKDn , owing to the one-way property and collision-resistance
of H . The CA generates the TESLA certificate for node D
for period n using aK ′

Dn
and sends it to D:

CertCAn (D) =(
IDD, {aK ′

Dn
}tKCAn

, n + d, MACtKCAn
(..)

)
(7)

CA→ D : (CertCAn (D) , SIGN−KCA (..)) (8)

D can check the authenticity of the TESLA certificate by
verifying the signature attached to the message using the
CA’s public key +KCA. Although digital signature verification
might be computationally expensive for D, this is done only
when it gets new TESLA certificates from the CA. (In section
V we extend the TESLA certificate so that this signature
verification by D needs to be done rarely.) Subsequently D can
use CertCAn (D) for authenticated communication with other
nodes in the network. When sending message m, D uses the
key aKDn to compute MACaKDn

(m). A receiving node R
buffers m until it can be authenticated. When the CA discloses
tKCAn , D sends aKDn to R. R can obtain aK ′

Dn
from the

certificate using tKCAn and verify that aKDn

H−→ aK ′
Dn

.
If verification succeeds, R computes MACaKDn

(m) and
accepts m if the MAC is correct.

The important assumption here is that R has some mecha-
nism for verifying the authenticity of tKCAn (that is, tKCAn

has been disclosed by the CA and not by some other entity).
One can achieve this if the CA discloses tKCAn by encrypting
it with the shared secret of every node. The alternative is
that the CA sign the disclosure message using −KCA. Since
every node knows +KCA, the message can be easily verified.
This adds computational burden at the nodes for signature
verification. In section V we discuss mechanisms on how this
computation expense can be amortized.

In the above algorithm, the CA does not get to know the
authentication key aKDn , as we have intended. Also, the
nodes do not need to share secrets with the CA to authenticate
messages from the CA, or to send it messages. This comes at
the expense of one additional key disclosure by the source, and
the computation overhead at nodes to verify CA signatures.

B. Secure Mobile Node Handoff

The second improvement we suggest is to make the mobile
node handoff algorithm in [13], [15] more secure. Here the
requirement for a symmetric shared key between D and the
CA is important, and accordingly we assume that D has
established a shared key KCA,D with the CA (either offline,
or during bootstrapping). Also, an access point B has a
public-private key pair 〈+KB,−KB〉. When node D moves
from access point B to access point B ′, it contacts the CA
requesting a certificate to authenticate itself to B ′. The CA
generates CertB′ (D) so that D can authenticate itself to B ′

and sends CertB′ (D) to D, alongwith the key aKAPB′D to
be used for secure communication between B ′ and D.

CA : CertB′ (D) =(
IDD, {aKAPB′D}+KB′ , TSA, SIGN−KCA (..)

)
(9)

CA : KCA,D
F−→ K ′

CA,D (10)

CA→ D :
(
CertB′ (D) , {aKAPB′D}KCA,D , MACK′

CA,D
(..)

)

(11)
Subsequently, D communicates with B ′ using the mobile

node handoff algorithm, with the certificates described above.
In step 3 of the algorithm in [13], [15], B ′ sends the following
message to D:

B′ → D :
(
hoOK, {KB′D}aKAP

B′D
, MACaKB′

n
(..)

)
(12)

The above modifications ensure that the key KB′D is known
only to B ′ and D, and not to any other access point B.

Several other modifications are possible to the algorithms
mentioned in [15], following the ideas of the modifications
described above. They are mostly straightforward, and we omit
a description of them for brevity.

V. EXTENDING TESLA CERTIFICATES

We consider a network scenario where a group of wireless
mobile nodes in the network take part in communication
with one another. The wireless mobile nodes are resource-
constrained devices of limited computational power, storage
and finite energy (for example, battery source with no re-
charging capability). The mobile nodes do not have any pre-
existing security information about one another. However, all
the nodes have access to an online certificate authority, and
the public key +KCA of the CA is available to every node.
We assume that all the nodes are loosely time-synchronized
with the CA. The CA can communicate with the entire
network simultaneously through wireless broadcast channels.
The wireless transmission channels are assumed to be error-
free, so that control messages or data packets do not get lost.
We also assume that appropriate policies are in place to allow
each node to securely identify itself to the CA during the initial
bootstrapping phase, and each node A shares a unique secret
key KCA,A with the CA.

Our objective is to design an authentication mechanism that
allows any receiver in the network to securely authenticate
messages from a sender node with limited expenditure of
processing power and energy. The receiver should also be able
to authenticate buffered messages from a source with which it
might not be in communication contact at the time of message
authentication (for example, due to network partition, etc.).
The receiver does not need to trust the source or have any
prior information about the source; the only requirement, as
stated above, is that the receiver trust the CA (or at least an
entity who can prove knowledge of −KCA, the private key
corresponding to +KCA). We assume that one-way functions
F1, F2 and F3, derived from pseudo-random function (PRF)
families, are publicly available.

