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1. Introduction. Consider the steady-state Navier-Stokes problem : given data f , �ndthe velocity u and pressure p satisfying(1.1) ��r2u+ 12u(div u) + u � ru + grad p = fdiv u = 0 in 
subject to boundary conditions on @
; 
 � R2 or 
 � R3. Here, the scalar � is the inverseof the Reynolds number, or the ratio of convection to di�usion in the system. In the di�usiondominated case (� ! 1) (1.1) tends to a linear self-adjoint system of equations|the Stokesproblem.There are two ways of calculating solutions to the system (1.1). A popular approach is tocompute \true" steady-state solutions of the time-dependent Navier-Stokes equations. Thereare many ways to do this: one way is to make use of the \characteristics" associated with thehyperbolic part of the Navier-Stokes operator via a Lagrange-Galerkin approach (for example,see [12]). The associated transpose-di�usion splitting leads to absolutely stable temporal dis-cretizations so that large time steps can be taken. At each time step, a symmetric inde�nitematrix system corresponding to a time-discretized Stokes-like system must be solved. Thesesystems can be be solved e�ciently by iterative methods, for example, if a multigrid solveris used to precondition the primary (Laplacian) operator. There are, however, a number ofdisadvantages to the time-dependent approach. Simple time discretization methods based onthe l2{projection onto the discretely divergence-free subspace [9] have an O(h) CFL restrictionon the time step, which impinges on e�ciency. On the other hand, absolutely stable schemeslike the method of backward characteristics are known to be sensitive to implementation issues(e.g., the need to perform quadrature, see [12]). Even with �xed grids, e�ciency is often limitedby the costs associated with interpolation.In this work, we consider the alternative approach of attacking the system (1.1) directly.Applying a �xed point (or Picard) iteration, the system (1.1) reduces to solving a sequenceof linear Oseen problems of the form: given some (divergence-free) velocity �eld w, �nd thevelocity u and pressure p satisfying(1.2) ��r2u+w � ru + grad p = fdiv u = 0 in 
subject to the same boundary conditions.For this methodology to be e�ective it is necessary to solve the discrete versions of (1.2)1



e�ciently. Thus, our general starting point is the matrix problem(1.3) � �A +N BtB O �� up� = � fg � ;where A = At represents di�usion (for example, �r2), and hence is a positive de�nite matrixof order nu, N represents convection (w �r), and the np�nu matrix B represents the couplingbetween the discrete velocity u and the pressure p. Note that the representation of the quadraticconvection term in (1.1) ensures that N = �N t, that is, the discrete form of the convectionoperator is skew-symmetric [9], p. 53. Note that if normal velocities are speci�ed everywhereon the boundary then the system (1.3) is singular, pressure is only unique up to a (hydrostatic)constant. We assume in the following analysis that the pressure solution is uniquely speci�edin this case, e.g., by insisting that its mean is zero.Working in a conventional mixed �nite element framework, we will further assume that theunderlying velocity and pressure approximations are (div-)stable (see e.g., [2], p. 57, [9], pp.10�, [18]), i.e., de�ning a mesh parameter h, a velocity space Vh and a pressure space Ph, thereexist constants 
, �, independent of h, such that(1.4) 
2 � (p; BA�1Btp)(p;Qp) � �2 8p 2 Ph :Here, Q is the pressure mass matrix, or alternatively the Grammian matrix of basis functionsde�ning Ph. The lower bound 
 is the so-called inf{sup constant. The relation (1.4) is cru-cial to the success of iterative solvers for solving discrete Stokes problems for it implies that,using a quasi-uniform mesh, the Schur complement BA�1Bt has condition number boundedindependently of h. It is also known from our previous work [15] that when � ! 1, \opti-mal" preconditioners for the Laplacian sub-blocks give rise to \optimal" preconditioners for theStokes problem in the sense that the spectra of the underlying discrete operators are containedin small clusters, which are bounded independently of h. A consequence of this is that theasymptotic rate of convergence of Krylov subspace methods applied to discrete Stokes problemsis also independent of h.In this paper we derive analogous results in the general Oseen case. We introduce twopreconditioners for the Oseen problem such that, for any value 0 < � < 1, the eigenvaluesof the preconditioned Oseen operator are bounded independently of the mesh size. Theseobservations apply to arbitrary discretizations satisfying (1.4). In addition, we show in a seriesof numerical experiments that these bounds on eigenvalues are predictive of the performance ofKrylov subspace iterative methods for solving the preconditioned Oseen equations. Of course,2



