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Differences in predator and prey tolerances to low dissolved oxygen (DO) 

concentrations are important to planktonic food webs in seasonally hypoxic environments 

like Chesapeake Bay.  Hypoxia alters field distributions, encounter rates, and predator-

prey interactions between hypoxia-tolerant ctenophores, Mnemiopsis leidyi, and less 

tolerant ichthyoplankton and zooplankton prey.  To examine the effect of hypoxia on 

estuarine food web species’ interactions, I conducted medium and small-scale 

experiments, field sampling, and collaborated on individual-based model development, 

focusing on ctenophore-larval fish dynamics.  Laboratory estimates of clearance rates for 

ctenophores on bay anchovy (Anchoa mitchilli) eggs and yolk sac larvae, and naked goby 

(Gobiosoma bosc) feeding larvae were the same at low and high DO.  Field sampling for 

M. leidyi, ichthyoplankton, mesozooplankton, and scyphomedusae (Chrysaora 

quinquecirrha) during day and night at two sites in the Patuxent River indicated 

increased abundance of most species in the bottom layer with increasing bottom DO.  

Vertical overlap between predator and prey pairs also increased with higher bottom DO, 

increasing potential encounters and predation.  Larval fish swimming speeds did not 

   



differ significantly with DO, but ctenophores swam significantly faster at intermediate 

DO (2.5 mg L-1) than at either low or high DO.  DO did not significantly affect ingestion.  

Greater ingestion of fish larvae by ctenophores followed multiple encounters (56%) than 

initial encounters (10%) at all DO concentrations, highlighting the potential importance 

of repeated predator-prey interactions.  DO did not significantly affect encounter model 

estimates of ingestion rates.  Ingestions averaged 0.4 fish larvae d-1 m-3 for first 

encounters and 2 fish larvae d-1 m-3 for multiple encounters.  Results from laboratory and 

field studies parameterized a spatially-explicit individual based model of a ctenophore-

ichthyoplankton-copepod intraguild predation food web.  Ctenophore predation had a 

bigger effect on survival of modeled ichthyoplankton than did competition between 

ctenophores and fish larvae for shared zooplankton prey, but competition more strongly 

affected larval fish growth rates.  DO did not alter the relative importance of ctenophore 

predation and competition, but low DO did decrease larval fish survival and increase 

growth rates.  Results suggest that effects of DO on vertical distribution and species 

overlap are more important to predation than direct DO effects.  
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Chapter 1: Introduction 
Differences in predator and prey tolerances to low dissolved oxygen (DO) 

concentrations are important to planktonic food webs in seasonally hypoxic environments 

like Chesapeake Bay.  Hypoxia alters spatial distributions, encounter rates, and predator-

prey interactions between hypoxia-tolerant ctenophores, Mnemiopsis leidyi, and their less 

tolerant ichthyoplankton and zooplankton prey.  To examine the effect of hypoxia on 

interactions within an estuarine food web, I conducted laboratory experiments, field 

sampling, and collaborated with one of my committee members to develop an individual-

based model with a focus on ctenophore-larval fish dynamics.  Below I provide brief 

background information on low DO and the specific trophic interactions I studied, and 

then outline the three research chapters of my dissertation.  The goal of my dissertation 

was to understand the effect of low DO on trophic interactions between ctenophores and 

their ichthyoplankton prey.    

Hypoxia, often defined as oxygen concentrations less than 2 mg L-1 (Turner and 

Rabalais 1994), occurs in many estuaries and coastal regions worldwide (Diaz and 

Rosenberg 1995, Diaz et al. 2004).  Increased anthropogenic nutrient loading has led to 

frequent and widespread occurrences of low DO in a variety of environments, including 

the Chesapeake Bay ecosystem.  Because Chesapeake Bay is strongly stratified during 

late spring and summer, the effects of eutrophication are manifested in seasonal bottom 

water hypoxia and anoxia.  Low DO can have both lethal and sublethal effects on 

organisms (Kramer 1987, Poucher and Coiro 1997, Wannamaker and Rice 2000, 

Breitburg 2002), including shifts in vertical habitat use (Keister et al. 2000) and trophic 
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interactions (Rahel and Kolar 1990, Kolar and Rahel 1993, Rahel and Nutzman 1994, 

Breitburg et al. 1999).   

Key species in the Chesapeake Bay food web affected by changes in DO include 

the lobate ctenophore predator, M. leidyi, as well as dominant summertime mesohaline 

ichthyoplankton and zooplankton species: naked goby (Gobiosoma bosc) larvae and bay 

anchovy (Anchoa mitchilli) eggs and larvae, and the calanoid copepod Acartia tonsa.  

Because of its abundance, high feeding rates, and temporal coincidence with fish 

spawning and peak copepod abundance, M. leidyi can consume large portions of 

zooplankton and ichthyoplankton in the Chesapeake Bay system (10 – 65 % d-1) 

(Monteleone and Duguay 1988, Cowan and Houde 1993, Purcell et al. 1994a & b, Purcell 

and Decker 2005).  Since current ctenophore densities are higher than in the past (Purcell 

and Decker 2005, Breitburg and Fulford 2006) the potential for predation on and 

competition with ichthyoplankton is even greater. 

Ctenophores and their larval fish and copepod prey differ in their tolerances and 

responses to low DO (Breitburg et al. 1997, 1999; Purcell et al. 2001b, Breitburg 2002). 

Both laboratory experiments and field distributions indicate that ctenophores are more 

tolerant of low DO than their larval fish and copepod prey.  Vertical distributions of 

ctenophores, ichthyoplankton, and zooplankton shift with declining DO concentrations 

(Keister et al. 2000) as available habitat volume decreases with decreasing bottom layer 

DO, but DO concentrations avoided and the use of surface versus pycnocline layers vary.  

Encounter rates between predator and prey with different tolerances to DO may, 

therefore, change as bottom DO declines.   

2 



The effect of low DO on ctenophore predation of ichthyoplankton was the focus 

of my first research chapter, Chapter 2.  My goal was to determine if DO affected 

predator - prey interactions between co-occurring ctenophores and ichthyoplankton, 

vertical habitat overlap, and resulting encounters.  I conducted laboratory experiments 

and field sampling to determine whether low DO influences predation by M. leidyi on 

ichthyoplankton by affecting either predation rates or vertical overlap between 

ctenophores and their prey.   

Effects of hypoxia on individual behaviors of both predator and prey also include 

changes in swimming and escape ability (Breitburg 1994, Breitburg at al. 1997, Weltzien 

et al. 1999).  Low DO can modify behavior in planktonic food webs (Robb and 

Abrahams 2002), and the effect of low DO on behavior can change predator-prey 

interactions, so it is likely that low DO will alter predation rates.  Although the effects of 

predation are also realized at the scale of the population, interactions occur at the 

individual level and therefore both predator and prey behavior have an important 

influence on the outcome (Letcher and Rice 1997, Fuiman and Cowan 2003, Hampton 

2004).   

For Chapter 3, I hypothesized that low DO would decrease encounters between 

predator and prey but increase ctenophore predation on larval fish, based on the 

expectation that larval fish swimming ability would be adversely affected by low DO but 

that ctenophore swimming speeds would not be affected due to their higher tolerance of 

low DO.  Also, the influence of low DO on fish larvae is inversely related to age 

(Breitburg 1994), so I hypothesized that younger larvae would fare worse than older 

larvae, experiencing a greater decrease in swimming speeds (Bailey 1984) and increase in 
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ingestion by ctenophores at low DO.  I observed videotaped interactions between a single 

ctenophore and fish larva to determine the sequence of events leading to ingestion 

following both the first and multiple encounters.  Three-dimensional swimming speeds of 

ctenophores and larval fish were measured using motion analysis of videotapes from 

orthogonal cameras.  Finally, in order to examine the potential for hypoxia to influence 

predation on a population scale I fit an encounter model incorporating my measured 

encounters, ingestions, and swimming speeds and compared it to published clearance rate 

estimates of ctenophores on fish larvae (Cowan and Houde 1993, Purcell et al. 2001b).   

M. leidyi is an omnivore that feeds on zooplankton as well as early life stages of 

the bay anchovy.  Intraguild predation (IGP) is a specialized case of omnivory involving 

the consumption of one competitor by another, simultaneously conferring nutritional gain 

to the IG predator and elimination of a competitive rival, the IG prey (Polis et al. 1989).  

It is recognized that both omnivory (Martinez 1993, Wissinger and McCrady 1993, Holt 

and Polis 1997, Mylius et al. 2001, Rosenheim 2001) and intraguild predation are 

widespread (Ehler 1996) and particularly ubiquitous in aquatic systems (Polis et al. 1989, 

Polis 1991, Diehl 1993, Winemiller 1996).   

I was interested in determining which effect of ctenophores on larval fish 

populations in the Chesapeake Bay IGP food web was more important — predation or 

competition — and how low versus high DO conditions in the water column affect the 

relative importance of these biotic interactions.  While the effect of ctenophore predation 

on ichthyoplankton is documented both in the literature (Cowan and Houde 1993, Purcell 

et al. 2001a & b, Breitburg et al. 2003) and in Chapter 2 of my dissertation, measuring 

the effect of competition is more challenging.  Additionally, separating the indirect 
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effects of competition from the direct effects of predation on an organism may be 

difficult (Wissinger and McCrady 1993, Diehl 1995, Navarette et al. 2000).  

Understanding this particular Chesapeake Bay IGP food web may also provide insight 

into other systems with similar trophic complexity.   

In Chapter 4, I isolated the effects of predation and competition, as well as the 

environmental influences of low DO, on larval fish survival and growth by using a 

spatially-explicit individual-based simulation model of the IGP food web.  My committee 

member, Kenneth Rose, wrote the model code, while my role was model 

parameterization, validation and data interpretation.  Simulations were performed that 

allowed for effects of competition and predation on larval fish by ctenophores to be 

separated from each other under conditions of high and low DO concentrations.  

Model results were used to address three questions: 1) How does high and low 

DO affect the growth and survival of larval fish in the baseline IGP food web?; 2) Is 

competition or predation the more important effect of ctenophores on larval fish survival 

and growth?; and 3) What is the effect of low versus high DO on the relative importance 

of competition and predation to larval fish survival and growth within the IGP food web? 
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Chapter 2: Effects of hypoxia on spatial distribution and predation on 
ichthyoplankton and zooplankton by the ctenophore Mnemiopsis leidyi in the 
Chesapeake Bay system 

INTRODUCTION 
 Hypoxia, often defined as dissolved oxygen (DO) concentrations less than 2 ml L-

1 (2.8 mg L-1) (Diaz and Rosenberg 1995) or 2 mg L-1 (1.42 ml L-1) (Turner and Rabalais 

1994), is deleterious to aquatic organisms that depend on aerobic respiration for survival, 

having both lethal and sublethal effects (Kramer 1987, Poucher and Coiro 1997, 

Wannamaker and Rice 2000, Breitburg 2002).  Sublethal consequences of hypoxia 

include reduced growth rate, altered behavior, decreased foraging ability, and increased 

susceptibility to predation (Breitburg 1992, Breitburg 1994, Howell and Simpson 1994, 

Petersen and Pihl 1995, Crocker and Cech 1997).  Subtle shifts in trophic interactions 

caused by hypoxia may have a large effect on interactions among species (Rahel and 

Kolar 1990, Kolar and Rahel 1993, Rahel and Nutzman 1994).  For example, sub-lethal 

oxygen concentrations may increase predation risk as predators opportunistically feed on 

prey species made vulnerable by low oxygen stress (Pihl et al. 1992).  In addition, low 

DO in aquatic ecosystems can compress organisms into reduced volumes of higher DO 

(Coutant 1985, Breitburg et al. 1997), thereby increasing predator and prey encounter 

rates. 

Increased anthropogenic nutrient loading has led to frequent and widespread 

occurrences of low DO in a variety of environments ranging from enclosed seas and bays 

to open continental shelf areas (Diaz and Rosenberg 1995, Diaz et al. 2004).  In 

particular, changes in land-use patterns during the last three centuries have modified the 

Chesapeake Bay ecosystem, the largest semi-enclosed estuary in the United States. 

Conversion of forests and farms to urban areas, increased population, and increased 

6 



fertilizer use have altered runoff patterns and increased nutrient inputs into the bay, which 

in turn has elevated algal production and biomass, and increased the intensity and extent 

of summer oxygen depletion (Cooper and Brush 1993, Boynton 1997, Karlsen et al. 

2000, Hagy et al. 2005). Because Chesapeake Bay is strongly stratified during late spring 

and summer, the effects of eutrophication are manifested in seasonal bottom water 

hypoxia and anoxia. 

One of the key species in the Chesapeake Bay food web that may be affected by 

changes in hypoxia is the lobate ctenophore, Mnemiopsis leidyi.  This species is an 

important predator on both zooplankton and the early life-stages of fish (Bishop 1967, 

Reeve and Walter 1978, Kremer 1979, Monteleone and Duguay 1988, Cowan and Houde 

1992, Cowan and Houde 1993, Houde et al. 1994, Purcell et al. 1994 a & b, Purcell et al. 

2001b), and can therefore act as both a predator and a competitor of planktivorous fish 

(Cowan et al. 1992, Purcell and Arai 2001).  All stages of ichthyoplankton, including 

eggs (of species with planktonic eggs), yolk sac larvae, and older feeding larvae, are 

exploited by ctenophores.  Mnemiopsis is a year-round inhabitant of Chesapeake Bay, 

peaking in abundance during late spring - summer (Kremer 1994, Purcell et al. 2001b), 

and declining during July and August of some years, coincident with the decline of their 

copepod prey and the peak abundance of predatory scyphomedusae, Chrysaora 

quinquecirrha (Kremer 1994, Purcell and Cowan 1995, Purcell et al. 2001b).    

Predation is a major source of mortality for ichthyoplankton (Bailey and Houde 

1989).  The high abundance of ctenophores in the summertime Chesapeake Bay system 

makes them important predators of dominant mesohaline ichthyoplankton, such as naked 

goby (Gobiosoma bosc) larvae and bay anchovy (Anchoa mitchilli) eggs and larvae.  
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Calculations indicate that field populations of ctenophores can consume 10 - 65% d-1 of 

the ichthyoplankton in the Chesapeake Bay and its tributaries (Monteleone and Duguay 

1988, Cowan and Houde 1993, Purcell et al. 1994a).  Because of its abundance, high 

feeding rates, and temporal coincidence with fish spawning, M. leidyi can consume large 

portions of zooplankton and ichthyoplankton (Monteleone and Duguay 1988, Cowan and 

Houde 1993, Purcell et al. 1994a & b, Purcell and Decker 2005). 

The vertical distributions of ctenophores, ichthyoplankton, and zooplankton shift 

with declining DO concentrations (Keister et al. 2000) and available habitat volume 

decreases as DO concentrations below the pycnocline decrease because many organisms 

avoid low DO (Robb and Abrahams 2002).  Ctenophores remain below the pycnocline 

until dissolved oxygen concentrations decline to about 1 mg L-1 in the bottom layer of the 

water column (Breitburg et al. 2003); however, sensitive organisms, such as the early life 

stages of fish, avoid low DO waters at oxygen concentrations > 2 mg L-1 (Breitburg 1994, 

Keister et al. 2000, Breitburg et al. 2003).  Therefore, encounter rates between predator 

and prey with different tolerances to DO may change as bottom DO declines.   

I conducted laboratory experiments and field sampling to determine whether low 

DO influences predation by Mnemiopsis leidyi on ichthyoplankton by affecting either 

predation rates or vertical overlap between ctenophores and their prey.  Eutrophication 

and resulting hypoxia in the Chesapeake Bay system seems to favor gelatinous 

zooplankton over finfish (Breitburg 1992, Breitburg et al. 1997, Purcell et al. 2001a).  My 

goal was to determine if DO affected predator - prey interactions between co-occurring 

ctenophores and ichthyoplankton, vertical habitat overlap, and resulting encounters.  

Other species in the food web, such as the medusa, Chrysaora quinquecirrha, that prey 
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on both ctenophores and ichthyoplankton, and a shared copepod prey species (Acartia 

tonsa), were also sampled to determine which organisms might influence the vertical 

distributions of ctenophores and ichthyoplankton.  I sampled the same sites as Keister et 

al. (2000), which exhibit chronic low bottom DO.  Ctenophore densities were very low 

during 1992 (ctenophore mean density = 0.07 ± 0.02 m-3), which corresponded with high 

medusa densities (Keister et al. 2000).  My present study occurred during a period of low 

medusa density, enabling me to determine the relative importance of medusa predators 

and the effect of DO on ctenophore vertical distribution and overlap with prey.  

MATERIALS AND METHODS 

Organism Collection & Rearing 
Laboratory experiments examined effects of oxygen concentration on predation 

by ctenophores on three life stages of two Chesapeake Bay fish species: (1) bay anchovy 

eggs, (2) bay anchovy yolk sac larvae, and (3) 1- and 4- d posthatch (dph) naked goby 

feeding larvae.  I chose these prey because they are the most abundant ichthyoplankton 

species in the mesohaline Chesapeake Bay during summer when ctenophores are 

abundant (Keister et al. 2000), and they have similar oxygen tolerances to one another 

(Breitburg 1994, Zastrow and Houde unpubl.).   

Organisms were collected from the mesohaline Patuxent River, a tributary of 

Chesapeake Bay.  M. leidyi were dip-netted from the surface, kept no longer than one 

week in 80 L aquaria in the laboratory at ambient temperature (22 – 24 °C) and salinity 

(12 - 15), and were fed brine shrimp nauplii (Artemia spp.) or, when available, natural 

zooplankton.  I performed 50 % water changes in ctenophore tanks every other day, and 

small paddlewheels provided gentle surface water movement within the tanks.   
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Bay anchovy eggs were collected with a 500 µm plankton net towed at 

approximately 1 knot for 2 minutes in the surface layer during the midnight to 7 am peak 

spawning period (MacGregor and Houde 1996).  Eggs were placed in aerated buckets and 

returned to the laboratory as soon as sufficient numbers were collected.  Target 

experimental abundances between 32 and 200 eggs (dependent on availability) were 

immediately counted into 2 L holding dishes and then either placed directly into 

experimental tanks (for egg experiments) or maintained in dishes for approximately 20 h 

until hatching (yolk sac larvae experiments).  Eggs and yolk sac larvae that died prior to 

the start of experiments were replaced.   

Naked goby eggs were collected from nesting trays deployed at several sites along 

the Patuxent River (Breitburg 1992, 1994).  Nests with the guarding male were brought 

into the laboratory for egg hatching and larval rearing.  After developing for up to 1 

week, eggs were placed under a directed light source, which triggered hatching, and 

larvae were transferred to 80 L rearing aquaria (25 larvae L-1) filled with 5-µm filtered 

Patuxent River water at ambient temperature (22 – 24 °C) and salinity (12 - 15).  I 

maintained larval rearing tanks with constant gentle bubbling and 50 % water changes 

every 2 - 3 days.  Larvae were fed laboratory-reared rotifers (Brachionus plicatus) at 

densities of approximately 4000 L-1, and used in predation experiments when they were 

less than 7 dph.   

Predation Experiments  
Experiments compared ctenophore clearance rates at 3 different DO 

concentrations (Table 2.1).  Experiments were conducted as a randomized complete 

block design with date as the blocking factor and DO level as the treatment.  I selected 2 
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low oxygen concentrations (1.5 mg L-1 and 2.5 mg L-1) that would not cause direct 

mortality of organisms during these experiments, but which resulted in different vertical 

distributions of fish larvae in the laboratory (Breitburg 1994) and in the field (Keister et 

al. 2000, Breitburg et al. 2003).  I also estimated ctenophore clearance rates of prey at an 

air-saturated control DO concentration around 7 mg L-1.  I conducted separate 

experiments for each of the three ichthyoplankton prey in 100 L tanks with 4 – 6 

replicates per DO treatment.  Experiments for each stage were conducted over 2 days.  

Treatments were arbitrarily assigned to tanks.  In addition, each day of the experiment 

one predator-free tank at each of the 3 DO treatments was used to provide a baseline 

recovery rate to assess prey mortality due to handling and DO stress.   

After target oxygen concentrations were reached in the tanks by bubbling with 

nitrogen gas and measured with a YSI model 52 or 85 dissolved oxygen meter, I placed 

either (1) 100 - 200 bay anchovy eggs, (2) 32 - 47 yolk sac larvae or (3) 200 naked goby 

larvae into each tank for 30 minute acclimation to experimental conditions, as larval fish 

generally acclimate in less than 1 h (Stalder and Marcus 1997 and cited references 

within).  Tanks were maintained in low light at ambient water temperatures (22 - 24 ºC) 

and salinities (11 – 16).  I added 8 - 13 ctenophores (163.29 ± 8.16 ml average total 

volume) (Table 2.1) to small vessels within experimental tanks, and each experiment was 

initiated upon mixing of predators and prey.  Tanks were sealed and a small amount of 

nitrogen gas, or air for DO control tanks, was leaked into the headspace to maintain DO 

conditions for the duration of the experiment.  Larger ctenophores were more prevalent as 

the summer progressed; therefore during the second set of experiments, total predator 

volume was larger (Table 2.1).  I used different experimental durations and predator 
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numbers for the different prey types to avoid prey depletion (Table 2.1).  Rotifers were 

added to all containers as alternative prey (approx. 450 rotifers L-1) to encourage naked 

goby larvae and ctenophores to engage in normal swimming and feeding behaviors. 

  At the end of each experimental period, dissolved oxygen was re-measured and 

ctenophores were removed with a dip net.  Water was slowly siphoned through 65 – 100 

µm mesh bags to collect remaining ichthyoplankton.  Collection bags were immersed in 

MS-222 to sedate larvae before preservation in 75% ethanol (larvae and eggs) or 5% 

buffered formalin (yolk sac larvae).  The number of eggs or larvae collected was 

enumerated with a dissecting scope to determine recovery rates (in the predator-free 

tanks), percent predation (the difference between the number of prey recovered from the 

predator-free control tank and experimental tank divided by the number of prey recovered 

from the control tank), and clearance rates (L ml ctenophore –1 h–1) using the equation 

from Cowan and Houde (1993). 

Field Sampling  
 Ctenophores, medusae, ichthyoplankton and zooplankton were collected in the 

summer from June - August in the mesohaline Patuxent River sub-estuary of Chesapeake 

Bay, in 1992 and 1993 by Keister et al. (2000) and in 1999 and 2001 for the present 

study.  Details of samples collected in 1992 and 1993 are in Keister et al. (2000); 1999 

and 2001 methods follow the same general protocol (Table 2.2).  Two sites in the mid-

channel Patuxent River were chosen based on a history of chronic summertime hypoxia - 

the mouth of St. Leonard Creek (average depth = 20 m) and south of the mouth of Battle 

Creek just north of Broomes Island (average depth = 16 m) (Breitburg et al. 2003).  Maps 

of the Patuxent River sampling sites can be found in both Keister et al. (2000) and 
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Breitburg et al. (2003).  Sampling was conducted day and night at both stations by 

Keister et al. (2000) on July 24, 29, and August 4, 1992 and on July 6, 12, and 16, 1993.  

I sampled day and night on June 22, July 27, and August 24, 1999, and only during the 

day at St. Leonard Creek on July 5, 2001 (Table 2.2).   

Vertical profiles of the water column for temperature, DO, and salinity were taken 

at each site using a YSI model 85 DO meter.  The pycnocline was determined from these 

measurements as the depth where the greatest change in temperature, DO, and salinity 

occurred.  Tidal stage and trawl time were also recorded.   

Zooplankton was sampled every 1 - 2 m throughout the water column by pumping 

50 L of water at 20 L min-1 for approximately 2 minutes through a hose (cleared for ~45 s 

prior to sample collection) into a 35 µm plankton net (30 L min-1 in 1992 and 1993), and 

then preserved in 5% buffered formalin for later enumeration and identification with a 

dissecting microscope in the laboratory.  Stempel pipette aliquots of zooplankton samples 

(at least 200 individuals or ¼ of the whole preserved sample) were counted, identified to 

genus, and separated by life stage.  Zooplankton were assigned to water column layers 

based on a comparison of their sampling depth with physical profiles of the water 

column.      

Duplicate 1.5 – 2 min discrete depth samples for ctenophores, medusae and 

ichthyoplankton were taken in each of 3 layers (surface, pycnocline and bottom) using a 

Tucker Trawl with a 1 m2 mouth area and 212 – 224 µm mesh nets and a General 

Oceanics flowmeter attached in the mouth of the net (average tow volume = 87.9 ± 4.2 

m3, n = 111).  The surface layer was sampled with the top of the net skimming the water 

surface; sampling in the pycnocline was ensured by having a YSI model 52 dissolved 
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oxygen meter attached to the frame of the net; sampling depth within the bottom layer 

between the pycnocline and the sediment was established geometrically using cable 

length and wire angle.  Individual live ctenophore total length and sea nettle diameter 

were measured to the nearest 5 mm and volumes were measured to the nearest 1 ml in 

graduated cylinders.  Whole sample biovolumes were measured to the nearest 50 ml in 

graduated pitchers.  Ichthyoplankton were removed and preserved in 75% ethanol, 

counted, and identified to genus (species level when possible) for whole preserved 

samples.   

