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I study the matching of heterogeneous workers and firms in the labor market.

In particular, I examine how firm productivity shocks and the nature of decreas-

ing returns affect positive assortative matching: outcomes where the best, most

productive workers are employed by the most productive firms and the least pro-

ductive workers are assigned to the least productive firms. Chapter one studies

the relationship between worker-firm sorting and firm growth both empirically and

theoretically. I use U.S. Census microdata to show that faster growing firms hire

more productive workers, as measured by their lagged wages. This appears to be

the first time that such a pattern has been documented. I interpret the pattern as

evidence of positive assortative matching: faster growing, more productive firms

tend to hire more productive workers. I develop a novel, analytically tractable

search model and show that it can reproduce the observed patterns if there are

strong complementarities in the production function. I also discuss the relationship

between my empirical results and the previous literature on assortative matching.

I argue that it is important to control for observable firm characteristics, which

may proxy for the nature of the labor market facing the firm. Chapter two as-



sesses the theoretical properties of several models, some novel and some drawn

from the previous literature. I focus on each model’s sufficient conditions for pos-

itive assortative matching. The models in the existing literature have a variety

of sufficient conditions for positive sorting, and it has not been clear why these

conditions vary across models. To answer this question I develop generalizations

of each model that preserve their sorting properties. By comparing the generalized

models I am able to show that the differences stem from how firm size, or scale, is

dealt with. This result suggests caution when developing and interpreting mod-

els of sorting, since seemingly innocuous assumptions can result in significantly

different behavior.
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Preface

This dissertation deals with the matching of heterogeneous agents, particularly

in the labor market. Much of my focus is on positive assortative matching: out-

comes where the best, most productive workers are employed by the most produc-

tive firms and the least productive workers are assigned to the least productive

firms. The question of positive assortative matching, or positive sorting, has inter-

ested economists at least since Becker (1973). Recently, the availability of linked

employer-employee data has renewed interest in measuring and modeling labor

market sorting. I study worker-firm sorting as it relates to decreasing returns

at the firms level, firm employment dynamics, and search frictions. These mod-

els push the classical sorting models to incorporate more realistic features, while

maintaining analytical tractability and providing intuition.

Chapter one studies the relationship between worker-firm sorting and firm growth

both empirically and theoretically. Sorting in the labor market has been widely

studied, but the relationship to firm growth has not received as much attention. I

use U.S. Census microdata to show that faster growing firms hire more productive

workers, as measured by their lagged wages. This appears to be the first time

that such a pattern has been documented. I interpret the pattern as evidence

of positive assortative matching: faster growing, more productive firms tend to

hire more productive workers. I develop a novel, analytically tractable search

model and show that it can reproduce the observed patterns if there are strong

complementarities (i.e. log-supermodularity) in the production function. I also

discuss the relationship between my empirical results and the previous literature

on assortative matching. I argue that it is important to control for observable
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firm characteristics, which may proxy for the nature of the labor market facing

the firm.

Chapter two assesses the theoretical properties of several models, some novel and

some drawn from the previous literature. I focus on each model’s sufficient condi-

tions for positive assortative matching (positive worker-firm sorting). The models

in the existing literature have a variety of sufficient conditions for positive sort-

ing. In particular, models in the (frictionless) tradition of Becker (1973) have

supermodularity as a sufficient condition, while models based on the (frictionless)

Dixit-Stiglitz framework have the much stronger property log-supermodularity as

a sufficient condition. It has not been clear why these two widely used models

differ in the their predictions about sorting. To answer this question I develop gen-

eralizations of each model that preserve their sorting properties. By comparing

the generalized models I am able to show that the differences stem from how firm

size, or scale, is dealt with in each model. This result suggests caution when devel-

oping and interpreting models of sorting, since seemingly innocuous assumptions

can generate different behavior.

I use directed search to extend my models to a frictional environment. I show that

the exact same sufficient conditions, supermodularity and log-supermodularity,

guarantee positive sorting under directed search. This result is particularly in-

teresting because it contradicts the intuition that sorting should be more difficult

to obtain in a setting with frictions. The intuition about sorting carries over un-

changed from the frictionless models: what matters is how scale and decreasing

returns are imposed, the search frictions are irrelevant for sorting. These results

provide a useful benchmark in the rapidly expanding theoretical literature on
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sorting under search frictions. In the past 15 years numerous models have been

proposed, with almost as many implied sufficient conditions for positive sorting.1

The relationship among these models, and with the frictionless counterparts, has

not always been clear. My directed search models show how search frictions do

not necessarily change the sorting properties of a model.2

Taken together the two chapters use a variety of tools to assess sorting in the

labor market. Chapter one’s model is based on random search, Nash bargaining,

and convex vacancy costs. The frictional models in chapter two are based on

directed search and concavity in employment or match production. This diversity

reflects the fact that certain tools are better for certain jobs. Directed search

often yields highly tractable results (see Shimer (2005), Menzio and Shi (2010) or

Schaal (2012)) but is ill-suited to address the joint behavior of vacancy yields and

the composition of hires discussed in chapter one.3 In addition, while concavity

in employment or match production is an intuitive way to pin down firm scale, it

makes firm dynamics complex since the value of a match depends both on future

shocks and the firm’s endogenous responses. Thus I follow Coles and Mortensen

(2011), Moscarini and Postel-Vinay (2013) and others and rely on convex vacancy

costs to study firm dynamics in chapter one. Convex vacancy also allow me to

address the vacancy yield as documented by Davis et al. (2013).

1See Shimer and Smith (2000), Shi (2001), Teulings and Gautier (2004), Shimer (2005),
Atakan (2006), Lentz (2010), Eeckhout and Kircher (2010), Eeckhout and Kircher (2012), Lise
and Robin (2013), Lise et al. (2013) and Grossman et al. (2013) among others.

2Eeckhout and Kircher (2012) make a similar point in the context of a model that nests
some of my specifications. However, their focus is on the relationship between productivity and
firm size, and they do not pursue the relationship between Becker (1973)’s partnership model
and the Dixit-Stiglitz framework.

3Kaas and Kircher (2011) address the vacancy yield (see Davis et al. (2013)) in a directed
search model with convex vacancy posting costs. However, it is not obvious how to extend such
a model to heterogeneous workers while maintaining tractability. It seems likely that in such a
model any sorting results would depend on the details of the worker and firm distributions, as
well as the specification of the costs.
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Alternatively, one might be concerned that the directed search models in chapter

two take out too much of the search frictions. Letting firms commit to only hire

one type of worker at a posted wage seems to be at odds with reality, where

(some) employers surely meet a wide variety of workers and bargain over wages.

But directed search is a useful abstraction and the main alternative, perfectly

random search, is probably just as unrealistic.

The common thread running through the chapters is a concern with markets where

(1) both firms and workers are heterogeneous, and (2) where firms may employ

multiple workers. These two themes place the chapters in a relatively small section

of the literature. A multitude of papers have modeled markets where firms are

heterogeneous and employ multiple homogeneous workers. On the other hand,

where workers and firms are differentiated by productivity it has been common to

assume that each firm consists of a single job. Having diversity on both sides of

the labor market in addition to a non-trivial firm scale decision is a relatively new

but increasingly studied framework.

The labor literature has often abstracted from the question of firm scale, in order

to make progress understanding sorting and related questions. However, it seems

that more attention must be given to firm scale if the field is to make contact with

the wider literatures on firm organization and macroeconomic dynamics. There

is a great deal to be learned through such contact, since worker-firm sorting is

clearly relevant for understanding industry/firm behavior, as well as exploring

macroeconomic patterns. In addition, labor researchers cannot ignore the role of

firm dynamics (i.e. job destruction, firm productivity shocks, reallocation) in the

lives of workers, or the influence of macroeconomic shocks. Nonetheless, standard
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macro, IO and trade models are clearly at odds with the single worker firm as-

sumption that is at the heart of many labor models. The alternative assumption

of linear production and convex vacancy costs (which I use in chapter one) is also

difficult to reconcile with models of decreasing returns, although it does allow for

a reasonable discussion of firm dynamics. It is hoped that these essays will help

bridge the gap between pure models of worker-firm sorting and the voluminous

literature on the firm, which has mostly abstracted from worker heterogeneity in

the interest of modeling productivity, scale and dynamics.
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Chapter 1: Firm Dynamics and Assortative Matching

1.1 Abstract

I study the relationship between firm growth and the characteristics of newly

hired workers. Using Census microdata I obtain a novel empirical result: when

a given firm grows faster it hires workers with higher past wages. These results

suggest that productive, fast-growing firms tend to hire more productive workers,

a form of positive assortative matching. This contrasts with prior research that

has found negligible or negative sorting between workers and firms. I present

evidence that this difference arises because previous studies have focused on cross-

sectional comparisons across firms and industries, while my results condition on

firm characteristics (e.g. size, industry, or firm fixed effects). Motivated by the

empirical findings I develop a search model with heterogeneous workers and firms.

The model is the first to study worker-firm sorting in an environment with worker

heterogeneity, firm productivity shocks, multi-worker firms, and search frictions.

Despite this richness the model is tractable, allowing me to characterize assortative

matching, compositional dynamics and other properties analytically. I show that

the model reproduces the positive firm growth-quality of hires correlation when

worker and firm types are strong complements in production (i.e. the production

function is strictly log-supermodular).
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1.2 Introduction

Do fast growing firms hire different workers from slow growing or shrinking firms?

How do firm recruitment strategies vary with employment growth? Do more

productive workers match with more productive firms? I address these questions

empirically and theoretically. Using linked Census microdata I document a new

fact, that faster growing firms hire better workers. This suggests positive sorting

of workers across firms, a result that has been elusive in the empirical literature. I

extend the search and sorting model of Shimer and Smith (2000) to include multi-

worker firms, productivity shocks, and firm growth. Once solved the extended

model turns out to be highly tractable and yields analytical comparative statics.

The model tightly links firm employment growth to productivity and the quality of

hires, and I show that the empirical correlation can be reproduced if the production

function exhibits strong complementarities between firm and worker types.

My focus is on how workers of differing productivity sort across firms in a non-

random way. Textbook search models (e.g. Pissarides (2000) Chapter 1) assume

homogenous workers and firms in order to focus on the number of workers em-

ployed, rather than the exact sorting of workers across jobs. Many authors have

extended the bare bones model to capture heterogeneity in worker productivity or

firm productivity, but less often both. This has been partially due to the difficul-

ties of measuring sorting empirically and modeling it in a tractable way. However,

significant dispersion in productivity across workers and firms has been well doc-

umented, and there is abundant anecdotal evidence of workers and firms sorting

according to productivity. This evidence suggests that worker-firm sorting has
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potentially significant consequences both empirically and in terms of welfare.

Recently, the increased availability of matched employer-employee data and the

seminal contribution of Abowd, Kramarz and Margolis (1999) (AKM hereafter)

have brought renewed interest to measuring and modeling sorting in the labor

market. AKM jointly estimate worker and firm fixed effects from linked wage

data. The estimated worker and firm effects may be interpreted as estimates of

worker and firm productivity. Attention has centered on the question of positive

assortative matching. Under positive assortative matching, or assortative match-

ing for short, the best workers match with the best firms and the worst workers

match with the worst firms. Negative assortative matching obtains when the

worst workers match with the best firms, and the best workers with the worst

firms. Perhaps surprisingly, AKM and the large subsequent empirical literature

found mixed evidence of positive assortative matching. Authors have proposed a

number of explanations, including match effects, limited mobility bias, and non-

monotonicity of wages in firm productivity. All three may be serious issues, and

it appears infeasible to simultaneously correct the AKM estimator along all these

dimensions.

In this paper I use a different methodology and reach different conclusions. I find

that, conditional on observable firm characteristics, faster growing firms tend to

hire more productive workers. This suggests a kind of positive assortative match-

ing, where fast growing and more productive firms match with more productive

workers. My results contrast with much of the previous literature. The different

results are due to a difference in methodologies. In my baseline specifications I

condition on a variety of firm characteristics, including industry, size, and firm
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fixed effects. The positive correlation changes dramatically when firm character-

istics are not controlled for. Without firm characteristics the relation between

firm growth and worker quality is highly nonmonotonic with a maximum around

zero growth. This result echoes the findings in the previous literature, which have

generally not conditioned on firm characteristics, and found mixed evidence of

positive sorting.

I attribute these differences to segmentation in the labor market. When I condi-

tion on firm characteristics I implicitly compare firms to very similar firms, which

are likely to inhabit similar labor markets.1 Thus the baseline specifications, con-

trolling for industry and other characteristics, pick up positive sorting within each

segment of the labor market. The best doctors work for the best hospitals, the

best pilots work for the best airlines, and so on. When I do not control for firm

characteristics I am comparing nurses to pilots and hospitals to airlines. Given the

significant differences in technology and human capital between sectors it is pos-

sible that sorting patterns between sectors differ from those within sectors. This

argument suggests that while assortative matching may be the norm within any

given labor market, the distribution of workers and firms across markets need not

be assortative. Informally, intuition about assortative matching is based more on

examples of specific industries or occupations, rather than economy-wide match-

ing patterns. Thus it need not be surprising that I find evidence of positive sorting

within narrow markets, but neither I nor the related literature find clear evidence
1Controlling for industry, size and location clearly narrow the scope of comparison towards

a single labor market. Including firm fixed effects makes the scope of comparison a single firm
(using only time variation). This may seem to be a different kind of approach from controlling
for industry, size, etc. However, we can interpret firm fixed effects as controlling for unobserved
firm characteristics. It is highly doubtful that firm characteristics observable in the data are
sufficient to precisely identify the labor market the firm faces. Under the assumption that firms
do not jump between markets often, firm fixed effects are an effective means to proxy the firm’s
market in the absence of more detailed firm characteristics.
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of positive sorting across the entire economy.2

A second important difference between my work and the previous literature is that

I focus on firm employment growth. There is little, if any, previous research on how

the quality of hires changes as a firm’s employment growth varies. Firm growth is

important to understand in its own right, but also serves as a plausible proxy for

firm productivity. The measurement of firm productivity is critical for studying

assortative matching. Recent papers have argued that the AKM fixed effects do

not necessarily capture firm productivity. In my data I cannot measure produc-

tivity directly, so I propose firm growth as a proxy for firm productivity. This

connection is supported by the extensive literature showing that more productive

firms tend to grow relative to their less productive peers (See Bartelsman and

Doms (2000), Foster et al. (2001), Foster et al. (2013) and the related literature).

Firm growth also has the advantages of being trivial to compute and exhibiting

significant time variation. Previous studies have abstracted from firm productivity

dynamics, and thus do not use exploit the time dimension when studying sorting.

The presence of time variation also allows me to use firm fixed effects as controls

in some specifications.3

In addition, I use lagged worker wages to measure worker quality rather than

AKM worker fixed effects. This is again motivated by questions regarding the

2A closely related issue is whether we can meaningfully rank workers and firms in disparate
markets according to productivity. It is straightforward to construct at least a partial order of
doctors or of pilots, but more difficult to compare productivity across occupations. When skill is
multi-dimensional the assortative matching model is not appropriate, since it presumes a scalar
worker (or firm) productivity variable. A generalized Roy model may be more appropriate when
comparing different sectors.

3A potential concern with using employment growth to proxy productivity is that produc-
tivity growth may be caused by or concurrent with downsizing of the workforce. In such a case
employment growth and productivity would be negatively correlated. While there is no doubt
that there are examples of this phenomenon, it seems unlikely that productivity-enhancing down-
sizing is more common than newly-productive firms adding to their workforce. This is one area
for future research.
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consistency of the AKM fixed effects. Using lagged worker wages raises a number

of potentially serious measurement issues, which I address in Section 1.3. Chief

among these concerns is that on the job search generates a correlation between

lagged and current wages independent of any worker productivity effects. I discuss

this issue in detail in Section 1.3 and argue that this problem can be overcome by

focusing on workers hired from nonemployment, as I do.

Motivated by the empirical findings, I develop a theory of sorting with search fric-

tions and productivity shocks. My focus is on characterizing equilibrium matching

patterns within a single market, and finding conditions under which (1) better

workers match with better firms, (2) better workers match with faster growing

firms. The model incorporates costly search, wage bargaining, ex-ante hetero-

geneity in worker and firm productivity, productivity shocks, and multi-worker

firms. To my knowledge this is the first paper to characterize sorting in such an

environment. Despite its richness the model is tractable, and I analytically derive

restrictions on the production function which ensure that in equilibrium faster

growing firms hire better workers, reproducing the empirical findings. The argu-

ment requires two steps. First, I show that strong production complementarities

between worker and firm type (i.e. strict log-supermodularity of the production

function) ensure positive assortative matching: better workers match with better

firms. Second, I show that under positive assortative matching better firms are

also faster-growing. This point, while intuitive, is not trivial to prove when work-

ers are heterogeneous. Taken together these results imply a positive correlation

between firm growth and the quality of hires as well as assortative matching by

types.
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An important feature of my model is that firms can employ multiple workers,

whereas Shimer and Smith (2000) and others focus on single worker firms, or firms

that cannot freely post additional vacancies. This difference turns out to matter

a great deal. The reason is that when firms can post additional vacancies they

have no opportunity cost of hiring a given worker. A central feature of the Shimer

and Smith (2000) model is that both parties face a tradeoff between matching

immediately or waiting for a better partner. If firms can employ multiple workers,

they can hire a given worker today and continue searching (posting vacancies) in

subsequent periods. This, along with linear production, eliminates the opportunity

cost of hiring of for firms that are in contact with workers, greatly simplifying the

analysis. This tractability allows me to explore other aspects of the model. I show

analytically how quality of newly hired workers relates to the quality of incumbent

workers at a firm, and how changing the frequency of productivity shocks changes

matching patterns. These implications have not been well studied in the literature,

and represent avenues for future research.

This paper also addresses the question of recruiting intensity. The recent work of

Davis et al. (2013) has called into question some of the basic assumptions of the

workhorse search model. They find that fast growing establishments tend to fill

their job openings more quickly. This is at odds with the textbook search theory,

which assumes the vacancy fill rate is exogenous to the firm and consequently

employment growth is linear in vacancy postings at the firm level. The conclusion

of Davis et al. (2013) is that firms are using other margins to attract workers,

besides simply posting more vacancies. These margins may include advertising

intensity, selectivity, or wage offers. The results in this paper show that selectivity
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does indeed change with firm growth, but not in the direction one might expect:

faster growing firms hire better workers on average. The theory reconciles the two

empirical results through the wage margin. According to the theoretical model, a

faster growing firm is willing to pay higher wages to all workers. Under positive

assortative matching this allows the firm to attract high-type workers, while they

continue to hire low type workers at the same time. Thus, faster growing firms

fill vacancies faster by offering better wages and hiring more of the workers they

meet.

1.2.1 Literature Review

The empirical literature on assortative matching in the labor market has developed

quickly since Abowd et al. (1999). They used linked employer-employee data,

similar to mine, to estimate worker and firm fixed effects. For example, if wijt is

the log wage of worker i at firm j in period t and xit is a vector of time-varying

worker characteristics, an AKM regression has the form

wijt = xitβ+ θi+ψj + εijt

where εijt is an error term and θi and ψj are worker and firm fixed effects that can

be estimated under some mild identification assumptions. The estimated worker

fixed effect θ̂i measures how much more or less the worker is paid relative to his

coworkers (holding xit constant). The firm fixed effect ψ̂j measures the aver-

age wage premium the firm pays, compared to other firms. If θi reflects worker

productivity and ψj firm productivity then the empirical correlation Corr
[
θ̂i, ψ̂j

]
measures whether good workers match with good firms. If Corr

[
θ̂i, ψ̂j

]
is large
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and positive, then productive workers tend to end up at productive firms. If is

it close to zero then workers are not strongly sorted across firms. AKM found

Corr
[
θ̂i, ψ̂j

]
to be small and negative. Subsequent work (see Abowd et al. (2002),

Susana Iranzo and Tosetti (2008), Andrews et al. (2008), Woodcock (2008), Lopes

de Melo (2013)) largely confirmed AKM’s finding in other data sets, finding neg-

ative or small positive correlations between worker and firm effects. These results

have been especially puzzling given our tacit intuition that positive sorting is the

norm, as least in some markets.

Many criticisms have been made of the AKM methodology as applied to sort-

ing. Researchers have corrected the AKM methodology to address three major

issues: Andrews et al. (2008) and Andrews et al. (2012) study limited mobility

bias, Woodcock (2008) takes account of match effects, while Lopes de Melo (2013)

addresses nonmonotonicity of wages in firm type.4 See also Abowd et al. (2012),

who interpret the AKM fixed effects in the context of Shimer (2005)’s directed

search model. Each of these papers uses a variant of the AKM methodology cor-

rected for some possible biases, while abstracting from the other issues. It appears

infeasible to correct the AKM estimator for all three issues simultaneously. Non-

monotonicity of wages has received the most attention in the literature, perhaps

reflecting a belief that it is a more serious problem than limited mobility bias and

match effects. In an important contribution, Lopes de Melo (2013) shows that

when the data is generated from a search model such as Shimer and Smith (2000),

the AKM firm fixed effects are poor proxies for firm productivity. However, esti-

mated worker effects appear to accurately reflect worker productivity. Lopes de

4Eeckhout and Kircher (2011), Lise et al. (2013), Hagedorn et al. (2012) and Bagger and
Lentz (2012) also discuss nonmonotonicity of wages, but do not propose any correction to the
AKM methodology.
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Melo (2013) shows that in Brazilian data workers with high fixed effects tend to

work in firms with other high fixed effect workers. In other words, workers are

clustered with similar coworkers. This implies a kind of sorting, but without ac-

curate firm productivity data we cannot tell how the workers are sorting. It might

be that the best workers are clustered at the worst firms, or workers may be clus-

tered according firm characteristics unrelated to firm productivity. To summarize,

there are several potentially serious problems with using the AKM fixed effect

methodology to study sorting. These issues have been addressed separately, but

their interactions have not been explored. Correcting for the most serious issue,

nonmonotonicity of wages, comes at the cost of only being able to study clustering

of workers with similar coworkers, instead of studying sorting of workers across

firms of different productivity.