it is well known that when convection dominates (i.e., when � is \small" relative to h andkwk), the standard Galerkin approximation deteriorates. Oscillations in the discrete velocityare apparent if the local mesh Reynolds number Reh = hkwk=� is greater than unity. Insuch situations, the addition of streamwise di�usion to the discrete system is known to giveadded stability, both theoretically and numerically, see [3] and [11]. In our experiments, wedemonstrate the e�ectiveness of the ideas using both a standard Galerkin discretization on aset of quasi-uniform grids, and a streamline-upwind scheme on a set of uniform grids.The remainder of the paper is divided into three sections. Our main theoretical resultsare presented in Section 2, and results of numerical experiments con�rming and augmentingthe theoretical analysis are given in Section 3. In Section 4, we consider more practical precon-ditioning strategies and present a perturbation analysis and additional numerical experimentsdemonstrating their e�ectiveness.2. Preconditioning strategies. In this section, we introduce two preconditioning tech-niques for (1.1) and present an analysis showing that the spectra of the preconditioned systemsare bounded independently of the discretization mesh size h. Throughout the section, we willbe concerned with the eigenvalues of preconditioned matrices; these matrices can be viewed asbeing of the form AM�1 where A is the original matrix and M is the preconditioner. Equiv-alently, we are concerned with the solution of the generalized eigenvalue problem Av = �Mv.All the matrices in question are implicitly parameterized by h. For simplicity, we state ourresults under the assumption that B of (1.3) has full rank.The �rst idea is derived from a method developed in [13, 15, 19] for the discrete Stokesequations, where the coe�cient matrix has the form(2.1) �A BtB O � :Consider the preconditioner �A 00 Q�for (2.1). The eigenvalues of the preconditioned operator are then given by the solution to thegeneralized eigenvalue problem(2.2) �A BtB O �� up� = ��A 00 Q�� up� :One solution is � = 1, of multiplicity nu � np, for which the eigenvectors have the form � u0�where Bu = 0, i.e., u is \discretely divergence free." The remaining eigenvalues come from the3



solution of the quadratic equation � (� � 1) = �, where � is a generalized eigenvalue of theSchur complement associated with (2.1),(2.3) BA�1Btp = �Qp :Equivalently,(2.4) � = 1�p1 + 4�2 :Since (1.4) implies that as h ! 0, the solutions to (2.3) remain bounded above and below, itfollows that the eigenvalues of (2.2) are also bounded. The preconditioned conjugate residualmethod can then be used to solve (2.1), with a convergence rate independent of h [13, 15].A natural generalization for the discrete Oseen equations uses the block preconditioner(2.5) �F 00 1�Q� ;where F = �A+N . As above, the generalized eigenvalues for(2.6) � F BtB O �� up� = ��F 00 1�Q�� up�are either � = 1 or (2.4), where � is now a solution to the generalized eigenvalue problem(2.7) Sp = �� 1� Q�p ;with S = BF�1Bt, the Schur complement for the discrete Oseen operator. The following result,which generalizes the analysis for the Stokes operator in [18], provides a bound.Theorem 1. The eigenvalues of the generalized Schur complement problem (2.7) for the Oseenoperator are contained in a rectangular box in the right half plane whose borders are boundedindependently of h.Proof. Let C = B�F�1+F�t2 �Bt denote the symmetric part of S, and R = B�F�1�F�t2 �Bt itsskew-symmetric part, so that S = C+R. By Bendixson's Theorem ([16], p. 418), any eigenvalue� of the problem (2.7) satis�es(2.8) minp (p; Cp)(p; 1�Qp) � Re(�) � maxp (p; Cp)(p; 1�Qp) ; jIm(�)j � maxp j(p; Rp)j(p; 1�Qp) :To construct bounds on these Rayleigh quotients, it will be convenient to refer to S1 =BA�1Bt, the Schur complement for the Stokes operator. For the symmetric part C in (2.8), weuse the relation(2.9) (p; Cp)(p; 1�Qp) = (p; Cp)(p; 1�S1p) (p; S1p)(p;Qp) :4



