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Abstract. When solving inequality constrained optimization problems via Sequential Quadratic
Programming (SQP), it is potentially advantageous to generate iterates that all satisfy the constraints:
all quadratic programs encountered are then feasible and there is no need for a surrogate merit func-
tion. (Feasibility of the successive iterates is in fact required in many contexts such as in real-time
applications or when the objective function is not defined outside the feasible set.) It has recently
been shown that this is indeed possible, by means of a suitable perturbation of the original SQP
iteration, without losing superlinear convergence. In this context, the well known Maratos effect is
compounded by the possible infeasibility of the full step of one even close to a solution. These diffi-
culties have been accommodated by making use of a suitable modification of a “bending” technique
proposed by Mayne and Polak, requiring evaluation of the constraints function at an auxiliary point
at each iteration.

In part I of this two-part paper, it was shown that, when feasibility of the successive iterates is
not required, the Maratos effect can be avoided by combining Mayne and Polak’s technique with a
nonmonotone line search proposed by Grippo, Lampariello and Lucidi in the context of unconstrained
optimization, in such a way that, except possibly at a few early iterations, function evaluations are
no longer performed at auxiliary points. In this second part, we show that feasibility can be restored
without resorting to additional constraint evaluations, by adaptively estimating a bound on the second
derivatives of the active constraints. Extension to constrained minimax problems is briefly discussed.
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1. Introduction. Consider the optimization problem
(P) L min f(z) s.t. g(z) <0

where f : IR” — IR and g : R” — IR™ are smooth functions. It has been shown that a
suitable modification of the Sequential Quadratic Programming (SQP) iteration can
be used to solve efficiently such problems while generating iterates that all satisfy
the constraints [13], [15]. Preserving feasibility is an important attribute in many
contexts, e.g., (i) when the objective function is not defined outside the feasible set or
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(i) in real-time applications, when it is crucial that a feasible solution be available at
the next “stopping time”. From a computational point of view, when this property is
satisfled, advantages are that the quadratic programs successively constructed all have
a non empty feasible set and that the objective function itself can be used as a merit
function in the line search. On the other hand the condition that the line search yield a
feasible next iterate renders increasingly difficult the question of devising a mechanism
to ensure that the full step of one is eventually taken, an imperative requirement if
superlinear convergence is to take place. (The possible undesirable truncation of
the step due to failure of the merit function to decrease when a full step is taken
was first pointed out by Maratos [11].) In particular the watchdog technique [1], by
which the full step of one is tentatively accepted if sufficient decrease was obtained
in recent iterations, is of no help here. In [13], [15], the issue is resolved by making
use of a “bending” technique employed by Mayne and Polak [12], suitably adapted for
restoring feasibility. The appropriate amount of bending is determined via evaluation
of the constraints at an auxiliary point at each iteration.

In part I of this two-part paper [14], it was shown that, when feasibility of the
successive iterates is not required, the “Maratos effect” can be avoided by combining
Mayne and Polak’s technique with a nonmonotone line search proposed by Grippo,
Lampariello and Lucidi in the context of unconstrained optimization, in such a way
that, except possibly at a few early iterations, constraint evaluations are no longer
performed at auxiliary points. In this second part, we show that feasibility can be re-
stored without resorting to additional constraint evaluations, by adaptively estimating
a bound on the second derivatives of the active constraints.

Based on ideas similar to those used in part I, one can show that, if a sequence
of iterates {z;} is generated by the basic SQP iteration for (P), i.e., £x41 = zx + d}
where d? solves the quadratic program QP(z, Hy)

ming %(d, de) + (Vf(:ck), d)

s.t.  gj(ze) + (Vgj(zp),d)y <0 j=1,...,m,

(1.1)

with Hj a suitable uniformly symmetric positive definite estimate to the Hessian of
the Lagrangian; then, if xo is sufficiently close to a strong local minimizer z* for (P)
and if the entire sequence {z}} happens to be feasible,

(1.2) f(ers1) < f(zr-3) + a(Vf(zr), Tes1 — Tk)

will hold for k large enough, with o any positive number. Thus, a line search rule
requiring that the condition

flax +1dD) < maxe=o,...3 f(zr—t) + t(Vf(zr), d}) ,

be satisfied would eventually always accept the full step of one, provided it does so
three times in a row. Initialization of this process could be performed, as done in part
I, by making use of Mayne and Polak’s correction. Again, locally around z*, evaluation
of the constraints at auxiliary points would not be necessary. Global convergence of
a corresponding scheme was proved in part I based on a result in [6).} In the present
case however, a major difficulty remains: the full step of one will likely be rejected
due to infeasibility.

1The fact that d?c is a direction of descent for f is crucial.
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It turns out (see Theorem 3.8 below) that an inequality analogous to (1.2), namely

f(xra1) < flzg-3) + oV f(xr), d7) ,

still holds if the sequence {2} is constructed via the iteration z41 = 2 + dj, where
d), satisfies?

(1.3) dr, = d% + O(||d3]}2) .

