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Abstract

We give a closed-form expression for the average number of n-dimensional quadtree nodes (“pieces’
or ‘blocks’) required by an n-dimensional hyper-rectangle aligned with the axes. Our formula includes
as special cases the formulae of previous efforts for 2-dimensional spaces [8]. It also agrees with
theoretical and empirical results that the number of blocks depends on the hyper-surface of the
hyper-rectangle and not on its hyper-volume. The practical use of the derived formula is that
it allows the estimation of the space requirements of the n-dimensional quadtree decomposition.
Quadtrees are used extensively in 2-dimensional spaces (geographic information systems and spatial
databases in general), as well in higher dimensionality spaces (as oct-trees for 3-dimensional spaces,
e.g. in graphics, robotics and 3-dimensional medical images [2]). Our formula permits the estimation
of the space requirements for data hyper-rectangles when stored in an index structure like a (n-
dimensional) quadtree, as well as the estimation of the search time for query hyper-rectangles. A
theoretical contribution of the paper is the observation that the number of blocks is a piece-wise

linear function of the sides of the hyper-rectangle.

Categories and Subject Descriptors: E.2 [Data Structures]: Trees; H.2.2 [Database Manage-
ment|: Physical Design - access methods; 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling - Hierarchy and geometric transformations;

General Terms: Computational Geometry, Performance, Theory.

Additional Keywords: regular decomposition, geometric data, quadtrees, oct-trees, GIS, robotics.

*His work was partially supported by the National Science Foundation (IRI-8958546, IRI-9205273), with matching
funds from EMPRESS Software Inc. and Thinking Machines Inc.

tResearch performed with the Dept. of Computer Science and the Inst. for Systems Research (ISR) at the University
of Maryland, College Park, MD







1 Introduction

Hierarchical decomposition of space plays an important role in every application that involves geometric
data. The idea is that the space is decomposed recursively into smaller and smaller pieces, until the
content of each such piece is homogeneous. The problem solved in this paper is the analytical estimation
of the number of pieces that an n-dimensional rectangle (hyper-rectangular region) is decomposed into.

Consider a 2-dimensional image represented as a 2% x 2% array of 1 x 1 squares. Each such square
is called a pixel. The length K = 2% of the side of the image is called the granularity of the image. A
geometric object within such an image is represented by turning the appropriate pixels to black, while
the background is considered white. More than one geometric object may exist in an image. A block
is a 2™ x 2™ square (0 < m < k) obtained as the result of recursive decomposition of the image into
quadrants and sub-quadrants. We focus on representing one object only. An object within an image
is decomposed into blocks as in Figure 1. For example, in this figure the square [0,2]x[2,4] is a block,
while the square [1,3]x[2,4] is not.

o | L
BB |
0 1 2 3 4

Figure 1: The shaded rectangle is decomposed in three blocks.

Such a hierarchical decomposition approach has been used in several areas, including;:
o In graphics and robotics (3-dimensional space) [3, 20].

¢ In geographic information systems and spatial databases. The TIGER project at the U.S. Bureau
of Census uses a linear quadtree representation to store all the points of interest in the map of
U.S.A. [23]. A similar approach has also been used by Shaffer in the QUILT system for geographic
and spatial databases [22], as well as by Orenstein in the extensible data base management system
PROBE [18].

o In traditional databases, where records with » attributes correspond to points in an n-dimensional
space. Many methods have been suggested to store such a collection of data, utilizing the hierar-

chical decomposition approach (e.g. k-d trees [4], quadtrees and their variations [11]).
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e In spatio-temporal and scientific databases, where time introduces one more axis [16].

¢ In image databases, e.g., [2], where 3-dimensional brain scans have to be stored. Regions in these
brain scans can be encoded using oct-trees, to save space and to achieve faster response on range

queries.

¢ In Grand-Challenge databases [5] (e.g., with meteorological, environmental, sensor data e.t.c.). In
general, these databases contain large multi-dimensional arrays, (e.g., tuples of the form (z,y, 2,1,
temperature)) which can be stored in some multi-resolution, hierarchical fashion, clustering re-

lated (i.e., nearby) points together.

o Whenever a transformation is used (e.g., a 2-dimensional rectangle corresponds to a 4-dimensional

point [9, 12]; a polyhedron is mapped to a high-dimensionality point [14]).
The problem we examine here is the following:
Given a hyper-rectangle of size s; X s X ...8p,
Find the number of blocks that it will span on the average.