STATISTICAL ANALYSIS 

Predation Experiments 
Analyses were performed on clearance rates (L ml ctenophore –1 h–1) to determine 

the effect of DO on predation on each of the 3 prey types (bay anchovy eggs, bay 

anchovy yolk sac larvae, and naked goby larvae).  Ctenophore clearance rates of naked 

goby larvae and bay anchovy yolk sac larvae were untransformed, but clearance rates of 

bay anchovy eggs were Log 10 transformed to correct normality of residuals.  I performed 

randomized complete block design analysis of variance (ANOVA), including replication 

within blocks (date), for all prey types (except yolk sac larvae on the second date when 

only 1 tank per treatment was run).  Simple linear regression between average DO within 

tanks and clearance rate for each prey type was also computed.  For all statistics, 

significance was set at α < 0.05, with observations in the range 0.05 ≤ α < 0.10 noted as a 

non-significant trend.  All data are presented as mean ± 1 SE. 
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Field Data Analysis 
Schoener’s Index of habitat overlap (Schoener 1970) was computed to determine 

the effect of low DO on vertical overlap of species within the water column.  Here I 

present a more detailed analysis of species overlap then the general summaries provided 

in Breitburg et al. (2003).  Overlap values (as proportions) ranged from 0 (no overlap in 

habitat use) to 1 (complete overlap).  Vertical overlap was determined for five predator 

and prey groups: (1) numbers of adult and juvenile copepods (mostly Acartia tonsa) L-1, 

(2) fish eggs (predominately bay anchovy eggs, but other species were present in small 

numbers), (3) bay anchovy larvae < 15mm standard length, (4) naked goby larvae and (5) 

ctenophores (by number and volume m-3).  Medusa number and volume m-3 were 

included as secondary contributing factors in stepwise regressions, but were not 

considered to be primary predators in this ctenophore-focused study.  I used both number 

and volume of gelatinous species because numbers reflect behavioral responses while 

volume more accurately describes consumption potential.  Only samples with more than 

8 total ctenophores or medusae at the station were used in calculations in order to avoid 

error in overlap estimates for very small sample sizes.  Samples with zero total 

ctenophores or medusa collected at a station comprised about a third of all eliminated 

samples, while the rest of the eliminated samples had station totals equal to less than 0.1 

ctenophore or medusa m-3.  About 20% of ctenophore and medusa samples were 

excluded using this criteria.   

Vertical overlap between each predator and prey pair was calculated as follows: 

Schoener’s Index = 1 – 0.5 * ( | Ppred SURF – Pprey SURF | + | Ppred PYCN – Pprey PYCN | + | 

Ppred BOTT – Pprey BOTT | ), where Ppred LAYER and Pprey LAYER represent the proportions 

of predators or prey in each layer of the water column (surface, pycnocline, or bottom).  
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The proportions of gelatinous zooplankton and ichthyoplankton were calculated from 

densities in pooled duplicate samples at each combination of date, station, and time 

period, and I used mean zooplankton densities for the depth interval corresponding to 

each layer (n = 43).  An adjustment to the species’ proportions for the thickness of each 

layer was calculated based on the average depth of each sampling site and the DO 

profiles for each date and time period.  The coefficient of variation (CV) was presented 

along with mean vertical overlaps.   

In order to test for relationships between species overlap and bottom DO, I 

performed simple regression analyses on the arcsine-transformed overlap between 10 

pairs of predator and prey in the water column with bottom DO.  As an exploratory 

technique, linear, 2nd order, or 3rd order regression models were fit.  The model that best 

described the relationship was chosen based on the Akaike’s Information Criterion (AIC).  

I performed analysis of vertical overlap separately for day and night data, and then for the 

time periods combined, after analysis of covariance (ANCOVA) indicated that there were 

no significant difference between the two time periods.  The relationship between vertical 

overlap and tidal stage was also analyzed with ANCOVA.    

I used stepwise regressions to determine if components of the food web with the 

potential to directly influence the predator and prey contributed to the degree of habitat 

overlap along with bottom DO.  A typical model included bottom DO, as well as 

predator, prey, and competitor species abundances.  I performed principle components 

analysis to determine collinearity among factors in the stepwise regression.  There was 

high collinearity between bay anchovy and naked goby larvae, and as a result, I used 

combined “fish larvae” instead of individual species in the stepwise models.  Likewise, 
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either number or volume for each gelatinous predator was included in the model, not 

both.  As an example, the stepwise regression model for overlap between ctenophore 

number (CTN) and naked goby larvae (GOB) was represented as OVERLAP = BOTDO 

+ CTN + MED + COP + LRV, with BOTDO = bottom DO, CTN = number of 

ctenophore predators, MED = number of medusa predators, COP = number of copepod 

prey, and LRV = number of combined fish larvae.  Models significant at α < 0.05 for day, 

night, and the time periods combined included organismal effects along with bottom DO. 

RESULTS 

Laboratory Predation Experiments 
 During all experiments, oxygen levels for both low DO concentrations were 

maintained within 0.3 mg L-1 of target concentrations, while the air-saturated controls 

were within 1.0 mg L-1 of each other (Table 2.1).  Recovery rates in tanks without 

ctenophore predators were at least 91 % for bay anchovy eggs and naked goby larvae, 

and at least 78 % for yolk sac larvae.  Predation calculations were adjusted for recovery 

rates.  Overall, percent predation was smallest for bay anchovy eggs, intermediate for 

naked goby larvae, and largest for bay anchovy yolk sac larvae (Table 2.3).   

Dissolved oxygen concentrations tested did not affect clearance rates (L ml 

ctenophore -1 h -1) of ctenophores feeding on bay anchovy eggs, bay anchovy yolk sac 

larvae, and naked goby larvae (Fig. 2.1a – c).  Clearance rates were lowest for naked 

goby larvae, intermediate for bay anchovy eggs, and about an order of magnitude higher 

for bay anchovy yolk sac larvae (Table 2.3).  Clearance rates at all DO treatments had 

similar ranges for bay anchovy eggs and naked goby larvae and were an order of 

magnitude larger for yolk sac larvae, but within each life stage, variation in ctenophore 

clearance rates was small (Table 2.3). 
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Regressions between DO and clearance rates were not significant for any prey 

type; extremely small R2 values suggested the lack of any biologically meaningful trends 

for bay anchovy eggs (R2 = 0.1247, P = 0.15), bay anchovy yolk sac larvae (R2 = 0.0139, 

P = 0.72), or naked goby larvae (R2 = 0.0000, P = 0.98) as prey (Fig. 2.1a – c). 

Field Sampling 
Addition of 1999 and 2001 field data to the 1992 – 1993 data (Keister et al. 2000) 

allowed us to examine the effect of DO on vertical distributions and overlap under a wide 

range of DO and organism density conditions (Table 2.4).  All species had higher average 

numerical densities in 1992 – 1993 than in 1999 and 2001, but ctenophore densities were 

very low in 1992 (0.03 ± 0.01 ind. m-3), resulting in smaller average volumes of 

ctenophores in 1992 – 1993 samples than in later years.  No fish eggs were present in 

2001 samples, and fish egg abundance was low in 1999 compared with abundances found 

during sampling in earlier years.  The average bay anchovy larvae density in 1999 and 

2001 was smaller than in 1992 and 1993; bay anchovy densities in 1993 and 1999 were 

almost identical, but 1992 densities were very large.  Naked goby larvae exhibited a 

slightly smaller combined density in 1999 and 2001 than in 1992 and 1993.  Copepod 

densities in 1999 and 2001 were about a third of those sampled in 1992 and 1993.  

Medusa densities were an order of magnitude lower in the 1999 and 2001 study than in 

either 1992 or 1993.   

Both bottom DO and time of day (day versus night) influenced proportional 

densities of organisms in each layer within the water column, but not all species 

examined were affected by both factors (Figs. 2.2 & 2.3).  The vertical distribution of fish 

eggs, which do not have any behavioral response to DO, was independent of bottom DO 
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(Fig. 2.2a).  Bay anchovy spawning occurs in surface waters at night, and the bottom-

centered distribution of eggs during the day presumably results from sinking of eggs 

released the previous night (Fig. 2.2a).  Most nighttime sampling was done shortly after 

dark and before peak spawning hours; the high proportional density of fish eggs in the 

bottom layer in these samples is likely dominated by eggs spawned the previous night.  

The nighttime samples with a high proportional density of fish eggs in the surface layer 

(Fig. 2.2a) were taken near or after midnight and reflect a predominance of newly 

spawned eggs.    

At bottom DO concentrations less than 1 mg L-1, bay anchovy larvae occurred in 

either the pycnocline or the surface layer during both day and night and appeared to 

strongly avoid the bottom layer (Fig. 2.2b).  When bottom layer DO was greater than 1 

mg L-1, bay anchovy larvae displayed a steady increase in proportional density with 

increasing DO at night, although the patterns was not as clear during the day (Fig. 2.2b).   

Naked goby larvae concentrations increased in the bottom layer with increasing 

DO during both day and night, and the increase was much more abrupt than the steady 

increase observed for bay anchovy larvae at night (Fig. 2.2b, c).  Naked goby larvae were 

most abundant in the pycnocline at bottom DO less than 2 mg L-1 during both day and 

night, but at bottom DO concentrations ≥ 2 mg L-1, they were most abundant in the 

bottom layer, especially at night.  Abundances in the pycnocline and surface layers 

decreased both day and night as DO increased in the bottom layer (Fig. 2.2c). 

Vertical distributions of copepods also varied with bottom DO concentrations, 

exhibiting a general increase in the bottom layer with increasing DO both day and night.  
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When bottom DO was very low, copepods tended to utilize the pycnocline, especially 

during the day (Fig. 2.3a). 

The relationship between vertical distribution of ctenophores and bottom DO 

concentration was not quite as clear as for most of the other species, but followed the 

same general pattern.  When bottom DO concentrations were less than 1 mg L-1, 

ctenophore densities were largest in the pycnocline during the day and in the pycnocline 

and surface layers at night.  At higher DO concentrations, densities tended to be greatest 

in the bottom layer during both day and night, with densities in the pycnocline and 

surface layers similar to each other (Fig. 2.3b).   

Schoener’s Index calculated for vertical overlap including data for all DO 

concentrations ranged from a low of 0.59 for overlap between ctenophore number and 

fish egg density to a high of 0.82 for naked goby larvae and copepod densities (Table 

2.5).  Values for Schoener’s Index were relatively high (values can range from 1 to 0, 

with the overlap value for random distribution = 0.33), which implies a high degree of 

vertical overlap between predator and prey pairs in my study system.  In general, 

Schoener’s Index of habitat overlap between predators and their prey increased with 

increasing bottom DO (Table 2.6).  Ctenophore predators were more abundant in the 

bottom layer at lower DO concentrations than their prey, while densities of both predator 

and prey increased in the bottom layer with increasing DO.  For the overlap between 

ctenophores and their prey, vertical overlap tended to decrease as ctenophore number or 

volume increased, with the only exception being one large overlap value between 

ctenophores and bay anchovy larvae at the greatest ctenophore density.   
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I performed ANCOVA to determine if the effect of DO on predator and prey 

vertical overlap differed between day and night (Table 2.6).  Although the vertical 

distributions of many organisms differed between day and night, time of day modified the 

effect of DO on predator and prey overlap only for the overlaps between ctenophores and 

fish eggs.  The test for coincidence, a simultaneous test of both intercept and slope, 

indicated a significant effect of DO on overlap between ctenophore volume and fish eggs 

(P = 0.03), and a trend toward a DO effect on ctenophore number overlap with fish eggs 

(P = 0.07).  Overlap in vertical distributions of ctenophores and fish eggs was smaller and 

tended to be more variable during night time than during the day.  During the day, 

overlap increased with increasing bottom DO, while at night there was no clear pattern of 

vertical overlap with bottom DO concentrations.  Vertical overlap between ctenophores 

and fish eggs averaged 0.72 ± 0.05 (CV = 29.7) and 0.70 ± 0.05 (CV = 30.8) during 

daytime and 0.46 ± 0.08 (CV = 65.4) and 0.47 ± 0.08 (CV = 60.5) at night for ctenophore 

volume and number, respectively. The small nighttime overlap reflected small numbers 

of eggs and large numbers of ctenophores in the bottom and pycnocline waters during 

some nighttime samples (Fig. 2.2a & 2.3b).  There were no highly significant regressions 

between bottom DO and vertical overlap in the daytime, but 2 predator and prey pairs 

(ctenophore number and naked goby larvae, and naked goby larvae and copepods) 

displayed a marginally significant trend (Table 2.6).  The influence of bottom DO on 

vertical overlap was significant at night for 1 predator and prey pair (ctenophore number 

and copepods), and there was a marginally significant trend for 3 other predator and prey 

pairs: (1) ctenophore volume with naked goby larvae, (2) ctenophore volume with 

copepods, and (3) naked goby larvae with copepods (Table 2.6).   
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Because ANCOVA and regression revealed no significant effects of time of day 

on the effect of bottom DO on overlap in vertical distribution of most predator and prey 

pairs, I combined daytime and nighttime overlaps (total n = 43) (except for the overlap 

between ctenophore volume and fish eggs) in order to conduct regression analysis with a 

larger data set.  The combined day and night regressions indicated that bottom DO 

significantly affected overlap in vertical distributions of 4 pairs of predator and prey: (1) 

ctenophore volume with naked goby larvae, (2) ctenophore volume with copepods, (3) 

ctenophore number with copepods, and (4) naked goby larvae with copepods (Table 2.6).  

In addition, there was a marginally significant trend towards increased overlap between 

anchovy larvae and copepods with increasing bottom DO (0.05 ≤ α < 0.10).  For all pairs 

of predator and prey, overlap increased with increasing DO, even if the relationship was 

not statistically significant, i.e. all of the regression analyses yielded positive slopes.  

However the percent of variation in vertical overlap explained by bottom DO was low 

even in cases where the relationship was statistically significant.  Tidal stage was not a 

significant indicator of habitat overlap for any pair of predator and prey. 

Stepwise regression was used to determine if predator and prey abundances would 

explain additional sources of variation in vertical overlap beyond that explained by 

bottom DO.  There were no variables tested in stepwise models that significantly 

improved upon the simple regression fits with bottom DO as the sole independent 

variable for daytime samples.  For nighttime data, two stepwise regressions explained 

greater proportions of the variation in vertical overlap than did simple regression models 

(Table 2.7).  These models included (1) medusa volume and bottom DO for the 

regression model of ctenophore volume and fish egg overlap, and (2) medusa volume and 
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bottom DO for the regression model of ctenophore volume and copepod overlap.  There 

were also two stepwise regression models for combined day and night data that explained 

a higher percent of the variation in predator and prey vertical overlap that did the simple 

regressions.  These models included (1) medusa volume and bottom DO in the model of 

overlap between ctenophore volume and copepods, and (2) medusa number and bottom 

DO for the overlap between ctenophore number and copepods (Table 2.7).  Of note, the 

stepwise model for the overlap between ctenophore number and copepods at night also 

explained more variation than the model of overlap with bottom DO alone (P = 0.01; DF 

= 3, 10,13; R2 = 0.6642, F = 6.59).  Bottom DO had the largest contribution to this model 

(48 %), and ctenophore number (one of the species considered in the overlap) had the 

second largest contribution (33 %), while sea nettle number explained the smallest 

percentage (19 %).  Significant stepwise regressions that did not include bottom DO were 

not considered as part of this analysis but were used to help interpret results that were 

significant with bottom DO (see discussion below).   

DISCUSSION 

Effects of DO on Clearance Rrates 
There was no significant DO effect on Mnemiopsis leidyi clearance rates of bay 

anchovy eggs, bay anchovy yolk sac larvae, or naked goby larvae in the laboratory; 

estimated predation rates were as high at low DO as they were at high DO (Table 2.3, 

Fig. 2.1a - c).  This result was unexpected as I anticipated differences in clearance rates 

due to DO based on the results of other predation studies.  Laboratory experiments 

showed Chrysaora predation on naked goby larvae (Breitburg et al. 1994, 1997) and 

ctenophore clearance rates of copepods (Decker et al. 2004) were larger at low or 

intermediate DO concentrations than at high DO.  Different tolerances to low DO of 
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ctenophores and their prey (Purcell et al. 2001a, Breitburg et al. 2003, Decker et al. 2004) 

were also expected to affect clearance rates at low DO.    

Predation is the result of many small-scale processes, including encounter, escape, 

and capture (Gerritson and Strickler 1977, Larson 1987, Purcell 1997, Waggett and 

Costello 1999, Costello et al. 1999), all of which are directly related to swimming speeds 

of both predator and prey (Gerritsen and Strickler 1977).  Despite a high survival 

tolerance to low DO concentrations (Breitburg et al. 2003), ctenophore swimming speeds 

were affected by low DO, with increased swimming speeds in laboratory tanks at 

intermediate DO concentrations (Kolesar Chapter 3).  In contrast, swimming speeds of 

the more hypoxia sensitive fish larvae were not significantly affected by low DO within 

the range of DO concentrations tested (Kolesar Chapter 3).   The lack of difference in 

clearance rates at high and low DO may be explained by the absence of a DO effect on 

swimming speeds of both ctenophores and larval fish at low and high DO concentrations.  

But the unexpected results for the effect of intermediate DO on swimming speeds of 

ctenophores cannot account for the absence of a DO effect on clearance rates. 

Ctenophore clearance rates (L ml ctenophore -1 h -1) in my experiments were 

highest for bay anchovy yolk sac larvae, intermediate for bay anchovy eggs and lowest 

for naked goby larvae (Fig. 2.1a - c).  These results are similar to those of Monteleone 

and Duguay (1988), who found that M. leidyi predation was higher on bay anchovy yolk 

sac larvae than on bay anchovy eggs and then declined as larvae grew.  Clearance rates 

calculated from my laboratory experiments were comparable to those found in other 

studies (Monteleone and Duguay 1988, Cowan and Houde 1993, Purcell and Decker 

2005), especially at my control DO concentrations. 
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Differences in ctenophore clearance rates on the three ichthyoplankton prey may 

reflect ontogenetic changes in prey swimming speeds (which can affect encounter 

probability) as well as prey escape ability.  Fish eggs are passive and do not swim, are 

smaller than fish larvae, and have no escape ability.  Assuming that the ctenophore 

reactive distance is constant, fish eggs will have smaller encounter rates than larval fish 

with ctenophores.  The combination of these factors could lead to lower clearance rates 

for fish eggs than for yolk sac larvae.  Bay anchovy yolk sac larvae swim, which 

increases their encounter rates with ctenophores relative to fish eggs, but they have 

limited escape abilities compared with older larvae (Bailey and Batty 1984, Purcell et al. 

1987).  Naked goby larvae were the most developed stage tested here; while they are the 

fastest swimmers, which would increase encounter rate, they also have the greatest 

escape abilities.  The opposing effects of naked goby larvae swimming speed and escape 

ability on interactions with ctenophore predators have been used to explain smaller 

clearance rates on naked goby larvae in other laboratory studies (Monteleone and Duguay 

1988); a similar mechanism may explain smaller clearance rates on naked goby larvae in 

this study.     

Effects of DO on Vertical Distribution & Overlap  
 The responses of organisms to low DO influence how they utilize the water 

column (Kolar and Rahel 1993, Breitburg 1994, Eby and Crowder 2002).  Bottom DO 

affected the vertical distribution of each species I sampled.  My results indicated that DO 

also affected vertical overlap between species, which might be especially important for 

interactions between predators and their prey.  In all cases in which DO affected overlap 

between predators and their prey in this study, the degree of vertical overlap increased as 
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bottom DO increased, and was best described by a  simple linear model or multivariate 

model including both DO and the abundance of another predator or competitor species 

(Tables 2.6 & 2.7).  The proportions of both species of fish larvae, copepods, and 

ctenophores increased in the bottom layer of the water column as bottom DO increased, 

regardless of the time of day (Fig. 2.2b & c; Fig. 2.3), consequently increasing vertical 

overlap between predators and some motile prey at high bottom DO concentrations 

(Tables 2.5 & 2.6).  Other studies of hypoxia and habitat report higher species co-

occurrence as species are forced to utilize smaller volumes due to declining DO 

concentrations (Breitburg et al. 1997, Decker et al. 2004), resulting in habitat 

compression.  Predator and prey in my study have very different tolerances to low D, and 

declining DO concentrations elicit different responses of predator and prey, resulting in 

vertical habitat separation at low DO.   

Greater vertical overlaps between most of the predator and prey pairs in this study 

with increasing bottom DO (Tables 2.5 & 2.6) indicate the potential for increased 

encounters in the field when DO concentrations are high in the bottom layer.  Some 

predators and prey also swim faster at high DO (Decker et al. 2004), increasing encounter 

potential at high DO.  These potential increases are offset by the fact that prey escape 

ability is generally also greater when DO concentrations are high (Breitburg 1994).  As a 

result, at high DO there could be confounding interactions of increasing encounter rates 

(due to both increased vertical overlap and faster predator and prey swimming speeds) 

and the increasing escape abilities of prey, such that although encounters may increase at 

higher bottom DO concentrations, predation rates may not necessarily increase.   
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One notable exception to the pattern of increasing vertical overlap with increasing 

bottom DO was daytime vertical overlap between ctenophore number and naked goby 

larvae which was best represented by a 3rd order regression (P = 0.051, Table 2.6).  

Overlap was large at low bottom DO because both predator and prey avoided low bottom 

DO waters and were abundant in the pycnocline.  Overlap was large again at high bottom 

DO when both predator and prey were abundant in the bottom layer.  Smaller and more 

variable overlap at intermediate bottom DO concentrations during the day were probably 

due to naked goby larvae preferentially using the pycnocline at bottom DO 

concentrations between 1 - 2 mg L-1, while ctenophores were found in greatest proportion 

in the bottom layer at those same bottom DO concentrations (Fig. 2.2c &. 2.3b). 

Effects of Predators & Competitors on Vertical Distribution & Overlap  
 Simple regression models with bottom DO were often improved by including 

predator and competitor abundances, indicating that both a physical environmental factor 

(bottom DO) and components of the food web such as medusa predators, influenced 

habitat utilization and overlap between predators and prey (Table 2.7).  In fact, the large 

percent of overlap explained by medusa predator terms in the significant stepwise 

regression models may indicate that the effect of predators was comparable in importance 

to bottom DO in determining vertical overlap between ctenophore predators and their 

prey.   While bottom layer DO may directly affect species distribution, predator density 

may also affect species distribution, leading to both direct and indirect effects of bottom 

DO on vertical overlap between predator and prey.  Stepwise regressions for some 

daytime and combined day and night overlaps had significant predator and competitor 

components even though bottom DO was not significant.  The addition of medusae, 
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ctenophore and fish larvae abundances significantly improved the models for nighttime 

overlaps between ctenophores and both fish eggs and copepod prey, and ctenophores and 

larval fish were significant for the combined day and night overlap between copepods 

and bay anchovy larvae.  In general, the proportion of most species was large in the 

pycnocline at low bottom DO and increased in the bottom layer as bottom DO increased 

(Fig. 2.2 & 2.3).  The positive relationship between predator and prey vertical overlap 

and their predators and competitors is due to the similar response to bottom DO exhibited 

by most species examined in the study.     

 Prey may respond either more strongly or more rapidly (or are removed 

altogether) to the presence of a biological threat, such as a predator, than to suboptimal 

but non-lethal physical conditions, such as mild-to-moderate hypoxia, in the water 

column.  In laboratory experiments examining the effect of low DO versus predator 

presence on fish prey behavior, Robb and Abrahams (2002) found that prey response to 

the predator was reduced under hypoxia compared with normoxia due to the adverse 

effect of low DO on predator behavior, rather than due to a direct effect of hypoxia on the 

prey.  Additionally, they concluded that it was important to study the effects of an 

environmental stressor such as low DO in conjunction with predation in order to obtain 

an accurate picture of the multiple factors affecting fish prey.  Studies in the Neuse River 

estuary by Eby and Crowder (2002) showed evidence for context-dependent behavioral 

responses by young fish in areas where both hypoxia and species interactions, including 

predation and competition, were a factor.  They found that habitat selection and species 

overlap were mitigated by both biotic and abiotic factors, with the importance of each 

factor depending on the extent and severity of environmental conditions at the time.           
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Vertical distribution in the water column can affect spatial overlap between a 

predator and prey pair, potentially altering predation rates.  My data suggest that it is the 

influence of DO on vertical position within the water column, rather than the direct 

impacts of DO on predation rates that may be important in the interactions between 

ctenophores and their prey.  For example, ctenophore swimming speeds were elevated at 

intermediate DO concentrations (Kolesar Chapter 3) which could increase predator – 

prey encounters at low-to-moderate ctenophore densities.  In examining the effect of 

container size on predation rates, De Lafontaine and Leggett (1987) similarly concluded 

that vertical distributions of predator and prey may be particularly important in 

relationships between gelatinous predators (the medusa Aurelia aurita) and 

ichthyoplankton prey (larval capelin Mallotus villous).   

My laboratory predation experiments resulted in similar predation by ctenophores 

on the early life stages of fishes regardless of DO concentrations.  The unstratified water 

column used in these experiments eliminated the natural variation in physical habitats 

found in the field.  For example, without an oxygen gradient, there were no areas of 

different DO concentrations available to organisms as refuges from either DO stress or 

predation.  A lack of refuges may be especially important for motile organisms such as 

fish larvae (Breitburg 1994), copepods (Decker and Marcus 2003), and ctenophores 

(Morris et al. unpubl.) that have been shown to actively avoid oxygen concentrations that 

were non-lethal yet stressful (Miller et al. 2002).   

