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 When flow through a  hypersonic blowdown tunnel is initiated by the bursting 

of a diaphragm, expansion of the process gas into the downstream vacuum of the 

facility creates a strong rarefaction wave. This rarefaction propagates upstream, 

generating significant pressure drops in upstream components, such as a heater. These 

pressure drops can be attenuated with the use of a metering orifice, which requires an 

accurate prediction of the pressure drop for proper sizing. So as to be generally 

applicable and to provide physical insight, a closed-form or simple numerical solution 

for determining this pressure drop is preferred over computational fluid dynamics. 

Three methods are investigated:  acoustic reflection, flow pattern assumption, and the 

Method of Characteristics. By examining the three methods in conjunction, tradeoffs 

between complexity and physical accuracy can be analyzed. Ultimately, this study 

shall lead to the design of an experiment to verify the accuracy of the three methods.
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1. Introduction 

1.1. Motivation 

 Hypersonic testing presents a number of unique challenges which make high 

Mach number facilities fundamentally different than their subsonic counterparts.  

Runtimes will be short; blowdown tunnels may run for as long as 10 to 15 seconds, but 

other types of tunnels may operate for only a few milliseconds. Flow is generally initiated 

through the bursting of diaphragms, making the run process less controllable than one 

governed by pumps and fans. Large volumes of test gas will need to be stored at 

extremely high pressures and temperatures.  

 Despite the operational difficulties, hypersonic tunnels are critical for expanding 

the limits of high-speed flight. Through hypersonic testing, new ballistic missile 

subsystems, such as shroud separation and optical tracking can be developed. Research 

can be conducted towards advanced propulsion methods, such as ram- and scramjets. 

Simulation of re-entry flows permits testing of vehicles like the Apollo capsule or the 

space shuttle. Basic research flows can be investigated to further understanding of 

hypervelocity physics, such as boundary layers and viscous interactions.  

 Providing sufficient enthalpy is critical for achieving hypersonic conditions in a 

high-speed wind tunnel. One approach is the use of a heater. This heater must transfer 

sufficient energy to the working fluid to prevent condensation during the expansion into 

the test section, while withstanding the high pressures necessary to provide hypersonic 

flow. Generally, in wind tunnel analysis of downstream components, such as the test 

section, the heater is treated as a theoretical reservoir, i.e., at pressure conditions. 
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However, during the start-up process of the tunnel, prior to the establishment of steady 

flow, the heater may encounter a transient pressure drop. This pressure drop can be 

detrimental for a number of reasons. Many wind tunnel heaters function by forcing the air 

through a bed of hot refractory pebbles. A pressure drop across the bed lifts the pebbles, 

drawing them out of the heater and into the test section. Pressure drop is considered to be 

the most critical parameter in design of a pebble-bed heater.25  In facilities where batch 

heating is used, the pressure vessel must be insulated from the extreme test gas 

temperatures required for hypersonic flow establishment. Protective liners may be 

inserted into the heater so that it may operate at temperatures higher than the yield of the 

pressure vessel material. In this case, pressure differences on either side of the liner can 

cause it to collapse during the startup process. Finally, in resistance heaters, the heating 

elements themselves may be delicate, and sensitive to changes in pressure and 

temperature. 

 Engineering around these problems is not generally difficult. Liners can be 

designed to withstand the maximum pressure difference. Metering orifices can be added 

to the flow paths to choke the flow, and thus decrease the magnitude of the effective 

pressure gradient downstream of the reservoir. However, in both these cases, an accurate 

estimate of the magnitude of the pressure drop is required. Furthermore, a testing facility 

may change the conditions of the tunnel with every run, meaning that either the heater 

must be over-designed to meet the most stringent conditions that may be experienced, or 

more practically, interchangeable orifices may be used. If the latter is the case, an 

analytic or very simple computational pressure drop model would be preferred over the 

use of computational fluid dynamics. Moreover, an analytic solution would provide more 
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insight into the essential physics of the problem, perhaps leading to alternate or improved 

protective measures.  

1.2.  Historical Overview of the Problem 

 Wind tunnels have been an indispensable tool in the study of aerodynamics for 

over a century. Although early aerodynamicists used natural winds and whirling arm 

mechanisms starting in the 1600's,42 the first true wind tunnel was built in 1871, in 

England, by Frank H. Wenham.3 Only 30 years later, in 1899, a Frenchman named Paul 

Vieille published a design for a shock tube wind tunnel capable of supersonic speeds. 

Based on the mathematical work of Riemann, the shock tube consisted of a cylinder in 

which a high pressure region was separated from a low pressure region by a diaphragm. 

Upon instantaneous removal of the diaphragm, the high-pressure fluid was accelerated 

toward the low-pressure end of the tube. The initial pressure ratio across the diaphragms 

determined the maximum velocity of the fluid. Vieille's design was able to reach flow 

velocities of 600 m/s by expanding pressurized air from 27 atm to atmospheric pressure, 

using a collodion diaphragm. Unfortunately, little was done with his work until the 

1920's, when Payman and Shepherd at the Safety in Mines Research Board in England 

used a Schlieren system to study shock waves from solid detonators, gaseous explosions, 

and around bullets. Because of World War II, their work could not be published until 

1946.11 The Germans carried out simultaneous work with significantly more success: 

when the Allies captured the V-2 testing facility, they discovered a tunnel capable of 

attaining Mach 5 flow and a Mach 10 tunnel in construction5. After the war, shock tube 

technology developed quickly, and came into use at Princeton, Cornell, Toronto, and 

later, other universities and research centers around the world. 11 
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 In the 1950's, interest arose over the use of area changes and orifices for the 

purpose of conditioning wind tunnel flow. It was theorized by Resler, Lin and Kantrowitz 

that an area decrease in the diaphragm section could generate a stronger shock for the 

same diaphragm pressure ratio. This was explored theoretically and experimentally by 

Alpher and White1. At the Tenth International Shock Tube Symposium, held in Kyoto in 

1975, Barbour and Imrie6 proposed that an orifice placed at the entrance to the reservoir 

of a Ludwieg tube (a shock tube with a very long high-pressure section to act like the 

reservoir of a blowdown tunnel) could extend the run time of the tunnel without 

increasing the length of the storage tube. They hoped to tailor the orifice size so that the 

rarefaction downstream of the orifice would cancel the reflected expansion wave from the 

downstream boundary of the test section, which would normally end useful test time 

upon reaching the nozzle. Similarly motivated, Matsuo, Kawagoe and Ogawara26 

presented work at the same conference on extending test time by replacing the traditional 

diaphragms with a rapid-opening valve. Inspired by Barbour and Imrie's work, Matsuo 

and Kawagoe went on to publish a number of other papers investigating the starting28 and 

choking27 processes of tunnels containing area constrictions. They also investigated the 

extension of steady flow time via an orifice29, especially one whose open area could vary 

through the use of valves or ablatives30. An important side benefit of orifice use is that, 

due to choking of the flow, pressure gradients behind the orifice are greatly reduced. 

 An alternate method found to increase shock strength was addition of heat to the 

reservoir gas, a technique that could be combined with area contractions for maximum 

effect34. Heating the test gas functions by increasing the speed of sound in the driver gas 

as well as the enthalpy of the fluid. Without sufficient enthalpy, the gas could liquefy as it 
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expands in the test section. However, storing gas at the extreme temperatures and 

pressures necessary to generate hypersonic flow could cause damage to a heater tank. In 

1975, the NASA Ames 3.5 foot hypersonic tunnel, made of 8-inch thick steel plate, 

suffered catastrophic flange failure. The pressurized gas and red-hot refractory pebbles 

shooting forth from the rupture caused several fires and significant damage to the tunnel 

building; fortunately, no one was hurt.5 Although this was a rare incident, it emphasizes 

the importance of limiting the transient loading on the heater vessel as much as possible, 

since it is already severely stressed by heat and pressure. Orifices are an excellent way of 

protecting against such gradients, and they impart many other performance benefits as 

well.  

1.3. Review of Existing Literature 

 In this work, three methods of analyzing hypersonic fluid flow through a number 

of area changes are investigated. Each carries with it a body of existing literature, which 

will be reviewed briefly.  

1.3.1. Acoustic Reflection 

 The first method employed is based on transient propagation theory, designed for 

handling pressure surge in pipes. The first work on water hammer was published in 1865 

by Ernst Weber, a physician interested in the flow of blood through the circulatory 

system. Throughout the mid-1800's, scientists studied propagation of waves in pipes, and 

role that pipe elasticity plays in changing the speed of sound of the medium. An 

important contribution to the field came when the Moscow Water Works undertook a 

comprehensive study, published in 1900 by Joukowsky. This report was the first to 
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recognize the relationship between surge pressure (or pressure head) and change in 

velocity. It also introduced the importance of wave reflections and speed of sound 

through the concept of a pipe period, the time it takes for a wave to reach a boundary and 

return. Similar work was being done by an American, J. P. Frizell, at the same time. 

Allevi, an Italian researcher, used Joukowsky's results to derive a general method for 

flow through a frictionless, homogenous pipe with a uniform velocity distribution. He 

extended the work to include slow valve closures and to calculate pressure at any point in 

a pipe, instead of only at boundaries. Methods were added to account for friction and 

longitudinal stresses, but after 1913, pressure surge methods would remain almost 

unchanged until the advent of digital computers41. 

1.3.2. Flow Pattern Assumption 

 The second method considered in this paper was developed primarily for shock 

tubes. In the early 1950's, experiments showed a shock tube with an area decrease at the 

diaphragm section could produce a stronger shock from the same initial diaphragm 

pressure ratio than a tube of constant area. The most famous analysis of such a case was 

published by Alpher and White in 19581. Alpher and White posited that a characteristic 

pattern of shock and expansion waves would occur in such a situation, which could be 

solved to determine pressure at any point in the tube. Hall and Russo14 later proposed a 

simplification to these equations for high Mach numbers. An experimental study was 

made by Sugiyama40 to verify Alpher and White's results, as well as explore the effects of 

diaphragm location, area ratio and the exact geometry of the convergent section. Their 

results showed agreement within about 7% of Alpher and White's.  
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 In 1983, Igra and Gottlieb generalized Alpher and White's results to the scenario 

of an existing wave approaching an area change. They compared their results to a fully 

unsteady numerical solution utilizing the Random Choice Method to show that the 

initially unsteady solution converged to the quasi-steady solution, and to establish a 

characteristic convergence time. They found that the characteristic time increased with 

the strength of the incident rarefaction, and that it was only weakly dependent on the area 

ratio. A later paper by Igra, Wang and Falcovitz17 compared the results of the one-

dimensional, quasi-steady analysis to a fully unsteady, two-dimensional numerical code. 

