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Analysis of the Residual Arnoldi Method

Che-Rung Lee
G. W. Stewart

ABSTRACT

The Arnoldi method generates a nested squences of orthonormal bases Uy, Us, . . .
by orthonormalizing Auj against Ug. Frequently these bases contain in-
creasingly accurate approximations of eigenparis from the periphery of the
spectrum of A. However, the convergence of these approximations stagnates
if uy is contaminated by error. It has been observed that if one chooses
a Rayleigh—-Ritz approximation (ug,zx) to a chosen target eigenpair (A, x)
and orthonormalizes the residual Azy_pjzk, the approximations to z (but
not the other eigenvectors) continue to converge, even when the residual
is contaminated by error. The same is true of the shift-invert variant of
Arnoldi’s method. In this paper we give a mathematical analysis of these
new methods.

1. Introduction

This paper is concerned with modifications of the classic Arnoldi/Rayleigh-Ritz method
for approximating eigenpairs of a large matrix A. To fix our notation, we will begin
with a brief description of the two algorithms that underlie the new methods.

The Arnoldi algorithm proceeds by building orthonormal bases for a sequence of
nested subspaces as follows (see [1] and [10, §5]). The basis U; consists of a normalized

starting vector u1. Given the orthonormal basis Uy = (u1 --- ug), we generate Ugyq as
follows.
1. Set v = Auy.
2. Orthonormalize vy, against Uy to get ug - (1.1)
3. Ugyr = (w1 - ugy1)-

The results of the procedure can be summarized by the ARNOLDI RELATION
AU, = Ukﬁk + pkukﬂez, (1.2)

in which Hj, is an upper Hessenberg matrix whose elements along with pj are the
coeflicients from the orthonormalizations and e is the kth unit vector of dimension k.

1This step can fail if the projection of vy lies in the the column space of Uy, in which case the Arnoldi
procedure terminates and Uy spans an invariant subspace of A. We will not consider this case in what
follows.
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Conversely, the existence of such a decomposition implies that Uy was obtained by the
Arnoldi process (1.1).

Unless the starting vector w1 is poorly chosen, the KRYLOV SUBSPACES Kj spanned
by the Uy tend to contain increasingly accurate approximations to eigenvectors corre-
sponding to eigenvalues on the periphery of of the spectrum of A. These eigenpairs
can be extracted by the Rayleigh-Ritz algorithm (see [10, §4.4]). Here we will focus on
obtaining an approximation (i, z) to a TARGET EIGENEPAIR (A, ).

1. Compute the RAYLEIGH QUOTIENT Hy = U,:‘ AUy.

2. Of the eigenpairs of (u;, w;) of Hy choose a CANDIDATE pair, say (u,w),
such that p approximates the target eigenvalue A.

3. Let (p,2) = (u, Ugw).

(1.3)

The pair (u, z) is called a R1Tz PAIR, and its components p and z are its RITZ VALUE
and Ritz VECTOR. The vector w is called a PRIMITIVE RiTz VECTOR. If Uy in (1.3) is
the same as in (1.2), then it is easy to see that Hj = Hjy. The reason for making the
distinction is that in our new methods we will always compute the Rayleigh quotient
directly from Uy, as in (1.3).

If all goes well, the Rayleigh-Ritz candidates converge to their respective targets.
However, existing convergence theory is rather weak [7] and tends to understate the
power of the Arnoldi/Rayleigh-Ritz method (which has served as a basis for widely
used packages, such as ARPACK [6]).

The method is not good at finding eigenpairs from the interior of the spectrum of A.
The cure is to choose a SHIFT ¢ near the desired eigenvalues and work with the matrix

S=(A-ol)™L. (1.4)

This transformation moves the eigenvalues of A near the shift to the periphery of the
spectrum of S, where good convergence can be expected. Thus the SHIFT-AND-INVERT
Arnoldi procedure goes as follows.

1. Solve the system (A — ol)vg = u.
2. Orthonormalize vy, against Uy to get ugy1- (1.5)
3. Uk+1 == (u1 T uk_|_1).

The Rayleigh-Ritz procedure can be applied directly to S using the Rayleigh quotient
formed from the Arnoldi process. Alternatively, one can use the Rayleigh quotient
U,:‘ AUy, at the cost of having to compute and store the vectors Au;. In our modified
algorithm we will do the latter —indeed it is essential for the algorithm to work.

An important difficulty with the Arnoldi method, is that the process is sensitive to
errors in the computation of vy ;. Specifically, if vi; is computed to relative error e,
the Ritz pairs stagnate at approximately the same level. This is illustrated by the first
plot in Figure 1.1. In these experiments, A is a matrix of order 100 with eigenvalues
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(1) Arnoldi method with/without error
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Figure 1.1: Arnoldi and residual Arnoldi methods

1.00,0.95,0.952,...,0.95%. We consider the eigenvalue 1.00 and 0.95 as targets. The
errors in the candidate eigenvectors are plotted against the iteration number k— solid
lines representing A = 1.00 and dashed lines representing A = 0.95.