Increasing the number of samples at bottom DO concentrations between 1 – 2 mg 

L-1, especially at night, may clarify species’ responses to declining bottom DO 

conditions.  Based on my data and results from other studies (Breitburg 1994, Keister et 
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al. 2000, Breitburg et al. 2003), maintaining target Chesapeake Bay bottom DO 

concentrations > 2 mg L-1 is a reasonable recommendation for enhancing species’ 

survival.         

Vertical stratification (as well as other forms of patchiness) have important 

implications for all aquatic environments.  In the Chesapeake Bay in particular, Govoni 

and Olney (1991) suggested that the non-uniform distribution of M.leidyi could 

potentially affect predation on ichthyoplankton.  Biodiversity, conservation and cross-

scale processes can all be affected by spatial distribution of organisms in a three-

dimensional environment (Resetarits 2005).  The spatial structure of consumers in an 

ecosystem affects food web stability (McCann et al. 2005), and mobile omnivores 

(McCann and Hastings 1997) in an aquatic environment can be especially important to 

trophic dynamics.  Spatial heterogeneity of species serving as both consumers and prey in 

aquatic systems (such as zooplankton) can also shape food web interactions (Pinel-Alloul 

1995). 

Examining physical factors in the water column (such as DO) in conjunction with 

density, distribution, and abundance of organisms is necessary to determine the 

importance of physical habitat to predator and prey interactions.  While my experiments 

showed that DO did not directly affect predation between M. leidyi and ichthyoplankton, 

effects of DO on swimming speeds, behavior, and vertical distributions of predator and 

prey are important to food web dynamics in seasonally oxygen-stratified estuarine 

systems.  Further examination of species’ responses to DO, both at the level of the 

individual as well as intraspecific interactions, will provide important answers to basic 

questions about effects of species’ behaviors and spatial distributions on food web 
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dynamics, taking the next steps towards comprehensive understanding of the role of 

physical habitat stress and biological dynamics in aquatic systems.   
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Table 2.1. Conditions for predation experiments in 100 L tanks.  The three target dissolved oxygen (DO) concentrations were 1.5 mg 
L-1, 2.5 mg L-1, and an air-saturated control.  Bay anchovy egg and naked goby larvae experiments were performed in 1999 and bay 
anchovy yolk sac larvae experiments were run in 2001.  Naked goby larvae ages were 4 days post hatch (dph) and 1 dph in the June 2 
and June 15 experiments, respectively.  The number of replicate tanks per DO treatment for each 2 day experimental ‘date’ is 
indicated by N.  Data are presented as mean ± SE. 
 
 
Prey Date Duration DO Concentrations   (mg L-1) Prey Ctenophores Ctenophore (N)     
  (h) Low  Mid High tank-1   tank-1 total vol (ml) 
____________________________________________________________________________________________________________ 

Bay anchovy:  

Eggs  July 8-9 4  1.54 ± 0.02 2.39 ± 0.09 7.65 ± 0.02  200 10  87.56 ± 3.44 3 

Eggs  July 15-16 4 1.53 ± 0.08 2.50 ± 0.05 7.65 ± 0.02 100 10 – 11  211.44 ± 9.19 3 

Yolk sac larvae  July 12-13 2 1.61 ± 0.02    2.59 ± 0.03 6.87 ± 0.23 35 – 47  8 113.89 ± 3.33 3 

Yolk sac larvae  August 8-9 2 1.88 ± 0.07 2.63 ± 0.01 6.86 ± 0.07 32 10  237.67 ± 6.89 1    

Naked goby: 

Larvae June 2-3 6 1.74 ± 0.04  2.66 ± 0.03 7.23 ± 0.17 200 12 – 13 163.67 ± 6.19 3 

Larvae  June 1 -16 6 1.68 ± 0.07 2.54 ± 0.06 7.26 ± 0.06 200 11 - 13  215.11 ± 7.74 3 
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Table 2.2. Bottom layer DO in the Patuxent River.  Bottom layer dissolved oxygen (DO) during 1999 and 2001 for St. Leonard’s 
Creek (20 m depth) and Battle Creek (16 m depth).  Numbers represent bottom DO measurements (mg L-1) from duplicate samples 
taken with a YSI model 52 DO meter attached to the frame of the Tucker Trawl net on each date, both day and night. ns = no sample 
taken, a DO from CTD profile used, b only one bottom DO sample taken 
     

Bottom dissolved oxygen (mg L-1) 

 22 Jun 99 27 July 99 24 Aug 99 5 Jul 01 

_______________________________________________________________ 

St. Leonard’s Creek     

Day 6.1, 6.3 2.3, 2.5 3.8, 4.0 ns, ns

Night 5.8a, 5.8a 3.3, 3.4 4.5, 5.1 2.3, 1.7 

Battle Creek  

Day 7.5b, 7.5b 2.9, 2.8 4.5b, 4.5b 

Night 6.0, 6.2 2.7, 2.9 5.4, 5.3 
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Table 2.3. Mnemiopsis leidyi, effects of DO on predation and clearance rates.  Effects of dissolved oxygen (DO) on percent predation 
and clearance rates of ctenophores on bay anchovy eggs, bay anchovy yolk sac larvae (Anchoa mitchilli), and naked goby larvae 
(Gobiosoma bosc).  Ctenophore clearance rates on naked goby larvae and bay anchovy yolk sac larvae were untransformed, but 
clearance rates of bay anchovy eggs were log 10 transformed to correct for normality of residuals.  The three DO treatments tested were 
1.5 mg L-1, 2.5 mg L-1, and an air-saturated control.  Ctenophore clearance rate data were analyzed using analysis of variance with 
date as a blocking factor.  Results presented are for the test of the DO main effect.  The P-value (P), F-value (F) and degrees of 
freedom (DF numerator, denominator) are listed.  Untransformed predation (%) and clearance rate (L ml ctenophore-1 h-1) are 
presented as mean ± SE.  Statistical significance is set at α < 0.05.     
  

Prey   Predation  Clearance P F DF 

  (%) (L ml-1 h-1)

____________________________________________________________________________________________________________________ 

Bay anchovy eggs  26.9 ± 0.02 0.07 ± 0.008 0.18 1.93 2, 14 

Bay anchovy yolk sac larvae  49.3 ± 0.04 0.38 ± 0.05 0.41 1.00  2, 8 

Naked goby larvae  39.7 ± 0.03 0.04 ± 0.004  0.81  0.21  2, 14 
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Table 2.4. Mean field densities.  Densities are reported for all organisms examined in this study from 1992, 1993, 1999, and 2001.  
Numbers are means ± SE of all years and for the early and later time periods separately, with the number of samples in parentheses.  
Data from 1992 and 1993 are reanalyzed from Keister et al. (2000).  

 

Organism All Years (129) 1992 & 1993 (90) 1999 & 2001 (39) 

_______________________________________________________________________________ 

Ctenophore volume (ml) m-3  16.4 ± 3.0   13.2 ± 4.0 23.7 ± 3.7  

Ctenophore number m-3  4.4 ± 1.2 5.1 ± 1.7 2.9 ± 0.5  

Fish egg number m-3  30.4 ± 7.2 39.1 ± 10.0 10.4 ± 3.5  

Bay anchovy larvae number m-3  1.1 ± 0.2 1.4 ± 0.3 0.3 ± 0.1  

Naked goby larvae number m-3 5.0 ± 0.6 6.5 ± 0.8 1.5 ± 0.3  

Copepod number L-1  24.6 ± 2.4 30.8 ± 3.1     10.5 ± 1.5  

Medusa volume (ml) m-3 4.3 ± 0.5 6.0 ± 0.7 0.6 ± 0.1 

Medusa number m-3 0.1 ± 0.01 0.1 ± 0.01 0.008 ± 0.002 

35 



Table 2.5. Schoener’s Index of habitat overlap.  Untransformed values for Schoener’s Index of habitat overlap for all predator and 
prey pairs averaged over DO values and time of day.  Numbers are reported as mean ± SE (N). 
 

Predator and Prey Pair   Vertical Overlap  

_____________________________________________________________________________ 

Ctenophore volume & Fish eggs   0.60 ± 0.05 (29) 

Ctenophore number & Fish eggs  0.59 ± 0.05 (29)  

Ctenophore volume & Copepods  0.71 ± 0.04 (30) 

Ctenophore number & Copepods   0.70 ± 0.04 (30) 

Ctenophore volume & Bay anchovy larvae   0.63 ± 0.05 (26) 

Ctenophore number & Bay anchovy larvae   0.63 ± 0.04 (26) 

Ctenophore volume & Naked goby larvae  0.65 ± 0.04 (30) 

Ctenophore number & Naked goby larvae   0.66 ± 0.04 (30) 

Bay anchovy larvae & Copepods  0.70 ± 0.03 (39) 

Naked goby larvae & Copepods   0.82 ± 0.02 (43) 
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Table 2.6. Effects of bottom layer DO on vertical overlap.  Effects of bottom layer DO concentration on Schoener’s Index of vertical 
overlap between 10 pairs of predator and prey.  Results from simple regressions are presented for combined day and night data (Day / 
night, n = 43), day separately (Day, n = 24), and night separately (Night, n = 19).  Predators are listed in columns and prey are listed in 
rows.  Bold indicates models significant at α < 0.10, * model significant at α < 0.05, otherwise the model with the smallest Akaike’s 
Information Criteria (AIC) is reported, and is the linear model, unless otherwise indicated (+ 2nd order model, § 3rd order model).  NA = 
not-applicable. 

DAY & NIGHT COMBINED 

 Ctenophore volume Ctenophore number Bay anchovy larvae Naked goby larvae 

Fish eggs 
P(DF) = 0.55 (27, 28) 

R2 = 0.0134 

0.74 (27, 28) 

0.0040 
NA  

  

  

NA

Bay anchovy larvae 
0.23 (23, 25)

 +

0.1242 

0.25 (23, 25)
+ 

0.1141 
NA NA

Naked goby larvae 
0.01 (28, 29) *

0.2001 

0.14 (27, 29)
 +

0.1354 
NA NA

Copepods 
0.01 (28, 29) *

0.1960 

0.04 (27, 29) 
+*

0.2162 

0.08 (37,38) 

0.0814 

0.006 (41,42) *

0.1717 
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DAY 

Fish eggs 
P(DF) = 0.41 (14, 15) 

R2 = 0.0486 

0.29 (13, 15)
 +

0.1754 
NA  NA

Bay anchovy larvae 
0.92 (14, 15) 

0.0010 

0.73 (10, 11) 

0.0127 
NA  

  

  

NA

Naked goby larvae 
0.12 (14, 15)  

0.1643 

0.051 (12, 15) 
§

0.4643 
NA NA

Copepods 
0.14 (14, 15)  

0.1475 

0.15 (13, 15) 
+

0.2499 

0.32 (18, 19) 

0.0546 

0.053 (22, 23)  

0.1595 

NIGHT 

Fish eggs 
P(DF) = 0.56 (11, 12) 

R2 = 0.0314 

0.96 (11, 12) 

0.0003 
NA NA
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Bay anchovy larvae 
0.35 (11, 13)

 +

0.1748 

0.35 (12, 13) 

0.0728 
NA  

  

NA

Naked goby larvae 
0.054 (12, 13)  

0.2746 

0.48 (12, 13) 

0.0425 
NA NA

Copepods 
0.052 (12, 13)  

0.2790 

0.03 (12, 13)  *

0.3204 

0.17 (17, 18) 

0.1080 

0.06 (17, 18)  

0.1899 

 

39 



Table 2.7.  Significant stepwise regression analysis results for predator and prey overlap with bottom DO.  Ten predator and prey pairs 
are compared, as in Table 2.6.   There were no significant stepwise regressions for the daytime data with bottom DO. 
 

      P (DF) R2 F Terms, Contribution (%)

DAY & NIGHT COMBINED 

Ctenophore volume & Copepods 0.001 (2, 27, 29) 0.3881  

  

  

  

8.56
Medusa volume, 86% 

Bottom DO, 14% 

Ctenophore number & Copepods 0.005 (2, 27, 29) 0.3238 6.46
Medusa number, 76% 

Bottom DO, 24% 

NIGHT 

Ctenophore volume & Fish eggs 0.05 (2, 10, 12) 0.4503 4.10
Medusa volume, 63% 

Bottom DO, 37% 

Ctenophore volume & Copepods 0.01 (2, 11, 13) 0.5366 6.37
Medusa volume, 80% 

Bottom DO, 20% 
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Figure 2.1. Mnemiopsis leidyi, laboratory clearance rates.  Clearance rates of ctenophores 
in laboratory experiments (L cleared ml ctenophore -1 h-1) adjusted for recovery of three 
prey types: (a) bay anchovy eggs, (b) bay anchovy yolk sac larvae, and (c) naked goby 
larvae.  Note different y-axis scales for each prey type. 
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Figure 2.2. Field proportions of ichthyoplankton.  Proportion of three ichthyoplankton 
types [(a) fish eggs, (b) bay anchovy larvae < 15mm, and (c) naked goby larvae] in the 
three layers of the water column; surface layer (‘x’s), pycnocline (circles), and bottom 
layer (triangles) for day and night plotted against bottom DO concentration.  For 
reference, a linear equation is fit to the distribution in the bottom layer.  
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Figure 2.3. Field proportions of zooplankton.  Proportion of two zooplankton species [(a) 
copepods and (b) ctenophores] in the three layers of the water column; surface layer 
(‘x’s), pycnocline (circles), and bottom layer (triangles) for day and night plotted against 
bottom DO concentration.  Additionally, in Figure 3a there are 7 hidden observations 
during the day and 5 hidden observations at night.  For reference, a linear equation is fit 
to the distribution in the bottom layer. 
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Chapter 3: The effect of low dissolved oxygen on behavioral interactions and 
swimming speeds of ctenophore predators and larval fish prey 

INTRODUCTION 
 The outcomes of predator-prey interactions can be influenced by both biological 

and environmental factors, and understanding the interplay of these factors is critical in 

developing accurate predictions of predator effects.  A major challenge in the study of 

trophic interactions is the coupling of processes occurring among organisms across 

different scales.  Although the effects of predation are often realized at the scale of the 

population, interactions occur at the individual level and therefore both predator and prey 

behavior have an important influence on the outcome (Letcher and Rice 1997, Fuiman 

and Cowan 2003, Hampton 2004).  Traditional measurements of clearance rates 

(Monteleone and Duguay 1988, Cowan and Houde 1993, Kolesar Chapter 2) can obscure 

the effects of predator and prey behaviors such as encounter rates,  escape abilities, or 

swimming speeds on food web interactions, and scaling up from laboratory experiments 

to whole systems may not result in accurate estimates of predation rates.   

 Predator-prey interactions occur as a sequence of interactions between individuals 

(Fig. 3.1), and factors that alter behavior can potentially affect any of the steps leading to 

ingestion.  Within the sequence from encounter to ingestion, the potential to escape at any 

point prior to ingestion can be fairly high for large, motile prey, as found by Costello et 

al. (1999) for ctenophore predation on copepods.  However, repeated interactions can 

occur, and subsequent interactions with the same or different predators can increase the 

probability of predation (Costello et al. 1999).  Population models generally employ 

cumulative predation (such as measured clearance rate) for populations of predators and 

prey, but these indices lack the mechanistic information required to predict changes in 
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predation.  Furthermore, since the probability of prey capture depends on specific 

behaviors of both predator and prey, it is critical to account for environmental factors, 

such as low dissolved oxygen (DO), that may ultimately affect predation due to the 

different physiological responses of predators and prey. 

Seasonal hypoxia can have a large influence on aquatic food web interactions at a 

variety of scales.  Hypoxia, typically defined as DO less than 2 mg L-1, occurs in many 

estuaries and coastal regions worldwide (Diaz and Rosenberg 1995, Diaz et al. 2004).  

Effects of hypoxia on individual behaviors of both predator and prey include changes in 

swimming and escape ability (Breitburg 1994, Breitburg at al. 1997, Weltzien et al. 

1999), as well as shifts in distribution and habitat use (Breitburg 1992, Keister et al. 

2000, Eby and Crowder 2002, Breitburg et al. 2003, Bell et al. 2003, North and Houde 

2004, Kolesar Chapter 2).  Predator and prey may be differentially affected by DO 

conditions due to different physiological tolerances (Breitburg et al. 1994, 1997, 1999; 

Rahel and Nutzman 1994, Nestlerode and Diaz 1998, Taylor and Eggleston 2000, 

Breitburg 2002, Seitz et al. 2003, Mistri 2004), so predicting the influence of hypoxia on 

food web interactions may not be straightforward.  Because low DO can modify behavior 

in planktonic food webs (Breitburg 1994, Breitburg et al 1997, Weltzien et al. 1999, 

Robb and Abrahams 2002), and the effect of low DO on behavior can change predator-

prey interactions, it is likely that low DO will alter predation rates (Breitburg et al. 1994, 

1997).  

Ctenophores (Mnemiopsis leidyi) are predatory gelatinous zooplankton native to 

coastal areas, including Chesapeake Bay (Purcell et al. 2001b).  They are voracious 

predators and can have a large effect on mesozooplankton and ichthyoplankton 

45 

http://wos17.isiknowledge.com/CIW.cgi?SID=4mII2dmjiIPbD6KK83f&Func=OneClickSearch&field=AU&val=Mistri+M&curr_doc=6/2&Form=FullRecordPage&doc=6/2


communities (Monteleone and Duguay 1988, Govoni and Olney 1991, Cowan and Houde 

1992, 1993; Houde et al. 1994, Purcell et al. 1994, 2001a & b).  Ctenophore consumption 

on fish eggs, yolk sac and post-yolk sac fish larvae in the Chesapeake Bay and its 

tributaries were estimated to range from 10 – 65 % day-1 (Monteleone and Duguay 1988, 

Cowan and Houde 1993, Purcell et al. 1994a); since current ctenophore densities are 

higher than in the past (Purcell et al. 2001, Breitburg et al. 2003, Purcell and Decker 

2005, Kolesar Chapter 2), the current potential for predation on ichthyoplankton is even 

greater.  Ctenophores are important predators on larvae of fish such as the naked goby 

(Gobiosoma bosc) and bay anchovy (Anchoa mitchilli) in the summertime Chesapeake 

Bay in areas with bottom water hypoxia.   

Ctenophores and larval fish differ in their tolerances and responses to low DO 

(Breitburg et al. 1997, 1999; Purcell et al. 2001b, Breitburg 2002).  Both laboratory 

experiments and field distributions indicate that ctenophores are more tolerant of low DO 

than their larval naked goby or bay anchovy larval prey.  Individual ctenophores held in 

the laboratory survived for 96 hours at DO concentrations of 0.5 mg L-1 (Breitburg et al. 

2003) and large numbers of ctenophores are found inhabiting areas of the Chesapeake 

Bay system with DO concentrations between 1 and 2 mg L-1 (Keister et al. 2000, 

Breitburg et al. 2003, Kolesar Chapter 2).  In contrast, the 24 to 96 h LC50 for most 

estuarine fish larvae is 1 - 2 mg L -1 (Miller et al. 2002), and bay anchovy and naked goby 

larvae actively avoid DO concentrations ≤ 2.0 mg L-1 (Breitburg 1994).   

Differences in tolerances and behavioral responses to low DO would be expected 

to influence many aspects of the interactions between ctenophores and fish larvae.  

Surprisingly, laboratory experiments indicated that clearance rates of ctenophores feeding 
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on bay anchovy yolk sac larvae and naked goby larvae at DO concentrations of 1.5 and 

2.5 mg L-1 do not differ from clearance rates at DO concentrations near saturation 

(Kolesar Chapter 2).  These results do not preclude the possibility that low DO affects 

individual components of the predation interaction. 

I examined the individual components of predator-prey interactions between a 

ctenophore predator and its larval naked goby prey to better understand the effects of DO 

on predation and related behaviors.  Two separate approaches were used: 1) small-scale 

video observations quantifying encounters and ingestion between individual ctenophores 

and fish larvae and 2) videotaped swimming speed measurements for both ctenophores 

and larval fish over a range of DO concentrations.  In order to examine the potential for 

hypoxia to influence predation on a population scale, I developed an encounter model 

incorporating measured encounters, ingestions, and swimming speeds and compared it 

against published clearance rate estimates of ctenophores on fish larvae (Cowan and 

Houde 1993, Purcell et al. 2001b, Kolesar Chapter 2).      

My primary hypothesis, that low DO would decrease encounters between predator 

and prey but increase ctenophore predation on larval fish, was based on the expectation 

that larval fish swimming ability would be adversely affected by low DO but that 

ctenophore swimming speeds would not be affected due to their higher tolerance of low 

DO.  At low DO, slower swimming fish larvae would encounter fewer ctenophore 

predators than at high DO, while reduced larval fish escape abilities at low DO would 

lead to a higher rate of ingestion per encounter at low DO than at high DO.  Because the 

influence of low DO on fish larvae is inversely related to age (Breitburg 1994), I also 

hypothesized that younger larvae would fare worse than older larvae, experiencing a 
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greater decrease in swimming speeds (Bailey 1984) and increase in ingestion by 

ctenophores at low DO.  Finally, I hypothesized that multiple encounters between 

predator and prey, which likely occur under high ctenophore field densities, would lead 

to higher ingestion rates than from the initial encounter only.     

MATERIALS AND METHODS 
Encounter rate experiments were conducted in June 2001 and June – July 2002, 

and swimming speed experiments in June – July 2000 at the Academy of Natural 

Sciences Estuarine Research Center (ANSERC; now Morgan State University) in St. 

Leonard, Maryland.  All organisms used in experiments were collected in the mesohaline 

portion of the Patuxent River estuary, MD and maintained in ANSERC laboratory 

facilities.   

Ctenophores were collected in the field either by dip-netting or in short plankton 

tows, and were maintained in the laboratory for up to a week following the methods of 

Decker et al. (2004).  I selected ctenophores for experiments to represent the average size 

of individuals in the field.  At the end of each trial, I measured displacement volume to 

the nearest ml and length to the nearest 5 mm of ctenophores used in filming.   

Naked gobies are benthic oyster-reef-dwelling fish that lay nests inside oyster 

shell.  Their planktonic larvae inhabit the water column for about 30 days post hatch 

(dph), or until they reach about 10 mm in length, during which time they are vulnerable 

to ctenophore predation.  Naked goby nests along with the guarding male were field-

collected and larval fish were hatched in the laboratory and reared in 80 L tanks at 

ambient temperature and salinity for up to 1 month.  Larval fish were initially stocked at 

densities of 25 L-1 and fed laboratory-reared rotifers (Brachionus plicatus).  After 2 
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weeks in the laboratory, larval fish densities were reduced by about half and feeding was 

supplemented with brine shrimp nauplii (Artemia spp.) following the methods outlined in 

Kolesar Chapter 1.  After each day of filming a representative sample of fish larvae (5 – 

10 individuals) were anesthetized with MS-222, filmed for subsequent measurements, 

and preserved in 75% ethanol.   

Naked goby larvae used in experiments ranged in age from 1 – 30 dph and were 

grouped into two categories based on feeding and body morphology: 1) young larvae 1 – 

14 dph that feed primarily on microzooplankton, and 2) older larvae 15 – 30 dph that also 

feed on larger zooplankton.  These categories were chosen to reflect not only differences 

in diet, but also in overall body morphology, swimming capability and physiological 

tolerances.  Naked goby larvae grow from 1 mm to 10 mm in about a month, gaining 

significant mass during that time.  This transition may influence the ability of naked goby 

larvae to escape ctenophore predators as well as their overall vulnerability to predation.   

Encounter Sequence Interactions  
To determine the effect of DO on individual-level responses of ctenophores and 

their larval fish prey, small-scale observations of predation interactions between 

individual ctenophores (average length = 58.3 ± 0.9 mm, range = 35 – 85 mm, N = 102) 

and naked goby larvae (age range = 1 – 30 dph) were filmed in the laboratory at low and 

high DO concentrations.  The DO treatments examined were low DO between 1.5 – 2.2 

mg L-1 and high DO at air-saturated levels between 5.7 – 8.0 mg L-1 (Table 3.1).  Target 

DO concentrations in the 2 L containers were achieved by bubbling 0.5-µm filtered 

Patuxent River water with either nitrogen gas or air prior to introduction of animals.   

Experimental temperature and salinity reflected ambient summertime conditions in the 
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mesohaline Chesapeake Bay (Table 3.1).  Predator and prey were acclimated in separate 

chambers to experimental DO concentrations for 30 minutes prior to filming.  A non-

airtight plexiglass lid was placed over the container during filming to limit gas exchange 

between the water surface and the atmosphere, and DO measurements were made at the 

beginning and end of each trial with a YSI model 85 DO meter in order to determine the 

change in DO during the observation period.  The filming container was illuminated from 

below by a diffuse light source, which did not appear to influence ctenophore or larval 

fish behavior during videotaping.  Filming began immediately following introduction of 

the organisms.  A Sony Handycam Hi-8 video camera with standard resolution and lens 

(TRV-66 or 95) was used to follow predation interactions for up to 1 hour or until 

ingestion occurred.      

 Waggett and Costello (1999) described the sequence of interactions leading to 

ingestion of zooplankton prey by Mnemiopsis leidyi (see also Costello et al. 1999).  I 

modified their classification of a potential predation event assuming that the interaction 

began upon encounter between a ctenophore predator and a larval fish prey and 

progressed through interactions including contact and capture as well as a several 

separate escape probabilities before culminating in ingestion (Fig. 3.1).  Interactions were 

sorted into 4 categories (after Waggett and Costello 1999, Costello et al. 1999): 

encounter, contact, capture, and ingestion, as well as 3 separate escape stages: post-

encounter (EncEscape), post-contact (ConEscape), and post-capture (CapEscape) (Fig. 