In [13] and [15], SQP-type algorithms are proposed that make use of a feasible direction
dy that satisfies (1.3). Unfortunately to achieve feasibility of the full step of one close to
a solution, they resort to a correction of the Mayne-Polak type that require evaluation
of the constraints at auxiliary points, which is precisely what we aim to avoid here.
The question to investigate is thus whether restoration of mere feasibility (rather than
feasibility and descent on f, as in [13] and [15]) for the full step of one can be achieved
without such additional constraint evaluation. To this end, consider a “local” search
direction df such that

(1.4) dy = di + O(||d}]1?)
satisfying
(1.5) 0i(@r) + (Vg5(z1), d2) < ~CdE, j=1,...,m,

for given C > 0. Under mild assumptions, when z}, is close to z*, dY is small and,
if the gradients of the active constraints at z* are linearly independent, it is always
possible to construct such df. If (1.5) holds, the sequence {z}} constructed by the
iteration 41 = xp + dﬁ will satisfy

1 82 ,
9 (=+1) = 95 (k) + (Vi (2r), df) + 5{df, angj(wk + & 1 df)df)
d%g

< ~ClgIE + S5 L o + &g udf)l, G =1,y

for some & € [0,1]. And if (1.4) holds, for k large enough we will have g;(zx41) <
0, j =1,...,m, provided 2C is strictly larger than the largest among all eigenvalues
of the Hessians %%i(x*), j=1,...,m. While these Hessians are obviously unknown,
one could attempt to adaptively obtain a suitably large value of C, by increasing C
whenever the step of one along df is not feasible. It will be shown below that this can
indeed be achieved.

A final difficulty stems from the fact that, away from *, df may not be a descent
direction for f. Indeed, conditions (1.4) and (1.5) and the descent property are usually
incompatible. This can be addressed by resorting, whenever the full step of one along
dﬁ is not accepted for the descent criterion, to a search along the arc,

o(t) = @ + tdd + t2d;,

2Throughout this paper, || - || denotes the Euclidean norm in R™ as well as the corresponding
operator norm in R"X",
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with df a “global” feasible descent direction and di a correction of the Mayne-Polak
type, as in [13] and [15]. Borrowing from the scheme used in [15], both df and df
will be chosen as convex combination of df and a direction d'(zy) obtained via a
certain map d1(.). In [15], d!(z) is essentially any feasible descent direction at 2 and
thus vanishes at any Karush-Kuhn-Tucker (KKT) point. In this context however, to
ensure that (1.5) can be achieved close to z*, we will require that d'(z) be a (nonzero)
direction of strict feasibility even at KKT points. Clearly then, one cannot any more
require that d'(z) be a direction of descent for f.

The balance of this paper is organized as follows. In §2, we propose an algorithm
based on the foregoing ideas. A convergence analysis is carried out in §3. In §4,
extension to constrained minimax problems is briefly discussed. Implementation issues
and numerical experiments are discussed in §5. Finally, §6 is devoted to concluding
remarks. To avoid a loss of continuity, several proofs are given in an appendix.

2. The algorithm. A point z* is said to be a Karush-Kuhn-Tucker (KKT)
point for (P) if g(z*) < 0 and there exist multipliers pj, j = 1,...,m, with 7 >0,
such that

VeLl(z*, p*)=0
and
,u;gj(m*) =0,j=1,...,m

where L{xz, 1) denotes the Lagrangian function

L(z, 1) = f(=) + Y ngi(2).

i=1
In the sequel, we denote by X the feasible set for (P), i.e.,
X ={z|g(z) <0}

We make the following assumptions.
A1, The functions f, gj, j =1,...,m are continuously differentiable.
A2. Theset {z € X | f(2) < f(z0)} is compact.
A3. Vz € X, {Vygj(z), j € I(z)} are linearly independent,

where

I(z) ={j | gi(=) =0} .
We also assume that there exist 01,02 > 0 such that
(2.1) o1||z||? < (=, Hyz) < oof|2]|?, Ve €R®, VYkeNN.
As indicated above, Algorithm 2.1 below makes use of two search directions, df and
df, both of which are convex combinations of d) and of a feasible direction d!(zx)
obtained via a map d(-) : R® — R". This map is required to be continuous® and to

yield for every € X (including KKT points) a direction d!(z) satisfying

(2.2) gi(z) + (Vgj(z),d*(z)) <0, j=1,....m.

3For simplicity of exposition; the results still hold with milder assumptions.
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In view of Assumption A3, such a direction can, for example, be obtained as the
solution of

1
mlndglldll2 + max;=1,.,m{9;(z) + (Vgj(z),d)} .

Further clarification is in order concerning the specific construction of df and dj.
The “local” search direction dﬁ is constructed based on a constant Cj, corresponding
to C'in (1.5), which is iteratively adapted as suggested in the introduction. Essentially,
it is increased if ||d9|| is reasonably small (indicating that z* is nearby) but 2 + df is
not feasible. If z + d is feasible, Cy, is kept to its previous value and if || is large,
it is reset to some small value. Next, it is easily checked that if C} remains bounded
as k — 0o (which will be shown to be true) and df is constructed according to

df = (1= p})d} + pid(ax),

with p% € [0, 1] as small as possible subject to satisfaction of (1.5), the requirement
(1.4) will be satisfied. Away from z* however it may be impossible to satisfy (1.5)
with pt € [0,1]. A suitable choice in such case would be pf = 1. In Step 1 i in
Algorithm 2.1 below, p¢ is constructed essentially according to these rules, with the
additional feature that pf (and thus d%) is forced to go to zero whenever df does, to
preserve global convergence even if Cy, tends to grow without bound. For the “global”
direction di, the requirement is that it should be a feasible descent direction, and that

df = di + O(||4}]1?) -
This can be achieved by selecting
di = (1= pi)d} + pid (i)
with pf € [0, p%], as large as possible subject to the condition

(Vf(zi), df) < O(VF(wx), d}) ,

where 8 € (0,1) is a fixed parameter. This is done in Step 1 v below.

