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Local inversion of the Radon transform in even dimensions
using wavelets

CARLOS BERENSTEIN
DaviD WALNUT

Abstract. We use the theory of the continuous wavelet transform to derive inversion formulas
for the Radon transform on L' N L?(R%). These inversion formulas turn out to be local
in even dimensions in the following sense. In order to recover a function f from its Radon
transform in a ball of radius R > 0 about a point z to within error ¢, we can find a(e) > 0
such that this can be accomplished by knowing the projections of f only on lines passing
through a ball of radius R + a(¢) about . We give explicit a priori estimates on the error in
the L? and L° norms.

0. Introduction.

Given a function f defined on RY, its Radon transform, Rf, is defined by
Ref(s)= | f(s6+y)dy,
4

where # € S¢7! and s € R. Rf(4,s) is the integral of f on the hyperplane in R?% defined
by {z:(z,8) = s}. The backprojection operator is given by

Rfga)= [ olb,(e,0) 8,

where z € R? and ¢ is defined on S¢~! x R, which may be identified with the set of
hyperplanes in R%. Then the identity

SRAIRf = §,
holds where, for & € R, I is the Riesz potential operator defined by

(I*H)NA) = V™ F (7).

If d is odd, then I'~¢ amounts to differentiation and so recovery of f(z) requires only the
projections of f on lines passing through a neighborhood of z. If d is even, this is not the
case, e.g., [N].
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In practice, it is often useful to seek a function e(t) on R so that E(z) = R¥¢(z) ap-
proximates the é—distribution (which is the convolution identity). E is commonly referred
to as a point-spread function. In this case, the filtered backprojection formula,

R*(e Rf)(z) = E * f(z),

holds and is used to recover a good approximation to f. The point-spread function E is
related to e by

e = %Il"’dRE.

If d is even, the application of the Riesz potential operator I' ~¢ can introduce singulari-
ties into E and thereby nullify any good decay that may have been present in E. Therefore,
in even dimensions, one cannot expect the function e to have good decay. Of course, if E
vanishes to high order at the origin, then e would still have good decay, but in this case, £
is not a good approximation to the é-distribution. An attempt to retain locality in even
dimensions has been proposed by Smith et. al., and involves the recovery not of f but
of Af where A denotes the square root of the Laplacian. This technique is referred to as
local tomography (see, e.g., [FKNRS], [K], [SWB]). In the case of local tomography, the
formula

AfxE = f+« AE = R#(¢' x Rf),

where ¢/ = I"¢RE, holds. Since d is even, I~% amounts to differentiation so good decay in
E, and even compact support, is retained by €’. Thus, the recovery of E * Af near a pont
z requires only knowledge of Rf near (z,6) for each § € S9~1 and hence the projections
of f on lines through a ball centered at z.

The purpose of this paper is to investigate the use of wavelets in performing local inver-
sion of the Radon transform in even dimensions. Wavelets give an integral representation
of arbitrary functions on R? in terms of a two—parameter family of basic functions whose
Fourier transforms vanish to high degree at the origin. Combining this representation with
filtered backprojection can give a local approximate representation of a function f from
local information of its Radon transform. In this paper, we look to the continuous wavelet
transform as a substitute for the A operator and demonstrate that one can recover the
high—frequency (fine—scale) parts of f in a local fashion. In fact, the technique allows for
full recovery of f but at the cost of locality, as is to be expected. The tradeoff between
partial but local recovery and non-local full recovery is explored from the wavelet point of
view. Specifically, we ask to what extent a function in R¢, d even, can be recovered in a
ball of radius R > 0 from measurements of its projections on lines passing through a larger
ball of radius R+ «, some a > 0. We give explicit a prori error estimates on the recovered
function in the L? and uniform norms. The application of wavelet and Gabor transforms,
and their discrete analogues to the inversion of the Radon transform has been explored
in [W], and in the wavelet case, this has been investigated in depth by, e.g., [H], [KS].
The use of wavelets in the local inversion problem has been studied in [DO] in which the
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authors show that one needs only global measurements for a few angles, together with full
local measurements, in order to get full local reconstruction.

In Section 1, we present some basic properties of the Radon transform. The proots
of these well-known results can be found in, e.g., [IN]. In Section 2, we present sowe
basic properties of the continuous wavelet transform. Most of these are well-known and
for more details, the reader is referred to, e.g., [D], [FIW]. We do, however, include
some error estimates for the inversion formulas in the L? and L* cases. While these
estimates are elementary, they do not seem to have appeared as such in the literature. In
Section 3, we invert the Radon transform by means of the continuous wavelet transform.
We give a formula for a d-dimensional wavelet, ¥, which corresponds to a given one-
dimensional wavelet, ¥, such that expanding Ry f for each fixed 8, with respect to ¢ gives
the expansion of f with respect to ¥. We investigate decay and smoothness properties of
each wavelet. We give an inversion formula for the Radon transform in the non-local case
and also its local analogue which is obtained for free. Finally, we show how to find the
one—dimensional wavelet corresponding to a given d-dimensional wavelet, and investigate
decay and smoothness properties of each. We conclude with some examples.