Previous attempts have been restricted to 2-dimensional rectangles: Dyer in [6] presented an analysis
for the best, worst and average case of a square of size 2" X 2", giving an approximate formula for the
average case. Shaffer in [21] gives a closed formula for the exact number of blocks that such a square
requires when anchored at a given position (z,y); he also gives the formula for the average number of
blocks for such squares (averaged over all the possible positions). In a previous paper [8], we generalized
some of these formulae for arbitrary (2-dimensional) rectangles. Analysis of the closely-related Peano
and Hilbert space filling curves for 2-dimensional spaces was presented in [15] and [19].

In this paper, we generalize the formulae for n-dimensional rectangles. The derived formulae are
useful whenever a hierarchical decomposition is used for higher-dimensionality spaces, either for data
hyper-rectangles, or for query hyper-rectangles. In all these cases, the number of pieces that a hyper-
rectangle decomposes into clearly affects the space overhead and the search time. Therefore, it is
essential for query optimization in spatial/temporal databases [1].

The proposed methodology is as follows:

1. Find the formulae when the sides of the hyper-rectangles are of the form 2™ — 1, for every
dimension 7 = 1,2,...,n. Let’s call these hyper-rectangles magic. One important observation is

the fact that the solution for magic rectangles is simple.

2. Prove that the formula for a non-magic hyper-rectangle can be derived by a linear interpolation

from the surrounding magic hyper-rectangles.




The paper is organized as follows. Section 2 gives some preliminary definitions and examples. Section 3
gives the solution (closed-form formulae) for the magic hyper-rectangles. Section 4 establishes a theorem
that the solution for non-magic hyper-rectangles can be derived by using linear interpolation. Section 5
gives closed formulae for the expected number of blocks in the case of 2-dimensional rectangles and 3-

dimensional parallelepipeds. Section 6 makes some observations and suggests future research directions.

2 Preliminaries

Symbol Definition
n Number of dimensions
Z1yeeey Ly Co-ordinates of the lowest corner of the

hyper-rectangle (i.e., the one closest to the origin)
8 Length of the hyper-rectangle in ¢-th dimension
b(z1,81, .y Tny Sn) | Number of blocks to cover a specific hyper-rectangle

b(81,82, ey S1) Average number of blocks to cover the hyper-rectangle of the query size

K =2* Granularity = side of the ‘universe’ in hyper-pixels

Table 1: Definition of Symbols

A hyper-rectangle is represented as (21, 81,22, S2, -.., &n, Sn) Where z; ( = 1,...,n) is the i-th coordi-
nate of the anchor (i.e., the corner with the smallest coordinate values or the ‘lower left’ corner; this
is the corner closest to the origin, since all the coordinates are non-negative) and s; is the size of the
hyper-rectangle on the i-th dimension. Table 1 shows the symbols and their definitions.

Definition 1. The average number of blocks for a rectangle of sides (sy, s2, ..., 8,) is given by:

B 1 K-1 K-1
b(31,327-'-,3n) = 'ﬁ Z Z b($1,81,$2,82,...,xn, Sn) (1)
x1=0 Tn=0

where K = 2F is the granularity. Intuitively, we let the hyper-rectangle go to each and every possible

position, and we average the number of blocks that the hyper-rectangle decomposes into. Notice that:

o K should be large enough so that the K X K... x K hyper-cube completely encloses the hyper-

rectangle under examination. In other words: s; < K fori=1,...,n.

¢ The hyper-rectangle wraps around the edges. This assumption has been used in all the previous

analyses of quadtrees [6, 8].

Some important observations, that allow recursive decomposition of the problem:

Observation 1 - ‘Slicing’. If a hyper-rectangle starts at an odd number, then we can ‘slice off’ the




left hyper-plane. In such a case, the number of blocks of the two pieces added together is the same as
the number of blocks of the whole hyper-rectangle, in this given position. Without loss of generality,

assume the hyper-rectangle starts at an odd point in the 1st dimension. Then:

b(2z1 + 1,81,22,82, .0y Ty 8n) = b(2z1 4+ 1,1,22,82,...,%p, )

+ b(2£171 + 2,81 — 1,272,82, ceny Ly .Sn)

Clearly, the same principle can be used if the hyper-rectangle ends at an odd point. Figure 2 illustrates

the slicing principle for a 2-dimensional space.