A. Authentication for Unicast Communication

1) Bootstrapping of the Source Node and the Certificate
Authority: We make use of the TESLA key chain generation
described in [14], [16]. Initially, the source node A generates
a random seed sA,n and applies one-way function F1 to sA,n

to form a hash chain:

sA,0
F1←− sA,1

F1←− ...
F1←− sA,n−1

F1←− sA,n (13)

The value n depends on the number of time intervals in
which A expects to be a source. If the duration of each time
interval is ∆, and the total time of A′s transmission is T , we
have n = T

∆ . A subsequently applies F2 to each key sA,i

generated above and obtains the output s ′
A,i.

sA,0
F1←−−−− sA,1

F1←−−−− ...
F1←−−−− sA,n−1

F1←−−−− sA,n⏐⏐�F2

⏐⏐�F2 ...
⏐⏐�F2

⏐⏐�F2

s′A,0 s′A,1 ... s′A,n−1 s′A,n
(14)

A applies F3 to s′A,0 to obtain hA,0:

s′A,0
F3−→ hA,0 (15)

In time period t0, A sends hA,0 to the CA for obtaining a
TESLA certificate. On successful verification of A′s identity,
the CA generates a TESLA certificate for A:

CertCA (A) =(
IDA, {hA,0}tKCA0

, t0 + d, MACtKCA0
(..)

)
(16)

CA→ A : (CertCA (A) , SIGN−KCA (..)) (17)

Here d is the key disclosure delay for the CA TESLA
signature key, and tKCA,0 is the CA MAC key for the time
period 〈t0, t0 + d〉.

tKCA,0 is generated by the CA using the one-way chain
algorithm. The CA starts with an initial seed sCA,n and
generates tKCA,0 as follows:

sCA,0
F1←−−−− ...

F1←−−−− sCA,n−1
F1←−−−− sCA,n⏐⏐�F2 ...

⏐⏐�F2

⏐⏐�F2

tKCA,0 ... tKCA,n−1 tKCA,n
(18)

2) Message Transmission from Source to Receiver: Let A
send messages to receiver node B starting in the time interval
〈t0, t0 + d〉. A computes a MAC over the message m0 using
s′A,0 and includes its TESLA certificate CertCA (A) with the
message it sends to B:

A→ B : {M0|M0 :
(
m0, MACs′

A,0
(m0) , CertCA (A)

)
}

(19)
B checks the freshness of the certificate by checking the
timestamp of CertCA (A) to make sure it has arrived before

time t0 + d. If CertCA (A) has arrived within 〈t0, t0 + d〉, B
stores M0 in its buffer, else B discards the message.

Checking the timestamp on CertCA (A) is critical for the
security of our algorithm. Once the CA discloses sCA,n−1

at time t0 + d, any node in the network can create a fake
certificate with timestamp t0 + d, allegedly generated by
the CA. Therefore receivers will only accept certificates for
which the CA TESLA key has not been disclosed at the time
of receiving the certificate.

3) Message Authentication at Receiver: At time t0 +d, the
CA broadcasts the key tKCA,0 to the network:

CA→ network : (〈t0, t0 + d〉, sCA,0, SIGN−KCA (..))
(20)

Node A also receives the CA broadcast. Subsequently, it
transmits sA,0 to node B. Receiver B checks the authenticity
of the CA broadcast by verifying the signature using +KCA. If
verification is successful, B checks the MAC on CertCA (A)
using tKCA,0, which is derived from sCA,0 that is obtained
from (20). If the MAC is correct, B obtains hA,0 from
CertCA (A) by decrypting with tKCA,0. B then checks if
the key sA,0 received from A is correct:

sA,0
F2−→ : s′A,0

s′A,0
F3−→ : h′

A,0

h′
A,0

?= hA,0 (21)

If the above check returns a positive result, then B checks
MACs′

A,0
(m0) using s′A,0 and accepts m0 if the MAC verifies

correctly. B also stores in memory the CA key broadcast
message (and therefore sCA,0), CertCA (A) and the initial
key sA,0 of A′s hash chain. Figure 2 gives a timing diagram
representation of the protocol steps till the initial packet
authentication at the receiver.

Messages from A to B in subsequent time intervals use the
corresponding key of A′s key chain to compute the MAC. A
does not have to include its TESLA certificate in messages
subsequent to M0, under the assumption that every receiver
has received M0 correctly. For example, in the period 〈t i, ti +
∆〉, message Mi from A to B would look like:

A→ B : {Mi|Mi :
(
mi, MACs′

A,i
(mi)

)
} (22)

At time ti + d, A transmits sA,i to B. B can check

the correctness of sA,i immediately by verifying sA,i
F1−→

sA,i−1
F1−→ ...