In the remainder of this section, we specify the notation used in this paper. L?, 1 <
p < oo denotes the usual Lebesgue spaces on R?, d > 1. Unless otherwise specified, all

integrals are over R, d > 1. The Fourier transform of a function in L*(R%), d > 1 is
defined by

f6) = [ fa)e e as,

If f € L*(RY), then f is defined as a limit in the usual way, and in all other cases, the
Fourier transform is to be interpreted in the sense of distributions. R4 (= R%) is the dual
group of R? and represents the “space of frequencies.” The space A(R?), d > 1is defined
by
ARY) = {f:f e I'(R")}

with norm || fllarey = [ |/(6)|dé. The convolution product of f € L' and g € L? is
defined by f * g(z) = [ f(y)g(z — y) dy and is a well-defined function in L?. The formula
(f % ¢)® = f§ holds. Also, f(z) = f(—z).

A function f defined on R, d > 2 is radial if there exists a function fy defined on [0, o0)
such that f(z) = fo(|z|) for a.e. z € R4, If f € L}(R?) is radial, f e A(RY) is also radial.
If in this case f(€) = Fy(|¢]) and f € A(R?), then

(0.1) fo(r) = 2ar2=0/2 / Fo(s)J(a—2)2(27rs)s™? ds,
0

where, for k > —1/2, Ji is the Bessel function of order k£ defined by

_ (t/z)k ! its —1)/2
o R F DGR / (1 - sHEirds
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(cf. [StW, Chapter IV, Section 3]). The following formulas hold for & > —1/2.

d

(0.3) —Jz(thk(t)) = t* T4 (1),
and
d. . _x —k
(0.4) i Ji(t)) = —t7F Jeqa(2),
and the asymptotic estimate
(0.5) Jp(t) ~ \/%cos(t — (k7 /2) — (7/4)),

holds as |t| — oco. In particular, Ji is bounded for all £ > —1/2.

1. The Radon Transform.

DEFINITION 1.1. Given f € S(R?), we define the Radon transform, Rf of f by
RF(0,9) = Rof(s) = [ £+ u)dy,

where § € S, s € R.
Since for each f € S(R%), and § € S¢71,

[ 1Rotlds < [ st eniayas = [ iftaida,

Ry extends to a continuous operator on L!(R?). Hence, R extends continuously to L*(R?).

DEFINITION 1.2. Given h € L®(R), we define for each § € S¢71, the operator Rf by
RYh(z) = h((z,6)).
For h € L®°(S%™! x R), we define the operator R¥ by
R#h(z) = / (8, (z,6))db.
Sd—-1
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Note that R#*h € L®(RY) if h € L=(S%! x R).
Note that given f € L'(R%) and h € L*(R),

/RRGf(S)h(S)dS:/R/G-L f(s0 +y)dy h(s)ds
| f@h((@.6))de = | fla ) RY h(x) da.

Also, for f € L*(R%), and h € L=(S%! x R), integrating the above over S¢~! gives
/ / Rf(6,s)h(8,s)dsdf = | f(z)R*h(z)dz.
si-1 JRr R4

In this sense, R# and R# are the formal adjoints of Ry and R.
We now collect some basic properties of the Radon transform whose proofs can be found
in any standard text on the subject, e.g., [N].

PROPOSITION 1.3. Let f, g € LY(R?). Then for a.e. § € S¢! and s € R,

Ro(f*g)(s) = Ref * Rog(s),

where the convolution on the left is in R¢ and that on the right is in R.

PROOF: Suppose that f, g € L}(R%).

Ro(fea)s)= [ [ F@a(st+y=o)dody
:/ f(r6 4+ 2" g((s =)0 +y—2z')dydrdz’
R J§L g+

= /R Rof(T)Reg(s —7)dr = Rgf * Rog(s). I

PROPOSITION 1.4. Let f € L}(R?), g € L=(R). Then for each § € 547!,
(1.4.1) (R¥g)=f =R} (g Rof)

where the convolution on the left is in R? and that on the right is in R.
If g € L®(S4"! x R), then

(1.4.2) R*gx f = R¥(g » Rf).
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PROOF: Assume first that f € S(R?). For 8 € S%~! fixed, let y = 76 +y' and & = 6 + ',
Then

/ g(<y,9>)f(m—y)dy=/ /g(T)f((s—T)G—i—(a:'—y'))dey'
R4 ¢+ JR
= [o) [ sts=mp+ e -y i
R 9+
:/Rg(T)Rgf(s—-T)ds:g*Rgf((:z,H)).

