
Fingerprinting Intellectual Property Using Constraint-Addition

Gang Qu and Miodrag Potkonjak
Computer Science Department, University of California, Los Angeles, CA 90095

Abstract

Recently, intellectual property protection (IPP) techniques attracted
a great deal of attention from semiconductor, system integration
and software companies. A number of watermarking-based tech-
niques have been proposed for IPP. One of the key limitations of
watermarking is that it does not facilitate tracing of illegally resold
intellectual property (IP). Fingerprinting resolves this problem by
providing each customer with a unique instance of functionally
identical IP. We propose a general technique which enables fin-
gerprinting at all level of design process and is applicable to an
arbitrary optimization step. In particular, we address the following
fingerprinting problem: How to generate a large number of high
quality solution for a given optimization problem by solving the
initial problem only once. In addition we also discuss how to se-
lect a subset of k solutions from the pool of n solutions so that the
solutions are maximally different.

In order to make our discussion concrete we focus on a single
NP-complete problem - graph coloring. We test the new fingerprint-
ing on a number of standard benchmarks. Interestingly, while on
random graphs it is relatively difficult to produce a large number
of solutions without nontrivial quality degradation, on all real-life
compilation graphs we are able to generate millions of solution
which are all optimal.

1 Introduction

We introduce a new methodology of fingerprinting for the purpose
of IP protection. This method is different from the current finger-
printing techniques because of i) its almost zero run-time overhead,
and ii) the controllable number of distinct fingerprinted copies it
can produce. We have successfully implemented this idea in the
case of graph (vertex) coloring (GC) problem.

1.1 Motivation

Today’s engineering teams are facing more severe challenges than
ever: the shortage of engineering manpower, the soaring design
complexity, the growing time-to-market pressure, and the fast ris-
ing fabrication cost just to name a few. According to a study of 320
engineering teams in North America by Collett International [15],
by the year 2000, the new-design productivity must be doubled and
reuse productivity must be improved by a factor of 12. At the same
time, design cycle time must drop by 15 percent, team size grows
by 36 percent, and reuse increase by 53 percent.

Multi-vendor IP integration is by far the most promising so-
lution to these challenges. From the IP providers’ standpoint, the
protection of IP remains as one of the most vital concerns[15].

This research was supported in part by NSF under grant CCB-9734166.

Moreover, IP owners have to protect themselves as well as their le-
gal users. The ownership needs to be protected to recover the high
R&D cost. It can be achieved by a newly developed constraint-
based watermarking technique [9], which embeds the IP provider’s
signature as additional design constraints during the design and
synthesis process to create a rather unique IP.

It is also crucial to distribute IPs with the same functionality
but different appearance to different users, because the problem of
determining legality of the ownership will become insurmountable
if all users get exact same IP and one of them illegally redistributes
the IP. However, it is too expensive to build a unique IP for every
legal user by applying the same watermarking technique on users’
signatures.

Previously, there are techniques to put fingerprints into the IPs.
One is to partition the problem into a set of subproblems, and intro-
duce constraints to connect these small problems if necessary, then
solve each subproblem independently. This method has very poor
performance unless the original problem has specific structure[10].

Another choice [5] is to solve the problem once, then generate
a relatively small problem based on this solution. Resolving the
small problem will give us possibly new solutions. Cost for solv-
ing small instance is usually much lower than is for the original,
but when the request for different solutions are huge, this overhead
cannot be ignored. Moreover, different solutions are not guaran-
teed.

1.2 New approach and contributions

We propose a fingerprinting technique to overcome this difficulty
illustrated by the GC problem. Figure 1 shows the generic ap-
proach of the new methodology. It consists of two phases, first
we develop methods for generating as many GC solutions with the
smallest overhead, then we provide scheme to distribute these so-
lutions among potential users.

GC problem

User m

n Solutions

User 2

User 1

GC Solver

Solution Generator

Phase I:
solution generation

Phase II:
solution distribution

Figure 1: Fingerprinting technique for IP protection: generating n
solutions and distributing among m users.

This new approach provides five main benefits:
1. Since we call the solver only once, the run-time overhead for

generating many solutions over that for one single solution is
almost zero.