3.1).  Encounter was defined as proximity of predator and prey and depended on the 

length of both organisms to encompass the area of altered water flow generated by the 

ctenophore swimming and feeding mechanism, as well as the larval fish prey’s body 
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length.  For this study, all encounters occurred when a larval fish was within 10 mm from 

the lobes of a ctenophore.  Contact occurred when a fish larva touched one of the 

muscular lobes of the ctenophore, which are their primary site of capture for large 

zooplankton and ichthyoplankton prey (Costello et al. 1999).  Capture occurred when the 

fish larva was actually inside the lobes of the ctenophore, and was usually accompanied 

by struggling of the prey and movement of the prey by the predator towards the gut 

cavity.  Ingestion occurred when the fish larva was moved into the gut cavity of the 

ctenophore and struggling ceased.   

 Encounters were calculated as the positive occurrences of encounter (yes 

encounter versus no encounter) summed over all trials divided by the total number of 

trials.  The probabilities of all subsequent events (contact, capture, ingestion, EncEscape, 

ConEscape, and CapEscape)  were each computed as the positive occurrence of that event 

(yes vs. no) summed over all trials divided by the number of positive encounter 

occurrences for all trials.  During the predation sequence the three separate escape 

probabilities could lead to multiple cycles through the steps leading to ingestion (Fig. 

3.1), so the probability of contact, capture, ingestion, and EncEscape, ConEscape, and 

CapEscape occurring after the first encounter between predator and prey were also each 

calculated separately.  

 I analyzed data for the occurrence of encounters (yes versus no) leading to 

ingestion using exact logistic regression (using SAS version 9.1 statistical software) for 

all combined encounters between a ctenophore and fish larva for the two DO 

concentrations and two larval fish age classes.  Since both predator and prey can become 

sensitized to the presence of the other through multiple iterations of the interaction 
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sequence, the outcome of the first encounter between predator and prey was noted and 

separately analyzed.  Statistical significance was set at α < 0.05. 

Swimming Speeds of Predator & Prey 
 In order to determine the effect of DO on swimming ability I measured the three-

dimensional swimming speeds of ctenophores and naked goby fish larvae at three DO 

concentrations.  Swimming predator and prey were filmed in a custom-built chamber 

consisting of a rectangular tank (300 mm wide x 610 mm high) with a 40 L plexiglass 

cylinder inside (Fig. 3.2).  This configuration was designed to eliminate possible effects 

of tank corners on predator-prey interactions by placing organisms in the interior cylinder 

while reducing optical distortion from the cylinder on filming by filling the space 

between the tank and the cylinder with water.  Two video cameras (SONY HandyCam 

models TRV-66 and 95) placed orthogonal to each other provided a three-dimensional 

measure of swimming speed.  Both cameras were situated 15 cm from the outside wall of 

the tank, and the focus was adjusted so that an 80 mm x 80 mm area in the center of the 

tank (to minimize the possibility of wall effects on behavior) filled the field of view (Fig. 

3.2).  Three target DO concentrations were tested: low DO (1.5 mg L-1), intermediate DO 

(2.5 mg L-1), and high DO which was air-saturated (around 7 mg L-1).  Target DO 

concentrations were adjusted by bubbling 0.5-µm filtered Patuxent River water in the 

interior of the chamber with nitrogen gas or air prior to addition of organisms.  DO, water 

temperature, and salinity were measured at the start and end of each experiment with a 

YSI model 85 or 95 DO meter and a hand refractometer (Table 3.2).  Four to 10 

ctenophores (mean length = 57.1 ± 2.3 mm, N = 17) and a target number of 100 naked 

goby larvae 3- 20 dph (mean length = 4.5 ± 0.2 mm, N = 23) were included in each trial.  
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Microzooplankton prey were added to each trial (approximately 200 - 300 ml of the 

rotifer Brachionus plicatus at a density of approximately 300 rotifers ml-1) to encourage 

normal swimming and feeding behavior of the fish larvae. 

Naked goby larvae were acclimated to DO conditions in the inner cylinder 

approximately 30 minutes prior to the addition of ctenophores, which were acclimated in 

separate containers.  Filming began immediately after introduction of ctenophore 

predators and lasted for 2 hours.  For each trial, both videotapes were stamped with a 

synchronized time code and simultaneous presence of an individual ctenophore and fish 

larva was noted.  Between 2 – 5 sequences trial-1 for each organism were digitized and 

three-dimensional swimming speeds were calculated using an Optimus Motion Analysis 

software macro.  Swimming speed measurement duration was 2 seconds for ctenophores 

and 1.5 seconds for fish larvae; a representative sample of cumulative mean swimming 

speeds for each species indicated that this was a sufficient duration to capture average 

swimming speeds (Fig. 3.3a & b).   

Swimming speeds of ctenophores and larval fish were separately analyzed using 

mixed model ANOVA (SAS version 9.1 statistical software) to determine if swimming 

speeds (mm s-1) differed at the three DO levels.  The interaction between swimming 

speed and length was also examined.  Since all interactions were non-significant, 

interaction terms were dropped from analyses.  Means comparisons with Tukey’s 

adjustment were also included to distinguish differences in swimming speeds among the 

DO concentrations.  Statistical significance was set at α < 0.05.    
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Encounter Model 
I combined the laboratory measurements of ctenophore and larval fish encounters 

with swimming speeds in an encounter model to predict the effect of DO concentration 

on predation potential.  The encounter model equation was based on a model described 

by Gerritsen and Strickler (1977): 

E = 3.14 * (RLarv + RCteno) 2 * C * Vert* PD 

where E was the encounter rate (number of fish larvae m-3 encountered by an individual 

ctenophore d-1), and PD was the number of larval fish prey in one cubic meter of water.  

An adjustment to convert mm to m-3 (Vert = 10 – 9) was applied to the encounter 

equation.   

The encounter surface for foraging ctenophore predators consists of both lobes 

opened, best approximated as an ellipse.  Therefore, the encounter radius of each 

ctenophore predator (RCteno) was modeled as an ellipse based on ctenophore length in 

mm (CtLn).  The encounter radius of each fish larva (Rlarv) was modeled as larval fish 

length in mm (LvLn): 

RCteno = ((0.33 * CtLn) + (0.33 * CtLn / 2.0)) / 2.0  

RLarv = LvLn 

The distances swum by larval fish and ctenophores (DLarv and DCteno, mm d-1) 

were based on measured mean swimming speeds of fish larvae (LvSsp) and ctenophores 

(CtSsp), both in mm s-1: 

DLarv  = LvSsp * 86400 

DCteno = CtSsp * 86400 

and used to calculated the foraging rate, C (mm d-1).  Alternate equations were used 

depending on which organism swam a greater distance: 

54 



C = (DLarv2 + 3.0 * DCteno2) / (3.0 * DCteno), if DCteno > DLarv  

or 

C = (DCteno2 + 3.0 * DLarv2) / (3.0 * DLarv), if DCteno ≤ DLarv  

 In order to determine the potential for DO to alter predator-prey encounters and 

ingestions in the field, I applied the above equation for E, as well as the measured percent 

ingestions given encounter, to a ctenophore predator and larval fish prey at different DO 

concentrations.  The two DO levels modeled (low DO = 1 - 2 mg L-1 and high DO = 7.0 

mg L-1) corresponded to those in my laboratory observations of encounter interactions.  

Swimming speeds of ctenophores and larval fish were averaged across measurements at 

low and intermediate DO to correspond to DO levels used for encounter interactions (1 - 

2 mg L-1).  I also used measured swimming speeds at high DO (7 mg L-1).   

The modeled predator and prey were selected to represent typical sizes of 

ctenophores and larval fish, as well as larval fish densities, present in the summertime 

mesohaline Chesapeake Bay system.  A 50 mm, 14 ml ctenophore was modeled, 

corresponding to the average size of ctenophores used in all of my laboratory studies as 

well as the same size used by Purcell et al. (2001b) in their clearance rate estimates.  I 

also modeled two age classes of fish larvae (young larval fish ≤ 14 dph, average length = 

3.5 mm and older larval fish > 14 dph, average length = 5.5 mm) which were identical to 

the classifications used in both laboratory swimming speeds measurements and 

laboratory predation interactions.  Larval fish density was modeled as 2 m-3, which is the 

average density measured in the field (Keister et al. 2000, Purcell et al. 2001a).  I used 

my laboratory measurements of swimming speeds for ctenophores and both larval fish 

age classes to parameterize the encounter model equation.     
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RESULTS 

Small-Scale Predation Interactions 
 DO did not significantly affect any of the steps from encounter to ingestion for 

either the first or subsequent encounters.  The percent of trials resulting in encounters 

between ctenophores and fish larvae for all DO levels and larval fish ages was at least 

90% (Fig. 3.4).  For the first encounter between predator and prey, there was no 

significant effect of DO alone on any of the steps in the sequence from encounter to 

ingestion (Fig. 3.4a, all P > 0.5).  Ingestion of fish larvae by ctenophores following the 

first encounter at both high and low DO was almost identical and averaged about 10% for 

both age classes of larval fish combined (Fig. 3.4a).  For cumulative encounters between 

a ctenophore predator and larval fish prey there was no significant effect of DO alone on 

any of the steps from encounter to ingestion (Fig. 3.4b, all P > 0.1).  Ingestion resulting 

from cumulative encounters averaged about 50% and was slightly higher at high DO 

(65%) than at low DO (47%) (Fig. 3.4b). 

 For the first encounter, larval fish age had a significant effect on some of the 

interactions between a ctenophore predator and a larval fish prey.  Contact resulting from 

the first encounter tended to be higher but not statistically significant for younger fish 

larvae than for older fish larvae (P > 0.2).  Capture of younger fish larvae was 

significantly higher than capture of older fish larvae (P < 0.04) (Fig. 3.4a).  The percent 

of both EncEscape and ConEscape tended to be higher, but not statistically significant, 

for older fish larvae for the first encounter between predator and prey (both P > 0.2) 

while CapEscape was significantly higher for younger fish larvae (P < 0.03) (Figure 

3.4a).  There was no significant difference in ingestion between younger and older fish 

larvae for the first encounter between predator and prey (both P > 0.5), but the percent 
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ingestion tended to be larger for younger fish larvae at high DO and larger for older fish 

larvae at low DO (Fig. 3.4a). 

 For cumulative encounters (mean = 6.4, range = 2 – 18) capture was significantly 

higher for younger fish larvae than for older fish larvae (Fig. 3.4b, P <0.001).  In contrast, 

both EncEscape and ConEscape were significantly higher for older fish larvae than for 

younger fish larvae following cumulative encounters (Fig. 3.4b, both P < 0.001).  

Ingestion resulting from multiple encounters was significantly higher for younger fish 

larvae (Fig. 3.4b, P < 0.05) and reached as high as 88% for young larvae at high DO and 

as low as 42% for older larvae at high DO (Fig. 3.4b).  Larval fish escaping from 

prolonged contact with ctenophores were covered with strands of mucus from the 

ctenophore’s colloblasts. 

Swimming Speeds of Predator & Prey 
 Ctenophore swimming speeds were fairly constant during 2 s intervals (Fig. 3.3a) 

and were not affected by ctenophore length (R2 = 0.004, P = 0.8).  Swimming speeds 

were therefore estimated from 2 s duration observations and ctenophore length was not 

included in analyses.   

Dissolved oxygen significantly affected ctenophore swimming speeds (mm s-1) 

(ANOVA: P2, 13 = 0.02; Fig. 3.5).  Ctenophores swam significantly faster at intermediate 

DO (2.5 mg L-1, 22.5 ± 1.2 mm s-1) than at either low DO (1.5 mg L-1, 18.2 ± 1.0 mm s-1, 

Tukey’s adjustment P = 0.05) or high DO (7.0 mg L-1, 17.6 ± 1.2 mm s-1, Tukey’s 

adjustment P = 0.02).  Swimming speeds for the highest and lowest DO levels were not 

significantly different (Tukey’s adjustment P = 0.85).  
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 Naked goby larvae swan continuously during 2 s observation intervals, but 

alternated between faster and slower swimming speeds 2 – 3 times per second (Fig. 3.3b).  

Mean swimming speeds during 2 s intervals were used for analyses.  Larval fish 

swimming speed unadjusted for body size was not significantly affected by DO (P1, 19 > 

0.5), or larval fish age (P1, 19 > 0.4), but tended to be lower at intermediate DO (2.5 mg L-

1, 20.4 ± 0.9 mm s-1) than at either low DO (1.5 mg L-1, 21.2 ± 1.2 mm s-1) or high DO 

(7.0 mg L-1, 22.1 ± 1.1 mm s-1) (Fig. 3.6).  

Encounter Model 
Application of my encounter model and ingestion calculations yielded predictions 

of ctenophore predation at all combinations of larval fish age and DO concentration that 

were larger than expected based on laboratory studies.  The number of predicted 

encounters m-3 for all combinations of larval fish age and experimental DO ranged 

between 3.81 and 4.69 encounters ctenophore-1 d-1 (Table 3.3).  More encounters with 

ctenophores were predicted for older fish larvae than for younger fish larvae regardless of 

DO concentration (Table 3.3).  For first encounters between ctenophores and larval fish 

the predicted number of ingestions ranged between 0.18 and 0.66 fish larvae m-3 

ctenophore-1 d -1 (Table 3.3) and was largest for older fish larvae at low DO and younger 

fish larvae at high DO (Table 3.3).  The predicted numbers of ingestions following 

multiple encounters between ctenophores and larval fish ranged between 1.68 and 3.38 

fish larvae m-3 ctenophore-1 d -1 and was also largest for older fish larvae at low DO and 

younger fish larvae at high DO (Table 3.3).   
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DISCUSSION 
Dissolved oxygen did not significantly affect encounters of fish larvae with 

ctenophores or their ingestion in small-scale laboratory observations of predation 

interactions.  Nevertheless, ctenophore swimming speeds were elevated under moderate 

hypoxia, which could increase encounter rates between predators and prey in the field, 

and increase potential larval fish mortality.  Although differences in DO did not 

significantly affect ctenophore ingestion of larval fish, larval fish age affected certain 

components of the interaction between predator and prey.   

Effects of Swimming Speeds on Encounter & Ingestion 
The combination of altered swimming speeds that can affect encounter rates 

between predator and prey, compromised capture abilities of predators and impaired 

escape responses of prey can confound the overall effect of low DO on predation, making 

it difficult to predict the overall effect of hypoxia on trophic interactions.  Encounter rates 

between a ctenophore predator and larval fish prey were estimated from swimming 

speeds of both organisms, but larval fish swimming speeds may be especially important 

in post-encounter processes such as capture.  Direct observations of predation interactions 

between ctenophores and larval fish revealed that most contacts between predator and 

prey occurred when a fish larva swam into the oral end of a ctenophore within the 

encounter radius.  Increased swimming speeds of larval fish would be expected to 

increase the possibility of contact and repeated encounters with ctenophore predators.  

Potential escape from predation should also increase with increased swimming speeds.  

Swimming speeds of naked goby larvae were similar under high and low DO, however, 

perhaps explaining the lack of a DO effect on encounters, contacts, and escapes in these 

experiments. 
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Differences in predation strategies may affect the influence of low DO on 

predation of larval fish.  Increased predation at low DO by predators such as medusae 

may be due to reduction of larval fish burst (escape) swimming speeds at low DO 

(Breitburg et al. 1997).  The effect of DO on larval fish non-burst swimming speeds, as 

measured in this study, may be a more suitable metric than the effect of DO on burst 

swimming speeds for predation by a cruising predator such as a ctenophore.  The larval 

fish cruising swimming speeds I measured fall within the normal range for fish of this 

size; therefore, my laboratory measurements are likely to translate into accurate 

predictions of field encounters related to larval fish speeds (Hunter 1972, Breitburg 1992, 

Miller et al. 1988, Fisher et al. 2000, Hunt von Herbing and Gallager 2000, Chamorro 

2001).  

Larval fish age and developmental stage can also affect escape abilities and 

swimming speeds, and potentially modify DO effects.  For both first encounter and 

cumulative encounters, percent capture was significantly higher for younger larval fish at 

high DO than for any other DO condition or larval fish age (Fig. 3.4).  Younger fish 

larvae swam faster than older fish larvae (young larvae mean swimming speed = 22.0 ± 

1.1 mm s-1, N = 11; older fish larvae mean swimming speed = 20.5 ± 0.6 mm s-1, N = 12) 

and the fastest larval fish swimming speeds were at high DO (Fig. 3.6).  For younger fish 

larvae, a combination of faster swimming and weaker escape abilities (Bailey and Batty 

1984, Purcell et al. 1997) would be expected to result in increased capture by 

ctenophores.  Previous studies documented a decrease in susceptibility to predation for 

older, larger larval fish (Bailey 1984, Cowan and Houde 1992, Sugisaki et al. 2001), 

which would suggest that low DO should further impair the ability of a fish larva to 
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escape ctenophore predation, although I found no evidence of a negative effect of low 

DO on escape probabilities in my experiment.  

My measures of ctenophore swimming speeds were greater than foraging 

swimming speeds measured by a previous study.  Kreps et al. (1997) reported swimming 

speeds of 2 - 11 mm s-1 for Mnemiopsis of lengths 33 – 78 mm foraging on copepods.  

My measured ctenophore swimming speeds (15.4 – 26.3 mm s-1) were within the range 

measured for escape (12 – 55 mm s-1) and after contact (7 – 30 mm s-1) with medusae 

predators (Kreps et al. 1997).  Elevated ctenophore swimming speeds in my study may be 

a response to a faster-moving prey (larval fish) or to the confines of a 40 L container.   

The effect of DO on ctenophore swimming speeds may have an important 

influence on encounter rates, which could ultimately affect overall predation rates.  

Ctenophore swimming speeds were significantly higher at intermediate DO 

concentrations than at either high or low DO (Fig. 3.5), which may result from 

heightened activity as ctenophores attempt to increase water flow across tissues to 

maintain aerobic metabolism for oxyregulation (Thuesen et al. 2005).  The same 

increased activity may not occur at lower DO levels if ctenophores are conserving energy 

under more taxing DO conditions, as observed for many bivalves (Sobral and Widdows 

1997).  In previous, preliminary laboratory experiments, I observed higher ctenophore 

predation at intermediate DO levels (2.5 mg L-1) on naked goby larvae in 1000 L tanks 

(Kolesar and Breitburg, unpubl.), which could be due to faster ctenophore swimming at 

intermediate DO concentrations.  However, larval fish recovery rates in those 

experiments were smaller than desired.  I did not find increased predation on naked goby 
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larvae at intermediate DO levels in the 100 L tanks used in final experiments (Kolesar 

Chapter 2).  

Encounter Model 
I compared the results from my ctenophore predator and larval fish prey 

encounter model and ingestion estimates with clearance rate estimates for a ctenophore 

predator on larval fish prey using results from a published study of predation in 3.2 m3 

field mesocosms (Cowan and Houde 1993) as well as results from predation in the 

laboratory at three DO levels (Kolesar Chapter 2).  Both studies used ctenophores with 

approximately the same average size as those modeled with my encounter model 

calculations (ctenophore volume = 15 ml).  The ctenophore clearance rate estimates from 

the two experimental studies fell within the same range.  Cowan and Houde (1993) 

reported an average clearance rate on larval fish of 0.7 L ml ctenophore -1 d -1 (range = 

0.0 to 1.3 L ml ctenophore -1 d -1) (also Table 7 Purcell et al. 2001), and ctenophore 

clearance rates on larval fish in my 100 L tanks averaged 1.1 ± 0.1 L ml ctenophore -1 d -1 

across all three DO levels (Kolesar Chapter 2).  The clearance rates for ctenophores on 

larval fish calculated in both predation experiments ranged from 0.01 to 0.02 m3 

ctenophore-1 d -1, which corresponds to an ingestion rate of 0.02 to 0.04 fish larvae m-3 

ctenophore-1 d -1 at average field densities of 2 larval fish m-3.  The estimates of predation 

from these laboratory experiments were an order of magnitude lower than those predicted 

using ingestion rates from my encounter model following first encounters between a 

ctenophore predator and fish larvae, and two orders of magnitude lower than ingestion 

rates from my encounter model following cumulative encounters between predator and 

prey (Table 3.3).   
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Relatively fast swimming speeds of M. leidyi in this study contribute to the high 

ingestion rates calculated using the encounter model.  Ctenophore clearance rates in 100 

L tanks on both bay anchovy yolk sac larvae and small naked goby larvae were more 

variable at high DO than at either low or intermediate DO levels (Kolesar Chapter 2).  

This high variability may be due to the combination of high encounter rates between 

predator and prey, as well as uncompromised escape abilities of the fish larvae at high 

DO concentrations.  When using the encounter model, the highest encounter rates for all 

combinations of DO and larval fish age occurred at low DO for older fish larvae, which 

was when average swimming speeds of ctenophores (18.2 ± 1.0 mm s-1, N = 6) and older 

fish larvae (20.6 ± 1.0 mm s-1, N = 4) were intermediate with respect to the 3 DO levels 

tested and were most similar to each other (Figs. 3.5 & 3.6).  Similarity in swimming 

speeds of both ctenophores and larval fish can cause calculations of encounter to be very 

sensitive to DO effects.  Although DO did not directly affect predation in my 

experiments, increased vertical habitat overlap of predator and prey due to DO may 

increase encounter rates, leading to elevated larval fish mortality.   

Other Factors Affecting Encounter & Ingestion 
Fish larvae had a 40% higher probability of being ingested following multiple 

encounters with a ctenophore predator than after the first encounter (Figure 3.4).  This 

may result from increased susceptibility of larval fish to ingestion caused by prior 

predator interactions.  Following prolonged contact with ctenophores, escaped larval fish 

were covered with strands of mucus-like material that seemed to impair swimming 

ability, perhaps rendering them more susceptible to various predators.  Impaired larval 

fish swimming may also inhibit feeding, eventually leading to starvation.   
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In addition to low DO, various other factors may have a substantial effect on 

planktonic predation interactions, and laboratory manipulations cannot capture the 

complete range of possible stressors that exist in the field.  Factors such as small-scale 

turbulence (MacKenzie et al. 1994, Rothschild and Osborn 1988, MacKenzie and 

Kioerboe 2000), environmental patchiness (Letcher and Rice 1997), eutrophication 

(Oviatt et al. 1986), food web dynamics (Breitburg et al. 1997), and the larger-scale 

effects of hypoxia on distribution of organisms in the water column (Breitburg et al. 

2003, Hampton 2004, Kolesar Chapter 2) could account for differences between 

ctenophore and larval fish encounter and ingestion rates calculated using my encounter 

model and clearance rate estimates from mesocosm and field studies.  Larger-scale water 

column dynamics such as effects on distribution due to low DO (or other sources of 

environmental patchiness) can have big effects on predator – prey overlap, changing 

encounter rates and ingestion potential (Kolesar Chapter 2).  Additionally, extrapolation 

of laboratory clearance rate estimates to the field may be influenced by effects of 

container size on predation (de Lafontaine and Leggett 1987, Cowan and Houde 1993, 

Toonen and Chia 1993), particularly for gelatinous predators such as ctenophores that 

may experience behavioral modification due to wall interactions.  Estimates of 

cumulative predation from experiments conducted in finite volume containers increase 

directly with increasing container size (Gibbons and Painting 1992, Purcell et al. 2001).   

Caution is therefore necessary when scaling up results from the laboratory to the 

field as experiments conducted in different sized containers may yield dissimilar 

estimates of clearance rates as well as overall predation.  Monteleone and Duguay (1998) 

estimated clearance rates of 1 – 15 L ml ctenophore-1 d-1 for a single small ctenophore on 
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fish larvae in a 15 L container, which are an order of magnitude larger than results for 

ctenophore clearance rates on larval fish in 100 L tanks (0.1 L ml ctenophore-1 d-1, 

Kolesar Chapter 2), 1000 L tanks (0.1 – 3 L ml ctenophore-1 d-1, Kolesar and Breitburg, 

unpublished data), and 3200 L mesocosms (0.0 – 1.3 L ml ctenophore-1 d-1, Cowan and 

Houde 1993), but are at the same order of magnitude as calculations of ingestion 

resulting from first encounters using my encounter model.   

Differences in predation rates between laboratory experiments and encounter 

model calculations can be due to artifacts resulting from measuring interactions between 

predator and prey in the laboratory for both methods.  Experiments in confined containers 

may artificially inflate the encounter probabilities between ctenophore predators and 

larval fish prey or alter swimming behavior.  Declining prey densities during laboratory 

clearance rate experiments may also affect estimates of predation.  Direct measurements 

of predator and prey swimming speeds and probabilities of escape and ingestion 

following captures can provide more accurate estimates of predation potential between 

ctenophores and larval fish by minimizing container size effects on cumulative predation 

measurements and eliminating the problem of prey depletion.   

The presence of alternative prey or predators may also affect estimates of 

ctenophore predation on larval fish.  Cowan and Houde (1993) found that alternative prey 

reduced ctenophore predation on fish larvae by 91%.  My laboratory experiments did not 

specifically address the issue of alternative prey (although alternative prey were included 

in 100 L laboratory experiments described in Chapter 2), but in mesocosm experiments 

(Cowan and Houde 1993) and certainly in the field, alternative prey including various 

types and size classes of zooplankton, as well as other species and life stages of 
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ichthyoplankton, may be important in reducing ctenophore encounters with and predation 

on larval fish. 