In light of (1.4), we need only consider the �rst quotient on the right in (2.9). Note that(2.10) F�1 + F�t2 = F�1�F + F t2 �F�t= (�A +N)�1 (�A) (�A�N)�1= A�1=2 ��I � 1� ~N2��1 A�1=2;where ~N = A�1=2NA�1=2. Consequently,(p; Cp)(p; 1�S1p) = (p; BA�1=2 (�I � 1� ~N2)�1 A�1=2Btp)(p; 1�BA�1Btp) = (v; (I � 1�2 ~N2)�1v)(v; v) ;where v = A�1=2Btp. But ~N is skew-symmetric, so that the eigenvalues of � ~N2 are real andnonnegative. Moreover, since N and A are �rst-order and second-order operators, respectively,the eigenvalues of ~N are uniformly bounded in modulus by a constant � that is independentof h [5]. Therefore, the spectrum of I � 1�2 ~N2 is contained in the interval �1; 1 + �2=�2�, or,equivalently, �2�2 + �2 � (p; Cp)(p; 1�S1p) � 1:Combining this with (1.4) and (2.9) gives
2�2�2 + �2 � (p; Cp)(p; 1�Qp) � �2:For the skew-symmetric part R in (2.8), the analogue of (2.9) is(p; Rp)(p; 1�Qp) = (p; Rp)(p; 1�S1p) (p; S1p)(p;Qp) ;and as in (2.10), we haveF�1 � F�t2 = �A�1=2 (�I + ~N)�1 ~N (�I � ~N)�1 A�1=2:Therefore(2.11) (p; Rp)(p; 1�S1p) = � �(v; ~Nv)(v; (�2I � ~N2)v) ;where v = (�I � ~N)�1A�1=2BT p. The skew-symmetric matrix ~N admits a decomposition ofthe form ~N = iU�UH where � is a real diagonal matrix and U is unitary. Consequently,~N2 = �U�2UH , and the modulus of the Rayleigh quotient on the right side of (2.11) can beexpressed in the form � j(w;�w)j(w; (�2I + �2)w) :5



This is bounded by max������ �j�j�2 + �2 = max0���� ���2 + �2 :It follows from elementary calculus that this maximum is 1=2, obtained when � = �, givingj(p; Rp)j(p; 1�Qp) � �22 :The following result follows immediately from Theorem 1 and (2.4).Corollary 1. The eigenvalues of the discrete Oseen operator preconditioned by (2.5) consist of� = 1 of multiplicity nu�np, together with four sets consisting of points of the form 1+(a� bi)and �a � bi. These sets can be enclosed in two rectangular regions that are symmetric withrespect to Re (�) = 12 , whose borders are bounded independently of h.The inclusion regions for these eigenvalues consist of the image of the box h 
2�2�2+�2 ;�2i����22 ; �22 �under the mapping � 7! �(�) given by (2.4). It can be shown that the rectangular regions ofthis result are contained in�1 + smin2 ; 1 + smax2 � � [�t; t] and �1� smax2 ; 1� smin2 �� [�t; t]in the right and left half sides, respectively, of the complex plane, wheresmin = �1 + 4
2�2�2 + �2�1=2; smax = �12�1 + 4�2 +p1 + 8
2 + 20 �#1=2;t = �2�1 + 4
2�2�2+�2 �1=2 :The fact that the eigenvalues for the preconditioned system derived from (2.5) lie on bothsides of the imaginary axis is a potential disadvantage of this idea. An alternative that avoidsthis problem is the block triangular operator(2.12) � F Bt0 � 1�Q� :For this choice, the preconditioned eigenvalue problem is(2.13) �F BtB O �� up� = ��F Bt0 � 1�Q�� up� :Again, one solution is � = 1, now of multiplicity nu. If � 6= 1, then premultiplying the �rstblock row of (2.13) by BF�1 and using the relation Bu = ��( 1�Q)p leads to the equation (2.7)for the other eigenvalues. Thus, we have the following result.6



