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Reducing tropical deforestation has been a primary focus for the 

implementation of policies that are aimed at biodiversity conservation, and reducing 

greenhouse gas emissions, as tropical forests have, biologically, the richest ecosystem 

on Earth, tropical deforestation is one of the largest sources of anthropogenic carbon 

emission into the atmosphere, and preventing it is the most inexpensive option, in 

order to reduce carbon emissions and conserve biodiversity. To set the effective 

policies and conservation plans to reduce emission from tropical deforestation, the 

evaluation of effectiveness of both the current and previous efforts for conservation is 

critical. The three studies in this dissertation describe the development of the methods 

to accurately monitor pan-tropical forest cover change, using satellite remote sensing 



  

data, and their integration with the econometrics approach, to evaluate the 

effectiveness of the tropical forest conservation practices. The dissertation contributes 

a method for long-term, global forest cover change estimation from Landsat, and the 

methods are applied to report the first, pan-tropical forest cover change trends, 

between the 1990s and the 2000s. The global forest cover change product from 1990 

to 2000, which was produced, based on the developed methods which are evaluated 

to have an overall accuracy of 88%. The results demonstrate that tropical 

deforestation has accelerated between the 1990s and the 2000s by 62%, which 

contradicts the assertions of it being decelerating. The results further show that the 

increased deforestation rate between the 1990s and the 2000s is significantly 

correlated with the increases in Gross Domestic Product (GDP) growth rate, 

agricultural production growth, and urban population growth between the two 

decades. Protected Areas (PA), throughout the tropics, avoided 83,000 ± 22,000 km2 

of the deforestation during the 2000s. The effectiveness of international aid can be 

suppressed by weak governance and the lack of forest change monitoring capacity of 

each country. The conclusions of this dissertation provide a historical baseline for the 

estimates of tropical forest cover change, and for the evaluation of effectiveness of 

such conservation efforts. 
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Chapter 1 Introduction 

1.1 Background 

Reducing tropical deforestation has been a primary focus for the 

implementation of policies that are aimed at biodiversity conservation, and reducing 

greenhouse gas emissions, as tropical forests have, biologically, the richest ecosystem 

on Earth (Laurance et al. 2012), tropical deforestation is one of the largest sources of 

anthropogenic carbon emission into the atmosphere (Gibbs et al. 2007), and its 

prevention is the most inexpensive option, which can help to reduce carbon 

emissions, and conserve biodiversity (DeFries et al. 2010; Pimm et al. 2001). 

In order to effectively target the objects of policies and plans, and to evaluate 

the effectiveness of such policies and plans, accurate and consistent estimation of 

forest cover change, over space and time, is critical. Satellite remote sensing data has 

been used to monitor this over large areas, for its spatial and temporal consistency, 

and to complement issues in ground-based observations, such as data gaps and 

incompatibility (Curran et al. 2004; DeFries et al. 2005). However, none have 

successfully provided a historical baseline of the pan-tropical forest cover, based on 

the satellite observation, in an appropriate spatial resolution, which is suitable to 

monitor the majority of anthropogenic change, and with a temporal range which is 

long enough to depict the effects of policies and conservation practices. 

In turn, the lack of accurate and comprehensive spatial data has impeded the 

estimation of long term trends of tropical forest cover change, which is critical for the 
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analysis of causal relationships between the climatological, socio-economic factors, 

and forest loss.  

There are many possible applications of the fine spatial resolution, and long 

term forest cover change data. In this dissertation, the application of those data, to 

evaluate conservation plans, are presented. This introduction discusses the rationale 

and challenges in using Landsat data, for setting the historical baseline of global 

forest cover and its change, the current address of estimation of long-term forest 

cover change in the tropics, and the challenges in applying the results to the 

evaluation of policies and conservation plans. 

 

1.2 Landsat based, historical forest cover change estimation 

 

Definition of forest cover 

In this dissertation, the term “forest cover” refers to a specified density of 

trees, and not to the land use which pertains to forestry ( Di Gregorio & Jansen 1998; 

Hansen et al. 2010). The definition is consistent with the United Nations Framework 

Convention on Climate Change (UNFCCC 2002), United Nations Food and 

Agriculture Organization (FAO 2002), and International Geosphere-Biosphere 

Programme (IGBP) (Belward 1996). The term “cover” itself generalizes binary 

(presence vs. absence), as well as continuous (e.g., percent) scales of representation. 

Forests and forest cover, thus defined, are relevant to the ecosystem processes, such 

as chemical (e.g., carbon) and hydrological cycling, energy budgets, and biodiversity, 

whereas, other definitions might be more applicable to the socio-economic 

phenomena, such as land tenure. Further, the precision of analyses, based on these 
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forest cover data, depends upon the consistency of the definition of “forest” versus 

“non-forest”, over space and time (Kim et al. 2014; Sexton et al. 2013). 

 

Rationale of using Landsat data for monitoring historical forest cover change  

Most anthropogenic land cover changes are small in area, and the patterns of 

change have developed over a long period of time (Lambin et al. 2003; Townshend & 

Justice 1988). Consequently, the effective monitoring requires longer-term data sets, 

with fine spatial resolution – ideally, at the sub-hectare spatial resolutions, spanning 

multiple decades ( Kim et al. 2015; Sexton et al. 2013; Townshend & Justice 1988). 

Since their first launch in the 1970s, Landsat archive represents the only globally 

comprehensive data record of more than three decades, which is suitable for mapping 

global forest cover. Landsat data offer a spatial resolution which is appropriate for 

mapping such changes (e.g. shifting cultivation in the rainforest), with Instantaneous 

Field Of View (IFOV) of 30 m, and Effective Resolution Element (ERE), which is 

smaller than 75 m, where the minimum area for which the spectral properties of the 

center can be assigned with at least 95% confidence (Townshend 1981; Wilson 

1988). 

Since the public opening of the United States Geological Survey (USGS) 

Landsat archive (Woodcock et al. 2008), there have been some efforts made to report 

the global forest-cover, and its changes at the 30-meter resolution of the Landsat 

sensors. Most of these efforts have concentrated on the recent changes (2000-present) 

( Hansen et al. 2013; Sexton et al. 2013; Townshend et al. 2012). However, historical 

baselines are needed, to understand the causes and consequences of forest cover 

changes, and to assess the effectiveness of land-use policies, most notably for 
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Reducing Emissions from Deforestation and Degradation (REDD) (Olander et al. 

2008). Currently, the geospatial datasets represent Earth’s forest cover globally 

(Hansen et al. 2013; Hansen et al. 2000; Loveland et al. 2000; Potapov et al. 2008; 

Potapov & Yaroshenko 2008; Sexton et al. 2013), but, none have both the spatial and 

temporal scale which is required for longer-term (i.e., pre-2000), global monitoring of 

forest-cover change, at fine spatial resolution. 

Challenges in using Landsat data for long-term, global forest cover change 

monitoring 

Provision of appropriately scaled forest cover change data has been hindered 

by certain constraints, including the acquisition of well-registered imagery, the need 

for atmospheric correction, incorrect calibration coefficients in some of the data-sets, 

the different phenologies between the scenes, and the need for terrain correction ( 

Kim et al. 2014; Townshend et al. 2012). Progresses in data processing, and 

computing technologies, resolved the majority of these problems (Townshend et al. 

2012). Especially, the opening of the USGS Landsat archive to the public has 

released the constraints of data access and expense, thus, enabling the successful 

production of operational, global scale forest cover change data (Hansen et al. 2013; 

Sexton et al. 2013). While these efforts have concentrated on the recent changes 

(2000-present), retrospective mapping of the global forest cover is still limited, by a 

lack of coincident reference data, required for supervised image classifications, and to 

assess the accuracy of change detection results.  

1.3 Tropical forest cover change trends estimates 

Estimation of trends in the tropical forest cover change is important, to 

evaluate the effectiveness of climate policies and conservation plans. Statistics from 
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the United Nations Food and Agriculture Organization (FAO), Forest Resource 

Assessment (FRA) (FAO 2010; FAO 2015) was the only source available to estimate 

the trends in pan-tropical forest cover change between the 1990s and the 2000s, until 

recently.  

Based on the statistics from the FAO-FRA, the Intergovernmental Panel on 

Climate Change (IPCC) reported a 1.84 Gt CO2∙yr-1 global decline in CO2 emissions, 

from land-use change between the 1990s and the 2000s, attributed largely to a 

decreasing rate of deforestation (Stocker et al. 2013). Based on these estimates, 

certain assertions have been made, and it is widely accepted that the tropical, and 

even global deforestation rates slowed down during the 2000s (e.g. Anon. 2014).  

Nonetheless, the FRA has been criticized for inconsistencies in the definition 

of forest among countries, and, over time, as well as its dependence on national self-

reporting  (DeFries et al. 2002; Grainger 2008; Matthews 2001). Previous studies 

have shown that the FRA overestimated changes in forest area ( Achard et al. 2002; 

DeFries et al. 2002; Houghton 1999; Steininger et al. 2001) in the 1980s and 1990s. 

In the tropics, especially, the FRA reported a declining rate of deforestation from the 

1980s to the 1990s, while some studies, based on satellite data, observed opposite 

trends (DeFries et al. 2002). FRA has also been criticized for their constant forest 

change rate, reported for more than half of the tropical countries, over the three 

periods of 1990-2000, 2000-2005, and 2005-2010 (Figure 1-1).  
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Figure 1-1 Annual net forest cover change of 16 countries from FAO, during 1999-

2000 (blue), 2000-2005 (red), and 2005-2010 (gray) (FAO 2010). 

 

These criticisms underscore the necessity to complement FRA with satellite-

based estimates of pan-tropical forest cover change trends. Several remote sensing-

based estimates of forest change in each time period have been made at the tropical 

biome level, to complement FRA, as summarized in Table 1-1.  
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Table 1-1 Recent satellite-based estimates of pan-tropical forest change (1,000 ha∙yr-

1) in the 1990s and 2000s. 

 Area 1990s 2000s ΔRate Method Data 

FAO, JRC 

(2012) 

Tropics -5,648 -9,111 1.3% Sampling Landsat 

FAO, JRC 

(2014) 

Tropics -6,000  -7,000 16.7%  Sampling Landsat 

Achard 

(2002)  

Humid Tropics -5,800 -  Sampling AVHRR 

Achard 

(2014) 

Tropics -6,050 -5,930 -2% Sampling Landsat 

 Humid Tropics -3,960 -3,170 -20% Sampling Landsat 

DeFries 

(2002) 

Tropics -5,563 - - Wall-to-

wall 

AVHRR 

Hansen 

(2008,2010) 

Humid tropics - -5,400 

(gross 

loss) 

- Sampling Landsat 

Hansen 

(2013) 

Tropics - -7,100  - Wall-to-

wall 

Landsat 

 Humid tropics 

(34 countries) 

- -5,500  Wall-to-

wall 

Landsat 

 

Estimates of forest change differ among the satellite-based studies. The major 

differences include the inconsistencies in the definition of forest, resolution of input 

data, classification accuracy, and sensitivity of algorithms to detect change. 
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Furthermore, none of the studies reported forest cover change rate for both the 1990s 

and the 2000s, based on fine resolution, wall-to-wall mapping. Recent progress in 

data availability, processing power, and progresses in classification algorithms have 

enabled the national and global forest cover change assessments, based on the long-

term archives of satellite imagery, in a fine spatial resolution  (Hansen et al. 2013; 

Kim et al. 2014; Sexton et al. 2013; Townshend et al. 2012).  

1.4 Challenges in evaluating the effectiveness of forest conservation efforts 

As one of the application of fine spatial resolution observation of long term 

forest cover change, an evaluation of the effectiveness of policies and conservation 

plans are presented in this dissertation. 

In order to evaluate the effectiveness of policies and conservation plans, the 

assessment of the effectiveness of Protected Areas (PAs), throughout the tropics, is of 

the utmost importance, as PAs have been central to climate and biodiversity policies ( 

DeFries et al. 2005; Joppa et al. 2008; Pimm et al. 2001). 

Satellite remote sensing data has been used, to evaluate the effectiveness of 

Protected Areas, in reducing deforestation for its spatio-temporal consistency, and to 

complement the issues in ground-based observations, including data gaps and 

compatibility issues (Curran et al. 2004; DeFries et al. 2005; Gaveau et al. 2009). 

However, long-term, spatially explicit data, on pan-tropical forest cover 

change, in fine spatial resolution has not been made available beyond satellite 

analysis in a regional scale ( Achard et al. 2002; DeFries et al. 2005). The lack of 

comprehensive long-term spatial data has precluded pan-tropical scale analysis, on 

the effectiveness of Protected Areas against their regulating factors. 
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There are also difficulties in the methods to evaluate the effectiveness of 

protected areas. Measuring the amount of avoided deforestation by PAs is not 

straightforward, because it cannot be directly measured (Andam et al. 2008).  

Largely, two different types of methods have been used, to estimate the 

avoided deforestation. Firstly, the method of comparing the differences in forest 

change rate, between the inside and outside of PAs (Curran et al. 2004; DeFries et al. 

2005; Joppa et al. 2008). This method has been criticized for its inability to account 

for the spillover effect from Pas, to the adjacent outside area, and for the selection 

bias, due to un-randomized selection of Pas, and inherently different deforestation 

probability, between the inside and outside of PAs (Stern et al. 2001). Second, 

statistical matching approaches to match the difference of deforestation probability 

between the samples inside and outside PAs (Andam et al. 2008; Joppa & Pfaff 

2011). The statistical matching of the samples are robust, but hard to implement, 

especially when the PAs network cover large continuous tracts of lands (Soares-Filho 

et al. 2010), and some important factors which contribute to the deforestation 

probability, such as policies (e.g. concession), can be overlooked. For the evaluation 

of the effectiveness of PAs in pan-tropical scale, a new approach is required, to 

maximize the advantages of fine resolution (30m), spatially explicit data, and which 

is suitable for application to large areas.   

 

1.5 Priority questions regarding the estimation of tropical deforestation and the 

effectiveness of protected area 
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Spatially and temporally comprehensive evaluation, of the effectiveness of 

conservation efforts, to reduce tropical deforestation, remain critical areas for 

effectively targeting the objects of policies, and the distribution of available 

resources. Several priority research questions, that need to be answered, in order to 

achieve the goal, include:  

 

1. How can historical global forest cover change be estimated, using Landsat? 

Landsat based, accurate wall-to-wall mapping of historical forest cover 

change is critical, to estimate the trends in tropical deforestation over decades, 

as well as to estimate the effectiveness of conservation efforts, to reduce 

tropical deforestation. 

2. What are the forest cover change trends in the tropics? Is tropical 

deforestation decelerating since 1990? With consistent definition of forest 

cover, data and processing algorithm, a comparison between the decades is 

made possible.  

3. How are conservation efforts, including designation of protected areas, and 

international monetary aid for biodiversity conservation effective in reducing 

tropical deforestation?   

 

This dissertation seeks to take advantage of the most advanced data processing 

algorithms and computer technology, to derive a baseline of global forest cover 

change, using Landsat, and integrate with econometrics, to specifically address the 

priority research areas that are outlined above. 
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1.6 Objectives  

 

The specific objectives of the dissertation were  

1. To develop a method for historical forest cover change estimation, from 1990 

to 2000, using Landsat, and to produce a global-scale forest cover change 

dataset. 

2. To estimate the forest cover change between 1990, 2000, and 2010, in pan-

tropical countries, and to estimate the trends in tropical deforestation, between 

the 1990s and 2000s, in those countries. 

3. To analyze the correlations between the trends in forest cover change, and the 

socio-economic factors, from the 1990s and 2000s in the tropical countries.  

4. To evaluate the effectiveness of pan-tropical protected areas, and international 

aid, on reducing deforestation. 

 

1.7 The dissertation and its organization 

 

Chapter 1 (this chapter) presents a brief overview of the historical, current 

estimates of the tropical forest cover change methods and trends, and the status of the 

evaluation of conservation efforts. 

Chapter 2 demonstrates the feasibility of extending global, Landsat-resolution 

mapping, and the change detection, up to 1990. Chapter 2 presents a method to 

retrieve the historical maps of forest cover, and change from 1990 to 2000, based on 
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the archival Landsat images, and reference data hind-cast, from the more recent (i.e., 

post-2000) periods. This chapter reports the first results of this retrospective 

classification, and the change-detection algorithm, including: (1) a map of circa-1990 

forest cover at 30-m resolution and global extent, with a correspondingly scaled layer 

estimating classification uncertainty, and (2) a global map of forest-cover and change 

between circa-1990 and 2000, also with a corresponding uncertainty layer. To assess 

the quality of the forest-cover and the change estimates, this chapter reports the error 

estimates relative to the samples of independent reference data, collected over the 

United States and across the globe, and this study compares these validation results to 

those, from the previous change-detection efforts. Given the sensitivity of the 

empirical classifiers, special attention is paid to assess the efficacy of methods, to 

minimize the impact of the sampling bias. 

Chapter 3 summarizes a consistent series of forest-change datasets, based on 

satellite observations in the 1990, 2000, and 2005 “epochs” ( Kim et al. 2014; Sexton 

et al. 2013), to estimate the changes in the tropical forest area at high (30-m) spatial 

resolution, in 34 tropical countries, from circa-1990 to 2005. Using a consistent 

definition of forest throughout, the data enable a spatio-temporally comprehensive 

alternative to the FAO reports, and other sample-based satellite analyses (e.g. Achard 

et al. 2014; FAO 2012). This study extends the series forward as well, from 2005 to 

2010, to estimate the changes in tropical forest area in the latter part of that decade, 

and to complete the first fine scale satellite-based estimates of change in humid 

tropical deforestation, spanning the turn of the millennium. 
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Chapter 4 estimates 1) the avoided deforestation by PAs in the tropics, during 

the 2000s, based on long term, large-scale forest cover change, from high spatial 

resolution (30-m) data that has been recently made available (Kim et al. 2014), 2) 

estimate the effect of international aid on avoided deforestation by PAs, and 3) to 

analyze the correlations between the socio-economic variables on the increase in 

deforestation, avoided deforestation by PAs, and effects of international aid. 