Competition for prey resources and effects on predators may also affect estimates 

of ctenophore predation on larval fish.  Ctenophore predation may be affected by 

competition with piscivorous fishes (Purcell and Arai 2001) or other gelatinous 

zooplankton such as scyphomedusae (Purcell 1985).  In addition, predation on 

ctenophores by medusae can change ctenophore abundance (Purcell and Cowan 1995), 

which in turn could affect encounters with and predation on larval fish.   

Hypoxia is prevalent in estuarine environments and can alter trophic dynamics in 

affected systems (Breitburg et al. 1997, 1999; Eby et al. 2005).  The effects of hypoxia on 

ctenophores, fish larvae, and their trophic interactions can be subtle and effects on 

individual behaviors can combine in complex ways to influence predation, and the 

complex array of environmental and biological factors involved in estuarine food web 

interactions prohibits comprehensive experimental examination.  In order to more fully 

understand trophic dynamics at all scales, a combination of laboratory studies, field 

sampling, and simulation modeling are necessary to capture all of the mechanisms 

contributing to predation.  Because predator - prey interactions occur on the scale of the 

individual, carefully examining species interactions and behavior on this scale is critical 

to development of appropriate models with sufficient mechanistic understanding of the 

entire predation event.  My detailed examination of hypoxic effects on individual 

predation interactions and behavior provides a unique glimpse into the influence of this 

environmental factor on a small scale.  Further study of predation interactions and 

behavior under hypoxic conditions, with inclusion of alternative predators and prey, and 
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physical conditions such as turbulence or stratification to accurately mimic the field, can 

offer a more complete view of the effect of low DO on food web dynamics.    
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Table 3.1. A summary of physical properties measured in laboratory predation 
interactions between ctenophores and larval fish.  Two levels of DO were tested, low DO 
(1 - 2 mg L-1) and high DO (approximately 7.0 mg L-1).  Values of temperature, salinity, 
and DO were recorded at the beginning and end of experiments and averaged to represent 
the conditions experienced by organisms during interactions in a 2 L container. 

 

Predation Interaction Experiments Mean ± std error Range N = 

Low DO 

Temperature (ºC) 24.2 ± 0.1 22.1 – 26.7 47 

Salinity 13.5 ± 0.2 11.0 – 15.0 47 

DO (mg L -1) 1.8 ± 0.02 1.5 – 2.2 47 

High DO 

Temperature (ºC) 24.6 ± 0.1 21.0 – 27.0 55 

Salinity 13.2 ± 0.2 11.0 – 15.0 55 

DO (mg L -1) 6.7 ± 0.06 5.7 – 8.0 55 
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Table 3.2. A summary of physical properties measured in laboratory swimming speed 
experiments for ctenophores and larval fish.  Three DO concentrations were tested, low 
DO (1.5 mg L-1), intermediate DO (2.5 mg L-1), and high DO (7 mg L-1).  Values of 
temperature, salinity, and DO were recorded at the beginning and end of experiments and 
averaged to represent the conditions experienced by organisms during filming in a 40 L 
chamber. 
 

Swimming Speed Measurements Mean ± std error Range N = 

Low DO 

Temperature (ºC) 23.6 ± 0.3 21.8 - 24.3 8 

Salinity 10.2 ± 0.2 10.0 – 11.5 8 

DO (mg L -1) 1.7 ± 0.02 1.7 – 1.9 8 

Intermediate DO 

Temperature (ºC) 23.3 ± 0.6 21.2 – 25.5 8 

Salinity 10.5 ± 0.2 10.0 – 11.5 7 

DO (mg L -1) 2.6 ± 0.1 2.3 - 2.8 8 

High DO 

Temperature (ºC) 23.2 ± 0.6 21.2 – 25.1 7 

Salinity 10.0 ± 0.0 10.0 7 

DO (mg L -1) 7.7 ± 0.2 7.1 - 8.7 7 
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Table 3.3. Results from modeled ctenophore interactions with larval fish.   Two DO 
levels (low DO, 1 - 2 mg L-1; and high DO, 7 mg L-1) and 2 age classes of larval fish 
(younger fish larvae ≤ 14 dph, length = 3.5 mm; and older fish larvae > 14 dph, length = 
5.5 mm) were modeled using the Gerritsen-Strickler encounter model and percent 
ingestion following both the initial encounter and cumulative encounters as measured in 
my laboratory experiments.  Interactions occur between a single ctenophore predator of 
average size (50 mm, 14 ml) and average field densities of larval fish (2 m-3, Purcell et al. 
2001b).      
 

 
 

DO 
Level 

 
Larval Fish Age 

 
Encounters 

# d-1 m-3 

First 
 Encounter 
Ingestion 
# d-1 m-3 

Cumulative 
Encounters  
Ingestion 
# d-1 m-3 

Low  Younger 3.81 0.23 1.68 

Low  Older 4.69 0.66 2.25 

High  Younger 3.84 0.61 3.38 

High  Older 4.48 0.18 1.88 
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Figure 3.1. The sequence of events leading to ingestion of a larval fish prey by a 
ctenophore predator.  The sequence includes encounter, contact, capture, and ingestion, 
with three separate escape probabilities following encounter (EncEscape), contact 
(ConEscape), and capture (CapEscape).  I adapted this figure from Waggett and Costello 
(1999) and Costello et al. (1999).  The dashed arrows represent the potential for multiple 
encounters between predator and prey following any of the three escape probabilities. 
 
 
 
           Encounter          Contact       Capture     Ingestion 
 
 
 
    EncEscape         ConEscape        CapEscape 
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Figure 3.2. A schematic of the set-up used for filming ctenophore and larval fish 
swimming speeds.  The interior 40 L cylindrical chamber (approximately 610 mm 
height, 300 mm diameter) contained the experimental animals.   The space between the 
cylinder and the outer cube was filled with tap water to reduce optical distortion.  Two 
cameras (X and Y) were positioned orthogonal to each other and focused on an 80 mm x 
80 mm area roughly centered in the cylinder.  A diffuse light source provided 
illumination from below, and did not seem to affect organism behavior during the two 
hour filming trials. 
 

X Camera

Light

Y Camera
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Figure 3.3. Typical measurements of cumulative mean three-dimensional 
swimming speed (mm s-1) over time (s) for a) a ctenophore and b) a larval fish.  
The duration selected for swimming speed analyses for each species was on average 2 s 
for ctenophores and 1.5 s for larval fish.  Durations were selected for logistical reasons 
and seemed sufficient to capture average swimming speeds for each organism.   
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Figure 3.4. Results from small-scale predation interactions in the laboratory 
between a ctenophore and a larval fish.  Three dissolved oxygen (DO) levels (low DO, 
1.5 mg L-1; mid DO, 2.5 mg L-1; and high DO, 7.0 mg L-1) and 2 age classes of larval fish 
(younger fish larvae ≤ 14 days post hatch (dph) and older fish larvae > 14 dph) were 
tested.  I report the overall percentage of positive occurrence (yes vs. no) for each of the 
seven steps in the interaction sequence (Figure 3.1) after a) the first encounter between 
predator and prey and b) after cumulative encounters over the one hour experimental 
duration.  N is the number of encounters, asterisks (*) indicate statistical significance at α 
= 0.05 and P-values are reported in the text for exact logistic regression with both age and 
DO in the model.    
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Figure 3.5. The relationship between absolute swimming speed (mm s-1) and 
length (mm) for ctenophores.  Swimming speed trials were filmed for low DO (1.5 mg 
L-1, open circles), mid DO (2.5 mg L-1, grey circles), and high DO (7.0 mg L-1, dark 
circles).  I fit a regression line to the data: SSP =0.02 * length + 18.2, R2 = 0.004 and P-
value = 0.8, which is not statistically significant.   
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Figure 3.6. The relationship between absolute swimming speed (mm s-1) and 
length (mm) for larval fish.   Swimming speed trials were filmed for low DO (1.5 mg 
L-1, open circles), mid DO (2.5 mg L-1, grey circles), and high DO (7.0 mg L-1, dark 
circles).  I fit a regression line to the data: SSP = -0.5 * length + 23.6, R2 = 0.03 and P-
value = 0.4, which is not statistically significant. 
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Chapter 4: Individual-based model of an intraguild predation food web: 
ctenophores, larval fish, and copepods in the Patuxent River estuary 

INTRODUCTION 

Food Web Theory & Intraguild Predation 
A classic concept of food web function and structure is one of distinct trophic 

levels and linear energy transfer with strong, top-down (Hairston and Hairston 1993, 

1997) or bottom-up (Ginzberg and Akcakaya 1992) control.   In natural systems neither 

bottom-up nor top-down processes act in isolation; rather, they interact (Gurevitch et al. 

2000, Navarrette et al. 2000, Rosenheim 2001) such that uncoupling their effect on 

trophic webs can be difficult.  Many systems may be characterized by more complex 

connections among trophic levels in food webs due to widespread omnivory (Baird and 

Ulanowicz 1989, Polis and Strong 1996, Williams and Martinez 2000, Rosenheim 2001), 

defined here as consumers preying at multiple trophic levels.  The prevalence of 

omnivory in natural systems has been widely recognized (Martinez 1993, Wissinger and 

McCrady 1993, Holt and Polis 1997, Mylius et al. 2001, Rosenheim 2001), most notably 

in aquatic systems (Polis 1991, Diehl 1993, Winemiller 1996).   

Intraguild  predation (IGP) is a specialized case of omnivory involving the 

consumption of one competitor by another, simultaneously conferring nutritional gain to 

the IG predator and elimination of a competitive rival, the IG prey (Polis et al. 1989).  

The ‘guild’ in IGP systems is defined as a group of species with overlapping niche 

requirements (Root 1967), in this case a group of species feeding on similar prey items.  

It is recognized that intraguild predation is widespread (Ehler 1996) and particularly 

ubiquitous in marine systems (Polis et al. 1989).   
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Increased food web complexity, such as that imposed by omnivory and intraguild 

predation, can dampen trophic cascades (Polis and Strong 1996, Snyder and Wise 2001).  

Omnivores weaken trophic cascades caused by strong top-down control in linear food 

chains by feeding on multiple trophic levels, which disperses predation effects throughout 

the food web (Polis and Strong 1996) by creating weak trophic links (Polis and Strong 

1996, McCann et al. 1998).  Weak links occur when a predator is not wholly dependent 

upon any single resource for survival, such that the predator’s actions may be more 

detrimental to the prey species than beneficial to the predator, as often is the case when 

early life stages are the prey (Polis and Strong 1996; Holt and Polis 1997, Diehl and 

Fießel 2000).   

Through the action of feeding on multiple prey resources, omnivores also reduce 

their ability to deplete any one trophic level in a system.  Food limitation may not 

influence omnivores as strongly as it might influence specialists, and the impact of 

omnivores on the food web may persist despite controls that would limit specialist 

consumers.  Whether or not omnivores can limit the growth or abundance of competitors 

by depleting shared food resources is debatable (Polis and Strong 1996).       

One of the most common mechanisms promoting species coexistence in IGP 

systems occurs when the IG prey is more efficient than the IG predator at utilizing the 

shared resource base (Polis et al. 1989, Polis and Holt 1992, Holt and Polis 1997). 

Typically if the IG predator is superior at resource utilization, either predation on or 

competition with the IG prey can preclude coexistence.  However, when the IG predator 

is better than the IG prey at exploiting the shared resource (Wissinger 1992), intermediate 
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levels of disturbance, seasonality or intermediate levels of productivity can increase 

coexistence (Polis 1984, Diehl and Feißel 2000, Gurevitch et al. 2000, Heithaus 2001).   

A spatial or resource subsidy that is unique to one of the members of the IGP food 

web and unavailable to its competitor can also foster coexistence by reducing niche 

overlap (Polis 1984, Wissinger 1992, Polis and Strong 1996, Navarette et al. 2000, 

Heithaus 2001), as can behavioral differences between guild members.  Age structure can 

also be an important factor contributing to trophic persistence in IGP food webs (Polis 

1984, 1998), with competition and predation each affecting multiple age classes of the 

same species.  But while the combined interaction of predation and competition can 

influence the dynamics of a system, it is important to consider that predation usually 

imposes the greatest impact on overall survival of the prey (Gurevitch et al. 2000).  

Additionally, separating the indirect effects of competition from the direct effects of 

predation on an organism may be difficult (Wissinger and McCrady 1993, Diehl 1995, 

Navarette et al. 2000).    

In the Chesapeake Bay IGP food web involving the ctenophore (Mnemiopsis 

leidyi), planktivorous fish (the bay anchovy, Anchoa mitchilli), and calanoid copepods 

(Acartia tonsa), both larval and adult planktivorous fish share a zooplankton resource 

base with ctenophores but only the early life stages of fish are ctenophore prey (Fig. 4.1).  

This trophic relationship corresponds closely to age-structured asymmetrical intraguild 

predation (Figure 1b in Polis et al. 1989).  The ctenophore, M. leidyi, the IG predator in 

the food web, is an omnivore that feeds on zooplankton as well as early life stages of the 

bay anchovy, Anchoa mitchilli, an important forage fish species and the most abundant 

fish in the Chesapeake Bay system (Wang and Houde 1994).  Bay anchovy eggs, yolk sac 
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larvae, and feeding larvae up to approximately 15 mm TL are potential prey for 

ctenophores (Cowan and Houde 1992).  Bay anchovy spawning and maximum 

ctenophore densities coincide seasonally.  The dominant summer mesozooplankton 

species, the calanoid copepod A. tonsa, provides a shared prey resource for adult and 

larval stages of both ctenophores and bay anchovy.  The effect of ctenophore predation 

on fish larvae has been estimated from laboratory and field mesocosm experiments 

(Cowan and Houde 1993, Kolesar Chapter 2), field studies (Purcell et al. 2001), and 

models (Breitburg et al. 2003).  Measuring the effect of competition in this food web is 

more challenging.    

In addition to biotic (competition and predation) interactions, physical habitat 

may also structure food webs in the Chesapeake Bay system.  The summertime 

mesohaline Patuxent River, like the mainstem Chesapeake Bay, experiences varying 

intensities of hypoxia (Breitburg et al. 2003) and the depletion of dissolved oxygen (DO) 

in the lower layers of the water column can limit habitat available to organisms and 

determine their vertical distributions.  Field studies indicate that low DO concentrations 

can cause behavioral responses in habitat use and distribution by motile organisms such 

as ctenophores, fish larvae, and zooplankton (Breitburg et al. 2003, Kolesar Chapter 2).  

The potential for DO to structure the water column and determine the degree of spatial 

overlap among organisms influences the potential for competition and predation among 

ctenophores, fish larvae, and zooplankton, and therefore the stability and dominant 

interactions influencing intraguild predation within this IGP food web.   

We examined which effect of ctenophores on larval fish populations was more 

important — predation or competition — and how low versus high DO conditions in the 
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water column affect the relative importance of these biotic interactions within the 

ctenophore-fish larvae-copepod IGP food web.  Uncovering the mechanism underlying 

the persistence of the Chesapeake Bay IGP system may also provide insight into other 

systems with similar food web structure.  We isolated the effects of predation and 

competition, as well as the environmental influences of low DO, on larval fish survival 

and growth by using a spatially-explicit individual-based simulation model of the IGP 

food web.  The model simulated the predation of ctenophores on fish larvae and 

zooplankton and the predation of fish larvae on zooplankton in a 3-layer water column 

for the summer months using information representative of the mesohaline portion of the 

Patuxent River estuary.  Simulations were performed that allowed for effects of 

competition and predation on larval fish by ctenophores to be separated from each other 

under conditions of high and low DO concentrations.  Model results were used to address 

three questions: 1) How do high and low DO affect the growth and survival of larval fish 

in the baseline IGP food web?; 2) Is competition or predation the more important effect 

of ctenophores on larval fish survival and growth?; and 3) What is the effect of low 

versus high DO on the relative importance of competition and predation to larval fish 

survival and growth within the IGP food web? 

MODEL DESCRIPTION AND METHODS 

Overview 
 The model followed the growth, mortality, and movement of ctenophores, fish 

larvae, and copepods every 12 hours to encompass day and night dynamics for the 

summer months in a 3-layer water column.  Ctenophores and fish larvae were followed as 

individuals; copepods were followed as the numbers in each of three uncoupled life 

stages (nauplii, copepodites, adults).  Reproduction of modeled ctenophores introduced 
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new ctenophores into the model, while fish larvae were introduced as daily cohorts of 

eggs that developed into yolk-sac larvae and then into larvae when they were started to be 

followed as individuals. Temperature was assumed constant throughout the simulation, 

and dissolved oxygen (DO) concentrations varied over time in each of the three layers. 

Growth of ctenophores and fish larvae was based on bioenergetics models with 

consumption dependent on their encounters with their prey.  Densities of each copepod 

life stage were modeled using a version of a discrete logistic population dynamics 

equation.  Ctenophores ate copepods and fish larvae, and fish larvae ate copepods.  

Mortality of ctenophores was assumed to be constant; mortality of fish larvae and 

copepods were due to predation by modeled individuals plus an assumed external fixed 

mortality of fish eggs, yolk sac larvae, and feeding larvae.  Dissolved oxygen -dependent 

movement determined which layer the copepods, ctenophores, and fish eggs, yolk sac 

larvae, and feeding larvae experienced every 12 hours.  Dissolved oxygen concentration 

affected mortality rates of fish eggs, growth rates of ctenophores and fish larvae, and the 

vertical movement of ctenophores, fish eggs, yolk sac larvae, feeding larvae, and 

copepods.  Fish eggs and larvae in the model were mostly based upon information about 

bay anchovy.  All variables used in model equations are defined in Table 4.1. 

Water Column Structure 
The simulated water column was configured to be representative of the 

summertime conditions typical of the deep, mesohaline region of the Patuxent River that 

experiences hypoxia.  The water column was 1 m x 1 m x 20 m deep and divided into 3 

layers with 20% of the volume in the surface layer, 30% in the pycnocline layer, and 50% 

in the bottom layer.  Two DO conditions were simulated: well-mixed with DO 
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concentrations of 6.0 mg L-1 in all three layers and stratified with surface layer DO equal 

to 6.0 mg L-1, pycnocline layer DO equal to 3.0 mg L-1 and bottom layer DO equal to 1.5 

mg L-1.  The bottom layer low DO concentration of 1.5 mg L-1 was selected because 

previous studies have shown that DO concentrations of 1.5 mg L-1 altered the vertical 

distributions of organisms (Breitburg et al. 2003) and the predator-prey interactions in the 

Chesapeake Bay food web (Decker et al. 2004).  Temperature conditions were held 

constant at 24˚C in all layers for the duration of the simulation; while not necessarily 

realistic this was a simplifying model assumption.  Vertical distributions of zooplankton, 

fish eggs and yolk sac larvae, as well as each modeled fish larva and ctenophore 

individual, were determined for each 12 h model time step based on seasonal patterns 

measured in the Patuxent River and the bottom layer DO concentration (Breitburg et al. 

2003).  

FISH LARVAE 

Larval Fish Spawning 
Fish egg cohorts were introduced into the surface layer at night at densities of 100 

m-3.  Frequency of spawning was dictated seasonally with spawning every 3 days 

beginning in early June (Ordinal Day 150), increasing to peak spawning occurring daily 

during July (Ordinal Day 190 – 212), and then tapering off again to spawning every 3 

days until spawning ceased in August (Ordinal Day 220).   

The abundances of fish eggs and yolk sac larvae in each layer were simulated 

using a stage-based matrix projection model.  Vertical movement shifted the densities of 

eggs and yolk-sac larvae among layers.  Life stage duration was assumed to be 24 h for 

fish eggs and 2 d for yolk sac larvae.  The external mortality rate (EYMort) applied to 

fish eggs and yolk sac larvae was 0.99 12h-1.  Each time step, the mortality due to 
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ctenophore consumption was computed and added to the external mortality rate to obtain 

a total mortality rate.  From fixed stage duration and total mortality rate for each time 

step, we derived the diagonal and off-diagonal elements of the matrix model for the egg 

and yolk sac larval stages (Caswell 2001).  The diagonal elements are the probability of 

surviving a time step and staying in the same stage, and the off-diagonal elements are the 

probability of surviving a time step and progressing to the next life stage.  The numbers 

of individuals in the egg and yolk sac larval stages were then updated.  The diameter of 

modeled fish eggs was 1 mm and yolk sac larval length was 3 mm.  Both eggs and yolk 

sac larvae weighed 0.00842 milligrams dry weight (mg DW) (Tucker 1989).  

At first feeding (exiting the yolk sac larval stage) the surviving fish larvae became 

individuals in the model.  All spawning cohorts that initiated first feeding on the same 

day were lumped and the total numbers of survivors were followed as individuals.  New 

feeding larvae were assigned a length of 3 mm (Table 4.2) and larval fish weight (LvWt) 

was computed using the equation (Rose et al. 1999a): 

 LvWt = EXP LOG (LvLn – LOG (51.2) / 0.594); if LvLn < 4.2 

LvWt = EXP (LOG LvLn – LOG (12.4) / 0.254); if LvLn ≥ 4.2 

Larval Fish Growth 
 Individual larvae grew according to a bioenergetics equation with consumption 

based on larval encounters and captures of zooplankton.  Larval fish weight was 

incremented each 12 hours based on consumption (LvCon), assimilation (LvAsm), and 

respiration (LvRsp): 

 LvWt  =  (LvWt -1) + (LvCon * LvAsm - LvRsp) 
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Larval length (LvLn) was then determined from weight (LvWt) using a length-weight 

relationship:  

 LvLn = 51.2 * LvWt 0.594; if LvWt ≤ 0.015 

 LvLn = 2.4 * LvWt 0.254; if LvWt > 0.015   

Weight was allowed to increase or decrease each time step but length was not allowed to 

shrink.  A new length was computed if the individual was at the weight expected for its 

length and if the change in weight was positive.  

Larval Fish Consumption  
 Larval fish consumption of copepods (nauplii, copepodites, adults) used a 

foraging model adapted for bay anchovy by Adamack and Rose (unpublished 

manuscript) using bay anchovy information in Rose et al. (1999a).  Larval bay anchovy 

maximum consumption was dependent on larval weight and temperature, and was 

calculated for each time step with the assumption that feeding occurred only during 

daytime time steps: 

 LvCmax = (47.37 * LvWt 1.732) * T; if LvWt < 0.022     

 LvCmax = (1.1019 * LvWt 0.727) * T; if LvWt ≥ 0.022 

Realized consumption was determined from a multi-species functional response 

relationship that depended on maximum consumption rate and copepod densities (Rose et 

al. 1999b).  Larval fish consumption (LvCon) was calculated as the cumulative sum of 

each copepod life stage eaten in a layer (ZZj Vol-1), based on their vulnerability to larval 

fish predators (LvCapj, after Rose et al. 1999a, with corrections for sign), divided by half 

saturation constants (KKj), expressed as mgdw of prey weight (ZpWtj): 

  LvConj = (LvCmax * ((ZZj / Vol) * LvCapj / KKj) / (1 + Σ LvCapj / KKj)) * ZpWt  
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Half saturation constants (KKj) were 50,000 m-3 for copepod nauplii, 2000 m-3 for 

copepodites, and 1500 m-3 for adult copepods, based on field densities (Chesapeake Bay 

Program Website). 

Larval Fish Assimilation and Metabolism 
Larval bay anchovy assimilation efficiency (LvAsm) was set at 0.60 (Rose et al. 

1999a).  Routine respiration (LvRRsp) was dependent upon larval weight (LvWt in 

mgdw) and water temperature (T in ºC), and then halved as an adjustment from 24 h to 

the 12 h time step: 

 LvRRsp = (0.146 * LvWt 0.997 * EXP (LOG (2.2) / 10.0) * (T - 27.0)) * 0.5  

Active metabolism (LvARsp) was assumed to be twice routine respiration: 

LvARsp = LvRRsp * 2 

Total metabolism (LvRsp) was equal to routine respiration for the nighttime time steps 

and active metabolism during daytime time steps. 

Larval Fish Mortality 
Individual fish larvae <15 mm in length died from being eaten by ctenophores and 

from a constant rate from an unspecified external source.  Larger larval fish (≥ 15 mm) 

were no longer vulnerable to ctenophore predation and were removed from the model as 

survivors of predation, but still preyed on zooplankton and were subject to the external 

mortality.  The external mortality rate was assumed to be 3% 12h-1 to reflect predation by 

Chrysaora quinquecirrha medusae and piscivorous fish (Cowan and Houde 1993, Purcell 

et al. 1994a, Purcell and Arai 2001). 
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Fish Movement 
Proportional densities of eggs and of larval fish in each layer were based on 

categorized DO concentrations (0.0 – 0.99, 1.0 – 1.99, 2.0 – 2.99, 3.0 – 3.99, and > 4.0 

mg L-1) in the bottom layer as in Breitburg et al. (2003).  These proportional densities 

were calculated for a water column with equal volumes of water in all three layers, and 

then adjusted for model conditions.  First, we linearly interpolated the proportional 

densities for the continuous bottom DO concentrations simulated in the model to obtain 

proportional densities appropriate for the bottom DO concentration for each time step.  