Figure 2: Slicing from the left, when the rectangle starts at an odd point (the left slice is more heavily
shaded).

Observation 2 - ‘Unit’. If any one dimension of a hyper-rectangle is of unit size, then it can be
covered only with unit size blocks. Thus, the number of blocks required to cover it is equal to its

volume and is obtained as the product of the sides, independent of position. That is:

n
b($1731’x2,327"-7mM7la"'7xn,3n) = H S
=1

Observation 3 - ‘Shrinking’. If a hyper-rectangle starts and ends at even numbers in all dimensions,

then we can make the granularity coarser, maintaining the same number of blocks:
b(2z1,2s1,222,282,...,220,28,) = b(x1,81,%2,82, ..., Ty Sy)

Figure 3 gives a 2-dimensional example of the idea.

3 Solution for magic hyper-rectangles

Definition 2. A rectangle is called magic iff each side s; is of the form 2™ — 1.




Figure 3: Halving the granularity.

Lemma 1. (‘magic hyper-rectangles’) If a rectangle is magic, then the number of blocks it decomposes

to is independent of the position of the anchor:
b(z1,2™ — 1,29,2™2 — 1,...,2,,2™" — 1) = constant V(z1,22y...,Z0)

Proof. Without loss of generality, let 81 be the smallest side of the hyper-rectangle. For every dimension
i, we can apply the Slicing Observation exactly once, because every side s; is odd. After that, all the
sides are even, and the anchor points are even as well. So we can apply the Shrinking Observation; the
resulting rectangle will still be magic: for every dimension ¢, after slicing and shrinking we will have a
side of size: (s; —1)/2 = (2™ —1~1)/2=2™"1 — 1, Applying this step inductively, and using the
Unit Observation as the base case, we have the required lemma. O

Corollary 1. For magic hyper-rectangles, we have:
5(81, 8924 teny Sn) = b(l‘l, 819F25825 0003 Ly, Sn) V(wl, T2y 0eey CIIn)

O

Based on the last observation, we can quickly derive formulae for magic rectangles, bypassing equa-
tion (1).
3.1 Solution for magic hyper-cubes

Consider first a magic hyper-rectangle with all its sides the same size, that is, a hyper-cube. Let this
size be 2™ — 1.

Lemma 2. For a magic hyper-cube the number of blocks is:

(2™ -1,..,2m—1) = (2" -1)" - (2" - 1) mi 2 -1)"
=1




Proof. Independent of the position of the anchor, we ‘slice off’ one slice in each dimension, and then
shrink. Thus:

b(z1,2™ — 1,...,20,2" = 1) = 2™ - 1)" — (2™ - 2)" 4 B2 - 1,...,2m" 1 1) (2)

where the first two terms give the number of blocks contained in the slices, and the last term calculates

the number of internal blocks. Solving this recursive relation (2) we have:

™ -1, ... f: (@-1m-(2t-2") (3)

t=1
or
_ m—1
(2™ - 1,.,2"~1) = @™ -1)"-(2"-1) Y (2'-1)"
t=1

Next we try to find an approximation for large values of m.
Corollary 2. For a magic hyper-cube, the number of blocks is approximated by half of the hyper-surface
S, if the side is large (m > 1) and the dimensionality is high (n > 1):

B2™ —1,..,2"—1) = n 2™ x g/2
Proof. Since we have 2™ — 1 = 2™, it follows that:

(@ -1 - @ -2

24

n(2t —1)*}
~ p2tn1) (4)

and, from equation (3) we obtain:

m
B2™ - 1,.,2"—1) & Y n (20D

t=1

n 271 (z(n—l)m _ 1)
= 2n-—1 -1 (5)
~ p 2mn=D) (6)

Since the hyper-surface is given by:

§ = 2n (@™ —-1)01

~ 2np2mnl)
we have that, for large m and n:
b(2™ —1,...,2" - 1) ~ §/2 (7)
which says that the number of quadtree blocks is approximately half of the hyper-surface. a
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The above holds if n > 1. For 2-d space, which is of much interest, we obtain, from Eq. 5 with n = 2:
(2™ - 1,2" - 1)~ 2x2x(2"-1)=§
which agrees with the result of Hunter and Steiglitz [13], stating that the number of quadtree nodes for
a polygon is proportional to its perimeter.
3.2 Extension to any magic hyper-rectangle

For a magic hyper-rectangle, without loss of generality, let s; = 2 — 1 be its smallest side. Also, let
8; = 2mtd _ 1 where d; > 0. In other words, we assume that: dy = 0.