1.3.3. Computational Analysis 

 In many cases, a highly accurate solution with good spatial and temporal 

resolution is desired, requiring a computational solution. There have been a number of 

computational studies regarding the start-up modes of shock tubes and tunnels. In 

general, flows through complex geometries are investigated both computationally and 

experimentally, bypassing analytical methods entirely. Lee, 23 used a Godunov scheme to 

compute the unsteady shock structure formed immediately upstream of a shock tube 

nozzle. Kaneko and Nakamura19 used a finite volume code to solve a similar problem for 

temperature. Results from both studies could be compared to the pattern observed 

experimentally by Amann in 19692. Jacobs18 also used a finite volume method in his 

investigation of frequency-focusing in expansion tubes, a topic which was studied 

experimentally by Paull and Stalker.33 In the wave-propagation problem of interest to this 

study, however, there are two relatively simple computational schemes which are 

commonly utilized: the Method of Characteristics and the Random Choice Method. 
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 The Method of Characteristics is a general procedure first proposed by Riemann 

in 1860 for obtaining exact solutions to hyperbolic partial differential equations. In this 

method, one constructs lines across the region of interest along which the PDE can be 

reduced to an ODE. In some special cases, it can be reduced to an algebraic expression. 

Although it is somewhat tedious, the Method of Characteristics can be performed 

graphically, which is how it was utilized for the following century. The method was first 

applied to supersonic flow in 1929 by Prandtl and Busemann3, and to analyze pressure 

transients in 1947 by Lamoen, although work by Gray in the mid-1950's received more 

attention. In 1960, Lister proposed an algorithm through which the Method of 

Characteristics could be implemented on a digital computer. Over the next forty years, it 

became a widely-used tool in the field of aerodynamics and in transient pipe flow41. This 

method has been covered in detail for a variety of applications in a number of textbooks, 

such References 3, 10, 22, 31, 37 and 41.  

 The Random Choice Method is a much newer method, based on a proof by 

Glimm, and developed into a computational scheme by Chorin in 19769. It was later 

improved through implementation of an operator-splitting method by Sod39. This method 

has been used by a number of authors to solve shock tube start-up problems.20,32,38 The 

Random Choice Method solves a Riemann problem with boundaries at x and x+∆x. The 

Riemann solution consists of four regions separated by a left-running wave, a contact 

surface (which can run to the right or left) and a right-running wave. One wave will be a 

shock, but the other will be a rarefaction, and therefore, there is a fifth region inside the 

wave itself. A random number -1/2< θ <1/2 is generated, and the solution at (x+∆x/2,    

t+ ∆t/2) is taken to be the solution to the Riemann problem at (x+θ∆x, t+ ∆t/2). The main 
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advantage to the Random Choice Method is that it maintains the discontinuous nature of 

the shock, and thus has been found to capture sharp shock fronts with good time 

resolution. However, it is limited to a one-dimensional approximation, and furthermore, 

its accuracy in continuous waves (such as rarefactions) is not as refined as other methods. 

A higher-order random choice scheme was developed by Toro, but it could not retain the 

sharp shock solutions of the original method. Toro later suggested a hybrid method 

between the traditional and higher-order versions which would provide high accuracy in 

smooth regions while retaining sharp discontinuities.42 

 Both the Method of Characteristics and the RCM offer similar advantages over 

the previous quasi-steady methods. They provide a time-dependent solution to which 

friction and entropy effects can be applied or neglected at the user's choosing. Boundary 

conditions based on geometric changes-- the most vital aspect of a computational solution 

to this particular problem-- would be implemented nearly identically for both cases. In 

short, it does not really matter which method is utilized, and applying both would not 

supply additional insight to the problem. The Method of Characteristics has been selected 

because it is much simpler to code, and because the capacity for a two-dimensional, 

unsteady analysis exists (although it is beyond the scope of this paper.) The strengths of 

Random Choice lie in shock resolution, which is not a critical issue in this particular 

application. Nevertheless, RCM has been used successfully in similar problems, and the 

interested reader is referred to the extensive work of Gottlieb, Igra and Murty.16,17,32 
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2. Formation of the Model Problem 

2.1. Unique Physical Features of the Flow 

 It is important to identify the physical parameters which may contribute 

significantly to the magnitude of the pressure drop in a heater. This will give a 

preliminary clue as to whether or not a given model will be useful and relevant. This 

problem exists outside of the regime where many simplifying idealized assumptions are 

valid. Nevertheless, these assumptions may still be incorporated into various solutions for 

the sake of simplicity. By using a combination of models which incorporate different 

assumptions in a systematic manner, one can see the effect of these assumptions on the 

overall solution. It is possible that many of the assumptions cannot be made, and certain 

solutions must be discarded or altered accordingly. However, a simple method may 

fortuitously provide an accurate answer if the parameter on which the poor assumption 

was made does not have a large impact on the solution. By starting with simple solutions, 

and adding detail until an acceptable solution can be found, either a relatively 

straightforward solution may be obtained, or a compelling argument can be made for the 

necessity of a highly-detail computation solution. 

 The first unique aspect of this flow is the extreme pressure ratios involved. Much 

of the literature on shock tubes considers diaphragm pressure ratios on the orders  

100-104.1,8,40 In pipe-flow problems, the pressure ratios are generally even smaller than 

that. However, pressure ratios on the order of 106 are necessary to generate hypersonic 

flows. Alpher and White state that above pressure ratios of 1000, ideal theory can no 

longer accurately predict shock tunnel flow, possibly due to combinations of  imperfect 
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diaphragm rupture, mixing effects, shocked gas non-ideality and wall attentuation1, but 

they do not indicate the magnitude of the resulting inaccuracy.  

 Secondly, gas within the heater vessel is maintained at extremely high 

temperature, often at thousands of degrees Kelvin. Gas can not be treated as ideal or 

calorically perfect at such temperatures. Therefore, the ratio of specific heats is not 

constant, and the ideal gas law is invalid. 

 The flow will be unsteady, i.e., dependent on time. It is believed that the peak 

pressure drop will occur in the transient flow regime before steady flow is established in 

the tunnel. Many treatments of flow through an area change, such as nozzle flow, assume 

that the flow is steady.   

 Finally, the problem contains a number of area changes, all of which should be 

treated as discontinuous. Many methods assume the area change gradual enough to be 

isentropic, i.e., that no separation occurs at area changes. Here, the area changes are not 

gradual, and separation is likely. Vena contracta formation is also probable, meaning that 

cross-sectional area of the flow will be smaller than the cross-sectional area of the pipe.   

2.2. Characteristics of a Desirable Model 

 Obviously, the most desirable aspect of any mathematical model is accuracy. 

However, there are a number of other priorities to be considered. The first, as previously 

noted, is simplicity. The overall goal of this project is to generate a method which can be 

used to produce quick solutions for a wind tunnel of any geometry. To this end, the 

model should be in some part modular, i.e., each geometric feature will be treated as 

individual analysis within a series, instead of as a holistic system. This aspect of the 

model will make it easier to translate from one tunnel to another, where one may contain 
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an additional area change or reverse the order of a junction and an area change. In 

addition, this feature will make it easy to evaluate how changes in each section or 

alternate methods of modeling the flow through each section affect the solution as a 

whole. To further simplify the solution, it should take the form of either an analytic 

solution, or a swift-running computational solution with a minimum number of necessary 

inputs. Next, non-dimensionality is preferred to decrease the number of necessary of 

verification tests as well as increasing the applicability of a given solution. Finally, the 

solution should account for all the physical flow features which are relevant to the 

problem, outlined in the previous section. Overall, the ideal solution is as simple and as 

general as possible within acceptable accuracy. 

2.3. Model Geometry 

 Although an analysis of the flow through the heater of a specific test facility could 

be performed using CFD, the goal of this investigation is to develop a general 

engineering method that could be applied to any wind tunnel. Therefore, a generic 

"model heater" has been defined, representative of existing facilities. The model heater, 

pictured in , contains as many relevant area changes as possible. These features 

can be rearranged or omitted as necessary for a heater of different geometry. This 

particular configuration shall be used throughout the investigation as a means of 

comparing the efficacies of the various methods explored. 

Fig. 2.1
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Fig. 2.1. Schematic of model tunnel. 

 

 In the model, as with the standard convention, flow moves from left to right, but 

the rarefaction wave propagates from right to left. The positive direction shall be taken 

with the rarefaction motion, meaning that the flow velocity will be negative. The 

diaphragms initially separate a high pressure region on the left from a low pressure region 

on the right. These two regions may or may not contain the same fluid, and thus ρ,γ and T 

may differ. Diaphragm rupture is assumed to be perfect. A wave is generated as the 

diaphragm is burst, and immediately begins to travel through a horizontal pipe of area A1. 

The distance between the diaphragm and the orifice is L1. The next region is a metering 

orifice of length Lorifice: a plate with a small effective area, used to reduce the pressure 
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drop to the heater by choking the flow to Mach 1. This effective area may be 

accomplished by a single hole in the middle of the plate, or an array of holes. For the 

purposes of this work, it will be assumed that one can generate a quantity representing the 

effective area, Aorifice, indicating equivalent performance to that of an orifice with a single 

hole of that area. Upstream of the orifice, the diameter of the tunnel increases to A2 for a 

distance of L2 where A2 > A1. Many tunnels contain such an area change, because it has 

been shown to increase the strength of the generated shock for a given initial pressure 

ratio.1  Next, an angled pipe, area A3 and length L3 is included, because the reservoir may 

not be located in-line with the rest of the tunnel. Note that L3 is taken as the length 

parallel to the axis of the pipe, not horizontally. The pipe could be angled up, down or to 

the side. Since the analyses presented here are one-dimensional, the angle itself does not 

affect the flow. Instead, the angled pipe is included because in order to have a mitered 

joint with the horizontal pipe, A3 < A2, which demonstrates the possible need for an area 

reduction. The angled pipe enters the top of the heater, a vertical pipe of area A4. A length 

L4 of the heater lies above the angled pipe, and L5 lies below. A4=A5, for simplicity. The 

pipe below the angled pipe junction then connects to the largest portion of the reservoir 

with area A6 and length L6.  

 In order to meaningfully compare the various methods explored in this study, 

values have been assigned to the areas and lengths. This is the equivalent of selecting a 

pre-existing wind tunnel and analyzing the pressure drop for a variety of orifices and run 

conditions. Different dimensions could be substituted if one were to apply these methods 

to a particular facility. For the purposes of this study, all cross-sections are assumed to be 

circular, of diameters D1=0.25, D2=0.275, D3=0.271, D4=0.375 and D5=1.25 (all units are 
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meters). These correspond to A1=0.0491, A2=0.0594, A3= 0.0576, A4=0.110 and A6=1.227 

respectively. The lengths are L1=1, L2=0.5, L3=2, L4=.5, L5=1, L6=2 and Lorifice=0.1. These 

dimensions are not based on any particular existing facility, but are realistic, 

representative values. Aorifice has not been set; orifice size shall be treated as a variable, so 

behavior can be qualified as a function of orifice geometry. In fact, a new non-

dimensional parameter, constriction ratio C, shall be introduced, where 

 
1A

A
C orifice≡

 
( 1 ) 

Note that in a statement such as "constriction ratio of 40%", it is implied that the orifice is 

constricted to 40% of the pipe area, not constricted by 40%. The other variable is the 

initial diaphragm pressure ratio, the ratio of the high pressure initially upstream of the 

diaphragms (which will also be the stagnation pressure) to the low pressure downstream 

of the diaphragms. As in Alpher and White, initial diaphragm pressure ratio shall be 

designated z.   
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3. The Acoustic Method 

3.1. Description of the Method 

 The first method to be considered is the traditional acoustic transmission 

technique, commonly used in the treatment of transient conditions on networks of 

pipes15,21,41. This method hinges on two major assumptions which may initially seem 

questionable for this application. The first is that the waves are linear, and therefore 

subject to the principle of superposition. In this manner, the baseline pressure is 

subtracted off entirely, and only perturbation pressures are dealt with. Secondly, it is 

assumed that the pressure pulse is small compared to the baseline pressure, implying that 

density and speed of sound of the fluid are not affected by the pulse. Since the pressure 

pulses in question are rarefactions, this is categorically false. However, it is unknown 

how severely this assumption will affect the results of the problem, so it will be retained 

with caution, and by comparing the predictions to those gained from more physically 

germane methods the effect of compressibility on the solution can be better quantified. 