Chapter 5 presents the conclusions and implications of the results, as 

presented in the previous chapters. The dissertation concludes with a discussion of the 

directions for future research. 
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Chapter 2 Global, Landsat-based Forest-Cover Change from 

1990 to 20001 

2.1. Introduction 

2.1.1 Background 

Climatological and anthropogenic factors are causing widespread changes in 

Earth’s forest cover. Since the public opening of the USGS Landsat archive 

(Woodcock et al. 2008), there have been efforts to report global forest-cover and its 

changes at the 30-meter resolution of the Landsat sensors. Most of these efforts have 

concentrated on recent changes (2000-present) (Townshend et al. 2012; Sexton et al. 

2013; Hansen et al. 2013). However, historical baselines are needed to understand the 

causes and consequences of these changes and to assess the effectiveness of land-use 

policies, most notably for Reducing Emissions from Deforestation and Degradation 

(REDD) (Olander et al. 2008). 

Consistent with the United Nations Framework Convention on Climate 

Change (UNFCCC 2002), United Nations Food and Agriculture Organization (FAO 

2002), and International Geosphere-Biosphere Programme (Belward 1996), here the 

term “forest cover” refers to a specified density of trees, and not to land use as 

                                                 

 
1 The presented material has been previously published in D.H. Kim, J. O. Sexton, P. 

Noojipady, C. Huang, A. Anand, S. Channan, M. Feng, and J. R. Townshend, Global 

, Landsat-based forest-cover change from 1990 to 2000, Remote Sens. Environ.155, 

178–193 (2014). 
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pertaining to forestry (Hansen et al. 2010; Di Gregorio & Jansen 1998). The term 

“cover” itself generalizes binary (presence vs. absence) as well as continuous (e.g., 

percent) scales of representation. Forests and forest cover thus defined are relevant to 

ecosystem processes such as chemical (e.g., carbon) and hydrological cycling, energy 

budgets, and biodiversity, whereas other definitions might be more applicable to 

socio-economic phenomena such as land tenure.  

Most land-cover changes are small in area, and regional patterns develop over 

long (e.g., decadal) time scales (Townshend & Justice 1988; Lambin et al. 2003). 

Consequently, effective monitoring requires longer-term data sets with fine spatial 

resolution - ideally at sub-hectare spatial resolutions spanning multiple decades 

(Townshend & Justice 1988; Sexton et al. 2013). Further, the precision of analyses 

based on these data depends upon consistency of the definition of “forest” versus 

“non-forest” over space and time (Sexton et al. 2013). Several geospatial data sets 

represent Earth’s forest cover globally (e.g. Loveland & Reed 2000; Potapov & 

Yaroshenko 2008; Sexton et al. 2013; Hansen et al. 2013), but none have both the 

spatial and temporal scale required for longer-term (i.e., pre-2000), global monitoring 

of forest-cover change at fine spatial resolution. 

Provision of appropriately scaled data has in the past been hindered by two 

constraints: (1) access to large volumes of satellite imagery and (2) the coincident 

reference observations required to translate image pixels into estimates of cover. 

Given their global coverage, spatial resolution (30- to 60-m), and temporal extent 

(1972-present), the archive of Landsat data are the best source of information for 

retrieving historical baselines of forest cover (Olander et al. 2008). But whereas the 
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2009 opening of the USGS Landsat archive has released the constraint of data access, 

retrospective mapping of forest cover is still limited by a lack of coincident reference 

data required for supervised image classifications. 

2.1.2 Objectives 

This study demonstrates the feasibility of extending global, Landsat-resolution 

mapping and change detection to 1990. This study presents a method to retrieve 

historical maps of forest cover and change from 1990 to 2000 based on archival 

Landsat images and reference data hind-cast from more recent (i.e., post-2000) 

periods. This study reports the first results of this retrospective classification and 

change-detection algorithm, including: (1) a map of circa-1990 forest cover at 30-m 

resolution and global extent with a correspondingly scaled layer estimating 

classification uncertainty and (2) a global map of forest-cover change between circa-

1990 and -2000, also with a corresponding uncertainty layer. To assess the quality of 

the forest-cover and –change estimates, this study reports error estimates relative to 

samples of independent reference data collected over the United States and globally, 

and this study compares these validation results to those from previous change-

detection efforts. Given the sensitivity of empirical classifiers, special attention is 

paid to assessing the efficacy of methods to minimize the impact of sampling bias. 
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2.2. Methods 

2.2.1 Data and processing 

Landsat-based Surface Reflectance  

Landsat images from the 1990 Global Land Survey (GLS) collection (Gutman 

et al. 2008) were the primary source of imagery of the 1990 “epoch”. Representing 

conditions around the nominal years of 1975, 1990, 2000, 2005, and 2010, the GLS 

was selected to optimize cloud-free conditions during the growing season for land-

cover change studies. The 1990 epoch ranges from 1984 to 1997; images were taken 

preferentially from years near the target year 1990, but images far from 1990 were 

chosen by necessity in cloudy or otherwise poorly sampled regions. GLS coverage 

over the high northern latitudes and over western India and the surrounding region 

was prevented by gaps in the USGS archive. Also, nearly half of the original GLS-

1990 dataset did not have correct radiometric gain and bias coefficients at the time of 

data acquisition; thus atmospheric correction and conversion to surface reflectance 

were not possible (Chander et al. 2004; Chander et al. 2009; Townshend et al. 2012). 

These un-calibrated GLS images were replaced after the original GLS compilation 

with substitutes from the updated USGS archive within the epoch wherever possible 

(Figure 2-1).  
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Figure 2-1 Sources of calibrated Landsat images for estimating surface reflectance 

(SR). Blue tiles represent SR images from the 1990 Global Land Survey collection of 

Landsat images, and green tiles represent SR images from downloaded L1T images. 

Black tiles represent areas with no available data in the USGS archive for the 1990 

epoch (1984-1997). 
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To perform the selection of replacement imagery while minimizing 

phenological or atmospheric noise, a tool was constructed to query the USGS Global 

Visualization Viewer (GloVis) database (glovis.usgs.gov/) for appropriate images 

based on phenological time series of Normalized Difference Vegetation Index 

(NDVI) from the MODerate-resolution Spectroradiometer (MODIS) (Townshend et 

al. 2012; Kim et al. 2011).  

Each image of this enhanced GLS dataset was then atmospherically corrected 

to surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) (Masek et al. 2006). The surface reflectance data set from the 

enhanced version of GLS-1990 is available from the Global Land Cover Facility 

(www.landcover.org) and use of these data is strongly recommended for studies 

based on the GLS-1990 data (Channan et al. 2015). Clouds were identified in a 

spectral-temperature space (Huang et al. 2010) and removed from subsequent 

analysis. This “aggressive” cloud-detection algorithm’s low rate of omission error 

makes it suitable for masking pixels from forest-cover change analysis. Cloud 

shadows were identified by projecting cloud masks onto a digital elevation model 

through solar geometry at the time of image acquisition (Huang et al. 2010) and were 

also removed from analysis.  

Forest cover maps in 2000 and 2005 GLS epochs 

This study used tree-cover and error estimates from a global, Landsat-based 

tree-cover dataset for 2000 and 2005 GLS epochs (Sexton et al. 2013) available from 

the Global Land Cover Facility (www.landcover.org). Following the International 

Geosphere-Biosphere Programme (IGBP) definition of forests (IGBP 1992), forest 

cover maps for 2000 and 2005 epochs were derived by imposing a 30 % threshold of 

http://www.landcover.org/
http://www.landcover.org/
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tree-cover for discriminating forest from non-forest. Forest-cover change maps 

between 2000 and 2005 epochs were derived by image differencing (Sexton et al. 

2015; data available at www.landcover.org). The overall global accuracy was 

approximately 89%. More details on accuracy assessment are presented in the results 

section. 

2.2.2 Forest-cover retrieval using stable pixels 

For the purpose of large-area mapping, extrapolation of models beyond the 

immediate temporal and spatial domain in which they were trained has been explored 

by many researchers (e.g. Botkin et al. 1984; Woodcock & Macomber 2001; Pax-

Lenney et al. 2001; Sexton et al. 2013; Gray & Song 2013). Termed as 

“generalization” or “signature extension”, this approach to extend spectral signatures 

through time and space has been successfully applied for the classification of forest 

cover (Pax-Lenney et al. 2001) and change (Woodcock et al. 2001) using Landsat 

data. This approach has been implemented by deriving training data from one date 

and using it to train a classifier on a different image from the same path/row scene but 

different acquisition date (Pax-Lenney et al. 2001). Complementary to the traditional 

signature extension method, Gray and Song (2013) combined a procedure to identify 

stable pixels to deal with irregular time-series images. This approach has been found 

to be effective for the automated classification of large areas, especially when there 

are actual changes in class spectral signatures from phenological variability, 

atmospheric differences, or land cover changes (Fortier et al. 2011; Gray & Song 

2013). 
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Reference forest/non-forest data  

Persistent forest (F) and non-forest pixels (N) were sampled from forest-cover 

change maps between 2000 and 2005 GLS epochs and then filtered so that only 

“stable” pixels—i.e., those whose class did not change between 1990 and 2000 

epochs—were retained for analysis. The details of the filtering process are presented 

below. 

For each WRS-2 scene, an annual rate of forest-cover (F) change, , and an 

annual rate of non-forest-cover (N) change, , were calculated as: 

                    (1) 

     (2) 

where F and N are the percentage of forest and non-forest pixels, respectively, 

and t1 and t2 were respectively the acquisition years of the Landsat images for 2000 

and 2005 GLS epochs.  

The spectral difference (∆SR) - quantified as the Euclidean distance between 

two pixels over time in the spectral domain– was calculated for 1990-2000 (ΔSR1) 

and 2000-2005 (ΔSR2). To minimize impact from accelerating or decelerating rates of 

forest-cover change between two periods, a parameter α was defined as the ratio of 

the sums of spectral difference of all persistent pixels and was calculated as: 

α = ΣΔSR1/ ΣΔSR2,     (3) 

Given the large number of available pixels within the overlapping portion of 

two Landsat images within the same WRS-2 scene, α was doubled to increase the 

selectivity of filtering for stable pixels. A percentage of forest equaling α x 2 x 100 
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×  and non-forest pixels equaling α x 2 x 100 ×  were thus removed per year of 

difference between 1990- and 2000-epoch images in the order of spectral difference 

(∆SR). Limiting the sample to pixels that were stable from 2000 to 2005 minimized 

inclusion of erroneous data, and filtering the most spectrally different pixels from 

1990 to the later epochs removed the pixels most likely to have changed over that 

period (Figure 2-2). 
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Figure 2-2 Example of training data selection from existing forest covers data (path 

47 row 27). Upper three 7, 4, 2 band composite images are surface reflectance from 

Landsat images acquired for the 1990, 2000 and 2005 epochs respectively. The lower 

left image is forest cover change map from the 2000 to 2005 epoch, the central lower 

image depicts only persistent forest and non-forest samples selected from 2000-2005 

change map and the right-hand image in the lower row is the final training data after 

the filtering procedure based on surface reflectance covariance. 

 

A positive relationship between given α for each scenes and estimated change 

between 1990 and 2000 epoch for selected WRS-2 scenes are demonstrated in Figure 

2-3. Figure 2-3 shows the relationship between alpha, the ratio of the sums of spectral 

difference of all persistent pixels and change rate between 1990 and 2000 epochs for 

persistent pixels. 
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Figure 2-3 The relationship between alpha, the ratio of the sums of spectral difference 

of all persistent pixels and change rate between 1990 and 2000 epochs for persistent 

pixels. 
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Forest cover classification 

Using the sample of stable-pixel locations, a forest/non-forest reference 

sample was extracted from forest-cover maps in 2000 and 2005. This sample was 

then filtered to maximize certainty and minimize change between observation periods 

(Figure 2-4). 

 

 

 

Figure 2-4 Hind-cast training and classification procedure to retrieve historical forest 

cover estimates. SR = surface reflectance, C = cover, t1 ≈ 1990, and tn≈ 2000 or 

20005. 
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Forest cover in circa-1990 was retrieved by a classification-tree algorithm. 

The probability of forest cover, p(F), in each pixel i at time t ≈ 1990 was estimated by 

a conditional relationship (g) to remotely sensed covariates ( ): 

,     (4) 

where  is a vector of surface reflectance and temperature estimates; 

subscripts i and t denote the pixel’s location in space, indexed by pixel, and time 

indexed by year. The relation g was parameterized using the C 5.0 ™ classification-

tree software (Quinlan 1986), trained on a sample of pixels within each Landsat 

image; the model was thus fit locally within each Landsat World Reference System 2 

(WRS-2) scene. Reflectance and temperature covariates were acquired from the 

1990-epoch Global Land Survey collection of Landsat images (Gutman et al. 2008) 

and other Landsat images selected from the USGS archive, each of which was 

atmospherically corrected to surface reflectance and converted to radiant temperature 

by the LEDAPS implementation of the 6S radiative transfer algorithm (Masek et al. 

2006). Whereas retrievals from within the period of overlap between the Landsat-5, 

Landsat-7, and MODIS eras may be based on general—even global—models based 

on phenological metrics that require dense image samples within each year (e. . 

Hansen et al. 2013), this local fitting instead maximizes use of the single-image 

coverage characteristic of much of the history of Earth observation. Use of 

atmospherically corrected surface reflectance fulfills the conditions for signature 

extension in space (Woodcock et al. 2001; Pax-Lenney et al. 2001).  
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2.2.3 Forest-cover change  

Classification trees estimate the probability p(C) of each class in each pixel as 

a conditional relative frequency. Given C = “F” (i.e., “forest”), each pixel was labeled 

either “forest” or “non-forest” based on p(F): 

       (5) 

       (6) 

Forest-cover change between 1990 and 2000 epochs was detected given the 

joint probabilities in 1990 and 2000 epochs (Sexton et al. 2015): 

    (7) 

  (8) 

    (9) 

                                    (10) 

That is, given the probability of forest P(F) vs. non-forest P(N) in a pixel i in 

the 1990-epoch (t1) and 2000-epoch (t2), four classes were derived: stable forest (FF), 

stable non-forest (NN), forest gain (NF), and forest loss (FN). A categorical map of 

change classes was then produced by assigning each pixel the class with the highest 

probability. 

2.2.4 Weighting 

Decision trees and other empirical classifiers are sensitive to bias in training 

samples relative to class proportions within their population of inference (Borak 

1999; Carpenter et al. 1999; Song 2009; Sexton et al. 2013; Woodcock et al. 2001; 



 

 

 

28 

 

Song 2010) and to uncertainty in the training data set (McIver & Friedl 2002; Strahler 

1980). To minimize these effects, this study maintained a large sample with 

representative class proportions by removing a small, but equal fraction of the least 

stable pixels from each class while maintaining the class proportions from reference 

epoch to training sample. Further, this study weighted each pixel’s contribution to the 

classifier’s parameterization based on the pixel’s classification certainty in the 

reference data. A weight w was adopted for each pixel as the classification probability 

of the estimate (pmax) of forest- or non-forest cover (C) from the 2000-epoch dataset: 

.     (11) 

The weights were then applied to adjust the objective (i.e., purity) function 

maximized by the iterative binary recursion algorithm employed by C5.0™ (Quinlan 

1986).  

2.2.5 Accuracy assessment 

Accuracy assessment for the conterminous United States 

A sample of nine Landsat World Reference System 2 (WRS-2) scenes across 

the conterminous United States were selected to assess the accuracy of 1990 forest-

cover and 1990-2000 forest-cover change estimates (Figure 2-5).  
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Figure 2-5 LandsatWRS-2 tiles used for error assessment including 9 North America 

Forest Disturbance (NAFD) tiles (Thomas et al. 2011) and 89 tiles for global 

accuracy assessment. 
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These scenes were originally used as reference data for the North American 

Forest Disturbance (NAFD) program of the North American Carbon Program. 

Collection of reference data for accuracy assessment was described by Thomas et al. 

(2011). A design-based, stratified random sample for the four classes of forest cover 

change detection (FF, NN, NF and FN) was gathered to represent rare change classes 

(FN and NF) as well as the more common stable classes (FF and NN). Stratification 

was based on initial classes identified by the Vegetation Change Tracker algorithm 

(VCT) (Huang, Goward, et al. 2009), and selection probabilities were used to remove 

sampling biases in the error matrix. Each sample pixel was examined by expert 

interpreters and labeled as changed or persistent forest/non-forest pixel after a visual 

evaluation of Landsat time series imagery and high resolution imagery from 

TerraServer (www.terraserver.com) and/or Google Earth (www.earth.google.com). 

Knowledge of the spectral properties, temporal changes, and spatial context of the 

pixel within the context of the surrounding landscape over time were used together to 

label each sample pixel. 

Global accuracy assessment  

Global accuracy was estimated based on a confusion matrix between collected 

reference data and the forest-cover change detection results. Similar to the NAFD 

assessment, sampling bias at the scene level as well as at individual pixels was 

corrected by assigning weights based on inclusion probability (Stehman et al. 2003). 

Global accuracy assessment was performed using reference data collected from 89 

WRS-II tiles (Figure 2-5). These sites were selected using a stratified random 

sampling scheme to represent major biomes identified by Olson (2001). Sampling and 
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response design were similar to those of the NAFD protocol used for the US accuracy 

assessment. The number of observations per scene varied between 350 and 625, 

totaling > 25,000 samples globally. Each observation was labeled as either forest or 

non-forest for each epoch, including 1990, 2000, and 2005, using a web-based forest-

change labeling tool (Feng et al. 2012). This tool facilitates rapid labeling of forest 

cover and change using fine-resolution imagery automatically co-registered to multi-

temporal Landsat images.  

2.3. Results and discussion 

2.3.1 Accuracy assessment for the conterminous United States 

Accuracy of forest cover maps 

Accuracy estimates for the 1990 global forest cover map (“FC 1990”) relative 

to the NAFD sample is are presented in Table 2-1.  
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Table 2-1 Accuracy assessment of (static) forest and non-forest classes. Accuracy 

estimates for the 1990 forest cover map were based on reference data from North 

American Forest Disturbance (NAFD) program (Thomas et al. 2011). For 

comparison, accuracy estimates from coincident data taken from the US 1990 

National Land Cover Database (NLCD 1992) are included in parentheses. 