Lemma 3. For any magic hyper-rectangle the number of blocks is:

n m—2 n
p(2m —1,2mFde — 1, am¥de 1) = (@™t -1) - (2" ~1) ) JJe™ it - 1)
i=1 j=1 i=1

Proof. Using the Slicing and Shrinking Observations as we did for the magic hyper-cubes, we have:

b(2™ —1,2mFe 1, .., 2mFdn 1) = (2™ - 1)(2mt2 —1)...(2mFdn 1)
— (2™ - 2)(2mt% —2).. (2mtdn _ 9)
+ b2l - q,gmTitd g gmoltde )

Solving the recursion (it bottoms after m steps), we have:

m n n
B2m - 1,2mt 1, omtde 1) = H (1‘[(2““1" - 1) - JJ (2" - 2)) (8)
t=1 \i=1 i=1
or
n m—2 n
b(2m — 1,2mFe — 1, ombdn 1) = TI@™4 -1) — (2-1) Y [J@™it - 1)
1=1 j=1 i=1
O

Again, we try to find an approximation for large m.
Corollary 3. Equation (8) can be approximated by:

n n
(2™ —1,2mte — 1,0 e _ 1) & minml) 3 94 TT 2%
j=2 =2
Proof. By using a reasoning similar to that of equation (4) we have:

n n

H(2t+d.' _ 1) _ H(2t+d" _ 2)

=1 =1

= (2 - 1)(2F% - 1).. (2" — 1) — (2F - 2)(2% - 2)... (244 — 2)
~ ey 2 [T
j=2

=2



Thus, by using the approximation of equation (6), equation (8) becomes:
n

@y Y o [
=2

b(2™ — 1,2m+% 1 ., 9mtde _ 1) w

m
2 .
t=1 =2
n n m
= Y oH I 2% 3 @)
j=2 1=2 t=1
~ 2m(n—1) i 2—dJ InI 2d,‘
j=2 =2

and we conclude once more that for high dimensionalities n and large hyper-rectangles (m > 1), b() is

roughly half of the hyper-surface. m]

4 Proof of linearity

In the previous section we solved the problem for magic hyper-rectangles. Here we show how to solve
the problem for arbitrary rectangles using linear interpolation.
Lemma 4. If 1 + s; is odd, then:

b(z1, 81, %2,825 -0y Ty Sp) = b(Z1,81 — 1,22, 82, ey Ty Sn) + C1

where C is a constant independent of the specific values of z; and s;.

Proof. The hyper-cubes to cover the incremental volume are forced to be no more than 1 unit in the
first dimension, and therefore 1 unit in each dimension. The number of hyper-cubes required is simply
83 X 83 X ... X 8y, by following the Unit Observation. Define C; to be []i_, s; to complete the proof. O

Lemma 5. If 2y + s; is even, but not divisible by 4, then:
b(wl, 813 &2582y a0y Ty Sn) = b((l)l, 81 — ]., T2y 82y ceny Ly Sn) + Cz

where (3 is a constant independent of the specific values of z; and ;.

Proof. Now, some of the hyper-cubes already used to cover the hyper-rectangle may be merged with
the new layer added into larger blocks, 2 units on the side, on the even boundaries. The number of such
mergers possible is determined solely by the size and position in dimensions 2,...,n and is independent
of z; and s;. Call the number of additional blocks required Cs. a
Lemma 6. If z; + s; is divisible by 29~ but not by 27, and s; > 2771 then:

b($1,81,€l}2,32,...,$n,8n) = b($1,81— 17m2,327""wn73n) + CJ

where C; is a constant independent of the specific values of z; and s;.
Proof. Similar to Lemma 5. The additional condition imposing a minimum limit on s; is required
since clearly no more mergers are possible beyond the length of the side ;. Yet, the construction in

the lemma, could require mergers into blocks up to 2! on the side. m]




Lemma 7. If z; + s; is divisible by 27 and 2™~! < sy < 2™ < 29, then:
b(z'l, 81,22, 82y ...y T, Sn) = b(fl)], 81 — ]-1 T2,82y..45Tn, s’n) + C‘m

where C), is a constant independent of the specific values of z, and s;.

Proof. Similar to Lemma 6. Since s; is too small, the merger of blocks cannot continue until a side

of 27 is reached. Instead, it stops at an earlier point, and this point is determined by the magic points

between which s; lies but is otherwise independent of s; and ;. O
Now we are in the position to state the main theorems.