This proves (1.4.1). Integrating the above formula over § € S9! gives (1.4.2) for
f € S(RY). Since convolution by ¢ € L™ is a continuous operator on L!, and since Rf
and R# are continuous operators on L®(R) and L®(S¢~! x R), respectively, (1.4.2) holds
for all f € L'(R%). 1

PROPOSITION 1.5. (THE FOURIER SLICE THEOREM) Let f € L'(R%). Thenfor § € S¢1,
7 €R,

(1.5.1) _ (Rof)"(7) = f(+8).
PROPOSITION 1.6. Let f € L' N A(R?). Then
(1.6.1) f= %R#Il“de.

PROOF: See [N].

2. The Continuous Wavelet Transform.

DEFINITION 2.1. A radial function ¥ € L*(R%) is admissible provided that

/0°°|\if(_r)|2dr<oo‘

r

A pair of radial functions ¥, @ € L*(R?) form an admissible wavelet pair provided that
each is admissible and

~
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DEFINITION 2.2. Let ¥ € L?*(R?) be radial and admissible. For a > 0, b € R¢ define

Denote W, by W,. The d-dimensional wavelet transform of f € L*(R%) with basic

wavelet W is defined by

WO, f)(ad) = [ (o] Tarle) do = (D))

Given an admissible wavelet pair, ¥, ® € L%(R%), any f € L*(RY) can be recovered
from its wavelet transform by means of the Calderon reproducing formula. We reproduce

that formula here together with some estimates on convergence.

LEMMA 2.3. Let ¥, & € L' N L?*(RY) be radial and an admissible wavelet pair. Given

feL*(RY),0<e<b< oo, define

(2.3.1) Foo(x) = / /W“” (a,6)@as(2) db ZZH

Then f° € L*(R%) and

L
et
o
-

- [ Wale]) @(am
(Fo)NE) = A€ /

Moreover, if f € L' N A(R?) then &% € L' n A(RY).
PrOOF: Assume f € L1(R%). Then,

£ (z) /f*\II * ®,(z) prg

Since f € LY(RY),

Jirsiar < [ [irebae e

é

< Al [ Il
6 % da

= Il [ %

= log( DI L [Tl 2] < oo.
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Therefore,

(FO)NE) = / FER(aleDlaléa’ 7

€

5 3 -

a

; /'de@WM)

= f(£)

since ¥ and ® are radial and a > 0.
Now,

/5 F(aleD 1 BaleD]

o ([ D ) ([P )
= (/EOOMCZ@>1/2 (/ l‘i’( I da)1/2 < co.

Therefore, if f € L' N A(R%), so is f©%, and a simple limiting argument shows that if
felL? sois fo8. I

LEMMA 2.4. Let ¥, & ¢ L' N L*R?) be radial and an admissible wavelet pair. If
f € L*(RY), then

(2.4.1) lim ||f — f%°|l = 0.
e—0,6—00

If fe L' N A(RY) then

(2.4.2) im  |f = ffleo =

e—0,6—00

PRrOOF: Combining Plancherel’s formula with (2.3.2),

If = £ = 1F = (FoME

_ /W ot /\If(am b(alé]) ) i

Equation (2.4.1) follows from the Dominated Convergence Theorem.
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If fe L' N A(RY) then by (2.3.2),
1f = £ lloo < I = (F9)M
I 8 g a £ a
_ /If(é)l(l—/ W(alg])e( !fi)da) e,

a

Equation (2.4.2) follows from the Dominated Convergence Theorem. B

A useful paradigm for the recovery of a function f € L2(R?) from its wavelet transform
involves taking

¥(6) = d(¢) = (hl2)_1/2X{5:1g|5152}(§)‘
In this case (2.3.2) becomes

.
e = e [T TREEDE o e L @
(fE)ME) f(g)/e a § In2 /[1/[5|,2/|5|]m[e,6] a

From this, it follows that

0, if €] < 1/6
f&)n(sle,  if1/6< el <2/8

(f2)NE) = { f(6), i£2/6 < |¢] < 1/e
F(&)In(2/elé]), if 1/e < [¢] < 2/
0, if 2/ < [£].

This example suggests that as § — oo, the lower frequencies of f are recovered, and as
¢ — 0, the high frequencies are recovered. Similar remarks hold true for more general
admissible wavelet pairs, ¥ and ®.

We are ultimately interested in the local recovery of f from local wavelet transform data
(which will be recovered from local Radon transform data). The complete recovery of low
frequency components of f is not possible from local wavelet transform data, therefore, we
desire more accurate estimates on the convergence of f&° to f as § — oo. The following
Lemma gives a priori estimates on this convergence.