Here I contribute to the literature by proposing an alternative way to identify

sorting. I use firm growth to proxy firm productivity and lagged worker wages to

proxy worker productivity. These measures have the advantages of being directly

observable in the data. In my specifications I find evidence of positive sorting

that is independent from the criticisms of the AKM fixed effect methodology. Of

course, I face other measurement issues of my own, which I address in Section 1.3.

Other researchers have departed from the AKM methodology and used other data

to identify sorting. Bartolucci and Devicienti (2012) use firm balance sheet data

to measure firm type directly. Lise et al. (2013) present an original strategy, using

a method of simulated moments estimator to measure sorting from longitudinal

worker data without links to firm data. They argue that assortative matching

can be identified from the profile of worker wages after a spell of unemployment.
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Intuitively, workers exiting unemployment tend to be mismatched, and the cross

sectional distribution of wages will be compressed. As time passes job to job

transitions should result in better wages for all workers. If sorting is important

then then productive workers should experience more wage growth, as the degree

of mismatch is reduced. Then assortative matching may be identified by the

spreading out of wages across workers after an unemployment spell. Since they

rely on worker side data only, they use the structure of their model to infer the sign

and strength of assortative matching. To keep the model tractable they are forced

to abstract from human capital accumulation, which may also produce a spreading

out of wages. In contrast, I exploit the matched nature of my data to measure

sorting in an arguably more direct fashion. My proxy for worker productivity is a

lagged moving average of wages, which allows human capital to evolve over time.

In addition, Lise et al. (2013) abstract from firm growth, which is part of my focus.

In closely related work, Bagger and Lentz (2012) propose a structural search model

and estimate it on linked Danish data. The model is based on Lentz (2010), where

worker search intensity is endogenous. With complementarities in production,

high productivity workers gain more from searching on the job, and consequently

search more intensely and tend to match with better firms faster. Firm dynamics

and productivity shocks are not modeled. Their estimation of the model requires

a large number of auxiliary models and moments. My work complements theirs by

focusing on directly observable moments in the data and presenting an alternative

theoretical model. While Bagger and Lentz (2012) focus on search intensity and

search while employed, I focus on transitions from unemployment and the role of

firm dynamics.
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The theoretical literature on assortative matching has grown along with the ap-

plied literature. In his influential study, Becker (1973) examined assortative

matching in the context of a frictionless marriage model with transferable util-

ity. Shimer and Smith (2000), Shi (2001), Shimer (2005), Atakan (2006), and

Eeckhout and Kircher (2010) reexamine Becker’s results under various kinds of

search frictions, while maintaining the assumption of one-to-one matching and no

productivity dynamics. Usually stronger forms of complementarities are needed to

ensure sorting when agents face search frictions. In my theoretical work I extend

the widely used model of Shimer and Smith (2000) to incorporate multi-worker

firms and firm productivity shocks. I find that introducing multi-worker firms

considerably simplifies some of the technical complications in Shimer and Smith

(2000), allowing me to characterize matching patterns and derive comparative

statics in a straightforward fashion. Lentz (2010) and Bagger and Lentz (2012)

discuss a similar tractability result in a different model, but do not address the firm

dynamics that are my focus. Lise and Robin (2013) and Eeckhout and Kircher

(2012) also allow for multi-worker firms, but again abstract from idiosyncratic

firm dynamics. Lise et al. (2013) allow for match productivity shocks in a sorting

model, but do not present analytical results and do not use data that (directly)

measures firm dynamics. To summarize, I contribute to this fast-growing liter-

ature by modeling sorting with multi-worker firms that experience productivity

shocks, and deriving analytical results.

A relatively new literature studies how firms fill job openings. Davis et al. (2013)

document that faster-growing firms fill their vacancies more quickly. This suggests

that growing firms are using other margins to attract workers, besides just posting
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more job openings. Kaas and Kircher (2011) develop a theoretical directed search

model, where growing firms post higher wages to attract homogeneous workers

more quickly. Belzil (2000) documents that faster growing firms do indeed seem

to pay identical workers higher wages.5 Brown and Matsa (2012) show that job

postings of financially distressed firms attract fewer and less qualified applicants,

suggesting that a shrinking, distressed firm will have to wait longer to fill its

vacancies. In this paper I develop a related point, that fast growing firms hire

better workers. By itself, this does not address vacancy fill rates. But my theory

implies that fast growing firms pay better wages (similar to Kaas and Kircher

(2011), albeit in a random search context) and are thus able to hire more of the

workers they meet, increasing the speed with which vacancies fill.

Firm employment growth is the first difference of firm size, so my work on firm

growth is related to the extensive literature on firm size and wages (see Brown and

Medoff (1989) and Abowd et al. (1999), Oi and Idson (1999) and Gordanier (2012)

among others). This literature has typically found that larger firms pay more and

employ better workers, according to a variety of measures. This is consistent with

my finding that faster growing firms (i.e. firms that are getting larger) hire better

workers. However I find that the firm size and firm growth effects are distinct,

since the growth effect survives the inclusion of firm fixed effects and controls

for (beginning of period) firm size. In contrast, firm size effects are imprecisely

estimated and ambiguously signed in this specification. This pattern suggests that

part of the positive worker quality-firm size correlation found in the literature is

due to unobserved time-invariant firm characteristics, rather than a firm’s size

5Belzil uses Danish administrative data on matches and wages. The LEHD, which I use,
only has quarterly earnings (and no hours data) so I cannot replicate Belzil’s wage results.
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at any particular point in time. This is consistent with models in the literature

where firm size proxies productivity, opportunities for workers to specialize, or

other unobserved characteristics.

Finally, there has been some attention devoted to the hiring policies of start-

ups (see Dahl and Klepper (2007)) and high-growth firms (see Coad et al. (2011)).

These papers study the correlation between indicators of a firm’s long run prospects

(long run growth, for example) and the characteristics of their hires. In other words

they study primarily cross-sectional differences in hiring. In contrast, my focus is

on within firm variation in growth and worker productivity. In addition, I empha-

size the need for nonparametric methods to accurately identify the relationship

between growth and quality of hires. Some of the most interesting findings in

Section 1.3.4 are highly nonlinear relations that would not be detected in a linear

specification.

1.3 Empirics

My interest is in the relationship between firm growth and the productivity of new

hires. I will show that when a given firm grows faster, it hires more productive

workers. The productivity of the new hires is a characteristic of the workers

themselves, not the firm they are hired into. To identify this phenomenon I need

to measure firm growth and the productivity of newly hired workers. In addition,

the data allow me to control for a number of observable and unobservable firm

characteristics. Controlling for firm characteristics is critical to properly measuring

the ceteris paribus impact of a change in firm growth on the quality of hires.

I take the quality of new hires to be the dependent variable, and regress it on firm
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growth and a vector of controls. The empirical specification has the form

Qj,t =m(gj,t) +βZj,t+ εj,t

where Qj,t is a measure of the productivity of new hires at firm j in period t, gj,t

is the employment growth rate of firm j in period t, Zj,t is a vector of control

variables, and εj,t is the error term. The vector β are the coefficients on the

controls and m(·) is an unknown function to be estimated. The function m(·)

summarizes the relationship between firm growth and the quality of hires, so it is

the focus of what follows.

The main research question is what happens to Qj,t when gj,t changes, holding

all else constant. Thus it is important that Zj,t include extensive controls for

firm characteristics. The data I use includes industry, location, size and some

other firm information. However, there is likely to be a large amount of unob-

served firm heterogeneity imperfectly correlated with these characteristics. This

cross-firm heterogeneity in growth rates and Qj,t will bias any estimate of m(·).

Motivated by this concern I include firm fixed effects in my main specifications.

These specifications use only within firm variation to identify m(·), and are thus

robust to unobserved cross sectional heterogeneity. Inclusion of firm fixed effects

brings the empirical specification closer to the thought experiment of the ceteris

paribus impact of a change gj,t on Qj,t.

It is straightforward to construct a firm employment growth variable, gj,t, from

the data. More complicated is the construction of Qj,t, the productivity of new

hires. In this context worker productivity are those characteristics that make

the worker more productive regardless of job. Thus Qj,t does not include match-
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specific productivity, or characteristics that are only valued by a narrow range of

jobs. In the theoretical part of this paper I capture productivity by assuming that

a higher “type” worker produces more on any given job than a low type worker.

Thus, high type (high productivity) workers have an absolute advantage in all

jobs. This simple setup ensures that the ranking of workers is unambiguous, and

is widely used in the literature.

Intuition and the models discussed in Section 1.2.1 suggest that high productivity

workers should earn more on average. If a worker produces more in all jobs, he

ought to earn at least as much as a lower productivity worker. Then a worker’s

average earnings are a noisy proxy for his productivity. My measure of the quality

of hires is based on this idea. I build the quality of hires variable in two steps.

First, I construct a productivity measure for each worker in each period. Since my

data are quarterly this gives me a measure of a worker’s productivity in each quar-

ter. This measure is essentially a backward looking moving average of earnings.

Second, I find the set of workers hired by firm j in quarter t, and average their

productivity measure. This gives me the average productivity of workers hired by

the firm in that quarter.

Formally, let

qi,t = 1
8

8∑
k=1

earni,t−k (1.1)

where qi,t is the worker’s measured quality, and earni,t−k is the worker’s total

earnings (in all jobs) in quarter t− k. qi,t is thus a two year lagged moving

average of earnings. I have experimented with longer and shorter moving averages

and found no significant effect on my results. Longer horizons for the moving

average reduce the noise from search frictions, unpaid leave, and firm-level shocks.
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However, when there is human capital accumulation (and depreciation) the most

recent earnings are the best indicators of current productivity. The eight quarter

horizon was chosen to balance these two concerns.

Let Hj,t be the set of workers hired by firm j in period t. Then my quality of hires

variable can be written as

Qj,t = ln
 1
|Hj,t|

×
∑
i∈Hj,t

qi,t

 .

This is simply the log average of qi,t over the set of hires. In practice I will

use several variants of Qj,t to address concerns about measurement and selection.

These variants are denoted by superscripts.

1.3.1 Nonparametric Estimation

Given gj,t, Qj,t and Zj,t I am prepared to estimate m(·). As will be made clear

in the results section m(·) is highly nonlinear, so a linear regression is inappropri-

ate. Here I follow Davis et al. (2013) and reformulate the problem as a dummy

variable regression. Intuitively, the idea is to partition the domain of m(·) into

narrow intervals (one percentage point wide in my application) and create indica-

tor variables for each interval, or bin. An indicator variable is set to 1 if gj,t falls

into the bin and zero otherwise. Then I regress Qj,t on the full set of indicator

variables and Zj,t. The coefficient on a given indicator is then the sample average

of m(·) within that bin conditional on Zj,t.6 Plotting the bin coefficients yields

6This formulation is similar to but distinct from more standard nonparametric methods,
such as kernel regression. I am using comprehensive administrative data and include firm fixed
effects in my regressions, which can result in millions of fixed effects. Under these circumstances
estimating ordinary least squares requires special procedures. Estimating a kernel regression
in the presence of this many fixed effects would not be feasible without additional specialized
software. Ultimately, the dummy variable regressions are a convenient way to capture the shape
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an estimate of m(·) on a discretized domain. where fi are dummy coefficients

to be estimated. All reported regressions are weighted by the number of hires.

Unweighted and employment weighted results are similar.

1.3.2 Measurement and Selection Issues

Before turning to the data and results, there are several potential measurement

problems that must be addressed. I show how alternative samples and dependent

variables can be used to avoid some measurement problems. Where there are not

good alternatives, I present evidence that the problems are not too severe in the

data.

Recall that Qj,t is the log average of worker’s earnings in all quarters, regardless

of whether they were employed. In other words, it captures average earnings, not

average earnings while employed. This choice is motivated by the fact that the

extensive margin contains information about a worker’s productivity. If a worker

is unable to find a job, it tells us he may not be a high quality employee. In

addition, in theoretical models average lifetime earnings are monotone increasing

in worker productivity, but earnings while employed may not be. However, if

shocks unrelated to worker productivity (e.g. health shocks or fertility) move the

worker in and out of employment, then average earnings may not be an accurate

proxy for productivity. To examine this possibility I use a measure of worker

quality that excludes nonemployment. As an alternative to qi,t I define

qFQi,t =
∑8
k=1 earn

FQ
i,t−k∑8

k=1 1
{
earnFQi,t−k > 0

}

of the relationship.
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where earnFQi,t is the earnings of the worker in jobs that lasted all of quarter

t. Thus, periods of nonemployment and partial employment are excluded. The

corresponding quality of hires measure is

QFQj,t = ln

 1
|HFQ

j,t |
∑

i∈HFQ
j,t

qFQi,t

 (1.2)

where HFQ
j,t is the subset of hires that had at least one quarter of full quarter

employment in the previous two years. I report regressions using both all quarter

earnings and full quarter earnings.7 While the magnitudes of the effects differ, the

qualitative patterns are insensitive to the choice of variables.

Relatedly, note that qi,t will be a poor measure of productivity for new entrants

to the full time labor force. Recent high school or college graduates will have zero

or low lagged earnings for reasons unrelated to their desirability as workers. To

mitigate this problem I only consider hires of workers aged 26 or older. The results

are not sensitive to dropping this restriction, or replacing it with a requirement

that the worker have positive earnings two or more years before being hired.

Next, there is a clear endogeneity issue when the worker’s wages depend on the

firm they work for. For example, if fast growing firms pay more, then wages of

current employees will be positively correlated with firm growth, even if there are

no differences in worker productivity. This concern motivates my use of a lagged

moving average to measure the quality of new hires. Qj,t contains only wages

from periods t− 1 and earlier, before the workers were hired by firm j. Thus

7Both QFQ
j,t and Qj,t involve taking a logarithm of earnings, so observations where the firm

only hires zero-earnings workers are dropped. It might be wondered whether this creates a selec-
tion problem. Alternative specifications suggest that this is not a serious problem. In particular,
the empirical results are largely unchanged when I use the raw average of worker earnings as the
dependent variable. The same applies for the inverse-hyperbolic sine transformation.
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fluctuations in firm j’s wages do not directly contaminate Qj,t.

However, we might be concerned about the workers’ previous employers. qi,t is a

function both of a worker’s inherent productivity as well as their luck in the labor

market. As emphasized by the voluminous wage dispersion literature,8 workers of

identical productivity may be paid different wages depending on which employers

they find. Equally productive workers will have different qi,t because they had

different previous employers, and have spent different durations in nonemploy-

ment. Thus we should think of qi,t as measuring the worker’s true productivity

plus some noise. Measurement error alone in qi,t will not likely cause serious bias,

since qi,t goes into the dependent variable in my regressions.9 But with on the

job search there is reason to think that a worker’s lagged wage, including the

“luck” component, influences his choice of whether to be hired. In particular,

if a worker has a continuing job in period t− 1, his wage at that job can act

as a reservation wage: workers will refuse any offer below what they currently

earn. If firm wages are positively correlated with firm growth (as Belzil (2000)

documents) then only a fast growing firm will be able to hire the worker away

from the current employer. This means that the occurrence of a hire depends on

the worker’s t− 1 wage, including any luck component of the wage. Thus, faster

growing firms will hire more workers from high wage firms, regardless of worker

productivity. This creates a positive correlation between firm growth and Qj,t,

independent of any true differences in worker productivity. To address this issue

8See Mortensen (2003) and the literature reviewed therein. Burdett and Mortensen (1998)
and Moscarini and Postel-Vinay (2013) each present models where homogeneous workers are
paid differently.

9Qj,t is a nonlinear transformation of qi,t, so measurement error is not entirely innocuous.
But note that the hire occurs at a large firm hiring multiple workers simultaneously. As more
workers are hired, (uncorrelated) measurement error averages out of 1

|Hj,t|
×
∑
i∈Hj,t

qi,t before
the log transformation.
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I restrict attention to hires from nonemployment.10 Nonemployed workers do not

have a current wage to act as a threat point, and so their choice of whether to be

hired is a function of their productivity, not their (random) current employer. All

the empirical results reported below calculate Qj,t and QFQj,t on the subset of hires

that came from nonemployment. Results including job-to-job hires (not reported)

are qualitatively similar.

Variation in the reservation wage is another possible concern. It may be that

workers with high lagged wages have higher reservation wages even after entering

nonemployment. This could be because the worker falsely believes, based on their

previous luck, that they can find another high wage job easily (see Hogan (2004)).

Or it could simply be that some workers value leisure more, and so demand higher

wages. These mechanisms will induce a positive correlation between lagged earn-

ings while employed and firm growth, since only high growth, high wage firms

can meet the reservation wages of these workers. But these mechanisms would

also induce a weaker or negative correlation between lagged all quarters earnings

and firm growth, since the more selective workers would spend more time unem-

ployed. My empirical results run opposite to this prediction. I find that both all

quarters earnings and full quarters earnings are positive functions of firm growth,

and that all quarters earnings increase faster than full quarter earnings. Thus,

while I cannot rule out variation in reservation wages, my results are inconsistent

with reservation wages being the dominant force relating firm growth to measured

10The LEHD data I use only include data on employment status, not search activity. Thus
I cannot distinguish between unemployed workers and those out of the labor force. All workers
without jobs are taken together as nonemployed. Information on search activity would be useful
for my purposes, but not critical. Recent work has shown that while self-reported search activity
does predict future employment status, the link is noisy and unstable over time. Workers who
exit the labor force are more likely to have low productivity, which my quality measure qi,t will
capture.
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worker quality.

1.3.3 Data and Sample

I use the linked employer-employee data from the Longitudinal Employer-Household

Dynamics (LEHD) program at the U.S. Census Bureau. These files are derived

from state level unemployment insurance records, which require firms to report

quarterly wage and salary earnings of each covered employee to the state unem-

ployment agencies. The main LEHD files consist of these earnings records, along

with worker identifiers and firm identifiers. Limited worker and firm characteris-

tics are also included. The worker identifiers are consistent across firms, time and

states, so it is possible to identify the same worker at different points in time, or at

different firms. The firm identifier, called a state employer identification number

(SEIN) is similarly consistent across time, allowing me to follow an SEIN over

time. I will use the SEIN as my firm concept in this paper.11

Importantly, the LEHD files cover the vast majority of private non-farm jobs.

Estimates put the coverage of such jobs at 96%. The main exclusions are federal

workers, agricultural workers, and the self-employed. I draw firm (SEIN) data from

six states: DE, IL, OH, IN, WI, VT. Importantly, when I construct worker earnings

histories I draw on data from all states participating in the LEHD. This means

that if a worker moves from New York and is hired by a firm in Chicago I include

their New York earnings history in qi,t. My sample period runs from 2000:Q1

11The SEIN identifies the reporting entity for UI purposes. In single unit firms, the SEIN
is synonymous with the firm. However, multi-unit firms may have several SEINs, and each
SEIN may include several establishments (though the same establishment is never a part of two
SEINs). Thus, a SEIN falls somewhere in between an establishment and a firm. My results
are qualitatively unchanged if I restrict the sample to include only SEINs that did not report
a change in the number of establishments. This sample restriction brings the data as close as
possible to an establishment definition.
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through 2008:Q2, the last quarter of data available in the research snapshot I use.

The results are not sensitive to the inclusion of the Great Recession.

I use as broad a sample as possible. In the reported results I only drop quarters

where a given firm enters or exits, since there is good reason to think that selec-

tivity and growth are determined by other factors in those quarters. The results

are qualitatively unchanged when much more stringent restrictions are imposed.

The construction of firm growth, hires from nonemployment and other variables

requires some data processing. The main issue is accounting for the fact that the

LEHD variables are reported quarterly, so they do not necessarily approximate

high frequency, point-in-time data. For example, the raw LEHD earnings records

for a quarter include all workers employed for any duration at a given firm in

a given quarter. This does not necessarily reflect the firm’s actual employment

at any point in time during the quarter. The solution is to define “beginning of

quarter” and “end of quarter employment”.12 In quarter t the beginning of quarter

employment is the number of workers observed to work at the firm both in t− 1

and t. End of quarter employment is the number of workers employed both in t

and t+ 1. These measures more or less reflect firm employment on the first and

last day of the quarter. Additional data processing details are in Appendix A.1.

Table 1.1 presents employment weighted summary statistics on worker flows in

my sample. As has been well documented, these flows are large: a firm typically

hires and separates 17% of its workforce over the course of a quarter. The exact

values are somewhat lower than those reported in Lazear and Spletzer (2013)

(who use similar data), in part because I exclude entry and exit quarters. Average

12See http://lehd.ces.census.gov/doc/QWI_101.pdf for further documentation, and the use
of these concepts in public-use data.
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Variable Mean Std.
Dev.

Hires Rate 0.17 0.25
Separation Rate 0.17 0.24
Employment Growth Rate 0.00 0.19
NE share of hires 0.53 0.22
EE share of hires 0.22 0.20

Table 1.1: Worker Flows

employment growth is indistinguishable from zero. This is partially a reflection

of the states in the sample, and again partially due to my exclusion of entry and

exit quarters. Importantly, the standard deviation of employment growth is 19

percentage points. To exclude outliers I will focus on the interval between -30%

and 30% growth in my graphical results.

The last two rows of Table 1.1 report the share of hires that come from nonem-

ployment (NE Hires) and from other jobs (EE Hires). NE hires account for 53%

of total hires, while EE hires account for 22%.13 The remainder are hires that

could not clearly be assigned to either of these categories. The shares of hires

from nonemployment and employment are roughly in line with those reported by

Fallick and Fleischman (2004) and Bjelland et al. (2011).

Table 1.2 reports summary statistics for the characteristics of new hires. The top

two rows summarize the main dependent variables in the regressions: log average

earnings (Qj,t) and log average full quarter earnings (QFQj,t ). Recall that these

are logged averages of newly hired workers’ lagged wages. They are calculated

using only hires from nonemployment, to mitigate the selection concerns raised

in Section 1.3.2. The sample average of Qj,t is 8.06, while the average of QFQj,t

13Some of these are workers who held a job for several periods, then were hired at a new firm
but continued working at their old job. I exclude these workers for the same reason I exclude
EE hires, to avoid the selection effect of lagged wages.