Theorem 1. For an arbitrary hyper-rectangle with sides (s1, 82, ..., 8,), where 2™ 1 < 5y < 2™ — 1 we

have:

b(51, 82, -y 8n) — B(81 = 1, 82,00y 8n) = b(81 4 1,82, .00, ) — B(51, 82, -y )

Proof. Consider the expected number of hyper-cube blocks to cover a hyper-rectangle b(s;—1, sz, ..., Sn)-
If 51 — 1 is increased to sy, then following the lemmas above, the increase in the value () is independent
of the specific value of s1, as long as a magic threshold is not crossed. Since the value of z; is arbitrary,
independent of the specific value of s; we have that zy + s; is divisible by 2 with probability 1/2, by
4 with probability 1/4, and so on. Therefore the number of additional blocks required is C; with
probability 1/2, C; with probability 1/2%, and so C; with probability 1/2/, until C,, with probability
1/2™ and Cp,41 with probability 1/2™. Thus, all cases are taken in consideration and their respective
probabilities sum to unity. Note, also, that divisibility by higher powers of 2 does not alter the constant,

and hence we can sum all these terms into a single term. Call this summation C:
C = Ci/2+4Co/d+ ...+ Cr/2™ + Crpg1 /2™ (9)

Exactly the same summation C is obtained if sy is now increased to s; + 1. Thus the theorem is
established. O
Theorem 2. Let R = s; X s3... X s, be a hyper-rectangle; let m; and My be the magic values that
contain s; (i.e., my = W_1<s <Pt 1= M), with similar definitions for m; and M;. There are
2™ magic rectangles that we can generate (for each dimension ¢, we have two choices: m; and M;, for
a total of 2" choices). The number of blocks for R is determined by a linear interpolation among the
values of the above 2" magic rectangles.
Proof. Consider each dimension in turn and increase the size from m; to M; in steps of 1. Each step
increases the expected number of blocks by the same amount, on account of Theorem 1. While Theorem
1 was established for the 1st dimension, by arguments of symmetry it holds for all other dimensions as
well. Therefore, the increase from m; to s; is a linear interpolation of the increase from m; to M;. The
order in which the dimensions are considered is immaterial. o
In other words, the function b(s; — 1,82,...,3,) is piece-wise linear on its arguments, with ’break

points’ whenever a value s; is a magic number. Table 2 shows the values for b() for the 2-dimensional

10




case, with boldface numbers for the magic rectangles. Notice that the rest of the numbers can be
derived by linear interpolation among the 4 magic rectangles nearest to the point of interest. (e.g., for
the b(5,2), the corresponding magic rectangles are (3,1), (3,3), (7,1), (7,3)). In the next section we

illustrate the Theorem 2, deriving the formulae for b() for 2-dimensional and 3-dimensional spaces.

5 Examples: 2- and 3-dimensional rectangles

In this section we illustrate the steps of the lemmas and theorems of the previous section by deriving
closed-form exact formulae for the expected number of blocks a 2-dimensional and a 3-dimensional
rectangle. Following the steps of the previous section, we first calculate the number of blocks for any

magic rectangular object, and then we give exact formulae for any (non-magic) rectangular object.

5.1 2-dimensional rectangles

This case has been analyzed in [8]. Here, we show how those results can be derived as special cases of
the Theorems and Lemmas of the previous section.
Lemma 8. The average number of blocks 5() that a magic rectangle in 2-dimensional space decomposes
into is:

B2™ —1,2mt2 1) = 2(2™ 1) (2% +1) - 3m (10)

Proof. From expression (8) we have:

h(2™ —1,2m+d 1) = i (ﬁ(2t+di -1)- ﬁ(z“rd: - 2)) (11)

t=1 =1 =1

It is sufficient to prove that the right hand parts of relations (10) and (11) are equal. The proof follows
by induction on m. For m = 1 both sides of the equation are equal to: 221 — 1, For m = 2 both sides

are equal to: 3 x 2%2%1, We assume that the above relation holds for m = k:
k 2 2
3 (H(z“rd- - 1) - [+ - 2)) =22"-1)(2%+1) - 3%k
t=1 \i=1 i=1
We will prove that it holds for m = k + 1:
k41 /2 2
> (H(2t+d-‘ - 1) - [+ - 2)) =22 1) (2% +1) - 3(k+1)
t=1 \i=1 =1
It is sufficient to prove that the left hand part of the above equation is:
2(2F 1) (2% +1) - 3(k+1) =
2 (28 -1) (22 +1) - 3k + (2 —1) (2HHE —1) - (251 - 2) (K14 _g)
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After some simple algebra we derive that the above lemma holds. o