 

p045r029    Kappa 0.65(0.41) 

   N F   

 N 14(16) 3(28) 82.4(36.4) % 

 F 11(9) 350(325) 97(97.3)% 

   56(64)% 99.1(92)% 96.3(90.2)% 

     

p012r031    Kappa 0.78(0.57) 

   N F   

 N 82(93) 5(71) 94.3(56.7) 

 F 31(21) 452(390) 93.6(94.9) 

   72.6(81.6) 98.9(84.6) 93.7(84) 

     

p021r037    Kappa 0.76(0.36) 

   N F   

 N 176(115) 12(66) 93.6(63.6) 

 F 53(118) 432(379) 89.1(76.3) 

   76.9(49.4) 97.3(85.2) 90.3(72.9) 

     

p047r027    Kappa 0.81(0.62) 

   N F   

 N 34(27) 1(8) 97.1(77.1) 

 F 14(21) 527(525) 97.4(96.2) 

   70.1(56.2) 99.8(98.5) 97.4(95.1) 

     

p015r034    Kappa 0.76(0.39) 

   N F   

 N 143(96) 40(80) 78.1(54.6) 

 F 18(66) 369(331) 95.4(83.4) 

   88.8(59.2) 90.2(80.5) 89.8(74.5) 

     

p027r027    Kappa 0.63(0.45) 

   N F   

 N 57(75) 5(80) 91.9(48.4) 

 F 49(32) 438(366) 89.9(92) 

   53.8(70.1) 98.9(82.1) 90.2(79.8) 

     

p042r029    Kappa 0.85(0.82) 
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   N F   

 N 94(93) 13(15) 87.9(86.1) 

 F 10(14) 248(278) 96.1(95.2) 

   90.4(87) 95(95) 93.7(92.8) 

     

p016r035    Kappa 0.87(0.5) 

   N F   

 N 70(53) 15(61) 82.4(46.5) 

 F 4(21) 624(579) 99.4(96.5) 

   94.6(71.6) 97.7(90.4) 97.3(88.5) 

     

p037r034    Kappa 0.38(0.52) 

   N F   

 N 84(43) 86(6) 55.9(87.8) 

 F 2(47) 122(206) 81.4(81.4) 

   62.6(47.8) 76.8(92.2) 72.3(82.5) 

 

 
For precedent, accuracy estimates comparing the US 1992 National Land 

Cover Database (NLCD 1992) against the NAFD sample are included in parentheses. 

The average accuracy and kappa coefficient of FC 1990 for all 9 WRS-2 tiles were 93 

% and 0.72, demonstrating a strong relationship between the reference data and 

classified maps overall. The FC 1990 map was most accurate in areas dominated by 

closed-canopy forest (e.g., WRS-2 path 16 row 35, path 45 row 29 and path 47 row 

27) but had comparatively low accuracy in sparsely forested areas (e.g., path 37 row 

34). The FC 1990 was slightly biased towards the “forest” class, with errors of 

commission toward forest greater than those toward non-forest. Overall, the FC1990 

map showed higher accuracy than NLCD 1992, with only one exception in sparse 

forests (path 37 row 34).  

Weighting the training sample proportional to certainty had a positive effect 

on accuracy of the final estimates. Accuracy of forest cover maps estimated from un-
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weighted training data was 88.57 %, approximately 3 % lower than those derived 

from weighted training data (Table 2-2).  

Table 2-2 Accuracy measurement of FC 1990 without being weighted by certainty for 

training pixels 

p045r029    Kappa 0.65(0.41) 

   N F Producer’s (%) 

 N 173 3 98.29 

 F 32 105 76.64 

 User’s (%) 84.39 97.22 88.81 

     

p012r031    Kappa 0.78(0.57) 

   N F   

 N 228 1 99.56 

 F 21 38 64.4 

   91.56 97.43 92.36 

     

p021r037    Kappa 0.76(0.36) 

   N F   

 N 215 6 97.28 

 F 25 93 78.81 

   89.58 93.93 90.85 

     

p047r027    Kappa 0.81(0.62) 

   N F   

 N 265 1 99.62 

 F 37 62 62.62 

   87.74 98.41 89.58 

     

p015r034    Kappa 0.76(0.39) 

   N F   

 N 187 18 91.21 

 F 10 72 87.8 

   94.92 80 90.24 

     

p027r027    Kappa 0.63(0.45) 

   N F   

 N 223 2 99.11 

 F 45 55 55 

   83.2 96.49 85.53 

     

p042r029    Kappa 0.85(0.82) 

   N F   

 N 125 5 96.15 
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 F 20 172 89.58 

   86.2 97.17 92.23 

     

p016r035    Kappa 0.87(0.5) 

   N F   

 N 316 4 98.75 

 F 17 75 81.52 

   94.89 94.93 94.9 

     

p037r034    Kappa 0.38(0.52) 

   N F   

 N 60 42 58.82 

 F 36 147 80.32 

   62.5 77.77 72.63 

 

Improvement in accuracy was greatest in path 47 row 27, where forests are 

characterized by dense, tall trees, and lowest in path 37 row 34, characterized by short 

and sparse woody vegetation. 

Accuracy of forest cover change map  

Compared against the NAFD reference data, the FCC 1990-2000 forest-

change map showed similar or even higher accuracy than the NLCD change product. 

The change map produced in this study had greatest accuracy in persistent forest and 

non-forest classes and had accuracy comparable to the NLCD change product in 

forest gain and loss classes. Accuracy of the FCC 1990-2000 forest cover change map 

and spatially corresponding NLCD 1992-2001 Retrofit Land Cover Change Product 

are presented in Table 2-3.  
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Table 2-3 Accuracy assessment of forest-cover change. Accuracy estimates for the 

1990-2000 forest cover change map were based on reference data from North 

American Forest Disturbance (NAFD) program (Thomas et al. 2011). For 

comparison, accuracy estimates from coincident data taken from the NLCD 

1992/2001 Retrofit Land Cover Change Product are included in parentheses. 

p045r029             Kappa 0.6(0.57) 

  NN NF FN FF % 

NN 14(17) 0(0) 0(14) 0(3) 100(50) 

NF 0(0) 0(0) 1(0) 1(0) 0(0) 

FN 0(0) 0(0) 7(5) 2(10) 77.8(33) 

FF 4(1) 3(3) 14(3) 201(191) 90.5(96) 

% 77.8(94) 0(0) 31.8(23) 98.5(94) 90(86) 

      

p012r031            Kappa 0.74(0.53) 

  NN NF FN FF   

NN 67(87) 0(1) 1(31) 0(60) 98.5(49) 

NF 8(0) 3(0) 0(0) 4(2) 20(0) 

FN 16(9) 1(0) 83(52) 12(14) 74.1(69) 

FF 10(6) 3(6) 20(22) 302(245) 90.2(88) 

  66.3(85) 42.9(0) 79.8(50) 95(76) 85.9(72) 

      

p021r037             Kappa 0.69(0.31) 

  NN NF FN FF   

NN 97(96) 3(2) 0(38) 0(69) 97(47) 

NF 8(1) 67(14) 0(0) 10(3) 78.8(78) 

FN 9(1) 0(0) 58(14) 26(13) 62.4(50) 

FF 3(21) 41(95) 30(36) 315(266) 81(64) 

  82.9(81) 60.4(13) 66(16) 89.7(76) 80.5(58) 

      

p047r027            Kappa 0.58(0.36) 

  NN NF FN FF   

NN 28(30) 0(1) 0(14) 1(42) 96.6(35) 

NF 1(0) 5(0) 0(0) 0(1) 83.3(0) 

FN 0(0) 0(0) 7(2) 6(2) 53.8(50) 

FF 2(1) 11(15) 29(20) 318(285) 88.3(89) 

  90.3(97) 31.3(0) 19.4(6) 97.9(57) 87.8(77) 

      

p015r034            Kappa 0.69(0.44) 

  NN NF FN FF   
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NN 79(79) 4(3) 3(22) 4(35) 87.8(57) 

NF 4(0) 54(2) 0(0) 32(1) 60(67) 

FN 3(1) 0(1) 38(18) 18(7) 64.4(67) 

FF 6(12) 8(60) 21(23) 273(284) 88.6(75) 

  85.9(86) 81.8(3) 61.3(29) 84(87) 81.2(70) 

      

p027r027             Kappa 0.47(0.22) 

  NN NF FN FF   

NN 29(43) 3(13) 0(21) 0(55) 90.6(33) 

NF 4(3) 16(6) 1(6) 4(6) 66.7(29) 

FN 7(0) 0(0) 46(1) 21(1) 39.1(50) 

FF 25(20) 15(15) 55(74) 267(232) 81.7(68) 

  44.6(65) 47.1(18) 45.1(1) 91.4(79) 72.6(57) 

      

p042r029              Kappa 0.77(73) 

  NN NF FN FF   

NN 83(81) 2(0) 1(4) 7(11) 89.3(84) 

NF 1(0) 0(0) 0(0) 0(0) 0(0) 

FN 2(1) 0(0) 9(6) 8(0) 47.4(86) 

FF 5(12) 0(2) 6(8) 123(148) 91.8(87) 

  91.2(86) 0(0) 56.2(33) 89.1(93) 87(86) 

      

p016r035              Kappa 0.8(0.6) 

  NN NF FN FF   

NN 64(63) 0(0) 1(8) 1(47) 94.1(53) 

NF 2(0) 4(0) 0(0) 11(8) 23.5(0) 

FN 1(2) 0(0) 21(17) 12(5) 61.8(70) 

FF 3(5) 0(4) 8(5) 449(413) 97.6(97) 

  91.4(90) 100(0) 70(56) 94.9(87) 93.2(85) 

      

p037r034             Kappa 0.38(0.81) 

  NN NF FN FF   

NN 74(67) 1(0) 0(0) 64(2) 53.2(97) 

NF 4(0) 0(0) 0(0) 13(0) 0(0) 

FN 0(3) 0(0) 0(0) 3(0) -(-) 

FF 2(14) 0(1) 0(0) 81(163) 97.6(92) 

  92.5(80) 0(0) -(-) 50.3(99) 64(92) 

Overall accuracy of FCC 1990-2000 for all nine NAFD sites was 83 %, and 

average kappa coefficient was 0.64—greater than the NLCD change product by 7 % 



 

 

 

38 

 

and 0.14, respectively. Similar to the accuracy of the forest cover maps, the accuracy 

of the forest cover change map was higher in closed-canopy forest (WRS-II path 16 

row 35, path 45 row 29, and path 47 row 27) and lower in sparsely forested areas 

(e.g., path 37 row 34). Omission errors were slightly less than commission errors in 

the persistent forest class. With the exception of path 37 row 34, commission errors in 

persistent forest ranged from 1.5 % to 16 % while omission error ranged from 2.4 % 

to 19 %. Most errors in persistent forest were from misclassification of forest loss as 

persistent forest. These errors have been attributed to sub-pixel scale disturbance such 

as partial or non-stand clearing (Thomas et al. 2011). Errors committed to persistent 

non-forest (9-40%) were more frequent than errors committed to persistent forest. 

Path 27, row 27 had the largest commission error rate, mainly caused by confusion 

between wetland and forest, which was also observed in the NAFD assessment 

(Thomas et al. 2011). The omission error rate of persistent non-forest was less than 

that of persistent forest, ranging from 0 to 12.2 % with the exception of path 37 row 

34. The rate of commission error to forest loss was 34 % and to forest gain was 32 % 

across all 9 NAFD sites. For both forest change classes, omission from persistent 

forest class was the largest source of error.  

2.3.2 Global accuracy assessment  

The overall accuracy for the 2000-2005 forest cover change map was about 89 

percent globally (Table 2-4), and the overall accuracy for the 1990-2000 forest cover 

change map was approximately 88 percent (Table 2-5).  
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Table 2-4 Global accuracy of forest cover change maps for 2000-2005 epoch. The 

global scale accuracy was estimated based on a confusion matrix between reference 

data collected from 89 WRS-II tiles and the forest cover change detection results. 

Similar to the NAFD assessment, sampling bias at the scene level as well as at 

individual pixels was corrected by assigning weight based on inclusion probability.   

 
 

 Change map     

 

 
  FF FN NF NN 

Total 

(n) 
samples 

Producer's 

Accuracy 

R
ef

er
en

ce
 FF 0.35 0.00 0.00 0.09 0.45 13562 0.78 

FN 0.00 0.00 0.00 0.00 0.01 1632 0.48 

NF 0.00 0.00 0.00 0.00 0.01 933 0.20 

NN 0.00 0.00 0.00 0.53 0.54 10624 0.99 

Total 0.36 0.01 0.00 0.63 1.00 26751 
 

 User's 

Accuracy 
0.98 0.50 0.32 0.84 

 

Overall : 0.89 

 

Table 2-5 Global accuracy of forest cover change maps for 1990-2000 epoch. 

 
 

 Change map     

 

 
  FF FN NF NN 

Total 

(n) 
samples 

Producer's 

Accuracy 

R
ef

er
en

ce
 FF 0.34 0.01 0.01 0.07 0.43 12876 0.80 

FN 0.00 0.01 0.00 0.01 0.01 1956 0.45 

NF 0.00 0.00 0.00 0.02 0.03 1583 0.16 

NN 0.00 0.00 0.00 0.52 0.53 9153 0.99 

Total 0.35 0.02 0.01 0.62 1.00 25568 
 

 User's 

Accuracy 
0.97 0.39 0.28 0.85 

 

Overall : 0.88 
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This study also report the accuracy of the results for 1990-2000 by major 

forest biomes (Table 2-6). Among the forest biomes, tropical evergreen forest and 

temperate evergreen forest showed highest accuracy of 95 and 90 percent, 

respectively, while tropical deciduous forest showed the lowest accuracy, 70 percent 

(Table 2-6). 



 

 

 

41 

 

 

Table 2-6 Global accuracy of forest cover change maps for 1990-2000 by biomes 

Boreal 

forest 

  Image  FF  FN  NF  NN  totalC  ProdAccu  

Reference         

FF   0.61 0.03 0.02 0.08 0.73 0.83 

FN   0.01 0.01 0.00 0.00 0.02 0.45 

NF   0.01 0.00 0.01 0.01 0.03 0.37 

NN   0.01 0.00 0.00 0.20 0.22 0.94 

totalR   0.63 0.04 0.03 0.30 1.00 NA 

UsersAccu    0.96 0.22 0.39 0.67 Overall  0.83 

Temperate 

deciduous 

forest 

 Image  FF FN NF NN totalC ProdAccu 

Reference         

FF   0.30 0.01 0.01 0.03 0.35 0.86 

FN   0.00 0.00 0.00 0.01 0.02 0.26 

NF   0.00 0.00 0.00 0.05 0.05 0.04 

NN   0.01 0.00 0.00 0.57 0.58 0.98 

totalR   0.31 0.01 0.01 0.66 1.00 NA 

UsersAccu    0.96 0.35 0.16 0.86 Overall  0.88 

Temperate 

evergreen 

forest 

 Image  FF  FN  NF  NN  totalC  ProdAccu  

Reference         

FF   0.61 0.01 0.01 0.02 0.65 0.93 

FN   0.00 0.02 0.00 0.00 0.03 0.80 

NF   0.01 0.00 0.02 0.01 0.05 0.39 

NN   0.01 0.01 0.01 0.24 0.27 0.90 

totalR   0.64 0.04 0.04 0.28 1.00 NA  

UsersAccu    0.95 0.56 0.46 0.88 Overall  0.90 

Tropical 

deciduous 

forest 

 Image  FF  FN  NF  NN  totalC  ProdAccu  

Reference         

FF   0.34 0.01 0.01 0.21 0.57 0.60 

FN   0.00 0.01 0.00 0.02 0.03 0.36 

NF   0.01 0.00 0.00 0.04 0.05 0.04 

NN   0.00 0.00 0.00 0.35 0.35 0.98 

totalR   0.35 0.02 0.01 0.61 1.00 NA  

UsersAccu    0.97 0.44 0.18 0.56 Overall  0.70 

Tropical 

evergreen 

forest 

 Image  FF  FN  NF  NN  totalC  ProdAccu  

Reference         

FF   0.81 0.01 0.01 0.01 0.84 0.97 

FN   0.00 0.01 0.00 0.00 0.02 0.68 
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NF   0.00 0.00 0.00 0.01 0.02 0.27 

NN   0.00 0.00 0.00 0.11 0.12 0.94 

totalR   0.83 0.03 0.01 0.14 1.00 NA  

UsersAccu    0.99 0.58 0.38 0.83 Overall 0.95 
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This pattern of uncertainty, also evident in the global distribution of 

classification and change-detection certainty (Figure 2-6), suggests the global 

distribution of classification and change-detection certainty was driven primarily by 

the density and height of tree cover. Dense forests in the tropics and temperate zones 

were associated with relatively high classification certainty, and treeless deserts (e.g., 

central Australia and the Sahara desert), grasslands (e.g., Mongolia and Patagonia), 

and tundra (e.g., Northern Canada) also showed very high certainty of non-forest 

cover. However, sparse and/or short forests, such as the boreal forests of North 

America and Eurasia, the Sahelian and Miombo woodlands of Africa, and the Chaco 

and Atlantic dry forests of South America, were associated with relatively low 

certainty in the forest/non-forest classification. Anthropogenically fragmented forests 

in ecologically productive regions—e.g., the southeastern United States, southeastern 

China and eastern Brazil—were mapped with intermediate certainty.  
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Figure 2-6 Global distribution of classification certainty of forest cover (top) and 

forest-cover change (bottom). 
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Sources of confusion in semi-arid regions 

In spite of the overall efficacy of the algorithm, the Utah site (path 37, row 34) 

showed comparatively low accuracy for both forest cover and change maps. Located 

in a semi-arid, mountainous, sparsely vegetated region, forest signatures here could 

be confused by terrain shadowing and understory vegetation, which varies in space 

and time in response to rainfall and temperature (Thomas et al. 2011). The gradient of 

height and cover of woody vegetation also likely resulted in semantic confusion 

between shrubs vs. trees and between forests vs. savannas (Sexton et al. 2013). 
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Visual assessment of forest cover change map 

The regional drivers of forest dynamics were readily observable in the 1990-

2000 forest-cover change map. Figure 2-7 shows examples of visual assessments 

observed within the accuracy assessment sites. Forest cover changes in Path 21 row 

37 (Mississippi) and path 47 row 27 (Oregon) are characterized by even-aged 

silviculture of evergreen needle-leaf trees, including clear-cut harvesting. Small 

clearings due to urbanization were the dominant pattern in Path 12 row 31 (New 

England) and path 27 row 27 (Minnesota), where wind damage and timber harvest 

dominated losses (Huang, Goward, et al. 2010; Thomas et al. 2011).  