 In this method, an incident pressure pulse of magnitude Pi is imposed onto the 

steady state conditions of the pipe. This pulse travels through the pipe until it meets a 

boundary: either a junction with one or more pipes, a valve, a reservoir, or a dead end. 

Acoustic theory considers a wide variety of such boundaries; in this paper, only 

conditions likely to be seen in a blowdown tunnel will be considered.  

 In this method, when a pressure transient encounters a boundary, a portion of the 

wave is transmitted, and a portion is reflected. The respective magnitudes of the incident, 

reflected and transmitted waves can be calculated by imposing the conditions that 
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pressure and volume velocity must be continuous at the junction. To this end, it is useful 

to calculate the impedance of each pipe, denoted by Z, defined as the ratio of the pressure 

to volume velocity,  

 
uA
P

U
PZ ==

 
( 2 ) 

where u is particle velocity (the velocity of a differential element of fluid) and A is the 

cross sectional area of the pipe. Impedance plays the same role in a fluid system as 

resistance in an electrical system. The impedance can also be calculated as a a property of 

a fluid-filled pipe, equal to  
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for waves propagating in the positive and negative directions, respectively. For this study, 

the left is considered to be the positive direction. 

 Since this is a non-dimensional approach, a coefficient of reflection and a 

coefficient of transmission shall be calculated at each boundary, defined such that 
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 As mentioned before, the pressure transients Pi, Pr and Pt are superimposed onto 

the steady-state reservoir pressure, P0, which is also the stagnation pressure.. Since this 
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problem deals with rarefactions, the default sign for all three will be negative, meaning 

that the pulse decreases the baseline pressure. This has no bearing on the derivation, 

especially since pressures are often expressed as ratios of each other. The problem will be 

further non-dimensionalized by taking Pi, Pr and Pt to be normalized by P0. Therefore, Pi 

entering the first pipe will actually be the initial diaphragm pressure ratio, and the 

pressure at some point through which the pulse has already passed will be P0(1-Pi). The 

pressure at some point in the second pipe to the right of the wavefront will be P0(1-T1Pi), 

in the third pipe, P0(1-T1T1T2Pi), etc. To the left of a reflected wavefront, the pressure 

will be P0(1+Pi[R-1]). The pressure will take on oscillatory behavior as reflected waves 

encounter downstream boundaries and re-reflect, so that waves are traveling both 

upstream and downstream simultaneously. A computational program could be written to 

model such behavior, but for the purposes of this investigation, the major concern is the 

maximum pressure drop which will be caused by the initial transmitted wave (as reflected 

waves will serve to attenuate the pressure drop). Therefore, only the initial transmission 

coefficients are considered important. 

3.2. Junction of Two Pipes 

��
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�� ��

 

Fig. 3.1.  Pressure pulse transmitted through two-pipe junction. 
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 A junction of two pipes of impedance Z1 and Z2 is shown in Fig. 3.1. A2 is shown 

to be bigger than A1, but this derivation applies to the opposite case, as well. The 

incoming wave, propagating from right to left, will be of magnitude Pi. The transmitted 

pressure drop will be Pt and the reflected pressure increase will be of magnitude Pr. (If Pr 

< 0, the reflected wave will be an expansion instead of a compression). Enforcing 

continuity of pressure at the boundary, 

 tri PPP =+  ( 5 ) 

 Enforcing continuity of velocity, 

 tri UUU =+   ( 6 ) 

 Dividing (5) by (6)  

 
t

t

ri

ri

U
P

UU
PP

=
+
+

 
 ( 7 ) 

 Substituting the definition of the impedance from Eq. (2)  
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 Solving for Pr/Pi, 
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 In this particular problem, gas conditions do not change between pipes, so density 

and speed of sound will be the same for all three waves. Therefore, R is a function of the 

area ratio only: 
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3.3. Junction of Three Pipes 
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Fig. 3.2.  Pressure pulse transmitted through three-pipe junction. 

 A three-pipe junction is treated exactly as a two pipe junction, except that there 

are two transmitted pressure pulses (of magnitudes Pt,a and Pt,b respectively) instead of 

one. As before, pressure is constant and particle velocity is conserved at the junction, so, 

analogous to Eq. (7) 
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Substituting Z=P/u, 
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 The reflection coefficient can then be solved for, as before, assuming that density 

and speed of sound are the same throughout the system: 
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 Note that this is exactly the same result as the two pipe junction, where A2 is 

replaced with Aa+Ab. From Eq. (11) it can be seen that Ta = Tb = 1+R.  

3.4. Closed Pipes 

��

��  

Fig. 3.3.  Pressure pulse reflected off the end of the closed deck. 

 This case involves only an incident and a reflected wave. The only boundary 

condition that is necessary is the fact that the particle velocity at the dead end will be 

zero.  
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 The reflection coefficient can be easily solved for. 
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3.5. Choke Point 

 One final boundary condition is necessary, which does not come from acoustic 

theory, but rather from recognizing that if the pressure ratio is strong enough the flow 

will choke at the minimum cross-sectional area, which is the orifice. Acoustic theory in 

itself contains no mechanism for choking, so it must be accounted for explicitly. Given an 

isentropic flow, the ratio of stagnation pressure to sonic point pressure is given by 
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 This gives a maximum pressure drop which can be transmitted through the 

orifice. If Pt > Pt,max, then the pressure transmitted through the orifice is Pt,max, and Pt is 

irrelevant to the problem because no further pressure drop can be propagated upstream. 

For a hypersonic tunnel, Pt will unequivocally exceed Pt,max, so choking at the orifice is 

virtually guaranteed.  

3.6. Application to the Problem 

 The application of the acoustic method is extremely straightforward; in fact, the 

equations are so simple that it can be implemented by hand. A given initial diaphragm 

pressure ratio, z, corresponds to an acoustic pulse of amplitude Pi= 1 - z. At an area 

change, R and T are calculated. The pressure wave transmitted through the junction, Pt = 

T (1 - z ) will be the initial pressure wave for the next junction. The pressure in pipe i 

normalized by the stagnation pressure is given by 
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For a reflected wave, such as off the top or bottom of the heater tank,  
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( 18 ) 

where R and T for each pipe are determined using the correct type of junction. 

 If the orifice is assumed to be choked, the orifice becomes Pipe 1, and Pt,max 

replaces z as discussed in the previous section. As a consequence, if the choked condition 

is imposed, the transmitted pressures are independent of z and become a function of 

constriction ratio, C only. Fig. 3.4 shows the effect on the pressure just upstream of the 

orifice of imposing the choking condition as opposed to computing the orifice as two area 

junctions. It can be seen that as the pressure ratio increases, the transmitted pressure ratio 

reaches a limiting curve, and thus, independence of z arises regardless of whether 

choking is imposed or not. However, without the choking condition, the transmitted 

pressure drop is far larger than for the choked case, even for relatively small values of z. 

Since the pressure drop prediction in each pipe depends on the prediction in all the 

downstream pipes, these discrepancies will be propagated to all upstream pipes. Figures 

3.4 and 3.5 show the pressure drop entering the top and bottom of the model heater. It is 

now obvious that the imposed choke condition is absolutely necessary in order to utilize 

this method. Also, recall that there are doubts regarding the assumption that the 

perturbation pressure would not affect the density and speed of sound of the medium. 

Other methods must be considered in order to determine the accuracy of this technique. 
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Fig. 3.4.  Transmitted pressure to horizontal pipe vs. orifice restriction ratio for a variety 

of diaphragm pressure ratios. 
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Fig. 3.5.  Pressure at top of heater vs. orifice restriction ratio for a variety of diaphragm 

pressure ratios. 
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Fig. 3.6.  Pressure at bottom of heater vs. orifice restriction ratio for a variety of 

diaphragm pressure ratios. 
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4. The Flow Pattern Assumption Method 

4.1. Description of the Method 

 In the previous method, pressure waves passing through geometry changes have 

been treated as transmitted and reflected waves which can be superposed. However, at 

hypersonic speeds, pressure waves will behave nonlinearly, fanning out as expansion 

waves or coalescing into shocks. More restrictions must be placed on the flow to assure 

that it manifests itself in a way that is physically realizable. The following technique has 

been developed primarily for shock tubes. Although shock tubes lack a fluid reservoir, 

they are otherwise very similar to blowdown tunnels and commonly contain an area 

decrease downstream of the diaphragms, to strengthen the induced shock. 

 In the method which follows, a flow pattern is constructed of shock and expansion 

waves. Quasi-steady expressions are used to relate fluid properties across these waves. 

analytically determining the properties in any region of the tube. First, the simple case of 

a constant area shock tube will be reviewed. This case will be the basis of the analysis of 

an area change near the diaphragm region, and for an area change further upstream. 

Complicating the geometry of the shock tube through the addition of area changes adds 

more equations to the system, but does not change the underlying technique.  

4.2. The Basic Shock Tube Equations 

 Examining the case of a constant area shock tube develops most of the necessary 

equations for the more complex cases. This simple derivation can be found in any gas 

dynamics text, such as Ref. 24.  
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Fig. 4.1.  Constant area shock tube. 

Fig. 4.1  shows the evolution of the shock pattern created by the bursting of the 

diaphragm at time t=t0. Prior to t0, the tube is separated into Region 4 and Region 1, with 

P4 >> P1. The removal of the diaphragm generates a shock wave traveling through the 

low pressure region. The original barrier between the high and low pressure regions is 

maintained as the contact surface, which travels into the low pressure region behind the 

shock. Finally, a rarefaction propagates through the high pressure region. Depending on 

the initial pressure ratio, it may spread to both the right and left of the original diaphragm 

location or just to the left. Regions 2 and 3 consist of steady flow, which occur because 

the high pressure fluid can only be accelerated to a maximum "escape velocity," where all 

the potential energy of the quiescent fluid has been converted into kinetic energy. If the 

initial pressure ratio is not sufficiently high, regions of steady flow will not actually exist; 

the expansion will extend from the unperturbed Region 4 up to the contact surface. 

Nevertheless, the following analysis makes no assumptions about whether or not terminal 

velocity has been reached, and so will be valid regardless of the initial pressure ratio.

 Pressures in Regions 1 and 4 are known, because they are unperturbed from the 
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initial conditions P1 and P4, respectively. The Rankine-Hugoniot expressions provide a 

relationship between the velocity behind a shock and the pressure ratio across it.  
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 Furthermore, assuming an isentropic expansion whose front is moving at the 

speed of sound in Region 4, an expression for the velocity in Region 3 is also available, 

via the isentropic relation: 
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 By the definition of the contact surface, the pressures and velocities must be 

matched, therefore: 
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Setting Eq. (19) and Eq. (20) equal to each other yields an implicit relation for P2/P1 

(which is equal to P3/P1). 
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 The result can be substituted back into Eq. (19) or Eq. (20) to find u2 or u3. 
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4.3. Alpher and White's Method 

 It has been shown theoretically and experimentally that an area change near the 

diaphragm can be used to alter the strength of the resultant shock. Alpher and White1 

developed a quasi-steady, one-dimensional analysis for determining these strengths for 

the arbitrary diaphragm region geometry depicted in Fig. 4.2. This analysis is valid for a 

monotonic area change (solid line) or a convergence-divergence (dashed line). In the 

former case, Amin is equal to Asmall.  
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Fig. 4.2.  Shock tube with area change at the diaphragm section. 