F1−→ sA,0. Since sA,0 has already been verified,
and F1 is a secure one-way function, the above check will
verify that sA,i belongs to A′s key chain. However, if B wants
to be additionally careful, it can verify sA,i going through all
the steps outlined above, using the CA key broadcast message
and CertCA (A).

It is to be noted that A has to wait at least time t0 + d
before it can disclose its initial TESLA key, since the CA
sends its TESLA key sCA,0 at time t0 + d. For subsequent

hA,0

s
A,0

Generate hash
CA Source A Receiver B

on message
Compute MAC

CA Key Disclosure

Message M

Compute

for A

Certificate

Request

CA Key Disclosure

Buffer M

CA

Cert (A)

s
CA,0

Verify MAC

Verify s A,0

I

E
M

T
s
CA,0

Certificate

CA,0

0

0

Obtain h

Compute tK

A,0Disclosure

Source Key

chain

Fig. 2. Authentication of packets using extended TESLA certificate: time
diagram

key disclosures by A, it does not have to wait d time units
to disclose its TESLA key for the corresponding interval.
However, we maintain the delay to allow a consistent rate
for key disclosure, and for verification at the receiver.

Thus messages from A to B can be authenticated. The above
algorithm requires A to perform one signature verification,
and B also has to perform one signature verification on the
initial key disclosure message from the CA. All other messages
can be authenticated using low-computation symmetric MACs.
A and B also does not need to perform clock synchroniza-
tion directly with one another, thereby saving on additional
message rounds and protocol complexity (and possibly also
on the cyclical dependency between authentication and clock
synchronization).

The CA need not be on-line all the time and does not need
to broadcast frequent key disclosure messages. However, if the
security policy demands so, the CA can periodically generate
new TESLA certificates for a source, and broadcast periodic
key disclosure messages. After the initial key disclosure
message from the CA signed with −KCA, subsequent key
disclosure messages from the CA can be authenticated using
one-way chains. For example, CA discloses the key sCA,i in
period 〈ti, ti + d〉. Receiver B can verify that sCA,i belongs

to CA’s one-way chain: sCA,i
F1−→ sCA,i−1

F1−→ ...
F1−→ sCA,0,

where sCA,0 has been verified before using +KCA. B does
not need to check CA’s signature to verify sCA,i.

4) Revocation of TESLA Certificates: The CA might need
to broadcast a certificate revocation message at any time
circumstances warrant that the TESLA certificate of a node has
to be revoked. Assume the CA revokes the TESLA certificate
of node A in the time period 〈ti, ti + d〉. Then the CA

broadcasts the following message to the network:

CA→ network :
(〈ti, ti + d〉, REV OKE (CertCA (A)) , sCA,i,

MACsCA,i+1 (..)
)

(23)

The receiver buffers the message and waits for the CA to
disclose sCA,i+1. The traffic received from A in the interme-
diate period is also buffered, awaiting the verification of the
revocation message, due to the possibility that the revocation
message might be a fake.

The CA discloses sCA,i+1 with the next message it broad-
casts to the network. The receiver can verify the authenticity
of sCA,i+1 and therefore the revocation message by verifying
the correctness of the one-way chain:

sCA,i+1
F1−→ sCA,i

F1−→ ..
F1−→ sCA,0 (24)

where sCA,0 has been verified using +KCA from the initial
key disclosure broadcast message of the CA. If the revocation
message is correctly verified, the receiver discards the buffered
messages from A and adds the sender to the revoked users list.

The revocation message can be merged with the key disclo-
sure message, the combined message can look like:

CA→ network :
(〈ti, ti + d〉, REV OKE(..), sCA,i,

MACsCA,i+1 (..) , SIGN−KCA (..)
)

(25)

where the REVOKE field will contain the TESLA certificates
to be revoked, the MAC is computed on the revoked certifi-
cates and the signature verifies sCA,i for nodes that might need
the verification.

Non-repudiation is not provided by the authentication
algorithm we have described in this section. We are currently
investigating efficient additions to the algorithm to provide
this important feature.

5) Dealing with Network Partition or Receiver Connectivity
Failure: Due to the conditions of the wireless medium and
node mobility, it might happen that the source and the des-
tination lose the communication path between them. Assume
a scenario where the receiver B has buffered packets from
the source A in the time interval 〈ti, ti + ∆〉, but has lost
communication with the source at time t < ti + d. Also, B
had initially successfully received the key disclosure message
from the CA and had successfully verified packets from A
transmitted in time t < ti. A broadcasts the MAC key sA,i

of period 〈ti, ti + ∆〉 at time ti + d + δ, where δ is a small
increment in time. Since the message is a wireless broadcast,
nodes which can communicate with the source at time t i+d+δ
receive the broadcast. These nodes cache the authentication
key for a specific time period. Node B does not receive
the message from A; therefore it broadcasts a request to its
neighbors at time ti + d + δ for A′s authentication key for
time-period 〈ti, ti + ∆〉. The request is propagated by B ′s
neighboring nodes throughout the network till it reaches one or

more nodes that have cached sA,i. These nodes send a reply to
B with the key sA,i. B can subsequently verify the messages
received from A during 〈ti, ti +∆〉. If no reply is received, B
keeps the messages in the buffer in the expectation of receiving
a reply in the future, or re-establishing communication with A
at a later time. Any authentication key sA,k(k > i), received
either directly from A or through other nodes at any time
t > ti + d can authenticate messages received in 〈ti, ti + ∆〉,
provided sA,i and sA,k belong to the same one-way chain. If
the buffered messages cannot be verified, B can erase them
when space constraints in the buffer arise.