2.1. Algorithm.

Parameters. a € (0,1/2), B €(0,1), 8 € (0,1), v €(2,3), C, d>0.

Data. zo € X, Ho € R**", symmetric positive definite, Co = C.

Step 0. Initialization. Set k = 0.

Step 1. Computation of a new tterate.

i. Compute d solution of the quadratic program QP(z, Hz).
If df = 0 stop.

ii. Compute d} = d(z), let vx = min{Cy||d}||?, ||d3||} and define values py ; for
j=1,...,mby pr; equal to zero if

gi (k) + (Vgj(2r), d}) < —vi
or equal the maximum p in [0, 1] such that
gi(z) + (Vgj (), (1 = p)d} + pdi) 2 —vi

otherwise. Finally, let p§ = max;=1,. m{pr,;}-
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11i. Obtain a “local” direction
di = (- p)dk + pidi-

v, If
f(zp +df) < maxg=o,.. 3{f(2r-e)} + (V(2t), d})

and
g](mk_i'di)soi j'_‘la"')m)

set ty = 1, Tpp1 =2 + dﬁ and go to Step 2. Otherwise, go to Step 1 v.
v. Obtain a “global” direction

= (1-p)d} + pids
where pf is the largest number in [0, p‘,';] such that

(Vf(zk), di) < O(VF(wr), df).

vi. Compute a “correction” dy by solving the quadratic program a}?’(mk, dy, Hy)

ming (&) +d), He(d + ) + (Vf(zs), &)
st. gj(zp +di) + (ng(:ck),J) —ldgllr, i=1,...,m.

If there is no solution or if ||di|| > ||d?||, set di = 0.
vii. Compute tj, the first number ¢ in the sequence {1, 3, 32, -} satisfying

Fzy +1d) +12dy) < maxe=o,...3{f(zr-2)} + at(V f(2r), d}),

gj(:ck+td£+t2c?k)§0, j=1...,m

and set zp41 = Tk + tedy + t%Jk.

Step 2. Updates.

- Compute a new symmetric positive definite approximation Hy41 to the Hessian
of the Lagrangian.

I Y| > d, set Cr = C. Otherwise, if gj(zz + i) <0, j=1,...,m, set
Ci+1 = C. Otherwise, set Cy41 = 2C%.

- Increase k by 1.

- Go back to Step 1. a
Note that while Algorithm 2.1 involves possible auxiliary constraint evaluations at
Ty + d‘ and zj + df (Steps 1 iv and 1 vi) it can be easily modified so as to require at
most one auxiliary constramt evaluation per iteration (either at zj +d or at Ty +d ).
See §5 below.

3. Convergence results.

3.1. Global convergence.
In view of the feasibility of the iterates and the positive definiteness of Hy (see
(2.1)), the quadratic program QP (2, Hy) always has a unique solution d?. Using the
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optimality conditions associated with QP(zx, H) it can be checked that df is equal
to zero if and only if z; is a KKT point for (P) and that, if df is not zero then

(3.1) (VF(mr), df) < —(d3, Hed}) + Y pi 95 ()
j=1

where p1;, denotes the nonnegative multiplier vector associated with QP(xy, Hy). There-
fore, in view of the feasibility of the iterates, the positive definiteness of H} (see (2.1))
and the definition of df, it follows that

(Vf(zk), di) <0

and
gj(mk)'i'(ng(wk)’d‘z) < 0) j= 1;'-"m

so that, using a standard argument, it can be proven that, whenever a line search is
performed in Step 1 vii, it yields a step t; = B/(¥) for some finite j(k) € IN. The
algorithm is thus well defined. In the sequel, we assume that stop at Step 1 ¢ never
occurs so that a complete sequence {z} is generated. We proceed to show that every
accumulation point of {z;} is a KKT point for (P). The following results are proven
in the appendix.

PROPOSITION 3.1. The sequence {zy} is bounded and the sequences {t;d}} and
{llzk+1 — ||} both converge to zero.

THEOREM 3.2. Let x* be an accumulation point of the sequence generated by the
algorithm and let {zx}rex be any subsequence converging to z*. Then, x* is a KKT
point of (P) and the subsequence {d2}rekx converges to zero.

3.2. Superlinear convergence. In order to prove superlinear convergence, we
assume some more regularity on the functions involved. Assumption Al is replaced
by

A1’. The functions f, g;, j = 1, ..., m are three times continuously differentiable.
Let z* be an accumulation point of the sequence generated by the algorithm (a KKT
point of (P) in view of Theorem 3.2). The KKT multiplier at z* is denoted by p*. We
further assume that the second order sufficiency conditions with strict complementary
slackness are satisfied at z*, i.e., that p} > 0 Vj € I(z*) and that the Hessian of the
Lagrangian function Vo L(z*, p*) is positive definite on the subspace

{p| < Vgi(z*),p>=0 Vj€I(z*)}.