 It is assumed that within the area change section, there will be steady nozzle flow, 

with M=1 at the location of minimum cross-sectional area, Amin. Upstream of the area 

change, there will be an unsteady expansion connecting the nozzle to the unperturbed, 

high pressure region. Downstream of the nozzle, there will be another unsteady 

expansion, followed by a region of steady flow, analogous to Region 3 of the constant 

area shock tube. Next, there will be a contact surface, a second region of steady flow that 
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is analogous to Region 2 of the constant area tube, and a shock wave moving into the 

unperturbed low-pressure region.  

 One should note that the area change is assumed to be gradual enough that the 

flow through the area change remains isentropic. Referring to the original model shown 

in Fig. 2.1, this is a rather poor assumption. Since the entropy losses incurred by 

separation at an abrupt area change will serve to attenuate the strength of the rarefaction, 

and the motivation of this analysis is to prevent damage caused by the pressure drop, the 

gradual area assumption simply means that the estimate will be conservative. 

It is also assumed that γ will remain constant in its respective fluid throughout this 

process. This may not necessarily be true for very large values of P4/P1, especially if the 

gas is heated; however, incorporating the changes in γ has a negligible effect on the 

calculated pressure drop. γ may differ between the two fluids initially separated by the 

diaphragm. 

 In this model, the pressure drop in the larger area section will be P4 - P3a. It is  

more convenient to calculate the pressure drop as a non-dimensional quality, so pressure 

drop will be sought in the form (1 - P3a/P4). As in the constant area tube, it is assumed 

that conditions in Regions 1 and 4 are known. The pressure ratio between the two regions 

can be expanded across all of the regions as follows: 
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 The first term, P4/P3a, will be the pressure ratio across an unsteady, centered 

expansion. This could also be seen as the pressure ratio necessary to accelerate the flow 
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from M4 (which is 0) to M3a. Assuming an isentropic process, the required pressure ratio 

is: 
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 The fourth term of the series, P3b'/P3 is exactly the same condition, except that 

instead of accelerating the flow from 0 to M3a, this pressure ratio must accelerate the flow 

from M3b' to M3. Therefore, 
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 In the area change section, the flow is expanded through a steady process, rather 

than an unsteady one. The second and third terms of Eq. (23) therefore become: 

 
( )
( )

14
4

2
34

2
34

'3

3

3

'3

'3

3

12
12 −












−+

−+
==

γ
γ

γ
γ

a

b

b

a

b

b

b

a

M
M

P
P

p
p

P
P

 
( 26 )  

 By the definition of contact surface, P3/P2 = 1. Substituting Eqs. (24), (25) and 

(26), Eq. (23) becomes: 
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 For an ideal gas undergoing an isentropic process, 
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 Eq. (28) along with the pressure ratios expressed in Eqs. (24)-(26) can be used to 

construct a relationship between the Mach numbers in various parts of the tube. 
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 Finally, by assuming steady flow in the nozzle, area and Mach number can be 

related by combining the isentropic equation with conservation of mass. 
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 The shock wave and contact surface are just as in the constant area case, so  

Eq. (19) and (21) remain valid. Collecting Eqs. (19), (27) , (29) and (30) gives a system 

of four equations for five unknowns: M3, M3a, M3b, p2/p1 and u2/a1. The fifth equation 

necessary to solve the system will depend on whether the flow is sub- or supersonic. If 

the flow is subsonic, the expansion separating Region 3 and Region 3b will not exist. 

Therefore,  
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 If the flow is supersonic, choking will occur at the minimum area section, so  

M3b' =1. Similar to Eq. (30), the Mach number in Region 3a can be related to the Mach 

number in Region 3b' as a function of the area ratio. 
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 If the area change is monotonic, Eq. (32) is unnecessary, because A1 will be the 

minimum area, so M3b=1, which can be substituted directly into Eqs. (27), (29) and      

(30). In this case, note that M3b is a function only of the area ratio. Furthermore, from Eq. 

(30), M3a will also only be a function of area ratio. M3, however, is also a function of the 

initial pressure ratio. Therefore, the flow speed, and thus the pressure drop in the larger 

diameter portion of the tube can be limited by an appropriately designed area change 

section while still permitting a range of shock strengths. 

 Because of this fact, it is not actually necessary to know, a priori, whether the 

flow will be sub- or supersonic. Instead, the minimum initial pressure ratio necessary to 

choke the flow, (P4/P1)min can be found by using the subsonic analysis and assuming that 

M3b=1. This is valid, because at the smallest possible pressure ratio that will produce 

sonic flow, there will still be no expansion between Regions 3b and 3. This will produce 

a system of six equations, and six unknowns (the additional one being (P4/P1)min). If  
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(P4/P1) is greater than (P4/P1)min, then the flow is supersonic; if it is less, it will be 

subsonic. 

 When Alpher and White performed their analysis, few computational tools were 

available. The authors defined and plotted a number of intermediary functions which 

have no obvious physical significance. These plots could be used in series to determine 

the necessary diaphragm pressure ratio to achieve a desired Mach number. Today, using a 

mathematical software package such as Maple, Matlab or Mathematica, the system can 

readily be solved directly, making this method much more practical than it was when the 

method was originally derived. 

4.4. Igra and Gottlieb's Method for Area Expansions 

 Igra and Gottlieb16 used a similar method to model the pattern of flow established 

as a rarefaction propagates through an area enlargement. As the rarefaction is reflected, it 

will condense into a compression wave, and possibly a shock. The idea of Igra and 

Gottlieb's method is to ignore the transient condensation process, and assume that the 

transmitted and reflected waves will eventually reach a steady strength. This pattern is 

shown in Fig. 4.3. Recall that since flow moves from left to right, expansion propagation 

is from right to left. The incoming rarefaction has a pressure ratio of P2/P1. The 

transmitted portion of the rarefaction will have a pressure ratio of P5/P1. This is the 

quantity of interest, since it represents the pressure drop conveyed to the pressure vessel. 

The remainder of the rarefaction is reflected as a compression wave of strength P3/P2, i. 

e., a shock. Accelerating the flow out of the area change will be a third rarefaction wave 

of strength P3/P4. This shall be designated Pattern B. If the incident reflection is not 

strong enough to generate supersonic flow in the smaller pipe, the rarefaction will not be 
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present, i.e.: conditions in (4) are equal to those in (3). Furthermore, the shock will 

actually only be a compression, although the Rankine-Hugoniot equations (which are still 

valid for very weak shocks) will still be used to calculate the pressure drop. This shall be 

designated Pattern A. The methods for analyzing both patterns are nearly identical.  
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Fig. 4.3.  Flow pattern as a rarefaction encounters an increase in area. 

 

 It should be noted that this analysis treats a rarefaction as it moves into the left, 

high pressure portion of the shock tube. The low pressure gas is not present at all in these 

calculations. Therefore, the subscripts on γ shall be dropped, but the reader should be 

aware that it corresponds to the specific heat ratio of the high pressure gas, which is once 

again assumed to be constant. In a case where there were initially different gases on 
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either side of the area discontinuity, the subscripts would need to be retained. 

Furthermore, a contact surface would be present between the downstream propagating 

shock and rarefaction, separating the two gases. This contact surface is shown in Igra and 

Gottlieb's16 paper, but is omitted here for simplicity. 

 As in Eq. (19), the Rankine-Hugoniot equations shall be used to relate the 

properties in Region 2 to those in Region 3.  
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All expansions are assumed to be isentropic, so 
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Finally, creating a characteristic line connecting Regions 1 and 2 yields: 
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 Assuming that the conditions in Regions (1) and (2) are known (i.e., given an 

input rarefaction), Eqs. (33)-(36) can be used to solve for P3 , a3  and u3. 

As in Alpher and White's analysis, flow through the area change is assumed to be 

isentropic. Conserving mass flow and energy in a manner similar to Eq. (30), 
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 If Pattern B exists, the flow downstream of the area change must be supersonic, 

meaning that M4=1. Since the area relation is known, Eq. (37) can be used to solve for M5 

directly. If the flow is subsonic, 43 PP =  and 43 uu = . Since reflection process is assumed 

to be isentropic, 
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 M4=u4/a4 can be used to solve Eq. (37) for M5. Finally, as in Eq. (36), a 

characteristic can connect Regions 1 and 5. The velocity in Region 1 is zero because it is 

unperturbed. 
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 The isentropic relation then yields the transmitted rarefaction pressure ratio, 
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 The only remaining problem is how to determine whether the flow will take the 

form of Pattern A or Pattern B. This is done by calculating the minimum pressure ratio 

(P2/P1 )min necessary to generate Mach 1 in Region 4. As in the Alpher-White analysis, a 

further increase in this pressure ratio will have no effect on the transmitted rarefaction, 

due to the choking. (P2/P1 )min cannot be solved for directly, but because the resulting 

minimum transmission pressure ratio, (P5/P1 )min  corresponds to M4=1, it can be solved 

using Eqs. (37),(39) and (40). Given  (P5/P1 )min  , the procedure for Pattern B is worked 

backward, resulting in (P2/P1 )min.. If the input pressure ratio is greater than (P2/P1)min , 

then P5/P1 will equal (P5/P1 )min. If it is less than (P2/P1 )min  then the problem must be 

solved assuming Pattern A. 

4.5. Gottlieb and Igra's Method for Area Contractions 

 Gottlieb and Igra actually studied the flow patterns through an area contraction 

before their work on area enlargements, but as the latter case was a logical continuation 

from Alpher and White's Method, it was presented first. The main complication of 

treating a contraction instead of a rarefaction is that there are four possible steady-state 

wave patterns instead of two, one subsonic and three supersonic, labeled A-D. Each 

contains between five and seven regions of steady flow. 
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Fig. 4.4.  Subsonic flow pattern as a rarefaction encounters an increase in area. 

 In a general case of an area contraction upstream of the orifice, where the 

contracted area is greater than the effective orifice area, the case simplifies, since the flow 

is guaranteed to be subsonic. Pattern A, the subsonic case, shown in Figure Fig. 4.4, 

consists of the simplest system possible: one incident rarefaction, one reflected 

rarefaction, and one transmitted rarefaction. This is very similar to the acoustic case 

studied earlier, where the waves are defined as nonlinear rarefactions, rather than unit 

steps. This yields a simple system of equations, familiar to the area expansion case. 