24



is 8.82. The difference between the two implies that, roughly speaking, average

earnings while employed are 80% greater than average total earnings. Turning

to the last two rows, this difference is clearly attributable to the fraction of time

workers spend employed. “Fraction of Quarters Employed” is the average fraction

of quarters a new hire had any employment. Like Qj,t and QFQj,t , this fraction is

calculated on the 8 quarter lagged window. “Fraction of Quarters Fully Employed”

is the fraction of quarters the worker held a job throughout the entire quarter. The

means show that newly hired workers (from nonemployment) spent between 40%

and 57% of the past 2 years at work. This explains the significant differences in

the levels of Qj,t and QFQj,t , since only Qj,t includes time spent nonemployed.

Variable Mean Std.
Dev.

Qj,t 8.06 1.03
QFQj,t 8.82 0.70
Fraction of Quarters Employed 0.57 0.21
Fraction of Quarters Fully Employed 0.40 0.18

Table 1.2: Characteristics of New Hires

1.3.4 Results

In my baseline specifications I estimate m(·) using Qj,t and QFQj,t as the dependent

variables. In Zj,t I include an extensive set of controls, including location (state),

industry, quarter, interactions of all three, flexible controls for firm size, interacted

industry and seasonal dummies, and firm fixed effects.14 After these controls are

included, m(·) is identified by within firm variation that is not correlated with

aggregate, industry or location effects. Figure 1.1 plots the estimates ofm(·) using
14Firms change industries, so industry is not perfectly collinear with the firm fixed effects.

The interactions of industry with other variables are decidedly not collinear with firm fixed
effects.
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Qj,t and QFQj,t as the dependent variables. The horizontal axis is firm employment

growth, restricted to the [-30%,30%] interval. The vertical axis measures Qj,t (All

Quarter Earnings) and QFQj,t (Full Quarter Earnings). The estimates of m(·) have

been normalized to average zero on the interval [-30%,0].15

For both specificationsm(·) is relatively flat when growth is negative, but increases

when growth is positive. Both relationships are overwhelmingly statistically sig-

nificant. The t-statistic for the average slope on the [-30%,30%] interval is 9.37 for

QFQj,t and 40.98 for Qj,t. Thus the positive average relationships shown in Figure

1.1 are significant well beyond conventional thresholds.

In terms of magnitudes, the results for Qj,t imply that when a firm goes from

zero growth to 30% growth they hire workers with roughly 9% higher lagged

earnings. Using QFQj,t , the same change in employment growth leads to a 2%

increase in lagged full quarter earnings. While both are statistically significant,

the magnitude of the effect for Qj,t is larger. This is due to the inclusion of

nonemployment. When a firm grows more quickly, they not only hire workers

with higher wages in their old jobs (the QFQj,t results), but they also hire workers

who have experienced less nonemployment.

15For ease of presentation Figure 1.1 shows the three bin moving average of m(·), rather than
the raw estimate. This has the effect of smoothing the relationship slightly, but this effect is
quantitatively and qualitatively insignificant.
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Figure 1.1: Baseline Specification

It might have been expected that increased firm growth would be associated with

lower quality of hires, as growing firms exhaust their pool of potential employees

and are forced to lower hiring standards. The results in Figure 1.1 show this is

decidedly not the case. Instead, the results appear to support positive assorta-

tive matching. Firms which grow more quickly are presumably more productive,

and are observed to be hiring more productive workers. In other words better

workers sort themselves into more productive firms. As discussed earlier, the em-

pirical literature has had difficulty identifying assortative matching. This paper

contributes to that literature by showing evidence of assortative matching from a

novel specification.

The results in Figure 1.1 and the associated t-tests establish that, conditional on

the control variables (Zj,t), faster growing firms hire better workers. Now I turn to

the importance of the control variables, in order to understand whether the positive
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Figure 1.2: No Controls

growth-quality of hires correlation holds in the cross section. Figure 1.2 plots

the estimated m(·)’s when no control variables are included. It is apparent that

the relationship is highly non-monotonic. These estimated m(·)’s imply that low

absolute values of growth are associated with better quality hires. Large positive

or negative values of growth are associated with lower quality hires, with positive

values having somewhat better average quality. A linear regression confirms that

the average relationship on this interval is still positive and statistically significant,

despite the non-monotonicity. Taken together, Figures 1.1 and 1.2 show that

controlling for firm characteristics and other factors matters a great deal. Omitting

controls would lead to the conclusion that the absolute value of growth is the most

important factor influencing the quality of hires at a given firm. But this is not the

case. The correct comparison in Figure 1.1 shows a monotone increasing relation

between growth and quality of hires, once all else is held constant.
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Figures 1.1 and 1.2 are extreme cases. Figure 1.2 has no controls, while Figure 1.1

includes controls for many firm characteristics, as well as seasonal, industry-level

and aggregate fluctuations. There are many possible intermediate specifications,

some of which I discuss in Appendix A.2. As more controls are added, the results

look less like Figure 1.2 and more like the baseline specification. Controls for

aggregate and industry level fluctuations are relatively unimportant. In contrast,

firm fixed effects and controls for firm size and interacted industry-period-location

dummies are critical in explaining the difference between Figures 1.1 and 1.2.

These are all firm characteristics. The interpretation is simple: as more firm

characteristics are included, the specification is closer to the ideal of holding all

else constant.

1.3.5 Discussion

The empirical results demonstrate the importance of conditioning on firm charac-

teristics. Without firm controls the relation between growth and quality of hires is

ambiguous and non-monotonic. This echoes the results in the assortative match-

ing literature, where AKM-style regressions find little correlation between worker

type and firm type. AKM regressions typically do not condition on firm size, in-

dustry or other firm characteristics, so all inter-industry or cross-size variation is

loaded into the estimated fixed effect. In addition, AKM-style regressions cannot

include firm fixed effects as controls, since the firm fixed effect is the variable of

interest.16 In this way the AKM models are similar to my specification without

16Mortensen et al. (2010) extend the AKM methodology to estimate worker fixed effects and
firm-year fixed effects. With firm-year effects it would be possible to use time variation to study
sorting while controlling for a time-invariant firm fixed effect. This is a potentially promising
approach but it faces the same problems as the original AKM approach, as described in Section
1.2.1.
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controls, where all inter-industry or cross-size variation is included. My specifica-

tion without controls can be seen as an indirect replication of the typical AKM

result: when no firm characteristics are conditioned on, there is little evidence of

assortative matching.

The importance of firm characteristics may reflect segmentation in the labor mar-

ket. When I condition on firm characteristics I implicitly compare firms only to

very similar firms, which are likely to inhabit similar labor markets. This holds for

firm fixed effects as well, under the assumption that firms do not change markets

over time. Thus the baseline specifications, controlling for industry and other char-

acteristics, pick up positive sorting within each segment of the labor market. The

best doctors work for the best hospitals, the best pilots work for the best airlines,

and so on. When I do not control for firm characteristics I am comparing doctors

to pilots and hospitals to airlines. Firms in different markets may hire different

workers and have different growth patterns for technological or other reasons. The

comparison of Figures 1.1 and 1.2 suggests that markets with low firm volatility

(growth near zero) are markets with higher quality workers. In this paper I do

not seek to explain the differences between labor markets, or the entire joint dis-

tribution of firm growth and worker productivity. Rather I focus on the new fact

that within markets (i.e. conditioning on firm characteristics), there does appear

to be assortative matching. Based on my results, the AKM methodology may find

different results when firm effects are estimated conditional on firm characteristics.
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1.4 Theory

In this section I describe a general model that can account for the positive firm

growth-quality of hires correlation described in Section 1.3. The model captures

the intuition that if worker and firm productivity, are complementary in produc-

tion then fast growing, highly productive firms should tend to hire more productive

workers. Thus the model tightly links assortative matching to firm growth and

the quality of hires. The model extends the influential work of Shimer and Smith

(2000) to include multi-worker firms, idiosyncratic firm productivity shocks, and

firm dynamics. Once solved, the extended model turns out to be highly tractable

and yields analytical comparative statics. I derive sufficient complementarity con-

ditions that ensure assortative matching and allow the model to replicate the

observed growth-quality of hires correlation. Previously Shimer and Smith (2000)

and Lentz (2010) have derived sufficient conditions for assortative matching, but

their models abstracted from firm dynamics.

In the model workers and firms are characterized by a scalar type, interpreted

as productivity. Search is random, and when workers and firms match the wage

is determined by generalized Nash bargaining. Only unemployed workers search,

though the qualitative results are unchanged if search while employed is allowed.

I also allow firms to employ multiple workers by posting costly vacancies. Pro-

duction is linear, so firm size is a function of the convex vacancy posting costs.

The most important feature of my model is that firms can employ multiple workers,

whereas Shimer and Smith (2000) and others focus on single worker firms, or firms

that cannot freely post additional vacancies. This difference turns out to matter
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a great deal. The reason is that when firms can post additional vacancies (and

production is linear), they have no opportunity cost of hiring a given worker. A

central feature of the Shimer and Smith (2000) model is that both parties face

a tradeoff between matching immediately or waiting for a better partner. By

contrast, in my model, firms can hire a given worker today and continue searching

(posting vacancies) in subsequent periods. This eliminates the opportunity cost of

hiring for firms that are in contact with workers, greatly simplifying the analysis.

A similar point is made by Lentz (2010) in a different context.

Section 1.4.1 introduces the model and derives the worker and firm decision rules.

Section 1.4.2 briefly summarizes the steady-state equilibrium. In Section 1.4.3 I

further characterize the worker’s acceptance choices, and derive sufficient condi-

tions for assortative matching. In Section 1.4.4 I turn to firm type and firm growth.

In the body of the paper I skip some details of the firm’s problem and sometimes

focus on a model without productivity shocks, for the sake of exposition. Ap-

pendix A.3 fully analyzes the firm’s problem, and Appendix A.4 analyzes sorting

under productivity shocks. All results in the body of the paper carry through in

the model with productivity shocks. Omitted proofs may be found in Appendix

A.5.

1.4.1 Environment

Workers and firms are risk neutral. Worker types are indexed by x. Firm types

are indexed by y. Without loss of generality, I can assume that x ∈ [0,1] and

y ∈ [0,1].17 Let l(x) be the mass of workers of type x, and let h(y) be the density

17See Hagedorn et al. (2012) for a discussion of normalizing agent types in this type of model.
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of firm types. I normalize the mass of firms to unity, but allow the total mass of

workers to vary. When a worker and firm are matched, their per-period output

is F (x,y) > 0. I assume h, l and F are twice continuously differentiable. I also

assume F1 > 0 and F2 > 0, so that higher types have absolute advantage over low

types.

Each firm potentially employs a continuum of workers. Production of each worker-

firm pair is independent of the firm’s workforce. Let N (x) be the mass of workers

of type x working at a firm in a given period. Then total output at the firm is

Y =
ˆ 1

0
N (x)F (x,y)dx

Within any match, the wage w(x,y) is negotiated via Nash bargaining. Firms

choose the level of vacancies to post each period. Each period some matches end

due to exogenous separation shocks. Other matches end endogenously, when the

worker and firm find it is more profitable to separate.

The main objects of interest are the acceptance sets. In equilibrium, each worker

type x will be willing to match with a subset of firm types y. Let A(x)⊂ [0,1] be

the firm types that worker type x accepts offers from. The complement Ac(x) =

[0,1]\A(x) is the rejection set. Upon meeting, a worker and firm directly observe

each other’s types.

1.4.1.1 Productivity Shocks

Firm type, or productivity, is not constant over time. Each period there is a

probability p that a given firm draws a new productivity value. The new value is

drawn from the exogenous density h(y). Note that when there is no firm exit, the
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density of firm types is given by h(y) as well. Conditional on drawing a new type,

the new type is independent of the firm’s old type (and everything else). A low

value of p implies that productivity is more persistent. This process is a tractable

way to model a persistent, mean-reverting process. It has been used by Mortensen

and Pissarides (1994), Lise et al. (2013) and Elsby and Michaels (2013) among

others.

1.4.1.2 Timing

Time is discrete. Within a period, the timing of events is as follows:

1. At the beginning of period t firm type y is realized.

2. Exogenous separations occur. Separated workers cannot search within the

same period. They enter the matching market in t+ 1.

3. Firms choose vacancy levels. Unemployed workers search, and meetings

occur. Workers and firms who meet choose who they are willing to match

with, anticipating the wage bargain and the future path of productivity.

4. Nash wage bargaining. After bargaining but before production either party

can dissolve the match, resulting in endogenous separations.

5. Production occurs. Wages and unemployment benefits are paid. Consump-

tion occurs.

1.4.1.3 Value Functions

In this section I briefly derive the firm and worker value functions. I describe

the firm’s problem in detail in Section A.3. Each period the firm posts vacancies

34



v subject to a strictly convex, increasing, and differentiable cost function c(v),

where c(0) = 0 and limv→0 c′(v) = 0. Endogenous vacancy posting is important

in what follows. Let J(y) be the marginal net value of a vacancy to a type y

firm, inclusive of posting costs. Since the firm is always free to adjust the number

of vacancies, in equilibrium it must be that J(y) = 0. Otherwise the firm could

profit by increasing or decreasing their postings. Let J(x,y) be the firm’s match

surplus when paired with a type x worker, at the bargaining stage. It will turn out

that J(x,y) is the value both for newly formed matches as well as for continuing

matches. If the match were to yield negative surplus for the firm (J(x,y) < 0),

the firm could immediately dissolve the match and obtain a payoff of zero. Thus

J(x,y)≥ 0 always. Assuming that J(x,y)> 0 the firm does not dissolve the match,

and J(x,y) can be written

J (x,y) = F (x,y)−w (x,y) + (1− s)(1−p)βJ (x,y)

+(1− s)pβ
ˆ
A(x)

h(y′)J
(
x,y′

)
dy′ (1.3)

where w (x,y) is the wage, and s is the exogenous separation probability. Linearity

of production implies that the value of a match is independent of the firm’s other

workers. The firm value is composed of three terms. The first, F (x,y)−w (x,y), is

within-period production less wages. The next two terms represent continuation

values. In the next period a separation shock arrives with probability s and a firm

productivity shock arrives with probability p. If neither shock occurs (probability

(1− s)(1−p)) the match remains unchanged, and the firm gets the discounted

value βJ (x,y). Alternatively, if the productivity shock does arrive, the firm’s
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productivity changes to y′. If y′ ∈ A(x) the match continues to be acceptable to

the worker and continues, with the firm receiving J (x,y′). The match is termi-

nated if the separation shock arrives or the productivity shock makes the match

unacceptable to the worker. In either case the firm is left with nothing.

Let U (x) be the value of an unemployed worker, and let W (x,y) be the value

of that worker when matched with a type y firm. The value of unemployment

satisfies

U (x) = β

ˆ
A(x)

f (y)W (x,y)dy+β

(
1−
ˆ
A(x)

f (y)dy
)
U (x) . (1.4)

Here f(y) is the arrival rate of offers from type y firms. Search is undirected

so f(y) is independent of worker type. If a worker receives an acceptable offer,

he exits unemployment and receives continuation value W (x,y). Otherwise the

worker continues in unemployment. The worker receives a flow payoff of zero while

unemployed. This assumption is made only for convenience.18

Turning to W (x,y), assuming that y ∈ A(x) so the match is acceptable and

W (x,y)> 0, the value of employed worker is

W (x,y) = w (x,y) + (1− s)(1−p)βW (x,y)

+(1− s)pβ
ˆ
A(x)

h(y′)W
(
x,y′

)
dy′

+(1− s)p
(

1−
ˆ
A(x)

h(y′)dy′
)
βU (x)

+sβU (x) . (1.5)

18If the worker does derive utility from unemployment b > 0, all matching and sorting results
carry through unchanged for the net production function F̃ (x,y) = F (x,y)− b.
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This equation is similar to the firm value J , with the exception that the worker

receives the value U (x) when the match is dissolved. Within the period an em-

ployed worker receives the flow wage w (x,y). If the match continues, the worker

receives W (x,y) or W (x,y′) depending on the productivity shock. Otherwise the

worker goes into unemployment. If neither the separation nor the productivity

shock arrive, the worker receives the continuation value W (x,y). If the match is

acceptable the worker remains at the firm, with value W (x,y′). If it is not accept-

able the worker separates into unemployment. Finally, the exogenous separation

shock moves the worker into unemployment with probability s.

1.4.1.4 Wage Bargaining

It will be convenient to define the worker surplus:

S (x,y) =W (x,y)−U (x) .

This is the gain to the worker of being matched with a type y firm. Each pe-

riod the worker and firm split the match surplus according to (generalized) Nash

bargaining:

(1−η)S (x,y) = ηJ (x,y) (1.6)

where η ∈ [0,1] is the worker’s bargaining power. In equilibrium matches form, or

remain intact, if and only if the total surplus is positive

J (x,y) +S (x,y)> 0.
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Some rearrangement of these equations yields expressions for the wage, the worker

surplus and the firm surplus:

Fact 1. Given a worker’s acceptance set A(x), the wage satisfies

w (x,y) = ηF (x,y) + (1−η)β
ˆ
A(x)

f
(
y′
)
S
(
x,y′

)
dy′ (1.7)

the marginal value of a worker is

J (x,y) = θ (1−η)
(
F (x,y)−β

ˆ
A(x)

f
(
y′
)
S
(
x,y′

)
dy′
)

(1.8)

+θ(1− s)pβ
ˆ
A(x)

h(y′)J
(
x,y′

)
dy′.

and the worker surplus is

S (x,y) = θη

(
F (x,y)−β

ˆ
A(x)

f
(
y′
)
S
(
x,y′

)
dy′
)

+θ (1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′ (1.9)

where θ = 1
1−(1−s)(1−p)β > 0.

Proof. See the Appendix.

The expressions (1.7), (1.8) and (1.9) are fairly standard. In equation (1.7), we

see that the bargained wage is a weighted average of current production and

β
´
A(x) f (y′)S (x,y′)dy′, which is proportional to the worker’s value of unemploy-

ment U (x). This is the typical result in Nash bargaining models. Equations (1.8)

and (1.9) show that the agents split production less the worker’s threat point,

F (x,y)−β
´
A(x) f (y′)S (x,y′)dy′, in accordance with the bargaining parameter η.
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Finally, note that the future values of productivity do not appear in the wage

expression, even though the wage bargain is forward looking. This is due to the

choice of the productivity process.

1.4.1.5 Acceptance Sets

Equation (1.9) defines the worker surplus in terms of the worker acceptance set

A(x) as well as the surplus from other jobs, S (x,y′). My goal is to obtain an

expression for the acceptance sets. To this end, I eliminate S (x,y′) from the right

hand side of (1.9) by substitution:

Fact 2. The worker surplus can be written as

S (x,y,A) = θη

F (x,y)−βθ
´
A(x) [ηf(y′)− (1− s)ph(y′)]F (x,y′)dy′

1 + θβ
´
A(x) [ηf(y′)− (1− s)ph(y′)]dy′

 (1.10)

which is a continuous function of (x,α,A).

Proof. See the Appendix.

Here I write S as a function of A to emphasize its dependence on the worker’s

acceptance decisions. At this stage I make no assumptions on A (such as opti-

mality). Equation (1.10) has an intuitive interpretation. The worker’s surplus is

proportional to the term in square brackets. The first part, F (x,y), is the pro-

ductivity of the match. Obviously, surplus should be increasing in production, all

else held constant. The second term captures both the probability of productivity

shocks and worker’s opportunity cost of matching with other firms. Consider what
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happens when we eliminate productivity shocks by setting p= 0:

S (x,y,A) = θη

F (x,y)−
βθη
´
A(x) f(y′)F (x,y′)dy′

1 + θβη
´
A(x) f(y′)dy′

 .

The final term inside the brackets is a biased weighted average of net production

in alternative jobs, where the weights are the meeting probabilities f(y′). Without

productivity shocks, the ratio is the worker’s opportunity cost: matching with a

type y firm today precludes matching with another firm in A(x) until the job ends

exogenously. An increase in F (x,y′) increases the opportunity cost of matching

with y, and naturally decreases S (x,y,A).

Equation (1.10) allows me to begin characterizing the acceptance sets. First,

note that current firm productivity only enters this expression through the initial

F (x,y) term. F2 > 0 then implies S2 > 0, so worker surplus is strictly increasing

in firm type, regardless of worker type x or their choice of acceptance set. This is

a strong result, summarized in the following proposition.

Proposition 1. Under the assumed productivity process all workers rank firms

the same: S (x,y,A) is monotone increasing in y for all x and A. All workers

prefer high y firms to low y firms.

Increasing surplus implies that equilibrium acceptance sets will be intervals defined

by a lower threshold:

A(x) = {y|y > y (x)} (1.11)

where y (x) is the threshold firm type for worker x. Knowing that the A(x) are

intervals, with all workers preferring high y to low x firms, simplifies analysis
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considerably. Instead of considering acceptance sets which are arbitrary subsets

of [0,1], I now focus on finding the thresholds y(x). This result is a consequence of

allowing firms to employ multiple workers and post multiple vacancies, along with

linear production as in Bagger and Lentz (2012). When a vacancy matches with a

worker, the firm can post another vacancy the next period at the same cost. Thus

the firm faces no opportunity cost of matching. Match surplus is production less

the opportunity costs of the worker and firm, so when firms have no opportunity

cost (or more generally, no variation in opportunity cost) it is natural that workers

prefer higher type firms. In the models of Shimer and Smith (2000), Lopes de Melo

(2013), and Hagedorn et al. (2012) firms and workers are treated symmetrically,

in that matching with a partner precludes any other productive activity, at least

until the match exogenously dissolves. The result is that firms, like workers,

vary in their opportunity cost of matching, and this two-sided selectivity leads to

potentially complicated acceptance patterns.19

So far I have treated the acceptance set A(x), or equivalently y(x), as exogenous.