The above request-reply message exchange has the addi-
tional benefit that it can help to re-establish communication
between A and B through new paths.

A different scenario might be that the receiver B has gone
offline temporarily after receiving the initial few packets from
the source A, but before the initial key disclosure message
from the CA. Assume B returns online at time t > t0 + d.
B has buffered packets from A for period 〈t0, t0 + ∆〉, but
cannot verify them since it has missed both the key disclosure
message from the CA and the sA,0 key broadcast message
from A. B broadcasts a request for the CA message and A ′s
key to its neighbors; as in the previous discussion, B gets a
reply back from any node that has cached the messages. B is
subsequently able to authenticate the packets from A.

B. Group-based Certificates for Authentication in Multicast
Communication

The algorithm described in section V-A can authenticate
messages from a source to a multicast group comprised of
nodes in the wireless network. The source obtains TESLA
certificate from the CA as described in V-A, and multicasts
data packets to the group members. The group members buffer
the data packets till they receive the authentication keys. When
the CA broadcasts the key disclosure message, the source
multicasts the MAC computation key, and the receivers can
authenticate the buffered packets as in section V-A.

In a manner similar to above, multiple sources send
authenticated messages to the group. The group members do
not need to exchange security information with one another
apriori, but they need to be able to receive messages from the
CA, and know the CA’s public key +KCA. In this approach,
the CA has to generate as many certificates as there are
sources for a group. If there are p simultaneous groups, each
with q sources on average, there will be pq certificates in the
network on average. To have fewer certificates in the network,
we propose the use of group-based certificates, described in
the following sections.

1) Multiple Sources in One Multicast Group: We illustrate
the concept of group-based certificates by initially considering
one multicast group with multiple senders in the network. In
the group-based certificate approach, the CA creates certifi-
cates based on two fields - the sources for a given group,
and the group identifier. For example, say group G has three
sources A, B and C, each of which sends the authentication

bootstrapping key hA,0, hB,0 and hC,0 respectively to the CA.
The CA creates the group certificate GCertCA (G) for group
G and broadcasts GCertCA (G) to the network.

GCertCA (G) =(
G, t0 + d, 〈IDA, {hA,0}tKCA,0〉, 〈IDB, {hB,0}tKCA,0〉,

〈IDC , {hC,0}tKCA,0〉, MACtKCA,0 (..)
)

(26)

CA→ network : (GCertCA (G) , SIGN−KCA (..)) (27)

Since GCertCA (G) is not specific to any particular source,
there is no need to send it to the multicast source nodes.
Broadcast from the CA to the network has the advantage
that all the network nodes who are subscribed to the group,
either as receivers or as sources, will receive the certificate; it
also removes the burden from the sources to make sure their
certificates reach all the group receivers, and has the added
advantage of making the source messages smaller in size.

The multicast group members can verify that GCertCA (G)
is generated by the CA by performing signature verification
on the CA broadcast in (27) using +KCA. When a source
sends multicast data packets to the group members in G:
∗ → G : {M0|M0 :

(
m0, MACs′

∗,0
(m0)

)
} (where ∗ stands

for any source in G), the receivers buffer the data packets till
the CA discloses the key sCA,0. A source A then broadcasts
the authentication key sA,0 to the group. Receivers can verify
the buffered data packets using sCA,0 and sA,0 as described
in previous sections.

The group-based certificates can be used to perform source
access control to a group at the granularity of time period
d. If the source set for a group G changes dynamically, the
CA can generate and broadcast GCerts every d time units,
with each GCert containing the list of sources valid for the
subsequent time period. Newly-added sources will have their
data packets buffered till the CA key disclosure message,
and the following authentication key broadcast by the new
sources. Sources who have been in previous GCerts from
the CA can have their packets immediately authenticated
using the hash chain. Any source which is not included in
the most recent GCert will have its packets discarded by the
receivers.