The lines labeled ‘without error’ show the ordinary course of the Arnoldi/Rayleigh—
Ritz method. Both approximations converge to an accuracy of 10~ ° —close to best
that can be expected from computations in IEEE double-precision arithmetic. Note
that the curves are slightly concave, indicating a mildly superlinear convergence, which
is not predicted by the theory (however, see [2]). The pair of lines labeled ‘with error’
show what happens when we add a relative error of 1072 into v;. Both approximations
converge to about 1072 and then stagnate. Although we have introduced errors at every
stage, a single error in up will also cause the stagnation.?

2This is not entirely unexpected. The convergence theory depends critically on the fact that any
vector in the column space of Uy, can be written in the form pg_1(A)ui, where py_1(A) is a polynomial
of degree not greater than k—1. A single error in any u; will contaminate this relation for all subsequent
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As a partial solution to this problem, we propose that we choose a specific target
eigenpair (), z) and replace vy in (1.1) by

Ty = Az — U2k,

where (ug, z;) is the candidate Ritz pair for the target in question. We call the resulting
method the residual Arnoldi (RA) method. Thus, given a target (A, z), the Arnoldi
step becomes:
1. Compute the candidate Ritz pair (ug, zx) corresponding to
the target (A, z).

2. Ty = Azk — UERk- (16)
3. Orthonormalize ri against Uy to get ug41.
4. Ugyr=(u1 -+ ugy1).

It is easy to see that in the absence of error the residual Arnoldi and the Arnoldi method
produce the same bases U;. However, when we introduce errors, the methods behave
quite differently.

The second plot in Figure 1.1 shows the effects of errors on the residual Arnoldi
method. The approximations to the target eigenvector converge as before, while the
approximations to the second eigenvector stagnate. Although it is hard to see from the
graphs, the convergence curves for the target eigenpair are essentially the same for both
plots.

The third plot shows what happens when we change targets at the 30th iteration.
Now the convergence to the first eigenvector stagnates, while the convergence to the sec-
ond picks up. This suggests the possibility of computing several eigenpairs by switching
the target after each converges. All this can be done with a residuals computed to a
low relative error.

The shift-and-invert Arnoldi method (1.5) also stagnates when the system in line 1
is solved inaccurately. The cure here is to replace the right-hand side u; with r,. We
will call this procedure the SHIFT-AND-INVERT RESIDUAL ARNOLDI (SIRA) method.

1. Using the matrix A, compute the candidate Ritz pair (g, zx)
corresponding to the target (X, z).
Tk = Az — pg2g-

2.

3. Solve the system (A — ol)vg = 7. (1.7)
4. Orthonormalize vy against Uy to get ug1.

5 Upy1 = (u1 -+ Upy1)-

The fourth plot in Figure 1.1 shows what happens when we use the STRA method on our
original matrix with ¢ = 1.3 and € = 10~ 3. Convergence — somewhat accelerated — is
achieved for the first eigenpair, the candidates for the second eigenvector stagnate.

subspaces.
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The purpose of this paper is to give a mathematical analysis of the RA and SIRA
methods (for the practical details of their implementation see [5]). In particular, we
will be concerned to explain the Krylov-like convergence of the candidate pairs to the
target pair. It would also be useful to show why the method continues to work when
the target is changed (see Plot 3 in Figure 1.1); but that is beyond the scope of this
paper.

The RA and SIRA methods have their origins in the Jacobi-Davidson method [9].
In [10, §6.2] one of us (Stewart) gave an analysis of that method which related it
to Newton’s method. It implied that the method should converge linearly when the
residuals were computed with constant relative error. Later, in a visit to Utrecht in the
spring of 2001, he noted that the convergence was Krylov-like and further noted that
it remained so when the projections associated with the Jacobi-Davidson method were
removed to give what we call here the SIRA method. During some discussions with H.
A. van der Vorst and G. L. G. Sleijpen, the latter suggested that we look at the behavior
of what was essentially the RA method. The analysis given here was begun about two
years later.

The methods treated here should not be confused with inexact Krylov methods
for solving linear systems. These methods require that the products used to form the
Krylov sequence be initially calculated to full accuracy but allow increasingly reduced
accuracy as the method converges. For more see the excellent survey by Simoncini and
Szyld [8].

In Section 2, we give some basic results from perturbation theory and state the
assumptions under which we will analyze the methods. In Section 3 we give the analysis
of the RA method and in Section 4 we give the analysis of the SIRA method.