2. In three of the four techniques that we have implemented, the
number of solutions can be controlled and the solutions are
guaranteed distinct.

3. The IP provider’s signature can be embedded in the finger-
printing process without additional watermarking techniques.

4. Both symmetric and asymmetric fingerprints can be created
by this method.

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

587

5. With proper distribution schemes, the techniques are collusion-
secure.

In the next section, we review the related efforts in watermark-
ing and fingerprinting. Then we unveil the principles of the new
fingerprinting methodology. We use the GC problem to explain the
two phases of the technique: generating various number of solution
at one time and distributing solutions among users. We present the
experimental data and conclude in section 7.

2 Related Work

Both watermarks and fingerprints have been used to discourage
piracy of digital objects (text, image, audio, video, multimedia), but
almost all of such techniques fail to protect IP (hardware, software,
algorithm, architecture, and etc.). We survey the recent efforts on
watermarking and fingerprinting techniques for IPP.

Watermarking for the purpose of IPP is a challenge because of
the requirement for preserving the IP’s correct functionality. The
constraint-based watermarking method[9] translates the signature
into a set of additional constraints during the design and implemen-
tation of IP in order to uniquely encode the signature into the IP.
The effectiveness of this technique lies in the large solution space
of the problem which interprets the IP. Then the signature will be
added as extra constraints that eventually cut the solution space.
Ownership is proved by the usually exceptionally small probability
of obtaining a specific solution from the initial solution space with-
out the signature. This new methodology is mathematically sound
and has been applied at the level of algorithm, behavior, logic syn-
thesis and physical design, as well as in FPGA[2, 4, 10, 11, 13].

Fingerprints are the characteristic of an object that is completely
unique and incontrovertible. Fingerprint-like marks have also been
developed to distinguish other objects from maps and mathemati-
cal tables to diamonds and explosives. However, only recently with
the proliferation of digital data has it drawn academic and industrial
attention. Boneh and Shaw [2] propose the most efficient symmet-
ric fingerprinting schemes in the sense that both the distributor and
the user know the fingerprinted copy. Pfitzmann and Schunter[12]
introduce asymmetric fingerprints, where only the user knows the
fingerprinted data while the distributor can identify the user’s infor-
mation from the data. Biehl and Meyer[1] combine these two and
give a construction more suitable for broadcast data.

Like the watermarking techniques for artifact, the fingerprint-
ing techniques developed by far introduce minute errors into each
copy of the data. These errors, called marks, are not acceptable
in the design process of IP, and even if they maintain the correct
functionality, a machine can easily detect these changes. One may
argue that for each user, we can take his/her signature and apply
the constraint-based watermarking techniques proposed by Kahng
et al[9]. This method is effective for proof of authorship. How-
ever, the computation cost which is linear to the number of users
makes their techniques impractical for the purpose of fingerprint-
ing. Moreover, due to the randomness of most of the heuristic algo-
rithms for hard problems, we cannot guarantee that each user will
receive a unique copy.

In this paper, we propose techniques that are capable of creating
various numbers of different copies, which can be controlled by
changing the parameters of the techniques, and all the copies are
generated with almost the same expense as for a single copy.

3 Fingerprinting for IP protection

3.1 Background

Fingerprints are characteristics of an object which are sufficient
enough to distinguish it from other similar objects. Fingerprinting

refers to the process of adding fingerprints to an object and record-
ing them, or process of identifying and recording fingerprints that
are already intrinsic to the object[14]. The core idea of fingerprint-
ing is to give each user a copy of the object containing a unique
fingerprint, which can be used to identify that user.

One of the most accepted model for fingerprinting[2, 1, 7, 14,
12] can be described as: In the original object, a set of marks is se-
lected probabilistically, where a mark is one bit of information that
has two slightly different versions. The distributor can choose one
of the two versions of each mark to embed either a 0 or a 1 when
the object is sold to a user, and thus construct a binary word which
becomes the fingerprint of this user. Two general assumptions on
the object to be fingerprinted are:
Error-tolerance assumption: the object should remain useful after

introducing small errors or marks, and the user cannot detect
the marks from the data redundancy. The more errors that the
object can tolerate, the more places we can put these marks.

Marking assumption: two or more users may detect a few marks
that differ in their copies, but they cannot change the unde-
tected marks without rendering the object useless.