Many of the proofs of the results stated below are very similar to the ones in Part I
of this two-part paper and thus are omitted.

PRroPOSITION 3.3. The entire sequence {xp} converges to z*.

Proof. The proof is similar to the one of Proposition 3.4 in [14]. O

PROPOSITION 3.4. There exists C > 0 such that Cy, < C, Vk.

Proof. In view of Proposition 3.3, the properties of d(-) and the definition of d’,
in Step 1 4i4, 3 M > 0 such that

(3.2) 2]l < M3 V.

Let
1 0%g; &t
N = aMa%je(1,..,m}, te(O,l),ke]N{” 922 (zx + tdi)[l}
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and let C = MN. In view of the regularity of the functions g;’s (Assumption A1)
and the boundedness of {z;} and {d{}, this quantity is well defined. For any j €
{1,...,m}, we have

9i(er + df) < gj(zx) + (Vgj (i), df) + N||dE][2.

In view of the definition of df in Step 1 444, the properties of d'(-) and the fact that
{d?} converges to zero, for k large enough we get

gi(zx + di) < —min{C, Ci}|d}||? + N||dg||2.
Therefore, from (3.2)
gi(x + di) < —min{C, Ci}||d}||> + M N||dR||2.

This completes the proof since, if C) keeps increasing, for k big enough Ci > C and,
from the definition of C we obtain

gi(zk +df) <0

and, in view of Step 2 in the algorithm, C} would remain constant, a contradiction.
O

Assume now that the approximations Hj to the Hessian of the Lagrangian at z*
satisfy a property of the type

|P(He = V3o L(z*, 1)) Pod
1281

as k goes to infinity, where the matrices Py are defined by

I,

P, =1- Rk(Rr,':Rk)'lR{

with Ry = [Vg;(zx) | j € I(z*)] € R**HE) . (Note that, in view of the independence
of the gradients of the active constraints at z* (Assumption A3), the matrices RY Ry
are invertible for k large enough.) We proceed to show that a step of one is always
accepted for k large enough and that two-step superlinear convergence occurs. The
next proposition states that, close to z*, the active constraints at z* are correctly
identified by QP (zk, Hz).

ProPoOSITION 3.5. For k large enough,

i. the multipliers pl associated with the solutions df) of QP (xy, Hy) satisfy

{13} — p

and
#g,j =0, Vj¢&lI(=*).
gi(zx) + (Vgj(zx),dR) =0, Vj € I(z*).

df = di + O(||3|1?)-
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and

di = dj + O(l|4}]1).

Proof. The proof of the first two statements is very similar to that of Proposition
4.2 in [13]. 4 follows from Theorem 3.2, Propositions 3.3 and 3.4, the definition of
d and df in Step 1 4i¢ and v and the properties of d*(-). a
The following property states that eventually a step of one is accepted.
PROPOSITION 3.6. For k large enough, (i) QP(zk,dd, Hy) always admits a solu-
tion dy which satisfies .
& = Ol

and (1) a step of one is accepted whenever the line search is performed.
Proof. Similarly to what is done in the proof of Proposition 3.6 in Part I of this
two-part paper [14], it can be proven that (¢) holds. Also, making use of Proposition

3.5 and observing that dj = Pydy + dj with ||di|| = O(||g(z)||) (see proof of Lemma
4.5 in [13]}) it can be shown that

[z + df + di) < maxg=o,.. 3{f(er-r)} + (VF(2t),ds).

Finally, expanding g; (:ck+di+cik) about ;+dJ, using the properties of di, Proposition
3.5 and the fact that ¥ € (2,3), it can be shown that, for k large enough,

gi(ar+dl+d) <0, j=1,...,m

O

Finally, the convergence rate properties of SQP-type methods is preserved and auxil-
iary constraint evaluations are performed in the early iterations only.

THEOREM 3.7. Under the stated assumptions, the convergence is two-step super-
linear, t.c.,

—
limy o L2z =2l o
llzk — =*||
Moreover,
lzke1 — el = O(llzi — 2*|]) -

. O
THEOREM 3.8. For k large enough, dfc is always used and a correction dy, is not
computed. |

This is the key result. Its proof is given in the appendix.

4. A simple extension: constrained minimax problems. It is well known
that problems of the type

(41) minimize max{fi(z),..., fp(z)}
' s.t.gj(2) <0, j=1,....m

where fi :R® - R, i=1,...,pand g; : R® > R, j = 1,...,m are smooth func-
tions can be reformulated as a standard smooth constrained problem by introducing
an auxiliary variable. Simple modifications of the SQP iteration that eliminate this
auxiliary variable have been suggested [7], [8] and it has been shown that SQP-type
algorithms generating feasible iterates can be adapted to include such modifications

[16].
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Algorithm 2.1 can similarly be extended to problem (4.1) in a straightforward
manner. Specifically, the function f : IR® — IR must now be taken as

f(e) = maz fi(z),

expressions of the form (Vf(z),d) in Step 1 iv, 1 v and 1 vi¢ must be replaced by
corresponding first variations f’(z,d) with f/ : R” x R" — IR given by

file d) = maz {fi(z) +(Vfi(z),d)} - f(=).
In Step 1 vi, (Vf(xk),ci) must be replaced by

Flo+ddmn d) = mas {fi(e + df) + (Vhilae), d)} - flar +df).