Throughout this paper ||- || will denote the vector 2-norm and its subordinate matrix
spectral norm. We assume that

All eigenvectors and Ritz vectors, as well as the matrix A, are normalized to have
norm one.

2. Preliminaries
In this section we establish the base for our analysis. To begin with we suppose that:
The target eigenpair (A, z) is simple.

We will need some results from the perturbation theory of eigenpairs. Let (z X) be
a unitary matrix whose first column is z. Then

(;) Alz X) = (3 ff) , (2.1)
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where

B =2¥AX and L=X*AX

We will call the decomposition (2.1) a SCHUR REDUCTION OF A FOR A.3

Lemma 2.1. The matrix A\I — L is nonsingular and hence
sep(\ L) & (A — D)7~ > 0. (2.2)

If A = A+ E, then for all sufficiently small E, there are constants Cy, Cy, and Cj,
depending only on ||A|| and sep(\, L), and a Schur reduction

(5 )4 0= (3%,

A=A <GEl, |L-L|<CLlE|, and |-zl <Cy|E]l.

such that

Moreover,
sep(X, L) > sep(A, L) — [A = A| — || L - L].

(This last inequality holds for any X and L.)

Proofs may be found in [10, §1.3].
A second result concerns the relation between the norm of the error in a normalized
approximation z to z and the norm of its residual

r=Az—pz, p==z"Az (2.3)
It is well known that the above value of g minimizes 7.

Lemma 2.2. Let z be a normalized approximation to xz and let r be defined by (2.3).
Then
Il < 2]z — |- (2.4)

Furthermore, for any u,

1 : Il
—|lz —z|| £ |sinL(x,2)| < ————. 2.5

35S0 called because it is the first step in Schur’s unitary reduction to triangular form.
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Proof. For (2.4) we have

7]l = | Az — pz|
< ||Az — Az|| by the optimality of
= ||A(z —z) = Mz — z)|| since Az = Az
<2||z — x| since || 4[], || < 1.

For a proof of (2.5) see [3, 4]. m

We now turn to the technical assumptions that underlie our analysis. We will state
them here for the RA method and modify them in §4 for the SIRA method.
In the course of the RA method, we compute the residual

Tk = Az — pgzk
with an error. More precisely, we will make the following RELATIVE ERROR ASSUMPTION.

Let
Fr =1k + fr,
be the computed residual. Then there is an € (independent of k) such that

Il _ v
Trell < (26)

Note that € is a free parameter to the extent that we can control the accuracy of the
computations. To stress the dependency of the RA method on € and A, we will write it
RA(A). Note that RA(A) is the exact RA method, which is equivalent to the ordinary
Arnoldi method.

The analysis is based on the following fact, established in Lemma 3.1. There is a
matrix Ej such that Uy from RA(A) is the basis for the Krylov subspace Ky generated
by RAg(Ay), where

Ak = A+ Ej.

We will further assume that
There is an integer constant C such that

|1 E|| < eC. (2.7)

Thus k steps of RA(A) produces the same subspace as k steps of RAg(A + E)). More-
over, the size of the perturbation Ej is proportional to € uniformly in k. Although
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there is considerable empirical evidence for the truth of this boundedness assumption —
at least for reasonably restricted values of k— we have been unable to prove it. This
matter is treated further in the appendix to this paper.

In describing the strategy of our analysis, we must be careful with our notation. We
will denote by (g, 2zx) the Ritz pair generated at the kth stage RA(A). It comes from
the Rayleigh quotient

Hy, = U AUy

which we will assume to have a Schur reduction of the form

* *
Wy 7y _ Mk G
(g ) e w0 = (5 )

We assume that there is a constant v > 0 such that

sep(ik, Pr), sep(A, L), sep(uk, L) > 7. (2.8)

_ If Ej is sufficiently small, by Lemma 2.1 we can assume that A, has an eigenpair
(Ak, Zx) and a Schur reduction

(;%) Ap(@p Xy) = <)~Bk %{) : (2.9)

Note that as Ej — 0, the Schur reduction (2.9) approaches (2.1).
The Rayleigh quotient at the kth stage of RAg(Ag) is

Hy, = U AUy,

which we assume has a Schur reduction of the form

(;%) Hy (i W) = (%k %{) (2.10)

Since Hy, — Hy as E; — 0, by Lemma 2.1 and (2.8) we may assume that for F}
sufficiently small, we have

Sep(ﬁk,ﬁk), Sep()‘ai’k)a Sep(/]’kaL) > ;?7 (211)

where, say, 7 = 0.97.