 

 
Figure 2-7 Visual examination of forest cover change; the top and middle rows of 

each column are the surface reflectance composites (SWIR2, NIR, G) from the 1990 

and 2000 epochs, and the 
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Improvement by sample weighting 

Weighting based on input classification certainty (as classification probability) 

improved accuracy by ~3%. Weighting was more effective at minimizing the 

influence of uncertain training data in patchily heterogeneous landscapes, but less 

effective in landscapes comprising continuous gradients of woody vegetation height 

and cover. Accuracy increases due to weighting were highest in the Oregon site (path 

47 row 27), characterized by tall, dense forests with extensive logging and regrowth, 

and were lowest in the Utah site (path 37 row 34), characterized by low, sparse forest 

and relatively low anthropogenic forest-cover change rates. The scene-level mean 

uncertainty (Root Mean Square Error - RMSE) of the 2000-epoch Landsat tree-cover 

layer (Sexton et al. 2013) at path 47 row 27 was 12.55 %-about ten times higher than 

the scene-level mean uncertainty of 1.28 % at path 37 row 34. Although there appears 

to be a limit to which such weighting schemes can improve accuracy, the 

improvements are encouraging. Increasing the classification accuracy of 

heterogeneous landscapes is considered among the most challenging tasks for 

improving global land cover mapping (Herold et al. 2008; Gong et al. 2013). I expect 

that, where sample selection criteria are less effective at filtering unstable pixels, 

weighting the sample based on prior certainty can contribute modest improvements in 

accuracy. 

2.3.2 Global, circa-1990 distribution of forest cover, change, and uncertainty 
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Figure 2-8 Global distribution of forest cover, circa-1990. 
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Figure 2-8 demonstrates the feasibility of extending global, Landsat-resolution 

mapping and change detection to 1990. Several studies have described recent, i.e., 

post-2000, global patterns of forest cover and change (Hansen et al. 2013; Gong et al. 

2013), and others have noted regional patterns of forest loss prior to 2000 (Achard et 

al. 2002; Achard et al. 2005; Achard et al. 2006; Achard et al. 2014; Bodart et al. 

2013; Ernst et al. 2013; Eva et al. 2012; Mayaux et al. 2005; Mayaux et al. 2013; H. J. 

Stibig et al. 2014; DeFries et al. 2002; Hansen et al. 2009). Except for gaps remaining 

due to data availability, the results of this study extend the historical record of Earth’s 

forest cover to the previous decade and globally.  
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Figure 2-9 Global distribution of forest-cover change, circa-1990 to -2000. The false-

color composite was aggregated from30-mto 5-kmgrid cells. Forest loss is 

represented in red, forest gain in blue and persistent forest in green. 
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The global distribution of forest cover in 1990 was similar to that reported for 

subsequent years (Hansen et al. 2000; Loveland et al. 2000; Potapov et al. 2008; 

Mayaux et al. 2005, 2013; Sexton et al. 2013; Hansen et al. 2013). Although the 

global distribution continues to be constrained primarily by climate, the fine-scale 

changes responsible for altering that distribution over time were predominantly 

anthropogenic (Figure 2-9). The land-use effect was strongest in temperate and 

tropical regions over the period, while wildfire dominated in the boreal zone. Regions 

of high net forest loss (e.g., Amazonia) were associated with land-use changes from 

wilderness to agriculture, and regions of high gross gains and losses (e.g., 

southeastern US) were associated with intensive forestry. These generalities are 

discussed in the following paragraphs. Quantitative discussion of observed changes 

will be the subject of subsequent papers. However, I do note several instances of the 

various trajectories of change from the last decade of the 20th century to the first 

decade of the 21st: (i) long-term forest stability, (ii) gains and/or losses continuing 

steadily from the previous decade into the next, and (iii) acceleration of change 

between the decades.   

Remote regions that exhibited little forest change in the first decade of the 21st 

century also experienced stability in the previous decade. The most stable forests 

from 1990 to 2000 tended to be those which were both at the core of their 

climatological regions as well as distant from human pressure. The central Amazon 

and Congo basins were relatively undisturbed, experiencing neither large losses nor 

gains as a fraction of their respective areas. This was also true for some part of boreal 

forest in Northern Canada and Russia. Even regions in relatively close proximity to 
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areas of harvest and regeneration or to conversion of forests to other land uses—i.e., 

the Appalachian mountains of the eastern US, highlands of southeastern Asia—

exhibited relatively low rates of disturbance and regrowth. 

Many areas in temperate and boreal zones that were known to have 

experienced change in the 21st century were already showing major changes in the 

1990s. In the boreal zone, including northern Canada, Europe, and Russia, extensive 

wildfires were the dominant driver of forest cover change. These disturbances were 

characterized by large patches of loss with no apparent relation to roads or other 

human infrastructure. This extends the findings of Pan et al. (2011), who attributed 

these losses to fire and of Hansen et al. (2010), who attributed the region’s losses to 

both fire and pathogens. In the temperate zone, the greatest changes were due to 

intensive forestry. For example, subtropical forests in the southeastern U.S. showed 

notable gains and losses from 1990 to 2000, corroborating previous studies that found 

high gross gains and losses but relatively low net change in this region (Masek et al. 

2008; Sleeter et al. 2013) (Figure 2-10A).  
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Figure 2-10 Regional forest-cover change in: (A) the Southeastern United States, (B) 

Amazon Basin, (C) Northern Canada, (D) Southern Sweden, and (E) Indonesia. 

 

In this region, pulp- and timber-production were becoming increasingly 

dominant at the time due to shifting of the American timber industry from the Pacific 

Northwest region following listing of the Northern Spotted Owl as “Threatened” 

under the US Endangered Species Act in 1990 and the subsequent passing of the 

Northwest Forest Plan in 1994. Similarly, intensive forestry was also apparent in 

Northern Europe, including Southern Sweden (Figure 2-10D) and Finland over the 

period. Widespread changes were found over Sweden and Finland, corroborating 

previous studies(Achard et al. 2005, 2006). In these regions, forest gain and loss were 

in close spatial proximity due to intensive regional forest-management practices 

(Achard et al. 2006; Hansen et al. 2013; Loman 2010; Ylitalo 2011). 
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Many areas that underwent forest clearing in both decades exhibited 

changing rates of clearing around the turn of the century. In the tropics, losses were 

by majority due to changes in land use from wilderness to agriculture, which was 

impacted by shifting economic and conservation policies. Although recent studies 

have reported decreasing rates of forest-cover loss in the Brazilian Amazon resulting 

from policies to slow deforestation (Souza, Jr et al. 2013; Hansen et al. 2013; Nepstad 

et al. 2014), the 1990’s cover the period of rapid deforestation prior to the policies’ 

enactment (Figure 2-10B) when clearing was mainly due to expansion of large-scale 

cattle ranching (Kanninen 2007; Gibbs et al. 2010). Likewise, although observations 

over much of Indonesia and the Malaysian archipelago were obscured by clouds, the 

forest losses of the region appear to have been relatively large, including the 

expansion of oil palm plantations over the 1990-2000 period before a sharp drop in 

losses in the early 2000s (Hansen et al. 2009). Conversely, in inland Southeast Asia, 

including Thailand, Vietnam and Cambodia, the results show much lower 

deforestation rates than post 2000 period, in contrast to FAO estimates (FAO 2010) 

showing rather monotonic forest cover change trends between the two periods. 

Although Africa shows overall low rates of forest cover change, the Democratic 

Republic of Congo shows the highest forest cover loss among the African countries, 

showing elevated deforestation rate later on which may suggest the expansion of 

agro-industry in this region. 

2.4. Conclusions 

This study has produced a global map of circa-1990 forest cover and circa-

1990 to -2000 forest-cover change from the USGS archive of Landsat images, using 
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training data hind-cast from the 2000 and 2005 Global Land Survey (GLS) epochs. 

With overall accuracies for the US of 93% for circa-1990 forest cover in 1990 and 

84% for circa-1990 to -2000 forest-cover change, the maps are of equal or greater 

accuracy than 1992-2001 retrofit change product of the 2001 US National Land 

Cover Database over the conterminous United States. Globally, forest-cover change 

accuracy was 88 %. My method gained its strength from the use of stable pixels over 

time and from the minimization of influence from training data uncertainty. Given 

their slow rate, and thus poor detectability, forest gains were less apparent than were 

losses. 

The maps depict the global distribution of gross gains and losses in forest 

cover, as well as their net change. Whereas some regions (e.g., the Amazonian arc of 

deforestation, Indonesia) have been perennial centers of forest loss and others (e.g., 

the southeastern United States and southern Sweden) have retained relatively rapid 

rates of both gains and losses from 1990 to 2000. While some regions (e.g. inland 

Southeast Asian countries) exhibiting rapid change of deforestation rates around 

2000, most of Africa exhibited persistent and relatively slow rates of forest cover 

change except for some regions (e.g. Democratic Republic of Congo).  

These findings will be important for inferring the efficacy of policies and for 

analyzing causal relationship between socio- economic drivers and forest cover 

changes. The global forest cover and change maps will be made available for free 

download at the Global Land Cover Facility (www.landcover.org).  

http://www.landcover.org/
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Chapter 3 Accelerated Deforestation in the Humid Tropics from 

the 1990s to the 2000s2 

3.1 Introduction 

Tropical deforestation was among the largest anthropogenic sources of 

greenhouse gas emissions in the 1990’s (Gibbs et al. 2007). Based on statistics from 

the United Nations Food and Agriculture Organization (FAO) Forest Resource 

Assessment (FRA) (FAO 2010), the Intergovernmental Panel on Climate Change 

(IPCC) reported a 1.84 Gt CO2∙yr-1 global decline in CO2 emissions from land-use 

change from the 1990’s to the 2000’s, attributed largely to a decreasing rate of 

deforestation (IPCC 2013).  

However, estimates of forest-area changes across the tropics prior to 2000 

remain uncertain. The FAO-FRA has been criticized for inconsistencies in the 

definition of forest among countries and over time, as well as its dependence on 

national self-reporting (Matthews 2001; DeFries et al. 2002; Grainger 2008). Previous 

studies have shown that FAO-FRA overestimated changes in forest area (Houghton 

1999; Steininger et al. 2001; Achard et al. 2002; DeFries et al. 2002) in the 1980s and 

the 1990s. In the tropics especially, the FAO-FRA reported a declining rate of 

deforestation from the 1980s to the 1990s while studies based on satellite data 

observed opposite trends (DeFries et al. 2002).  

                                                 

 
2 The presented material has been previously published in D.H. Kim, J. O. Sexton, 

and J. R. Townshend, Accelerated Deforestation in the Humid Tropics from the 

1990s to the 2000s, Geophys. Res. Lett. 42, 3495-3501 (2015). 
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Recent progress in data availability and processing power have enabled 

national and global forest cover change assessments based on long-term archives of 

satellite imagery (Townshend et al. 2012; Hansen et al. 2013; Sexton et al. 2013; Kim 

et al. 2014). Importantly, these satellite assessments are now possible at sub-hectare 

resolution, the scale at which most anthropogenic changes occur (Townshend & 

Justice 1988). Landsat data offer a spatial resolution suitable to map such changes 

(e.g. shifting cultivation in the rainforest) with Instantaneous Field Of View (IFOV) 

of 30 m and Effective Resolution Element (ERE) smaller than 75 m, the minimum 

area for which spectral properties of the center can be assigned with at least 95% 

confidence (Townshend 1981; Wilson 1988). 

This study summarizes a consistent series of forest-change datasets based on 

satellite observations in circa-1990, -2000, and -2005 “epochs” (Kim et al. 2014; 

Sexton et al. 2013) to estimate changes in tropical forest area at high (30-m) spatial 

resolution in 34 tropical countries from circa-1990 to -2005. Using a consistent 

definition of forest throughout, the data enable a spatio-temporally comprehensive 

alternative to the FAO-FRA reports and other sample-based satellite analyses (e.g. 

FAO 2012; Achard et al. 2014). This study extend the series forward as well, from 

2005 to 2010, to estimate changes in tropical forest area in the latter part of that 

decade and to complete the first fine scale satellite-based estimates of change in 

humid tropical deforestation spanning the turn of the millennium.  
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3.2 Methods 

3.2.1. Study area 

The study area comprises 34 countries spanning the humid tropics, each of 

which is covered at least 50% by forest biomes (Olson et al. 2001). These countries’ 

forests comprise over 80 percent of forest area in the tropics (Hansen et al. 2013) and 

dominates the forest area of the humid tropics.  

3.2.2. Definitions 

Consistent with the United Nations Framework Convention on Climate 

Change (UNFCCC 2002), United Nations Food and Agriculture Organization (FAO 

2002), and the International Geosphere-Biosphere Programme (Belward 1996), this 

study defined forest cover (as opposed to forest use (Belward 1996; Hansen et al. 

2010)) as parcels >1 ha in area and comprising pixels with >30% tree cover. The 

definition used in this study corresponds with the definitions of IGBP classes for 

forest (> 60% tree cover) and woody savannas (> 30 % tree cover) combined.  

 

Table 3-1 Definitions of “forest” used by various sources. 

Basis FAO FRA 2010 Hansen et al 

2013 

FRA RSS, 

TREES  

This study  

 Land use, Land 

cover 

Land cover Land cover Land 

cover 

tree-

cover 

threshold 

10 % 25 % 30 % 30 % 
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Table 3-1 shows the differences in forest definition for each set of estimates 

compared in this study. It is notable that among the sources, only the FAO definition 

relies on dominant land use (Stibig et al. 2014). 

3.2.3. Data & analysis 

5,444 Landsat scenes were collected from the 1990, 2000, 2005, and 2010 

epochs of the GLS collection of Landsat images. The GLS is intended to provide full, 

multi-temporal coverage of Earth’s terrestrial surface in service of land-cover 

mapping and change detection (Gutman et al. 2008). The original GLS data were 

augmented with additional images to improve radiometric calibration, reduce cloud 

cover, and maximize spectral discrimination of forests (Kim et al. 2011). Each image 

of this augmented GLS dataset was atmospherically corrected to estimate surface 

reflectance using the LEDAPS (Masek et al. 2006). Forest cover in the 2000 and 2005 

epochs was estimated by translation of percent-tree cover to categorical forest cover 

and change (Sexton et al. 2015; Sexton et al. 2013), using probability thresholds of 

0.5 to detect forest loss and 0.7 to detect forest gain to account for their different 

detectabilities. Stable pixels identified in the 2000 and 2005 epochs were then used to 

extend the classification and change estimate of forest cover to the 1990 and 2010 

epochs (Kim et al. 2014). Each GLS epoch spans a range of years focused on the 

nominal year (Gutman et al. 2008), so the forest/non-forest layer in each year was 

accompanied by the year of image acquisition to estimate changes over time as rates. 

Forest-cover data in 1990, 2000, and 2005 epochs are publicly available from the 

Global Land Cover Facility (www.landcover.org). 
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Forest-cover change statistics—including gross forest (cover) loss, gross 

forest gain, and net change—were generated for the periods between the four epochs. 

Those estimates were adjusted from the raw estimates to account for missing data due 

to clouds and shadows. The forest-cover change statistics in each period were 

adjusted using error matrices from global accuracy assessment (Kim et al. 2014) to 

avoid the incompatibility due to the different level of biases in forest-cover change 

statistics for each periods. Forest cover change statistics from 2000 to 2010 were 

estimated by averaging the estimates for 2000-2005 and 2005-2010 periods. 

3.3 Results and Discussion 

Satellite analysis revealed forest-cover totals of 1,340 x 106 ha in 1990, 1,300 x 

106 ha in 2000, and 1,240 x 106 ha in 2010 across the 34 countries. These estimates 

are broken down by continent and by country in Table 3-2.  
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Table 3-2 Landsat based estimates of forest area (106ha) in 1990, 2000 and, 2010 by 

continent and country. 

  1990 2000 2010 

Belize 1.93 1.85 1.79 

Bolivia 57.95 56.05 53.06 

Brazil 431.47 412.12 386.4 

Colombia 74.75 73.45 69.82 

Costa Rica 3.99 3.9 3.69 

Ecuador 15.22 14.95 14.63 

Guatemala 7.53 7.14 6.65 

Guyana 18.39 18.23 18.16 

Honduras 7.44 7.19 6.73 

Nicaragua 6.27 5.98 4.91 

Panama 4.6 4.44 4.01 

Peru 74.31 73.79 73.04 

Suriname 14.01 13.95 13.88 

Venezuela 51.22 50.33 47.07 

Tropical Latin America 769.08 743.37 703.84 

Cameroon 20.32 20.21 19.88 

Congo 23.88 23.66 23.43 

Democratic Republic Congo 153.23 152.2 147.93 

Equatorial Guinea 2.59 2.56 2.54 

Gabon 23.38 22.92 22.99 

Liberia 7.46 7.27 7.23 

Madagascar 8.93 8.55 7.58 

Sierra Leone 3.79 3.7 3.53 

Tropical Africa 243.58 241.06 235.12 

Bangladesh 2.03 1.99 1.88 

Brunei Darussalam 0.52 0.52 0.51 

Cambodia 7.81 7.5 6.32 

Indonesia 154.82 148.29 139.87 

Laos 19.22 18.79 18.14 

Malaysia 30.12 28.81 27.18 

Myanmar 40.12 39.29 37.5 

Papua New Guinea 41.81 41.21 40.54 

Philippines 16.86 16.11 14.46 

Sri Lanka 2.91 2.8 2.45 

Thailand 17.81 17.16 15.46 

Vietnam 16.39 15.79 14.07 

Tropical Asia 350.43 338.24 318.37 

Pan-Tropics 1363.08 1322.68 1257.33 



 

 

 

62 

 

During the 1990-2000 period, the annual net change across all the countries was -

4 x 106 ha∙yr-1; the gross rate of loss was 4.9 x 106 ha∙yr-1, and the gross rate of gain 

was 0.9 x 106 ha∙yr-1. During the 2000-2010 period, the rate of loss was 7.8 x 106 

ha∙yr-1, and the rate of gain was 1.3 x 106 ha∙yr-1, resulting in a -6.5 x 106 ha∙yr-1 net 

rate of change. My estimates indicate a dramatic 62% (2.5 x 106 ha∙yr-1) acceleration 

of net forest loss from the 1990s to the 2000s. Forest area change rates by continent 

and country in each period area shown in Table 3-3. 
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Table 3-3 Changes in forest area (1,000 ha∙yr-1) from Landsat-based estimates versus 

FRA reports (FAO 2010) for 1990-2000 and 2000-2010 in tropical Latin America, 

Asia, and Africa. Negative sign indicates a net loss. 