2) One Node as Source in Multiple Groups: A node might
be a source in more than one multicast group. It might send
traffic to different groups at different rates and instants in time.
The node should not use the same hash chain to authenticate
its messages to the different groups, since it might leave it
vulnerable to attacks from malicious nodes that act as receivers
and sources in the same set of multicast groups. For example,
assume node A is a source for two groups G1 and G2. It
sends data to G1 at a faster rate compared to G2. Assume
A uses the same hash chain to authenticate messages to both
the groups. A malicious node X is a receiver in group G1,
and a source in group G2. X will receive elements of A’s
hash chain when A broadcasts the elements to receivers in
G1. Since the transmission rate to G2 is slower, depending on

the difference in rate, the same hash chain elements might be
valid authentication keys in G2 (that is, not yet disclosed to
members in G2). X can therefore use the hash chain elements
it obtained in G1 to send spurious messages to G2, and
the messages will be authenticated as coming from A. This
security vulnerability can be avoided if the CA and/or the
source maintains a uniform rate at which keys are used and
disclosed across all the groups. However, maintaining uniform
rate would disadvantage groups where the transmission is
faster compared to other groups. A preferable solution would
be for the source A to have different hash chains for the
different groups. A can start with the same seed sA,x and
generate a different chain for every group G i (i ∈ {1..L}
where L is the total number of groups) by concatenating sA,x

with Gi and applying F1 to the result of the concatenation:

sGiA,0
F1←−−−− ...

F1←−−−− sGiA,n
F1←−−−− sA,x||Gi⏐⏐�F2 ...

⏐⏐�F2

s′GiA,0 ... s′GiA,n

...

sGjA,0
F1←−−−− ...

F1←−−−− sGjA,n
F1←−−−− sA,x||Gj⏐⏐�F2 ...

⏐⏐�F2

s′GjA,0 ... s′GjA,n

s′GiA,0
F3−−−−→ hGiA,0

s′GjA,0
F3−−−−→ hGjA,0

(28)

where i, j ∈ {1..L}.
A sends the hash elements hGiA,0 and hGjA,0 to the CA to

be included in GCertCA (Gi) , GCertCA (Gj) respectively.
Subsequently, the messages A sends to groups Gi and Gj are
authenticated using elements from the hash chain correspond-
ing to Gi, Gj respectively.

The concept of generating multiple hash chains from the
same seed is similar to the concurrent TESLA instances
described in [16], where the authors use different TESLA
chains based on the transmission rates for different receivers.
However, the authors limit the concept to one group and do
not extend to the case of multiple groups as above.

VI. SECURITY ANALYSIS OF EXTENDED TESLA
CERTIFICATE APPROACH

The modified TESLA certificate approach provides strong
authentication guarantees and is resistant to active attacks by
malicious nodes in the network. In the following, we highlight
the security features of the modified TESLA certificates, for
both unicast and multicast communication described in section
V. We assume that the CA is always secure, since compromise
of the CA is a single point of failure in the network, and will
nullify most security properties of our algorithm.

A. Malicious Node with Connectivity to Source and Receiver

We consider the case where a malicious node in the net-
work attempts to create fake packets from a source to the
receiver(s). We assume that the malicious node X can hear
packet transmissions from the actual source A, and can also
transmit to the receiver B. X can also receive the broadcast
messages from the CA. Therefore, shortly after time t0 + d,
X has knowledge of CertCA (A), message M0 from A to
B, sCA,0 broadcast by the CA, and sA,0 sent by A. X can
verify that s′A,0 belongs to the authentication hash chain of
A by performing the verification procedure of equation (21).
Having obtained a verified element of A ′s authentication chain,
X can attempt to spoof messages as coming from A, staring
at time t0 + k∆, where d

∆ = k. To achieve this, X needs to
generate sA,k from sA,0 where sA,k = F−k

1 {sA,0}. Due to the
one-way property of F1, this is computationally infeasible for
X , and is of complexity O

(
2K

)
, where each element of the

hash chain is K bits and K is assumed to be large. Without a
valid sA,k, it would be impossible for X to spoof a message
that would be successfully authenticated by B.

X could also attempt to spoof packets from A at any time
between 〈t0, t0 + d〉. This would require that X successfully
generate an element of A′s hash chain without knowledge of
any legitimate element of the hash chain. This has the same
computational complexity of O

(
2K

)
and is computationally

infeasible for any X with finite resources.
A third approach X could attempt would be to generate an

independent hash chain that produces the hash value hX,0 that
is computationally indistinguishable from hA,0. This would
allow X to use element sX,0 of its own hash chain to authen-
ticate messages purportedly generated by A. However, this is
computationally infeasible due to the collision-resistance and
strong one-way property of F1, F2 and F3.

Failing any attack on A′s hash chain as above, X could
attempt to masquerade as the CA and generate a fake certifi-
cate for A as in equation (16), and also generate fake CA
key disclosure broadcast message similar to equation (20).
However, unless X knows the CA private key −KCA, it
will not be able to correctly sign the fake CertCA (A), and
therefore the fake certificate will be rejected by A. Likewise,
the fake CA broadcast message from X will be rejected by
the receivers unless the signature in the message is verified as
correct using +KCA. As per our assumption of the security of
the CA, −KCA is known only to the correct CA, and therefore
X would not be successful in this attack.