According to a taxonomy given by Wagner[14], the statistical
fingerprinting is characterized as: given sufficiently many misused
objects to examine, the distributor can gain any desired degree of
confidence that he has correctly identified the compromised. The
identification is, however, never certain. This is one of the funda-
mentals for many fingerprinting schemes[2, 1].

3.2 Context of �ngerprinting for IP protection

Our goal is to protect IP through fingerprinting. The major differ-
ence between IPs and the objects mentioned in the previous sec-
tion is that IPs are usually error-sensitive, which violates the error-
tolerance assumption. Therefore, we cannot directly apply the ex-
isting fingerprinting techniques for IP protection. For an IP to be
protected, it must satisfy the following requirements:

� The IP should be well-interpreted as a problem which has a
large solution space. The sole role for the error-tolerance as-
sumption is to guarantee a relatively large valid object space.
Introducing errors is one way to create such space, but not
the only way.

� The cost to derive the solution space should be negligible
comparing to that of inventing the IP. It takes tremendous
human and computer resources to design and implement a
piece of IP, and we cannot afford to produce different copies
by simply repeating the entire design process.

� The existence of algorithms and/or state-of-the-art software
which solves the problem. In our experience, these exist for
many problems in the field of VLSI CAD.

Before describing the general approach of our constraint-addition
based fingerprinting, we list the objectives for any effective finger-
printing techniques:

� The protocol, with the help of the existing problem solver,
should be able to create K >> 1 solutions at the expense
close to that for finding one single solution.

� The protocol, combined with the problem solver, should be
capable of generating solutions that are far away from each
other, otherwise collusion-secure solution distribution schemes
are not possible.

� The fingerprinting protocol should be non-intrusive to the
problem solver so that it can be transparently integrated with
existing design flows via pre-processing and/or post-processing.

588

� The fingerprints must provide high credibility to identify each
and every user.

� The overhead or degradation of the quality of solution after
embedding fingerprints should be minimized.

� The user cannot remove or alter the fingerprints without com-
plete knowledge of the IP or rendering the IP useless.

� The IP provider can, without much difficulty, trace the guilty
user(s) from the fingerprints in illegal copies.

3.3 A generic approach of �ngerprinting for IP protection
using addition of constraints

As we discussed earlier, our fingerprinting procedure consists of
two phases: the solution generation phase and the solution distri-
bution phase.

The first concern is: does the problem always have a large so-
lution space and what happens if the solution space is very limited?
Since each user will receive a unique copy, we have to construct
solution space large enough to accommodate all users or we are in
troubles to release copies.

Many hard problems have a sufficient number of solutions in
nature. For instance, in the GC problem, isolated nodes can be
marked by any colors, and two connected nodes that have the same
set of neighbors except themselves can exchange their colors. As
another example, in the satisfiability (SAT) problem, flipping over
the value of a don’t-care variable in a satisfying assignment will
give a different solution. Given that the solution space is large, to
find k solutions is in general at least as hard as solving the original
problem. Moreover, once we have the solution space, we have to
maintain a one-to-one mapping from the solution to the user who
receives this copy.

In our approach for solving the solution generation problem,
we are not attempting to find the whole solution space. Instead,
we add a set of extra constraints to the initial problem such that
we can easily create (many) new solutions from one solution to the
modified problem. In fact, we find a subspace of the solution space,
where a base of this subspace can be built from this set of extra
constraints, and the solution to the modified problem is a seed.

Once we have a set of solutions generated from a given base,
where each solution can be uniquely expressed as a combination of
the base. We can map each user’s signature to a set of coefficients
and assign him/her the corresponding copy of solution. Hence we
only need to keep the base and the information for each user.

With a released solution, the user may gain some information
about the problem. For example, if the user has a graph colored by
69 colors, then he knows the graph is 69-colorable and a satisfying
assignment of a SAT problem tells the user that the original SAT is
satisfiable. Since the solutions we created now are not random any
more, users may collect different copies, detect their difference and
produce new copies differ from their originals. The fingerprinting
techniques should be designed to prevent this or make it hard, and
allow the owner to be able to trace at least one of the dishonest
users with a convincible probability from a forged copy.