Theorem 2. The eigenvalues of the discrete Oseen operator preconditioned by (2.12) consistof � = 1 together with the generalized eigenvalues of S in (2.7). Therefore, the eigenvalues arebounded independently of h.Remark 1. Use of either preconditioning operator (2.5) or (2.12) entails the computation ofthe action of F�1 at each step of an iterative procedure. F is a discrete convection-di�usionoperator and applying F�1 to a vector using direct methods will be expensive. An alternativeis to replace this computation with an approximation obtained by iterative solution of theconvection-di�usion equation. We will examine this approach in Section 4.Remark 2. Both preconditioners also require the action of Q�1, which may also be expensive,depending on the choice of pressure discretization. In this case, however, it is known that Qcan be replaced by some approximation Q̂ without a�ecting asymptotic convergence properties;only the constants 
 and � of (1.4) change [20]. In the experiments discussed in Sections 3 and4, we replace Q with a diagonal matrix consisting of the main diagonal of Q.3. Numerical results I: Exact convection-di�usion solves. In this section, wepresent the results of numerical experiments indicating that the analysis of Section 2 is predictiveof the performance of iterative methods for solving (1.3). Unless otherwise stated, computationswere performed using MATLAB 4.1 on a SUN Sparcstation{10.
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Fig. 1. Magnitude and direction of the convecting 
ow.Our test problem is a \leaky" two-dimensional lid-driven cavity problem in a square domain(�1 � x � 1 : �1 � y � 1). The boundary conditions are ux = uy = 0 on the three �xedwalls (x = �1, y = �1, x = 1), and ux = 1, uy = 0 on the moving wall (y = 1). Thehydrostatic pressure is not explicitly speci�ed, so that all the linear equation systems we solve7



below are singular with a one-dimensional nullspace. The convective \wind" is a circular vortexas illustrated in Fig. 1, and is given bywx = 2y(1� x2)wy = �2x(1� y2):The fact that there is no dominant 
ow direction makes this a challenging test problem. Notethat in the corners and in the center of the 
ow region the driving 
ow is stagnant.
Streamlines : equally spaced Streamlines : selected

Fig. 2. Uniform 64� 64 grid : � = 1.
Streamlines : equally spaced Streamlines : selected

Fig. 3. Non-uniform 64� 64 grid : � = 1=100.Unless otherwise speci�ed, we consider three values of the viscosity parameter �, namely1, 1=10 and 1=100. When � = 1 we have di�usion dominated (essentially Stokes) 
ow, whereasas � ! 0 the 
ow becomes dominated by the \wind." Typical 
ow solutions are illustrated8



in Figs. 2 and 3. Note that as the viscosity is decreased, the center of primary recirculationmoves to the right (the Stokes 
ow solution is perfectly symmetric about the line x = 0), andsecondary vortices are generated in the two bottom corners.To discretize (1.2), we take a �nite element subdivision based on n�n grids of rectangularelements. Bearing in mind the nature of the 
ow solution being computed, results for tworepresentative discretizations are presented here: a conventional Galerkin approach using aquasi-uniform sequence of grids, and a streamline-upwind method using uniform grids of squareelements of size h = 2=n. In either case, the mixed �nite element used was the div-stable \Taylor-Hood" method based on continuous bilinear pressure with a continuous bilinear velocity �eldde�ned on four element macro-elements (see e.g., [9], p. 30).For the Galerkin discretization, the quasi-uniform grids are chosen to resolve the details ofthe 
ow in the four corners of the domain: they are symmetric about x = 0 and y = 0, andin each quadrant the grid lines expand uniformly outwards. The 64 � 64 grid is shown in thepressure solution plot in Fig. 4. The analytic pressure solution is singular at the top cornerswhere the imposed velocity is discontinuous.
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Fig. 4. Pressure solution for � = 1=10.The streamline-upwind discretization is as described in [11], p. 185. In this case, the blockconvection-di�usion operator F is perturbed by a symmetric positive semi-de�nite matrix Aw.That is, F = ���h + Aw + N , where �h is the discrete Laplacian obtained from the usualGalerkin formulation. Aw is the discrete form of a stabilizing term � (w � ru;w � rv) thatadds � � O(h) di�usion along the streamlines. For our experiments with streamline upwinding,we took � = h=4. Note that the perturbation does not a�ect the skew-symmetric part of theconvection-di�usion operator, so that the analysis of Section 2 holds; only the de�nition of the9