X could attempt to fake CA key disclosure messages sub-
sequent to (20), but (a) the fake hash element sCAX ,i will not
verify successfully to the anchor element sCA,0 and (b) this
still does not allow X to fake elements of A′s hash chain. At
best, X would be able to confuse the receivers temporarily
and therefore launch a DoS attack for a limited time.

Once the CA has disclosed its TESLA key sCA,i for
period 〈ti, ti + d〉, any node in the network can create a fake
certificate, purportedly generated by the CA before t i + d,
by computing tKCA,i from sCA,i. However, when the fake

certificate is sent to any receiver, it will arrive after time ti+d,
and therefore be rejected, as per the security requirement in
section V-A.2.

B. Attack on the CA Revocation Messages

A malicious node X in the network can attempt to broadcast
fake revocation messages, similar to (23), and thereby attempt
to disqualify legitimate sources in the network. To generate
a fake revocation message that will be successfully accepted
by the receivers, X should be able to compute a MAC on
the fake revocation message using the key sCA,i+1, with
knowledge of at most the key sCA,i. Using reasoning similar
to the previous section, owing to the one-way property of F 1,
this has computational complexity O

(
2K

)
and is infeasible

for X . At most, X can trick the receivers in buffering the
fake revocation message, till the next message disclosure from
the CA, when the MAC on the fake message will not verify
correctly using the recently disclosed (correct) sCA,i+1, and
therefore be discarded.

C. Attack on Group Certificates

Group certificates are based on the construction of the
single-source certificates. Due to the security of the single-
source certificates discussed in the previous sections, it can
be shown with minor additions that the group-based certifi-
cate approach guarantees the security of source and message
authentication in a multicast group setting, for both cases of
multiple sources in a group, and one source in multiple groups.

Based on the security analysis above, the extended TESLA
certificate approach is secure against message spoofing attacks
by malicious nodes in the network.

VII. COMMENTS ON THE EXTENDED TESLA
CERTIFICATE APPROACH

A. Performance Analysis

The extended TESLA certificate approach adds additional
security to the original TESLA certificate approach, but the
performance of the two are equivalent. Compared to public-
key authentication, TESLA certificates offer significant sav-
ings in power expenditure and the time required to generate
authentication parameters for the messages, and to verify the
authenticity of messages. As shown in [13], it requires 46
milliseconds to perform a SHA-1 MAC computation on a
4096-bit message using a Pentium-4 2GHz machine, while
2048-bit RSA signing requires 2.26 seconds using the same
platform. Therefore the savings is of the order of 49 times
when using TESLA certificates as opposed to RSA public-
key authentication.

In our algorithm for unicast communication, the source
needs to perform one public-key signature verification (in
(16)), while the receiver also has to perform one public-
key signature verification in (20). Neither the source nor the
receiver has to perform public-key signature generation at any
time. All the messages from the source to the receiver are
authenticated using MACs computed on the messages. Com-
pared to authentication using digital signatures, this represents

a substantial savings in computation power and delay. Each
message size from the source to the receiver is also smaller in
our algorithm compared to using digital signatures. For exam-
ple, using SHA-1, the authentication MAC for message m is
160 bits, while using 1024-bit RSA key, the signature would be
1024 bits. Therefore, for each message, the authentication field
is 6.4 times smaller using TESLA certificates, representing a
substantial savings in network bandwidth over a large number
of messages.

The savings are similar in the case of multicast communica-
tion, where the receivers and the sources have to do public-key
signature verification twice on control messages from the CA
- one for the CA broadcast in (27), and another time for the
initial CA key disclosure broadcast message. The actual data
traffic in the group is authenticated entirely using MACs. The
use of GCerts helps primarily to reduce the size of messages
multicast from the sources to the receivers, since the messages
need not contain the source TESLA certificate. Computed over
the set of all messages in a group, this represents a significant
savings in network bandwidth.

We are currently studying the application of the TESLA
certificates to specific network scenarios, and we plan to
compute the savings in power, computation and network
bandwidth through simulations for the network scenarios we
adopt.

B. Difference between TESLA and TESLA Certificate algo-
rithm

One primary difference between TESLA certificates and
the original TESLA approach is how bootstrapping is done
amongst nodes, such that the anchor element of the source
hash chain can be securely distributed to all the receivers. The
original TESLA approach requires that all receivers commu-
nicate with the source directly for this bootstrapping, and that
all receivers either share symmetric keys with the source, or
knows the public key of the source. This does not scale well
as the network grows, and it is also a problem in networks
where the sources and the receivers do not know one another
beforehand, or do not have any mechanism to establish the
secure channel between them initially. The TESLA certificate
approach solves this problem by requiring that all the nodes
in the network trust only one network-wide entity, namely, the
CA. This greatly simplifies the bootstrapping, since the nodes
need to trust only the communication from the CA to verify
the anchor element of each source’s authentication chain. Also,
all the nodes in the network need to synchronize their clocks
only with the clock of the CA, which is a simpler approach
compared to synchronizing clocks with that of each receiver.