LEMMA 2.5. Let ¥ and @ be radial and an admissible wavelet pair. Let

O | 2 00 | F 2
250 [TBOE g, e [TEOR, g,
0 0

r
Given n > 0, let A > 0 be such that
oo \i, 2 [o*) é 2
/ J-——@Ldr<77, and / Mdr<n.
A r A r
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If f € L*(RY), then

(2.5.2) ||f—f6’5“2 < cole) +nllfll2 + (£, 0)

where

c1(f,6)" = By B, / Fle)? de

lgl<A/s
and co(e) = 0 as e — 0. If f € L' N A(R?) then

(2.5.3) If = F%lloe < cble) +nllfll acrey + (B1B2) ea(f,6)67°

where

lim c(5,8) = A7(0)
and cj(e) — 0 as e — 0. In fact,
(254 alf,8) =5 [ Al
l§1<A/6
ProoF: If f € L*(RY), then by (2.3.2) and Plancherel’s formula,
. S U(al¢))®(a 2
£ =10 = [ifer(n- [ DD 60) g

€

= /,f(f),z(/of \if(aléll@ml&l)dwfi \if(alfl)a‘f’(aiél)dayd,g

_ /mw( /Of'f' V() [T E)E() i)' de

r 51€| r

Therefore,

Ilfff€’6l|2 < (/If(f)F (/Oflfl :if_h“_r‘:ﬁ_(zldr)ng)uz

v ([iser ([ HR0 6 0~k

1€ r

By the Dominated Convergence Theorem, I = o(1) as € — 0, and,

R A () ®(r z2 \1/2
s (fifor(f T ) )
+ (/|f<£>|2(AWMdr)2ds)l/g =I5, + 1L,
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Now,

I1;

[N

< [ifr / kil / RO 40 <o

AR 1R
2 dsdrd
< [iror [ = s :
= I‘II ‘2 |(I, l2 F(EV2 ds drd
a /o r /o S /]EISmin(r,s)/6|f(£)| ¢

A () 4@ ()P B 12
dr —ds d€.
< [BLa [PEOE [ e

From this (2.5.2) follows.
Now, if f € L' N A(RY),

. elél (B (r
I = FPleo < / 6 / Mdrdf

/lf(é)!/ \I’(r drde = 1 + II.

By the Dominated Convergence Theorem, I = o(1) as € — 0, and,

J—
= [ Mdrde
51¢ r

/lf 1/ @(rddf‘:-[[l-’r[fg.

and

[l ]

In

Now,

o< (7 EOL g [TBOL ) 1701 <ol lacne

U(r)®(r) .
I, = / /ﬂw (&)l dr de

T

(/A W: / iq) 1/2 /5|<A/6 £ de.

11
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Since f is continuous,
d

.6 7 _
Jim [ W1 = (o),

and from this, (2.5.2) and (2.5.4) follow. §

3. Inversion of the Radon transform using wavelets.

In this section, we derive some inversion formulas for the Radon transform based on the
wavelet transform. They are based on the fact that the Riesz operator I'~¢ preserves the
essential character of a wavelet. For convenience, we assume our wavelets are radial.

LEMMA 3.1. Let ¥ € L*NL2%(R) be even and real-valued. For d > 2, let n = (d—2)/2 and
suppose that there exists and integer M > d+1 such that 1 has M continuous derivatives,
and for k=0, 1, ..., M,

i
(31.) Lo < cavi
and
. d* .
(3.1.2) b0 =0.
Define ¥(z) on R by
(3.1.3) ¥(2) :47rlxl_n/0 Sy Tn(2my 2] d,

where J, is the Bessel function of order n. Then ¥ € L' N A(R?) is a real-valued, radial,
admissible function satisfying

(3.1.4) R*y) =¥,
(3.1.5) |W(z)] < C(1+z))™™, and,
(3.1.6) W(6)] < Cca+gh

12



PROOF: By (3.1.1), ¥(v) is integrable and, by (0.2), (Jz|y) " Jn(27y]z|) is a bounded
function. The mtegral (3.1.3) is therefore absolutely convergent and defines a bounded,
real-valued, radial function.