4 Creation of various solutions for GC problem

In this section, we present four techniques to generate solutions
for the GC problem: (1) duplicating a selected set of vertices; (2)
modifying small cliques; (3) adding edges between unconnected
vertices; and (4) post-processing on one solution.

Given a graph G(V;E) and a positive integer k � jV j, we
say that G is k-colorable if we can color the vertices V such that
adjacent vertices have different colors. The optimization graph
(vertex) coloring problem is to find the minimum number k such

that G is k-colorable. This problem is NP-complete and many
heuristic algorithms have been developed dedicated to this prob-
lem (http://dimacs.rutgers.edu/).

4.1 Vertex duplication

Given one coloring scheme to a graph, if we know that one vertex
can also be colored by another alternative color, then immediately
we can have one more solution to the same GC problem. Further-
more, on knowing k vertices each has an second valid color, we are
able to create 2k different solutions with almost no cost. And these
k vertices and their associate colors will serve as the base for the
solution space we have.

C

D

F

A

B E

(a) Original graph.

C

D

F

A

B E

A’

(b) New graph.

Figure 2: Duplicating vertex (A) to generate various solutions.

Figures 2 and 3 show this technique and an implementation.
The idea is to select a vertex, duplicate it by creating a new vertex
and connecting it to all the neighbor’s of the selected vertex. Now
the selected vertex can be labeled by either its color or the color
of its duplication without violating the rules for GC. To guarantee
these two vertices receive different colors, we add an edge in be-
tween. In Figure 2(b), vertices A and A’ will be labeled by two
different colors which can both be used to color A in the original
graph 2(a).

Input: a graph G(V;E), and an integer n.
Output: a new graph G0, such that n different solutions

to G can be generated from one solution to G0.
Algorithm:
copy G(V;E) to G0(V 0; E0);
copy V to V 00;
repeat (dlog

2
ne times)

f select a vertex v from V 00;
delete v from V 00;
add a new vertex v0 to V 0;
add a new edge (v; v0) to E0;
for all (u such that edge (u; v) 2 E)
add an edge (u; v0) to E0;

g
report graph G0(V 0; E0);

Figure 3: Pseudo code for vertex duplication.

4.2 Clique manipulation

In any valid color scheme, vertices from one clique will receive
different colors, however, the solution may become invalid if they
switch their colors. For example, consider the triangle BCD in Fig-
ure 4(a), once the other five vertices’ colors are fixed as shown, it
is easy to see this is the only solution.

We can add extra constraints to this triangle, as shown in Fig-
ure 4(b), and now the three colors for vertices B, C, and D can be
assigned arbitrarily. In general, if we choose a clique of size k, and
for each vertex, we connect its neighbors to all other vertices in the
clique, then based on one solution to the resulting graph, we get

589

���
���
���
���

��
��
��

��
��
��

D E

F

G

A

B

H

C

(a) Original graph.

��
��
��
��

D E

F

G

A

B

H

C

(b) New graph.

Figure 4: Manipulating small clique (triangle BCD).

k! solutions to the original GC problem by assigning each of the k
different colors to one of the vertices in the clique.

Several cliques can be selected and they combine together form-
ing a base for the solution space.

4.3 Bridge construction

There is no constraint for two vertices that do not have an edge
connecting them. In [13], a watermarking technique is proposed
where a message is embedded into the graph by adding edges be-
tween selected pairs of vertices, and the authorship can be claimed
by showing the probability that every pair of vertices receiving dif-
ferent colors, which is not necessarily true in the original graph.

We can exploit the same idea here by selecting a pair of uncon-
nected vertices, connecting one to all the neighbors of the other as
well as these two vertices themselves. In Figure 5(b), vertices B
and E are selected, and when we color the new graph, B and E will
have different colors, say red and green. Now we can build 4 solu-
tions where B and E are colored as (red, red), (red, green), (green,
red) or (green, green).

C

D

F

A

B E

(a) Original graph.

C

D

F

A

B E

(b) New graph.

Figure 5: Constructing bridge (BE) to generate various solutions.

It is worth mentioning here that this method is not restricted
to a pair of unconnected vertices. We can select k unconnected
vertices (an independent set of size k), create a complete graph
over these vertices and connect each node to the neighbors of the
others. Obviously, in this way, kk different solutions can be derived
from a single solution.