Finally, matrices Hj; must now approximate the Hessian of the corresponding La-

grangian
L(z, A\ p) = ZA filz) + Y pigi(x)
i=1

5. Numerical experiments. An efficient implementation of the algorithm de-
scribed in this paper has been completed (FSQP Version 2.0 [19]). In this implemen-
tation, given ¢, the direction d!{z) is defined to be the value of d! at which

mindgudlnz + maxj=1,...m{g;(z) + (Vg;(x), d)}

is achieved, with 7 = 3.0. The other parameter values are &« = 10-7, = 0.5, 8 = 0.2,
v =2.5,C =0.01, and d = 5.0. The initial Hessian approximation Hp is taken to be
the identity. H} is updated by means of the BFGS formula with Powell’s modification
[17]. The following minor modifications with respect to the algorithm as described in
§2 were found to be beneficial and were implemented:

(i) Step 1 v is performed before Steps 1 iii and 1 ¢v and, in Step 1 dii, p9 is
used instead of p§ if the step of one was not accepted at the previous iteration or if
ps > 0.5 (this reduces the number of auxiliary constraint evaluations, in the spirit of
the suggestion made at the very end of §2). Also, if m = 0 (in particular, in the case
of unconstrained minimax problems), Steps 1 ii, 1 #i and 1 v are skipped and df and
dj are set to df.

(i) In the computation of d,||d4||” is replaced by min{0.01||d{|, ||d%|[*}, to pre-
vent d from being too large in the early iterations.

(iii) In Step 2, if ||d2|| > d, Cr+1 is set to max{0.5 Cy, C} to prevent too rapid a
decrease of Cy. If Hd | > d and gj(xx + df) > 0 for some j € {1,...,m}, Cr4, is set
to 10 C}, instead of 2 Ck.

(iv) The shopping criterion in Step 1 i is unsuitable for implementation. Instead,
in FSQP, execution is terminated if the gradient of the Lagrangian at the current
point, with the multipliers obtained in solving QP (&, Hz), is less than some specified
e>0.

The FSQP code includes special provisions for efficient handling of affine con-
straints and it also accepts affine equality constraints. Such extensions are straightfor-
ward (see [19] for details). The extension to constrained minimax problems suggested
in §4 is also implemented.
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Results on two sets of experiments are presented in Tables 1 and 2. All computa-
tions were performed on a Sun 4/SPARCstation 1. For the first set of problems, gradi-
ents were computed analytically; for the second set, they were computed by finite dif-
ferences (for the ith component, the perturbation parameter was 10-7 maz{1, lzi]}).

Table 1 contains results obtained on test problems from [9]. The new algorithm
(FSQP-NL) is compared to the algorithm analyzed in [15] (FSQP-AL), to the authors
knowledge the best available “feasible iterate” algorithm.! It is observed that on
all problems the number of nonlinear constraint evaluations is lower in FSQP-NL,
often dramatically so. No significant difference is observed in the number of objective
function evaluations.

Results obtained on selected minimax problems are summarized in Table 2. Prob-
lems BARD, DAVD2, F&R, HETTICH, and WATS are from [18]; CB2, CB3, R-S,
WONG and COLV are from [2; Examples 5.1-5]; MAD1 to MADS are from [10, Ex-
amples 1-8]. Some of these test problems allow one to freely select the number of
variables; problems WATS-6 and WATS-20 correspond to 6 and 20 variables, respec-
tively, and MADS-10, MADS8-30 and MADS8-50 to 10, 30 and 50 variables respectively.
Problems BARD down to MADS are unconstrained or linearly constrained minimax
problems. Unable to find nonlinearly constrained minimax test problems in the lit-
erature, we constructed problems P43M through P117M from problems 43, 84, 113
and 117 in [9] by removing certain constraints and including instead additional ob-
jectives of the form f;(z) = f(z) + aig;j(z) where the ay’s are positive scalars and
g;i(z) < 0. Specifically, P43M is constructed from problem 43 by taking out the first
two constraints and including two corresponding objectives with o; = 15 for both;
P84M similarly corresponds to problem 84 without constraints 5 and 6 but with two
corresponding additional objectives, with o; = 20 for both; for P113M the first three
linear constraints from problem 113 were turned into objectives, with a; = 10 for all
three; for P117M, the first two nonlinear constraints were turned into objectives, again
with ¢; = 10 for both. In Table 2, the performance of FSQP is also compared with
that of the algorithms proposed in {3] (NM) and [10} (MS). To make such comparison
meaningful, we attempted to best approximate the stopping rule used in each of the
references. Thus the stopping criterion given in (iv) above was not used, but rather
(i) for problems BARD down to WONG, execution was terminated when [|d}|| was
smaller than the corresponding value of ¢ in the EPS column (this was also done for
problems P43M down to P117M), and (ii) for problems MAD1 down to MADS8-50,
execution was terminated when ||d2|| was smaller than ||zi|| times the corresponding
value of ¢ in the EPS column. The other columns are as in Table 1 (see bottom of
that table), except that NOBJ gives the number of objective functions (in the max),
NMF the total number of evaluations of the set of objective functions (rather than the
total number of evaluations of scalar objective functions, to allow better comparison
with the results given in the references), and OBJMAX the final value of the max of
the objective functions. Finally, an “x” in Table 2 indicates that we could not infer
the corresponding information from the results given in the reference.