We first prove (3.1.5). Define

foly) = blyy™,
and for j € N, define

d d
fajri(y) = 7"“3;(7‘"“%]-(7)); faj() = 7‘”a(7”fzj_1(7))-

Then for k=0, 1, ..., M,
k

(3.1.7) e

m=0
for some constants cm ;. To see this, note that (3.1.7) holds for k = 0 and k = 1. Now
suppose it holds for £ < 25, some j > 0. Then

2j—-1

f2i(v) = 7“”i( > emaje1o— T Byymmihi- ")
/ d~y = Cm.2j= dy™
2j—1 g
=" Z (m —25 4+ 1)em25-1 W¢,(7)7m—23
m=0
2j-1
-n dam+t . m—2j+1
+ 7 mzzocm,2j—lm¢(7)7 ’
2j
dm m—2j—n
= z Cm, 2]d m (7)7 2,
m=0
Also,
d 2 m
. _ A+l 2 —n-—1 el m—2j—n>
frivi(y) = 7 & (7 T;)Cm,ZJ e Y(y)y
2) dm™
— Ant+1 - T m—2j—2n-2
= mzocm,z]( —2j—2n 1)—--d7 (V)

n+1 dmt! m—25—2n—1
Z m2]d m+1 (7)7

2541 gm
= D emair g by
m=0 v
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Now, if 27 +1 < M, then

, o (~1)j+147r _a [ 5
(3.1.8) (z) = WM i Foit1(V) T nt1(27]2]) dv,
and if 2j < M,
( 1) 47r —n A
(3.1.9) U(r)= 9W1$| 2 || f2] 2(27]z]) dry.

Note that (3.1.3) is just (3.1.9) with 7 = 0. To see that (3.1.8) holds if j = 0, integrate
(3.1.3) by parts. By (0.3),

T(z) = drlz|™" / o () 2y e ) dy
1]

_ 4r|z|™"
(2mjz])

(7"“fo(v)v'”’lJnH(?MIml)lgo
— [T R s 2ralel) d
5 v nt1(277]z]) dy |

Note that for each fixed z, v "7 J,41(27y|z|) is bounded for v in a neighborhood of zero
and infinity, by (0.2). Also, v**! f3(v) = y¢¥(7) so that

lim 4" fo(v) =0
~¥—0

and by (3.1.1),
lim " fo(y) = 0.

Hence, the boundary terms in the integration by parts formula vanish and

(z) = (zjjl)l - %(7”"‘%(7))7"“Jn+1('27wlwl)dv
- Gl ™ [ A anrrlah s

Therefore, (3.1.8) holds when j = 0. Assume that (3.1.8) holds for 25 — 1 for some j > 0
with 25 < M. Now, integrating by parts and applying (0.4) gives
¥(z) = WM A Y o1 (V) (=7 " T 1 (27y[2])) dy
4r _ —n o0
= e T (7 o (V)7 a(2m e )

el
o g _n
- [ O T a2 al ).
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Note that for each fixed z, v~ " J,(27y|z]|) is bounded for v in a neighborhood of zero and
infinity, by (0.2). Also, by (3.1.7)

2j—1

n dm - Y
v fQj—1(7) = Z Cm,2j—1m@[)(7)7 2j+1
m=0

Since 25 < M and by (3.1.2), and L'Hopital's rule,
d2j—1

. amn .
m—25+1 = . _
1,1_{,% v d,-Ym ¢( ) %1__)0 d’}’QJ 1 (7) 07

and by (3.1.1),

lim ym-2tt 4 ¥(y) =0.
Y00 dy™

Hence, the boundary terms in the integration by parts formula vanish and
_ —47 o [T d o
(o) = Wl S O S AT
- °7r|x )27 I_n/ F25(7) T (27v]2]) dv,

which is (3.1.9). A similar argument proves (3.1.8) for 25 + 1 < M.
Finally, there is a constant C > 0 independent of || > 1 such that

(3.1.10) 1| "/ Fai()Tn(2mv]z)) dy < C,

and

(3.1.11) o™ [ ) uns(zmle dy < C
0

To prove (3.1.10), note that

/fQ, 2(2mlal) dy
- / 7 Fai (1) (1la )" Tn(277]2]) dy

Now,
25

am - :
a1 = ) emai (7™,

m=0
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and for each m, %f—,;‘g/;('y) 1s integrable and 3‘17—":—,,—1[;(7)7'”‘21 1s bounded in a neighborhood
of the origin. Therefore, y" f5;() is integrable. Also, since, by (0.2)

(vlz )T Tn(27y|2]) dy

is bounded independently of |z| > 1, (3.1.10) follows.
To prove (3.1.11), note that

MR / Faia1 (1) Tnir (27712 dy
0
1/la| |
= ol / Fajer (V) Tnsr (2mvl2]) dy

%
L T
= I+ 1II
Now, if v < 1/|z| then v|z| £ 1 and there is a constant c; independent of |z| such that
Tnp1(2mylz]) < e(ylz))™

Thus,
/el o
I<ele™ ] 2 frian (V) (112]) ™ dy
0
1/]z]
< o / o o (1) (2 ]) dy
0

1
< 01/ Y* faje1(y)dy < C,
0

since 4" foj41(y) 1s bounded near v = 0. Now, if v > 1/|z| then v|z| > 1 and there is a
constant ¢, independent of |z| such that

Jn+1(271")/|£1:|) S Co.