 

This Study 

 

FRA (UNFAO 2010)2 

  1990-2000 2000-2010 
 

1990-2000 2000-2010 

Belize -8 -7 
 

-10 -10 

Bolivia -191 -298.5 
 

-270 -289.5 

Brazil -1,936 -2,571 
 

-2,890 -2,642 

Colombia -130 -363 
 

-101 -101 

Costa Rica -9 -21 
 

-19 23 

Ecuador -27 -33 
 

-198 -198 

Guatemala -39 -49 
 

-54 -55 

Guyana -16 -6.5 
 

0 0 

Honduras -25 -46.5 
 

-174 -120 

Nicaragua -29 -107.5 
 

-70 -70 

Panama -15 -43.5 
 

-42 -12 

Peru -52 -75 
 

-94 -122 

Suriname -5 -7.5 
 

0 -2 

Venezuela -89 -326.5 
 

-288 -288 

Tropical Latin America -2,570 -3,954 
 

-4,210 -3,887 

Cameroon -11 -33.5 
 

-220 -220 

Congo -22 -22.5 
 

-17 -14.5 

Democratic Republic Congo -104 -426.5 
 

-311 -311 

Equatorial Guinea -3 -2 
 

-12 -12 

Gabon -46 7 
 

0 0 

Liberia -19 -3.5 
 

-30 -30 

Madagascar -38 -97 
 

-57 -57 

Sierra Leone -9 -16.5 
 

-20 -20 

Tropical Africa -251 -594 
 

-667 -664.5 

Bangladesh -4 -11 
 

-3 -3 

Brunei Darussalam 0 -1 
 

-2 -2 

Cambodia -31 -117 
 

-140 -145 

Indonesia -653 -842 
 

-1,914 -497.5 

Laos -43 -65 
 

-78 -78 

Malaysia -130 -163.5 
 

-79 -113.5 

Myanmar -83 -179.5 
 

-435 -309.5 

Papua New Guinea -60 -66.5 
 

-139 -140.5 

Philippines -75 -165.5 
 

55 55 

Sri Lanka -12 -34.5 
 

-27 -22.5 

Thailand -66 -170 
 

-55 -3 

Vietnam -60 -172 
 

236 207 

Tropical Asia -1,218 -1,988 
 

-2,581 -1052.5 

Pan-Tropics -4,040 -6,535 
 

-7,458 -5,604 
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This acceleration of net forest loss from the 1990s to the 2000s is corroborated by 

the Landsat-based estimates for 1990-2000, 2000-2005, and 2005-2010 adjusted by 

error matrices (Figure 3-1). Max and min in the figure indicates the range of net forest 

change estimates adjusted by standard error, which are calculated from global error 

matrices.
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Figure 3-1 Sum of net forest area change (106 ha∙yr-1) over the humid tropics from 

Landsat-based estimates for 1990-2000, 2000-2005, and 2005-2010 adjusted by error 

matrices. Max and min indicates the range of net forest change estimates adjusted by 

standard error. Standard errors are calculated from global error matrices.
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Table 3-4 Net forest area change (106 ha∙yr-1) over each tropical country from 

Landsat-based estimates for 1990-2000, 2000-2005, and 2005-2010 adjusted by error 

matrices. Max and min indicates the range of net forest change estimates adjusted by 

standard error. Standard errors are calculated from global error matrices. 

 1990-2000 2000-2005 2005-2010 

Country Net  max min Net  max min Net 

chang

e 

max min 

Bangladesh 0.00 0.01 -0.01 0.00 0.01 -0.02 -0.02 0.00 -0.03 

Belize -0.01 -0.01 -0.01 0.00 0.00 0.00 -0.01 0.00 -0.01 

Bolivia -0.20 -0.15 -0.26 -0.17 -0.09 -0.25 -0.32 -0.21 -0.43 

Brazil -1.96 -1.54 -2.39 -2.29 -1.65 -2.93 -2.44 -1.58 -3.30 

Brunei 

Darussalam 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cambodia -0.03 -0.02 -0.04 -0.11 -0.10 -0.12 -0.11 -0.09 -0.13 

Cameroon 0.00 0.02 -0.03 -0.02 0.02 -0.05 -0.02 0.03 -0.06 

Colombia -0.10 -0.04 -0.16 -0.18 -0.09 -0.26 -0.42 -0.29 -0.54 

Congo -0.02 0.00 -0.04 0.00 0.02 -0.03 -0.01 0.03 -0.05 

Costa Rica -0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.02 

DRC 0.01 0.14 -0.12 -0.22 -0.05 -0.40 -0.46 -0.21 -0.72 

Ecuador -0.02 0.00 -0.03 -0.03 -0.01 -0.05 -0.01 0.02 -0.04 

Equatorial 

Guinea 

0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 

Gabon -0.05 -0.03 -0.07 0.00 0.03 -0.02 0.04 0.07 0.00 

Guatemala -0.04 -0.03 -0.04 -0.03 -0.02 -0.04 -0.04 -0.03 -0.05 

Guyana -0.02 0.00 -0.03 0.00 0.02 -0.02 0.01 0.03 -0.02 

Honduras -0.02 -0.02 -0.03 -0.02 -0.01 -0.03 -0.04 -0.03 -0.06 

Indonesia -0.82 -0.70 -0.94 -0.89 -0.73 -1.05 -0.19 0.04 -0.42 

Laos -0.04 -0.03 -0.05 -0.05 -0.03 -0.07 -0.04 -0.01 -0.07 

Liberia -0.02 -0.01 -0.02 0.00 0.01 -0.01 0.00 0.02 -0.01 

Madagascar -0.03 0.00 -0.06 -0.03 0.03 -0.09 -0.13 -0.06 -0.20 

Malaysia -0.15 -0.13 -0.18 -0.18 -0.15 -0.21 0.01 0.05 -0.04 

Myanmar -0.08 -0.04 -0.11 -0.11 -0.06 -0.16 -0.16 -0.09 -0.23 

Nicaragua -0.02 -0.01 -0.02 -0.05 -0.04 -0.06 -0.14 -0.12 -0.15 

Panama -0.01 -0.01 -0.02 -0.02 -0.02 -0.03 -0.04 -0.03 -0.05 

Papua New 

Guinea 

-0.06 -0.03 -0.10 -0.08 -0.04 -0.12 0.00 0.06 -0.07 

Peru -0.05 0.01 -0.12 -0.07 0.03 -0.17 -0.02 0.12 -0.16 

Philippines -0.06 -0.05 -0.08 -0.16 -0.14 -0.18 -0.10 -0.07 -0.13 

Sierra 

Leone 

0.00 0.00 -0.01 0.00 0.00 -0.01 -0.02 -0.01 -0.02 

Sri Lanka 0.00 0.00 -0.01 -0.02 -0.01 -0.02 -0.04 -0.03 -0.05 

Suriname -0.01 0.01 -0.02 -0.01 0.00 -0.02 0.00 0.02 -0.02 

Thailand -0.05 -0.02 -0.07 -0.18 -0.13 -0.22 -0.08 -0.02 -0.13 

Venezuela -0.06 -0.01 -0.11 -0.14 -0.07 -0.21 -0.41 -0.32 -0.50 
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Vietnam -0.05 -0.04 -0.07 -0.08 -0.06 -0.11 -0.17 -0.14 -0.20 

Sum -4.00 -2.78 -5.21 -5.15 -3.42 -6.87 -5.38 -2.96 -7.81 

 

Net changes in forest area (106 ha∙yr-1) from Landsat based estimates for 

1990-2000, 2000-2005, and 2005-2010 in tropical countries are adjusted by error 

matrices from the global accuracy assessment (Kim et al., 2014, Min et al. in review). 

For 2005-2010 periods, error matrices for 1990-2000 are used (Fig 3-4).  Area 

estimates for net change are adjusted by the ratio between the estimated proportion of 

classes based on the reference classification and the estimated proportion of classes 

based on the map area in the global error matrices. Error range including maximum 

and minimum amount of net forest area change (106 ha∙yr-1) over each country from 

Landsat based estimates for each period are calculated by standard error for each 

forest cover change class. Standard errors are calculated from the global error 

matrices (Kim et al., 2014, Min et al, in review) using the methods by Olofsson et al 

(2014). The accuracy of error ranges may be affected by the size of country since it is 

based on the global scale estimates.  

Among the continents, tropical Latin America showed the largest acceleration of 

annual net forest area loss from the 1990s to the 2000s. The trend was dominated by 

Brazil, where net forest area loss accelerated by 33%. Tropical Asia showed the 

second largest acceleration of net loss from the 1990s to the 2000s (Figure 3-2), with 

similar trends across the individual countries of Indonesia, Malaysia, Cambodia, 

Thailand and the Philippines. Tropical Africa showed the least amount of annual net 

forest area loss, whereas it showed the largest increasing rate. The steady increase of 
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net forest loss in this area is mainly dominated by Democratic Republic of Congo and 

Madagascar.  

 

Figure 3-2 Gross losses and gains and net changes in tropical forest area (106ha ∙yr-1), 

by continent from 1990-2000 and 2000-2010. 

 

Figure 3-3 depicts the acceleration or deceleration of annual net forest-area 

change from the 1990s to the 2000s as a percentage of each country’s land area.  

 

Figure 3-3 Acceleration and deceleration of net forest loss for the humid tropics 

between 1990–2000 and 2000–2010 periods. The values represent the difference in 

annual net forest area loss between the periods as a percent of land area. 
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Overall, this shows an acceleration of forest loss from the 1990s to the 2000s, 

which was due to the imbalance of strong acceleration in forest loss and small 

acceleration in forest gains (Table 3-4).  

 

Table 3-5 Forest loss and gain (1,000 ha∙yr-1) by countries for 1990-2000, 2000-2005 

and 2005-2010. 

Country 

1990-

2000 

Loss 

1990-

2000 

Gain 

 2000-

2005 

Loss 

2000-

2005 

Gain 

 2005-

2010 

Loss 

2005-

2010 

Gain 

Bangladesh 6.80 2.58  8.20 2.07  22.16 6.01 

Belize 7.94 0.37  9.24 2.52  9.11 2.34 

Bolivia 214.86 23.99  304.27 45.43  380.60 42.24 

Brazil 2191.39 255.59  3001.27 281.01  2787.45 365.45 

Brunei 

Darussalam 1.04 1.05 

 

1.29 0.19 

 

0.99 0.40 

Cambodia 38.33 7.32  141.71 10.33  107.17 4.34 

Cameroon 20.66 9.80  37.91 4.09  48.02 15.42 

Colombia 170.41 40.88  324.68 44.08  498.87 54.00 

Congo 26.10 3.71  41.34 20.41  39.88 16.09 

Costa Rica 10.81 1.39  24.81 3.10  26.19 6.41 

Democratic 

Republic 

Congo 227.97 124.40 

 

388.50 47.21 

 

600.46 88.35 

Ecuador 31.24 4.53  70.58 18.84  55.06 41.45 

Equatorial 

Guinea 3.10 0.45 

 

2.29 2.30 

 

5.37 1.11 

Gabon 49.53 3.39  39.88 29.73  13.07 36.86 

Guatemala 43.68 4.89  47.54 2.20  59.10 6.48 

Guyana 18.23 2.04  18.16 10.52  14.03 9.23 

Honduras 26.95 1.65  41.96 3.41  61.19 7.14 

Indonesia 789.11 135.99  1384.35 190.19  808.61 319.47 

Laos 61.24 18.06  88.92 18.80  95.09 34.97 
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Liberia 19.13 0.17  3.35 0.62  4.64 0.43 

Madagascar 54.48 16.72  88.60 19.83  141.28 16.77 

Malaysia 174.84 44.35  304.51 36.02  144.40 85.40 

Myanmar 127.61 44.19  213.81 48.08  254.41 61.24 

Nicaragua 31.04 1.68  102.80 19.30  142.84 12.30 

Panama 16.83 1.61  46.49 4.13  54.66 9.39 

Papua New 

Guinea 64.98 4.73 

 

149.89 31.39 

 

64.96 49.89 

Peru 67.08 15.44  133.18 23.82  84.69 43.99 

Philippines 87.57 12.59  224.85 16.26  169.48 47.44 

Sierra Leone 9.55 0.83  10.17 0.59  25.44 2.07 

Sri Lanka 13.97 2.31  30.73 2.15  49.72 9.60 

Suriname 6.41 1.21  16.11 2.90  8.53 6.73 

Thailand 90.78 25.26  244.44 19.08  151.81 37.17 

Venezuela 109.59 20.79  288.52 43.94  461.29 53.38 

Vietnam 113.03 52.67  183.37 34.76  234.62 39.29 

Total 4926.27 886.62  8017.75 1039.31  7625.20 1532.85 

 

Separate estimates of forest-cover change statistics for 2000-2005 and 2005-

2010 (Table 3-5) reveal a small deceleration of 7.5% (0.9 x 106 ha∙yr-1) in net forest 

loss in the later periods, due to the imbalance between small deceleration in forest 

loss and accelerated forest gain. The deceleration of net forest loss between 2000-

2005 and 2005-2010 was mainly driven by Brazil and tropical Asian countries.  
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Table 3-6 Gross losses and gains and net changes in tropical forest area (106 ha∙yr-1), 
by continent for 2000-2005 and 2005-2010. 

 Tropical  Latin 

America 
Tropical Africa Tropical Asia Pan-Tropics 

  2000-

2005 

2005-

2010 

2000-

2005 

2005-

2010 

2000-

2005 

2005-

2010 

2000-

2005 

2005-

2010 

Gross 

loss 
4.43 4.64 0.61 0.88 2.98 2.1 8.02 7.63 

Gross 

gain 
0.51 0.66 0.12 0.18 0.41 0.7 1.04 1.53 

Net 

change 
-3.92 -3.98 -0.49 -0.7 -2.57 -1.41 -6.98 -6.09 

 

 

These national and continental trends confirm other satellite-based studies. Ernst 

et al. (2013) showed a 100% acceleration of net forest loss in the Democratic 

Republic Congo and an 89% acceleration in the Congo Basin from the 1990s to the 

2000s, driven by increased population density, small-scale agriculture, fuel-wood 

collection, and forest accessibility. Eva et al. (2012) corroborated the trends I  

observed in Tropical Latin America and Brazil, showing 25% and 23 % acceleration 

of net forest loss between the 1990s to the 2000s, changes which DeFries et al. (2013) 

attributed to forest clearing for cattle pasture and soybean cultivation. Stibig et al. 

(2014) showed a 124% acceleration in forest loss in continental Southeast Asia in the 

1990-2000 period. Rapid growth of agribusinesses (cattle ranching, soybean farming, 

and plantation agriculture) after declination of smallholder farmer-driven 

deforestation has been identified as a major driver of acceleration of net deforestation 

in this area (Rudel et al. 2009). The post-2000, national estimates of forest change 

were significantly correlated with those of Hansen et al. (2013) (r2 > 0.95), who also 

found an overall acceleration of tropical forest loss after 2000, with an exception of 
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Brazil. The Brazilian exception was explained by enforcement of policy, 

interventions in soy and beef supply chains, and expansion of protected areas 

(Nepstad et al., 2014). Accelerated annual loss in Tropical Africa and Asia observed 

in this study was also identified by Hansen et al. (2013). The estimates from this 

study complement sample-based estimates for the 1990s (e.g. Ernst et al. 2013; Eva et 

al. 2012; Stibig et al. 2014; Achard et al. 2014) and the estimates limited to the post 

2000 period (e.g. Hansen et al. 2013).  
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Table 3-6 Recent satellite-based estimates of biome-level forest change (1,000 ha∙yr-

1) in the 1990s and 2000s. 

 Area 1990s 2000s Δrate Method Data 

FAO, JRC 

(2012) 

Tropics -5,648 -9,111 61.3% Sampling Landsat 

FAO, JRC 

(2014) 

Tropics -6,000  -7,000 16.7%  Sampling Landsat 

Achard 

(2002)  

Humid 

Tropics 

-5,800 -  Sampling AVHRR 

Achard 

(2014) 

Tropics -6,050 -5,930 -2% Sampling Landsat 

 Humid 

Tropics 

-3,960 -3,170 -20% Sampling Landsat 

defries 

(2002) 

Tropics -5,563 - - Wall-to-

wall 

AVHRR 

Hansen 

(2008,2010) 

Humid 

tropics 

- -5,400 

(gross 

loss) 

- Sampling Landsat 

Hansen 

(2013) 

Tropics - -7,100  - Wall-to-

wall 

Landsat 

 Humid 

tropics (34 

countries) 

- -5,500  Wall-to-

wall 

Landsat 

This study Humid 

tropics (34 

countries) 

-4,040 -6,535 61.8% Wall-to-

wall 

Landsat  

 

Table 3-6 shows the difference between satellite-based estimates of forest change 

in each time period from studies at tropical biome level. Estimates of forest change 

differ among satellite-based studies. The major sources of difference include 

differences in the definition of forest, resolution of input data, classification accuracy, 
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and sensitivity of algorithms to detect change. Sample-based estimates vary widely, 

especially in estimating differences in rates of change over time. Due to similarities in 

spatial and temporal scale, Hansen et al. (2013) provide the only estimates directly 

comparable to this study. The estimates of this study for the 34 countries show strong 

correlation to those of Hansen et al. (2013), but are consistently higher (Table 3-7) 

due in large part to different sensitivities to forest gain.  

Table 3-7 Comparison between this study and Hansen et al (2013). 