By constructing bridges, we can make the attacker’s job very
hard. In Figure 5, if two users detect that vertex B is marked by red
and green respectively in their solutions, and provided they know
our fingerprinting technique, all the conclusion they may draw is
that a bridge has been built between B and a vertex colored by
either red or green. They have to search through a relatively large
space and it will become even worse for them if we are selecting k
unconnected vertices.

A hybrid of bridge construction and clique manipulation is prac-
tical with additional post-processing. We can choose k vertices (not
necessarily unconnected), create a clique of size k and apply the
clique manipulation technique. Now since the k selected vertices
do not belong to an independent set, an arbitrary combination of
their colors may not be valid in the original graph. A trivial proce-
dure has to be conducted before releasing any solution which tests
the validity of a given combination.

4.4 Solution post-processing

The last technique we discuss here requires post processing on a
given solution.

Suppose we have colored graph G(V; E) by k colors, denote Vi
the subset of V that are colored by the ith color. So V = [

k
i=1Vi,

and Vi \Vj = � for all i 6= j. Now we select l colors and let V 0 =

[
l
j=1Vij . Consider the subgraph G[V 0] of G that is induced by V 0,

we know this graph is l-colorable. In general, its size is relatively
small and we can exhaustively find all the l-color solutions to it.
Similarly we may construct another induced subgraph G[V 00] such
that V 0

\ V 00 = � and recolor it exhaustively. If we find n1 and
n2 solutions for G[V 0] and G[V 00] respectively, by applying the
multiplication principle, we can create n1 � n2 solutions to the
original graph G(V;E).

4.5 Comparison of the techniques:

One common characteristic for the first three techniques is that
they belong to the category of pre-processing, where we modify
the graph before it is colored by any GC solver (as a “blackbox”).
Once a solution to the modified GC instance is returned, many dif-
ferent solutions to the original GC problem can be generated from
this “seed” solution easily. The number of solutions can be con-
trolled by tuning the parameters (see Table 1). But if we constrain
the original graph too much, we may have some overhead, i.e., us-
ing extra colors for the modified graph comparing to that for the
initial graph.

In contrast, when we apply “solution post-processing” method,
the GC solver will solve exactly the initial GC instance and it will
provide us the best solution it can find. And in the post process,
we always use the same amount of colors, therefore, there is guar-
anteed no overhead. However, it is not so easy to create many so-
lutions as we do by the first three techniques, and the number of
solutions are not controllable. In our experience, the better is the
solver, the less space left for post-processing. For example, in a
85-color solution for a random graph of 1000 nodes, 66 colors are
used for maximal independent sets.

To end this section, we summarize these techniques in the fol-
lowing table, for each technique, we list its parameters and the size
of the solution space. The base of the solution space can be easily
built from the parameters, the overhead will be discussed later by
experimental results.

Technique and parameters Number of solutions from one seed

Vertex duplication:
duplicate k vertices 2k

Clique manipulation:
manipulate k cliques of n1!� n2!� : : :� nk!
size n1; n2; : : : ; nk
Bridge construction:
select k sets of unconnected n

n1
1

� n
n2
2

� : : :� n
nk
k

vertices of size n1; : : : ; nk
Solution post-processing:
Partition the vertices into k subsets
by their colors, in each subset, we n1 � n2 � : : :� nk
find n1; n2; : : : ; nk solutions

Table 1: Summary of the four techniques.

5 Solution distribution scheme

As discussed before, the distributor wishes to give each user a
uniquely fingerprinted copy. However, this is impractical for mass
produced products like electronic books, software or CD-ROMs.
One scheme[2] is to divide the data that a user received into two
parts: the public data which is common to all users, and the private

590

data which is unique to a particular user. Typically, the private part
is small but should be able to provide enough information for the
distributor to trace the user.

On the other hand, unlike human fingerprinting, the embedded
digital fingerprints may be changed while the object is kept useful
or functional correct. Two or more users may easily detect the dif-
ference between their copies, and come up with another copy with-
out their fingerprints. In[2], for naive redistribution where a user
redistributes his copy of the object without altering it, a c-secure
code is constructed that can trace at least one of the guilty users
from a coalition with size up to c users. For other cases, they con-
struct c-secure codes with "-error which allows an innocent user
comes under suspicion with probability " but requires a code length
polynomial to log 1

"
and log n (n is the number of potential users).