Also, if ¥ > 1/|z| then (y|z]|)™ < 1. Thus,

IT < calef™ / o o (P) dy
1

||

< Cz/ Y faj41(7) dvy
1/1z|

< 02/ " faj+1(y)dy < C.
0
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This gives (3.1.11). Combining (3.1.9) with (3.1.10) or (3.1.8) with (3.1.11) depending on
whether M is even or odd, (3.1.5) follows. Since M > d + 1 this says in particular that
¥ ¢ LY(RY).

Writing (3.1.3) as

U(z) = drfe|?D/2 /O S )7 T a2y 2 (27| )y P

and observing that since the radial function on RY defined by F(£) = (|€))e]' " is
integrable, then by (0.1),

(3.1.12) (&) = 2(J€)]E),

for £ € R%. Since ¥ is radial, R¥ is independent of § € S%~1. By (1.5.1), and the fact
that 1 is even,

(R)N(7) = ¥(ly]) = 2d (1)~

Hence,

(311 5) = 51T RY) (),

or,

1
Y = 5I1‘dR\I!.

By (1.6.1), R#(z) = ¥(z) and (3.1.4) is established.
Equation (3.1.6) follows from (3.1.1) with k = 0 and (3.1.12). Finally, ¥ € L' n 4(R%)
by (3.1.5) and (3.1.6) and

/°° Al :4/"" (), co,
0 0

r r2d—1

so ¥ is admissible. J

In order to invert the Radon transform, we need the following simple lemma.

LEMMA 3.2. Given g € L'(R%), a > 0, 8 € S¢71,
R(g.)(6,5) = a'*~D/2(Rg)a (6, 5)
where go(z) = a=%%g(z/a), z € R%
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Proor:

a="? /QL gla™ (6 +y))dy = a™/* /9L g(a™s0 +aty)) dy

:ad/za_'l/ gla ™ s6+y))dy
9L

=al" V2D, Ryg(s). B

LEMMA 3.3. Let ¥» € L' N L?*(R) be an even, real-valued, admissible function satisfying
(3.1.1) and (3.1.2). Let ¥(z) be defined by (3.1.3). Then for any f € L' N L*(R?),

(3.3.1) W (W, f)(a,b) = a?~D/2 / W (s, Rof)(a, (b,6)) db.
gd-1

PrOOF: Extend %(t) to S4~! x R by ¥(6,t) = #(t) for all § € S~!. Then by (3.1.4),
R#*(z) = ¥(z). Note that by (3.1.13),

(B)'() = @/ar) = Sa Pyl (REY @)

— _;_al/zad—l ]'Yld_la—d/2(R\I’a)A(7)

1
_ i (d-1)/2).d-1 A
= 5a V"7 (REL)M ().

La

Thus, 1, = 2a4"D/2['"?R¥, and so
dUDI2RE Y g,
Since ¢ € L°(S%! x R) and ¥ € L*(R%), by (1.4.2),
W (W, F)a,b) = f*Wu(b) = a*=D/2(f« R¥4),)(b)
= aYD2R*(Rf * ,)(b) = a(l—‘”/?/ (Rof % 1ba)((b,8))d6

Sd~-1

= 792 | WO, Ref)(a, (5,6))d6.

This gives immediately the following.

COROLLARY 3.4. Let ¢ € L' N L*(R) be even, real-valued, admissible, and satisfy (3.1.1)
and (3.1.2). Let ¥ be given by (3.1.3), and let ® € L' N L?(R?) be real-valued, radial and

18



admissible such that ¥, @ is an admissible wavelet pair. If f € L'NL*(RY), 0 < e < & <
then

S / G072 [ WO, Raf e, (0,6)Bus(e) db 5 a8

Proor: By (3.3.1) and (2.3.1),

6
ff"s(:c):/ a<1-d>/2/ Sd_lW(l)(¢,R9f)(a,(b,&))@ab(r)db%d@

where the integral converges absolutely.
To see the absolute convergence of the integral, note that,

/ WO, Ry f)(a, (b,6))|®a(z — b)| db
- / / (Rof * ba(B)|®a((s — B)6 + (a' — b)) dB ¥,
L JR

where b = 0 + b, and z = s6 + ',

< [ IRofl [l [ 1@alr8+ = 0D drdt < 70l Bl
g+ R

Thus,

5 d
/e Q=072 /5 / WO (W, Rof)a, (b,0)l|®as()| db —r df

< 119 ol / /

= [|flll[¥llcoll®ll1S*7] d)/d<oo

Hence we may interchange the order of integration at will and (3.4.1) follows. |

From this inversion formula, we get for free a “local” inversion formula which says in
effect that to recover f to a given accuracy in a ball of radius R > 0 about a point 2, € R%,
it is sufficient to know only those projections of f on lines passing through a ball of radius
R + a about z( for some a > 0. The greater the accuracy desired, the greater o must be.