Now I solve for the worker’s optimal y(x). Note that in equilibrium a worker will

accept a job if and only if it yields positive surplus, given their acceptance set:

S (x,y,A)> 0. Thus the optimal threshold y (x) must satisfy

S (x,y (x) ,A(x)) = 0 if y (x)> 0 (1.12)

S (x,0, [0,1]) > 0 if y (x) = 0 (1.13)

The first case is of primary interest. If the threshold y (x) is on the interior,

19My assumption is potentially more restrictive, but allows for tractable analysis. It is also
motivated by the fact that in reality firms are large. The vast majority of workers are employed
at multi-worker firm, not single worker firms.
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then the surplus at the marginal firm must equal zero. Otherwise the worker

would do strictly better by lowering his threshold and accepting more offers. It is

possible that all jobs offer positive surplus. Then we are in the second case, where

A(x) = [0,1], i.e. the worker accepts all jobs. Then it must be the case that the

lowest ranked job still provides surplus. Substituting (1.10) into (1.12) and (1.13),

imposing (1.11) and rearranging yields

F (x,y (x)) + θβ (1− s)p
ˆ 1

y(x)
h(y)(F (x,y)−F (x,y (x)))dy =

βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy if y (x)> 0 (1.14)

F (x,y (x)) + θβ (1− s)p
ˆ 1

y(x)
h(y)(F (x,y)−F (x,y (x)))dy ≥

βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy if y (x) = 0 (1.15)

Thus equations (1.14) and (1.15) are necessary conditions that y(x) must sat-

isfy. Intuitively, the left hand side of (1.14) is the value of matching with a

firm of type y (x) immediately, and the right hand side is the value of waiting

for another acceptable offer. Matching with y (x) yields utility proportional to

F (x,y (x)) for some duration. Once matched, there is also the possibility of a

productivity shock, captured by the second term on the left hand side. Roughly

speaking, an increase in firm type to y > y (x) increases the utility of the worker

by F (x,y)−F (x,y (x)). On the right hand side, the benefit of waiting is the

discounted expected difference between production at y (x) and production at an

alternative: βθη
´ 1
y(x) f(y)(F (x,y)−F (x,y (x)))dy.
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As stated above, (1.14) and (1.15) are necessary conditions that an optimal y (x)

must satisfy. It turns out that they are sufficient conditions as well. This is

because the left hand side of (1.14) is increasing in y (x), while the right hand

side is decreasing. This means that at most one point satisfies the system. The

following proposition formalizes the argument.

Proposition 2. The worker’s optimal threshold y(x) is the unique solution to

equations (1.14) and (1.15).

Proof. See the Appendix.

Discussion

Consider the worker’s acceptance choice in equation (1.14) when there are no

productivity shocks (p= 0):

F (x,y (x)) = βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy. (1.16)

This condition is formally identical to the reservation wage expression for a model

of sequential search with an exogenous wage offer distribution. These models

were first studied by McCall (1970), Gronau (1971) and Mortensen (1970). The

version I use can be found in Mortensen (1986) and Rogerson et al. (2005). In

this model there is a single worker type and an exogenous wage offer distribution.

Each period an unemployed worker searches for a job, drawing wage offers from

the distribution f̄(w). Jobs end with probability s each period. Then the values
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of unemployment U and employment W (w) are

U = β

ˆ w̄

w∗
W (w)f̄(w)dw+β

(
1−
ˆ w̄

w∗
f̄(w)dw

)
U

W = w+β(1− s)W +βsU

where w∗ is the worker’s choice of reservation wage and w̄ is the upper support

of the offer distribution. This leads to the following expression for the reservation

wage:20

w∗ = β

1−β

ˆ w̄

w∗
f̄(w) [w−w∗]dw. (1.17)

Comparing this with equation (1.16) we see that the two decision rules have the

same form, with the reservation wage w∗ replacing the “reservation match quality”

F (x,y (x)) in equation (1.17). It is interesting that the two decision rules should

be so similar, given that wages are endogenous in my model. The similarity is

a result of Nash bargaining and allowing firms to post multiple vacancies. Nash

bargaining ensures that the wage is an additive function of a worker effect and

a firm effect, as we can see in equation (1.7). Vacancy posting along with linear

production implies that firms do not have an opportunity cost of hiring, so the firm

effect in the wage equation is proportional to F (x,y). If there were an opportunity

cost, as in Shimer and Smith (2000), the firm effect would be F (x,y) less the value

of the firm’s vacancy. Thus, my model can be interpreted as a general equilibrium

extension to the McCall (1970) model, which retains the same simple decision

rules as the partial equilibrium model. The advantage of the current model is that

it allows for comparisons between different worker types, which will be taken up

20See Rogerson et al. (2005) and Mortensen (1986) for explicit derivations and discussion.
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in Section (1.4.3).

1.4.1.6 Vacancy Posting

The results in this section and the next are not strictly necessary for understanding

the assortative matching results in Section 1.4.3. The interested reader may skip

directly to that part of the paper.

The firm posts vacancies at a convex cost until the expected value of an additional

vacancy is zero. Formally, this means

c′(v) =
ˆ 1

0
q(x)J(x,y)dx.

This is derived explicitly from the firm’s problem in Section A.3. The left hand

side is the marginal cost of a vacancy, and right hand side is the expected marginal

value of the vacancy. J(x,y) is the value to the firm of meeting a type x worker,

and q(x) is the probability the vacancy attracts such a worker within the period.

The right hand side simply integrates this value across worker type. Using the

Nash bargaining solution this marginal condition can be written

c′ (v) = (1−η)
η

ˆ 1

0
q(x)S(x,y)dx

Recalling that c(v) is strictly convex, I can invert c′(v) and arrive at an explicit

expression for v:

v (y) = c′−1
(

(1−η)
η

ˆ 1

0
q(x)S(x,y)dx

)
. (1.18)
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Recall from Section 1.4.1.5 that S (x,y) is increasing in y. This means that a

higher type firm has a higher return to matching with a given worker. Then

equation (1.18) implies that better firms post more vacancies: v′(y) > 0. This is

a natural prediction, and turns out to be useful in Section A.4 for characterizing

assortative matching under productivity shocks.

1.4.1.7 Meeting and Matching

To close the model, I formalize the relationship between vacancies, unemployment,

and the meeting rates f(y) and q(x). I make the standard “balanced meeting”

assumption for random search models. The sorting results in Section 1.4.3 do not

depend on the details of the matching technology, as long as search is random.

Let u(x) be the mass of unemployed type x workers. Then total unemployment is

U =
´
u(x)dx, and I can define ũ(x) = u(x)

U as the density of unemployed workers.

Let v(y) be the vacancy posting of a type y firm, and recall that h(y) is the mass

of type y firms in the economy. Then total vacancy posting is V =
´
v(y)h(y)dy

and I can define ṽ(y) = v(y)h(y)
V as the share of vacancies that are posted by type

y firms.

Following the literature, I assume that the total number of meetings between

workers and firms in a period is given byM (U,V ), an increasing, concave, linearly

homogenous meeting function. The meeting function takes total unemployment

and total vacancies as inputs, and gives the total number of contacts between

workers and firms.

I assume that each worker contacts at most one vacancy, and each vacancy contacts
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at most one worker. This implies

M (U,V )≤min{U,V } .

Contacts are made in a random, fashion. Thus each worker has an equal prob-

ability of making a contact, which is given by M(U,V )
U . Likewise, each vacancy

has a probability M(U,V )
V of making a contact. Conditional on a worker making a

contact, the vacancy is drawn at random from the population of vacancies. Thus,

the arrival rate of type y vacancies for a searching worker is given by

f(y) = M (U,V )
U

ṽ(y). (1.19)

Symmetrically for vacancies I have

q(x) = M (U,V )
V

ũ(x) (1.20)

where q(x) is the probability a vacancy contacts a type x worker.

1.4.2 Equilibrium

In a steady state equilibrium the mass of unemployed workers of each type must

remain constant over time. This requires that the outflows from unemployment

equal the inflows:

u(x)
ˆ 1

y(x)
f(y)dy = (l(x)−u(x))

s+ (1− s)p
ˆ y(x)

0
h(y)dx

 ∀x.
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For a given x, the left hand side is the stock of unemployed times the rate at which

they meet acceptable jobs. The right hand side is the mass of employed workers

times the combined rate of endogenous and exogenous separations. This can be

rearranged to yield

u(x) =

(
s+ (1− s)p

´ y(x)
0 h(y)dx

)
l(x)(

s+ (1− s)p
´ y(x)

0 h(y)dx
)

+
´ 1
y(x) f(y)dy

∀x (1.21)

which makes clear that u(x) is a continuous function of f(y) and y(x).

In addition to balancing worker flows, a steady state general equilibrium requires

that (1) worker acceptance choices are made optimally, (2) vacancy posting deci-

sions are made optimally and (3) meeting rates are consistent with the meeting

function and the stocks of unemployed and vacancies. The exogenous parameters

are the scalars β,s,p,η and the functions l(x), h(y) and F (x,y). The endogenous

objects are y(x),v(y),f(y), q(x) and u(x), which are jointly determined by equa-

tions (1.14), (1.15), (1.18), (1.19), (1.20), and (1.21). I reproduce the equilibrium

conditions below, with intermediate notation eliminated.

First is the worker’s acceptance set choice, for all x:

F (x,y (x)) + θβ (1− s)p
ˆ 1

y(x)
h(y)(F (x,y)−F (x,y (x)))dy =

βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy if y (x)> 0 (1.22)
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F (x,y (x)) + θβ (1− s)p
ˆ 1

y(x)
h(y)(F (x,y)−F (x,y (x)))dy ≥

βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy if y (x) = 0. (1.23)

Equations (1.22) and (1.23) define y(x) as a function of other model objects. Some

additional algebra shows that y(x) is a continuous function of f(y), a fact which

will be useful in showing existence of an equilibrium. Next is the firm’s vacancy

decision:

v (y) = c′−1

(1−η)θ
ˆ 1

0
q(x)

F (x,y)−βθ
´ 1
y(x) [ηf(y′)− (1− s)ph(y′)]F (x,y′)dy′

1 + θβ
´ 1
y(x) [ηf(y′)− (1− s)ph(y′)]dy′

dx
 ∀y.

(1.24)

Note that equation (1.24) defines v(y) as a continuous function of q(x), f(y) and

y(x). Finally, recall the meeting rates

f(y) =
M
(´ 1

0 u(x)dx,
´ 1

0 v(y)h(y)dy
)

´ 1
0 u(x)dx

v(y)h(y)´ 1
0 v(y)h(y)dy

∀y (1.25)

q(x) =
M
(´ 1

0 u(x)dx,
´ 1

0 v(y)h(y)dy
)

´ 1
0 v(y)h(y)dy

u(x)´ 1
0 u(x)dx

∀x. (1.26)

Equations (1.25) and (1.26) define f(y) and q(x) as continuous functions of u(x)

and v(y).

Expressions (1.21), (1.22), (1.23), (1.24), (1.25) and (1.26) define a mapping of the

endogenous objects {y(x),v(y),f(y), q(x),u(x)} into new values {y′(x),v′(y),f ′(y), q′(x),u′(x)}.

Under some regularity conditions, the continuity of the mapping ensures that a

fixed point theorem can be applied, so an equilibrium exists. In matching models

the sticking point in proving equilibrium existence is usually showing that the

steady state flows equation defines a continuous mapping from acceptance sets to
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the masses of searchers (see Shimer and Smith (2000), Nöldeke and Tröger (2009)

and Smith (2011)). In my setup this is not an issue, because (1.21) and (1.24)

explicitly solve for the masses of unemployed and vacancies as a function of other

variables. In general the model may have multiple equilibria. Unfortunately, this

is a common feature of models with two-sided heterogeneity and search.21

1.4.3 Assortative Matching

In this section I analyze the sorting of workers across firms. I focus on deriving

sufficient conditions for positive and negative assortative matching. Intuitively,

positive assortative matching means that better workers tend to match with better

firms. In the context of my model, positive assortative matching is equivalent to

y′ (x)≥ 0 ∀x. That is, better workers (higher x) set their threshold firm type y(x)

higher. Similarly, negative assortative matching is equivalent to y′(x)≤ 0 ∀x. The

case of no sorting is also of interest, and in my model this translates to y′(x) = 0 ∀x.

The empirical pattern in Section 1.3 relates firm growth to worker type. In this

section I derive a condition, strict log-supermodularity, under which better firm

types hire better worker types. In Section 1.4.4 I show that under strict log-

supermodularity better firms are also faster growing. Together, the firm type-

worker type and firm type-growth relations imply that firm growth and quality of

hires are positively correlated, reproducing the empirical results.

In what follows I use the worker’s threshold condition to derive an expression

for y′(x). The sign of y′(x), and thus the nature of sorting, depend on the sign

of a simple expression that compares match production at the marginal firm to

21See Sattinger (1995), Shimer and Smith (2000) and Lopes de Melo (2013).
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expected production at firms in the acceptance set. The expression can be unam-

biguously signed when production F (x,y) is strictly log-supermodular or strictly

log-submodular, as described below. These are sufficient conditions for positive

and negative assortative matching, respectively. Interestingly, these sufficient con-

ditions rely only on the production function, and not the distribution of agent types

or any other parameter. In this sense they are similar to the sorting conditions

derived by Becker (1973), Shimer and Smith (2000), Lentz (2010) and Eeckhout

and Kircher (2010) in the context of other models. Given that the sorting con-

ditions are independent of agent distributions and other parameters, it might be

asked whether weaker sufficient conditions can be found. I show that any weaker

sufficient conditions must depend on the distribution of types. Specifically, if the

production function is not strictly log-supermodular or submodular one can find

distributions of agents that lead to non-assortative matching.

For simplicity I focus on the case of no productivity shocks: p = 0. All of the

intuition and results carry over to the case in which productivity shocks occur,

but at the cost of additional notation and technicalities. I prove the main results

for the general model in Appendix A.4.

Consider the worker’s threshold condition (1.14) when there are no productivity

shocks:

F (x,y (x))
(

1 +βθη

ˆ 1

y(x)
f(y)dy

)
−βθη

ˆ 1

y(x)
f(y)F (x,y)dy = 0 (1.27)

This expression implicitly defines y(x) in terms of x, F (x,y), and the other pa-

rameter values. As a consequence (1.27) can also be used to derive an expression

for y′(x). While this expression is cumbersome, it shows that the sign of y′(x),
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and thus the nature of sorting, depend only on a simple condition, shown below.

Proposition 3. When the worker’s choice of y(x) is given by (1.27), y′(x)> 0 if

and only if ˆ 1

y(x)
w (y) F1 (x,y)

F (x,y) dy >
F1 (x,y (x))
F (x,y (x)) (1.28)

and y′(x)< 0 if and only if

ˆ 1

y(x)
w (y) F1 (x,y)

F (x,y) dy <
F1 (x,y (x))
F (x,y (x)) , (1.29)

where w(y) = f(y)F (x,y)´ 1
y(x) f(y)F (x,y)dy

> 0, and
´
y(x)w(y) = 1.

Proof of Proposition 3. Equation (1.27) implicitly defines y(x), so differentiating

it I can obtain an expression for y′(x). Applying the implicit function theorem I

have

y′(x) =−
F1 (x,y (x))

(
1 +βθη

´ 1
y(x) f(y)dy

)
−βθη

´ 1
y(x) f(y)F1 (x,y)dy

F2 (x,y (x))
(
1 +βθη

´ 1
y(x) f(y)dy

) (1.30)

The denominator is always positive, so the sign of y′(x) depends only on the

numerator, implying y′(x)> 0 if and only if

βθη

ˆ 1

y(x)
f(y)F1 (x,y)dy > F1 (x,y (x))

(
1 +βθη

ˆ 1

y(x)
f(y)dy

)
.

Dividing this expression by (1.27) I arrive at

´ 1
y(x) f(y)F1 (x,y)dy´ 1
y(x) f(y)F (x,y)dy

>
F1 (x,y (x))
F (x,y (x))

which can be rearranged to yield equation (1.28) as desired. A symmetric argu-
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ment shows that equation (1.29) follows as well.

In equation (1.28) F1(x,y(x))
F (x,y(x)) reflects the marginal change in output at the marginal

firm type when we increase the worker type. The term
´ 1
y(x)w (y) F1(x,y)

F (x,y) dy reflects

the expected change in productivity at firms in the acceptance set when we increase

worker type. If output at the the marginal firm increases more than at the average

accepted firm, the relative value of waiting for better offers is lower, and the worker

lowers the acceptance threshold y(x). Alternatively, if expected productivity at

accepted firms increases more than productivity at the marginal firm, the worker

prefers to wait for better offers and raises the acceptance threshold. In this case

we have (locally) positive assortative matching, and y′(x)> 0.

Having shown that satisfying equation (1.28) is equivalent to assortative match-

ing, the question is under what conditions does (1.28) hold? Clearly, a suffi-

cient condition is that F1(x,y)
F (x,y) be increasing in y. Then any weighted average

´ 1
y(x)w (y) F1(x,y)

F (x,y) dy must exceed the value F1(x,y(x))
F (x,y(x)) . The economic interpretation

of this condition is straightforward. When F1(x,y)
F (x,y) is increasing in y, it means that

output is more sensitive to worker type at high y firms. Increasing worker type

increases output the most at the highest y firms, encouraging the worker to raise

the acceptance threshold and generating positive assortative matching.

The condition ∂
∂y

F1(x,y)
F (x,y) > 0 is equivalent to strict log-supermodularity. In partic-

ular, a differentiable, positive, increasing function is strictly log-supermodular if

and only if its logarithm is supermodular:

∂2

∂x∂y
lnF (x,y)> 0
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which is equivalent to
∂

∂y

F1 (x,y)
F (x,y) > 0

as asserted. Returning to equation (1.29), it is clear that ∂
∂y

F1(x,y)
F (x,y) < 0 ensures

y′(x) < 0, so matching is negative assortative. In turn ∂
∂y

F1(x,y)
F (x,y) < 0 is equivalent

to strict log-submodularity:

∂2

∂x∂y
lnF (x,y)< 0.

Finally, equations (1.28) and (1.29) imply there is no sorting, y′(x) = 0, if and

only if ∂
∂y

F1(x,y)
F (x,y) = 0. These results are summarized in the following Proposition.

Proposition 4. Consider the economy with no productivity shocks. Matching

is positive assortative, y′(x) > 0, if F is strictly log-supermodular. Matching is

negative assortative, y′(x)< 0 if F is strictly log-submodular. There is no sorting

if ∂
∂y

F1(x,y)
F (x,y) = 0.

Proposition 4 provides sufficient conditions for positive and negative assortative

matching. Note that the conditions depend only on the production function F .

They are independent of the distribution of agent types as well as the other pa-

rameters of the economy. A natural question is whether these conditions are the

minimal ones that ensure assortative matching, or whether weaker conditions may

suffice. The following Proposition shows that strict log-supermodularity is neces-

sary for positive assortative matching, in the sense that if F is not globally strictly

log-supermodular we can find a distribution of vacancies that ensures y′(x) < 0

somewhere.
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Proposition 5. If there exists y∗ and x∗ such that ∂2

∂x∂y lnF (x∗,y∗) < 0, then

there exists a set of meeting rates f(y) such that y′(x∗)< 0.

Proof. See the Appendix.

The strategy of proof is to adjust the meeting rates f(y) to keep the worker’s

threshold constant at y∗ = y(x), but make sure sorting is (locally) negative. Keep-

ing in mind that ∂2

∂x∂y lnF (x∗,y∗)< 0, there is some y∗∗ > y∗ such that F1(x∗,y∗)
F (x∗,y∗) >

F1(x∗,y∗∗)
F (x∗,y∗∗) . If f(y∗∗) is large enough, the worker will expect to meet type y∗∗

firms much more often than any alternative. The increased weight on y∗∗ means

that the behavior of F around(x∗,y∗∗) dominates sorting decisions. Appealing to

Proposition 3 then shows that y′(x∗)< 0, as desired.

Similar to other assortative matching results, my conditions on the production

function are sufficient for any values of the other parameters and distributions,

and are the weakest conditions on the production function that ensure assortativity

for all other parameter values. If we consider a restricted set of type distributions,

or other parameters, it may be possible to find alternative necessary and sufficient

conditions. This is left for future work.

1.4.3.1 Discussion

This paper is one of many to study the theory of sorting in a search environment.22

The two papers most similar to this one are Shimer and Smith (2000) and Eeckhout

and Kircher (2010). While neither allow for productivity shocks, the models can

still be compared. In the random search model of Shimer and Smith (2000),

positive assortative matching requires supermodularity not only of lnF but also
22See Shimer and Smith (2000), Shi (2001), Shimer (2005), Atakan (2006), Eeckhout and

Kircher (2010), Lentz (2010) and Eeckhout and Kircher (2012).
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of lnF1, lnF2 and lnF12.23 Thus my log-supermodularity requirement is weaker

than theirs. This can be attributed to my allowing multiple worker firms. In

Shimer and Smith (2000) firms have an opportunity cost of matching, which is

increasing in firm type. This tends to make high type firms less attractive to

workers, since the higher firm opportunity cost comes out of the worker’s wages.

In my model the workers get a constant share of match output (plus a function

of the worker opportunity cost). This makes high type firms more attractive, and

encourages high type workers to wait for high type firms.

Eeckhout and Kircher (2010) work in a directed search framework. They derive

root-n supermodularity as a sufficient condition for positive assortative matching.

This condition requires that the n’th root of the production function be positive,

where n is the elasticity of substitution of the matching function. They show

that root-n supermodularity is always weaker than log-supermodularity, and thus

weaker than the requirements of Shimer and Smith (2000). This is due to the

differences between directed and random search. See Eeckhout and Kircher (2010)

for an illuminating discussion of these differences, and the relation of their result

to that of Shimer and Smith (2000). My condition, while weaker than Shimer and

Smith’s, is still stronger than root-n supermodularity. This is because my model

is one of random search, while Eeckhout and Kircher (2010) study directed search.

1.4.4 Firm Growth and the Quality of Hires

In Section 1.4.3 I showed that strict log-supermodularity ensures assortative match-

ing between worker types and firm types: high type firms hire better workers. To

23While Shimer and Smith (2000) do not discuss supermodularity of lnF , Eeckhout and
Kircher (2010) show that their conditions, along with monotonicity, imply log-supermodularity.
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link these results to the empirical results in Section 1.3, I need a connection

between firm type and firm growth. Intuitively, if high type firms tend to grow

faster, then strictly log-supermodular match production will lead to a positive firm

growth-quality of hires correlation, as seen in the data. On the other hand, if there

is a weak or ambiguous correlation between firm type and firm growth then the as-

sortative matching condition in Section 1.4.3 will be irrelevant for understanding

the firm growth-quality of hires correlation.