Second, WE adjusted the proportional densities for the unequal volumes of the three 

layers by multiplying by the volume of the layer.  Finally, we formed the cumulative 

distribution of these interpolated, volume-adjusted proportions and generated a random 

number between zero and one to determine to which layer the individual would move to 

for the next time step.  Separate proportional densities by bottom DO were used for fish 

eggs and for larvae, and proportional densities of larval fish were also used for yolk sac 

larvae.  Movement of fish egg densities, yolk sac larval densities, and individual model 

fish larva occurred every time step in the simulation. 

CTENOPHORES  

Ctenophore Growth  
 Energy consumed by ctenophore model individuals and remaining after 

assimilation and respiration was used for growth and reproduction.  Immature individuals 

used all of their excess energy for growth, while mature ctenophores (length ≥ 25 mm 

and weight ≥ 178.8 mgdw, Reeve et al. 1989) allocated up to 100% of their excess 

assimilated energy for reproduction.  Ctenophores not meeting caloric demand for routine 

metabolic processes shrank in both length and weight.  Ctenophore weight (CtWt) was 
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incremented each 12 h based on consumption (CtCon), adjusted for assimilation 

(CtAsm), respiration (CtRsp), and reproduction (CtRpr): 

 CtWt = (CtWt – 1) + (CtCon * CtAsm – CtRsp) * (1 – CtRpr) 

Ctenophore length (CtLn) was determined from weight (CtWt) using a length-weight 

relationship (Kremer 1976):   

CtLn = 12.383 * (CtWt * 0.03) 0.5342 

Modeled individual ctenophore predators ranged in length from 25 to about 100 mm.    

Ctenophore Consumption 
Consumption by individual ctenophores was based on an encounter model similar 

to the one described by Gerritsen and Strickler (1977), and subsequently modified by 

Cowan et al. (1999) and Kolesar (Chapter 3).  Ctenophores fed during both day and night 

time steps.  Encounters were dependent on swimming speeds of the predator and prey, 

their respective lengths, and prey densities.  Ctenophores were the predators and fish 

eggs, yolk sac larvae, feeding larvae, and copepods were the prey.  The length of the 

individual ctenophore and individual fish larvae were used; fish eggs and yolk sac larvae 

and copepods used their assigned fixed lengths.  Ctenophore swimming speed was 

assumed equal to 0.30 body lengths per second (Kolesar Chapter 3).  Fish eggs were 

assumed not to swim; yolk sac larvae, feeding larvae, and copepods swam at 2 body 

lengths s-1.  

Foraging rate (Fpp in mm s-1) was determined by the distance swum by predator 

and prey in 12 h, and depended on whether the predator or the prey swam farthest 

(DsPred vs. DsPrey). The distance swum in 12 hours (mm 12h-1) by the predator 
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(DsPred) and prey (DsPrey) in the model was the product of swimming speed (body 

length 12h-1) and length of the organism (mm):  

Fpp = Fpred if DsPred > DsPrey 

or  

Fpp = Fprey if DsPred ≤ DsPrey; 

     where 

Fpred = (DsPrey2 + 3.0 * DsPred2) / (3.0 * DsPred)  

 and 

       Fprey = (DsPred2+ 3.0 * DsPrey2) / (3.0 *DsPrey) 

The reactive distance of ctenophore predators was based on their length (mm) and 

modeled as an ellipse:  

 CtRd = ((0.33 * CtLn) + (0.33 * CtLn / 2.0)) / 2.0  

Reactive distances for all prey types (PrRd) were assumed to be their length in mm.  

The mean number of encounters (E) in 12 hours (number 12h-1 m-3) between a 

ctenophore predator and its prey depended on the reactive distances of both organisms 

(CtRd and PrRd), the foraging rate (Fpp), and number of prey eligible (PD) for encounter 

with the ctenophore: 

 E = 3.14 * (PrRd + CtRd)2 * Fpp * 10-9 * PD 

For copepods, fish eggs, and yolk sac larvae, PD was determined by dividing the total 

number of the particular prey in each layer by the volume of that layer to obtain the 

number m-3.  The PD for fish larvae was slightly different because each model larva 

represented some number of identical population larvae (described below in Numerical 

Considerations).  PD for each modeled fish larva was expressed as the number m-3, based 
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upon the number of population individuals each larva represented divided by the volume 

of the layer in which they were located.  For each ctenophore and prey, the realized 

number of encounters was generated as a random deviate from a Poisson distribution 

with mean equal to E.  

 The actual number of prey encountered and successfully captured was determined 

as a deviate from a binomial distribution with the number of trials equal to the number of 

realized encounters and the probability of success set to the probability of capture.  

Capture success (CtCapj) for ctenophores preying on copepods was estimated from 

Waggett and Costello (1999) as 0.62 for nauplii, 0.54 for copepodites and 0.46 for adults, 

and as 0.80 for ctenophores preying upon fish eggs and yolk sac larvae (Cowan and 

Houde 1993).  Capture success for ctenophore feeding on individual fish larvae 

(CtCapLv) depended on the lengths (mm) of both predator and prey and was not allowed 

to exceed 0.80 (Cowan and Houde 1993), and were comparable to the ingestion 

proportions measured in small-scale encounter experiments (Kolesar Chapter 3, which 

ranged from 0.42 – 0.88: 

 CtCapLv = 1.086 - 6.99 * (LvLn / CtLn) 

Ctenophore consumption (CtCon in mgdw 12h-1) was calculated as the sum of 

ctenophore consumption over each prey type (j): 

CtConj = ((CtConj – 1) + CtCapj * PreyWtj) 

Where CtCapj (or CtCapLv) is capture success of each prey type multiplied by the weight 

of each prey (PreyWtj or LvWt in mgdw).  

To adjust for the difference in energy densities between predator and prey, 

ctenophore consumption of each prey type was converted into calories (CtConCal).  
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Ctenophore prey items were converted into calories and divided by the energy density of 

the ctenophore.  Ctenophores contain about half of the calories per mgdw as their prey.  

Caloric density (calories mgdw -1) was assumed to be 2.967 for ctenophores (Harris et al. 

2000), 5.160 for copepods (Laurence 1976), 5.525 for fish eggs, 5.350 for feeding fish 

larvae, and 5.424 for yolk sac larvae (average of larvae and eggs, Hunter and Leong 

1981).   

Ctenophore Assimilation  
Assimilation (CtAsm) decreased with increasing prey consumption based on data 

from Kremer (1976), Kremer (1979), Kremer and Reeve (1989), and Reeve et al. (1989).  

Using their estimates for Narragansett Bay ctenophore assimilation, we fit an equation for 

ctenophore assimilation expressed as ctenophore consumption per ctenophore weight, 

both converted to calories for equivalent energy densities (Fig. 4.2): 

CtAsm = 0.3957 + 0.5176 / (1.0 + EXP – (((CtConCal / (CtWt * 2.976)) - 0.0899) / - 0.0158)) 

Assimilation efficiency was allowed to range from a maximum of 0.9 at low food 

densities to a minimum of 0.4 at the highest prey densities.  Within that range, inflection 

points for the assimilation efficiency function were determined using metabolic demands 

of ctenophore respiration plus excretion at low food density (high assimilation 

efficiency), to metabolic demands of ctenophore respiration, excretion, plus reproduction 

at high food density (low assimilation efficiency).     

Ctenophore Respiration 
Respiration (CtRsp in Mgdw 12h-1) was based on formulations from Kremer 

(1976) for Narragansett Bay ctenophores at 21˚C.  Adjustments are made to the original 

Kremer equation to adapt respiration to a 12 h time step (multiplied by 0.5) and to 
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accommodate a warmer summertime Patuxent River estuary temperature of 24˚C 

(assume a multiplier of 0.5): 

CtRsp = ((4.4e 0.15 * T * (7.06 * 10-4)* 1.67) * 0.5 * (CtWt))* 0.5 

Ctenophore Reproduction  
 The numbers of ctenophore eggs and larvae in each layer were tracked using a 

stage-based matrix projection model.  Eggs were assumed to have a duration of 1 day, 

and larvae were assumed to have stage duration of 10 days.  Individuals exiting into the 

lobate stage (typically 10 mm) entered an intermediate holding stage where they waited 

another 5 - 7 days before entering the model as 25 mm individuals.  The elements of the 

stage-based model were estimated each time step from the number of new eggs produced, 

and the duration and mortality rates of the egg and larval stages.  The numbers of 

individuals in the egg and larval stages were updated each time step.  New lobates were 

introduced into the same layer as they were spawned, and were assumed to stay there 

(i.e., no vertical movement) until being introduced into the same layer as new individual 

model ctenophores about 5 days later.     

On each nighttime time step, the proportion of unmetabolized assimilated energy 

allocated to reproduction (CtRpr) was calculated using the formula in Kremer (1976) 

based on ctenophore dry weight (CtWt in mgdw): 

CtRpr = 0.01 e 0.115 * (CtWt * 0.03)  

Egg production was based on mesocosm experiments on Patuxent River ctenophores 

(Grove and Breitburg 2005).  The calories available for ctenophore reproduction 

(CtRprCal) were a function of calories consumed (CtConCal) adjusted for assimilation 
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(CtAsm), as well as ctenophore respiration (CtRsp) converted to calories, and the energy 

allocated to reproduction (CtRpr): 

CtRprCal = (CtConCal * CtAsm – (CtRsp * 2.967)) * CtRpr    

The number of eggs produced individual ctenophore-1 12h-1 (CtEgg) was based on 

calories available for reproduction: 

CtEgg = 647.51* LOG (CtRprCal) + 926.75  

While ctenophore egg release occurred only at night (Grove and Breitburg 2005, 

Breitburg et al. unpubl.), the calculations for ctenophore reproduction summed day and 

night egg production.  Maximum egg production in the model was approximately 10,000 

eggs individual-1 24 h-1 and ceased after Ordinal Day 228 (August 15).  Reproduction was 

not mass-balanced in that the mass of eggs produced did not necessarily equal the surplus 

energy devoted to reproduction.  No estimates of instantaneous mortality existed for the 

early life stages of ctenophores.  We selected daily values of 0.8 for ctenophore eggs and 

0.6 for ctenophore larvae which produced stable model simulations.     

Ctenophore Mortality  
 Individual (adult) ctenophores in the model were subjected to a mortality rate of 

5% 12 hr-1, which was increased to 15% 12 hr-1 after August 1 (Ordinal Day 213).  The 

increase in adult ctenophore mortality rates was designed to reflect natural predation by 

C. quinquecirrha and Beroe ovata ctenophores in mid–to–late summer (Kreps et al. 1997, 

Purcell et al. 2001).   

Ctenophore Movement  
 Vertical movement of adult ctenophores (modeled individuals) was done in the 

same way as for model individual fish larvae.  Proportional densities of ctenophores in 
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each layer based on the DO in the bottom layer provided the fractions of individuals 

expected in each layer for the next time step.  As with fish larvae, we linearly interpolated 

the proportional densities for the continuous bottom DO concentrations, adjusted the 

proportional densities for the unequal volumes of the three layers, and randomly 

determined which layer the individual moved to based on a cumulative distribution of the 

adjusted proportions.     

ZOOPLANKTON 
The numbers of individuals in each of three life stages of copepods (nauplii, 

copepodites, and adults) were simulated separately using a logistic production model with 

added mortality terms from ctenophore and larval fish predation.  Each of the three 

copepod life stages was characterized by their production rate, equilibrium density, 

length, weight, and swimming speed.  Copepod lengths were set to 0.15 mm for nauplii, 

0.6 mm for copepodites, and 1.2 mm for adult.  Corresponding weights were 0.00152 mg 

DW for nauplii, 0.0033 for copepodites, and 0.011 for adult copepods (Tester and Turner 

1988).  Swimming speeds were assumed to be 2 body lengths (BL) s-1 for all three stages 

(Buskey 1994).  Lengths and swimming speeds were used to determine their encounters 

with ctenophores and fish larvae; weights were used to determine the biomass consumed 

by these predators.  

The number in each of the three copepod life stages at each time step in each layer 

were updated.  A separate equation was used for each life stage: 

ZZj,t,i = ((ZZj,t,i –1) + ZProdj,t*(1–Ztotj,t / TotZj,t))–Σ LvCon j,t,i m-3–Σ CtCon j,t,i m-3 

where ZZt,i,j is the number of each copepod life stage (j) in the model at time t in layer i.  

Production rates (ZProdj,t, number-1 number-1 12h-1) were set to 0.6 for nauplii, 0.5 for 
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copepodites, and 0.4 for adults.  Ztot j,t is the sum of numbers of each copepod life stage 

over the three layers.  Equilibrium densities in the model (TotZj,t) were set to 15,000 m-3 

for nauplii, 300,000 m-3 for copepodites, and 10,000 m-3 for adults (Chesapeake Bay 

Program website; Rose et al. 1999a).  The summed total consumption over all fish larvae 

and ctenophore predators for each copepod life stage j, in layer i, at time t, was 

subtracted.  Copepod movement was done the same way as for fish and adult 

ctenophores, based on proportional densities by layer and bottom water DO 

concentrations (Breitburg et al. 2003, Kolesar Chapter 2). 

DISSOLVED OXYGEN EFFECT   
 Low DO directly affected modeled larval fish growth, adult ctenophore growth, 

and fish egg mortality.  An equation formulated from larval fish growth in the laboratory 

at different DO concentrations by Zastrow et al. (unpubl.) was used to calculate reduction 

in larval fish growth.  Both bay anchovy and naked goby larvae were used to formulate 

the equation because the 24 h LC50 of larvae of the two species is similar (Breitburg 

1992), and because bay anchovy in the laboratory did not survive at DO concentrations 

below 4 mg L-1 in three growth experiments (Zastrow et al. unpubl.):      

GrLvDO = -0.00397 + 0.482 * DO 0.389 

On each time step, the DO concentration in the layer for each modeled larval individual 

was used to determine GrLvDO, which was then multiplied by the predicted growth rate 

to obtain the realized DO-adjusted growth rate.  GrLvDO was specified to obtain a value 

near one under high DO conditions.   
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 The formulation of the DO adjustment to ctenophore growth was similar to that 

for larvae and was estimated from mesocosm experiments by Grove and Breitburg 

(2005): 

 GrCtDO = 0.1173 + 0.0104 * DO  

As with the DO effect on larval fish growth, GrCtDO was applied to each modeled 

ctenophore growth rate based on the DO in their layer on each time step.  

 Model fish eggs were spawned in the high DO surface layer but can sink into the 

low DO bottom layer during development.  Fish egg mortality due to low DO was 

calculated using an equation fit to data from Dorsey et al. (1996): 

 MrtEggDO = 95.77 / (1 + exp - (DO – 2.35) / 0.95) 

Fish egg mortality (MrtEggDO) at the DO in each layer was divided by MrtEggDO for 

high DO and multiplied by the fraction of fish eggs surviving for each time step.  Other 

possible direct effects of low DO (e.g., swimming speeds, capture success, metabolism) 

were not included.  

 Low DO also had indirect effects on ctenophore and fish larvae predation rates.  

Differential effects of low DO on the vertical distributions of copepods, fish, and 

ctenophores affected their degree of vertical overlap and thus their encounter rates.   

NUMERICAL CONSIDERATIONS  
We used a super-individual approach for representing ctenophores and larval fish 

model individuals.  The super-individual approach allows for a pre-determined number of 

model individuals to be in a simulation thereby preventing numerical coding problems 

associated with following thousand or millions of model individuals (Scheffer et al. 

1995).  In our model, ctenophore reproduction was simulated based on energy consumed.  
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However, adding a new model-individual for every new ctenophore introduced into the 

model could result in the computer code exceeding memory limitations.  The super-

individual approach addresses this by making each model individual worth some number 

of identical population individuals.  Thus, a known number of model individuals can be 

added and their worth adjusted to reflect the population number added.  Mortality is then 

simulated by decrementing the worth of the model individual to reflect the loss of 

population individuals represented by the model individual. In all model simulations, five 

ctenophore model individuals and five larval fish model individuals were introduced into 

each layer at the start of every time step (5 layer -1 12 h-1).  The worth of ctenophore 

model individual (Ct Worth) and larval fish model individual (LvWorth) was calculated 

by dividing the number of population individuals introduced into each layer at each time 

step by 5.   

Mortality and predation were imposed on model ctenophores and fish larvae by 

adjusting the population worth of model individuals.  Mortality, either as a fixed 

mortality rate on either ctenophore or larval fish, or by ctenophore predation on a larval 

fish, resulted in a reduction of the population worth of the model individual.  Because 

both the ctenophores (predator) and larval fish (prey) were both super-individuals, when 

a model ctenophore ate one or more of the population individuals of a model fish larva, 

we had to make adjustments to ensure mass balance.  If the ctenophore worth times the 

number of population larva eaten was less than the worth of the larval fish, then the 

ctenophore model individual consumed the entire weight of the larval fish. The model 

ctenophore grew accordingly and the larval worth was reduced by the worth of the 

ctenophore times the number of larvae eaten.  If the ctenophore worth times the number 
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of population larva eaten was greater than the worth of the model larva, then the 

ctenophore actually consumed the weight of the larval fish times the ratio of larval worth 

to ctenophore worth and the worth of the larva was set to zero.  Ctenophore predation on 

larval fish and copepods, and larval fish predation on copepods, were accounted for after 

each ctenophore and larval fish evaluation as the predator.  This was done to minimize 

the possibility of summed predation pressure over ctenophores or fish larvae exceeding 

the prey abundance in a layer on a time step.  Because we updated the larval fish worths 

and copepod densities for predation after every predator, each time step the ctenophores 

and larval fish individuals were evaluated for growth and mortality in random order.  

Otherwise, modeled individuals evaluated first would always see higher prey densities.  

Predation by ctenophores on fish eggs and yolk sac larvae were accounted for by 

the dynamic mortality term included in the estimation of the diagonal and sub-diagonal 

terms of their stage-based matrix projection model.  Predation by ctenophores and larval 

fish on each of the three copepods stages was accounted for by inclusion of the mortality 

rate in each logistic production equation. 

DESIGN OF MODEL SIMULATIONS  
Three versions of the model were simulated under a high DO scenario and a low 

DO scenario for a total of six conditions (Fig. 4.3). All model simulations were for 100 

days from May 25 (Ordinal Day 145) to early September.  The objective was to separate 

the effect of predation of ctenophores on fish larvae from the effect of competition 

between ctenophores and fish larvae for copepods.  The first version of the model was 

baseline and represented the full effects of intraguild predation (IGP): ctenophore 

consumption caused mortality of fish larvae, and ctenophore and fish larval consumption 
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caused mortality of copepods (Fig. 4.3a).  The IGP version therefore included ctenophore 

predation on fish larvae and competition between ctenophores and larval fish for copepod 

prey.  The second version of the model relaxed the ctenophore predation effects on fish 

larvae (Fig. 4.3b).  Ctenophore consumption depended on their encounters with fish 

larvae, but eaten larval fish were not removed from the model, therefore ctenophores 

gained the appropriate prey resources but fish larvae were not affected.  The third version 

of the model maintained the ctenophore predation effects on fish larvae but relaxed the 

competition between ctenophores and fish larvae for copepods.  

 Implementation of the relaxed competition version involved using output from 

other model simulations as input to recalibrate the model (Fig. 4.3c).  First, the baseline 

model was run with only ctenophores and copepods (no fish larvae) and with ctenophore 

consumption causing mortality of copepods.  The predicted copepod numbers by life 

stage and time step were recorded.  We used these copepod densities as input back into 

the ctenophore-copepod only model but without ctenophore effects on copepods, and 

recalibrated ctenophore parameters so their dynamics closely resembled the IGP version.  

Finally, using the recalibrated ctenophore parameters, we ran the model with ctenophores 

only preying upon their own pool of copepods (the output from ctenophore-copepod 

model) and fish larvae consuming their own pool of copepods.  In this relaxed 

competition version, ctenophore dynamics resembled the dynamics in the IGP baseline 

but with their consumption affecting fish larvae mortality and not affecting the 

availability of copepods to fish larvae.  Consumption by larval fish did affect the pool of 

copepods specific to fish larvae, allowing for intra-specific competition, and ctenophore 

predation affected fish larvae.  However, ctenophore consumption of copepods did not 
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affect the copepods available to fish larvae; thus, we was able to relax inter-specific 

competition between ctenophores and fish larvae for copepods, while still maintaining 

realistic ctenophore predation on fish larvae and realistic intra-specific competition of 

fish larvae for copepods. 

We examined results from five replicate runs of the model for each of the three 

versions of the food web (three model scenarios) and two DO (low and high) 

concentrations.  We first examined the full IGP version under both high and low DO 

conditions for general model behavior, corroboration with field data, and for the effects 

of low DO on model dynamics. Second, we compared the predicted larval fish survival 

and growth among the three model versions for the high DO condition to determine the 

importance of ctenophore predation versus ctenophore competition on larval fish survival 

and growth.  The third comparison was between the three versions of the model for high 

DO versus low DO to determine whether low DO altered the importance of predation 

versus competition obtained under high DO in the second comparison.  

Model output variables of number of larvae surviving and their average duration 

from first-feeding (introduced as model individuals) to 15-mm were compared among the 

six simulated conditions (3 versions of the food web and two DO conditions) for all five 

replicate simulations. Simple model corroboration consisted of comparing averaged 

densities over a single replicate simulation of the IGP version under high and low DO, 

and comparing these to field-measured densities for the Patuxent River estuary and 

Chesapeake Bay.  Model corroboration also included coarse comparisons of larval fish 

and ctenophore growth rates, ctenophore egg production rates, and temporal patters of 

copepod densities to reported values in the literature.  The high and low DO IGP 
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simulations were used because the field data reflected a range of DO conditions.  For 

simplicity we used a single replicate simulation for each of the six conditions and 

examined for every 12 hour time step over the 100-days of simulation: larval lengths and 

ctenophore weights over time for selected model individuals (every 50th model 

individual); time-series plots of larval, ctenophore, and adult-stage copepod densities by 

water layer; and time-series plots of larval, ctenophore, and adult-stage copepod densities 

summed for the entire water column.  Diets of ctenophores and larval fish were 

summarized as the averaged proportion by biomass of nauplii, copepodites, and adult 

copepods over a single replicate simulation for each of the six conditions.  Larval fish 

diets were further broken down by the size of the larvae (small: < 5 mm, intermediate: 5 – 

10 mm, and large: > 10 mm).  For contrasting the effects of low DO, we also report the 

fraction surviving the fish egg and yolk-sac larval stages because DO has a direct effect 

on fish egg mortality rate.  Finally, as an aid for interpreting model results, we computed 

the average vertical overlap between ctenophores and fish larvae, ctenophores and 

copepods, and fish larvae and copepods for a single replicate simulation of each of the six 

conditions.  

RESULTS  

Baseline Model Behavior & Corroboration  

Baseline Model Behavior 
Survival of early life stages and larval fish growth to 15 mm in the high DO 

baseline IGP model were affected by ctenophore predation and competition for copepod 

prey.  Total survival from egg production to hatching in the high DO baseline IGP food 

web simulation was 40 %.  An average of 2.1 % of first feeding (~2 d post-hatch) fish 

larvae reached 15 mm, corresponding to a mean survival of 14.1 fish larvae to 15 mm 
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(Table 4.2).  Average larval growth rate to 15 mm was 0.46 mm d-1, which corresponded 

to an average duration of 26.0 days from first feeding to 15 mm (Table 4.2).  In general, 

larval fish lengths during the middle period of simulations did not increase as rapidly as 

larval fish lengths during the early and late portions of the simulation (Fig. 4.4).  Smaller 

increases in larval fish lengths during the middle of the IGP (baseline) version of the food 

web coincided with low copepod densities (Figs. 4.5a & b) and high ctenophore densities 

(Fig. 4.6a & b). 

 Larval fish diets in the baseline IGP food web simulation were composed mostly 

of copepodites with smaller proportions of copepod nauplii and adults (Table 4.3).  Diets 

of larval fish with lengths greater than 5 mm contained mostly copepodites, and only 

larval fish longer than 10 mm contained adult copepods in their diets. 

Weights of model individual ctenophores ≥ 400 mgdw increased rapidly 

throughout the simulation in the high DO baseline IGP food web (Fig. 4.7).  Weights of 

smaller ctenophores (≤ 400 mgdw) increased rapidly early and late in the simulation, but 

their growth slowed during the middle time period of Ordinal Days 50 to 150 when 

copepod and larval fish prey densities were low (Figs. 4.5a & 4.8a).  Copepods 

comprised 99 % of ctenophore diets on a dry weight basis in the baseline IGP food web, 

and the majority of the eaten copepods were nauplii (Table 4.4).  

Densities of both larval fish and copepods in the high DO baseline IGP food web 

declined in the middle of simulations when ctenophore predator densities were highest 

(Figs. 4.5a, 4.6a, 4.8a).  Larval fish densities reached their highest point early in the 

simulation (~6.0 individuals m-3, Ordinal Day 160) as larval fish numbers accumulated 

from frequent spawning.  Larval fish densities declined during the middle of simulations 
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and rebounded to a second, lower peak later in the simulation (~Ordinal Day 220; Fig. 

4.8a).  In the absence of ctenophore predation, a peak in density of larval fish ≤ 15 mm 

would be expected in the middle of simulations, as a result of repeated spawning events 

and growth out of the ≤ 15 mm size class.  Ctenophore densities peaked around Ordinal 

Day 180 at 8.9 individuals m-3, which followed the initial larval fish density peak (Figs. 