THEOREM 3.5. Let v € L' N L?(R) be even, real-valued, admissible, and satisfy (3.1.1)
and (3.1.2). Let ¥ be defined by (3.1.3) and let ® € L' N L?(R%) be real-valued, radial,
supp ® € B(0,1), and such that ¥, ® is an admissible wavelet pair. For o > 0, § € 5S¢,
and f € L' N L?, define

WM, Rof)a,s) = WO (%, Rof)(a, )X (= a,a1(s)
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and for R > 0,0 < € < § < o0, define

/
{(L~(fﬁ‘

GJ+1

6
(3.5.1) f;(s(x):/gd_l/ all—4/2 /leRM W’I({Qé(zp,Ref)(a,<b,9>)‘1>“1,(£)db

Then f;z"s(r) = fo%(z) for |z| < R.
PRrROOF: Asin Corollary 3.4, we may interchange the order of integration in (3.5.1) at will.
Also, for any f € L' N L*(RY), by (3.3.1),

WD(E, f)(a,b) = a1 =D/2 W (4, Ro f)(a, (b,6)) db.
gd-1

Now, for § € S4~! and |b| < R+ 6, |(h,8)| < R+ 6. Therefore, for |b| < R + ¢,
I/V(l)(lﬁv RBf)(av <b7 9)) = W}gil-f)-é(wa RBf)(av <b’ 9))

Now, if |z| < R and a € [¢,6] then supp ®, C B(0,6) and if |z| < R and |z — b| < ¢,
then |b) < R+ §. Thus, for |z| < R fixed,

[ WO e s d
IB|<R+6
_ / WD (W, F)(a,b)®.(z — b)db
bl<R+s
- / WD, £)(a,b)®,(z — b)db
e bl
_ /W(d)(\lf,f)(a, b)®.(z — b) db.

Therefore, for |z| < R,

§
fooz) = / /W(d)(\ll,f)(a,b)@ab(:c)db%

8
da
= W DT, £)(a,b)®p(z) db——
/E /|b|$R+6 ( f)( ) b( ) qd+1

)
~ d
= / / a1=4)/2 / W (, Rof)a, (b,6)) d6® uy() db—
e Jibl<R+s se-1 ¢

da

)
_ a(l—d)/z/ WO (4, R F)a, (b,0))®p(x) db—2 df
/54-1/6 [b]< R+ s, RoD )l (0,0)) %ol ) b
€,6

= fg (). 1
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REMARK 3.6. a. Note that under the assumption that suppy C [—1,1], computing

V}(;H(zb Ry f)(a,s) for 0 < a < § requires for each § € S?~1 the projections of f along
lines through a ball of radius R + 26 about the origin.

b. Applying Lemma 2.5 to Theorem 3.5, the following estimates hold.
Given n > 0, there exists 4 > 0 such that for all R > 0 and f € L' n L*(R4),
(3.6.1)

(/B(O’R) 1f(z) — £ ()] dx)1/2 = co(e) +nl|fllz + (B By)!/? (/

l§]<A/6

A 1/
HEGTE

where co(€) is given by (2.5.2), and By, B; are given by (2.5.1). Also, for all f € L'NA(RY),

(3.6.2) ‘S&ple(x)- R @) = co(e) +nllflame) + (BiB2) 2ea(f,6)67

where cq(€) is given by (2.5.2) and
Jim (5, 8) = A% 0)].
We now derive a formula for computing the one-dimensional wavelet 1 given a radial,

real-valued, admissible function ¥ on R?. The formula is dual to (3.1.3).

LEMMA 3.7. Let ¥ € L' N L%(R%), d > 2, be radial, real-valued, admissible, and suppose

that there exists and integer M > d such that ¥ has continuous derivatives up to order
M,

o d* -
(3.7.1) ZEY()| < C+rhTh,
for k=0,1, ..., M, and
d* .
¥ and ‘) — —
(3.7.2) drk\Il(O) 0,
fork=0,1, ..., M —d.
Define ¢(t) on R by
(3.7.3) ¢’(t)=/ \if('y)'yd_l cos(2m~t) dy.
0

Then ¥ € L' N A(R) is a real-valued, even, admissible function satisfying
(3.7.4) R#*yp =W,
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(3.7.5) ()] < C(L+ )™, and,

(3.7.6) (7)) < C(1+ 472

PrOOF: By (3.7.1), 7‘1“1\1!(7) is a well-defined integrable function on R, so t(t) is well -
defined. Now, by (3.7.3),

dy =g [ e,

so that ) 1 ) 1
Ply) = ST () = SITHRE) (7).