COUNTRY HANSEN THIS 

STUDY 

COUNTRY HANSEN THIS 

STUDY 

BANGLADESH -4 -11 Indonesia -735 -842 

BELIZE -9 -7 Laos -73 -65 

BOLIVIA -234 -299 Liberia -24 -3 

BRAZIL -2370 -2571 Madagascar -88 -97 

BRUNEI 

DARUSSALAM 

-1 -1 Malaysia -179 -164 

CAMBODIA -96 -117 Myanmar -98 -179 

CAMEROON -35 -33 Nicaragua -63 -107 

COLOMBIA -164 -363 Panama -20 -44 

CONGO -375 -22 Papua New 

Guinea 

-34 -67 

COSTA RICA -11 -21 Peru -111 -75 

DEMOCRATIC 

REPUBLIC 

CONGO 

-375 -427 Philippines -29 -165 

ECUADOR -35 -33 Sierra 

Leone 

-13 -16 

EQUATORIAL 

GUINEA 

-3 -2 Sri Lanka -6 -34 
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GABON -13 7 Suriname -5 -8 

GUATEMALA -65 -49 Thailand -59 -170 

GUYANA -7 -6 Venezuela -92 -326 

HONDURAS -36 -46 Vietnam -55 -172 

   Sum -5516 -6535 

 

Large differences are evident between the FRA 2010 report and this study’s estimates 

of forest area and change. The long-term results of this study contradict the FAO 

(2010) report of a 25% reduction in the rate of forest loss. Also contrary to the results 

of this study, 16 out of 34 countries in the FRA main report were estimated to have a 

constant net rate of forest change through the 1990-2000 and 2000-2010 periods 

(FAO, 2010). The discrepancies are likely due to differences in survey methods and 

definition of forest. The FRA 2010 reports forest area defined by ‘forest use’, and it 

compiles country-level estimates from national reports, which have been criticized for 

inaccuracy and inconsistency (Mayaux et al. 1998; DeFries et al. 2002; Hansen et al. 

2008; Grainger 2008; Hansen et al. 2013; Achard et al. 2014). The differences is 

likely partly due to changes in the area of commodity forest plantations, which are 

included in most current satellite estimates as forest cover but are variably reported as 

“forest” in the FRA report. It is possible that the slow rate of forest gain make biases 

toward increased net deforestation especially in boreal areas where the regrowth is 

relatively slow. Biases toward increase in net deforestation based on the low 

detectability of forest gain in the remote sensing based estimates can be compared 

with the net change in forest area adjusted by the ground observation by FAO-FRA. 
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Errors from backward and forward projection based on previous FRA reports 

may also contribute to overestimated net forest loss for the 1990s, thus resulted in 

muting the effect of acceleration of forest loss during the 2000s (Grainger 2008). The 

difference might arise partly from a statistical bias from the satellite data gaps from 

clouds, especially for countries such as Indonesia (gap ~ 30 %). This may be resolved 

as other satellite images become available.  

These findings highlight the importance of a consistent definition and method 

to track forest-area changes. These findings provide a consistent, spatially explicit 

basis for the inference of the drivers of forest cover change in various geographical 

and socio-economical contexts, especially where the relationship between long-term 

trends in forest cover change and its drivers are hindered by inaccurate estimates of 

forest cover change resulting from semantic and methodological inconsistencies. 

3.4 Conclusions 

This study applied a series of forest-cover maps based on satellite imagery and 

a consistent, biophysical definition of forest cover to estimate the area and change of 

humid tropical forests in 34 countries from 1990 to 2010. The results of this study 

indicate a 62% acceleration of net forest loss over the humid tropics, from 4.04 x 106 

ha∙yr-1 during the 1990s to 6.54 x 106 ha∙yr-1 in the 2000s—mainly driven by strong 

acceleration in gross forest loss in tropical Latin America. Second, this study 

identified a 7.2 % deceleration in net forest loss, from 6.98 x 106 ha∙yr-1 in the early 

2000s to 6.09 x 106 ha∙yr-1 in the late 2000s, due to accelerated forest gains in tropical 

Asia and decelerated forest losses in Brazil. Although slower than on other 
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continents, gross forest-cover changes in tropical Africa, dominated by changes in the 

Democratic Republic of Congo and Madagascar, resulted in net losses that 

accelerated steadily from 1990 to 2010. The estimates of this study reveal an 

acceleration of net deforestation from the 1990s to the 2000s across the humid 

tropics. Gross and net forest-cover losses rose from the 1990s to a peak in the early 

2000s and then decelerated slightly from 2005 to 2010. This acceleration contradicts 

commonly accepted assertions of deceleration (e.g. Anon. 2014). 
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Chapter 4 Effectiveness of Protected Areas in the Pan-Tropics 

and International Aid for Conservation3  

4.1 Introduction  

In 2010, the Convention on Biological Diversity (CBD) adopted a revised 

strategic plan for biodiversity for 2011-2020 including the Aichi Biodiversity Targets. 

One of the targets is to reduce the rate of loss of all natural habitats including forest 

by 2020 (www.cbd.int/sp/targets). However, recent studies have shown acceleration 

and high sustained rates of tropical deforestation since 2000 (Hansen et al. 2013; Kim 

et al. 2015)(Hansen et al., 2013; Kim et al., 2015). To meet the proposed targets of 

conservation plans like the Aichi Biodiversity Targets, evaluation of the effectiveness 

of previous and current efforts to reduce tropical deforestation is essential. Within this 

context, assessment of the effectiveness of PAs throughout the tropics is vital as PAs 

are central to climate and biodiversity policies (DeFries et al. 2005; Joppa et al. 2008; 

Pimm et al. 2001). Previous efforts have been made to evaluate the effectiveness of 

PAs over various spatial and temporal extents (Andam et al. 2008; DeFries et al. 

2005; Huang, Kim, et al. 2009; Joppa et al. 2008; Joppa & Pfaff 2011; Laurance et al. 

2012; Schmitt et al. 2009), evaluating  the cost-effectiveness of these PAs 

(Kindermann et al. 2008; Soares-Filho et al. 2010), exploring the links between the 

value of PAs and surrounding socio-economic drivers of tropical deforestation (Nolte 

                                                 

 
3 The presented material is under review : D. H. Kim, A. Anand, J. O. Sexton, P. 

Noojipady, A. Zazueta, B. Soares-Filho, M. E. Kelly, C. M. DiMiceli, S. Channan, J. 

R. Townshend (in review) Effectiveness of Protected Areas in the Pan-Tropics and 

International Aid for Conservation, Science Advances. 
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et al. 2013), while others have examined the management effectiveness of PAs for 

limited times and spatial extents (Hockings et al. 2004). 

Satellite based remotely sensed data have been used to evaluate the 

effectiveness of PAs in reducing deforestation because of their spatio-temporal 

consistency and its capability of complementing ground-based observations including 

filling of data gaps and solving compatibility issues (Curran et al. 2004; DeFries et al. 

2005; Gaveau et al. 2009)(Curran, et al., 2004; Defries et al., 2005; Gaveau et al, 

2009). Spatially explicit information on pan-tropical forest cover change at Landsat 

resolutions has not previously been available beyond satellite analysis in selected 

locations (Achard et al. 2002; DeFries et al. 2005). Lack of comprehensive long-term 

spatial data has precluded pan-tropical scale analysis on the effectiveness of PAs in 

terms of their regulating factors. 

Long term, large-scale forest cover change at 30-m resolution has been 

recently made available (Kim et al. 2014; Townshend et al. 2012). Based on this 

information, this study aims to, 1) estimate avoided deforestation by PAs in each 

tropical country during the 2000s, 2) estimate effects of international aid received by 

each country on avoided deforestation by PAs in each country and 3) analyze the 

relationships between the socio-economic variables and increases in deforestation, 

avoided deforestation by PAs and effects of international aid of each country.  
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4.2 Methods 

4.2.1 Forest change data 

Landsat based forest cover change data between 1990, 2000, and 2010 (Kim 

et al. 2014; Channan et al. 2015; Sexton et al. 2013) were used to derive net forest 

cover change in 34 tropical countries that comprise over 80 % of forest area in the 

tropics (Kim et al. 2015), and dominates the forest area of the humid tropics. These 

data were derived from 5,444 surface reflectance images collected for the 1990, 2000, 

and 2010 epochs from the GLS collection of Landsat images (Channan et al. 2015; 

Feng et al. 2013; Gutman et al. 2008; Masek et al. 2006) supplemented by many 

additional images (Channan et al. 2015). Forest cover was defined as parcels > 1 ha in 

area and comprising pixels with > 30% tree cover (Belward 1996; FAO 2002; 

UNFCCC 2002) and with the International Geosphere-Biosphere Programme’s 

(IGBP) classes of forest (> 60 % tree cover) and woody savannas (> 30 % tree cover) 

combined. 

4.2.2 Socio-economic data 

Previous studies have shown the significant impact of population growth, 

increased agricultural production and agricultural trade on tropical deforestation 

(DeFries et al. 2010,2013; Rudel 2007). In this study, this study used various sources 

of demographic, economic and agricultural statistics to examine the relationships with 

increased rates of deforestation between the 1990s and 2000s, and with effectiveness 

of PAs (Table 4-1).   
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Table 4-1 Socio-economic variables and data sources for regression analysis. 

Data Sources 

Agricultural production FAO, 2012 

Export of agricultural product FAO, 2012 

Trade of agricultural product FAO, 2012 

Urban population  FAO, 2012 

Rural population FAO, 2012 

Gross domestic product World Bank, 2015 

Rule of law World Bank, 2013 

Control of corruption World Bank, 2013 

Monitoring capacity Romijin et al (44) 

International aid  AidData (27) 

 

Although the forest change data used in this analysis is of comparatively high 

spatial resolution, there is not enough socio-economic data at this resolution for the 

tropics. This limits the scale of this study to a country level. At this coarse scale, the 

relationships between individual PAs and geophysical factors (e.g. terrain 

characteristics, distance to edge) were not taken into account. 

National scale data from United Nations Food and Agriculture Organization 

(FAO) were used to derive demographic and agricultural statistics (FAO 2012)(FAO, 

2012). The Worldwide Governance Index (WGI) (World Bank 2013) reports 

governance indicators for countries over the period 1996-2013. This study used two 

indicators, the ‘Rule of law’, which is a measure of the ability to enforce the law and 
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‘control of corruption’, which measures perceptions of the extent to which public 

power is exercised for private gain. Global aid data for the period 1990- 2010 was 

obtained from AidData Version 3 database (Tierney et al. 2011). The database 

contains records of development projects from more than 90 bilateral and multilateral 

donors, and constitutes a detailed source of project-level information on international 

aid (Tierney et al. 2011). This study used the real value of currency (in US dollars) to 

account for changes in the value of currency over time. The project data extracted 

from AidData includes data from all the sectors (Miller et al. 2013). This study 

excluded the sectors less relevant for biodiversity and natural resource management 

such as reproductive health care and secondary education. Averages for the 1990s and 

the 2000s were calculated from each data set and the differences are used as 

independent variables for regression analysis.  

4.2.3 Forest cover change rate inside and outside PAs 

The forest cover change maps for each of the 3,888 designated PAs and their 

surrounding areas in 34 tropical countries (IUCN 2010) are extracted from the 

Landsat-based forest cover change data. The protected areas in this study are defined 

by information of PAs in IUCN data. Although IUCN data have different categories 

of PAs by its management status, in this study I do not analyze PAs separately by 

their categories since the scope of this study is to estimate overall effectiveness of 

PAs by each country. However, this study provides a framework for individual PA 

based analysis. 

To  maintain environmental similarity among PAs (Mas 2005; Peres & 

Terborgh 1995), The surrounding areas are derived using a 10 km buffer distance 
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from the PA boundaries. This study derived the annual gross forest loss, gross forest 

gain and net forest change rates within each PA and its surrounding area from the 

forest change maps. The forest loss rate are then calculated t by dividing the area of 

forest loss by area of forest within PAs or surrounding areas. Each GLS epoch spans a 

range of years focused on the nominal year (Gutman et al. 2008), so the 

forest/nonforest layer in each year was accompanied by the year of image acquisition 

to estimate changes over time as rates.   

4.2.4 Estimation of Avoided Deforestation by PAs 

Measuring the amount of avoided deforestation by PAs is not straightforward 

because it cannot be directly measured (Andam et al, 2008). Broadly, two different 

approaches have been in use to estimate avoided deforestation. The first set of 

approaches, compare differences in forest change rate between the inside and outside 

of PAs (Curran et al., 2004; Defries et al., 2005; Nepstad et al., 2006; Joppa et al., 

2008). These, however, have been criticized for their inability to account for the 

spillover effect from PAs to the adjacent areas outside of PAs and for selection bias 

due to un-randomized selection of PAs and inherently different deforestation 

probability between the inside and outside of PAs (Stern et al. 2001). Second, there 

are statistical matching approaches to match the difference of deforestation 

probability between samples inside and outside PAs (Andam et al., 2008; Joppa et al., 

2011). The statistical matching of samples is robust, but hard to implement due to 

high computational cost and difficulties in finding statistically significant matches, 

especially when the PA network covers large continuous tracts of land (Soares-Filho, 

2010), and some important factors which contribute to the deforestation probability 
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such as policies (e.g. concession) can be overlooked. To avoid selection bias and 

computational difficulties associated with previously mentioned methods, the 

Difference-In-Difference (DID) estimator was used to measure avoided deforestation 

in the 2000s compared to the 1990s for PAs in the pan-tropics. This method has a 

relatively strong inferential ability as it eliminates selection biases by attempting to 

mimic an experimental research design using observational data (Card & Krueger 

1995; Abadie 2005). 

The impact of a treatment on an outcome Yi, annual forest change rate of each 

protected area and surrounding area was modeled by the following equation:  

itiTitiTiYi   )(             (1) 

 

Where, T is the treatment status, t is the time period before and after the treatment, 

the coefficients given by the Greek letters α, β, γ, δ are all unknown parameters and εi 

is a random, unobserved "error" term. Since the socio economic data scaled at 

individual protected area level are not generally available, those socio economic 

variables are not included in the equation (1). Since the forest cover change data used 

in this study are for periods of 1990-2000 and 2000-2010, we measure collective 

effects from PAs between the decades in each country. 

In the DID estimator, the effect of treatment (avoided deforestation),  , is 

defined as the difference in average outcome in the treatment group T before and after 

treatment minus the difference in average outcome in the control group C before and 

after treatment and expressed as: 

)( 0101

CCTT

YYYY                       (2) 

Where, the treatment group is PAs and the control group is surrounding areas before 

and after the year 2000 (Figure. 4-1).  
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Figure 4-1 Avoided deforestation estimates for a designated protected area in Brazil 

(Peneri/Tacquiri Indigenous Area designated in 2000); red pixels represent forest 

loss, green pixels represent forest gain. Y axis represents the net forest cover change 

rate, while x axis represents time periods. Avoided deforestation (DID) is calculated 

by taking differences between difference in forest loss rate in the treatment group T 

before and after treatment and the difference in forest loss rate in the control group C 

over time. 

 

This study applied this method to a) the 3,888 PAs and surrounding areas 

designated prior to 2010 to determine the accumulated effect during the 2000s, and b) 

to the subset of 1,253 PAs established between 2000 -2010 to estimate the effect of 

newly established PAs.  

4.2.5 Spillover effect 

Spillover effect refers to displacement of forest loss from one place to a 

neighboring area due to the establishment of PA. If PAs displaced deforestation to 

immediate surrounding areas through spillover effect, deforestation rate inside 

immediate surrounding areas will be higher than in the wider landscape (Ewers & 

Rodrigues 2008; Gaveau et al. 2009). Based on these assumptions, potential spillover 

(leakage) effect was measured by comparing avoided deforestation estimates using 

surrounding areas of different distances (10km and 25km).  
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4.2.6 Statistical Analysis 

To ensure the robustness of DID method, this study tested 1) Ordinary least 

squares (OLS) regression analysis between treatment, time period, and estimated 

avoided deforestation as expressed in equation (1); 2) paired t-test between the 

difference in forest loss rates in PAs and the difference in forest loss rates in the 

surrounding areas to determine significance of the effect of PAs before and after 

2000. Effects of PAs are graphically presented with changes in frequency 

distributions. Variables for the regression analysis were selected based on variation 

inflation factor, which account for collinearity (DeFries et al. 2010). All independent 

variables were log transformed. I used a minimum node size of three, for both 

regression trees and random forest analysis to minimize residual deviance. R 

packages CAR and TREE are used for the collinearity check and regression tree 

analysis respectively. 

4.3 Results. 

Paired t-test results between the difference in forest loss rates in PAs and the 

difference in forest loss rates in the surrounding areas confirms the hypothesis that 

two groups show a significant difference before and after the designation of PAs with 

the value of 6.6 (Table 4-2).  

 

Table 4-2 Results of paired t-test. 

Paired t-test 

t = 6.6452, df = 3337, p-value = 3.523e-11 

alternative hypothesis: true difference in means is not equal to 0 

 

95 percent confidence interval: 0.2439623 0.4481797 
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sample estimates: mean of the differences 0.346071  

 

 

Ordinary Least Sqaure (OLS)  regression analysis of the PA effect evaluation 

model (equation 1) shows a r2 value of 0.28 with p-value < 0.001 between gross 

forest loss rate within PAs and avoided deforestation by PAs over time (Table 4-3). 

The avoided deforestation, the value of the coefficient for the treatment over time  

(equation 1) was 0.35 (%/yr) with a standard error of 0.092 with a p value < 0.001. 

 

Table 4-3 Statistics of Ordinary Least Sqaure (OLS) regression analysis for avoided 

deforestation by country and individual PA. 

By country     

Independent variables Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.39885     

 

0.06  -6.020 1.62e-08 *** 

Period -0.39489     0.09370   -4.215 4.61e-05 *** 

Treatment 0.23511     0.09370    2.509    0.0133 *   

Treatment∙Period 0.27194     0.13250    2.052    0.0421 *   

 * P < 0.01   ** P < 0.001   *** P < 0.0001, independent variables are log transformed 

Residual standard error: 0.3863 on 132 degrees of freedom, Multiple R-squared:  

0.2781, Adjusted R-squared:  0.2617  

F-statistic: 16.95 on 3 and 132 DF,  p-value: 2.257e-09 

 

 

By individual PA 

Independent variables Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.91003     0.04603 -19.772   < 2e-16 *** 

Period -1.41258     0.04603 -21.702   < 2e-16 *** 
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Treatment 0.32492     0.06509    4.992 6.06e-07 *** 

Treatment∙Period 0.34607     0.09205    3.759 0.000171 *** 

 

 * P < 0.01   ** P < 0.001   *** P < 0.0001, independent variables are log 

transformed 

Residual standard error: 2.659 on 13348 degrees of freedom, Multiple R-squared:  

0.0603, Adjusted R-squared:  0.06009  

F-statistic: 285.5 on 3 and 13348 DF,  p-value: < 2.2e-16 
 

 

Effects of PAs are graphically presented in Figure 4-2 with changes in 

frequency distributions before and after 2000. The figure suggests that at t1 (pre-

2000), the forest loss rate was high inside PA area and at t2 (post-2000) loss was 

lower confirming the positive effects of PAs in the tropics in reducing deforestation. 