4.5a & 4.8a).  Adult-stage copepod densities in the baseline IGP food web scenario were 

high at the beginning and end of simulations, but declined during the middle of 

simulations coincident with the peak in ctenophore predator densities (Figs. 4.5a & 4.6a).  

Mean densities of copepodites and copepod nauplii in the baseline IGP food webs are 

reported in Table 4.5, and their temporal patterns in all food web scenarios mirrored those 

of adult copepods. 

Effect of DO in the Baseline IGP Food Web 
Survival of early life stages of fish was lower in the low DO baseline IGP food 

web than in the high DO simulation (Table 4.2), but the effect of DO varied among 

developmental stages.  Survival of fish eggs to hatch was lower in the low DO 

simulations than in high DO due to direct mortality on eggs of low DO.  Thirteen percent 

of spawned fish eggs hatched to reach the yolk sac larvae stage at low DO as compared to 

40 % at high DO.  Percent survival from hatch to first feeding was similar in both high 

and low DO food webs.  In contrast, survival of larval fish from first feeding to 15 mm 

was higher in the low DO than in the high DO conditions (average of 4.4 % versus 2.1 

%).  Higher larval fish survival in the low DO baseline IGP food web is due to the effects 

of DO on vertical distribution of larval, copepods, and ctenophores.  Such changes can 

affect larval fish diets and ctenophore predation on larval fish.  
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Larval fish growth rates were faster in the low DO simulations than in the high 

DO simulations.  Growth rates of fish larvae from first feeding to 15 mm was 0.61 mm d-

1 in the low DO simulation, which corresponded to an average of 19.7 days; more than 6 

days faster than in the high DO baseline IGP food web simulation (Table 4.2).   

Larval fish diets differed between low and high DO simulations and among the 

larval fish size classes (Table 4.3).  Small larval fish (length < 5 mm) ate only copepod 

nauplii.  Larval fish in the intermediate size class (length of 5 to 10 mm) had a larger 

proportion of nauplii and a smaller proportion of copepodites in their diets at low DO 

compared with high DO.  Larval fish longer than 10 mm had a roughly equivalent 

proportion of the 3 copepod life stages in their diets; proportions of nauplii and adults 

were larger and the proportion of copepodites was smaller at low DO than at high DO.  

As in high DO, adult copepods were only consumed by the large size class of larval fish 

in the low DO baseline IGP food web.  An increase in the proportion of adult copepods in 

the diets of large larval fish in the low DO baseline IGP food web may account for 

increased growth rates. 

Low DO did not affect the relative proportions of the 3 copepod life stages in 

ctenophore diets (Table 4.4).  The temporal pattern of ctenophore growth was similar at 

high and low DO, although growth of smaller ctenophores slowed earlier at low DO than 

at high DO (Fig. 4.7).   

Low DO affected average whole water column densities of larval fish and 

copepods but not ctenophore densities.  Under low DO, the average larval fish density for 

the whole water column over the entire simulation was less than half that under high DO 

(Table 4.5).  Ctenophore densities averaged for the whole water column over the entire 
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simulation were similar at high and low DO.  In the low DO simulation, average copepod 

density for the whole water column over the entire simulation was 16 % lower than at 

high DO. 

 Temporal patterns of organism densities were generally the same under low and 

high DO conditions in the baseline IGP food web for larval fish (Fig. 4.9a), but differed 

for ctenophores and copepods.  Ctenophore peak densities were higher and remained high 

longer before declining in the high DO baseline IGP food web than in the low DO 

simulation (Fig. 4.10a).  In the low DO baseline IGP food web, ctenophore densities 

increased to a second, lower peak around Ordinal Day 210 following their initial peak 

and decline (Fig. 4.10a).  Copepod densities declined to a lower abundance and remained 

low longer in the low DO simulation than in the high DO simulation (Fig. 4. 11a).  

During the middle of the simulations there was a slight recovery in copepod density that 

corresponded to a decline in ctenophore density (Figs. 4.10a & 4.11a).    

Changes in the vertical overlap between predator and prey in the low DO baseline 

IGP food web may explain higher larval fish survival and growth rates (Fig. 4.12).  Fish 

larvae and copepods had a slightly higher overlap at low DO than at high DO during the 

day, which is when larval fish actively feed.  Higher overlap between larval fish and 

copepods may result in the higher proportion of adult copepods in larval fish diets at low 

DO (Table 4.3), leading to the increase in larval fish growth rates (Table 4.2, Fig. 4. 4).  

Overlap between ctenophores and fish larvae as well as between ctenophores and 

copepods was lower at low DO, resulting in less predation on larval fish as well as 

reduced competition for copepods prey at low DO, leading to higher larval fish survival 

and growth at low DO. 
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Model Corroboration 
Average larval growth rates in both the high and low DO baseline IGP food web 

model were similar to bay anchovy growth rates reported from field studies.  Average 

growth rates of larval fish surviving to 15 mm in the baseline IGP food web model were 

0.46 at high DO and 0.61 mm d-1 at low DO.  Rilling and Houde (1999) reported field 

growth rates of larval bay anchovy ranging from 0.53 - 0.78 mm d-1 in different regions 

of the Chesapeake Bay and at different times during the summer season, with fastest 

growth rates occurring during early summer.  Bay anchovy larvae from North Carolina 

were estimated to grow exponentially at about 4 % d-1, or equal to about 0.48 mm d-1 

(Fives et al. 1986). 

Modeled ctenophore lengths and ctenophore egg production remained within 

bounds observed in field samples and laboratory studies.  Ctenophore lengths in the IGP 

high DO model averaged 57.6 mm (range = 20.2 - 91.9 mm) as a result of metabolic and 

reproductive processes; lengths were not capped.  Maximum ctenophore size attained in 

the model was slightly smaller than the largest ctenophore length observed in the 

Chesapeake Bay system (100 mm, personal observation).  Ctenophore egg production in 

the IGP high DO model averaged 1056 eggs ctenophore-1 d-1.  The range for ctenophore 

egg production in the model, 0 – 11,360 eggs ctenophore-1 d-1, is similar to the range 

reported in Purcell et al. (2001) of 0 - 14,000 eggs ctenophore-1 d-1. 

Mean summertime densities of ctenophores, early life stages of fish, and adult 

copepods and copepodites from the mainstem Chesapeake Bay during July and August 

1995-1998 (Purcell et al. 2001 see Table 6 and 7), and from the Patuxent River in the 

summers of 1992, 1993, 1999, and 2001 (Kolesar Chapter 2), as well as copepod nauplii 

from the Chesapeake Bay in June, July and August of 2000 and July 2001, and in the 
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Patuxent River in June, July and August of 1999 and July 2001 (Purcell et al. unpubl.),  

were compared with model output.  Purcell et al. (2001) only report surface layer means 

for copepod densities.  Mean whole water column densities of ctenophores and 

ichthyoplankton and mean surface densities of copepods in the high and low DO baseline 

IGP food web model simulations fell within the range of summertime means reported 

from field studies conducted in the Chesapeake Bay system (Table 4.5).  Mean 

copepodite and adult copepod densities for the Patuxent River estuary water column were 

similar to mean model densities, but reported copepod nauplii densities were lower than 

model results (Chesapeake Bay Program Website).  Reported densities of copepodites 

and adult copepods in the surface layer of the mesohaline Patuxent River in the 

summertime averaged around 10,000 m-3, while nauplii densities occasionally 

approached 100,000 m-3 in the surface layer of both the Patuxent River estuary (Heinle 

1966) and the Chesapeake Bay (Purcell et al. 1994b), although average densities were 

typically lower (~10,000 m-3). 

The temporal pattern of modeled copepod life stage densities in the high and low 

DO baseline IGP food webs were similar to that observed in the Chesapeake Bay and 

Patuxent River.  Purcell et al. (1994b) observed a summer period of low copepod 

densities similar to that seen in model output.  Copepodite and adult copepod densities in 

the surface layer of the Chesapeake Bay during May were typically less than 10,000 m-3, 

decreased in June and increased during July to densities approaching almost 100,000 m-3 

at some stations in August (Purcell et al. 1994b).  Copepod densities in the Patuxent 

River were variable during the summer months (Heinle 1966).   
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Importance of Predation & Competition to Larval Fish Survival & Growth 
Ctenophore predation had a greater effect on survival of the early life stages of 

fish than did competition under high DO conditions.  Survival of fish eggs to hatch was 

50 % in the relaxed predation food web compared with 40 % in both the baseline IGP and 

relaxed competition food webs.  Likewise, the percent of larval fish surviving from hatch 

to first feeding in the relaxed predation scenario was 50 % compared with 16 % in the 

baseline IGP and relaxed competition scenarios.  Larval fish survival from first feeding to 

15 mm in the relaxed predation food web was 14.2 % compared with 6.4 % in the relaxed 

competition food web and 2.1 % in the baseline IGP food web.  In relative terms, larval 

fish survival to 15 mm was 24 times higher in the relaxed predation model than in the 

baseline IGP food web, but only 2 times higher in the relaxed competition food web than 

in the baseline IGP food web (Table 4.2).   

Larval fish growth rates to 15 mm under high DO conditions were fastest in the 

relaxed competition food web and slowest in the relaxed predation food web (Table 4.2).  

The number of days for a first feeding larval fish to reach 15 mm was 7 days shorter 

when competition was relaxed than in the baseline IGP food web, and 4 days longer 

when ctenophore predation was relaxed than in the baseline IGP food web.  Average 

growth rate of larval fish survivors in the relaxed competition food web equaled 0.63 mm 

d-1, compared with 0.46 mm d-1 in the baseline IGP food web and 0.40 mm d -1 in the 

relaxed predation food web.  Increased larval fish growth rates in the relaxed competition 

food web is due to higher copepod densities, while slowed larval fish growth rates in the 

relaxed predation food web is due to high densities of larval fish.   

The difference in growth rates between the three food webs under high DO 

conditions was also apparent in length trajectories of modeled individual larval fish.  The 
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slopes of lines for larval fish length versus Ordinal Day, an indication of growth rates, 

were very high throughout the relaxed competition food web (Fig. 4.4e).  But the slopes 

of lines for larval fish length in the baseline IGP and relaxed predation food webs did not 

increase or increased slowly during the middle portions of the simulations (Figs. 4.4a & 

c), which was when ctenophore densities were high (Figs. 4.6a & c) and copepod 

densities were low (Figs. 4.5a & c).   

Competition by ctenophores had a noticeable effect on prey selection in larval fish 

diets but ctenophore predation did not affect larval fish diets (Table 4.3).  Larval fish diet 

composition in both food webs that included ctenophore competition (baseline IGP and 

relaxed predation) were similar to each other.  At least half of the diets of both large 

(length > 10 mm) and intermediate (length of 5 - 10 mm) larval fish in these two food 

webs were comprised of copepodites, and the diet of large larval fish contained only a 

small proportion (about 0.15) of adult copepods.  In contrast, in the absence of 

ctenophore competitors (relaxed competition food web), adult copepods comprised the 

largest proportion of large larval fish diets, accounting for almost half of their prey.  

More adult copepods in the diets of large larval fish in the relaxed competition food web 

could account for higher growth rates observed in this food web than in the other two 

food webs (Table 4.3 & Fig. 4. 4).  Intermediate-sized fish larvae ate a higher proportion 

of copepod nauplii and a lower proportion of copepodites in the relaxed competition food 

web than in the other two food web scenarios.  Small larvae (< 5 mm) were constrained 

by the model to eat only nauplii in all food web and DO conditions. 

Food web structure did not affect ctenophore growth rates or diets (Table 4.4 & 

Fig. 4.7).  Ctenophore diet composition was similar for all three food webs.  The slopes 
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of lines for ctenophore weight over the duration of simulations, an indication of growth 

rates, were also similar for all three food webs.  

Predation was more important than competition to larval fish densities, but 

ctenophore densities did not vary among the three food webs.  Larval fish densities were 

higher in the relaxed predation food web than in the two food webs with ctenophore 

predation; peak larval fish densities in the relaxed predation food web were 6.5 times 

higher than in the baseline IGP or relaxed competition food webs (Figs. 4.9b vs. 4.9a & 

c).  Larval fish densities were similar in food webs that included ctenophore predation, 

and both the baseline IGP food web and the relaxed competition food web had peak 

densities around 6 individuals m-3 (Fig. 4.8a & e, Fig. 4.9a & c).  Ctenophore densities 

were similar in all three high DO food web simulations, with densities peaking at 8.7 – 

8.9 individuals m-3 (Figs. 4.6 a, c, e; & Fig. 4.10).   

Ctenophore predation also had a large effect on copepod densities.  Copepod 

densities in the relaxed predation food web were similar to copepod densities in the 

baseline IGP food web; adult copepod densities declined to below 3000 individuals m-3 in 

these two food web scenarios (Figs. 4.11a & b).  Copepod densities in the relaxed 

competition food web barely declined as a result of larval fish predation and adult 

copepod densities did not fall below 9000 individuals m-3 in that food web (Fig. 4.11c). 

Predation was more important than competition to the temporal density patterns 

of larval fish; the temporal pattern in the relaxed predation food web was different from 

the pattern in the other two food webs.  In the relaxed predation food web, larval fish 

densities increased to a peak just prior to Ordinal Day 220 and declined for the remainder 

of the simulation (Figs. 4. 8c & 4.9a).  The temporal pattern of larval fish densities in the 
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relaxed competition food web was similar to the baseline IGP food web, and both were 

characterized by an initial peak followed by a decline and then a secondary peak around 

Ordinal Day 220 (Figs. 4. 8a & e, Figs. 4.9a & c).  The temporal pattern of ctenophore 

densities was similar in all three food webs (Figs. 4.6a, c, e; & Fig. 4.10). 

The relaxed ctenophore competition food web had a larger effect on copepod 

temporal patterns than did the relaxed ctenophore predation food web.  When ctenophore 

competition with larval fish was relaxed copepod densities remained constant over time 

(Figs. 4.5c & 4.11c), although larval fish did prey on copepods (Table 4.3).  In contrast, 

in the relaxed predation food web, the temporal pattern of copepod densities was similar 

to temporal patterns in the baseline IGP food web, with high copepod densities early and 

late in the simulations and lower densities during the middle of simulations when 

ctenophore densities were high (Figs. 4. 5a & c, Figs. 4.11 a & b).   

Effect of DO on the Relative Importance of Predation & Competition  
The much higher importance of ctenophore predation than competition to the 

survival of the early life stages of fish was not appreciably affected by low versus high 

DO conditions.  In both high and low DO relaxed predation food webs, survival of early 

life stages of fish was about 24 times higher than in the baseline IGP food web (Table 

4.2).  At high DO, larval fish survival was 3 times higher in the relaxed competition food 

web than in the baseline IGP food web, but at low DO larval fish survival was only 2 

times higher in the relaxed competition food web than in the baseline IGP food web.   

The rank order of larval fish growth rates among the three food webs under high 

DO was not affected by low DO, but DO did influence the magnitude of effects of 

ctenophore predation and competition on larval fish growth.  Under both high and low 
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DO conditions, larval duration was longest in the relaxed predation food web, 

intermediate in the baseline food web, and shortest in the relaxed competition food web.  

The difference in growth rates between the relaxed predation food web and the baseline 

IGP food web was 16 % at high DO and 21 % at low DO, even though the absolute 

difference in growth rates was 4.2 days for each (Table 4.2).  The difference in growth 

rates between the relaxed competition food web and the baseline IGP food web was 37 % 

at high DO and 26 % at low DO, with an absolute difference in growth rates of 7 days at 

high DO and 4.1 days at low DO (Table 4.2).  Slightly higher larval fish growth rates in 

the low DO versus high DO baseline IGP and relaxed predation food webs may be 

related to the decrease in ctenophore densities during the middle of low DO model 

simulations (Figs. 4.10a & b).  The relatively smaller increase in larval fish growth rates 

in the low DO relaxed competition food web may be because growth rates in that food 

web were already relatively high (Table 4.2) or perhaps due to changes in diet 

composition (Table 4.3). 

The effect of low DO on larval fish diets was different in the relaxed competition 

food web than in the other two food webs (Table 4.3).  The proportion of adult copepods 

in larval fish diets declined in the relaxed competition low DO food web relative to the 

proportion under high DO conditions, although copepod nauplii remained the largest 

proportion of all larval fish diets.  Higher proportions of copepod nauplii and lower 

proportions of adult copepods in larval fish diets in the low DO relaxed competition food 

web could account for the slower growth at low DO than at high DO (Fig. 4.4).  In 

contrast, the proportion of larval fish diets comprised of adult copepods was higher at low 

DO than at high DO in the baseline IGP and relaxed predation food webs.   
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Ctenophore growth rates were not quantified, but qualitatively there did not 

appear to be a large effect of DO on the relative importance of predation and competition 

on ctenophore growth (Fig. 4.7).  The temporal pattern of ctenophore growth was similar 

for both high and low DO for all food webs.  Furthermore, low DO did not modify the 

affect of food web structure on ctenophore consumption of copepods (Table 4.4).   

Although water column densities of all modeled organisms, except for copepods 

in the relaxed competition food web, averaged higher at high DO than at low DO, DO did 

not affect density differences among food webs (Figs. 4.9 - 4.11).  Larval fish densities 

were similar in the baseline IGP and relaxed competition food webs, with peak densities 

equal to 6.9 – 6.0 individuals m-3 at high DO and 2.2 – 2.3 individuals m-3 at low DO 

(Fig. 4.9).  Densities in both the high and low DO relaxed predation food web were much 

higher than in the other two food webs.  Larval fish peak densities in the relaxed 

predation food web were 6.5 times higher in the high DO and 8.8 times higher in the low 

DO food webs relative to the other two food webs.   

Low DO affected ctenophore densities similarly in all food webs.  Ctenophore 

densities peaked at around 9 individuals m-3 under high DO in the three food webs and at 

about 8 individuals m-3 in the low DO food webs (Fig. 4.10).  Low DO also affected 

copepod densities similarly in the baseline IGP and relaxed predation food webs at high 

and low DO, but copepod densities in the relaxed competition food web were similar for 

high and low DO conditions (Fig. 4.11). 

For all modeled organisms the temporal pattern of abundances in the three food 

webs was maintained under high and low DO (Figs. 4. 9 - 4.11).  Larval fish had two 

peaks in abundance in both the baseline IGP and relaxed competition food webs at both 
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high and low DO, and one peak in the relaxed predation food web at both high and low 

DO (Fig. 4.9).  The pattern of ctenophore abundance for high and low DO in all three 

food webs was maintained.  At high DO ctenophore abundance had one peak while at 

low DO there were two separate abundance peaks (Fig. 4.10).  The temporal pattern of 

copepod abundance was maintained in the baseline IGP and relaxed predation food webs 

at both high and low DO (Fig. 4.11). 

The interaction between DO and food web type affected the vertical overlap 

between predators and their prey (Fig. 4.12), and changes in vertical overlap can affect 

predation potential.  Vertical overlap between ctenophores and larval fish was higher at 

high DO than at low DO in all three food webs during both day and night (Fig. 4.12).  

Vertical overlap between ctenophores and copepods was also higher at high DO than at 

low DO in all three food webs during the day and in the relaxed competition food web at 

night.  But the overlap between ctenophores and copepods at high DO was relatively 

lower in the relaxed predation and baseline IGP food webs compared with the relaxed 

competition food web, which may reflect ctenophore predation on copepods in the 

baseline IGP and relaxed predation food webs.  Vertical overlap between larval fish and 

copepod prey in the daytime, which is when larval fish feed, was slightly higher at low 

DO than at high DO in the relaxed predation food webs.  Lower vertical overlap between 

fish larvae and copepods in high DO food webs during the day may be due to predation 

by ctenophores, which had higher overlap with fish larvae and copepods at high DO in all 

food webs during the day.  Vertical overlap between larval fish and copepod prey was 

slightly higher in the relaxed competition food web compared to the baseline IGP food 

web at both high and low DO in the daytime.  Higher overlap between fish larvae and 
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copepods in the relaxed competition food web may be due to higher copepod densities 

resulting from lack of ctenophore predation.    

DISCUSSION 
The ctenophore-fish larvae-copepod food web that typifies Chesapeake Bay and 

other temperate estuaries differs from more frequently examined IGP food webs in that 

the IGP predator (the ctenophore, M. leidyi) is a superior competitor to its prey.  In our 

model food webs, survival of early life stages of fish was lower in the IGP food web that 

included the full effects of both predation and competition by ctenophores than when 

either of these interspecific interactions was relaxed.  Simulations that relaxed predation 

or competition individually indicated that predation was far more important to survival of 

early life stages of fish than was competition, but that competition was more important to 

larval fish growth rates than was predation.  Although low DO concentrations decreased 

survival of larval fish from first feeding to 15 mm by 47 -70%, larval fish growth rates 

were actually faster when the bottom layer of the water column was hypoxic, and there 

was only a minor effect of low DO on the relative importance of ctenophore predation 

and competition within the IGP food web.  These results largely agree with theory that an 

IGP predator must be an inferior competitor in order to enhance persistence of its prey.  

The longer-term effects of the full IGP food web and hypoxia beyond the summer 

spawning and larval fish growth period to maintaining larval fish persistence in the food 

web remain unclear. 

Ctenophore predation was more important than competition to survival of early 

life stages of fish in our modeled food webs.  The high consumption rates of ctenophores 

coupled with their potential for rapid increase in biomass makes them voracious 
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planktonic predators (Monteleone and Duguay 1988, Cowan and Houde 1993, Purcell et 

al. 1994 a & b, Purcell and Decker 2005).  Additionally, we found large vertical overlap 

between ctenophores and larval fish, especially in food webs at high DO.  These model 

results support the importance of ctenophore predation to the survival of early life stages 

of fish suggested by experimental and field studies (Monteleone and Duguay 1988, 

Cowan and Houde 1993, Purcell et al. 1994 a & b, Purcell and Decker 2005). 

Ctenophore competition was more important than ctenophore predation to larval 

fish growth and diets; larval fish growth rates were higher when ctenophore competition 

was relaxed than in either of the other two food webs.  Copepod densities were highest in 

the relaxed competition food web.  When ctenophores did not compete with larval fish 

for copepod prey, large larval fish also had a higher proportion of adult copepods in their 

diets.  These large prey have higher caloric content than smaller copepod life stages.  

Higher prey densities and better quality prey may both have contributed to higher larval 

fish growth rates in the high DO relaxed competition food web relative to other high DO 

food webs that did contain ctenophore competitors.  Larval fish growth rates were 

slowest in the relaxed predation food web, perhaps due to the combination of elevated 

intraspecific competition for prey at high larval fish densities as well as the presence of 

slow-growing larval fish that would otherwise be eliminated from the population by 

ctenophore predation.   

Densities and survival of early life stages of fish were lower at low DO than at 

high DO for all three food webs, primarily due to higher mortality of fish eggs at low 

DO.  Larval fish growth rates were faster at low DO than at high DO in all three food 

webs.  The large degree of vertical overlap between ctenophores and larval fish in high 
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DO food webs may result in lower densities and smaller size classes of copepod prey 

available to larval fish. 

DO had only a minor effect on the relative importance of ctenophore predation 

and competition to survival of early life stages of fish.  Survival was highest in the 

relaxed predation food web regardless of DO, and the rank order of growth rates in the 

three food webs was not changed by DO.  At both high and low DO, the growth rates 

were faster in the relaxed predation food web and slower in the relaxed competition food 

web compared to larval fish growth rates in the baseline IGP food web.   

Ctenophore competition was slightly less important to survival of early life stages 

of fish and larval fish growth at low DO than at high DO.  The relative difference in 

larval fish growth rates between the relaxed competition food web and the baseline IGP 

food web was smaller at low DO than at high DO.  Vertical overlap between larval fish 

and copepods during the day, which was when fish larvae fed, did not differ between DO 

levels or among food web types and therefore should not have affected larval fish growth 

rates.   

 Predation is thought to be the largest source of mortality for the early life stages 

of fish (Bailey and Houde 1989).  In the intraguild predation food web we modeled, 

competition between ctenophores and larval fish for shared copepod prey did not directly 

influence survival of early life stages of fish.  But competition with ctenophores for 

copepod prey slowed larval fish growth rates, which should increase predation mortality.  

Slower growing larval fish are vulnerable to size-specific predation longer than are faster 

growing larval fish (Bailey and Houde 1989). 
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 Low DO can also influence both survival of early life stages of fish and larval fish 

growth independent of food web structure.  It was important to include a spatial 

component in the model because DO affects vertical overlap between predator and prey.   

Not only can the vertical distribution of organisms be influenced by physical factors such 

as DO, but also by biological factors such as prey capture or predator avoidance and these 

effects can act in concert.  Spatial dynamics increase model complexity (Polis and Strong 

1996), but including a spatial component can capture important features of food web 

interactions such as habitat refuges that increase food web persistence and reduce the 

likelihood of local extinctions (Keitt 1997, Fulton et al. 2004).  Although overall survival 

of early life stages of fish to 15 mm larvae declined in low DO food webs, both larval 

fish growth rates from first feeding to 15 mm and survival of larval fish from first feeding 

to 15 mm increased at low DO, indicating that low DO was beneficial to larval fish 

survival and growth and contributed to persistence of larval fish.   