\di�usion matrix" A is changed, from to ��h to ��h + 1�Aw .We �rst consider the bounds of Theorem 1. Table 1 shows the extreme real parts and max-imum imaginary parts of the generalized eigenvalues (2.7) of the Schur complement operator,for � = 1=10 and 1=100 with the streamline-upwind discretization, on three meshes. (Eigen-values for the 64 � 64 grid were computed on a SUN 630MP using Matlab 4.1.) The smallchanges in all values are in accordance with the analysis, although it appears that �ner mesheswould be needed to produce constant values. The analysis also shows that the real parts andlargest imaginary parts of the eigenvalues are bounded independently of �; the bound for thesmallest real part is proportional to �2. The data of Table 1 are in agreement with the upperbounds. Figure 5 plots the smallest real parts on a logarithmic scale, for the streamline-upwinddiscretization on a 64� 64 grid and � = 1=20, 1=40, 1=80, and 1=160. The results indicate thatthe lower bound is also tight. � = 1=10 � = 1=100Grid Min Re Max Re Max Im Min Re Max Re Max Im16� 16 7.17E-2 1.11 0.46 1.66E-2 1.07 0.2032� 32 8.75E-2 1.64 0.71 1.33E-2 1.11 0.5064� 64 9.08E-2 2.00 0.87 1.14E-2 1.37 0.74Table 1. Eigenvalues of the Schur complement, for streamline-upwind discretization.
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ative methods for nonsymmetric systems: the restarted generalized minimum residual methodGMRES(s), where s is the restart length [14], and a simple implementation of the quasi-minimum residual method (QMR) [7] based on coupled two-term recurrences without look-ahead. We use s = 10; for this choice, the storage requirements of restarted GMRES and(our version of) QMR are essentially identical. Each step of QMR requires twice as manymatrix-vector products and preconditioning operations as one step of GMRES(10); since thepreconditioning costs dominate, QMR has roughly twice the cost per iteration. In all cases,we use right-oriented preconditioning, and our convergence criterion is a reduction of 10�6 inthe l2{norm of the residual, starting from a zero initial guess. Random initial guesses gavecomparable iteration counts in all cases.We consider the standard Galerkin method on the quasi-uniform grid sequence �rst. Theiteration counts using the block diagonal preconditioner (2.5) are shown in Table 2. For GM-RES(10), the residual norm is computed only every 10 steps. With either iterative solver, thecounts demonstrate that grid-independent convergence rates are obtainable in practice. When� is O(1) the results are very clean. For a �xed grid, the iteration counts grow (linearly) as �tends to zero, as might be anticipated from the analytical bounds of Section 2. When � = 1=100the iteration counts slowly increase as h is decreased, again suggesting that �ner grids are re-quired to see the asymptotic behavior. In light of its smaller cost per step, GMRES(10) is moree�cient than QMR when � is large; however, QMR becomes dramatically more e�cient whenconvection becomes dominant. GMRES(10) QMRGrid 16� 16 32� 32 64� 64 16� 16 32� 32 64� 64� = 1 50 50 40 43 43 41� = 1=10 90 120 120 51 68 78� = 1=100 > 500 > 500 > 500 143 246 375Table 2. Iteration counts for Galerkin discretization with block diagonal preconditioner.The same observations are appropriate in the case of the block triangular preconditioner(2.12), see Table 3. An interesting feature here is that for both Krylov subspace methods, thenumber of iterations is roughly halved when (2.12) is used in place of (2.5). The cost per stepof the block triangular preconditioner is only slightly higher than that of the block diagonalpreconditioner; only an extra multiplication by Bt is needed. Thus, the triangular method(2.12) is more e�ective. 11