It is natural to think that high type firms will tend to be faster growing: the

results in Sections 1.4.1.6 and 1.4.3 show that under strict log-supermodularity

better firms both post more vacancies and hire more workers per vacancy. In

practice, the relationship between firm growth and firm quality is complicated.

Higher type firms tend to post more vacancies and hire more workers. Ceteris

paribus, this increases growth rates. However, a high type firm will also tend to

be larger to begin with and have larger outflows of workers, both of which reduce

growth rates. Sorting out these effects is complicated by the heterogeneity of the

workforce, which causes firms to occasionally hire a substantial number of workers

while simultaneously separating a large portion of their incumbent workers. This

can happen in the model when a there is a negative productivity shock.

To show that firm growth is positively correlated with firm type (and therefore

worker type), it suffices to show that a stochastic dominance property holds. Let g

be the (random) growth rate of a firm, and let Fg(g|y) be the CDF of growth rates

conditional on the firm being of type y. Assume for the moment that if y′ > y,

then Fg(·|y′) dominates Fg(·|y) (in the sense of first order stochastic dominance).

Such a dominance property implies that firm type and firm growth have a positive
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correlation coefficient, which is the desired result. So the main problem is to prove

dominance.

Proposition 6. Assume that matching is positive assortative. Then Fg(·|y′) dom-

inates Fg(·|y) whenever y′ > y.

Proof. See the Appendix.

The argument has three parts

• Step 1: Show that firm growth g(y,m) is an exact function of current

productivity y and a set of state variables m, where m includes the time

elapsed since the last shock and the employment distribution at the time of

the shock. In addition, h(y|m) = h(y).

• Step 2: Show that g1(y,m) is positive.

• Step 3: Use the population distribution ofm and y to show that g1(y,m)> 0

is a sufficient condition for Fg(·|y′) to dominate Fg(·|y) whenever y′ > y.

The specification of the productivity process helps in Step 1. Step 2 follows in part

from Proposition 7 (see below), which helps pin down the compositional dynamics

of employment by worker type.

An alternative approach would be to work with the distribution of firm types con-

ditional on growth. This might appear more natural, since the empirical results

are stated in terms of worker types conditional on firm growth. However, it turns

out there is not necessarily any stochastic dominance between the type distribu-

tions conditional on growth. This necessitates working with growth conditional

on firm type to prove dominance and therefore a positive correlation between firm

growth and the quality of hires.
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1.4.4.1 Discussion

I have shown that the model implies a positive correlation between firm growth

and quality of hires if production is strictly log-supermodular. The same condi-

tion implies positive assortative matching, so the pattern documented in Section

1.3 can be taken as indirect evidence for assortative matching between workers

and firms. This paper is the first to characterize matching analytically in an en-

vironment with firm growth and productivity shocks. One difficulty is that in

such a rich environment the connection between firm growth and productivity can

become unclear. Proposition 6 proves that a positive connection between firm

growth and productivity does indeed hold within the model.

As noted earlier, Lopes de Melo (2013), Eeckhout and Kircher (2011) and others

have shown that AKM fixed effects are inconsistent when the data generating

process is a model along the lines of Shimer and Smith (2000). Their critique

does not apply to my model. Allowing firms to post multiple vacancies ensures

there is no opportunity cost to hiring, so the wage is monotone increasing in firm

type. Then fixed effects estimation should recover the firm types accurately. If my

model is correct there is a puzzle: why do I find assortative matching in Section

1.3, when AKM and others find none? As I have discussed, one possibility is

that assortative matching obtains only within narrow labor markets, while sorting

across the whole economy is more ambiguous. Another possibility is that my

results are based on firm growth while the fixed effects results assume a constant

firm effect over the sample period. If productivity shocks are not too persistent,

so that time-averaged productivity is close to the unconditional expectation of

productivity for most firms, then we would expect fixed effects regressions to
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reveal relatively little sorting. The reason is that while there is sorting between

worker and firm types, the firm fixed effect is an average of firm productivity

over the sample. This suggests an alternative identification strategy, which would

jointly estimate worker effects and firm-year effects as in Mortensen et al. (2010).

Allowing the firm effect to vary over time would get rid of the averaging problem.

1.4.5 Additional Results

Besides addressing the empirical correlation between firm growth and the quality

of hires, the model can be used to derive additional results. Here I discuss three

broad sets of results.

1.4.5.1 Vacancy Filling Rates

The model can be used to study the relationship between firm growth and how

quickly vacancies fill. Recall from Proposition 1 that each worker prefers high type

firms to low type firms. This implies that vacancies at high type firms fill more

quickly, since a larger share of workers are willing to match with high type firms.

This, along with Proposition 6, means that within the model faster growing firms

also fill their vacancies more quickly.

This fact relates to the recent work of Davis et al. (2013). They find empirically

that fast growing establishments tend to fill their job openings more quickly. This

is at odds with the textbook search theory, which assumes the vacancy filling rate

is exogenous to the firm and consequently employment growth is linear in the

vacancy rate at the firm level. The conclusion of Davis et al. (2013) is that fast

growing firms are using other margins to attract workers, besides simply posting
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more vacancies. My model and the empirical results point to a particular channel.

High growth firms are more productive, and are able to hire selective high type

workers. The increased wages associated with a positive productivity shock allow

the firm to attract workers that would otherwise reject an offer from the firm. In

this way the firm hires more of the workers it meets, reducing vacancy durations.

1.4.5.2 Compositional Dynamics

Conditional on positive assortative matching, we can say something about the

dynamics of worker composition at the firm.

Proposition 7. Assume that matching is positive assortative: y′(x) > 0. At a

given firm, the growth rate of employment of type x workers

gt(x) = Nt(x)−Nt−1(x)
0.5(Nt(x) +Nt−1(x)) (1.31)

is weakly increasing in x, as long as Nt(x)> 0.

Proof. See the Appendix.

This result can be understood as follows. Fix a worker type x. When y falls below

y(x), a firm cannot hire any type x workers, and all incumbent type x workers

leave. If y later rises above y(x) the firm begins hiring type x workers again, and

the growth rate is high because the initial stock is low. On the other hand, if y

has been greater than y(x) for a long time there will be a larger stock of type

x workers at the firm. This implies the growth rate of type x workers will be

lower. Better workers have higher thresholds y(x), so the firm is more likely to

have dipped below the threshold more recently.
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These dynamics lead to another interesting result:

Corollary 1. The quality of new hires at a firm is always (weakly) better than the

quality of incumbents, in the sense of first order stochastic dominance.

Proof. Follows immediately from Proposition 7.

Since better workers have faster growth rates at a firm, it follows that the quality

of new hires dominates the quality of incumbents. This holds regardless of whether

the firm is growing or shrinking, since a negative shock leads the best workers to

leave. So although the quality of new hires may be lower than that of incumbents

one period ago, the quality is higher than those who remain. Consideration of

separations leads to another result.

Proposition 8. The quality of separating workers is always (weakly) better than

the quality of incumbents, in the sense of first order stochastic dominance.

Proof of Proposition 8. Separations are a mix of exogenous separations, at rate

s, and endogenous separations in response to productivity shocks. Exogenous

separation rates are constant across worker types, so if there is not a negative

productivity shock the distribution of separations matches the distribution of in-

cumbents. If there is a negative productivity shock then the best incumbents

separate, and the distribution of separators will dominate the distribution of in-

cumbents.

Given that both hires and separators are better than incumbents, we might ask

whether we can order hires and separators relative to each other. This turns out

not to be possible. If there is a good productivity shock, hires will be better than
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separators, since all separations will be exogenous. If there is a negative shock the

opposite will hold.

1.4.5.3 Dynamics and Selectivity

Section 1.4.3 showed that the sufficient conditions for assortative matching are

independent of the existence or frequency of productivity shocks. In this section

I study worker selectivity and its relation to productivity shocks, under the as-

sumption of positive assortative matching. I show that reducing the persistence

of shocks makes workers less selective. Formally, the level of y(x) is decreasing in

p.

Proposition 9. Let f(y) be fixed. Under positive assortative matching, a reduc-

tion in p reduces y(x) for all x.

This is a partial equilibrium result: it depends on f(y) being held constant. In re-

ality, different values of p would induce different unemployment rates and vacancy

postings, changing f(y).24 Nonetheless, the result provides some strong intuition

for how productivity shocks shape matching decisions and sorting. The effect of

more frequent shocks is to make firms more similar to each other, since the ex-

pected duration of current productivity is shorter. Since firms are effectively more

similar to each other, each worker is willing to accept more firm offers and y(x)

declines. As p increases, all workers move toward accepting all offers25.
24There is a special case in which this result holds exactly in general equilibrium. In the special

case of a quadratic meeting function M = UV , the values f(y) depend only on the number of
vacancies posted, not on the number of unemployed. If vacancy costs are highly convex, say
c(v) = limz→∞ vz then vacancies per firm are constant, and f(y) will be invariant to changes in
p.

25In this discrete time model, workers may still not accept all offers when p = 1. This is
because a very low value of y, even for one period, may be enough to deter matching. However,
the same model can be set in continuous time with no change in sorting results. In continuous
time, the arrival rate of shocks can be driven to infinity, and workers accept all jobs in the limit.
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1.5 Conclusion

This paper contributes to the theory and empirics of worker-firm sorting. On

the empirical side, I document a previously unknown relationship between firm

growth and the quality of hires: when a given firm grows faster it hires more

productive workers. This relationship survives corrections for selection bias and

the endogeneity of wages. Under the assumption that faster growing firms are

more productive this pattern implies positive assortative matching. This evidence

of assortative matching stands in contrast to the mixed results in the literature

following Abowd et al. (1999). An important caveat is that when I do not condi-

tion on firm characteristics, I do not find evidence of assortative matching. This

mirrors the results in the AKM literature, which do not typically control for firm

characteristics. I argue that firm characteristics proxy for the labor market a firm

faces. While assortative matching may be the norm within a given industry or

occupation, it need not characterize cross-market variation in firm productivity,

worker productivity, and wages. Thus my baseline results suggest positive sorting

within labor market segments, while my alternative specification (and perhaps the

AKM regression) captures the more ambiguous relationships that hold between

markets.

Motivated by the empirical results, I develop a tractable model of worker-firm

sorting within a single market. The model’s tractability allows me to analyti-

cally characterize sorting, as well as firm compositional dynamics and the effect

of productivity shocks on sorting. The model’s central equilibrium condition, the

worker’s first order condition, corresponds exactly to a model of sequential search
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with an exogenous wage distribution. I show that the model reproduces the posi-

tive correlation between firm growth and the quality of hires when worker and firm

types are strong complements in production (i.e., the production function satisfies

strict log-supermodularity). This result extends the results of Becker (1973) on

complementarity and assortative matching to an environment with productivity

shocks and firm growth.

There are many possibilities for future research. One obvious direction is to ex-

amine business cycle behavior. Since the Great Recession, there has been renewed

interest in the composition of the unemployed and how hiring recovers after a

downturn. Mueller (2012) shows that composition of the unemployed becomes

better in recessions. Davis et al. (2013) and Davis et al. (2012) study the role of

employer recruiting intensity in the Great Recession. These studies point to a role

for worker and firm heterogeneity in understanding aggregate dynamics.
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A.1 Data

In constructing worker and job flows I follow generally follow the definitions used

in official LEHD data products.26 The first task is defining firm employment. As

noted in the main text, the total number of workers with earnings at firm j in

quarter t does not necessarily reflect the firm size at any point in time. A firm with

high turnover will have many workers over the course of a quarter, even though

it only had a few employees at each point in time. To get around this issue I use

beginning of quarter employment and end of quarter employment. Beginning of

quarter employment in quarter t is the number of workers who reported positive

earnings at firm in both t− 1 and t. Intuitively, this means that the worker was

at the firm on the first day of quarter t. It is possible that the worker separated

during t−1 and was rehired sometime later in quarter t, but this is not a serious

concern overall. Similarly, end of quarter employment is the number of workers

with positive earnings at the firm in both quarters t and t+ 1. These workers

are likely to have been employed on the last day of quarter. Thus beginning of

quarter employment and end of quarter employment serve as two “point in time”

estimates of firm size. Letting bopj,t and eopj,t denote the two point in time

measures, I define firm employment growth using the conventional Davis et al.

(1998) formula

gj,t = eopj,t− bopj,t
0.5(eopj,t+ bopj,t)

.

26See http://lehd.ces.census.gov/doc/QWI_101.pdf and the related documentation for more
information on public-use LEHD data.

66



A.1.1 Full Quarter Earnings

Recall my definition of qFQi,t :

qFQi,t =
∑8
k=1 earn

FQ
i,t−k∑8

k=1 1
{
earnFQi,t−k > 0

} .

The intention here is to measure the worker’s average earnings per quarter while

employed. The difficulty is that when a worker is hired or separated within a

quarter I do not observe how much of the quarter they were employed for. The

solution is to look for cases where I can reasonably confident that the worker

was employed the entire quarter. In particular, if a worker is observed at firm

j in period t− 1, t and ,t+ 1 it is likely they were employed at j continuously

throughout period t. I follow this logic in calculating earnFQi,t :

earnFQi,t = earni,t×1{earni,t−1 > 0}×1{earni,t > 0}×1{earni,t+1 > 0} .

A.1.2 Hires

I emphasize the importance of focusing on hires from nonemployment. Here again

I must take account of the quarterly nature of the data. If a worker is observed

to have worked at several firms in a quarter it is difficult to determine which jobs

were concurrent, which jobs ended before others began, and whether there were

any nonemployment spells in the quarter.

A hire occurs when a worker has positive earnings at firm j in quarter t, but zero

earnings at j in quarter t− 1. This implies that at some point in quarter t the

worker was hired at j. If the worker has positive earnings only at j in quarter
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t−1 we may assume that they were nonemployed prior to being hired.27 Thus, to

measure hires from nonemployment (NE) I use only workers who were hired in t

and had exactly one job in t.

Measuring job to job hires (EE) also requires some assumptions. I consider a

hire to be an EE hire if the worker (1) was hired in t, (2) had another job that

continued from t−1 into t, and (3) no jobs from t−1 continued into t+1. These

restrictions allow for job overlap or periods of nonemployment during t, but do not

allow the worker’s old jobs (from t−1) to continue beyond the transition quarter.

This measure doubtless includes some transitions that included nonemployment

between jobs. It also excludes job to job flows involving very short duration jobs.

These concerns are not not too serious for me, since I only use the EE measures

as a comparison for the NE measure. I have also tried several variations on these

definitions and found no significant differences in the results.

A.2 Additional Empirical Results

Here I present results from some intermediate specifications which include some

of the controls from the baseline specification. First, Figure 3 plots the estimated

m(·)’s when I only include size controls. These estimates fall somewhere in between

Figure 1.1 and Figure 1.2. Apparently controlling for size brings us closer to the

“within firm” specification, but does not eliminate the non-monotonicity seen in

Figure1.2.

27The LEHD data are based on employer payroll records, which are organized (within the
employer) by pay period. Since pay periods may vary across employers it is in principal possible
that a worker could make a job-to-job transition near the first day of a quarter, but only be
recorded at a single employer in each quarter. This problem is attenuated by the short duration
of pay periods relative to a calendar quarter.
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Figure 3: Size Controls Only

Next, Figure 4 adds firm fixed effects industry-season controls to the size controls.

The results are much closer to the baseline specification, especially for all quarter

earnings (Qj,t). Both relations are on average positive and statistically significant.

Qualitatively, the combination of firm fixed effects and size controls is enough to

bring the results close to the the much richer baseline specification. A natural

question is whether the firm fixed effects are truly necessary. Firm fixed effects

are a convenient way to absorb all time invariant heterogeneity, but they might

just proxy for data moments that are observable. In Figure 5 I experiment with a

specification that is similar to the baseline specification, except that the firm fixed

effects are replaced with a set of variables reflecting the firm’s average worker and

job flows. In particular, I include the mean and standard deviation of employment

growth, the hires rate, and the separations rate over the observed lifetime of the

firm. These six variables vary across firms but not over time, and capture the
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Figure 4: Size Controls and Firm Fixed Effects

firm’s average level and volatility of worker and job flows. Thus, they capture

some characteristics that would have been picked up by a firm dummy. In Figure 5

we see that this modified regression does produce a nearly monotone relationship

between the variables, though the shape of the relation is quiet different from

Figure 1.1. This suggests that while the worker/job flow variables are useful

controls, they do not substitute for the firm fixed effects.
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Figure 5: All Controls Except Firm Fixed Effects (Including Average Flows)

A.3 The Firm’s Problem

The firm’s profit maximization problem is

π (N−1 (x) ,y) = max
N(x),v

{ˆ 1

0
N (x) [F (x,y)−w (x,y)]dx− c(v) (32)

+β(1−p)π ((1− s)N (x) ,y)

+βp
ˆ 1

0
h(y′)π

(
(1− s)N (x) ,y′

)
dy′
}

subject to
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0 ≤ N (x)≤N−1 (x) +v · q (x) ∀x (33)

y ∈ A(x) if N(x)> 0 ∀x. (34)

Turning to (33) first, N−1 (x) : [0,1]→ R+ is the inherited stock of workers from

the previous period, q (x) : [0,1]→R+ is the arrival rate of workers of each type, v

is the firm’s vacancy postings (a choice variable) and N (x)is the workforce in the

current period (another choice variable). The constraint simply states that current

employment of type x workers must be no greater than surviving employment from

the past, N−1 (x), plus new recruitment v ·q (x). Note that the firm posts a single

set of vacancies for all worker types.

The second constraint (34) imposes that the firm must be in the acceptance set

of any worker they employ. If the worker did not find the match acceptable, they

would depart into unemployment before production began.

In the profit maximization problem (32) the firm takes last period’s employment

and their current type as state variables. The firm chooses current employment

and vacancy posting, taking the bargained wages w (x,y) as given. Within the

period, the firm enjoys profits net of wages F (x,y)−w (x,y) from each worker,

and pays the convex vacancy posting cost c(v). If a productivity shock does not

arrive the firm has discounted continuation value βπ ((1− s)N (x) ,y), where s is

the exogenous separation rate. If a shock does arrive the firm gets the expected

value β
´ 1

0 h(y′)π ((1− s)N (x) ,y′)dy′.
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The Lagrangian for the firm’s problem is

π (N−1 (x) ,y) =
ˆ 1

0
N (x) [F (x,y)−w (x,y)]dx− c(v)

+β(1−p)π ((1− s)N (x) ,y)

+βp
ˆ 1

0
h(y′)π

(
(1− s)N (x) ,y′

)
dy′

+
ˆ 1

0
µ(x)(N−1 (x) +v · q (x)−N(x))dx.

Assume that y ∈ A(x). Then the match yields positive surplus, and the hiring

constraint will bind. In this case the FOC with respect to N(x) is

F (x,y)−w (x,y) +β(1−p)(1− s) dπ
dN∗

+βp(1− s)
ˆ 1

0
h(y′) dπ

dN∗
dy′−µ(x) = 0.

Next, note that by the envelope condition

∂π (N−1 (x) ,y)
∂N−1 (x) = µx (35)

so when y ∈ A(x) I can use the FOC to write

∂π (N−1 (x) ,y)
∂N−1 (x) = F (x,y)−w (x,y) (36)

+(1− s)(1−p)β∂π (N∗ (x) ,y)
∂N∗ (x)

+(1− s)pβ
ˆ 1

0
h(y′)∂π (N∗ (x) ,y′)

∂N∗ (x) dy′.

On the other hand, if y /∈ A(x) then worker separates from the firm before pro-
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duction occurs. This implies

∂π (N−1 (x) ,y)
∂N−1 (x) = 0 if y /∈ A(x) (37)

Taking equations (36) and (37) together for y ∈ A(x) I have

∂π (N−1 (x) ,y)
∂N−1 (x) = F (x,y)−w (x,y)

+(1− s)(1−p)β∂π (N∗ (x) ,y)
∂N∗ (x)

+(1− s)pβ
ˆ
A(x)

h(y′)∂π (N∗ (x) ,y′)
∂N∗ (x) dy′

Which is identical to equation (1.3) when we set ∂π(N−1(x),y)
∂N−1(x) = J(x,y). This shows

how we can formally derive equation (1.3) from the firm’s problem. Taking the

FOC with respect to v I have

c′(v)−
ˆ 1

0
q(x)µ(x)dx= 0.

The left hand side of this equation is the value of a vacancy. Optimality dictates

that this be set to zero. Using equation 35 I can write

c′(v) =
ˆ 1

0
q(x)J(x,y)dx.

A.4 Assortative Matching with Productivity Shocks

Consider the worker’s threshold condition (1.14):

F (x,y (x))−βηθ
ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)] [F (x,y)−F (x,y (x))]dy = 0(38)

74



The following generalizes Proposition 3 to the case with productivity shocks.

Proposition 10. When the worker’s choice of y(x) is given by (38), y′(x)> 0 if

and only if ˆ 1

y(x)
w∗ (y) F1 (x,y)

F (x,y) dy >
F1 (x,y (x))
F (x,y (x)) (39)

and y′(x)< 0 if and only if

ˆ 1

y(x)
w∗ (y) F1 (x,y)

F (x,y) dy <
F1 (x,y (x))
F (x,y (x)) , (40)

where w∗(y) = [ηf(y)−(1−s)ph(y)]F (x,y)´ 1
y(x)[ηf(y)−(1−s)ph(y)]F (x,y)dy

and
´ 1
y(x)w

∗(y) = 1.

Proof. Equation (38) implicitly defines y(x), so differentiating it I can obtain an

expression for y′(x). Applying the implicit function theorem I have

y′(x) =−
F1 (x,y (x))−βηθ

´ 1
y(x) [ηf (y)− (1− s)ph(y)] [F1 (x,y)−F1 (x,y (x))]dy

F2 (x,y (x))
(
1 +βηθ

´ 1
y(x) [ηf (y)− (1− s)ph(y)]dy

) .