The major drawback with the TESLA certificates is that the
CA is a single point of failure. However, many widely-adopted
security mechanisms today assume the presence of similar
centralized trusted parties, and therefore the CA assumption
in TESLA certificates is not an aberration.

C. Advantage of Extended TESLA Certificate Algorithm Over
the Original Proposal

The major advantage of extended TESLA certificates over
the original proposal of [13], [15] is that it extends the
lifetime of each TESLA certificate through the use of source
hash chains, the anchor of which is certified by the CA.
The frequency of certificate generation by the CA, or the
broadcast of key disclosure messages, is reduced as a result.
The overhead in the extended approach is that there is an
(slight) additional delay between the key disclosure by the
CA, and the MAC verification at the receiver - this delay is
due to the time it takes for the source to transmit the hash
chain element to the receivers.

D. Application of Extended TESLA Certificates

The requirement of an ubiquitous CA restricts the applica-
tion of the extended TESLA certificate algorithm to networks
where there is a trusted party that is reachable by all the
nodes in the network. Many network topologies considered
at present fall in this category. For example, networks of
sensor nodes serviced by a centralized base station would
be a good candidate. In this network scenario, the extended
TESLA certificate could be applied with minor modifications,
with the base station acting as the CA. Since a typical sensor
node is considered to be a device of very limited process-
ing, storage and power capabilities, it might be unrealistic
to expect a sensor node to perform public-key operations,
even if only for the bootstrapping period. In this situation,
the functionality of public-key cryptography can be replaced
by a shared secret between each sensor node and the base
station. Instead of authenticating a source node’s certificate
using digital signature as in equation (16), the CA would
authenticate the certificate by a MAC computed using the
secret key it shares with the source node. Similarly, the key
disclosure broadcast message from the CA to the network
would be authenticated using multiple MACs computed using
the individual secret keys shared between the CA and the
nodes in the network. This requires pre-shared secrets between
the nodes and the base station, which is a common assumption
in most sensor networks considered today, where the sensor
nodes are deployed in the field with pre-installed keys.

We are currently investigating hybrid network topologies
involving terrestrial and space components for a variety of
missions, including planetary missions. In our network topolo-
gies, there are different types of terrestrial networks consist-
ing of devices of varying capabilities, such as networks of
personalized digital assistants, and networks of high-powered
sensor nodes. The terrestrial networks are serviced by satellites
with a wide broadcast reach that can cover an entire network
in a single broadcast. The extended TESLA algorithm is
a very good fit for source and message authentication in
these network topologies, and we are currently investigating
the implementation of TESLA certificates in these network
scenarios. We aim to perform simulation studies to see how the
extended TESLA certificate algorithm performs in comparison

to the original algorithm, and also in comparison to using
public-key cryptography.

VIII. FURTHER RESEARCH FOR EXTENDED TESLA
CERTIFICATE ALGORITHM

A. Computation of ∆, d

Two parameters that critically affect the security of the
extended TESLA certificate algorithm are ∆, the time interval
for using a specific element of the hash chain for computing
MACs, and d, the key disclosure delay of the CA. ∆ is
a function of the transmission rate of the source and the
reception rate of the receivers, and also the requirements of
the security policy that states how frequently the authentication
key should be updated.

The value of d is a function of the security policy and
depends on the frequency at which the CA broadcasts key
disclosure messages. We propose that the CA maintains a
consistent d for all the nodes in the network. If d is set at
a low value, sources would have a small time window in
which to transmit their certificates to the receivers, and get
them accepted. Allowing for network delays and other factors,
this might lead to situations where legitimate certificates are
rejected by the receivers. On the other hand, a large d would be
deterimental to the revocation of certificates. Receivers might
have to buffer a significant number of packets from potentially
revoked sources, before the revocation message can be verified
from the next disclosure by the CA.

A detailed analysis of ∆ and d, and their inter-dependency,
if any, is the subject of future work.

B. Reducing the authentication delay and receiver buffering
requirement

The authentication algorithms based on TESLA require that
receivers buffer packets till they can be authenticated, due to
the delay involved in the source and the CA disclosing their
TESLA keys. This buffering requirement leaves the algorithms
vulnerable to denial of service attacks, and is a major drawback
of the TESLA approach. We are investigating mechanisms
that reduce the delay in TESLA key disclosure, and to reduce
the buffering requirements at the receivers. Some promising
approaches in this regard are the immediate authentication
algorithm of [16] and the staggered TESLA approach of [13].
We aim to investigate how these mechanisms can be integrated
with the extended TESLA algorithm, and whether they can be
improved upon in the process.