GMRES(10) QMRGrid 16� 16 32� 32 64� 64 16� 16 32� 32 64� 64� = 1 20 20 20 22 22 22� = 1=10 30 40 40 28 36 39� = 1=100 320 450 > 500 73 126 189Table 3. Iteration counts for Galerkin discretization with block triangular preconditioner.Using the streamline upwind discretization on a uniform grid sequence gave the iterationcounts in Tables 4 and 5. The results are qualitatively similar to the Galerkin results of Tables2 and 3. In contrast, for a \poor discretization," i.e., standard Galerkin on the uniform gridsequence, the iteration counts tended to signi�cantly increase if the local mesh Reynolds numberwas not kept in check. GMRES(10) QMRGrid 16� 16 32� 32 64� 64 16� 16 32� 32 64� 64� = 1 70 60 50 49 51 47� = 1=10 100 120 120 78 91 80� = 1=100 400 > 500 > 500 154 249 382Table 4. Iteration counts for streamline-upwind discretization with blockdiagonal preconditioner.GMRES(10) QMRGrid 16� 16 32� 32 64� 64 16� 16 32� 32 64� 64� = 1 30 30 30 25 27 25� = 1=10 40 50 50 36 44 42� = 1=100 180 320 470 76 131 190Table 5. Iteration counts for streamline-upwind discretization with blocktriangular preconditioner.Remark 3. In addition to the implementation of QMR with a coupled two-term recurrence(QMR2) discussed above, we tested a version without look-ahead based on a three-term recur-rence (QMR3) [6], and the de�nitive (Fortran) implementation of two-term QMR with look-ahead (QMR�2) from the QMRPAK directory in Netlib. For these preconditioners, the perfor-mances of the three variants were virtually identical. However, with the inexact preconditionersof the next section, we found QMR2 to be much more robust than QMR3.4. Numerical results II: Inexact convection-di�usion solves. The dominant costsof the preconditioners of Sections 2 and 3 come from applying the action of F�1, and for12



QMR, F�t, to some vector v at each step of the iteration. In this section, we show that thisoperation can be replaced by an inexpensive one derived from an approximation to F�1 , withlittle degradation of performance of the Krylov subspace methods. The idea is to replace thepreconditioning operators (2.5) and (2.12) with(4.1) � F̂ 00 1�Q� and � F̂ Bt0 � 1�Q� ;respectively, where F̂ � F . Our choice of F̂ will be implicitly determined by the use of iterativemethods to compute approximate solutions to the systems Fw = v and F tw = v, although themethodology is not restricted to this choice. We will refer to the preconditioners that use theexact action of F�1 as the exact versions, and those based on approximations as in (4.1) asinexact versions.An analysis of the e�ects of the inexact preconditioners is derived from matrix perturbationtheory. Let Q� = 1�Q. The preconditioned matrix for the exact block diagonal preconditioner(2.5) is AD = � F BtB O ��F 00 Q� ��1 = � I BtQ�1�BF�1 0 � ;and that derived from the inexact version isÂD = �F BtB O �� F̂ 00 Q� ��1 = AD + ED ;where, with E = F̂ � F , ED = �� EF̂�1 0BF�1EF̂�1 0� :Similarly, the preconditioned matrices for the exact and inexact block tridiagonal precondition-ers (2.12) satisfy ÂT = AT + ET , whereAT = � I 0BF�1 BF�1BtQ�1� � ; ET = �� EF̂�1 EF̂�1BtQ�1�BF�1EF̂�1 BF�1EF̂�1BtQ�1� � :We have the following bounds on the eigenvalues of the preconditioned systems using inexactpreconditioners.Theorem 3. If AD = VD�DV�1D is diagonalizable, then for any eigenvalue � 2 �(ÂD),min�2�(AD) j�� �j � kEF̂�1k1�1(VD) max(1; kBF�1k1):If AT = VT �TV�1T is diagonalizable, then for any eigenvalue � 2 �(ÂT ),min�2�(AT ) j�� �j � kEF̂�1k1�1(VT ) (1 + kBtQ�1k1)max(1; kBF�1k1):13