It is easy to show that the denominator is positive by substituting in for θ. So the

sign of y′(x) depends only on the numerator, implying y′(x)> 0 if and only if

βθη

ˆ
y(x)

[ηf (y)− (1− s)ph(y)]F1 (x,y)dy >

F1 (x,y (x))
(

1 +βθη

ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)]dy

)

Dividing this expression by (38) I arrive at

´ 1
y(x) [ηf (y)− (1− s)ph(y)]F1 (x,y)dy´ 1
y(x) [ηf (y)− (1− s)ph(y)]F (x,y)dy

>
F1 (x,y (x))
F (x,y (x))
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Setting w∗(y) = [ηf(y)−(1−s)ph(y)]F (x,y)´ 1
y(x)[ηf(y)−(1−s)ph(y)]F (x,y)dy

I have equation (39)

ˆ 1

y(x)
w∗ (y) F1 (x,y)

F (x,y) dy >
F1 (x,y (x))
F (x,y (x))

as desired. A symmetric argument yields equation (40).

Note that the weights w∗(y) may be negative if f(y) is small and h(y) is large.

The sorting results summarized in Proposition 4 relied on the weights w(y) being

positive. To generalize Proposition 4 I need to show a single-crossing property

holds for w∗(y). This requires two intermediate results.

Result 1 First, I need to show

ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)]F (x,y)dy > 0. (41)

That is, although [ηf (y)− (1− s)ph(y)]F (x,y) may take negative values, the in-

tegral is always positive at an optimal threshold y(x). To see this, rearrange (38)

to get

F (x,y (x))
(

1 +βηθ

ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)]dy

)
=

βηθ

ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)]F (x,y)dy.

I have already argued in the proof of Proposition 10 that the term in parentheses

is greater than zero, which then implies that the right hand side is positive, so

equation (41) holds.
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Result 2 Second, I need to show that there exists ȳ such that

[ηf (y)− (1− s)ph(y)]< 0 ⇐⇒ y < ȳ. (42)

That is, [ηf (y)− (1− s)ph(y)] has a single-crossing property, and is strictly pos-

itive above some threshold. To see this recall that h(y) is not only the density

of productivity shocks but is also the density of firm types (this follows from the

nature of the productivity process). Then I can write f(y) = M(U,V )
U

h(y)v(y)
V , where

v(y) is the number of vacancies posted by a type y firm and V is the aggregate

number of vacancies. Using this I factor out h(y) from the expression:

[ηf (y)− (1− s)ph(y)] = h(y)
[
η
M (U,V )

U

v(y)
V
− (1− s)p

]

Next, recall from Section 1.4.1.6 that vacancy posting v(y) is increasing in y.

This shows that
[
ηM(U,V )

U
v(y)
V − (1− s)p

]
will turn positive once and only once,

proving (42). Intuitively, the difference between f(y) and h(y) is the number of

vacancies posted per firm. More productive firms post more vacancies, so it is

understandable that above a threshold the difference ηf (y)− (1− s)ph(y) will be

positive.

Finally, taking equations (41) and (42) together, it is clear that the weights w∗(y)

also satisfy the same single crossing property:

w∗(y)< 0 ⇐⇒ y < ȳ. (43)

Given that w∗(y) satisfied this condition, I can show a useful result.
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Lemma 1. Let w∗(y) satisfy equation (43) and
´ b
a w
∗(y) = 1. If g(y) is increasing

and positive then ˆ b

a
w∗(y)g(y)> g(a)

and if g(y) is decreasing and positive then

ˆ b

a
w∗(y)g(y)< g(a)

Proof. Say that g(y) is increasing and positive. Then I want to show

ˆ b

a
w∗(y)(g(y)−g(a))> 0.

Note that g∗(y) = g(y)− g(a) is increasing and non-negative. Then the desired

condition can be written as:

ˆ b

ȳ
w∗(y)g∗(y) >

ˆ ȳ

a
(−w∗(y))g∗(y).

where −w∗(y) is a positive weight for y < ȳ. Recall that
´ b
a w
∗(y)dy = 1, so

ˆ b

ȳ
w∗(y)>

ˆ ȳ

a
(−w∗(y))

ˆ b

ȳ
w∗(y)g∗(ȳ)dy >

ˆ ȳ

a
(−w∗(y))g∗(ȳ)dy

Since g∗(y) is increasing I have
´ b
ȳ w
∗(y)g∗(y)>

´ b
ȳ w
∗(y)g∗(ȳ)dy and

´ ȳ
a (−w∗(y))g∗(ȳ)dy >

´ ȳ
a (−w∗(y))g∗(y). Putting these all together I have

ˆ b

ȳ
w∗(y)g∗(y)>

ˆ ȳ

a
(−w∗(y))g∗(y)
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as desired.

Substituting g(y) = F1(x,y)
F (x,y) in Lemma 1, it is clear that ∂

∂y
F1(x,y)
F (x,y) > 0 is sufficient

for positive assortative matching in the generalized model. The conditions for

negative sorting and no sorting follow from analogous arguments. I summarize

the generalized results below.

Proposition 11. Consider the general model with productivity shocks. Matching

is positive assortative, y′(x) > 0, if F is strictly log-supermodular. Matching is

negative assortative, y′(x)< 0 if F is strictly log-submodular. There is no sorting

if ∂
∂y

F1(x,y)
F (x,y) = 0 .

A.5 Omitted Proofs

Proof of Fact Fact 1: First I derive an expression for S (x,y). Rearranging (1.4) I

can write

U (x) = β

ˆ
A(x)

f (y)S (x,y)dy+βU (x)

and rearranging equation (1.5) I have

W (x,y) = w (x,y) +βW (x,y)− [s+ (1− s)p]βS (x,y)

+(1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′
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Putting these together I have

S (x,y) = w (x,y) + (1− s)(1−p)βS (x,y)

+(1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′

−β
ˆ
A(x)

f (y)S (x,y)dy. (44)

Next, note that the bargaining equation (1.6) implies J (x,y) = 1−η
η S (x,y). Using

this in equation (1.3) yields

J (x,y) = F (x,y)−w (x,y) + (1− s)(1−p) 1−η
η

βS (x,y)

+(1− s)p1−η
η

β

ˆ
A(x)

h(y′)S
(
x,y′

)
dy′. (45)

Combining (44), (45), the Nash bargaining equation and rearranging I have

w (x,y) = ηF (x,y) + (1−η)β
ˆ
A(x)

f (y)S (x,y)dy (46)

Using this in the worker surplus expression I have

S (x,y) = θη

(
F (x,y)−β

ˆ
A(x)

f (y)S (x,y)dy
)

+θ (1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′ (47)

where θ = 1
1−(1−s)(1−p)β . Similarly, the equation 45 yields

J (x,y) = θ (1−η)F (x,y)− θηβ
ˆ
A(x)

f (y)J (x,y)dy

+θ(1− s)pβ
ˆ
A(x)

h(y′)J
(
x,y′

)
dy′.
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Proof. Start with equation (1.9):

S (x,y) = θη

(
F (x,y)−β

ˆ
A(x)

f (y)S (x,y)dy
)

+θ (1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′

Rearranging this yields

S (x,y) = θηF (x,y)

+θβ
ˆ
A(x)

[
(1− s)ph(y′)−ηf(y′)

]
S
(
x,y′

)
dy′ (48)

Multiplying by [(1− s)ph(y)−ηf(y)] and integrating I have

ˆ
A(x)

[(1− s)ph(y)−ηf(y)]S (x,y)dy =

θη

ˆ
A(x)

[(1− s)ph(y)−ηf(y)]F (x,y)dy{ˆ
A(x)

[(1− s)ph(y)−ηf(y)]dy
}
θβ

ˆ
A(x)

[
(1− s)ph(y′)−ηf(y′)

]
S
(
x,y′

)
dy′

Which implies

ˆ
A(x)

[(1− s)ph(y)−ηf(y)]S (x,y)dy =
θη
´
A(x) [(1− s)ph(y)−ηf(y)]F (x,y)dy

1− θβ
´
A(x) [(1− s)ph(y)−ηf(y)]dy

And substituting this into (48)

S (x,y) = θηF (x,y)

−θη
θβ
´
A(x) [ηf(y)− (1− s)ph(y)]F (x,y)dy

1 + θβ
´
A(x) [ηf(y)− (1− s)ph(y)]dy
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which is the desired result.

Continuity: S fails to be continuous only when 1−θβ
´
A(x) [(1− s)ph(y)−ηf(y)]dy=

0. For this to hold it must be that

1−βθ (1− s)p
[ˆ

A
h(y)dy

]
≤ 0.

After some rearranging this becomes

1−β (1− s) +β (1− s)p
(
1−

[´
Ah(y)dy

])
1−β (1− s)(1−p) ≤ 0.

Note that
[´
Ah(y)dy

]
≤ 1, so this is clearly a contradiction. So I have shown that

1−βθ
[´
A ((1− s)ph(y)−ηf (y))dy

]
> 0, and thus S is continuous.

Proof. Step 1 shows that there are never two points satisfying (1.14). Steps 2 and

3 show that (1.14) has a solution if and only if y (x) is not a solution.

Step 1: There is at most one solution to (1.14). The derivative of the right

hand side is

∂

∂y∗
βθη

ˆ 1

y∗
f(y)(F (x,y)−F (x,y∗))dy =

−βθηF2 (x,y∗)
ˆ
y∗
f(y)dy < 0

And the derivative of the left hand side is

∂

∂y∗

[
F (x,y∗)− b+ θβ (1− s)p

ˆ 1

y∗
h(y)(F (x,y)−F (x,y∗))dy

]
=

F2 (x,y∗)
[
1− θβ (1− s)p

ˆ
y∗
h(y)dy

]
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To see that
[
1− θβ (1− s)p

´ 1
y∗ h(y)dy

]
is positive, substitute in for θ to get

[
1− θβ (1− s)p

ˆ 1

y∗
h(y)

]
=

1−β (1− s)
´ 1
y∗ h(y)dy

1−β (1− s)(1−p) > 0.

Thus the left hand side of (1.14) is strictly decreasing and the right hand side is

strictly increasing, so there is at most one solution.

Step 2: If there is no solution to (1.14) then (1.15) must hold. First, let

z (y∗) = (F (x,y∗)− b) + θβ (1− s)p
ˆ 1

y∗
h(y)(F (x,y)−F (x,y∗))dy

r (y∗) = βθη

ˆ 1

y∗
f(y)(F (x,y)−F (x,y∗))dy

From Step 1 we know that

z′ (y∗) > 0

r′ (y∗) < 0

Note that

z (1) > 0

r (1) = 0

Then, since z and r are continuous, the only way to have no solution to (1.14) is

to have

z (x)> r (x) ∀x.

This implies z (0)> r (0), which is equivalent to (1.15) so I am done.
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Step 3: If (1.15) holds then (1.14) has no solution. Reversing the logic

from Step 2, if z (0)> r (0) then z (x)> r (x) ∀x, so (1.14) cannot hold.

Proof of Proposition 5. The goal is to show that if F is not strictly log-supermodular

then matching is not necessarily positive assortative. I start by assuming that

∂2

∂x∂y
lnF (x∗,y∗)< 0 (49)

for some x∗and y∗, and then show that I can pick f(y) to make y′(x∗)< 0. First,

note that under these conditions we can find y∗∗ > y∗ such that

F1 (x∗,y∗)
F (x∗,y∗) >

F1 (x∗,y∗∗)
F (x∗,y∗∗) . (50)

This will be used in the final step of the proof. Now I argue we can set f(y)

such that y(x∗) = y∗, and then show we can adjust f(·) to put more weight on

y∗∗. It is trivial to show that there exist many meeting rate functions f(·) such

that y(x∗) = y∗, so I simply assuming that we have f(·) such that the optimally

condition (1.27) holds:

F (x,y∗)
(

1 +βθη

ˆ 1

y∗
f(y)dy

)
−βθη

ˆ 1

y∗
f(y)F (x,y)dy = 0. (51)

Next, define

f̄ =
ˆ 1

y(x)
f(y)dy (52)
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And define ȳ as the solution to

F (x, ȳ) =
´ 1
y∗ f(y)F (x,y)dy´ 1

y∗ f(y)dy
(53)

Note that ȳ > y∗. ȳ is the firm type that yields the expected match production

within the acceptance set, while f̄ is the probability the gets an acceptable offer.

Then I can write

F (x,y∗)
(
1 +βθηf̄

)
−βθηf̄F (x, ȳ) = 0. (54)

This can be interpreted as the indifference condition of a counter factual problem.

Say there is only one firm type ȳ, and the worker gets offers with probability f̄ .

Obviously the worker accepts the offers and the decision problem is trivial. But,

we can also examine what would happen if the worker were offered a one time

chance to match with an alternative firm type y. Then this condition says that

y∗ is the lowest acceptable alternative firm type. Equivalently, we could imagine

there is a measure zero population of firms with y 6= ȳ, and that the worker has

to define their acceptance set on these alternatives as well.

Rearranging I have

f̄ = F (x,y∗)
βθη (F (x, ȳ)−F (x,y∗)) .

Now define a new function

f̄(y) = F (x,y∗)
βθη (F (x,y)−F (x,y∗)) (55)

That is, f̄(y) is the total arrival rate necessary to ensure the worker’s reservation
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type is y∗ when all offers (except a set of measure zero) are of type y. f̄(y) is

well defined for all y > y∗, and in particular f̄(y∗∗) exists. In words, we can find

an offer arrival rate that ensures the worker’s reservation productivity is y∗ when

almost all firms are type y∗∗.

Equation (55) presumes a point mass of firms at type y. The results in Proposition

3 relied on continuous, differentiable densities. This is not a serious gap, since we

can approximate the point mass as the limit of a sequence of smooth densities. The

critical point here is that F is twice continuously differentiable. This means that

∂2

∂x∂y lnF (x,z)< 0 implies ∂2

∂x∂y lnF (x,z′)< 0 for some neighborhood U around z.

Then we can replace the point mass at z with a density that accumulates on U .

Recall from Proposition 3 that y′(x∗)> 0 if and only if

ˆ 1

y∗
w (y) F1 (x∗,y)

F (x∗,y) dy >
F1 (x∗,y∗)
F (x∗,y∗) (56)

where

w(y) = f(y)F (x,y)´ 1
y∗ f(y)F (x,y)dy

> 0. (57)

Clearly, if f (y∗∗)� f (y) then w (y∗∗)�w (y) as well. Under these circumstances

ˆ 1

y∗
w (y) F1 (x∗,y)

F (x∗,y) dy ≈
F1 (x∗,y∗∗)
F (x∗,y∗∗) <

F1 (x∗,y∗)
F (x∗,y∗) (58)

The inequality shows that y′(x∗)< 0, so we are done.

Proof of Proposition 6. The proof has three steps.

Step 1: Growth is an exact function of current y and a set of state

variables m that satisfy h(y|m) = h(y). Consider a firm in period t. The firm’s
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growth rate is defined as

gt = 2Et−Et−1
Et+Et−1

Where Et is total employment, measured in the production stage. Et satisfies the

law of motion Et =Ht+(1−st)Et−1, whereHt is total hires and st is the separation

rate. We observe st > s only when there is a negative productivity shock, leading

to endogenous separations. Recall also that total hires Ht = H(yt) is a function

only of current productivity yt: both the number of vacancies posted and the

acceptance decisions of workers only depend on yt. Assuming yt = yt−1 = yt−2 and

working recursively, we can write

Et =H(yt)(1 + (1− s)) + (1− s)2Et−2

and assuming that y = yt has been constant since period t− j we have

Et =H (y)
i=j−1∑
i=0

(1− s)i+ (1− s)jEt−j . (59)

Thus Et is an exact function of (1) current productivity y, (2) the duration of

the current productivity regime j, and (3) employment at the start of the regime

Et−j . Note that Et−j is not independent of y: if y is very low, we expect Et−j

to be low as well, since productivity changed to y at the beginning of period t− j

or earlier. This means any high type worker will have separated before Et−j is

measured.

In what follows, I assume that a productivity shock arrived at the start of period

t− j, and there has been no subsequent shock. Let N : [0,1]→ R+ be the firm’s
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employment distribution in period t− j − 1. That is, the firm employed N(x)

workers of type x in the production stage of period t−j−1. If the shock does not

cause any separations then

Et−j = H(y) + (1− s)Et−j−1

= H(y) + (1− s)
ˆ 1

0
N(x)dx.

´ 1
0 N(x)dx gives total employment at the end of period t− j− 1. At the start of

t−j, productivity changes to y and exogenous separations occur. So hiring is given

by H(y) and separation by
´ 1

0 N(x)dx. In the general case, where endogenous

separations may occur, the law of motion is

Et−j =H(y) + (1− s)
ˆ x(y)

0
N(x)dx. (60)

Here x(y) is the highest worker type that is willing to work for type y firm. The

integral makes clear that any high type workers, x > x(y), separate from the firm

at the start of t− j. Putting (59) and (60) together I have

Et =H (y)
i=j∑
i=0

(1− s)i+ (1− s)j+1
ˆ x(y)

0
N(x)dx.

Thus, Et is an exact function of y,j and N(x). Note y is independent of N(x)

and j: since N(x) is only a function of lagged productivity values, it contains no

information about y. In particular, the conditional density of y, h(y|j,N(x)) is

equal to the unconditional density h(y). Letting m= (j,N(x)), I am done.
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Step 2: g1(y,m) is positive. Define

E∗t−j =
ˆ x(y)

0
N(x)dx. (61)

where x(y) and N(x) are defined in Step 1. E∗t−j is the mass of workers that

remain at the firm after the productivity shock, but before exogenous separations

occur. Using this notation I can write period t employment as be employment

Et =H
i=j−1∑
i=0

(1− s)i+ (1− s)jE∗t−j

where H is the level of hiring for a type y firm. Differencing I have

Et−Et−1 = (1− s)j−1 (H− sE∗t−j)

so the growth rate is

g = 2rj−1 H− sE∗t−j
H
[∑i=j−2

i=0 ri+∑i=j−1
i=0 ri

]
+E∗t−j [rj + rj−1]

where r = (1− s). Substituting in equation (61) and H =
´ x(y)

0 H(x)dx I have

g = 2rj−1
´ x(y)

0 H(x)dx− s
´ x(y)

0 N(x)dx´ x(y)
0 H(x)dx

[∑i=j−2
i=0 ri+∑i=j−1

i=0 ri
]
+
´ x(y)

0 N(x)dx [rj + rj−1]
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Differentiating this expression with respect to y, I find that g′ > 0 if and only if

x′(y) H(x(y))− sN(x(y))
H(x(y))

[∑i=j−2
i=0 ri+∑i=j−1

i=0 ri
]
+N(x(y)) [rj + rj−1]

>

x′(y)
´ x(y)

0 H(x)dx− s
´ x(y)

0 N(x)dx´ x(y)
0 H(x)dx

[∑i=j−2
i=0 ri+∑i=j−1

i=0 ri
]
+
´ x(y)

0 N(x)dx [rj + rj−1]

Under the assumption of positive assortative matching, x′(y) is positive and can

be canceled on both sides. Note that the remaining term on the left hand side is

the growth rate of type x(y) workers at the firm, while the right hand side is the

growth rate of total employment at the firm. Appealing to Proposition 7, we see

that the left hand side must be larger, so we are done.

Step 3: g1(y,m) > 0 implies Fg(·|y′) dominates Fg(·|y) whenever y′ > y.

Using the results in Step 1, I can write the distribution of growth conditional firm

type as

Fg (g|y) =
´
m,y 1{g(y,m)< g}×1{y∗ = y}dF (m,y∗)´

m,y 1{y∗ = y}dF (m,y∗)

Where F (m,y) is the joint CDF of m and y and Fg (g|y) is the CDF of growth

rates conditional on y. Using the fact that h(y|m) = h(y) this simplifies to

Fg (g|y) =
ˆ
m

1{g(y,m)< g}dF (m) (62)

From equation (62) it is clear that increasing y reduces Fg (g|y) if g1(y,m) > 0.

This means that Fg (·|y′) dominates Fg (g|y) whenever y′ > y, so I am done.
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Proof of Proposition 7. Define j(x) by

yt−j(x) ≤ y(x)

yt−i > y(x) ∀i > j(x).

That is, t− j(x) is the most recent period when the firm’s productivity was below

the worker’s acceptance threshold. This implies that Nt−j(x)(x) = 0, so I can write

employment in t as the accumulation of surviving hires since t− j(x):

Nt(x) =
i=j(x)−1∑
i=0

(1− s)iHt−i(x). (63)

Plugging this expression into the growth rate formula I have

gt(x) = 2 Ht(x)− s∑i=j(x)−1
i=1 (1− s)i−1Ht−i(x)

Ht(x) + (2− s)∑i=j(x)−1
i=0 (1− s)i−1Ht−i(x)

(64)

Clearly, a ceteris paribus increase in j(x) reduces gt(x), This comes about through

two channels. A higher j(x) means there has been more time for the firm to

accumulate workers, so the denominator of (1.31) is larger. Second, the larger

stock of type x workers implies higher level of separations, reducing the numerator.

The final step is to note that Ht(x) = q(x)v(yt): hires of type x workers equals

the arrival rate q(x) times the number of vacancies posted, v(yt). Substituting in

this expression, the q(x) cancel leaving

gt(x) = 2 v(yt)− s
∑i=j(x)−1
i=1 (1− s)i−1v(yt−i)

v(yt) + (2− s)∑i=j(x)−1
i=0 (1− s)i−1v(yt−i)

. (65)

This makes clear that changing x changes gt(x) only through j(x), and not through
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any differences in hiring subsequent to t−j(x). Under positive assortative match-

ing, increasing x lowers j(x), so gt(x) increases in x.
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Chapter 2: The Theory of Sorting in Labor Markets

2.1 Abstract

Becker’s classic result shows that supermodularity of the production function is

necessary for positive assortative matching in a partnership environment. On the

other hand it is well known that log-supermodularity of the production function,

a stronger condition, is necessary for positive sorting in environments with multi-

worker firms and monopolistic competition. Both the partnership model and the

monopolistic competition model are meant to study similar phenomena, so it is

puzzling that the comparative static predictions are at odds with each other. I

show that reason for the divergence is not in the difference between one-to-one and

many-to-one matching, but rather in the difference between decreasing returns in

employment and decreasing returns in production. I show that the monopolistic

competition framework implies a price effect which makes high type firms less at-

tractive for high type workers. As a result, strong complementarities are needed

to ensure positive sorting. The price effect is absent from the partnership model,

so weaker complementarities are sufficient to generative posting sorting. I show

that these results and the related intuition carry over to models with search fric-

tions, providing a pair of tractable benchmark models. These results highlight

the connection between frictionless matching models and those that incorporate
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search.