The following observations can be made concerning the results of Table 2. First,
as in the case of the non-minimax problems of Table 1, FSQP-NL performs better
than FSQP-AL. This is especially true for the four nonlinearly constrained minimax
problem (P43M to P117M) where the number of objective function evaluations and the
number of constraint evaluations are both significantly lower with FSQP-NL. Second,

1T‘SQP Version 2.0 [19] gives the user the option to select either FSQP-AL or FSQP-NL.
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while our algorithm was not specifically designed for minimax problems, it compares
well with pure minimax algorithms proposed by others.

6. Concluding remarks. We have described and analyzed an SQP-type algo-
rithm for inequality constrained optimization with the properties that (%) all iterates it
generates satisfy the constraints and (i) the Maratos effect is avoided while auxiliary
constraint evaluations are performed only in the early iterations. We indicated how
such algorithm can be adapted to handle constrained minimax problems. Numerical
results measure up to the strong theoretical properties of the new algorithm.

It should be clear that in case equality constraints are also present, these can be
handled via the introduction of a merit function as described in part I of this two-
part paper. The overall algorithm will generate iterates that all satisfy the inequality
constraints and, again, the Maratos effect will be avoided without the need for auxiliary
function evaluations, except in the early iterations.

Appendix

Proof of Proposition 3.1.

Showing that {z} is bounded can be done similarly to the proof of the Theorem
in [5], using Assumption A2 and the monotonical decrease on f. For the remainder
of the proof, the only difference with what is done in [5] consists in showing that if
te(Vf(xr),d) converges to zero on a subsequence, then, on that same subsequence,
(i) txd) and (ii) ||zk4+1 — 2k|| also converge to zero. (i) obviously holds in view of
(3.1), the feasibility of the iterates, (2.1) and the fact that ¢ty < 1. Now, since &y is
in a compact set, in view of the continuity of d!(-), d} is bounded. Also, since vy is
bounded by ||d?]|, in view of the constraints in QP(xz, Hy), of the properties of d'(-)
and of the definition of p§ and p¥ it follows that p and p{ converge to zero whenever
dd does. Therefore, tkdﬁ and tpdf converge to zero and, since whenever it is defined
dy, satisfies ||dx)| < ||d9||, we obtain [|z541 — || — 0. |

Proof of Theorem 3.4.

Let z* be an accumulation point and let {zx}rex be a subsequence converging
to z*. In view of (2.1), we may also assume, without loss of generality, that the
subsequence {Hy}rek converges to some symmetric positive definite matrix H*. In
that case, in view of the work in [4] (see also [6, Lemma 3.2]), the subsequence {d} }rex
converges to a vector d°*. In order to conclude, we show that d* = 0, so that, the
feasible point z* (limit of feasible iterates) is a KKT point for (P). We now suppose
that d% # 0 so that 3 d > 0s.t. ||d}|| > d, k € K, and we show that, in that case,
there exists ¢ > 0 such that, for all £ € K at which a stepsize is computed in Step
1 vii, t; > t, contradicting Proposition 3.3. In view of (3.1), the feasibility of the
successive iterates and of (2.1),

(Vf(zr),d}) < —o1d’
and, from the definition of df in Step 1 v,
(A1) (VF(e), ) < b1

Also, in view of the continuity of d(-) and (2.2) and the definition of df, in Step 1 v,
there exists p > 0 such that, for k € K large enough it holds

(A.2) 9i(zx) + (Vgj(zx), di) < —p.

Showing that, on K, #; is bounded away from zero by a positive number can be done
similarly to the proof of Proposition 3.2 in [13] using (A.1), (A.2) and the fact that,
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in view of the continuity of d'(-) and the definition of df and dy in Step 1 v and vi,
|d2}} and ))d]} are bounded on K. (|
Proof of Theorem 3.8
We first show that, for k£ large enough,

(4.3) flze + dY) ~ a(Vf(zr), d}) < fzr-3) .

While this proof has similarities with that of Theorem 3.8 in [14], it is given here
for the reader’s convenience. First, expanding f(zx + d%) to first order about z* and
making use of the KKT conditions associated with £* we may write

(44) flap+d) = fla) = Y p3(Vgi(a*) e +df - 2*) + Olles + df — 2*||?)
jel(z*)

Observing that g;(2*) = 0 for j € I(2*), expanding g;(xy +dx) about &* for j € I(z*)
and substituting in (A.4) we obtain

(A.5) flae+df) = f(@) = > wigi(er+db) +O(lzs + df — =*12) .
JeI(x*)

On the other hand, in view of Proposition 3.5 7 the optimality conditions associated
with QP(zy, H) yield, in view of (2.1),

(4.6) (V). d) = D prigi(ex)+ Ol
Jel(z*)