 
Figure 4-2 Frequency distribution of the difference in forest loss rates between the 

interior of protected areas and the surrounding 10 km buffers in the 1990s (t1) (Blue) 

and the 2000s (t2) (Red). The figure suggests that at t1, the forest loss rate was high 

inside PA area (before 2000) and at t2 loss was lower.  
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4.3.1 Avoided Deforestation by Protected Areas 

 

Table 4-2 Summary of the avoided deforestation estimates by countries and 

continents. Acceleration of deforestation is indicated by percent increase in net 

deforestation rate  from the 1990s to the 2000s (3), Avoided deforestation as 

presented in percent of conserved forest relative to remaining forest in PAs and total 

area of conserved forest. All estimates are on an annual basis. Negative effect means 

forest loss rates within PAs exceeded the forest loss rates in surrounding areas. 

Country Accelerati

on of 

deforestat

ion (%) 

Avoided 

deforestatio

n (%) 

Avoided 

deforestatio

n (km2) 

Area of 

PAs 

(km2) 

Forest 

area in 

PAs (%) 

No. 

of 

PAs 

Cameroon 20.6 1.39 341.1 46,414 53 35 

Congo 0.0 -0.23 -24.2 22,624 46 13 

Democratic 

Republic 

Congo 

31.2 -0.09 -77.4 219,67

7 

41 31 

Equatorial 

Guinea 

-2.0 -0.32 -10.7 3,602 93 6 

Gabon -11.5 0.01 1.5 16,677 97 8 

Liberia -8.2 -0.17 -1.5 1,687 53 2 

Madagascar 15.6 0.69 57.5 15,322 55 42 

Sierra Leone 8.9 0.03 0.3 2,955 38 31 

Africa Total 6.8 0.18 286.5 328,95

7 

47 168 

Bangladesh 16.3 0.17 0.5 490 56 19 

Brunei 

Darussalam 

0.0 -0.90 -3.8 448 94 18 

Cambodia 27.8 0.49 61.7 24,779 51 24 

Indonesia 2.9 0.22 100.8 95,981 49 152 

Laos 5.1 0.49 67.6 17,095 80 12 

Malaysia 2.5 0.21 38.4 19,330 96 122 

Myanmar 11.5 0.88 64.5 15,201 48 29 

Papua New 

Guinea 

1.1 -0.19 -5.1 3,849 69 27 

Philippines 12.0 -0.05 -9.0 26,890 64 165 

Sri Lanka 19.5 -0.05 -3.0 11,860 46 210 

Thailand 15.9 0.76 357.1 61,541 76 117 

Vietnam 18.5 0.06 4.7 18,295 43 65 

Asia Total 11.1 0.38 674.4 295,75

8 

61 960 

Belize -1.1 -0.06 -2.2 4,353 86 63 

Bolivia 5.6 0.92 661.1 98,585 73 42 

Brazil 3.3 0.34 5087.0 1,852,1

81 

82 1,32

1 
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Colombia 18.0 0.89 582.9 169,96

0 

38 593 

Costa Rica 12.0 0.23 10.8 5,424 86 79 

Ecuador 2.2 0.76 119.8 22,467 70 20 

Guatemala 2.6 0.27 42.7 18,053 86 225 

Guyana -6.2 0.01 0.6 10,426 41 3 

Honduras 8.3 0.02 1.6 11,733 56 62 

Nicaragua 26.5 0.68 9.4 4,597 30 61 

Panama 18.8 0.76 27.3 4,610 78 13 

Peru 4.5 0.51 997.0 308,59

9 

64 185 

Suriname 4.4 0.05 14.2 29,041 99 7 

Venezuela 26.7 -0.39 -162.2 80,919 51 85 

Latin 

America 

Total 

9.0 0.38 7389.8 2,620,9

49 

75 2,75

9 

Grand Total 6.2 0.35 8350.6 3,245,6

63 

71 3,88

7 

 

The results demonstrate an overall 83,500 ± 21,200 km2 of avoided 

deforestation by the PAs during the 2000s throughout the tropics, which equals 3.5 % 

of all forest area within PAs in the study area (Table 4-4). Among the continents, 

Latin America showed the largest estimates of avoided deforestation during the 2000s 

(73,900 km2). In Latin America, Brazil showed the largest avoided deforestation 

(50,870 km2), followed by Peru (9,970 km2), and Bolivia (6,611 km2) for the same 

time- period. Venezuela was found to have the largest negative effect (-1,622 km2) 

among Latin American countries. Negative effect means forest loss rates within PAs 

exceeded the forest loss rates in surrounding areas. Tropical Asia showed the second 

largest estimates of avoided deforestation of 6,744 km2, with the largest amount in 

Thailand followed by Indonesia. Tropical Africa has the lowest estimates, except 

Cameroon, which showed the largest estimate of 3,411 km2. In terms of the 

percentage of avoided deforestation against the entire forest area in PAs, Africa 
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showed the lowest estimates of 1.8 % while Latin America and Asia showed similar 

estimates of 3.8 %. 

 

Table 4-3 Estimates of Avoided deforestation by time of establishment of PAs. 

Numbers in parenthesis represent estimates using median forest loss rate. 

 Avoided 

deforestation 

Mean forest loss rate 

within PAs 

Mean forest loss rate 

within BZs 

Year of 

establishment 

 (%) (km2) Before 

2000 

After 

2000 

Before 

2000 

After 

2000 

Prior to 2010 3.46 (4.1) 83,500 0.59 (0.09) 1.65 

(0.17) 

0.91 

(0.46) 

2.32 

(0.94) 

1990-2000 3.42 (4.6) 22,800 0.5 (0.01) 1.66 

(0.02) 

0.86 

(0.46) 

2.32 (1) 

2000-2010 4.47  (5) 47,650 0.5 (0.02) 1.52 

(0.04) 

0.897 

(0.35) 

2.37 

(0.87) 

  

The comparison between estimates for the entire set of PAs and for the PAs 

established after 2000 showed that PAs established post 2000 had a somewhat higher 

rate of avoided deforestation at 0.5% annually compared to 0.4 % for entire set of 

PAs (Table 4-5). The area of avoided deforestation by PAs established during the 

2000s was about 60% of estimated avoided deforestation by all PAs in the study area. 

Estimates of avoided deforestation based on the median value of forest loss exhibited 

similar results. 

Changes in mean and median forest loss within PAs and the surrounding areas 

before and after 2000 demonstrate the positive effects of PAs on reducing 

deforestation (Table 4-4). Similar to the results of OLS regression analysis of the DID 
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estimator, the results of the paired t-Test showed significant (p < 0.0001, t =6.2) 

effects of PAs, as a change in frequency distribution (Figure 4-2). 

4.3.2 Spillover effect 

This study compared the estimates of avoided deforestation for each country 

based on surrounding areas with a 10 km buffer distance and surrounding areas with a 

25 km buffer distance. The comparison showed a linear relationship (P < 0.0001, R2 = 

0.95, coefficient = 0.81, intercept = 0.0084) between the two estimates. Also, the 10 

km buffer showed slightly higher estimates of avoided deforestation than the 25 km 

buffer confirming the assumption that deforestation rate inside immediate 

surrounding areas (10 km buffer) will be higher than in the wider landscape (25 km 

buffer) due to the spillover effect (Figure 4-3). 
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Figure 4-3 Comparison between estimates of avoided deforestation by each country 

using a 10 km buffer zone and a 25 km buffer zone. Median forest loss rate of PAs 

and surrounding areas at different distances are used in this comparison. 

 

4.3.3 Effectiveness of international aid for conservation 

34 countries received a total international aid for conservation of 42 billion 

USD during 1990s and 62 billion USD during 2000s, with a net increase of 46% (20 

billion U.S Dollars) between two periods (figure 4). Among continents, Tropical 

Asian countries were the largest recipients, receiving 62% of all funds during the 

2000s, followed by Latin American countries (28 %). Among the countries, Indonesia 

received the largest amount of aid, 18% of all funds received by 34 tropical countries, 

followed by Vietnam (12%) and the Philippines (9%) for the same period (AidData, 

2015). The effect of international aid (avoided deforestation/international aid) was 



 

 

 

93 

 

highest in Latin America with 4.3 m2/USD, led by Brazil, while tropical Asian 

countries showed the lowest average effect of international aid of 0.17 m2/USD. 

Among the countries, Brazil showed the absolute highest cost-effect of 21 m2/USD. 

The blue line in Figure 4 indicates the average effect of international aid on all 34 

countries, and only 9 out of 34 countries were found to have higher effects of 

international aid than average (Figure 4-4).  
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Figure 4-4 The amount of international funds committed to each tropical country in 

the 1990s (a) and the 2000s (b), the amount of funds are converted to a nominal value 

of US dollar. Avoided deforestation by each country (c). Effects of International aid 

(Contribution of international aid per unit of avoided deforestation) for 34 tropical 

countries (d). 
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4.3.4 Regression analysis 

Table 4-6 summarizes the results of regression analysis based on multiple 

linear regression and regression tree analysis. Multiple linear regressions showed 

mild to moderate correlations  

 

Table 4-4 Results of regression analysis based on different techniques including 

multiple linear regression, regression tree algorithm. 

Independent 

variables 

Multiple linear 

regression 

R2 P Regression Tree  

Difference of 

annual forest 

loss rate between 

the 1990s and 

the 2000s 

GDP growth*** 

Difference of annual 

agricultural production 

growth rate between 

the 1990s and the 

2000s ** 

urban population 

growth**  

0.44 < 0.001 GDP growth, 

urban population 

growth 

Avoided 

deforestation 

Difference of annual 

forest loss rate between 

the 1990s and the 

2000s *** 

0.32 < 0.05 Difference of annual 

forest loss rate 

between the 1990s 

and the 2000s 

Effectiveness of 

international aid 

Agricultural production 

growth *, Rule of law*, 

monitoring** 

0.25 < 0.05 Rule of law 

* P < 0.01   ** P < 0.001   *** P < 0.0001 

independent variables are log transformed 
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(0.2 < r2 < 0.5) and significant associations (P <0.05) between independent variables 

and driving forces. The regression tree algorithm is used complementarily to seek a 

non-parametric relationship between each variable.  

Multiple regression analysis between the difference of annual forest loss rate 

between the 1990s and the 2000s and potential driving forces showed an overall 

moderate correlation (r2 = 0.44) and significant association (p < 0.001). There is a 

significant (P < 0.01) positive association between difference of annual forest loss 

rate between the 1990s and the 2000s and difference of annual agricultural production 

growth rate between the 1990s and the 2000s. A highly significant (p < 0.001), 

negative association exists between differences of annual forest loss rate between the 

1990s and the 2000s and difference of annual GDP growth rate between the 1990s 

and the 2000s. There is a significant (p < 0.01) negative association between the 

difference of annual forest loss rate between the 1990s and the 2000s and the 

difference of urban population increase rate between the 1990s and the 2000s. The 

difference of annual GDP growth rate was the first split in the regression tree, which 

means that GDP growth is the most powerful discriminator between countries. 

Multiple regression analysis indicated a mild correlation (r2 = 0.32) between the 

amount of avoided deforestation by PAs and the difference of annual forest loss rate 

between the 1990s and 2000s (Table 4-6). Both multiple regression analysis and 

regression tree analysis showed that annual forest loss rate between the 1990s and 

2000s was significantly associated with avoided deforestation by PAs.  

The contribution of international aid per unit of avoided deforestation shows 

mild correlation (r2 = 0.25) with difference of annual agricultural production growth 
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rate between the 1990s and the 2000s, rule of law and monitoring capacity (Table 4-

6). Regression tree analysis shows that rule of law makes the first split and the next 

split is made by monitoring ability. This is especially demonstrated by 3 countries 

including Democratic Republic of Congo, Myanmar and Venezuela with the lowest 

effect of international aid and the lowest value of rule of law, which is an indicator of 

the ability to enforce the law.  

 

4.4 Discussion 

The results of the estimated avoided deforestation and effects of international 

aid by countries 1) pinpoint where the conservation activity and resources distribution 

are effectively practiced, 2)  helps establish the link to socio-economic factors and 

their significance and underlying implications. 

County based estimates of avoided deforestation by PAs and effects of 

international aid showed a various pattern throughout the Tropics. Notably, two 

largest sources of tropical deforestation during the 2000s, Brazil (2.2 Mha∙yr-1) and 

Indonesia (0.8 Mha∙yr-1), showed a sharp contrast (Kim et al. 2015). Brazil showed 

about 50 times higher estimates of avoided deforestation compared to Indonesia while 

Indonesia has received about 5 times more international aid (11 billion US Dollars) 

compared to Brazil (2.4 billion US Dollars) resulting in 50 times lower estimates of 

effects of international aid (0.5 m2/USD) compared to Brazil (22 m2/USD). Relatively 

high rates of avoided deforestation from PAs in Brazil emphasize the important role 

of Brazil in tropical forest conservation. Positive avoided deforestation effects of PAs 

in Brazil were also reported by previous studies (Nolte et al. 2013; Soares-Filho et al. 
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2010).  PAs in Brazil established since 2000 showed reduced deforestation of 2,794 

km2 annually which is corroborated by an annual 2,500 km2 of avoided deforestation 

between 2004 and 2006 reported by Soares-Filho et al. (2010).  

Previously, Defries et al. (2010) have demonstrated that agricultural export 

and urban population growth were the most dominant drivers of tropical forest loss 

between 2000 and 2005. To analyze the relationships between increased deforestation 

and the effectiveness of tropical forest conservation efforts, this study performed a 

regression analysis between factors which reflect socio-economic changes between 

the 1990s and the 2000s. The results show a highly significant, negative association 

(p <0.0001) with increased deforestation rate and difference of annual GDP growth 

rate between the 1990s and the 2000s, which suggests that countries with fewer 

resources for economic development during the 2000s were under higher pressure to 

deforest (Alvarez-Berríos & Mitchell Aide 2015; Geist & Lambin 2001; Rudel & 

Roper 1997). The significant association between the difference of agricultural 

product growth rate and increased forest loss rate, between the 1990s and the 2000s 

suggests that agricultural intensification, evidenced in Mato Grosso in Brazil (Gibbs 

et al. 2015) may not be prevalent throughout the tropics (DeFries et al. 2013). The 

pronounced positive association (p <0.0001) exhibited by the regression analysis 

between estimated avoided deforestation from PAs and increase in deforestation rate 

between the 1990s and the 2000s in each country (Table 2) suggests that protected 

areas have been effectively established where deforestation is accelerating. Latin 

American countries showed higher rates of avoided deforestation compared to the 

increased forest loss rate although it cannot be ascertained if it is due to proper 
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allocation of PAs, or that PAs in Latin American countries are more effectively 

managed. The results presented in this paper also demonstrate the possibilities of 

satellite-based forest loss monitoring to supplement and enhance the process of 

allocation of conservation efforts and resources. A highly significant association of 

the effect of international aid with the rule of law emphasizes the importance of good 

governance in enhancing the effectiveness of international aid. This finding is 

consistent with studies (Miller et al. 2013) that illustrate that aid agencies have a 

preference for countries with ‘good governance’. 

The avoided deforestation from PAs is estimated with Landsat based, spatially 

explicit long-term forest change data and the DID estimator. The approach of this 

study offers an alternative way to handle the commonly criticized selection bias and 

spillover problems (Andam et al. 2008; Stern et al. 2001). 

The 10 km buffer was estimated to be better in avoiding deforestation than the 

25km buffer from PAs (Figure 4-3). This  could be due to a modest spillover effect 

(Gaveau et al. 2009), and areas closer to PA boundaries might be inaccessible, 

isolated (DeFries et al. 2005) or even better protected due to buffer zone conservation 

initiatives (Alers 2007). However, since the overall differences between the two 

estimates using different buffer distances were marginal at the country level, and they 

show a near-linear relationship (p <0.0001, R2 > 0.92), this study used estimates of 

avoided deforestation with a 10 km buffer distance for the regression analysis. The 

overall positive effect of PAs in reducing deforestation throughout the tropics 

corroborates with previous studies (Andam et al. 2008; Gaveau et al. 2009; Joppa & 

Pfaff 2010; Nagendra 2008; Nelson & Chomitz 2011; Oliveira et al. 2007). However, 
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unlike many previous studies, the results of this study provide a consistent, long-term 

estimate throughout the pan-tropics.  

On average, PAs established after 2000 showed a greater avoided 

deforestation than PAs established before 2000. Nevertheless, old established PAs 

were still effective, just not as much as recently established ones (Nelson & Chomitz 

2011). Table 4-5 shows the mean deforestation rate in PAs and surrounding areas 

designated during 1990-2000 and 2000-2010. The lower deforestation rates in recent 

PAs and the higher rates in the recent surrounding areas after 2000 shows that, the 

greater avoided deforestation of recent PAs are not because of its remoteness. Congo, 

Belize, the Philippines and Sri Lanka showed positive avoided deforestation from 

PAs established since 2000, while estimates including all PAs established before 

2000 showed negative effects in these countries, suggesting the old established PAs 

in those countries are experiencing higher rate of deforestation.  

Although the estimates of avoided deforestation and the regression analysis 

were statistically robust, this study has some limitations. First, the estimates of forest 

cover change do not distinguish between primary and managed forests, thus leaving a 

potential for confusion between loss of natural forest and harvest. Second, the coarse 

spatial scale of socio-economic data limited the regression analysis to the country 

scale that in turn prevented the regression analysis between individual PAs and their 

geophysical factors. Third, Brazil’s success in reducing deforestation is an 

exceptional case made possible under a special political landscape (Gibbs et al. 2015; 

Nolte et al. 2013), which is difficult to generalize to other tropical countries. Finally, 

for the estimates of the effect of international aid, I only considered the contribution 
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of international monetary aid. Other domestic sources of funds (e.g. Amazon Region 

Protected Areas Program of Brazil) and different aspects of conservation (e.g. 

biodiversity) or political environment, which vary by country and over time were not 

accounted for in this study. Also, the processes of international aid delivery were not 

considered in this study. For example, Norwegian funds are committed to Indonesia 

under the condition that they meet specific conservation goals. Further analysis is 

needed to estimate the effects of differences in the distribution of funds. 