 Regions 1 and 4 and 1 and 2 are each connected by a negative characteristic. 
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 Regions 2 and 3 are connected by a positive characteristic. 
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 As in Eq. (37)  flow through an isentropic area change yields 
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 a2/a1 can be found explicitly from the isentropic relation, since P2/P1 is given. 

u2/u1 can then be found from Eq. (42). This is a system of four equations for four 

unknowns:  u4/a1, u3/a1, a4/a1, and a3/a1. P4/P1 and P3/P1 can then be found using the 

isentropic relationship on the speed of sound ratios. The value of P4/P1 should be greater 

than the minimum transmitted pressure ratio, [ ( )] 1
2

1/2 −+ γ
γ

γγ , otherwise, the flow is not 

fully subsonic, and Pattern A is incorrect. 

 If the diaphragm is close to the orifice, Alpher and White's method is very 

convenient for analyzing a number of area changes lumped as one in the steady nozzle 

flow region. This is especially opportune since the fittings of the orifice may result in a 

complicated geometry in that section of the tunnel. Nevertheless, if the diaphragm is far 
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downstream of the orifice, Alpher and White's technique may not be applicable, and one 

of the three supersonic patterns must be invoked. In Alpher and White's method, the 

disturbance is generated within the area change section, and there is only one possible 

supersonic downstream flow configuration. In Gottlieb and Igra's method, the disturbance 

is generated somewhere downstream, which allows for three possible supersonic patterns 

based on the value of z and the magnitude of the area change. Both methods generate the 

same upstream conditions, because they treat the choking condition in an identical 

manner. The differences in the results between the two methods bring up interesting 

questions, but for the purpose of this research, the differences are irrelevant. The area of 

interest is upstream of the orifice. As long as the orifice is choked, flow conditions 

downstream cannot have any bearing on the conditions in the heater. As such, there is no 

difference in the two treatments, and the remainder of Gottlieb and Igra's method shall 

not be discussed. If the reader is interested in conditions upstream of the orifice, 

Reference 13 contains more details on the derivation of Patterns B-D, as well as the flow 

regimes where each is applicable.  

4.6. Application to the Problem 

 In the present work, the methods described above have been used in sequence in 

order to evaluate a complex geometry, such as the model tunnel shown in Fig. 2.1. The 

transition from A1 through the constriction of the orifice to A2 is modeled using Alpher 

and White's method for a converging-diverging nozzle. If one wished to examine the case 

of no metering orifice the monotonically-converging version of this method would be 

more appropriate. Either method will generate a pressure ratio for the transmitted 

rarefaction, P3a/P4, as defined in Fig. 4.2.  
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 At the pipe bend, in order for the junction to be properly mitered, the cross-

sectional area of the angled pipe will be less than the horizontal pipe. The transmitted 

pressure ratio generated by Alpher and White's procedure then becomes the input 

pressure ratio for Gottlieb and Igra's method for area reductions. Abig and Asmall in Fig. 4.3 

will become A2 and A3 from Fig. 2.1, respectively. This will generate a transmitted and 

reflected pressure drop. Here it should be noted that the area of the angled pipe must be 

larger than the effective orifice area, otherwise the flow would choke at the pipe bend, 

rather than the orifice. This could have very dangerous results for the tunnel, namely a 

standing shock in the angled pipe and a Prandtl-Meyer corner expansion at the junction 

with the horizontal pipe. One of the supersonic patterns discussed in Section 4.5 could be 

used to calculate the pressure drop, but it could not take into account the two-dimensional 

effects caused by the expansion fan. For the purposes of this work, it will be assumed that 

the tunnel has been properly designed to choke at the orifice, but one should take caution 

when applying these results to a generic scenario where choking may not be guaranteed.  

 The next area junction in the model tunnel is a three-pipe junction, for which 

there is no assumed flow pattern. Nevertheless, it can be shown that, as in the acoustic 

method, a junction of n pipes can be modeled as an area enlargement, where 

. The transmitted pressure ratio generated by Gottlieb and Igra's area 

contraction procedure then becomes the input pressure ratio for their area expansion 

method. In this case, A

∑
=

=
in

ibig AA
..1

small and Alarge of Fig. 4.3 will become A3 and 2A4  from , 

respectively. These inputs are sufficient to generate the pressure ratio transmitted into the 

pressure vessel, (P6/P1 in Fig. 4.3) as well as the compression ratio of the reflected shock 

(P2/P3 in ). This transmitted pressure ratio can be used as an input pressure ratio 

Fig. 2.1

Fig. 4.3
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for a second Igra and Gottlieb analysis as the rarefaction moves through the area change 

into the bottom half of pressure vessel, exactly as before.  
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Fig. 4.5. Results of flow pattern assumption methods. 

 The above procedures demonstrate the way the pressure peaks and valleys can be 

predicted for a system of a given geometry. Each of the methods have been previously 

derived by other authors, but this is the first work in which they have been combined in 

sequence to analyze a network of pipes, rather than a single area discontinuity in 

isolation. Fig. 4.5 shows the predicted pressures in the horizontal pipe, the angled pipe, 

and in the upper and lower sections of the heater as a function of C. The flow pattern 

method predicts identical pressure drops in the top and middle of the heater. Although 

this model includes only three area changes after the orifice, Igra and Gottlieb's methods 

for area contractions and expansions could be iterated any number of times. Not shown 

are the reflections off the top and bottom of the heater. None of these methods account 

for reflections from solid boundaries, and, indeed, the region is non-simple, since it 

involves the interaction of two rarefaction waves. For simplicity, the acoustic 
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approximation can be used, and the pressure drop can be assumed to be doubled at the 

solid boundary. 

 One interesting result of this analysis is that the transmitted pressure drop is a 

function of only one variable, but whether the chosen variable is C or z depends on 

whether the flow is sub- or supersonic, determined by whether or not a minimum initial 

pressure ratio is exceeded. This minimum pressure ratio is set by the orifice size. If the 

incident pressure ratio is below that threshold value, the result will be subsonic flow. 

Without choking, the presence of the orifice will be irrelevant and the transmitted 

pressure drop will be a function of initial pressure ratio only. If the initial pressure ratio is 

high enough that the flow is supersonic, the transmitted pressure ratio will not depend on 

incident pressure ratio, only on orifice area. Since this investigation is geared toward 

hypersonic tunnels, this means that the pressure drop will depend only on the effective 

area of the orifice. On one hand, this means that the orifice is not as effective in metering 

the flow as it would be for a subsonic flow. However, it also means that since transmitted 

pressure ratio is not a function of incident pressure ratio, a single orifice design should be 

sufficient to protect the heater in any run conditions. 

 It would seem as though an obvious solution would be to put in a very small 

metering orifice to damp out the majority of the rarefaction. However, once steady flow 

is established, if the metering orifice is a smaller diameter than the throat of the actual 

tunnel nozzle, it will prevent adequate mass flow from reaching the test section. 

Therefore, it is critical that the minimum possible effective area for the metering orifice is 

still larger than the throat. If that does not give sufficient pressure drop protection, a 

variable-area valve or ablative orifice may be used. 
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 As a final cautionary note, in a later analysis, Igra, Wang and Falcovitz found that 

supersonic flow through an area contraction was dominated by two-dimension effects, 

and this quasi-steady method was a poor predictor of performance17. For the majority of 

the area changes considered in this paper, the flow is subsonic, so there will be none of 

the corner expansions or oblique shocks that were observed by Igra, Wang and Falcovitz. 

The only area that might be affected would be directly downstream of the orifice, an area 

which is mostly neglected in this work, but which could be of potential interest in a 

different study. 
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5. The Method of Characteristics 

5.1. Description of the Method 

 The Method of Characteristics is a general solution method for any hyperbolic 

partial differential equation combined with a set of known conditions. In a two-

dimensional, steady application, those conditions would be imposed along a one-

dimensional line in space in the upstream portion of the computational region. For a one-

dimensional, unsteady problem, they would be the initial conditions over the spatial 

domain. The Method of Characteristics essentially locates specific spatial or spatial-

temporal lines, called characteristics, along which the governing PDEs simplify to ODEs, 

or in some special cases, algebraic expressions.  

 Unlike the previously described methods, which contain certain assumptions in 

their derivations, the user must choose which assumptions to include when utilizing the 

Method of Characteristics. It will be seen that some assumptions will results in huge 

simplifications to the method. Here, the following assumptions shall be made, as in 

Kentfield22: 

• Flow is one-dimensional (channel area varies only as a function of x). 

• Flow is unsteady. 

• Flow is compressible. 

• Wall friction is accounted for through a frictional force. 

• Ratio of specific heats, γ, is constant. 

 Unlike Kentfield, heat transfer to and from the duct walls and the thermal 

influences of chemical reactions shall be neglected, as they are of negligible significance 
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to the application of interest. Comparing these assumptions to those contained in the first 

two methods, it can be seen that the Method of Characteristics has two main advantages: 

unsteady effects and frictional forces can now be considered, through the use of finite 

differences. As before, changes in γ are believed to be negligible in this flow. The only 

inappropriate assumption, therefore, is that of one-dimensional flow. However, since the 

Method of Characteristics will already reveal the effects of unsteady and frictional flow, 

it is best to present a one-dimensional version, which would distinguish the effects of 

these differences, and then perform an axisymmetric analysis, providing further 

information on the effects of two dimensional flow. In fact, although the governing 

equations shall be derived by including entropy terms, only the isentropic results have 

been computed. This will demonstrate the effects of unsteadiness over the earlier, steady 

methods. A second program could be written with entropy terms (including friction and 

separation at area junctions) to demonstrate the effect of entropy losses, but that is 

beyond the scope of the present work, as is the other logical step in the progression, a 

two-dimensional, unsteady analysis. 

5.2. Derivation of Governing Equations 

 In order to implement the Method of Characteristics, the governing partial 

differential equations must be first be determined. In this case, the governing equation is 

actually a set of three equations, representing continuity of mass, momentum and energy. 

The following notation is used for the substantial derivative in one dimension: 
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Conservation of momentum: 
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Conservation of energy: 
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where f is defined as the frictional wall force per unit mass of fluid, and h is the enthalpy. 

 Using the ideal gas law, the first law of thermodynamics and the definitions of 

speed of sound and enthalpy, the following differential relations can be obtained: 
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 These relations can be substituted into Eqs. (46)-(48) to replace P, ρ and h with a 

and s.  
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 At this point, the substantial derivative will be replaced with two new differential 

operators, M and N. 
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 M and N can be thought of as the variation of some variable along lines of slope 

1/(u-a) or 1/(u+a), respectively, in the way that the substantial derivative is the change of 

some variable along a line of slope 1/u. Specifically, M and N will act upon two 

variables, m and n, known as the Riemann invariants. 
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Rewriting Eqs. (52)-(54) again, 
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 One immediately obvious result is that if the flow is homotropic (i.e., isentropic 

everywhere) and happens to be in a constant area pipe, Eq's (57) and (58) reduce to 
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and Eq. (59) becomes extraneous. Therefore, m is constant along lines with slope 1/(u-a), 

and n is constant along lines with slope 1/(u+a). This will provide an exact solution to the 

partial differential equation. If the solution is not homotropic, Eqs. (57)-(59) can be 

solved using a finite difference routine. Assuming u<0 (as it is in the model problem), for 

stability, m should be found using forward differencing, and n using backward 

differencing in subsonic flow, and forward differencing in supersonic flow31. 
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 Furthermore, it can be convenient to nondimensionalize the equations, so from 

this point forward, Eqs. (57)-(59) will be replaced with: 
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where aref and Lref are reference speed of sound and length, respectively. There is an 

implicit sref as well, which is assumed to be 0.  