To avoid computing the problem many times, we create various
solutions from one “seed” solution, therefore, similarities can be
expected and it may be much easier for pirates to figure out these
similarities and forge new valid solutions without their own finger-
prints if the solutions are distributed improperly. For example, if
we use the vertices duplication method with k vertices, in the seed
solution, each of these k vertices will have a primary color and a
secondary one. We are able to generate 2k solutions where the only
difference is the colors assigned to these k vertices. Suppose user
A receives a copy of all the primary colors, and user B has one
with all the secondary colors. Then if users A and B compare their
copies, they can discover all the 2k solutions.

We can discourage this with the aids of carefully designed dis-
tribution schemes. Although we cannot force users from redistri-
bution, we can have the copies released in such a way that from a
forged copy, we are able to catch at least one user from the coali-
tion. The protocols in [1, 2] are applicable in this case. The basic
idea is to select a subset of the solution space generated by the “seed
solution” and release only solutions from this subset instead of the
entire solution space. This subset should satisfy the following:

� Any combination of solutions cannot create a new solution
in this subset, i.e., the innocent user will be protected.

� From any solution created by a combination of solutions from
this subset, at lease one of the original solution can be traced.
In another word, from an illegal copy, at least one of the
guilty users will be caught.

Notice the domino effect of the GC problem (and many other
hard optimization problems as well): changing the colors of a few
vertices may render the entire solution. This phenomena does not
exist in the contexts of fingerprints for classical objects, and our
new techniques utilize it to discourage piracy. For example, if we
use clique manipulation or bridge construction techniques, (or a
hybrid of these two), it is still possible to find part or all the ver-
tices that have been selected. However, the pirates will have diffi-
cult time to find the matching that tells them which clique it belongs
to and/or which vertices are connected to it by bridges. And it is un-
likely for the users to create new solutions, which are significantly
different from the originals, from the copies generated by solution
post-processing.

6 Experimental Results

We implement the proposed fingerprinting techniques in Section 4
on two types of graphs (available at http://mat.gsia.cmu.edu/COLOR
/instances.html). The first is standard random graphs with given
number of vertices and edges. The other type of graphs is gener-
ated from the register allocation problem of variables in real codes.
Table 2 shows the parameters for these graphs.

Instance Vertices Edges Optimal Coloring
fpsol2.i.1.col 496 11654 65
fpsol2.i.2.col 451 8691 30
fpsol2.i.3.col 425 8688 30
inithx.i.1.col 864 18707 54
inithx.i.2.col 645 13979 31
inithx.i.3.col 621 13969 31
mulsol.i.1.col 197 3925 49
mulsol.i.2.col 188 3885 31
mulsol.i.3.col 184 3916 31
mulsol.i.4.col 185 3946 31
mulsol.i.5.col 186 3973 31
zeroin.i.1.col 211 4100 49
zeroin.i.2.col 211 3541 30
zeroin.i.3.col 206 3540 30

DSJC1000.5.col.b 1000 249826 N/A

Table 2: Characteristics of benchmark graphs.

6.1 Fingerprinting random graphs

For the random graph DSJC1000.5.col.b, we color it on a Sun
ULTRA-5 workstation and get five different solutions. Then we
apply the proposed fingerprinting techniques on the original graph
and color the resulting graphs again to get 5 solutions. The average
and the best number of colors for each test are reported in Table
3. The last column shows the number of solutions can be derived
from each single solution, recall that these solutions are guaranteed
different. The run-time for coloring the original graph is about 16
hours, and those for the fingerprinted graphs are 14 � 19 hours on
the same system.

Tests Average Best Number of Solutions

Original Graph 85.8 85 1
Duplicate 10 Vertices 86.8 86 210 = 1024
Duplicate 25 Vertices 87.8 87 225 � 3:355 � 107

Duplicate 50 Vertices 89.8 89 250 � 1:126 � 1015

Create 5 Bridges 87.2 87 45 = 1024
Create 12 Bridges 89.2 89 412 � 1:678 � 107

Manipulate 4 Triangles 89.4 89 64 = 1296
Manipulate 10 Triangles 104 101 610 � 6:047 � 107

Table 3: Coloring the fingerprinted graph DSJC1000.5.col.b.