Also, in view of Proposition 3.5 ii the optimality conditions associated with Q P(zx, Hi)
and QP(zg-1, Hy~1) respectively imply,

gi(zr +d2) = O(d}I?) J € I(x~)
and

9i(zr) = O(|dR_II*) i €I(z*).
In view of Proposition 3.5 #ii, it thus follows from (A.5) and (A.6) that

f(zp + df) — «(Vf(=r), d})
= f(e*) + O(llzx + df — 2*([2) + O([d _4[*) + O(lld1*)

since, in view of Proposition 3.5 i, the px’s are bounded. It then follows from Theorem
3.7 that

f(ze + di) — oV f(zi), &) = f(2*) + o(||zx-3 — @*|]%) -
Equation (A.3) then follows from the easily checked fact [1, Lemma 1] that there
exists a positive scalar C such that for z feasible close enough to z*,

f() 2 f(z*) + Cllz — a*||? .

The theorem follows from (A.3) and the fact that, in view of Proposition 3.6, for k
large enough,
gilzp +d4) <0, j=1,...,m.

O
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PROB CODE NNL NF NG ITER OBJECTIVE KKT EPS
P12 FSQP-AL 1 7 15 7 —.300000000E+02 .72E-06 .10E-05
FSQP-NL 7 13 7 -.300000000E+02 .79E-06 .10E-05
P29 FSQP-AL 1 12 23 11 —.226274170E4+02 .13E-07 .10E-05
FSQP-NL 13 17 13 —.226274170E+4+02 .19E-06 .10E-05
P30 FSQP-AL 1 16 31 16 .100000000E+01 .54E-08 .10E-07
FSQP-NL 15 15 15 .100000000E+01 .97E-08 .10E-07
P31 FSQP-AL 1 9 21 8 .600000000E+-01 .23E-05 .10E-04
FSQP-NL 10 19 10 .600000000E+01 .46E-06 .10E-04
P32 FSQP-AL 1 3 6 3 .100000000E+01 .31E-15 .10E-07
FSQP-NL 3 4 3 .100000000E+4+01 .31E-15 .10E-07
P33 FSQP-AL 2 4 14 4 —.400000000E+01 .13E-11 .10E-07
FSQP-NL 5 10 5 —.400000000E+01 .47E-11 .10E-07
P34 FSQP-AL 2 7 28 7 —.834032443E4+00 .19E-08 .10E-07
FSQP-NL 9 24 9 —.834032445E+00 .38E-09 .10E-07
P43 FSQP-AL 3 11 62 9 —.440000000E+4+02 .12E-05 .10E-04
FSQP-NL 13 55 13 —.440000000E4+02 .86E-06 .10E-04
P51 FSQP-AL 0 8 0 6 .505655658E—~15 .46E-06 .10E-05
FSQP-NL 9 8 .505655658E--15 .34E-08 .10E-05
P57 FSQP-AL 1 7 9 3 306463061 E—-01 .29E-05 .10E-04
FSQP-NL 7 8 3 306463061 E-01 .28E-05 .10E-04
P66 FSQP-AL 2 8 30 8 .518163274E+4+00 .50E-09 .10E-07
FSQP-NL 9 24 9 .518163274E+4+00 .63E-11 .10E-07
P76 FSQP-AL 0 6 0 6 —.468181818E+01 .34E-04 .10E-03
FSQP-NL 6 6 —-.468181818E+01 .34E-04 .10E-03
P84 FSQP-AL 6 4 42 4 —-.528033513E+07 .68E-12 .10E-08
FSQP-NL 4 30 4 —.528033513E+07 .66E-09 .10E-08
P86 FSQP-AL 0 14 0 9 —.323486790E4-02 .17E-13 .10E-07
FSQP-NL 8 7 —.323486790E+02 .17E-13 .10E-07
P93 FSQP-AL 2 15 61 12 .135075968E+03 .37E-03 .10E-02
FSQP-NL 15 38 15 .135075964E+03 .41E-04 .10E-02
P100 FSQP-AL 4 23 168 16 .680630057E+03 .62E-06 .10E-03
FSQP-NL 20 128 17 .680630057E+03 .26E-04 .10E-03
P110 FSQP-AL 0 10 0 9 —.457784697E+02 .86E-10 .10E-07
FSQP-NL 10 9 —.457784697E4+02 .86E-10 .10E-07
P113 FSQP-AL 5 12 122 12 .243063768E+02 .81E-03 .10E-02
FSQP-NL 12 106 12 .243064357E+02 .85E-03 .10E-02
P117 FSQP-AL 5 20 219 19 .323486790E+4+02 .58E-04 .10E-03
FSQP-NL 18 94 17 .323486790E+02 .34E-04 .10E-03
P118 FSQP-AL 0 19 0 19 .664820450E+03 .13E-14 .10E-07
FSQP-NL 19 19 .664820450E+03 .13E-14 .10E-07
NNL: number of nonlinear constraints.
NF: number of objective function evaluations.
NG: number of (scalar) constraint evaluations.
ITER: number of iterations.
OBJECTIVE: objective function value at the final iterate.
KKT: norm of KKT vector (the gradient of the Lagrangian) at the final iterate.
EPS: maximum allowed for KKT (stopping criterion).