C. Non-repudiation and bootstrapping issues

As stated in previous sections, non-repudiation is not pro-
vided by TESLA certificates. Also, the initial bootstrapping
for the nodes require verification of digital signatures. We
are investigating additional features to add non-repudiation,
and also mechanisms to make the initial bootstrapping process
computationally less expensive for the nodes in the network.

IX. CONCLUSION

In this paper we have re-visited the concept of TESLA
certificates, proposed recently in [13], [15]. TESLA certificate
is a new type of certificate used for source and message
authentication that uses computationally efficient symmetric
keys to perform the authentication, instead of public-key cryp-
tography that is used in standard certificates. We have identi-
fied several security weaknesses in the original proposal and
suggested modifications to strengthen the security properties of
the original algorithm. We have proposed a major extension
to the TESLA certificate algorithm that is more secure and
more efficient than the original proposal. Furthermore, we
have introduced the concept of TESLA group certificates,
and shown how they can be used to perform efficient source
and message authentication in a group setting. As an added
advantage, the group certificates can also be used to perform
source access control in a multicast group.

However, much work needs to be done to fully validate
the algorithms described in this paper. We are currently in
the process of implementing the extended TESLA certificate
algorithm for a specific network topology consisting of net-
works of terrestrial sensor nodes serviced by a satellite, with
the objective of validating the security of the algorithms and
to demonstrate their performance benefits for resource-limited
devices. We believe that TESLA certificates hold great promise
in allowing efficient authentication for resource-constrained
devices where authentication using digital signatures and stan-
dard certificates might be too expensive, and this paper will
be a useful contribution in this context.

REFERENCES

[1] H. Krawczyk, M. Bellare, and R. Canetti, ”HMAC: Keyed-Hashing for
Message Authentication”, IETF RFC 2104, February 1997.

[2] N.I.S.T., “”Digital Signature Standard (DSS)”,” May 19 1994.
[3] P.R.Zimmermann, ”The official PGP user’s guide”. MIT Press, May

3 1995.
[4] R. Housley, W. Ford, W. Polk, and D. Solo, ”Internet X.509 Public

Key Infrastructure Certificate and CRL Profile”, IETF Network Working
Group RFC 2459, http://www.ietf.org/rfc/rfc2459.txt, January 1999.

[5] S. Cheung, “”An Efficient Message Authentication Scheme for Link
State Routing”,” in Proc. 13th Annual Computer Security Applications
Conference, San Diego, USA, December 8-12 1997.

[6] R. Gennaro and P. Rohatgi, “”How to Sign Digital Signatures”,” in
Advances in Cryptology - CRYPTO ’97. Springer-Verlag Berlin
Heidelberg, 1997, pp. 180–197.

[7] R. Anderson, F. Bergadano, B. Crisp, J. Lee, C. Manifavas, and R. Need-
ham, “”A new family of authentication protocols”,” ACM Operating
Systems Review, vol. 32, no. 4, pp. 9–20, 1998.

[8] P. Rohatgi, “”A Compact and Fast Hybrid Signature Scheme for Mul-
ticast Packet Authentication”,” in Proc. Computer and Communications
Security Conference (CCS’99). Singapore: ACM, 1999.

[9] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“”Multicast Security: A Taxonomy and Some Efficient Constructions”,”
Proceedings of INFOCOMM ’99, March 1999.

[10] A. Perrig, “”The BiBa One-Time Signature and Broadcast Authentica-
tion Protocol”,” Proceedings of the 8th ACM Conference on Computer
and Communications Security - CCS ’01, November 2001.

[11] A. Weimerskirch and G. Thonet, “”A distributed light-weight authenti-
cation model for ad-hoc networks”,” in ICICS 2001, K. Kim, Ed., vol.
LNCS 2288. Springer-Verlag Berlin Heidelberg, 2002, pp. 341–354.

[12] D. Balfanz, D. Smetters, P. Stewart, and H. Wong, “”Talking to strangers:
authentication in ad-hoc wireless networks”,” in Proceedings of the 9th
Annual Network and Distributed System Security Symposium (NDSS),
2002.

[13] M. Bohge and W. Trappe, “”TESLA Certificates: An Authentication
Tool for Networks of Compute-Constrained Devices”,” in Proc. of 6th
international symposium on wirless personal multimedia communica-
tions (WPMC ’03), Yokosuka, Kanagawa, Japan, October 2003.

[14] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “”The TESLA Broadcast
Authentication Protocol”,” RSA Cryptobytes, Summer 2002.

[15] M. Bohge and W. Trappe, “”An Authentication Framework for Hier-
archical Ad Hoc Sensor Networks”,” in Proceedings of the 2003 ACM
Workshop on Wireless Security (WiSE’03). San Diego, USA: ACM,
August 2003, pp. 79–87.

[16] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “”Efficient and secure
source authentication for multicast”,” in Proc. Network and Distributed
System Security Symposium (NDSS), 2001.