Though the run-time overhead can be ignored, the degrada-
tion of solution cannot. Graph DSJC1000.5.col.b has similar local
structure everywhere by its nature. No matter which fingerprinting
technique we use, we will make some part over-constrained and
this causes the extra-color overhead.

6.2 Fingerprinting reallife benchmark graphs

To show the effectiveness of our proposed techniques, we finger-
print the reallife benchmark graphs in three different ways, which
all promising different solutions to the order of 107 (1015 for test2
and test4). Both original graphs and fingerprinted graphs can be
colored in a few seconds on the same Sun ULTRA-5 workstation.
The run-time overhead is negligible.

Table 3 reports the details on coloring the fingerprinted graphs.
The first two columns are the instances and their optimal coloring.
The next six columns are:
test1: select 25 vertices randomly and duplicate them.
test2: select 50 vertices randomly and duplicate them.

test3: repeat test1 with 25 carefully selected vertices.

test4: repeat test2 with 50 carefully selected vertices.

591

test5: apply bridge construction on 12 random pair of unconnected
vertices.

test6: manipulate 10 random triangles.

Instance opt. test1 test2 test3 test4 test5 test6

of solutions 1 2
25

2
50

2
25

2
50

4
12

6
10

3.3e07 1.1e15 3.3e07 1.1e15 1.6e07 6.0e07

fpsol2.i.1.col 65 66 66 65 65 65 78
fpsol2.i.2.col 30 31 34 30 30 31 42
fpsol2.i.3.col 30 31 32 30 30 31 44
inithx.i.1.col 54 54 56 54 54 54 60
inithx.i.2.col 31 33 33 31 31 32 41
inithx.i.3.col 31 33 34 31 31 32 40
mulsol.i.1.col 49 54 58 49 49 57 57
mulsol.i.2.col 31 37 38 31 31 36 36
mulsol.i.3.col 31 37 40 31 31 37 38
mulsol.i.4.col 31 37 39 31 31 35 40
mulsol.i.5.col 31 38 40 31 31 36 36
zeroin.i.1.col 49 53 56 49 51 53 60
zeroin.i.2.col 30 32 33 30 30 32 42
zeroin.i.3.col 30 32 32 30 30 33 43

Table 4: Coloring the fingerprinted benchmark graphs.

In test1 and test2, the overhead is significant, the reason is that
we pick the vertices completely randomly. If we choose one from
a clique of size k, a new clique of size k + 1 will be created by
duplicating a new vertex which makes the graph over-constrained.
On the other hand, selecting isolated vertices only produce trivial
solutions. Based on these observations, in test3 and test 4, we avoid
isolated vertices and those from large cliques. In all instances but
one (zeroin.i.1.col with 50 vertices duplicated) there is no extra-
color overhead.

The bridge construction method works fine for the fpsol2 and
inithx type of graphs, but bring unacceptable overhead to the other
two. This is because that the mulsol and zeroin graphs are relatively
small, consequently their solution spaces are small and to have the
same amount of solutions, extra colors have to be introduced.

The clique manipulation technique is subtle than the previous
ones, but it introduces overhead. When we select small cliques,
most likely we will choose one from a large clique and possibly
make the clique larger and the graph more difficult to be colored.
For example, there are 5 triangles in Figure 6, one is the triangle
on the right, the other four are from the clique of size 4. When we
choose a triangle, with 80% we will pick one from the clique of
size 4.

Figure 6: Choosing a triangle from a graph.

For real-life graphs, the local structure of the graph is different
from place to place. More specifically, the constraints are not the
same. We can exploit this unbalance and select (according to the
owner’s information if we want to watermark the solution as well)
less-constrained part to apply the fingerprinting techniques. The
above results show the effectiveness of this approach.

7 Conclusions

Fingerprinting is one of the most powerful and efficient methods to
discourage illegal distribution. A fingerprinted IP will not directly

prevent misuse of the IP, but will allow the IP provider to detect the
source of the redistributed IP and therefore trace the traitor.