Table 1



PROB CODE NOBJ NNL - NMF NG TTER OBJMAX KKT EPS

BARD NM 15 0 10 0 X X x .50E-05
FSQP-AL 15 8 .508163265E—-01 .63E-10 .50E-05
FSQP-NL 7 7 .508168686E—01 .42E-05 .50E-05
CB2 NM 3 0 11 0 X X x .HOE-05
FSQP-AL 11 6 .195222453E401 . 10E-06 .30E-05
FSQP-NL 6 6 .195222453E+4+01  .82E-06 .50FE-05

CB3 NM 3 0 [ [0} X X x .S0E-05
FSQP-AL 5 3 .200000000E4-01 .75E-06 .50E-05
FSQP-NL 5 5 .200000000E4+01 .94E-09 .50E-05

COLV NM 6 0 49 0 X X x .o0E-05
FSQP-AL 31 15 .274053332E+02 .11E-05 .50E-05
FSQP-NL 14 14 .274053332E4+02 .14E-05 .50E-05

DAVD2 NM 20 0 20 0 X X x .B0E-05
FSQP-AL 20 10 .115706440E4+03 .59E-06 .50E-05
FSQP-NL 11 10 .115706440E+03 .93E-06 .50E-05

F&R NM 2 0 11 0 X X x .B0E-05
FSQP-AL 17 9 .494895210E+01 .24E-06 .50E-03
FSQP-NL 10 10 494895210E+01 .21E-06 .50E-05

HETTICH NM o 0 11 0 X X x .50E-05
FSQP-AL 19 10 .245935695E-02 .28E-05 .50E-05
FSQP-NL 11 10 .2459039485E—-02 .19E-05 .50E-05

R-5 NM 4 0 12 0 X X x .BOE-05
FSQP-AL 22 9 —.440000000E4-02 .13E-05 .50E-05
FSQP-NL 16 10 —.440000000E+4+02 .99E-07 .50E-05
WATS-6 NM 31 0 24 0 X X x .o0E-0b
FSQP-AL 23 12 J127170954E—-01  .14E-05 .50E-05
FSQP-NL 14 13 JA27170913E-01  .31E-08 .50E-05
WATS-20 NM 31 0 22 0 X X x .50E-05
FSQP-AL 106 42 .138908355E~07 .35E-06 .50E-05
FSQP-NL 45 43 .141191856E—-07 .17TE-06 .50E-05

WONG NM 5 0 0 X x .50E-05
FSQP-AL 67 20 .680630057TE+03 .12E-05 .50E-05
FSQP-NL 49 26 .680630057E+03 .42E-05 .50E-05
MADI MS 3 0 X 0 8 X x .I0E-IT
FSQP-AL 9 5 —.389659516E+4+00 .35E-16 .10E-11
FSQP-NL 6 6 —.389659516E4+00 .89E-10 .10E-11
MAD2 MS 3 0 X 0 X X x .JOE-I1
FSQP-AL 21 11 —.330357143E+00 .13E-10 .10E-11
FSQP-NL 19 18 —.330357143E+00 .81E-10 .10E-11

MAD4 MS 3 0 X 0 8 X x I0E-IT
FSQP-AL 11 6 —.448910786E+00 .90E-16 .10E-11
FSQP-NL 8 8 —.448910786E4-00 .90E-16 .10E-11

MADS5 MS 3 0 X 0 8 X x I0E-11
FSQP-AL 13 7 —.100000000E+4-01 .16E-16 .10E-11
FSQP-NL 8 8 —.100000000E+01 .35E-13 .10E-11
MADG6 MS 163 0 8 0 X 113105 E+00 x .10E-11
FSQP-AL 11 6 .113104635E+4-00 .20E-10 .10E-11
FSQP-NL 8 8 .113104727E400 .72E-15 .10E-11

MADS-10 MS 18 0 14 0 X X x .10E-1T
FSQP-AL 19 10 .381173963E4-00 .99E-12 .10E-11
FSQP-NL 14 14 381173963E4+00 .22E-15 .10E-11

MATS-30 MS b8 0 15 0 X X x .I0E-11
FSQP-AL 30 15 .b47620496E4-00 .21E-15 .10E-11
FSQP-NL 20 18 .547620496E+4-00 .21E-10 .10E-11
MATRS-50 MS 98 0 15 0 X X x .I0E-IT
FSQP-AL 39 20 D79276202E400 .20E-15 .10E-11
FSQP-NL 21 21 B579276202E4-00 .22E-13  .10E-11

P43M FSQP-AL 3 1 27 36 14 —.440000000E+02 . 30E-06 .50E-05
FSQP-NL 20 25 16 —.440000000E+02 .39E-05 .50E-05

P84M FSQP-AL 3 4 7 28 4 —.528033513E+07 .0 .b0E-05
FSQP-NL 3 12 3 —.528033513E+07 .37E-03 .50E-05

PI1I3M FSQP-AL 4 5 25 142 13 243062091FE4-02 .3TE-05 .50E-05
FSQP-NL 21 115 15 .243062091E4-02 .31E-05 .50E-05

PITTM FSQP-AL 3 3 48 124 21 .323486790E+02  46E-05 .50E-05
FSQP-NL 19 54 17 .323486790E+4+02 .26E-04 .50E-05

Table 2