 If initial conditions are known, conditions at a timestep ∆t' in the future, n', m' and 

s' at a point x' can be found by tracing the appropriate characteristics back to the initial 

conditions. If the flow is not homotropic (i.e., m' and n' are not constant along their 

respective characteristics) finite differences can be used to find the new invariants. Then 

velocity and speed of sound can be found by rearranging Eq. (56): 
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From Eq. (50) it can be shown that 
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 Conditions at t'=2∆t' can then be determined by tracing characteristics back to the 

conditions at t'=∆t' and so on until the desired time has been reached.   

5.3. Application to the Problem 

5.3.1. Set-Up 

 As in the analysis of transient pipe pressures, the Method of Characteristics will 

be applied to an array of N constant-area pipes (pipe areas can differ between pipes, but 

are constant along a given pipe), each of which contains J(N)-1 internal nodes. The pipes 
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will be labeled in the direction of rarefaction travel; therefore Pipe 1 will be the pipe 

which is furthest downstream. 

 Initial conditions are assigned to each node. Reference values will be taken as 

pressurized tank conditions. Therefore, for points upstream of the diaphragm, P'=a'=1 

and u'=0. Downstream of the diaphragm, P'= Plow/Phigh, ( ) γ
γ
2

1
/'

−
= lowhigh PPa  and u'=0. 

Since a' and u' are known, values of m' and n' can be found using Eq. (56).  

5.3.2. Internal Points 

 Because the slopes of the characteristic lines are dependent variables, there is no 

guarantee that they will pass through any computational grid points aside from the initial 

line of data. Although schemes exist which can take data from several spatial points 

away, this can cause severe problems at the boundaries. Instead, the ∆t' and ∆x' are 

chosen such that the slope any given characteristic line is less than ∆t'/∆x', meaning that 

conditions at point (x',t'), 0<x'<1 (assuming the lref  is the length of the pipe) can be 

always found given conditions at (x'-∆x', t'-∆t'), (x' , t'-∆t') and (x'+∆x', t'-∆t').  This gives 

the CFL condition for stability41: 

 
maxmax au

xt
′+′

′∆
≤′∆

 
( 67 ) 

 Here, a variable ∆t' will be used, where ∆t' is reset at each time step, based on the 

maximum values of u' and a' at the current time. If the flow is not homotropic, ∆t' should 

be multiplied by a safety factor, since the CFL condition is really only valid for linear 

partial differential equations3. 
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 Next, values at (x',t') are determined by interpolating the Riemann invariants from 

either (x' , t'-∆t') and (x'-∆x', t'-∆t') or (x' , t'-∆t') and (x'+∆x', t'-∆t') depending on the sign 

of the slope of the characteristic. Consider an M' characteristic with slope β'm at (x,t).    
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x
ttxm ∆−−∆−
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=β
 

( 68 ) 

If β'm is positive, m' will be found from points (x' , t'-∆t') and (x'-∆x', t'-∆t'). 

 ( ) '')'','(''1)'',''('')','(' mMttxmttxxmtxm mm +∆−−+∆−∆−= ββ  ( 69 ) 

If β'm is negative, m' will be found from points (x' , t'-∆t') and (x'+∆x', t'-∆t'). 

 ( ) '')'','(''1)'',''('')','(' mMttxmttxxmtxm mm +∆−−+∆−∆+= ββ  ( 70 ) 

For an N' characteristic, 
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( 71 ) 

 n' can then be found by using Eqs. (69) or (70) as appropriate with every m' 

replaced with an n' and every β'm with a β'n. If the flow is not homotropic, s' must also be 

considered. 
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( 72 ) 

 Again, Eqs. (69) and (70) can be used, this time with s'.  

 The only remaining difficulty is the M'm', N'n' and S's' terms. In homotropic flow, 

they will go to zero. Furthermore, 0'≡s , so the S' characteristics can be left out of the 
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problem altogether. However, if the flow is not homotropic, one can substitute Eqs (61), 

(62) or (63) into (69) or (70) as appropriate. Changing the differential to a difference, the 

values of q', u', a', f', and dA'/dx' can be interpolated along the characteristic from the 

previous time step, in the same manner as m' and n'. In many cases, q', f' and dA'/dx' will 

constant with time.   

 Once m' and n' are known, a', u' and P' can be found from Equations (65) and 

(66). 

5.3.3. Boundaries 

 If a point lies on the boundary of the computational region, either (x' -∆x', t') or   

(x'+∆x' , t') will be available, but not both. If the flow is subsonic (but not zero velocity) 

either m' or n' will be known, but not both. s' may or may not be known, depending on 

the direction of the flow. If the flow is supersonic, all the characteristics will be swept in 

the direction of the flow, so either all three will be known, or none will. From what we 

know of the problem already, the flow will be subsonic upstream of the orifice, sonic in 

the orifice, and supersonic downstream of the orifice. First, the subsonic boundary 

conditions will be considered, followed by flow through a choked orifice, and finally, 

supersonic outflow. In this section, the notation will change slightly to include the pipe 

number. Therefore, pressure at x and t of Pipe i shall be denoted P(i,x,t). Since there are N 

interior points to each pipe (where N can be a function of i) the upstream boundary of 

each pipe will be at x=∆x (N+1) and the downstream boundary at x=0. 
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5.3.3.1. Closed End 

 As part of the no-slip boundary, the flow velocity u' at a solid, stationary 

boundary is zero. From Eq. (65) the cases for a closed downstream or upstream end are, 

respectively 

 ( ) ( ) ),1,(),1,(
),0,(),0,(

tNxintNxim
timtin

+∆′=+∆′
′=′

 
( 73 ) 

From Eq. (72), for either case, 

 0=′sβ  ( 74 ) 

5.3.3.2. Multi-Pipe Junction 

 For a multi-pipe junction, the basic conditions which must be met are the same as 

for the acoustic case, where continuity of pressure and velocity must be enforced. It is 

assumed that no significant volume is enclosed at the actual pipe junction (i.e., no 

plenum).  

 For homotropic flow, a simple algorithm is given by Kentfield22 for a junction of 

n pipes provides conditions in pipe r.  
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and 
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λunknown,r is whichever of m' or n' is unknown at the boundary of pipe r and λknown,r is the 

one which is known. Since the flow is assumed to be homotropic, s'=0.  

 If one wishes to consider more realistic flow through an area change, the 

boundary condition becomes decidedly more complex, due to separation and the presence 

of a vena contracta. One would likely need to incorporate loss coefficients, which are 

highly dependent on the precise geometry of the area change. Alternately, instead of 

treating an area discontinuity as a boundary, one could treat the area change via the dA/dx 

term of Equation (52). This method is described at length Section IV.g of Ref. 37. Both 

methods are beyond the scope of the paper, and only the homotropic case will be 

considered.  

5.3.3.3. Choke Point 

 If the flow through an orifice is subsonic, conditions can be found by using the 

area discontinuity method described in the previous section. However, much like the 

acoustic method, this boundary condition contains no choking limit, so one must be 

artificially introduced. Although Kentfield presents some criteria for determining whether 

inflow and outflow will be sub- or supercritical, these criteria assume there is an imposed 

inlet or outlet pressure. Although one could replace this imposed pressure with the 

pressure from the adjoining pipe, this can, in practice, lead to oscillatory behavior in a 

numerical implementation. The author has found that it is easier to calculate the 

subcritical case, and if it produces a result where the Mach number is greater than one, to 

replace it with the choked case.  
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 Assume the orifice is Pipe i, with the upstream pipe being Pipe i+1 and the 

downstream pipe being i-1. The downstream pipe will be dealt with first. From Equation 

(65), we can see in order to force u=-a  (recall that the problem is set up such that flow 

downstream is negative),  
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 By continuity, and the fact that flow is choked in the orifice, 
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 Using the isentropic relationship to get rid of a'(i,0,t),  

 
( )
( ) ( )

γ
γ
2

1

1 ),1,1(
),0,(

),1,1(
),1,1(

+

−








+∆−′

′
=

+∆−′
+∆−′

tNxiP
tiP

A
A

tNxia
tNxiu

i

i

 
( 80 ) 

Using these equations with Eq. (16) and the definition of stagnation pressure, 
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one can obtain 
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 Given m'(i-1, ∆x (N+1),t), Eqs. (82) and (65) can be used to solve for u', m' and a'. 

Since a closed form solution is not possible, the two equations must be solved iteratively. 

One should note that, because of the absolute values in Eq. (82) the flow direction is not 

explicit. Instead, it must be imposed in the same direction as the orifice flow (in this case, 

it will be negative).  

 The same equation can be used to solve for u',a' and n' at point (i+1, 0, t) by 

replacing the conditions at (i, 0, t) with conditions at ( ) ),1,( tNxi +∆ , and replacing Ai-1 

with Ai+1. Analogous to Eq. (78), the upstream boundary of the orifice is defined by 
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γ
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 Although it is not explicitly stated, Ai can be a function of time, such as in a finite 

opening time valve or an ablative orifice (in which case, Ai could also be a function of 

integrated mass flow, temperature, etc.)  The results of a constant versus variable area 

orifice is examined in subsequent sections.   

5.3.3.4. Outflow 

 The final boundary condition concerns the downstream boundary of the entire 

system. If the flow is subsonic (this will occur for a very brief time prior to the choking 

of the orifice), the isentropic outflow condition will be governed by the exit pressure, 

which in this case, will be the lower pressure initially upstream of the diaphragm. 

 59   



 ),0,('2),0,(' 2
1

timPtin out −′=
−
γ

γ

 ( 84 ) 

 The flow will be subsonic as long as 
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 a', u' and s' can be evaluated at the point just upstream of the boundary, for 

reasons which will become apparent shortly.  

 If the right hand side of Eq. (85) rises above P'out, the flow will become 

supersonic. In this case, all the characteristic lines are swept downstream, and no 

boundary condition is necessary, since all three characteristics can be found from the 

conditions at . If the flow is supersonic just upstream of the boundary, at 

, then the characteristics will slope downstream such that a solution can be found 

at the boundary. If the flow is subsonic, then the M' characteristic will slope upstream, 

and the subsonic condition will be needed to solve the boundary. This is why the 

supersonic condition is taken at one point upstream, rather than at the boundary itself.  

),,( txi ∆

),,( txi ∆
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6. Results 

6.1. Similarity 

 It was shown earlier that, because of choking at the orifice, both the acoustic and 

flow pattern methods predicted that initial diaphragm pressure ratio, z, would not have an 

impact on the predicted pressure transmission. Before comparing results between all three 

methods, it is important to determine whether or not the Method of Characteristics 

demonstrates that same time dependence. Fig. 6.1 shows the solution for z=100 and 

z=100000, both for a 40% constriction ratio. When plotted versus non-dimensional time, 

t'=taref (Lref )-1, the pressure traces are identical, meaning that the solution is self-similar. 

Since the first two methods do not provide any time-dependent information, the Method 

of Characteristics can essential be considered z-independent and there is no need to 

compare the methods for different pressure ratios. 
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1
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Fig. 6.1. Pressure histories in horizontal pipe for z=100 and z=100,000 with C=40% 

 Nevertheless, the time scale of the problem is important. Some tunnels use 

perforated liners to relieve pressure to the outer tank. For a higher oscillation frequencies, 

this relieving mechanism will be more effective, because the pressures do not have to 

equalize as quickly. Furthermore, the higher the rate with which impact energy is added 
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to a material, the less energy is absorbed and converted to deformation, increasing the 

probability of brittle failure4. The liners are already in a very severe stress regime, since 

they are undergoing fluctuating multi-axial stresses. The shorter the timescale of the 

oscillations, the greater the likelihood of catastrophic failure. 