Thus, ¥ = (1/2) I*"?R¥ so that R#+ = ¥. This establishes (3.7.4).
By (3.7.1) with £ =0,

()l = WITHEE € CA+RD)™ A+ DT = A+ D7

which is (3.7.6).
To see (3.7.5), observe that,

dk X min(k,d—1) ‘dk__j .
(TR = Y eyt T T oY),
so that, by (3.7.2),
i, < (0 (7)) = 0
m =
lim (TGN =0,
for k=0, 1, ..., M, and by (3.7.1),
d—1—j d* 7 . —2_;
ol dvk-j‘l’(v) < CA+hD™,

for j < min(k,d —1)and k=0, 1, ..., M, so that,

k—j
: d—14 —
Jm =0 ¥(y)) =0,
and, moreover, dk/d*yk(”yd‘l‘il(fy)) is integrable over R for k =0, 1, ..., M. Therefore,

integrating (3.7.3) by parts M times with |t| > 1,

-2 % gM - sin(27vyt), M odd
t — d—lly ? dﬂ .
v(t) (2nt)M /0 dyM (v (7»{ cos(2mvyt), M even } /
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Thus,
[p(t)] < O+ )Y,

which establishes (3.7.5). Combining (3.7.5), (3.7.6), and the fact that d > 2 implies that
Y € L' N A(R).
Finally, to see that v is admissible, note that

Sl 2 0 Oo
/ [¢(r)] dr = l‘/ l\i,(r>|2r2d‘3 dr S C/ (1 -+ T‘)_s dr < co. l
0 r 4 0 0

We conclude this section with two examples.

EXAMPLE 3.8. An important kernel in image processing is given by
T(z) = AN,

where z € R?, A denotes the Laplacian and N > 1 is an integer. Kernels of this type are
used in image compression [BA| and edge detection [C] algorithms.
Clearly, ¥ is radial and in fact,

B(€) = (2mi2V [N eI = (—an?)N g eI

Thus,

~

U(r) = (—4x2)Np2Ne=mr",

Clearly ¥ € C’°°(Ifl) and for any integer M > 2, we can find a constant Cps such that for
k=01, ..., M,

dr .
——¥(r)] < Cun(1+ lr)73.
dr
Letting M = 2N + 1, d*/dr*®(0) = 0 for k =0, 1, ..., M —2. Defining 1(t) by (3.7.3),

¢ € L' N L?(R) is even, admissible, real-valued and satisfies

(a) R*y(z) = AN(emml=l),
(b) Wj(t)l < C(1+[t))72N-1 and,
(c) [N < CL+ )72

EXAMPLE 3.9. Given an integer m > 0, consider the one-dimensional m!"* order B-

wavelet, ¥, (t), defined by
d’m(t) = Z qn+2m—1Nm<2t et n),
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where

-1 X
g0 = (2m}1 3 <7>N2m(n +1-1),

=0
and N, is the order m box spline defined by

Nn(t) = X[0,1) * X[0,1) * * = X[0,1) (%),

where the convolution product is taken m times. This wavelet is a time-shifted version of
the one described in [Chl, Sec. 6.2].

The wavelet t,,, and related constructions of spline wavelets, e.g., [Ch2] have been
extensively studied in connection with symmetric non—orthogonal multiresolution analyses
of L*(R). The wavelet, 1, is piecewise polynomial, even for m even, odd for m odd, and
supported in [—m + 1/2,m — 1/2].

Defining
1 —2min
Qm(V) = ‘2' zn:qrze kS
then
1 — e—2m’7 m2m—2 ) "
Qn() = (A5 )Y Ml + -1t
k=0
and

Ym(y) = ETEMTIQL (v/2) N (v/2)

2sin(m~/2 m m—1 ” -
*_7(;,.;7—/*)> Z NQm(k+m)(_1)k+]e 27"lk‘7/2.

k=~m-+1

= i"sin™(ry/2)(

Since sin™(7~) has a zero of order m at v = 0. we conclude that
'7 Y ’

dk

W’(/)m(()) = Oa
for k=0, 1, ..., m —1. Since v, is compactly supported, ¥, is infinitely differentiable
and for each integer k > 0, there is a constant C > 0 such that
dk .
—_ < —-m
o Ym(Y)| < C(1+1|v])

Taking then m even and m > 4, 1, satisfies all of the hypotheses of Lemma 3.1 with d = 2
and M = m — 1. Therefore, defining ¥ by (3.1.3), ¥ € L' N L*(R?) is radial, admissible,
real-valued and satisfies

(a) R¥yp(z) = ¥(z),

(b) 1¥(2)| < C(1+ o)™, and

() [T < CL+EH2.
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