2.2 Introduction

In this paper I examine how workers are sorted across firms in a variety of environ-

ments. A large literature has developed which studied how heterogeneous workers

match with heterogeneous firms. The focus of the literature is on positive assor-

tative matching: outcomes where the best, most productive workers are employed

by the most productive firms and the least productive workers are assigned to the

least productive firms. There are two broad classes of models: one based on Becker

(1973)’s one-to-one matching model, and one that resembles the Dixit and Stiglitz

(1977) framework in that firms have a choice of scale and face decreasing returns.

Becker’s classic result shows that supermodularity of the production function (i.e.

complementarity) is necessary for positive assortative matching in a frictionless

partnership environment. Well-known papers in trade and industrial organization

show that log-supermodularity of the production function is necessary for positive

sorting in Dixit-Stiglitz-like models.

As discussed below, log-supermodularity is a substantially stronger condition than

supermodularity, so it is puzzling why these two environments lead to different

sorting conditions. I show that the answer is not in the difference between one-to-

one and many-to-one matching, but rather in how decreasing returns to scale are

imposed. I show that the concavity in production that Dixit-Stiglitz-like models

impose makes it more difficult to obtain positive sorting relative to models that

impose concavity in the number of workers. The latter class of models includes

Becker’s partnership model as a special case, in addition to a wide class of models
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where firms face costs that depend on the number of workers, rather than the

worker’s productivity.

The result can be understood as follows. The social planner faces a tradeoff when

deciding where to assign a given worker. Assigning the worker to a higher type firm

results in an increase in match production, because higher type firms are always

more productive. However, there is always a tradeoff (in order to have an internal

solution). In Becker-like models, the cost is in terms of the size of the workforce,

and is additive and independent of worker type. In Dixit-Stiglitz-like models the

cost is in terms of match production, and so depends on the worker type. In par-

ticular, the cost is proportional to the worker productivity, so higher productivity

workers face a larger (absolute) cost of matching with high type firms. As a result,

simple supermodularity is not sufficient for positive sorting in Dixit-Stiglitz-like

models. Stronger complementarity, in the form of log-supermodularity, is needed

to induce high type workers to accept high type firms. The results show how simple

differences in modeling assumptions can lead to dramatic difference in equilibrium

behavior.

In the second section I extend my analysis to a directed search environment with

multi-worker firms. I show that all my main results and intuition generalize. In

particular I show that the supermodularity and log-supermodularity sorting condi-

tions extend unchanged from the frictionless models to the directed search model.

This result contrasts with the results in Shimer and Smith (2000) and Eeckhout

and Kircher (2010), where positive assortative matching requires stricter condi-

tions when there are search costs. My results are more in line with those of Atakan

(2006) and Lentz (2010), whose frictional generalizations of the partnership model
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require supermodularity to obtain positive sorting. However, this paper is appar-

ently the only one besides Eeckhout and Kircher (2012) to provide an analysis

of frictional sorting when firms face concave production functions. My Dixit-

Stiglitz-like model can be regarded as a special case of theirs, which allows me

to characterize precisely the necessary and sufficient conditions for sorting. My

Becker-like model is apparently new to the literature.

The close correspondence between the frictionless and directed search models

is particularly useful, since the growing literature on frictional sorting has led

to a number of sufficient conditions for sorting (see Shimer and Smith (2000),

Shi (2001), Teulings and Gautier (2004), Shimer (2005), Atakan (2006), Lentz

(2010), Eeckhout and Kircher (2010), Eeckhout and Kircher (2012), Lise and

Robin (2013), Lise et al. (2013) and Grossman et al. (2013) among others). Some

of the differences in sorting are due to how search frictions are modeled, while

others are due to the way firm scale is introduced or other features of the envi-

ronment. My results highlight how the treatment of firm scale alone can change

sorting, regardless of search frictions.

The paper proceeds as follows. In Sections 2.2.1 and 2.2.2 I introduce some

notation and concepts that will be used throughout the paper. Then I turn to

frictionless models of matching. Section 2.3.1 introduces the generalized partner-

ship model, a model of multi-worker firms that nests Becker’s partnership model.

I show that the generalized partnership model shares the sorting behavior of the

original Becker partnership model, and so is a useful tool for comparison. Section

2.3.2 introduces the concave model, a generalization of the Dixit-Stiglitz frame-

work that inherits its sorting properties. Then Section 2.3.3 compares the two
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models and shows which features are the source of their sorting behavior. Sec-

tion 2.4 introduces search frictions, and largely follows the format of Section 2.3.

Section 2.5 concludes.

2.2.1 Common Features

All the models under consideration share some key components. First, workers

and firms are heterogeneous with respect to their productivity. Let x∈ [0,1] denote

a worker’s type and y ∈ [0,1] denote a firm’s type. Let f(x,y) > 0 be the match

production function, or simply the production function. f(x,y) is the efficiency

units of labor generated when a type x worker matches with a type y firm. In

certain cases this will be identical to physical output, but in general output will

be an increasing, possibly nonlinear function of labor. Unless otherwise stated, I

assume that all firms are producing a homogenous good whose price is normalized

to unity. I assume that higher type agents are more productive:

f1(x,y) > 0 ∀x,y

f2(x,y) > 0 ∀x,y,

that is, I assume absolute advantage. The match production function will be the

central object of interest in what follows.

A common component is lack of free entry. I assume that there is an exogenous

mass b(y) of type y firms, and an exogenous mass l(x) of type x workers. Thus

both the number and distribution of agents are fixed. However, firm choose the

size of their workforce endogenously, so the distribution of jobs is determined in
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equilibrium.

2.2.2 Supermodularity and Log-Supermodularity

The results in this paper involve properties of the match production function

f(x,y). Here I summarize some of these properties and their relationships.

Definition 1. A function f(x,y) is supermodular if and only if

f(x′,y′) +f(x,y)≥ f(x,y′) +f(x′,y) (2.1)

for all y′ > y, x′ > x. A function is submodular if and only if

f(x′,y′) +f(x,y)≤ f(x,y′) +f(x′,y)

Supermodularity is often called complementarity. If f(x,y) is a production func-

tion, then equation (2.1) says that total output is larger when high types are

paired with high types and low with low. When functions are differentiable, there

is a simpler characterization:

Corollary 2. If f(x,y) is twice differentiable then f(x,y) is supermodular if and

only if

f12(x,y)≥ 0

for all y,x. It is submodular if and only if

f12(x,y)≤ 0
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for all y,x.

The cross-partial condition f12(x,y) ≥ 0 captures the idea of increasing differ-

ences: the marginal effect of increasing x is increasing in y. Now I turn to log-

supermodularity, which has a natural definition:

Definition 2. A positive function f(x,y) is log-supermodular if and only if lnf(x,y)

is supermodular. It is log-submodular if and only if lnf(x,y) is submodular.

The following result can be obtained by combining Corollary 2 and Definition 2:

Corollary 3. If f(x,y) is twice differentiable then f(x,y) is log-supermodular if

and only if

f12(x,y)− f1(x,y)f2(x,y)
f(x,y) ≥ 0 (2.2)

for all y,x. It is log-submodular if and only if

f12(x,y)− f1(x,y)f2(x,y)
f(x,y) ≤ 0 (2.3)

for all y,x.

Assuming that f(x,y) is increasing in both arguments, Corollary 3 shows that

log-supermodularity is a stronger condition than supermodularity. That is, since

f1(x,y)f2(x,y)
f(x,y) is positive some functions may have f12(x,y)≥ 0 everywhere (super-

modularity) but fail to have f12(x,y)− f1(x,y)f2(x,y)
f(x,y) ≥ 0 everywhere (log-supermodularity).

It is useful to consider some examples. The function f(x,y) = x+y is both super-

modular and submodular: the cross partial equals zero. Since it is on the border-

line of being supermodular, it is not surprising that it fails log-supermodularity

(f12(x,y)− f1(x,y)f2(x,y)
f(x,y) = − 1

x+y < 0). The function f(x,y) = xy is supermodu-
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lar, and is both log-supermodular and log-submodular. The function exp(xy) is

strictly log-supermodular, and so of course is supermodular as well.

2.3 Frictionless Models

In this section I lay out two frictionless models of matching and sorting. The first is

the generalized partnership model, which nests the one-to-one partnership model

as a special case. The second model is the concave model, which nests monopolistic

competition (e.g. Dixit-Stiglitz) models as special cases. I derive the sufficient

conditions for assortative matching in a comparable fashion for both models. I

show that the generalized partnership model replicates the sorting behavior of the

partnership model (i.e. the sorting condition is identical in both models), and

to explain why the sorting conditions differ between the partnership and and the

concave model.

2.3.1 Generalized Partnership Model

In this section I describe the generalized partnership (GP) model. The model is

based on the classical assignment model, sometimes called the partnership model,

where a finite number agents are matched one-to-one. The GP model is a gener-

alization of the partnership model where agents on one side of the market (firms)

can simultaneously match with several agents from the other size (workers). I

show that the standard partnership model is a limiting case of the GP model.

The key result is that sorting in the GP model is governed by the same prop-

erty (supermodularity) as in the partnership model. In this sense the GP model

generalizes Becker (1973)’s results to a setting with multi-worker firms.
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2.3.1.1 Firm’s Problem

Firms choose the size and composition of their workforce, while workers simply

seek the highest available wage. The labor market is frictionless, so a firm can hire

any amount of type x labor at the market wage w(x). Production at each firm is

linear, but there is a cost which is convex in the size of the workforce. A type y

firm solves the problem

max
n(·,y)∈N

ˆ 1

0
n(x,y) [f(x,y)−w(x)]dx− c

(ˆ 1

0
n(x,y)dx

)

dy where n(·,y) is a function [0,1]→ R+, and N is the space of such functions.

The firm’s employment of type x workers is given by n(x,y). c(·) is the strictly

convex employment cost function. The employment cost function constrains firm

size in equilibrium. Intuitively, firms will hire workers until their output (net of

wages) equals the marginal cost of hiring another worker.

2.3.1.2 Social Planner’s Solution

Since the welfare theorems apply, I focus on the social planner’s solution. In this

environment the social planner seeks to maximize total output net of employment

costs, taking the number of workers and firms as fixed. Wages are a one-for-one

transfer between agents, and so do not enter the problem.

Let n(x,y)> 0 be the mass of type x workers assigned to a type y firm. The social

planner seeks an assignment to solve

max
n(·,·)∈N ∗

ˆ 1

0
b(y)

[ˆ 1

0
n(x,y)f(x,y)dx− c

(ˆ 1

0
n(x,y)dx

)]
(2.4)
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subject to ˆ 1

0
b(y)n(x,y)dy ≤ l(x). (2.5)

where n(·, ·) is a function [0,1]2→ R2
+ and N ∗ is the space of such functions. In

other words, the social planner chooses the value of n(x,y) for all x and y. Let

n(y) =
´ 1

0 n(x,y)dx be the size of the workforce assigned to each type y firm. Then

the net marginal product of a type x worker at a type y firm is

f(x,y)− c′(n(y)). (2.6)

Assume the social planner’s solution has n∗(x,y) > 0. Then it must be the case

that

f(x,y)− c′(n(y))≥ f(x,y′)− c′(n(y′)) ∀y′ (2.7)

since otherwise output could be increased by reassigning some of the type x workers

to another firm. The inequality (2.7) is critical in what follows. It implies that y

is a local maximizer of f(x,y′)− c′(n(y′)), so if f(·, ·), c(·) and n(·) are sufficiently

differentiable, the first and second order conditions yield

f2(x,y)− c′′(n(y))n′(y) = 0 (2.8)

d

dy

[
f2(x,y)− c′′(n(y))n′(y)

]
≤ 0. (2.9)

respectively. Assuming that the second order condition holds strictly, I can apply

the implicit function theorem to (2.8) obtain

dy

dx
=− f12(x,y)

d
dy [f2(x,y)− c′′(n(y))n′(y)]
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where the denominator is strictly negative. This says that better firms are assigned

to better workers if and only if f12(x,y) is positive. That is, matching is positive

assortative if f(x,y) is supermodular (see Corollary 2). In this example I made

several assumptions about differentiability and smoothness. These assumptions

are not necessary for the result. The following Proposition summarizes the result

for the general case.

Proposition 12. Consider the social planner’s problem in the GP model (Equa-

tions (2.4) and (2.5)). If f(x,y) is supermodular, then there is positive assortative

matching. If f(x,y) is submodular, then there is negative assortative matching.

Proof. Note that if f(x,y) is supermodular then f(x,y)− c′(n(y)) is supermod-

ular as well for all functions n(y). I have already argued that satisfying (2.7) is

necessary for the social optimal assignment. By Topkis’ theorem the (possibly

set-valued) solution to the maximization problem

argmaxy∈[0,1]
[
f(x,y)− c′(n(y))

]

is nondecreasing in x for all possible n(y), including the socially optimal n(y).

Higher type workers must be assigned to (weakly) higher type firms, so match-

ing is positive assortative. The proof for submodularity and negative assortative

matching is symmetric.

The proof shows that supermodularity is sufficient for assortative matching. It

turns that there is a necessity result as well. In particular, let y(x) be the social

planner’s optimal assignment of workers to firms. Then if matching is positive

assortive (i.e. y(x) is increasing) then f(y,x) must be supermodular along y(x).
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That is, supermodularity of f along the equilibrium assignment is a necessary

condition for positive sorting. Supermodularity of f globally, as in the Proposition,

is sufficient for positive sorting. Similar arguments hold for all the Propositions

that follow, so I will only focus on proving sufficiency to save space.

2.3.1.3 Related Literature

The GP model nests the classical assignment model (e.g. Koopmans and Beck-

mann (1957), Shapley and Shubik (1971), Becker (1973)). In the classical assign-

ment model there are a fixed number of workers and fixed number of firms, each

of which can employ a single worker. It has been known since Becker (1973) that

supermodularity ensures positive assortative matching in the assignment problem.

In GP model firms can employ multiple workers at a convex cost. Let c(n) = 1
zn

z,

and let z→∞. Then c′(n)→ 0 for n ≤ 1 and c(n)→∞ for n > 1. In the limit

each firm will employ a unit mass of workers, since the marginal cost jumps from

zero to infinity at unity. This is isomorphic to Koopmans and Beckmann (1957)’s

discussion of the problem.1 For reference, the following Proposition summarizes

the supermodularity condition for the limiting case of one-to-one matching, due

to Becker (1973).

Proposition 13. Consider the social planner’s problem in the model of one-to-one

matching. If f(x,y) is supermodular, then there is positive assortative matching.

If f(x,y) is submodular, then there is negative assortative matching.

1The Becker model involves single workers matching with single firms. In the limit of the
GP model each firm matches with a unit mass of workers. This difference is not significant, as
Koopmans and Beckmann (1957) discuss. The main distinction between the GP model and the
partnership model is that the firm’s marginal product f(x,y)−c′(n(y)) is endogenous in the GP
model.
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2.3.1.4 Interpretation of the Model

The GP model, firm size is constrained by convex employment costs. If c(n)

were not convex, nothing would prevent a single firm from hiring the entire labor

force. Given the assumption of absolute advantage, as c(n) approaches linearity

the highest type firm would grow at the expense all others.

The most familiar models of firms typically assume that the profit function is

concave, either because of a fixed factor of production or because the firm faces

downward sloping demand for its good. The GP model can be interpreted in this

fashion as well.

The combination of linear production and convex employment costs can be in-

terpreted in several ways. The core idea is that it becomes increasing costly for

the firm to maintain a larger workforce. This could come from increased overhead

costs (more management, and more layers of management, as the workforce ex-

pands). It is also worth noting that when workers are homogeneous the GP model

is isomorphic to a standard model with a CES profit function. In particular, let

profit be given by

π(n) = yn−yc(n)

where y is the firm’s productivity parameter, n is employment, and c(n) is the

convex cost function. Here I assume that firm type multiplies costs as well as

output. This assumption could be incorporated into the GP model without any

significant changes. If I set

c(N) =N −Nα

then the resulting profit function is yNα, just as in the monopolistic competition
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model. This shows that the GP model is not far removed from workhorse models

of multi-worker firms.

2.3.2 Concave Model

In this section describe the concave (C) model of sorting. The firm’s output is

given by

G

(ˆ 1

0
n(x,y)f(x,y)dx

)

whereG(·) is a positive, increasing and strictly concave function. Here
´ 1

0 n(x,y)f(x,y)dx

are the efficiency units of labor hired by the firm. G(·) can capture the effect of

a fixed factor of production, such as capital or managerial talent, that generates

decreasing returns to scale. It can also capture the effect of imperfect compete-

tion. The critical difference between the GP model and the C model is that in the

GP model curvature is a function of the quantity of workers (the function c(n)),

while in the C model curvature is a function of efficiency units (i.e. productivity-

weighted employment) or match production.

As before, in a frictionless competitive equilibrium firms take the market wage

schedule as given, so the firm solves the problem

max
n(·,y)∈N

G

(ˆ 1

0
n(x,y)f(x,y)dx

)
−
ˆ 1

0
n(x,y)w(x)dx.

That is, the firm chooses the quantity and quality of workers to maximize output

net of wages.
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2.3.2.1 Social Planner’s Solution

Exactly as in section (2.3.1), the welfare theorems apply so I focus on the social

planner’s problem. The planner maximizes the sum of output across all firms:

max
n(·,·)∈N ∗

ˆ 1

0
b(y)G

(ˆ 1

0
n(x,y)f(x,y)dx

)
dy (2.10)

subject to ˆ 1

0
b(y)n(x,y)dy ≤ l(x). (2.11)

Letting e(y) =
´ 1

0 n(x,y)f(x,y)dx, the marginal product of a type x worker at a

type y firm is

G′(e(y))f(x,y). (2.12)

Assume the social planner’s solution has n∗(x,y) > 0. Then it must be the case

that

G′(e(y))f(x,y)≥G′(e(y′))f(x,y′) ∀y′ (2.13)

since otherwise output could be increased by reassigning some of the type x workers

to another firm. (2.13) implies that y is a local maximizer of G′(e(y′))f(x,y′), so

if the functions are sufficiently differentiable the first and second order conditions

yield

G′′(e(y))e′(y)f(x,y) +G′(e(y))f2(x,y) = 0 (2.14)

d

dy

{
G′′(e(y))e′(y)f(x,y) +G′(e(y))f2(x,y)

}
≤ 0. (2.15)
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Assuming that the second order condition holds strictly, I can apply the implicit

function theorem to (2.14) obtain

dy

dx
=− G′′(e(y))e′(y)f1(x,y) +G′(e(y))f12(x,y)

d
dy {G′′(e(y))e′(y)f(x,y) +G′(e(y))f2(x,y)}

.

Substituting in equation (2.14) I have

dy

dx
=−G′(e(y))

f12(x,y)− f1(x,y)f2(x,y)
f(x,y)

d
dy {G′′(e(y))e′(y)f(x,y) +G′(e(y))f2(x,y)}

,

where the denominator is strictly negative and G′(e(y)) > 0. Thus, dy
dx > 0 if

and only if the numerator is positive. Recalling Corollary 3, this means that

matching is positive assortative if and only if f(x,y) is log-supermodular. As in

the previous section, this example has relied on some differentiability assumptions.

The following Proposition gives the general result.

Proposition 14. Consider the social planner’s problem in the C model (Equations

(2.10) and (2.11)). If f(x,y) is log-supermodular, then there is positive assortative

matching. If f(x,y) is log-submodular, then there is negative assortative matching.

Proof. I have already argued that satisfying (2.13) is necessary for the social op-

timal assignment. Taking logs, the inequality becomes

lnG′(n(y)) + lnf(x,y)≥ lnG′(e(y′)) + lnf(x,y′) ∀y′

so the associated maximization problem is

max
y∈[0,1]

[
lnG′(e(y)) + lnf(x,y)

]
.
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If lnf(x,y) is supermodular, then by Topkis’ theorem the (possibly set-valued)

solution to this problem is nondecreasing in x for all possible e(y), including the

socially optimal e(y). Higher type workers must be assigned to (weakly) higher

type firms, so matching is positive assortative. The proof for log-submodularity

and negative assortative matching is symmetric.

2.3.2.2 Related Literature

The C model assumes that the price of output is constant across firms and that

there are decreasing returns to efficiency units. It turns out that the C model is

formally equivalent to a much broader class of models, including models in which

production is linear and prices are determined outside the production model. In

particular, let
´ 1

0 n(x,y)f(x,y)dx be the output function of the firm and p(y) be

the predetermined price of the firm’s output. Then equations (2.12) and (2.13)

and Proposition 14 carry over with p(y) replacing G′(e(y)). This generalization

is possible because the marginal product (equation (2.12)) depends only on the

variation of G′(e(y)) (or p(y)). It does not matter if the variation arises from

curvature in the production function or from variation in prices. See Costinot

(2009) for an example of this approach.

A case of special interest is the workhorse CES/Dixit-Stiglitz demand model.

One can interpret
´ 1

0 n(x,y)f(x,y)dx as physical output and G(·) as the revenue

generated by selling the output in a monopolistically competitive market. If the

representative consumer’s preferences are CES with an elasticity of substitution
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σ > 1, it can be shown that

G′
(ˆ 1

0
n(x,y)f(x,y)dx

)
= A

(ˆ 1

0
n(x,y)f(x,y)dx

)−1
σ

where A is a constant. Revenues are concave because the price declines as pro-

duction increases. See Teulings (1995), Teulings (2005) and Costinot and Vogel

(2010) for examples of this setup.