 From the definition of the nondimensional time, t', the frequency of the problem 

will depend of the reference speed of sound, and the reference length. Therefore, as z 

increases, so will the frequency. Tunnel are more likely to fail at high values of z, not 

because of higher loading, but because it is experienced more rapidly. The inverse 

dependence on Lref  has implications for subscale modeling which may be conducted 

during the design process of full-scale facilities. Due to the nonlinear nature of the 

problem, one might expect additional wave interactions at small scale that, while 

validating the accuracy of the predictions methods, would not necessarily give useful 

information about a full-scale tunnel. The self-similarity implies that this is not the case, 

and experimental data from subscale models can be directly applied to the facilities on 

which they are based. However, it also means that, as transient start-up time is already 

very small for full-scale facilities, it will be even smaller for a model, necessitating a 

data-collection system with an extremely high sampling frequency and fast-response 

transducers.  

6.2. Comparison of Solutions 

 Comparing the acoustic to the flow pattern method is very straightforward, since 

both methods generate a single value of pressure rise or fall for a given orifice size. The 

Method of Characteristics, however, provides an entire function of t and x for each value 

of C. Fig. 6.2-6.7 show pressure traces for C=5%, 20%, 40%, 60%, 80% and 95% for the 

 62   



horizontal and angled pipes, as well as the three sections of the heater. Pressure traces are 

taken at three x-locations for each pipe:  the entry and exit boundaries and at the center. 

Predictions for incident and reflected pressures from the earlier two methods are plotted, 

as well. 

 For the horizontal pipe and the top and bottom sections of the heater, pressure is 

basically uniform across the entire length of the pipe at any given time (although for the 

horizontal pipe, the incident pressure wave can only be observed on the entry point.)  For 

the angled pipe, the pressure exhibits the same general behavior across the pipe, but 

varies significantly in magnitude. In the midsection of the heater, pressure varies in 

magnitude and character across the length of the pipe. The explanation for such behavior 

is straightforward-- the horizontal pipe and the ends of the heater are each only 

"communicating" with one other pipe. The flow velocity at the other end is constrained in 

some way (0, in the case of the heater, and sonic for the horizontal pipe). Pressures in the 

angled pipe and the middle of the heater are being driven by varying states at both ends, 

which leads to significant variations in pressure with x. For the angled pipe, the pressure 

trace in the downstream end of the pipe will resemble the pressure trace in the horizontal 

pipe. The pressure trace in the upstream end will resemble the pressure trace on the 

downstream ends of the top and middle of the heater. In turn, the upstream end of the 

middle pipe will resemble the bottom of the heater.  

 These pressure variations over x make it difficult to compare the quasi-steady 

predictions with the Method of Characteristics. Compounding this problem is the 

unsteady nature of the Method of Characteristics solution. In some of the traces, distinct 

minima are present providing obvious comparison values. However, these minima may 
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not always be distinguishable. As an example, consider the horizontal pipe; the incident 

wave is a rarefaction. The horizontal pipe leads to an area contraction at the angled pipe, 

so the wave reflected from that junction is also a rarefaction. Therefore, the incident wave 

will not form a minimum, but, in a best case, a plateau, and in the worse case, a line 

which passes through that point. In fact, for the case of the horizontal pipe, a plateau will 

be seen in the pressure trace at the downstream boundary, but at any upstream value of x, 

it will be absorbed into the reflected rarefaction. Now consider the angled pipe; in this 

case, the incident wave is a rarefaction, and the reflected wave is a compression. The 

incident wave will form a distinct minimum, and theoretically, the reflected wave should 

generate a maximum. This is not the case. Instead, the reflected wave forms a small 

plateau (if at all; at the upstream boundary, the incident and reflected waves merge 

together into a single minimum), then rises to an overpressure not predicted by either 

quasi-steady method. Upstream of the angled pipe, the transmitted rarefaction through the 

heater middle reflects off the area change in the heater. As it travels downstream, it is 

intensified by the junction with the angled pipe (since the wave is now traveling 

downstream, it sees this junction as an area reduction). One could generate further 

acoustic predictions on this phenomena, but without adding some sort of time 

dependence, it would be difficult to determine which waves to add together. A time-

dependent acoustic method would not be difficult to implement computationally, but if so 

much computation effort were to be put in, the Method of Characteristics would be a 

better choice.  

 For the heater bottom, the incident and reflected waves are so close together that 

the graph more closely resembles a linear decrease in pressure than an oscillation. At the 
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downstream junction, plateaus can be distinguished, but for all practical purposes, this 

prediction would have little value in determining loads on structural members. For this 

case, it is fortunate that pressure changes in the bottom of the heater are very small and 

gradual in comparison to changes in the more upstream pipes. The bottom portion of the 

heater can be designed safely to the specifications of the rest of the apparatus. 
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Fig. 6.2.  Pressure traces for C=5% 
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Fig. 6.3.  Pressure traces for C=20% 
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Fig. 6.4.  Pressure traces for C=40% 
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Fig. 6.5.  Pressure traces for C=60% 
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Fig. 6.6.  Pressure traces for C=80% 
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Fig. 6.7.  Pressure traces for C=95% 
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 a-h shows raw comparisons of the three methods, where the results with 

Method of Characteristics are taken as the appropriate maximum, minimum or plateau, as 

discussed. For the top of the heater, there is only a single relevant pressure drop, which is 

compared to both the incident and reflected predictions from the acoustic and flow 

pattern methods. For the bottom of the heater, as discussed above, there are no significant 

minima, although plateaus can be distinguished near the entry if C is very small. Instead 

of taking actual plateaus, the quasi-steady methods are compared to characteristics 

solutions at the time value for which this plateau is located (for this example, t=.0017s). 

From the locations of the various minima in other pipes, it can be seen that the locations 

of the various flow structures vary only slightly in time with different values of C. The 

upstream boundary of the middle pipe is found in a similar manner, except that since 

there are visible minima and maxima at the center of the pipe, for each value of C, the 

pressure at the exit is evaluated slightly after the time location of the minimum at the 

midpoint, and slightly after the time location of the maximum. (The offset is based on the 

difference in time locations of the minima and maxima at the midpoint and entry of the 

pipe.)   

Fig. 6.8

 For the horizontal pipe (Fig. 6.8a-b), the flow pattern method closely matches the 

Method of Characteristics over the entire range. The acoustic method matches well for 

small values of C, beginning to deviate around C=40%. For small values of C, the pipe is 

much larger than the orifice, so the Mach number in the pipe will be much less than one, 

meaning that the flow will be nearly incompressible. As C rises, so does the Mach 

number in the pipe, and the assumption of incompressibility becomes less and less 

appropriate.  
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 In the angled pipe (Fig. 6.8c-d), pressure varies significantly with x. For the 

incident wave, the flow pattern method gives a close approximation of the pressure at 

downstream end of the pipe. The acoustic method, on the other hand, gives a good 

approximation at the middle of the pipe. Neither method approximates flow at the 

upstream end. In contrast, for the wave reflected from the heater junction, the acoustic 

method gives good results on the upstream end of the pipe. The flow pattern method 

matches the upstream values for small values of C, and the middle values for larger 

values of C. Here, neither method matches the downstream reflections.  

 For the middle of the heater, (Fig. 6.8e-f), pressure is roughly uniform through the 

pipe for small values of C, with agreeable results from the quasi-steady methods. As C 

increases, it can be observed that the changes in pressure across the pipe become more 

significant. In this case, the quasi-steady methods give very similar results, which do not 

match conditions at any of the sampled points in the pipe, but are roughly half-way 

between the midpoint values and the upstream values. For the reflected wave, the 

pressures behave very nonlinearly in C, a trend which is not captured by either quasi-

steady solution. The flow pattern and acoustic solutions generally approximate the flow 

on the upstream half of the pipe for low values of C, but otherwise, do not match well for 

this portion of the heater. 

 For the top and bottom of the heater (Fig. 6.8g-h), the opposite occurs. The 

incident and reflected quasi-steady approximations generate an envelope around the 

Method of Characteristics solutions. For small values of C, this envelope is small, and the 

solutions match well. However, as C increases, the envelope diverges, until for C=95%, it 

spans about 20% of the stagnation pressure. For the top of the heater, the Method of 
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Characteristics solutions tend slightly toward the incident prediction, whereas for the 

bottom, they tend more towards the reflected predictions.  

 In general, between all the pipes in the system it has been found that the quasi-

steady methods are, as a whole, far more accurate for small values of C. Furthermore, 

when C is small, there is little difference between the flow pattern method and the 

acoustic method. The acoustic method is far easier to implement, and can be iterated if 

one wished to attempt to predict the reflected overpressures  However, at least in the case 

of the horizontal pipe, the flow pattern method gave good matching to higher values of C 

than the acoustic method. In general, the quasi-steady methods did not appear to 

correspond to any particular axial location, although in comparison to experiment, one 

might expect that the approximations would be more inaccurate in the vicinity of the 

stepped area change section, since separation at the corners of the area change would 

decrease the effective flow area. Although it is easy to match the quasi-steady results to 

the Method of Characteristics results, the quasi-steady results by themselves may or may 

not be useful in the ultimate goal of predicting the stress loading on the structural 

members.  

 74   



 

 

 

t 1 ed 1

0 0.2 0.4 0.6 0.8 10.7
0.8
0.9

1 MoC-Entry
MoC-Middle
MoC-Exit
Acoustic
Flow Pattern

 

 

 

 

 

 

a) 
       C

P
/P

0,
In

ci
de

n

0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

  C

P
/P

0,
R

ef
le

ct

0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

 

       C

P
/P

0,
In

ci
de

nt

0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

1 ed 1

       C

P
/P

0,
In

ci
de

nt

0 0.2 0.4 0.6 0.8 1

0.8

1

      C

P
/

0

0 0.2 0.4 0.6 0.8 10.6

0.8

1

P

 

Fig. 6.8.  Comparison of pressure p

reflected waves, horizontal. c-d) Incide

and reflected waves, middle of he

 

d) 
c) 
b) 
 C

P
/P

0,
R

ef
le

ct

0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

 
ct

ed1.02 
e) 
 C

P
/P

0,
R

ef
le

0 0.2 0.4 0.6 0.8 10.9

0.94

0.98

 

0

1

 
g)
f)
h)
 C

P
/P

0 0.2 0.4 0.6 0.8 1

0.95

 

redictions between methods. a-b) Incident and 

nt and reflected waves, angled pipe. e-f) Incident 

ater. g) Top of heater. h) Bottom of heater. 

75   



6.3. Application to Tunnel Design 

 This investigation into quantifying transient pressure drop was motivated by the 

desire for an improved design tool. This tool can be used in two ways. For an existing 

tunnel, one can determine the orifice size necessary to prevent excessive loading on 

tunnel components. Alternately, it could be used to determine performance requirements 

for a new facility. The results of this method provide three useful pieces of data: 

maximum pressure magnitudes, spatial pressure gradients, and temporal pressure 

gradients. 