Table 2 gives the number of blocks a rectangle is decomposed into, when its sides s; and s, are smaller
than 9. The entries were calculated by exhaustive enumeration, using the definition of Eq. 1. Entries
corresponding to magic rectangles are in boldface. In the sequel, we will show how the remaining entries
have been filled. Next, we trace the steps of the proof of Theorem 1, giving a closed formula for the

constant C.

s2 1112 3 4 5 6 7 8
51
1 1|2 3 4 5 6 7 8
2 21325 (45 |5.75 7 8.25 9.5 10.75
3 3|45 6 7.5 9 10.5 12 13.5
4 4|57 | 7.5 |9.0625 | 10.625 | 12.1875 | 13.75 | 15.3125
5 517 9 10.625 | 12.25 | 18.875 | 15.5 | 17.125
6 6 | 8.25 |10.5 ] 12.1875 | 13.875 | 15.5625 | 17.25 | 18.9375
7 7195 12 | 13.75 15.5 17.25 19 20.75
8 8 | 10.75 | 13.5 | 15.3125 | 17.125 | 18.9375 | 20.75 | 22.515625

Table 2: Number of blocks for 2-dimensional rectangles. Magic rectangles are in boldface.

Lemma 9. Given that the rectangle with sides (s1,s3) is magic, then the number of blocks for a

rectangle with sides (s; + 1, s2) is:
I—)(Sl + 1,32) = 5(51,32) + 2m+d2-—2maz — g x9—maz 1+ 2

where maz = |log(min(s; + 1, s2))].
Proof. See appendix A. O

It is evident that in a 2-dimensional space the constant C' of Theorem 1 is given by:
C = 2m+d2—2ma.:l: — 3§ Q—mez + 9

We can rewrite this expression as: (sp — 1) 272M%% — 3 x 27™ma% 4 2 from which we can see that this
constant C is independent of 1, s;. In the following corollary we will use the symbol C(s;) to denote

this function of the quantity s;. Thus:

C(s;) = (8 —1)x272me® _ 3427™ma% | 9

12




5.2 3-dimensional rectangles

In this subsection, we examine the case of a parallelepiped and we derive a formula for the constant C
of Theorem 2.

Lemma 10. The number of blocks that a magic parallelepiped decomposes into is:

m 3 3
b(2m —1,2mH% —1,9mF% 1) = 37 ( (2% - 1) - [T (2" _2))
t=1 =1 =1

= g(z‘m ~1)(2% 2% 4 2%tds) _ (2™ —1)(14+2% 42%) + 7

Proof. By induction on m. O
Lemma 11. Given that 3-dimensional parallelepiped with sides (31,32, 33) is magic, then the number
of blocks for a parallelepiped with sides (s1 + 1, s2, $3) is:

5(81-[—1,82,83) — 5(81,82,83) 4 22m+d2+d3—-3ma.x + 8 — ’_;_(Qmax+1 + 2—ma.1:) _

2
9m (2d2 + 2d3) <52—2mam _ g_max + 5)
where maz = |log(min(s; + 1, s2, $3))].
Proof. See appendix B.

From Lemma 11 we understand why the constant C' of Theorem 1 is a quantity independent of s;.
However, we observe that it depends on the other two sides s3 and s3. This is the reason why for the
case of a 3-dimensional space we have to denote this quantity as C(s;, s;), where:

—3mazx 7 —2mazx 7 2
C(si,85) = (si—=1)*(s;—1)%2 + (s,~+3j—2)*(§2 —gmam+§) -
g(zmax+1 + 2—maz) + 8 (12)