Proof. The result is an immediate consequence of the Bauer-Fike Theorem [8], p. 342, whichstates that for diagonalizable A = V�V�1, any � 2 �(A+ E) satis�es min�2�(A) j� � �j ��(V) kEk, where k � k is any lp{norm.Thus, if F̂ is a good enough approximation to F , i.e., if enough inner iterations are used,then kEF̂�1k will be small and the eigenvalues of ÂD and ÂT will be close to those of AD andAT , respectively. We state the result in terms of the l1{norm only because the bounds thenhave a simple form.Remark 4. We have computed the condition numbers �(V) for AT and found them to belarge, on the order of 103 or higher, for the three values of �, with streamline upwinding andh = 1=16. However, the presence of �(V) in these bounds is an artifact of the proof of theBauer-Fike theorem; there are more subtle analyses ([8], pp. 344�), as well as bounds thatdo not require diagonalizable matrices [10]. We have observed that the eigenvalues of AT areinsensitive to perturbations, and we believe that the presence of �(V) is pessimistic. Thissupposition is supported by the experimental results described below.To demonstrate that inexact preconditioning is e�ective, we consider two iterative methodsbased on line-oriented splittings of F . The �rst uses a horizontal line Gauss-Seidel relaxation:Let F = H �R denote a horizontal line Gauss-Seidel splitting of the block convection-di�usionoperator F derived from the 1-line natural left-to-right, bottom-to-top ordering of the velocitygrid. Thus, H is a block lower triangular matrix consisting of the block diagonal of F (atridiagonal matrix) together with the strict block lower triangular part of F . (See [17, 21] forfurther details.) The horizontal line Gauss-Seidel method for Fw = v performs the iterationw0 = 0; wi+1 = wi +H�1(v � Fwi):For k steps of this iteration, the approximating matrix is F̂ = F (I � (H�1R)k)�1.It has been observed that the performance of relaxation methods of this type can beimproved if the sweep direction follows the underlying direction of 
ow [4]. Our benchmarkproblem has a circular 
ow, so that no simple line relaxation can mimic the 
ow directionthroughout 
. A slightly more sophisticated idea is to use an alternating line relaxation. Forthis, let F = V �T denote a vertical line Gauss-Seidel splitting of F ; that is, if P is a permutationmatrix associated with the mapping from the natural horizontal line ordering of grid points tothe natural vertical line ordering, then PTV P is the block lower triangular part of PT FP . Oneiteration of alternating line relaxation consists of two line Gauss-Seidel steps, one using the14



horizontal splitting, followed by one using the vertical splitting:w0 = 0; wi+1=2 = wi +H�1(v � Fwi); wi+1 = wi+1=2 + V �1(v � Fwi+1=2):�=1 �=1=10
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Fig. 6. Performance of block tridiagonal inexact preconditioners, for 32� 32 grid.Figure 6 shows the results of using the inexact block tridiagonal preconditioners with bothGMRES(10) and QMR, to solve the benchmark problem discretized by streamline upwindingon a 32� 32 grid. Results for inexact block diagonal preconditioners were similar, except that,as with the exact preconditioners, convergence was slower. We used four steps of horizontalline relaxation or two steps of alternating line relaxation, so that both inexact preconditioners15



perform four sweeps. The �gure also shows the performance of the exact preconditioner, whosecost per step is signi�cantly more expensive. For example, with an n � n velocity grid, directsolution using a bandsolver requires O(n4) operations, whereas each inner iteration is an O(n2)computation. We see that the use of inexact preconditioners in place of the exact versionsleads to little degradation of performance of the Krylov subspace methods. For example, in theconvection-dominated case � = 1=100, QMR with alternating line relaxation requires roughly25% more iterations than with the exact preconditioner. For the di�usion dominated case � = 1,roughly three times as many outer iterations are required with the inexact preconditioners, stillleading to a less costly computation. Not surprisingly, alternating relaxation is more e�ectivethan horizontal relaxation, especially for convection-dominated problems. We remark that ourgoal here is only to demonstrate \proof-of-concept;" many other techniques for approximatingthe action of F�1 are possible, for both di�usion-dominated and convection-dominated 
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