 Assume that one wishes to design a pebble bed heater using alumina pebbles, as 

in an example given by Pope.34 Alumina has a density of approximately 37.7 kN/m3. 

Assuming 33% porosity, the pebbles have a bulk density of 25.1 kN/m3. Now, assume the 

supply pressure of the heater is 10 MPa, which is a modest, but reasonable value for a 

hypersonic tunnel. In order to prevent the pebbles from lifting, the pressure gradient in 

the tunnel cannot be greater than  25.1 Pa/m, or 0.25% of the supply pressure per meter.  

Using the Method of Characteristics, one could calculate the pressure gradient across the 

lower tank of the heater, as shown in Fig. 6.9 for C=40%.  Here, the maximum pressure 

gradient is about 1.5%/m, which means that one would need to use either a smaller 

orifice or more dense pebble material to prevent pebble lift. 

Time (s)

∆P

0 0.0025 0.005 0.0075 0.01-0.01

0

0.01

0.02

 

Fig. 6.9. Pressure drop across the heater base. 
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 Pressure gradients in time can also be used as design parameters. Suppose one is 

using perforated liners capable of venting up to 500 MPa/s.  Assume that one would like 

to run at a pressure ratio of 10,000, using an orifice with 40% constriction, but there is 

concern about crushing the top liner.  Referring to Fig. 6.4, these values of z and C will 

result in a 15% pressure drop over .001s.  Again, using 10MPa as the supply pressure, 

this means that inside the liners, the pressure will drop by 1.5MPa,  but outside the liners, 

it will only drop by .5 MPa, generating a 1.0 MPa compressive force on the liners. Stress 

on a pressure vessel is given by  

 
t

rP
=σ  ( 86 ) 

 Using the dimensions of the model tunnel, r at the top is 0.188 m. Therefore, 

tσ =188 MPa m. Depending on the yield strength of the liner material, the required 

thickness of the liners can be determined.  Alternately, designing for a "worst case" 

scenario, one could choose tσ  based on the maximum pressure drop of 1.5 MPa. 

 These are two highly simplified cases where pressure gradients in time and space 

can be used as inputs for design functions. In reality, the venting ability of the liners will 

rarely be constant, and is likely to depend on the thickness. More refined values of the 

spatial gradient across the pebble bed could be taken using all of the grid points, instead 

of just the top and bottom. Nevertheless, it has been demonstrated that these analyses can 

provide useful inputs for failure prediction methods as well as design procedures for new 

facilities.   
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6.4. Ablative Orifice 

 One unparalleled advantage of the Method of Characteristics over the quasi-

steady methods is the ability to include distinctly time-dependent effects. Finite-time 

opening orifices have been used to expand the useful test time of shock tubes26,30, and 

may also be useful in a situation where the orifice size needed to protect the upstream 

components is too small to permit the necessary mass flow for desired test conditions.  
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Fig. 6.10. Pressure traces in horizontal pipe for C=.25, C=.45 and a variable area orifice 

which expands from C=.25 to C=.45 over the first .01s (shown at axial midpoint of pipe). 

 

 Error! Reference source not found. shows the pressure trace in the horizontal 

pipe for an orifice which initially has C=25%, and then expands linearly in time to 45% 

over .01s. Results for constant area cases where C=25% and 45% are shown for 

comparison. Intuitively, one might assume that the solution would initially resemble the 

constant area C=25% solution, and after t=.01s, resemble the constant area C=45% 

solution. To some degree this is correct:  at very small times, the solution is identical to 

the constant area 25% case. As time increases, it tends towards the 45% case, but the 

solutions are not identical. The variable-area orifice generates a much shallower 

oscillation which has approximately the same peak value as for the constant area C=45%, 
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but the valleys are not as deep. This could imply that a variable-area valve would have 

the additional benefit of reducing the severity of the loading on the heater tank, although 

a more comprehensive study would need to be done. Furthermore, the quasi-steady 

methods have no way of predicting or modeling such behavior, meaning that the Method 

of Characteristics or some other time-dependent method is essential in characterizing this 

behavior. 
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7. Design of Experiment 

 Based on the trends observed from the three methods examined in this study, a 

subscale validation experiment has been designed in conjunction with AEDC 

Hypervelocity Tunnel 9. The geometry of the test article has been modeled after the 

geometry of Tunnel 9 (not shown for proprietary reasons) at roughly one-quarter length 

scale. Analytical pressure predictions for this model have been generated using the 

general methodology demonstrated above. The walls of the test article will be over-

designed to withstand the large pressure oscillations. One of the assumptions which most 

heavily governs the behavior of the models shown above is that of choked orifice flow. If 

the experimental flow pattern is dependent on z, all of the demonstrated methods are 

invalidated, in which case, either a correction function must be included in the procedure, 

or alternative methods must be investigated. The "heater" of the article will be filled with 

unheated, pressurized nitrogen. Flow will be induced via the bursting of a double-

diaphragm. For lower values of z, the flow will exhaust to atmospheric pressure. To 

achieve higher pressure ratios, the test apparatus will be attached to a vacuum line. The 

highest z achieved with atmospheric pressure will overlap the smallest z achieved with 

the vacuum line to ensure that decreasing the exit pressure is equivalent to increasing the 

heater pressure. In this manner, values of z ranging from 10 to 15,000 will be 

investigated, which greatly expands the existing envelope of experimental results, which 

range from slightly above 1 to 1000.1,8,40 

 The orifice plate of the apparatus will be removable, so that multiple values of C 

can be tested.  These values will be focused on "realistic" orifice sizes, rather than the full 

range of values presented above. Rarely would it be necessary to constrict the flowpath to 
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a pinhole opening, nor to insert an orifice which barely changes the effective area of the 

flow. Orifices will be machined to provide values of C=14.5%, 17.0%, 25.4%, 31.3% and 

54.7%. (It should be noted that most of these "realistic" constriction values are mainly in 

the region where the quasi-steady methods showed good agreement with the Method of 

Characteristics for the original model considered). Orifices of other C values or other 

geometries (multiple holes, square openings, etc) could later be machined if further 

experiments were desired. 

 As explored above, the results gained from the subscale model should be directly 

applicable to Tunnel 9 itself, on a slower time-scale. Seven pressure transducers will be 

placed at points in the tunnel to provide information relating to individual pressure drop 

in each pipe, axial variation of pressure conditions and two-dimensional effects. Data will 

be collected by a multi-channel, high-speed data system at a frequency of 500kHz, or 

once every 2µs, which, based on the method of characteristic predictions, should be 

appropriate to accurately capture the oscillatory nature of the pressure behavior. 
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8. Conclusions 

 The purpose of this study has been to investigate three possible methods of 

predicting the transient pressure behavior caused by the starting process of a hypersonic 

blow-down tunnel. One method, the Flow Pattern Assumption Method, was introduced in 

this study using combination of existing methods which had not before been used in 

conjunction. In addition, comparing the results of methods based on different 

assumptions has granted some insight on the important features of the flow. 

 Revisiting Section 2, a number of the features were initially assumed to be critical 

to the flow. From the results of the three analyses, some different conclusions can be 

drawn. Although the problem may include large pressure ratios, due to choking at the 

orifice, these pressure differences are limited to the region upstream of the orifice. Some 

of the inaccuracies associated with the large pressure ratios, such as imperfect diaphragm 

rupture, may still affect the problem, but experimental validation will be necessary to 

address such issues. Furthermore, the induced flow velocities are subsonic, and for small 

values of C, are so small that the flow is essentially incompressible. Although extreme 

gas temperatures mean that γ is a function of T, if ρ is constant and ∆p is small (as in the 

case for small orifices and upstream pipes) T will be roughly constant, and thus, so will γ.  

 In contrast, the time-dependence does play an important role in the process. 

Although the quasi-steady methods could usually successfully approximate important 

minima and maxima, certain wave interactions could not be predicted without time-

dependence. The pressure behavior with time was inherently different for each pipe in the 

system. Although the behavior was primarily oscillatory, some pipes experienced 

overpressures while others did not, and the heater bottom experienced a nearly linear 

 82   



pressure drop. An orifice with time-varying area created a distinctly different pressure 

pattern than one of constant area. Furthermore, time-dependent structural loading is 

inherently different than steady loading, which means that time-dependent pressure traces 

are necessary in order to accurately predict the stresses. 

 In Section 2, a number of desirable model qualities were defined. The first was 

simplicity. The acoustic method is the simplest of those explored-- it can be performed by 

hand and since it is linear, additional reflections can be computed and superposed. The 

flow pattern method is conceptually elegant, and can be solved using software with 

packaged root-finders, but the derivation is long-winded and it cannot be solved by hand. 

The Method of Characteristics is fairly straightforward, but requires far more coding than 

the other two methods.  

 All three methods are modular. Each junction or boundary is treated individually. 

In fact, their modularity is demonstrated in the way weaknesses in one method may be 

overcome using results from another method. The flow pattern method has no mechanism 

for handling solid boundaries, but because of the modularity, the methods can be 

interchanged, and an acoustic reflection can be applied to a rarefaction generated by the 

flow pattern method. The choking condition which is absolutely critical to the acoustic 

method is taken from the flow pattern method. Many of the boundary conditions in the 

Method of Characteristics are identical to those in the acoustic method. In addition, all 

three solutions are non-dimensional. 

 The final criterion is accuracy. Since no experimental data is yet available for 

comparison, it is difficult to make a judgment on the absolute accuracy of any of the 

methods. Nevertheless, some educated guesses can be made, based on knowledge of the 
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methods' respective derivations. The flow pattern and acoustic method generate very 

similar solutions whenever C is small, occasionally when it is large. The flow pattern 

method incorporates more accurate approximations of the flow structures, but the 

similarity of the results implies that the assumptions made by the acoustic method are 

often acceptable. Since the acoustic method is so much simpler to implement than the 

flow pattern method, for cases of small C, it should be chosen over the flow pattern 

method. The agreement between all three methods is generally good, being very accurate 

in portions of the tunnel, and varying by significant fractions of the stagnation pressure in 

others. Most of this inaccuracy can be traced to the fact that the quasi-steady methods 

provide a single point of data, while the Method of Characteristics generates a two-

dimensional function of data. If one considers the axial midpoint of each pipe, the quasi-

steady methods will generate an acceptable approximation for the first pressure drop as 

long as C is less than about 40-50%.  

 It is obvious that the amount of information provided by the Method of 

Characteristics outstrips the data provided by the other methods. To fully understand the 

nature of the pressure behavior during startup, the Method of Characteristics is essential. 

It provides general time scale as well as frequency of oscillation, and provides all of the 

pressure extrema instead of one or two. Time dependent analyses, such as for time-

dependent area orifice and vented liners can be considered. There is no need to guess 

where solutions are applicable, because a more robust set of data is provided.  If the flow 

through a given facility is well understood and a quick and simple pressure drop provider 

is necessary, the acoustic method may be a better choice. However, it is still useful to 

compare the acoustic method to the Method of Characteristics for a given tunnel 
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geometry to ensure that it is within acceptable bounds of accuracy. In short, although 

Method of Characteristics is a computational, rather than closed form solution, it is 

relatively straightforward to program, and the amount of data it provides is well worth the 

initial coding investment. 
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