Table 3 gives the number of blocks a parallelepiped is composed of, when its sides are smaller than
6. Entries in boldface correspond to magic parallelepipeds. All the entries have been computed using

exhaustive enumeration, from the definition of Eq. 1.
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s2 11 |2 3 4 5
81 83
1 |2 3 5 1
2 |4 6 10 2
1 3 |6 12 15 3
4 |8 12 16 20 4
5 |10 15 20 25 5
2 14 6 8 10 1
4 | 7125 |10.25 | 13.375 16.5 2
2 6 |1025 |14.5 | 1875 23 3
8 | 13375 | 18.75 | 24.125 29.5 4
4 |16.5 23 29.5 36 5
3 |6 9 12 15 1
6 |1025 |14.5 | 18.75 23 2
3 9 | 145 20 25.5 31 3
12 [ 18.75 | 25.5 | 32.25 39 4
15 | 23 31 39 47 5
8 12 16 20 1
13.375 | 18.75 | 24.125 29.5 2
4 12 | 18.75 | 25.5 | 32.25 39 3
16 | 24.125 | 32.25 | 40.265625 | 48.28125 | 4
201 29.5 39 48.28125 | 57.5625 | 5
5 |10 15 20 25 1
10 | 16.5 23 29.5 36 2
5 15| 23 31 39 147 3
20 1 29.5 39 48.28125 | 57.5625 | 4
25 | 36 47 57.5625 68.125 5

Table 3: Number of blocks for 3-dimensional parallelepipeds. Magic parallelepipeds are in boldface.
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6 Discussion and conclusions

We have examined the problem of the number of quad-tree blocks that an n-dimensional rectangle will

be decomposed into on the average. There are two interesting observations:

e Our approach (Theorem 2 and Eq. 8) generalizes all the older approaches on 2-dimensional rect-
angles [6, 8, 21].

o It generalizes the observation of Hunter and Steiglitz [13] that the number of quadtree blocks
is proportional to the perimeter of the polygon. Our formula shows that, for 2-dimensional
rectangles, the number of quadtree blocks is approximately the perimeter of the rectangle, while

for higher dimensionalities n > 1, it is roughly half of the hyper-surface.

The contributions of this paper are both practical and theoretical. From the practical point of view,
the number of quadtree blocks of a decomposition is important, because it determines the number of
nodes that a main-memory-based quadtree will require; the number of entries in a linear quadtree that
will be required; also, the number of pieces that a range query will be decomposed into (which will be
proportional to the response time for this query).

From the theoretical point of view, it proposes a methodology which we believe will be useful in
the analysis of other quadtree-related methods (e.g., methods using space-filling curves, such as the

z-ordering [17], Gray codes [7], or the Hilbert curve [10]). The methodology consists of two steps:
Step 1 solve the problem for the ‘magic’ rectangles (which is easy)

Step 2 show that the formula for an arbitrary rectangle can be derived by linear interpolation from

suitable ‘magic’ rectangles.
Future work includes the extension of this method for the analysis of rectilinear polygons (including
concave ones), as well as the analysis for space filling curves for 2-dimensional and n-dimensional spaces.
A Appendix: Lemma for the 2-dimensional case

Lemma 9. Given that the rectangle with sides (s1,s2) is magic, then the number of blocks for a

rectangle with sides (s1 + 1, 82) is:
5(81 + 1,52) = 5(81,32) + gmtdy—2maez _ g, 9—maz + 2

where maxz = [log(min(s; + 1, 82))].
Proof. First, let’s assume that the rectangle does not wrap around the edges (z1 + 81,22 + 82 < K).
With probability 1/2 we have: (21 + 81 + 1) mod 2 # 0 (the end point in the 1st dimension is an odd
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number). Then according to the Slicing and Unit Observations the new number of blocks is:
b(z1, 81 + 1,22,82) = b(s1,82) + s2

With probability equal to 1/4 we have: (z1 + 81 + 1) mod 2 = 0 but (23 + s; + 1) mod 4 # 0. Then:

T2 + $2

b(z1,81 + 1,29,82) = b(s1,82) + 52 — ([ Ik [’a;—z]) @' +2'-1) (13)

The product in the previous relation stands for the number of blocks we have to subtract because
mergings have been performed. The first two terms in the second parenthesis respectively stand for the
number of pixels of the original magic rectangle (2!) and for the number of the pixels of the additional
slice (2!) that merge in one 2x2 block. Thus, the third term in the parenthesis (i.e., -1) stands for
the greater formed block we have to take into account. The first parenthesis of the product gives the
number of greater blocks that may be formed.