The existing fingerprinting IPP techniques have shortcomings:
they are either applicable only to a very restricted set of problems[10]
or unable to guarantee distinguish copies [5]. We propose a general
technique which enables fingerprinting at all level of design pro-
cess, is applicable to an arbitrary optimization step, and produces
numbers of distinct solutions with high quality.

Our key idea is to superimpose additional constraints on the
problem formulation so to guarantee that the final solution can be
in a straightforward way translated into k different high quality so-
lutions. We implemented this on the NP-complete GC problem and
tested on a number of standard benchmarks. Fingerprinting the ran-
dom graphs introduced overhead, while for graphs generated from
real-life register allocation problems, we successfully created mil-
lions of distinct optimal solutions with no run-time overhead.

References

[1] I. Biehl, and B. Meyer. Protocols for Collusion-Secure Asymmetric
Fingerprinting. STACS’97, Proceedings of 14th Annual Symposium
on Theoretical Aspect of Computer Science. Reischuk, and Morvan
(Eds.), Springer-Verlag pp. 399-412 1997.

[2] D. Boneh, and J. Shaw. Collusion-Secure Fingerprinting for Dig-
ital Data. Advances in Cryptology - CRYPTO’95, Proceedings of
15th annual International Cryptology Conference. Coppersmith (Ed.),
Springer-Verlag, pp. 452-465 1995.

[3] L. Boney, A.H. Tewfik, and K.N. Hamdy. Digital watermark for au-
dio signals. International Conference on Multimedia Computing and
Systems, pp. 473-480, 1996.

[4] E. Charbon. Hierarchical Watermarking in IC Design. IEEE 1998
Custom Integrated Circuits Conference, pp. 295-298, 1998.

[5] A.E. Caldwell, H. Choi, A.B. Kahng, S. Mantik, M. Potkonjak, G.
Qu, and J.L. Wong. Effective Iterative Techniques for Fingerprinting
Design IP. 36th Design Automation Conference Proceedings, pp. 843-
848, 1999.

[6] M.T.Chao, and J.Franco. Probabilistic Analysis of Two Heuristics for
the 3-Satisfiability Problem. SIAM Journal of Computing, Vol.15,
No.4 pp. 1106-1118, 1986.

[7] B. Chor, A. Fiat, and M. Naor. Tracing Traitors. Advances in Cryptol-
ogy - CRYPTO’94, Proceedings of 14th annual International Cryptol-
ogy Conference. Desmedt (Ed.), Springer-Verlag, pp. 257-270, 1994.

[8] I.J. Cox, J. Kilian, T. Leighton, and T. Shamoon. A secure, impercep-
tible yet perceptually salient, spread spectrum watermark for multi-
media. Southcon, pp. 192-197, 1996.

[9] A.B. Kahng, J. Lach, W.H. Magione-Smith, S. Mantik, I.L. Markov,
M. Potkonjak, P. Tucker, H. Wang and G. Wolfe. Watermarking Tech-
niques for Intellectual Property Protection. 35th Design Automation
Conference Proceedings, pp. 776-781, 1998.

[10] J.Lach, W.H.Mangione-Smith, and M.Potkonjak. FPGA Fingerprint-
ing Techniques for Protecting Intellectual Property. Proceedings of
CICC, 1998.

[11] A.L. Oliveira. Robust Techniques for Watermarking Sequential Circuit
Designs. 36th Design Automation Conference Proceedings, pp. 837-
842, 1999.

[12] B. Pfitzmann, and M. Schunter. Asymmetric Fingerprinting. Advances
in Cryptology - EUROCRYPT’96, Proceedings of International Con-
ference on the Theory and Application of Cryptographic Techniques.
Maurer (Ed.), Springer-Verlag, pp. 84-95, 1996.

[13] G. Qu, and M. Potkonjak. Analysis of Watermarking Techniques for
Graph Coloring Problem. IEEE/ACM International Conference on
Computer Aided Design Proceedings, 1998.

[14] N.R. Wagner. Fingerprinting. Proceedings of the 1983 Symposium on
Security and Privacy, IEEE Computer Society, pp. 18-22, 1983.

[15] VSI Alliance. System Chip Letter. Issue 2, Summer 1998.

592