4.5 Conclusion 

The results of this study showed an overall positive effect of pan-tropical PAs 

on reducing deforestation during the 2000s. The overall positive effect of PAs in 

reducing deforestation throughout the tropics corroborates with previous studies 

(Andam et al. 2008; Gaveau et al. 2009; Joppa & Pfaff 2010; Nagendra 2008; Nelson 

& Chomitz 2011; Oliveira et al. 2007). However, unlike many previous studies, the 

results of this study provide a consistent, long-term estimate throughout the pan-

tropics. The results of the estimated avoided deforestation and effects of international 

aid by countries pinpoint where the conservation activity and resources distribution 

are effectively practiced and helps establish the link to socio-economic factors and 

their significance and underlying implications. The analysis of this study showed that, 

the increase in deforestation rate between the last two decades were positively and 

significantly associated with increases in GDP growth rate, agricultural production 

growth, and urban population growth; PAs that were established in areas with high 

deforestation rates were relatively more effective; the effectiveness of international 

aid can be suppressed by weak governance and lack of forest change monitoring 
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capacity in each country. These patterns and links underscore the challenges that 

policy instruments face and also provide a launch pad for alternative strategies for 

future conservation polices and initiatives. Nevertheless, with robust empirical 

approach and future availability of data on socio-economic drivers, the protection of 

critical ecosystem services in a coupled human-natural system can be better 

understood. 
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Chapter 5 Conclusion 

5.1 Summary 

 

The three individual studies in this dissertation develop the methods to estimate 

pan-tropical/global forest cover change, using Landsat data, analyze the long-term 

trends in pan-tropical deforestation, and combine the remote sensing based estimates 

of pan-tropical forest cover change with econometrics, to evaluate the effectiveness of 

the protected areas, and international aid, as outlined in section 1.5. 

This final chapter summarizes the key findings from the dissertation, related to 

the initial questions (Section 5.2). Section 5.3 demonstrates the theoretical 

implication of this research, and Section 5.4 considers the political implication of 

these conclusions, for improving the monitoring and evaluation of tropical forest 

conservation activities. Finally, Section 5.4 suggest the avenues for future research, 

based on the conclusions from each chapter. 

5.2 Dissertation Summaries and Conclusions Related to Priority Research Areas 

 

The individual chapters in this dissertation address the issues, when assessing 

historical forest cover change in the global or pan-tropical scale, using Landsat data, 

and the issues that arise when evaluating the effectiveness of conservation efforts, to 

reduce pan-tropical deforestation. The main findings from each chapter are 

summarized in this section.   
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Chapter 2 demonstrates the feasibility of extending the global, Landsat-resolution 

forest cover mapping, and the change detection, back to 1990. A method is presented 

to retrieve the historical maps of forest cover, and change from 1990 to 2000, based 

on the archival Landsat images and reference data hind-cast from the more recent 

(i.e., post-2000) periods. The results of this retrospective classification, and change-

detection algorithm, are presented in this chapter, including: (1) a global map of 1990 

forest cover at 30 m resolution, and global extent with a correspondingly scaled layer, 

estimating the classification uncertainty and (2) a global map of forest-cover change 

between 1990 and 2000, also with a corresponding uncertainty layer.  

The error estimates are based on the samples of independently collected reference 

data over the United States, and globally, are reported to assess the quality of the 

forest-cover, as well as the change estimates. Results of accuracy assessments are 

compared to those from the previous change-detection efforts, such as NLCD (Fry et 

al. 2009).  

Chapter 3 analyzes a consistent series of forest cover change datasets, based on the 

satellite observations in 1990, 2000, and 2010 period, with application of the methods 

developed in this research ( Kim et al. 2014; Sexton et al. 2013) to estimate the 

changes in tropical forest area at high (30-m) spatial resolution in 34 tropical 

countries from 1990 to 2010. The data enable a spatio-temporally comprehensive 

alternative to the FAO reports, and other sample-based satellite analyses throughout 

(e.g., Achard et al. 2014; FAO, JRC 2012), with the application of a consistent 

definition of forest.  
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Chapter 4 estimates the effectiveness of Protected Areas in the tropics, during the 

2000s, based on long term, large-scale forest cover change, from the series of forest 

cover change datasets that are based on satellite observations in the 1990, 2000, and 

2010 periods (Kim et al. 2014, 2015). This chapter also estimates the effect of 

international aid on avoided deforestation by the PAs, and analyzes the relationship 

between the socio-economic variables on the increase in deforestation, avoided 

deforestation by PAs, and the effects of international aid, to identify the factors most 

strongly associated with them. 

The main conclusions from the dissertation, regarding the priority research areas 

outlined in Section 1.6, are summarized below: 

 

1. How can historical global forest cover change from 1990 to 2000 be 

estimated using Landsat data? 

 

A world first, the global map of 1990 forest cover, and 1990 to 2000 forest-cover 

change, has been produced from the USGS archive of Landsat images, using training 

data hind-cast from the 2000 and 2005 GLS epochs.  

Overall accuracies are reported for the US of 93% for the forest cover map in 1990, 

and 84% for 1990 to 2000 forest-cover change. The maps are of equal or greater 

accuracy than 1992-2001 retrofit change product of the 2001 NLCD, over the 

conterminous United States (Fry et al. 2009). Globally, the forest-cover change 

accuracy was 88 %. The method gained its strength from the use of stable pixels, with 
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consistent definition of forest over time, and, through the minimization of influence 

from training data uncertainty.  

The maps depict the global distribution of gross gains and losses in the forest cover, 

as well as their net change. Whereas some regions (e.g., the Amazonian arc of 

deforestation, Indonesia) have been the perennial centers of forest loss, others (e.g., 

the southeastern United States and southern Sweden) have retained relatively rapid 

rates of both gains and losses from 1990 to 2000. While some regions (e.g. inland 

Southeast Asian countries) exhibited a rapid change of deforestation rates around 

2000, most of Africa exhibited persistent and relatively slow rates of forest cover 

change, except for some regions (e.g. Democratic Republic of Congo).  

 

2. What are the forest cover change trends in the tropics? Is tropical 

deforestation decelerating since 1990?  

 

A series of forest-cover maps, based on satellite imagery, are applied, with a 

consistent, biophysical definition of forest cover, to estimate the area and change of 

pan-tropical forests in 34 countries, from 1990 to 2010. The results indicate a 62% 

acceleration of net forest loss over the humid tropics, from 4.04 x 106 ha∙yr-1 during 

the 1990s, to 6.54 x 106 ha∙yr-1 in the 2000s—mainly driven by the strong acceleration 

in gross forest loss in tropical Latin America. Second, a 7.2 % deceleration in net 

forest loss was identified, from 6.98 x 106 ha∙yr-1 in the early 2000s, to 6.09 x 106 

ha∙yr-1 in the late 2000s, due to the accelerated forest gains in tropical Asia and 

decelerated forest losses in Brazil.  
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Although slower than on the other continents, the gross forest-cover changes in 

tropical Africa, dominated by the changes in the Democratic Republic of Congo and 

Madagascar, resulted in some net losses, which accelerated steadily from 1990 to 

2010.  

The estimates reveal an acceleration of net deforestation, from the 1990s to the 2000s, 

across the tropics. Gross and net forest-cover losses rose from the 1990s, to a peak in 

the early 2000s, and then decelerated slightly from 2005 to 2010. This acceleration 

contradicts the commonly accepted assertions of deceleration (e.g. Anon, 2014). 

 

3. How effective are the conservation efforts, including designation of 

protected areas and international monetary aid, for biodiversity 

conservation to reduce tropical deforestation?   

 

Long term, large-scale forest cover change from Landsat (30-m), which has been 

recently made available (Kim et al. 2014), are applied to calculate the deforestation 

rate during the 1990s and the 2000s. Avoided deforestation, by protected areas in the 

tropics during the 2000s, is estimated, using the forest cover change data, and an 

econometric method, called difference-in-difference. 

The results demonstrate that the protected areas in the tropics avoided 83,500 ± 

21,200 km2 of deforestation during the 2000s. Brazil’s PAs have the largest amount 

of avoided deforestation at a total of 50,000 km2 among the 34 tropical countries. 

Brazil showed the highest estimates of the effects of international aid on the avoided 

deforestation of 22 m2/USD, which is about 50 times higher, when compared to 
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Indonesia (0.5 m2/USD). The results also show that the protected areas have been 

relatively more efficient in those countries, where the deforestation pressures were 

increasing, and where governance and forest change monitoring capacity can be 

important factors, to enhance the efficacy of international aid. 

5.3 Theoretical Implications of Dissertation Conclusions 

The first contribution of this dissertation is the provision of the world’s first, 

global forest cover map of 1990, and the forest cover change map from 1990 to 2000 

in the Landsat resolution (30 m). Maps of historical forest cover provide crucial 

baselines for satellite monitoring of the changes in Earth’s forests. They are also 

necessary for understanding the social and ecological causes, and impacts of forest 

changes, and for assessing the effectiveness of conservation policies—most notably, 

for the REDD (Olander et al. 2008). Methodological advances are made, by the 

application of hind-cast approach, coupled with the use of globally available surface 

reflectance data, derived from the GLS data (Feng et al. 2013). This method 

demonstrated the feasibility to extend the spectral signatures through time and space, 

for the purpose of large-area mapping (Kim et al. 2014; Pax-Lenney et al. 2001; 

Sexton et al. 2013; Woodcock et al. 2001). Importantly, the application of consistent 

definition of forest and method, over time and space, enabled the pan-tropical/global 

scaled long-term analysis. The successful application of this concept and methods 

provided the opportunities to explore different temporal domains forward, and even 

further backward to 1970s, when the first Landsat satellite was launched.  

The second contributing aspect of this research is that it advances the 

understanding of the trends in pan-tropical forest cover change, based on the data 



 

 

 

109 

 

produced from this dissertation. Chapter 4 presents the world-first, Landsat scale pan-

tropical analysis, of changing deforestation rates between the 1990s and 2000s. The 

results from Chapter 4 demonstrated the overall opposite trends of tropical forest 

cover change, compared to the FAO estimates, showing 62 % of increase in forest 

loss between the decades. Besides the opposing estimates of the changes in forest 

cover change trends, this research is distinguished from the FRA, through1), the 

enforcement of spatially and temporally consistent definition of forest, thus enabling 

a direct comparison between the estimates for different periods possible. 2), 

application of an easily replicable and consistent method on the entire study area, and 

3), publicly available data sources and intermediate forest cover change product, used 

to calculate the forest cover change rate, which provides a basis for further geospatial 

analysis. Those characteristics are the essential basis for the inference of the drivers 

of forest cover change in various geographical and socio-economical contexts, 

especially where the relationship between long-term trends in forest cover change and 

its drivers are hindered by its inaccurate estimates, resulting from semantic and 

methodological inconsistencies. 

The final contribution of this research is that it sets a link between the remote 

sensing-based observations, and the evaluation of conservation policies, by applying 

comprehensive, spatially explicit forest cover change data, to evaluate the efficacy of 

the policies and resource distribution. Methodological advances are made to 

overcome the issues, including selection bias, spillover effects, and the computational 

difficulties in the existing methods. The application of the developed methods 

demonstrates the feasibility of analysis, to identify the socio-economic factors, which 
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significantly affects the efficacy of conservation policies. The results of this study 

provide a comprehensive, pan-tropical scale evaluation of the effectiveness of 

conservation efforts, including protected areas and international aid, which were not 

affordable before this study. 

5.4 Policy-Relevant Implications of the Dissertation Conclusions 

Since 2005, the negotiations under the UNFCCC have emphasized the role of 

REDD+ in climate change mitigation. As the global interest in reducing deforestation 

grows, the increasing numbers of governments, corporate groups, and inter-

governmental organizations have set the time-bounded targets for achieving “zero 

deforestation”. For example, in 2010, the CBD adopted a revised strategic plan for 

biodiversity for 2011-2020, including the Aichi Biodiversity Targets. One of the 

targets is to reduce the rate of loss of all natural habitats, including forest, by 2020. 

Recent FAO-FRA in 2015, reported that the global deforestation rates have 

fallen to below half the rates at the 1990 level (FAO 2015). While the reports 

seemingly demonstrate the effects of the previously mentioned policies and plans, 

there has been a considerable amount of criticism on the FAO-FRA, which remains 

unresolved. These criticisms for the FAO-FRA come from the ambiguity in the 

definition of forest ( DeFries et al. 2002; Grainger 2008; Matthews 2001), the 

inconsistent survey methods were largely dependent on the information gathered from 

country reports, and reporting the net deforestation over gross loss of forest, which 

adds the area of tree plantation as forest gain (Brown & Zarin 2013). 

The results of this study clearly demonstrate how remote sensing-based 

estimates, with a consistent and biophysically defined definition of forest, can 
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demonstrate completely opposite trends of tropical deforestation. These results 

emphasize that, in order to achieve the goal of “zero deforestation”, much more 

efforts should be made, to accurately estimate the current status of tropical forest, and 

that allocation of efforts and resources for conservation should be based on accurate 

observations, to prevent any waste of valuable resources. 

In 2010, there were about 4,000 designated PAs in the humid tropical 

countries, and about 62 billion US dollars of international aid was received by those 

countries, between 2000 and 2010, to promote the conservation of biodiversity. 

However, a comprehensive evaluation of the long-term effects of those efforts has 

been hardly achieved. The utilization of the consistent, spatially explicit long-term 

forest cover change data enabled the evaluation of the efficacy of policies and 

conservation efforts. The results of this study demonstrate the locations where the 

allocated resources are more efficiently used. The findings underscore the challenges 

that the policy instruments face, to efficiently distribute the existing resources, and 

also provide a launch pad for the alternative strategies for future conservation policies 

and initiatives. 

5.5 Future Research Directions 

 

A method to hind-cast the global scale forest cover change, back to 1990, 

using surface reflectance data from Landsat, is developed in this study. The 

successful application of the developed methods helped enable tracking the transition 

of Earth’s forest from 1990, and also provided a possibility to extend the observation 

backward to the 1970s, when the earliest Landsat archive was freely available. The 
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longer periods of observations are desirable, to better understand the changes made 

on the earth’s surface, and their interactions with large scale changes, such as climate 

change.  

For the successful application of the methods to the Landsat Multispectral 

Scanner (MSS) data, there are several challenges which needs to be overcome. First, 

the development and test of atmospheric correction algorithms for the Landsat MSS 

data are essential for the application of hind-cast approach, based on “stable pixels”. 

Recently, the adaptation of the LEDAPS (Masek et al. 2013) for the Landsat MSS 

data has been developed, and is being tested. However, rigorous evaluations of the 

results from the algorithm are required, before its operational applications. Second, 

even the Standard Terrain Correction (L1T) version of MSS show a large variability, 

in terms of geo-locational accuracy. Finally, the absence of the thermal band in MSS 

inhibit the use of cloud and water detection algorithm, that have been used in this 

study (Huang et al. 2010). A reliable method to delineate both cloud and water for 

MSS data should be developed and tested before their application on the hind-cast 

approach. 

Enhancements of the results of this dissertation can be made, with 

supplemental imagery from various sources. Landsat global archive consolidation 

program (Repatriating program) (Loveland & Dwyer 2012) has increased the 

available numbers, and the extent of Landsat image (Figure 5-1, 5-2).  
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Figure 5-1 Numbers of Landsat TM image by WRS-II tile, consolidated from 

international archives by Landsat global archive consolidation program, on June 30, 

2015 (http://landsat.usgs.gov/Landsat_Global_Archive_Consolidation.php). 

 

Figure 5-2 Numbers of Landsat MSS image by WRS-I tile, consolidated from 

international archives by Landsat global archive consolidation program, at June 30, 

2015 (http://landsat.usgs.gov/Landsat_Global_Archive_Consolidation.php). 
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In addition, images such as Satellite Pour l'Observation de la Terre (SPOT) 

provides similar quality to Landsat TM. The USGS SPOT Historical archive provides 

North American coverage between 87 degrees north latitude and 10 degrees north 

latitude, acquired between 1986 and 1998. Each nominal scene covers a 60 by 60-km 

area. The USGS/Earth Resources Observation and Science (EROS) SPOT archive 

includes the following data volume: ~ 514,500 PAN scenes and ~ 281,700 Multi-

spectral scenes. The acquisition years range from June 1986 to December 1998. All 

SPOT historical scenes are provides in L1T format, produced using Landsat GLS 

2000 data as reference. 

 

Figure 5-3 Spatial coverage of SPOT historical data in the USGS archive in blue tiles. 

SPOT historical data are available for download at no cost 

(https://lta.cr.usgs.gov/SPOT_Historical). 

 

The Centre National d'Etudes Spatiales (CNES) recently announced the 

opening of their entire archive, which older than 5 years, to the public, by the end of 

2015 (CNES, 2014). With the additional images, problems with cloud, gaps, and 

errors from the phenological mismatch can be significantly reduced. Other 
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improvements can be made, by using time series of Landsat data, such as Web 

Enabled Data (WELD). The development of WELD data for the 1990s is planned, 

and the data can be used to remove cloud contamination, and to address the forest 

phenology issues 

(http://globalmonitoring.sdstate.edu/projects/weldglobal/gweld.html#prod_avail).  

In this study, only 34 tropical countries were subject to the analysis on forest 

cover change rates, between the 1990s and the 2000s, and avoiding deforestation by 

protected areas. Since the processes are highly automated, the methods developed in 

this research can be applied to a global scale analysis. Critiques have been made of 

the remote sensing based studies of forest cover change, including this study, for not 

being able to distinguish between the loss of natural forest and the harvest of planted 

trees (Tropek et al. 2014). Efforts are being made to overcome such limitations, based 

on better algorithms and additional metrics from various supplementary data ( 

Margono et al. 2014; Tyukavina et al. 2015). Also, the evaluation of effectiveness of 

PAs, and the international aid in the individual protected area level, can be done with 

a high quality socio-economic data, with detailed spatial scale. The lack of data, such 

as policy and their status of enforcement, could not be incorporated into the study, 

while, in many cases, it could be the most influential factor. More studies are required 

to develop such data, and the analysis will be based on the developments. Geotagged 

aid data is being developed, and some are already available (AidData, 2015). This 

enables the possibilities of tracking the effect of individual protected areas, through 

various methods. 

 

http://globalmonitoring.sdstate.edu/projects/weldglobal/gweld.html#prod_avail
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