Since sy is an odd integer (of the form 2m+9% — 1), it is easily verifiable that:

e

Thus, relation (13) becomes:
- s
b(ar, o1+ 1L,2,82) = Bor,00) + 82 — |o) (2" +2' - 1) (14)

With probability equal to 1/8 we have: (z1 + 8; + 1) mod 4 = 0 but (21 + s + 1) mod 8 # 0. Then:

b($1,81+1,.’l)2,32) = 5(81,82) + 89 — (I_w21_82J — [%-I) (21+22+22—1) —
s — 4([ =52 - [%1)

I 5 1@ +2'-1) >
b(z1, 81+ 1,2,82) = b(s1,82) + s — [3712-] (2L 422427 1) -
sy — 4|2
(2R gt
Since: E;=1 27 = 2(2° — 1), the above relation becomes:

89 mod 4

b(z1, 81+ 1,22,82) = b(s1,82) + 82 — L%J 3(22-1) - | 13 (2'-1)

Suppose that: 8 < min(s;1+1, s2) < 16. Then with probability equal to 1/8 we have: (z1+s;+1) mod 4 =
0 and (21 + 51 + 1) mod 8 = 0. Thus:

_ ds
Wano+Loae) = Boie) + 5 — |2 320 -1) - 222

|

—13(2°-1) -

9 mod4J 32— 1)
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Following this reasoning, similar expressions can be derived for large values of s1,s2 and such that
K/2 < min(s; + 1,82) < K, VK = 2%,
Secondly, suppose that the rectangle wraps around in one dimension only (i.e. &2 4+ 82 > K). Then,

expression (13) should be rewritten as:

R R B N R (- = R E ) NERT A
However, the latter expression may be reduced to (14). This way, the set of equations derived by
assuming that the rectangle wraps around only one edge reduces to the set of equations produced to
describe the no-wrapping rectangle. The same result holds even if the rectangle wraps around both
edges.

Thus, by considering all the positions possibly taken by the end point in the 1st dimension, we conclude

to the following expression:

(_)(81+1,82) = 5(81,32) + 82 —

maz—1 .
3(20-1) + 32m°d2 [3@1-1)] -
L 21+1 Tt

1 max d 2 .
gmas (I'Qmaa:J 3(2"-1) + Z = 121;01 3@ - 1))

which is averaged and independent of the anchor point (1, z2). Since: so = 2m+dz _ 1 the floor functions
are simplified to unity and after some algebra on geometric series the lemma is proved. Notice, also,

that if d; > 0 then maz = log(s; + 1) = m, whereas if d; = 0 then maz = log(s3) = m — 1. |

B Appendix: Lemma for the 3-dimensional case

Lemma 11. Given that 3-dimensional parallelepiped with sides (s1, $2, 83) is magic, then the number
of blocks for a parallelepiped with sides (83 + 1, sg, 83) is:
I_)(Sl + 1,82,83) — 7)(81,82,83) + 22m+d2+d3-3maa: + 8 — g (zmaz+l 1 2—ma:z:) _
om (2d2 2ds) ( 2—2max Zmax'l' g)

where maz = |log(min(s; + 1, sg, 83))].

Proof. We follow the same reasoning as for the case of Lemma 9. If (z1 + s1 + 1) mod 2 # 0 (which
may happen with probability 1/2), then according to the Slicing and Unit Observations we calculate
the new number of blocks to be:

b(zy,81 + 1,72,82,23,83) = b(s1,92,83) + 82%33
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If (z1 + 81 + 1) mod 2 = 0 but (21 + $1 + 1) mod 4 # 0, then with probability equal to 1/4 we have:
b(21,81 + 1,33, 82,83, 83) = B(s1,52,85) + s2%s3 — |2 J L 3] (@Y’ + @) - 1)

In an analogous manner, with probability equal to 1/8 (for the case (z; + s1 + 1) mod 4 = 0 but
(z1+ 81 + 1) mod 8 # 0), we have:

b(wla s1+ ]-a T2, 82, (I)3,S3)
= Yt 00,8) + savss — 2] [Z] (@) +@)7+@) -1) - (@) +@)"-1)
= Howsns) + savss — 12112 (3 @2-1) - (3@ -1)

Thus, by generalizing and considering all the positions possibly taken by the end point in the 1st

dimension, we conclude to the following expression:

b(sy+1,8,83) = 7)(51,32,83) + sp*xs3 —
mazr—1 7
1 7 j—
5 (L )12 1 —1>+§:2§<4“—1>) -
= J=

1 8 83 ma sy i
omaz ([2miz-' LzmazJ (4 1) + Z 2 (4 1_1))

which is averaged and independent of the anchor point (21, %2, z3). After some algebra the expression

of the lemma follows. 0
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