Uncoupling the influence of a heterogeneous habitat from predation can be 

difficult (Anholt and Werner 1995).  Spatial distributions of predators, competitors and 

prey in the environment may be important for food web persistence and species 

coexistence (Rosenheim et al. 2004), with habitat complexity leading to food web 

complexity (Angel and Ojeda 2001).  The presence of a motile, omnivorous predator 

such as a ctenophore may stabilize complex food webs by increasing energy flow through 

weak links that promote species coexistence (McCann et al. 2005, Morris 2005).  We 

attribute increased growth of larval fish in low DO food webs to decreased vertical 

overlap between larval fish and ctenophores at low DO.       
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Intraguild predation food webs are thought to persist due to the superiority of the 

IGP prey in exploiting shared resources, or because IGP prey have a resource subsidy 

unavailable to the IG predator (Polis 1984).  In our modeled food web, and in the 

Chesapeake Bay system, ctenophores were both a predator on fish larvae and a superior 

competitor for copepod prey.  Our result, that survival of early life stages of fish was 

lowest in the IGP food web provides evidence that this particular IGP food web would 

not facilitate persistence.  Factors such as the age structure and seasonality of the food 

web, as well as the effects of DO on vertical habitat overlap, limit ctenophore predation 

on fish egg and larval stages to a brief period during the summer months.  Temporal and 

spatial patchiness of ctenophores due to predation by medusae can also contribute to 

larval fish survival.  

One reason to understand the behavior of IGP in food webs is to reconcile the 

sometimes conflicting goals of maintaining biodiversity and managing resources.  

Management of IGP food webs is complex due to the numerous species involved and the 

diverse trophic linkages of varying strengths (Polis and Holt 1992).  In the Lake Kinneret 

food web, for example, herbivorous microzooplankton can control water clarity, but it 

was a predatory copepod that controlled the microzooplankton, not an omnivorous finfish 

as previously thought (Blumenshine and Hambright 2003).  Finke and Denno (2004) 

found that reduction of arthropod species diversity in an IGP food web reduced 

consumption of a valued marshgrass while maintaining biodiversity was detrimental to 

primary productivity.  Determining the importance of predation or competition in IGP 

food webs can be difficult.  
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Using a modeling approach to address questions about food web structure and the 

effects of low DO on trophic interactions had benefits as well as limitations.  The 

individual-based, spatially explicit food web model enabled us to simulate the effects of 

ctenophore predation and competition with fish larvae; the ability to simulate competition 

was especially valuable since competition is difficult to isolate in either the field or 

laboratory.  In constructing the food web model, we made certain simplifying 

assumptions (constant temperature, for example) as a tradeoff between practical model 

feasibility and precise real-world accuracy in order to produce valid model results.  Next 

steps for the food web model include adding more trophic levels for both prey (for 

example, phytoplankton and microzooplankton) and predators (medusae) in order to 

increase complexity and realism of the interactions.  Also, including changes in 

seasonality, such as later or earlier fish spawning, or including various levels of 

eutrophication that may increase or decrease water quality, such as more severe or more 

variable DO conditions, could expand the environmental questions that can be addressed 

with the food web model. 

Ctenophores are more tolerant of low DO conditions than are fish larvae so the 

vertical distributions of both species in the Chesapeake Bay system change as duration or 

severity of low oxygen conditions in the Chesapeake Bay system change.  Results from 

our modeled simulations of the Chesapeake Bay ctenophore-fish larvae-copepod food 

web suggest that ctenophore predation was most important for reducing survival of the 

early life stages of fish regardless of DO concentration.  But low DO decreased vertical 

overlap between ctenophores and larval fish and increased growth of larval fish from first 

feeding to 15 mm.  Increased occurrence of low DO in the Chesapeake Bay system would 
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favor tolerant ctenophore predators over larval fish and result in more predation, but the 

decrease in vertical overlap between ctenophores and larval fish at low DO might 

ultimately favor larval fish and food web persistence.   
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Table 4.1. Variable names used in the individual-based model. 
 
Variable Description Units 
LvWt Larval fish weight mgdw 
LvLn Larval fish length mm 
CtWt Ctenophore weight mgdw 
CtLn  Ctenophore length mm 
LvCon Larval fish consumption  mgdw 
LvAsm Larval fish assimilation proportion                
LvRsp Larval fish total respiration per time step mgdw 12h-1 

j Prey type (fish egg, yolk sac, or copepod life stage) - 
LvCmax Fish larvae maximum consumption mgdw 12h-1 
ZZj Number of each zooplankton prey type number 12h-1 

T Temperature in the water column layer ˚C 
LvCapj Vulnerability of each copepod type to capture by larvae proportion 
KKj Half saturation constant of each copepod life stage number m-3 
ZoopWt Copepod weight mgdw 
LvRRsp Larval fish routine respiration per time step mgdw 12h-1 
LvARsp Larval fish active respiration per time step mgdw 12h-1 
CtCon Ctenophore consumption per time step mgdw 12h-1 
CtAsm Ctenophore assimilation proportion            
CtRsp Ctenophore respiration mgdw 12h-1 
CtRpr Fraction of unmetabolized assimilated energy for eggs proportion 
Fpp Foraging rate mm s-1 
Fpred Foraging rate used if ctenophore distance swum is greater mm s-1 
Fprey Foraging rate used if larval fish distance swum is greater mm s-1 
DsPred Distance swum by the predator per time step mm 12h-1 
DsPrey Distance swum by the prey per time step mm 12h-1 
CtRd Ctenophore reactive distance mm 
PrRd Prey reactive distance mm 
E Mean encounter numbers of encounters per time step number 12h-1 
PD Number of prey available for encounter per layer number m-3 
CtCapj Ctenophore capture success of prey proportion 
CtCapLv Ctenophore capture success of individual fish larvae proportion 
CtConCal Ctenophore consumption calories 
CtRprCal Calories available for ctenophore reproduction calories  
CtEgg Ctenophore egg production per time step number 12h-1 

ZProdj Copepod production rate #-1 #-1 12h-1 

Ztot Sum of all copepods over three layers number m-3 
TotZj Copepod equilibrium density number m-3 
Vol Water column volume m-3 
DO Dissolved oxygen concentration mg L-1  
GrLvDO Larval fish growth rate effect due to DO per time step proportion 
GrCtDO Ctenophore growth rate effect due to DO per time step proportion 
MrtEggDO Fish egg mortality due to DO per time step number 12h-1 
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Table 4.2. Results from five replicate runs of model simulations in the baseline IGP, 
relaxed predation, and relaxed competition food webs at both high and low DO.  
Reported values are the random number seed, total number of fish larvae reaching 15 mm 
and total number of days for fish larvae to reach 15 mm during the 100-day simulation.  
No fish larvae less than 15 mm remain at the end of the simulations.   
 
 

# larvae to 15 mm Days to 15 mm # larvae to 15 mm Days to 15 mm
Mean 14.1 26.0 Mean 9.9 19.7

Min - Max 13.8 - 14.5 25.5 - 26.4 Min - Max 9.7 - 10.2 19.3 - 20.1

# larvae to 15 mm Days to 15 mm # larvae to 15 mm Days to 15 mm
Mean 352.0 30.2 Mean 243.5 23.9

Min - Max 349.9 - 354.0 30.1 - 30.4 Min - Max 238.8 - 246.9 23.7 - 24.3

# larvae to 15 mm Days to 15 mm # larvae to 15 mm Days to 15 mm
Mean 41.5 19.0 Mean 19.4 15.6

Min - Max 38.1 - 44.8 18.9 - 19.0 Min - Max 14.6 - 24.4 15.4 - 15.9

Baseline IGP Low DOBaseline IGP High DO

Relaxed Competition Low DORelaxed Competition High DO

Relaxed Predation Low DORelaxed Predation High DO
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Table 4.3. Values for the mean proportion of biomass (mgdw) of each copepod life stage 
in modeled larval fish diets for three size classes of larval fish.  Larval fish size classes 
were large (larval fish length > 10 mm), medium (10 mm ≥ larval fish length ≥ 5 mm) 
and small (larval fish length < 5 mm) for all three food webs: baseline IGP, relaxed 
predation, and relaxed competition at both high and low DO.   
 

High DO Low DO High DO Low DO High DO Low DO
Baseline IGP
Nauplii 0.26 0.38 0.13 0.36 1.00 1.00
Copepodites 0.60 0.35 0.87 0.64 0.00 0.00
Adult Copepods 0.14 0.27 0.00 0.00 0.00 0.00

Relaxed Predation
Nauplii 0.26 0.44 0.15 0.35 1.00 1.00
Copepodites 0.59 0.34 0.85 0.65 0.00 0.00
Adult Copepods 0.15 0.22 0.00 0.00 0.00 0.00

Relaxed Competition
Nauplii 0.32 0.49 0.26 0.88 1.00 1.00
Copepodites 0.25 0.15 0.74 0.12 0.00 0.00
Adult Copepods 0.43 0.36 0.00 0.00 0.00 0.00

Proportion in Diet
Large Fish Larvae

Proportion in Diet Proportion in Diet
Medium Fish Larvae Small Fish Larvae
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Table 4.4. Copepods comprise the majority of ctenophore diets during the 100-day model 
simulation.  Values reported are the mean proportion of biomass (mgdw) ± SE due to 
zooplankton for each copepod life stage in ctenophore diets for all 3 food webs: baseline 
intraguild predation (IGP), relaxed predation (RP), and relaxed competition (RC) and 
under both high and low DO scenarios.   

 

High DO   Low DO 
    Proportion   Proportion 
Baseline IGP (IGP)   

    Copepod nauplii  0.78 ± 0.01   0.81 ± 0.01 

    Copepodites  0.08 ± 0.01   0.07 ± 0.01 

    Adult Copepods  0.14 ± 0.01   0.12 ± 0.01   

Relaxed Predation (RP)           

    Copepod nauplii  0.78 ± 0.01   0.81 ± 0.01 

    Copepodites  0.07 ± 0.01   0.07 ± 0.01 

    Adult Copepods  0.14 ± 0.01   0.12 ± 0.01  

Relaxed Competition (RC)  

    Copepod nauplii  0.78 ± 0.01   0.81 ± 0.01 

    Copepodites  0.08 ± 0.01   0.07 ± 0.01 

    Adult Copepods  0.14 ± 0.01   0.12 ± 0.01
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Table 4.5. Comparison of model densities for ctenophores, fish eggs, yolk sac larvae, fish 
feeding larvae, and copepodites and adult copepods with field densities.  Field densities 
were measured in the Chesapeake Bay in July and August 1995-1998 (data from the 
TIES project, summarized in Purcell et al. 2001 Tables 6 & 7) and the Patuxent River in 
June, July, and August 1992, 1993, 1999 & 2001 (Keister et al. 2000, Breitburg et al. 
2003, Kolesar Chapter 2).  Copepod nauplii field densities are reported for the 
Chesapeake Bay in June, July and August of 2000 and July 2001, and in the Patuxent 
River in June, July and August of 1999 and July 2001 (Purcell et al. unpubl.).  Values 
presented are the minimum, maximum and mean ± SE of the numbers entering each 
organism life stage from both the IGP high and low DO model scenarios and the range of 
summertime means for Patuxent River samples and from Chesapeake Bay data.  
Ctenophore and ichthyoplankton data are presented for the whole water column (W.C.), 
and copepod data are presented for the surface layer only (S), as this was the only data 
available for Chesapeake Bay TIES project samples.  The number of stations is indicated 
by N.  For field samples, yolk sac larvae and feeding larval fish, as well as copepodite 
and adult copepods, were combined.   
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Table 4.5.  
 
 
 

Model 
IGP High DO 

Model 
IGP Low DO 

Field Samples 
Patuxent River 

(N = 43) 

Field Samples 
Chesapeake Bay 

(N = 174 ) 
Organism 

Min - Max Mean ± SE Min - Max Mean ± SE 
Range of  

Summertime Means 
(# m-3) 

Range of 
Summertime Means 

(# m-3) 
Ctenophores 

W.C. 0.01 – 8.7 3.8  ± 0.2 0.02 – 7.9 3.7 ± 0.2 0.03 – 6.83 2.8 – 12.7 

Fish eggs 
W.C. 0 - 20 2.5  ± 0.5 0 – 20 2.7  ± 0.5 0 – 41.3 1.2 – 28.8 

Fish yolk 
sac larvae 

W.C. 
0 – 10 1.4  ± 0.2 0 - 4 0.5  ± 0.1 

Post-yolk 
sac larvae 

W.C. 
0 - 6 1.5  ± 0.1 0 – 2.3 0.6 ± 0.03 

1.6 – 12.9 
 

0.3 – 3.3 
 

Copepod 
nauplii 

SURFACE 

92,052 – 
399,590 

226,865  ± 
7378 

66,480 – 
393,550 

190,776  ± 
6064 

36,350 – 38,284 
(N = 13) 

20,363 – 27,671 
(N = 15) 

Copepodites 
SURFACE 3731 – 19,967 10,609  ± 370 2620 – 19,666 8714  ± 334 

Adult 
Copepods 

SURFACE 
1610 – 13,303 6291  ± 256 976 – 13,099 4888  ± 255 

670 – 29,500 787.1 – 7503.8 
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Figure 4.1. The modeled mesohaline summertime Chesapeake Bay system food web.  The food web includes intraguild predation 
(IGP) with ctenophores as the intraguild predators (IG predators) feeding on both the early life stages of fish (eggs, yolk sac larvae, 
and feeding larvae ≤ 15mm) as well as three copepod life stages (nauplii, copepodites, and adults).  Transitions from one life stage to 
the next are indicated with curved arrows.  The relaxed predation model scenario eliminates ctenophores feeding on the early life 
stages of fish (dashed lines) and the relaxed competition scenario reduces ctenophore feeding on the 3 copepod life stages (dotted 
lines).  Larval fish ≤ 15mm are the IG prey.  
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Figure 4.2. Equation for ctenophore assimilation used in the model determined from 
published data on ctenophore assimilation as well as information on ctenophore 
bioenergetics. 
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Figure 4.3. Modeled simulations included three food webs with five total simulations.  a) 
The baseline intraguild predation (IGP) food web included ctenophores (C) as both 
predators on larval fish (L) and competitors for copepod prey (Z) (predation is designated 
by solid arrows), b) the relaxed predation food web (RP) included ctenophore predation 
on larval fish, but larval fish were not removed from simulations (represented by a 
dashed arrow), and ctenophores and larval fish were competitors for copepod prey, and 
finally c) the relaxed competition food web (RC) had separate prey pools for ctenophores 
and larval fish.  In the RC food web, the zooplankton prey pool for ctenophores (Zc) was 
generated from the ctenophore – zooplankton model (i), the fitted density-independent 
model was run to calibrate ctenophores to baseline conditions (ii), and the full RC model 
included two separate prey pools (iii). 
 
a. Intraguild predation food web                   b. Relaxed predation food web 

C L C L

                           
 
c. Relaxed competition food web (3 steps) 
i.  

 
ii.  

 
iii.  

  

ZZ 

C z Z c

C z Z c

C 

C L 

Z c Z 
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Figure 4.4. Larval fish length (mm) plotted against Ordinal Day for 6 different 
simulations: a) baseline IGP high DO, b) baseline IGP low DO, c) relaxed predation high 
DO, d) relaxed predation low DO, e) relaxed competition high DO, f) relaxed 
competition low DO.  Each line represents a cohort of individual feeding fish larvae 
throughout the simulation with each cohort entering the model at a different timestep.  
The trajectory of size through time provides a representation of larval fish growth rates. 
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Figure 4.5. Copepod number m-3 by layer plotted against ordinal day for the adult life 
stage during both day ( ) and night (x) for a representative simulation for each of 6 
different food webs: a) baseline IGP high DO, b) baseline IGP low DO, c) relaxed 
predation high DO, d) relaxed predation low DO, e) relaxed competition high DO, f) 
relaxed competition low DO.  Black dots denote the surface layer, red dots the 
pycnocline, and green dots the bottom layer.  Mean densities of copepodites and nauplii 
are reported for the baseline IGP food web (Table 3.5) and distribution patterns are 
similar to those of adult copepods in all food web scenarios.  Single dots on the first day 
of simulations are an artifact of the initial density. 
   a)       b) 

 
 
c)       d) 

 
 
e)       f) 
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Figure 4.6. Ctenophore number m-3 by layer plotted against ordinal day during both day 
( ) and night (x) for a representative simulation for each of 6 different food webs: a) 
baseline IGP high DO, b) baseline IGP low DO, c) relaxed predation high DO, d) relaxed 
predation low DO, e) relaxed competition high DO, f) relaxed competition low DO.  
Black dots denote the surface layer, red dots the pycnocline, and green dots the bottom 
layer. 
 a)                                                                             b) 

  
c)                                                                             d) 

   
e)                                                                            f) 

 

 133 



Figure 4.7. Ctenophore weight (mgdw) plotted against Ordinal Day for 6 different 
simulations: a) baseline IGP high DO, b) baseline IGP low DO, c) relaxed predation high 
DO, d) relaxed predation low DO, e) relaxed competition high DO, f) relaxed 
competition low DO.  Each line represents a cohort of individual ctenophores throughout 
the simulation with each cohort entering the model at a different time step.  The trajectory 
of weight through time provides a representation of ctenophore growth rates. 
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Figure 4.8. Fish larvae number m-3 by layer plotted against ordinal day during both day 
( ) and night (x) for a representative simulation for each of 6 different food webs: a) 
baseline IGP high DO, b) baseline IGP low DO, c) relaxed predation high DO, d) relaxed 
predation low DO, e) relaxed competition high DO, f) relaxed competition low DO.  
Black line denotes the surface layer, red line the pycnocline, and green line the bottom 
layer.  Note different scales.  
   a)    b)

  
 
c)      d) 

  
 
e)      f) 
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Figure 4.9. Mean daily larval fish average water column densities (number m-3) for the 
high DO (blue circles) and low DO (black x’s) a) baseline IGP, b) relaxed predation and 
c) relaxed competition food webs.  Note different scales. 
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Figure 4.10. Mean daily ctenophore average water column densities (number m-3) for the 
high DO (blue circles) and low DO (black x’s) a) baseline IGP, b) relaxed predation and 
c) relaxed competition food webs. 
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Figure 4.11. Mean daily adult copepod average water column densities (number m-3) for 
the high DO (blue circles) and low DO (black x’s) a) baseline IGP, b) relaxed predation 
and c) relaxed competition food webs. 
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Figure 4.12. Vertical habitat overlap for three predator – prey pairs in the 6 different 
simulations: baseline IGP high DO (IGP HI DO, grey bars), baseline IGP low DO (IGP 
LO DO, grey striped bars), relaxed predation high DO (RP HI DO, white bars), relaxed 
predation low DO (RP LO DO, white striped bars), relaxed competition high DO (RC HI 
DO, dark grey bars), relaxed competition low DO (RC LO DO, dark grey striped bars).  
The three predator prey pairs are: ctenophores and fish larvae, fish larvae and copepods, 
and ctenophores and copepods.  Overlap for all three copepod life stages (copepod 
nauplii, copepodites, and adult copepods) was combined since their vertical habitat 
distribution was the same.  Daytime values are shown for larval fish predation and day 
and night combined are shown for ctenophores predators.  Data are mean overlap ± 95% 
confidence interval. 
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Chapter 5: Conclusions and Implications 
My goal was to determine the effects of low DO on food web interactions 

between the ctenophore Mnemiopsis leidyi and Chesapeake Bay ichthyoplankton (bay 

anchovy Anchoa mitchilli and naked goby larvae Gobiosoma bosc).  In Chapter 2, I 

conducted laboratory predation experiments that measured clearance rates of ctenophores 

feeding on fish eggs, yolk sac larvae, and feeding larvae at three different DO 

concentrations, and conducted field sampling to determine vertical habitat overlap of 

species in the Patuxent River planktonic food web under a range of DO conditions.  

Chapter 3 was comprised of small-scale observations of (1) ctenophore and larval fish 

swimming speeds at three DO concentrations, and (2) events leading from encounter to 

ingestion between a single ctenophore and fish larva at high and low DO.  Finally, 

Chapter 4 combined results from laboratory experiments and field sampling with 

literature information to construct an individual-based predation model of the mesohaline 

Chesapeake Bay summertime ctenophore-fish larvae-copepod intraguild predation (IGP) 

food web under both high and low DO conditions. 

My results indicate that different tolerances of low DO by predator and prey do 

not necessarily translate directly into differences in effects of DO on clearance rates, 

predation interactions, or swimming speeds.  Experiments described in Chapter 2 suggest 

that hypoxia does not affect predation by ctenophores on ichthyoplankton.  I found no 

significant DO effect on Mnemiopsis leidyi clearance rates of bay anchovy eggs, bay 

anchovy yolk sac larvae, or naked goby larvae in the laboratory; estimated predation rates 

were as high at low DO as they were at high DO.  This result was unexpected as I 

anticipated differences in clearance rates due to DO based on different tolerances of low 
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DO between ctenophores and their prey (Purcell et al. 2001a, Breitburg et al. 2003, 

Decker et al. 2004), as well as the results of other predation studies (Breitburg et al. 1994, 

1997, Decker et al. 2004). 

Small-scale laboratory observations of predation interactions described in Chapter 

3 revealed that DO does not have a significant effect on ingestion of fish larvae by 

ctenophores.  But ctenophore swimming speeds were elevated under moderate hypoxia, 

which would be expected to increase encounter rates between predators and prey.  

Preliminary laboratory experiments did show a slight increase in larval fish ingestion by 

ctenophores under moderate hypoxia (Kolesar and Breitburg, unpubl.); however, this 

result was not observed in additional laboratory predation experiments (Kolesar Chapter 

2).     

Even though larval fish are sensitive to low DO, they may benefit from the effect 

of low DO on vertical habitat structure.  The effect of DO on vertical distribution and 

overlap of predator and prey can either increase or decrease potential encounters, which 

can in turn affect predation.  In the Patuxent River estuary, bottom DO affected the 

vertical distribution of each motile species I sampled and vertical overlap between 

species in the planktonic food web increased as bottom DO increased and all species 

utilized the bottom layer (Chapter 2).  Greater vertical overlap with increasing bottom 

DO can increase encounters, leading to increased predation rates when DO 

concentrations are high in the bottom layer.  Different tolerances to low DO of predator 

and prey resulted in different responses to low DO in bottom waters and decreasing 

vertical habitat overlap at low DO. 
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Competition for resources can also increase with increased vertical overlap of 

competitors in a well-oxygenated water column.  My IGP food web model results from 

Chapter 4 indicated that the large degree of vertical overlap between ctenophores and 

larval fish in high DO food webs can result in lower densities and smaller size classes of 

copepod prey available to larval fish.  In the low DO IGP food web model, overall 

survival of larval fish was less than at high DO but predation mortality was also less due 

to direct mortality of fish eggs due to hypoxia and changes in vertical overlap of 

ctenophores and fish larvae. 

In IGP food webs, a species that is an inferior competitor to its prey can increase 

food web stability, but a species that is a superior competitor to its prey can decrease 

stability and eliminate prey.  The ctenophore-fish larvae-copepod food web that typifies 

Chesapeake Bay and other temperate estuaries differs from more frequently examined 

IGP food webs in that the IGP predator (the ctenophore, M. leidyi) is a superior 

competitor to its prey.  In Chapter 4, my simulation model of the IGP food web scenario 

resulted in fewer larval fish surviving than in either the relaxed predation or relaxed 

competition food web scenarios, signifying that larval fish persistence is not favored in 

the IGP food web. 

Model simulations that relaxed predation or competition individually also 

indicated that predation was far more important to survival of early life stages of fish than 

was competition, but that competition was more important to larval fish growth rates than 

was predation.  Larval fish survival was much higher when ctenophore predation was 

relaxed than in either the baseline IGP or relaxed competition food web, while larval fish 
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growth rates were higher when ctenophore competition was relaxed than in either of the 

other two food webs.   

In my food web model, DO had only a minor effect on the relative importance of 

ctenophore predation and competition to survival of early life stages of fish.  Larval fish 

survival was highest in the relaxed predation food web regardless of DO, and the rank 

order of growth rates in the three food webs was not changed by DO.  At both high and 

low DO, larval fish growth rates were faster in the relaxed predation food web and slower 

in the relaxed competition food web compared to growth rates in the baseline IGP food 

web.   

The longer-term effects of the full IGP food web and hypoxia beyond the summer 

spawning and larval fish growth period to maintaining larval fish persistence in the food 

web are unclear.  Additional modeling that incorporates multiple years of food web 

interactions is necessary to determine effects of IGP on persistence of the Chesapeake 

Bay system planktonic food web.  Expanding the model food web to include multiple 

levels of predators and prey (such as predatory schyphomedusae or microzooplankton 

prey) can provide a more robust simulation of trophic interactions.  In addition, my 

individual-based food web model can be used to explore how factors affecting food web 

dynamics such as changes in spawning, overall species number and abundance, and 

environmental conditions might influence IGP food webs both in the Chesapeake Bay 

system and in other, similar habitats. 

Understanding the interaction among trophic linkages and environmental stressors 

is important for sustainable resource management, and detrimental effects of a stressor on 

organisms may not directly translate into food web effects.  Food web complexity can 
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make it difficult to predict environmental effects on species interactions.  In my IGP food 

web model, an environmental perturbation such as low DO had a larger effect in a less 

complex food web (relaxed competition) than in the full IGP food web.  Although these 

results look interesting, I interpret them with caution due to the low number of larval fish 

survivors.  Further simulations with the IGP food web model are necessary to adequately 

address questions concerning environmental perturbations and food web stability.   
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