2.3.3 Comparison

I now return to the initial question - why do the sufficient conditions for assor-

tative matching differ between the partnership model (Proposition 13) and the C

model (Proposition 14)? Proposition 12 establishes that supermodularity is the

relevant condition both in the partnership and GP models. This means that the

distinction between one-to-one matching and multi-worker firms is not the source

of the difference.

Here I will consider the model equilibria under the assumptions of differentiability

and continuity. This is only to aid intuition and save on notation. Recall the

optimality conditions from the GP model:

f2(x,y)−k′(y) = 0 (2.16)

d

dy

[
f2(x,y)−k′(y)

]
≤ 0 (2.17)
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and of the C model:

p′(y)f(x,y) +p(y)f2(x,y) = 0 (2.18)

d

dy

{
p′(y)f(x,y) +p(y)f2(x,y)

}
≤ 0 (2.19)

where I have set k(y) = c′(n(y)) and p(y) =G′(e(y)) to simplify notation. k(y) is

the marginal cost of adding a worker to a type y firm in the GP model, and p(y)

is the marginal product of an efficiency unit of labor at firm y in the C model

(alternatively, p(y) can be interpreted as a price, as in Section 2.3.2.2). Both k(y)

and p(y) implicitly depend on the allocation of workers.

Starting with equation (2.16), in the GP model worker x is assigned to the firm y

such that the marginal gain from moving up the firm type distribution (f2(x,y))

equals the marginal increase in employment costs (k′(y)). Note that k′(y) is inde-

pendent of the worker type x being considered. This will be important later.

Turning to the C model, note first that equation (2.18) implies that p(y) is decreas-

ing in y: in equilibrium better firms have lower marginal product per efficiency

unit. The reason is that a better firm always produces more efficiency units given

the same workforce, so a lower equilibrium marginal product balances this effect in

equilibrium. Put differently, better firms are farther out on the concave function

G(·), so G′(·) (and thus p(y)) must be lower.

Equation (2.18) says that the worker is assigned to a firm such that the marginal

gain from moving up the firm distribution, p(y)f2(x,y), is balanced by the decrease

in marginal product per efficiency unit p′(y)f(x,y) (since p′(y) < 0). Following

the interpretation in Section 2.3.2.2 I will call p′(y)f(x,y) the price effect, since
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it is the impact on revenue of moving to a higher firm’s price without changing

match output.2 I will call p(y)f2(x,y) the production effect, since it is the effect

of changing the match output holding prices constant. Critically, the price effect

includes f(x,y), so assigning a worker to a higher firm type has a cost that is

proportional to the worker’s match production f(x,y). This is intuitive, since

the change in price affects all of a worker’s output, not just the marginal units.

Workers that produce more (i.e. high x) lose more in absolute terms from the

price effect. Thus the price effect in (2.18) is increasing in worker type. This is in

contrast to the GP model, where the cost component k′(y) is independent of firm

type.

Now assume that worker x happens to be assigned to firm y in each model. To get

at assortative matching, consider whether a slightly higher type worker is assigned

to a higher or lower firm type. In equation (2.16) increasing x has the effect

d

dx

[
f2(x,y)−k′(y)

]
= f12(x,y),

that is, f2(x,y) changes but the cost function k′(y) is unaffected. If f12(x,y) > 0

then the marginal benefit of increasing firm type is increasing in y, so f12(x,y)> 0

is sufficient for (local) positive assortative matching. In the C model, the reasoning

is more complex. An increase in x changes both the price and production effects

in equation (2.18):

d

dx

[
p′(y)f(x,y) +p(y)f2(x,y)

]
= p′(y)f1(x,y) +p(y)f12(x,y)

2The interpretation as a price is not important for the results. One can think of p′(y)f(x,y)
as a “marginal product per efficiency unit effect”, but for clarity and intuition I treat it as a
price here.
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For the production effect, the direction of change is governed by f12(x,y), as before.

The change in the price effect is p′(y)f1(x,y) < 0: the change output multiplied

by p′(y).

Note that equation (2.16) is increasing in x if and only if f12(x,y) > 0, while

supermodularity is a necessary but insufficient condition for equation (2.18) to

be increasing in x. The lack of sufficiency is due to the price effect. For (2.18)

to be increasing in x the complementarities in production must be sufficient to

overcome the negative effect of prices. In the C model increasing worker type

increases match output, which increases the absolute losses due to lower output

prices. In the GP model the cost term (the convex employment cost) is uniform

across worker types, so high type workers do not bear any extra cost relative to

low type workers.

To summarize, the price effect in the C model makes it more costly for high

type workers to match with high type firms. High type workers produce more

regardless of where they work, so the lower prices at high type firms are more

costly. Strong complementarities are needed to overcome the price effect, so simple

supermodularity is not sufficient for positive sorting. In the GP the costs are in

terms of employment, and so are independent of worker type. Changing worker

type affects the first order condition only through the change in production. In

particular, there is nothing beyond the match production function that makes

high type firms relatively less attractive to high type workers. Thus the weaker

supermodularity condition is sufficient for positive sorting.

113



2.3.3.1 Discussion

The C model and Becker’s partnership model are both intended to study how

heterogeneous agents match in a simple, tractable environment. In particular,

both have been used to study how workers are optimally assigned to firms. The

models turn out to have different implications for sorting. The partnership model

requires that production be supermodular to have positive sorting, while the C

model requires log-supermodularity for positive sorting. This difference is puzzling

given that both models are trying to capture essentially the same phenomenon.

It is worth investigating the source of this difference, in order to shed light on the

implicit assumptions in each model and the relationship between the models.

The partnership and C models differ in how firms are modeled. It might be

thought that the divergence in sorting conditions results from the partnership

model assuming one-to-one matching while the C model allows for multi-worker

firms. I have shown that this is not the case. The essential features and conclusions

of the partnership model carry over into models where multi-worker firms are

of fixed size, and models where firms endogenously choose their size subject to

a smooth employment cost function. Thus the divergence in sorting conditions

is not an issue with single versus multi-worker firms, or with fixed employment

versus endogenous employment. Rather, the divergence results from how firm

scale is imposed: costs that depend on the number of workers make positive

sorting relatively easy to achieve, while costs that depend on efficiency units/match

production make positive sorting harder to achieve.

Given that the C model and the GP model differ, which is more reasonable? The

answer to this question depends on the determinants of equilibrium firm size. If
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the driving force in the firm’s problem is limited demand for a firm’s product (e.g.

Dixit-Stiglitz monopolistic competition), then the C model is appropriate. On the

other hand if the firm’s output price is relatively fixed but the firm has a fixed

factor of production (e.g. capital or managerial talent) then either model may

be applicable. For example, consider the case where each firm is identified with a

manager, whose talent y is variable. Better managers extract more when managing

any worker (i.e. f2(x,y)). Managing more workers is more difficult for any given

manager, so net output has decreasing returns. If an increase in scale reduces the

output of all matches by the same absolute amount then the GP model is correct:

the output at all matches drops by c′(n(y))/n. Alternatively, an increase in scale

may result in a proportional drop in output at all matches. Then the C model

would be applicable. A topic for future research is disentangling which of these

alternatives is empirically most relevant.

2.4 Directed Search

Much of the recent work on sorting in labor and trade has focused on frictional

environments. Two strands have developed in the literature. Shimer and Smith

(2000), Shi (2001), Shimer (2005), Atakan (2006) Lentz (2010) and Eeckhout and

Kircher (2010), among others, have extended Becker (1973)’s partnership model to

incorporate search frictions. Teulings and Gautier (2004), Eeckhout and Kircher

(2012), Grossman et al. (2013) and others have worked with frictional models

closely related to the C model.

In this section I extend my results to an environment with search frictions. I

develop frictional versions of the GP and C models, and show that they share the
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same sorting conditions as the frictionless models. The reasoning is the same as

in the frictionless cases: the price effect in the C model makes it more costly for

high type workers to match with high type firms.

These results generalize the frictionless models described earlier, and can serve

as a useful benchmark in comparing models of frictional sorting. The sufficient

conditions for sorting under search frictions can be complicated, and depend subtly

on the way frictions are introduced. My focus is on two particularly tractable

frameworks that highlight the similarity between classical assignment problems

and frictional ones.

I focus on models of directed search. Firms post vacancies committing to hire

a certain type of worker at a certain wage if contact is made. Workers observe

the available contracts, and direct their search towards one of them. Thus the

economy is divided into submarkets defined by a worker type and a wage offer.

Search frictions are present in each submarket. The number of matches formed

depends on the number of vacancies and unemployed workers in the submarket.

I will assume throughout that firms post vacancies at a linear cost k. The assump-

tion of linear vacancy costs is critical in deriving the solution, and sets this paper

apart from many recent papers which rely on (strictly) convex vacancy costs to

pin down firm sizes.3 In this section, as above, firm size will be constrained by

either convex employment costs or by concavity in the production function.

3See Moscarini and Postel-Vinay (2013), Coles and Mortensen (2011), Lise et al. (2013) and
Crane (2014).
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2.4.1 Matching

Each submarket is defined by (w,x), the wage offered in the submarket and the

worker type recruited there. Let u(w,x) be the mass of workers that decide to

search market (w,x), and let v(w,x) be the mass of vacancies posted in the market.

Then define

θ(w,x) = v(w,x)
u(w,x)

as the market tightness in submarket (w,x). In equilibrium θ(w,x) is taken as

given by each firm and worker.

Matching within submarket (w,x) is governed by a standard matching function

m(u,v), assumed to be positive, increasing, concave and linearly homogeneous.

Let q(w,x) be the worker finding rate:

q(w,x) = m(u(w,x),v(w,x))
v(w,x) =m(θ−1(w,x),1)

q(θ(w,x)) = q(w,x).

q(w,x) is the probability that a given vacancy meets a worker. Its counterpart is

p(w,x), the job finding rate:

p(w,x) = m(u(w,x),v(w,x))
u(w,x) =m(1, θ(w,x))

p(θ(w,x)) = p(w,x).
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2.4.2 Frictional Generalized Partnership Model

The GP model of Section (2.3.1) can be extend to incorporate search costs. In

the competitive equilibrium of the frictional GP model the firm seeks to maximize

output less recruitment costs (wages and vacancies) and employment costs. With-

out loss of generality, I can assume that each firm recruits a single type of worker

in equilibrium. The firm solves

max
x,v,w,n

n(f(x,y)−w)−kv− c(n)

subject to

n = vq(θ(w,x)).

c(n) is the familiar convex employment cost function. Taking the submarket tight-

ness θ(w,x) as given, the firm is free to choose the type of worker recruited x, the

wage offer w, and the number of vacancies to post v. These choices jointly deter-

mine the number of hires n.

2.4.2.1 Social Planner’s Solution

It is well known that the welfare theorems apply in these kinds of directed search

markets, so I will use the social planner’s solution to pin down sorting patterns.4

The social planner maximizes net output, subject to the search frictions in the

economy. Wages are simply a transfer from the social planner’s perspective, so

4See Eeckhout and Kircher (2010) and Eeckhout and Kircher (2012). Efficiency does not
obtain when firms are unable to post sufficiently detailed contracts, as in Peters (2010).
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it is not useful to have submarkets indexed by w. Instead, I will consider sub-

markets indexed by (x,y).5 The social planner chooses both the quantity and

distribution of vacancies across submarkets as well as the distribution of workers

across submarkets.

In section 2.3 the only choice variables were the assignments of workers, so it

was sufficient to consider the marginal production of workers at a given firm.

In this section the planner chooses both the assignment of workers (to submar-

kets) and the distribution of vacancies. Thus it will not suffice to work with the

marginal conditions of workers independently of the vacancy distribution. To ad-

dress this complication I will consider the problem in two stages. First, given a

distribution u(x,y) of workers across submarkets I find the optimal vacancy func-

tion v(x,y). This gives me a (conditionally) optimal submarket tightness function

θ(x,y). This optimal tightness turns out to depend only on the marginal product

f(x,y)− c′ (n(y)). Then I consider how to distribute workers given the optimal

tightness θ(x,y). I show that when f(x,y) is supermodular, the marginal social

value of allocating a worker to a market is not necessarily supermodular, but is

an increasing transformation of a supermodular function. As a result, the social

planner’s assignment is nondecreasing if (and only if) f(x,y) is supermodular.

5In principle the social planner could index markets by a wage or some other characteristic
as well as (x,y), but due to concavity of the matching function such submarkets cannot improve
on the outcome of (x,y) markets.
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First Step The goal is to derive optimal tightness θ(x,y) given the distribution

of workers. In general the social planner solves

max
u(·,·),v(·,·),n(·)

ˆ
y
b(y)

{ˆ
x

[
m

(
u(x,y)
b(y) ,v(x,y)

)
f(x,y)−v(x,y)k

]
dx− c(n(y))

}
dy

(2.20)

subject to

n(y) =
ˆ
x
m

(
u(x,y)
b(y) ,v(x,y)

)
dx (2.21)

l(x) =
ˆ
y
u(x,y)dy. (2.22)

where u(·, ·) and v(·, ·) are functions [0,1]2→R2
+ and n(·) is a function [0,1]→R+.

Note that the term m
(
u(x,y)
b(y) ,v(x,y)

)
= v(x,y)m(u(x,y),v(x,y)b(y))

v(x,y)b(y) , the employment

of type x workers at a single type y firm. Substituting (2.21) into (2.20) and taking

the first order condition with respect to v(x,y) I have

m2

(
u(x,y)
b(y) ,v(x,y)

)[
f(x,y)− c′

(ˆ
x
m

(
u(x,y)
b(y) ,v(x,y)

)
dx

)]
= k,

or in simpler terms

m2 (1, θ(x,y))
[
f(x,y)− c′ (n(y))

]
= k (2.23)

where θ(x,y) = v(x,y)b(y)
u(x,y) . This condition determines submarket tightness as a

function of x, y, and n(y).

Note that m2 (1, θ) is strictly decreasing in θ, so from (2.23) I can write

θ(x,y) = A(f(x,y)− c′ (n(y))) (2.24)
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where A(·) is an increasing function. This says that market tightness should be

higher where the marginal product of the workers is higher.

Second Step Now consider how to distribute workers. Returning to (2.20) the

first order condition with respect to u(x,y) is

m1

(
u(x,y)
b(y) ,v(x,y)

)[
f(x,y)− c′

(ˆ
x
m

(
u(x,y)
b(y) ,v(x,y)

)
dx

)]
≤ 0 (2.25)

with equality where u(x,y)> 0. Simplifying the notation, this means y maximizes

m1 (1, θ(x,y)) [f(x,y)− c′ (n(y))]. Now since m1 (1, θ) is increasing in θ I can use

(2.24) to write

m1 (1, θ(x,y))
[
f(x,y)− c′ (n(y))

]
= Ā

(
f(x,y)− c′ (n(y))

)

where Ā(·) is increasing and positive. Thus maximizingm1 (1, θ(x,y)) [f(x,y)− c′ (n(y))]

turns out to be equivalent to maximizing f(x,y)− c′ (n(y)), just as in equation

(2.7). From this point the logic follows from Section (2.3.1), meaning that super-

modularity is sufficient for positive sorting. The following proposition summarizes

the result.

Proposition 15. Consider the social planner’s problem in the frictional GP model

(Equations (2.20),(2.21) and (2.22)). If f(x,y) is supermodular, then there is pos-

itive assortative matching. If f(x,y) is submodular, then there is negative assor-

tative matching.
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2.4.2.2 Discussion

My results differ from those of Eeckhout and Kircher (2010), who study directed

search in a partnership model. The derive a sufficient condition for positive sorting

(called root - supermodularity) that is stronger than supermodularity. As they

discuss, time consuming search makes it harder to obtain positive sorting, since

productive agents have a strong incentive to avoid unemployment (and unfilled

vacancies), and so may be willing to accept a lower quality match to ensure that

production occurs. This argument depends on search being time consuming. In

their model, this is reflected in the fact that firms have a single job to post (and

can only post one vacancy for it), and if they fail to meet a worker they receive

nothing.

In the frictional GP model firms may post as many vacancies as they wish. Due

to linear vacancy costs, the cost of recruiting workers is linear in the number of

workers. As a result, the time cost of search in Eeckhout and Kircher (2010) is

translated to a linear monetary cost in my model. When choosing which workers

to recruit, the firm does not face the possibility of failing to recruit and remaining

idle. Rather, the firm faces an additive cost of recruiting. This additive cost is

constant across firm types, in contrast to the cost of failing to match, which is

increasing in firm type. As a result, the relatively weak supermodularity condition

ensures assortative matching in my model. This result parallels that of Atakan

(2006), who focused on random search with Nash bargaining. He showed that

when meetings can be obtained at a linear cost (equivalently, when there is no

discounting of the future) then supermodularity is the necessary condition for

positive sorting.
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It is important to note that the frictional GP model is not a limiting case of the

Eeckhout and Kircher (2010) model. It is possible to make employment costs

sufficiently convex so that firms only attempt to recruit a unit mass of workers.

But with linear vacancy costs, firms still absorb search costs as a monetary loss

rather than a risk of not matching. To arrive at the Eeckhout and Kircher (2010)

model, it would be necessary to have vacancy costs be convex. On the other

hand, the frictional GP model can replicate Becker’s model or the (frictionless)

GP model as limiting cases. All that is needed is to make vacancy costs sufficiently

low. Then firms post enough vacancies that all workers are hired, and essentially

the only cost is wages.

2.4.3 Frictional Concave Model

The C model can be extended to the directed search environment by combining

the arguments in Sections 2.3.2 and 2.4.2. In the frictional C model the firm faces

decreasing returns to efficiency units and linear vacancy costs. Skipping to the

social planner’s problem and substituting in for n(y), I have

max
u(·,·),v(·,·)

ˆ
y
b(y)

{
G

(ˆ
x
m

(
u(x,y)
b(y) ,v(x,y)

)
f(x,y)dx

)
−k
ˆ
x
v(x,y)dx

}
dy

(2.26)

subject to

l(x) =
ˆ
y
u(x,y)dy. (2.27)
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So the first order condition with respect to v(x,y) can be written

G′
(ˆ

x
m

(
u(x,y)
b(y) ,v(x,y)

)
f(x,y)dx

)
m2

(
u(x,y)
b(y) ,v(x,y)

)
f(x,y) = k,

or in simpler terms

G′(e(y))m2 (1, θ(x,y))f(x,y) = k (2.28)

where e(y) =
´
xm

(
u(x,y)
b(y) ,v(x,y)

)
f(x,y)dx and θ(x,y) = v(x,y)b(y)

u(x,y) . This condition

determines submarket tightness as a function of x, y, and e(y). Note that m2 (1, θ)

is strictly decreasing in θ, so from (2.28) I can write

θ(x,y) = A(G′(e(y))f(x,y)) (2.29)

where A(·) is an increasing function.

Now consider how to distribute workers. Returning to (2.26) the first order con-

dition with respect to u(x,y) is

m1

(
u(x,y)
b(y) ,v(x,y)

)
G′(e(y))f(x,y)≤ 0 (2.30)

with equality where u(x,y)> 0. Simplifying the notation, this means y maximizes

m1 (1, θ(x,y))G′(e(y))f(x,y). Now sincem1 (1, θ) is increasing in θ I can use (2.29)

to write

m1 (1, θ(x,y))G′(e(y))f(x,y) = Ā
(
G′(e(y))f(x,y)

)

where Ā(·) is increasing and positive. Thus maximizingm1 (1, θ(x,y))G′(e(y))f(x,y)

turns out to be equivalent to maximizing G′(e(y))f(x,y), just as in equation
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(2.13). From this point the logic follows from section 2.3.2, meaning that log-

supermodularity is sufficient for positive sorting. The following proposition sum-

marizes the result.

Proposition 16. Consider the social planner’s problem in the frictional GP model

(Equations (2.26) and (2.27)). If f(x,y) is log-supermodular, then there is positive

assortative matching. If f(x,y) is log-submodular, then there is negative assorta-

tive matching.

2.4.3.1 Discussion

Propositions 15 and 16 extend Propositions 12 and 14 to a search environment.

The intuition extends as well: in the frictional C model high type workers suffer

more from the negative price effect, and so may be tempted to match with lower

type firms. Stronger complementarities (i.e. log-supermodularity) are necessary

to overcome the price effect and induce positive assortative matching.

2.5 Conclusion

I have examined the conditions that lead to worker-firm sorting in a variety

of models. Two distinct classes of models have been used to study this phe-

nomenon: Becker’s partnership and the Dixit-Stiglitz framework (and variants

thereof). These models imply different sorting conditions. Perhaps surprising,

the fundamental difference between the models is not that one is discrete and

one-to-one while the other has an endogenous scale choice. Rather, I show that

the concavity in production that Dixit-Stiglitz-like models impose makes it more

difficult to obtain positive sorting relative to models that impose concavity in the
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number of workers. The latter class of models includes Becker’s partnership model

as a special case, in addition to a wide class of models where firms face costs that

depend on the number of workers, rather than the worker’s productivity. Concav-

ity in production makes it more costly for high type workers to match with high

type firms, discouraging positive sorting.

In the process of demonstrating these results I derived the GP model, a convenient

generalization of the partnership model. The GP model also coincides with the

C model when workers are homogeneous. The GP model is also somewhat more

tractable than the C model, and so may be the basis of future work where the C

model has been used.

I also show that my results carry over unchanged to a model with directed search.

The close correspondence between the frictionless and directed search models is

particularly useful, since the growing literature on frictional sorting has led to a

number of sufficient conditions for sorting. Some of the differences in sorting are

due to how search frictions are modeled, others are due to the way firm scale is

introduced or other features of the environment. My results highlight how the

treatment of firm scale alone can change sorting, regardless of search frictions.

An important topic for future work is disentangling which margins are empirically

most important for determining firm size. If limited demand is the driving factor,

then the C model should be the focus of research. If fixed factors, like capital

or managerial talent, are most important then either model might be best. Firm

dynamics are another topic for future research. Initial results suggest that a

dynamic, stochastic version of the GP model is not difficult to characterize.
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