The reader should note that Z;,_; is not the (k—1)th Ritz vector of RAg(Ay); rather
it is the (k—1)th Ritz vector of RAg(Ak_1). To put it another way, if we think of an
array whose jth row is the sequence of Ritz vectors of RAO(A]-), then we have selected
the diagonal entries in that array and named them Zi,Zs,.... Similarly for the other

values associated with the Aj.
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Finally, we need a motor to drive the convergence of the RA method. One possibility
is to mimic existing convergence theory. But as we have pointed out, This theory is
rather weak. Instead we will assume that RAy(A) converges and use that to prove the
convergence of RA.(A).

Specifically, denote the Ritz pairs of RAy(A) by (u,(co),z](co)) and suppose there are
constants ki > 0 such that

(0)
|z’ — || < K.

(Since ||z7g0) —z|| = 0, the K converge to zero in n steps. But for our results to be
interesting, the kj should behave like the the first plot in Figure 1.1). By the continuity
of the RA algorithm,* if &, = 1.1k, then for E}, sufficiently small, we have

|2k — Zk|| < R (2.12)
By (2.7), we can control the sizes of the Ej by reducing e. Hence we can assume

There is a constant Ceps, such that if € < Ceps then (2.8) and (2.12) are satisfied.

In what follows it will be tacitly understood that € < Ceps. In addition, we will readjust
Ceps from time to time to insure that certain conditions obtain.

Our assumptions imply the convergence of the Z; — Z; [conditioned on the conver-
gence of RA((A)]. What we want is the convergence of zy — z. To get from here to
there we use the inequality

2 — zll <2k — Zill + [z — Zll + | Tk — |- (2.13)

The converge analysis of the next two sections amounts to computing suitable bounds
on ||z — Z|| and ||Zx — .

A final word on the assumptions made in this sections. Although they may appear
arbitrary, they are all but one quite natural. The relative error assumption (2.6) is less
an assumption than a statement that we intend to compute the residual to a specified
accuracy. The assumptions in (2.8) is just what we would expect of a well-behaved
Arnoldi iteration, and the bounds in (2.11) follow from them by a continuity argument.
The assumption (2.12) says that the shape of the convergence curves is not affected
by perturbing the matrix by a small quantity. In fact, you are invoking (2.12) if you
believe that single and double precision computations exhibit the same behavior up to
the point where the single precision computation stagnates. The curves in the first plot
in Figure 1.1 confirm the assumption for ¢ = 1073.

4There are two ways this continuity can fail. First, by the appearance of an invariant subspace, noted
in footnote 1, which we have excluded. Second, by a failure of the Rayleigh-Ritz procedure, which is
excluded by (2.11).
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The only assumption that is not justified by general considerations is the condition
(2.7) on the perturbations Fy. It is essential to our analysis, and we have not been able
to prove it—although in the appendix we give some informal reasoning to why it is
likely to be true.

3. Convergence of the residual Arnoldi method

At each stage of RA¢(A) we compute a candidate Ritz pair (ug,zx) = (uk, Ugwy). We
then compute its residual Az — pugz, with error, so that what we actually compute is

T, = AUpwy, — ppUgwy, + fi,

where fj satisfies the relative error condition (2.6). This contaminated residual is then
orthonormalized against Uy to give

(I -UUS7 (I —UU¥)i

U = — 3.1
S T AT P (3:1)

The following lemma delivers the Ej promised in Section 2.

Lemma 3.1. There is a matrix Ey, defined by (3.5) below, such that Uy, is a basis for
the kth Krylov subspace generated by RAy(A + Ey).

Proof. Write
(I = UUF)re = (I = UpUF) (e + fr)
=1y — Ukg + firs
where
gk =Uirk and fi = (I — URUR) fi-
Then from (3.1)
pruk+1 =k — Urge + fr-

Since r, = AUgwy — prUgwy, we have ppug1 = AUgwy, — ppUgwi — Ukgr + f,g-, or

AUgwy, = Ug(prwy, + gk) + pruk+1 — fir- (3.2)
Now let
9j
g] = Pj ) .7 = ]-a 7k -1
Og—j—1
and let
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Also let W, be the upper triangular matrix formed from the w;. Then from (3.2)
AU Wy = Uy (Wi, My, + G) + pkukﬂe;ck — FkJ‘,
where
My, = diag(p1, ..., pr) and  FiF = (fi" - fih).

Since we have explicitly excluded the case where the iteration terminates, the diagonals
of W}, are all nonzero. Hence we can write

AU = Uk(WkMk + Gk)Wk_l + Z—]I‘;uk+1e,t — FkJ'Wk_l, (3.4)

where wy, is the kth diagonal of Wi. If we set
E, = FrW, 'Uf, (3.5)

then
(A + Ep)Uy, = Up(WiM + Gp)W, " + Z—’;uk+1e,t. (3.6)

Now the matrix (Wi My, + Gp)W,~ ! is upper Hessenberg. Hence (3.6) is an Arnoldi
relation, which establishes the lemma. m

There are two comments to make about this lemma. First, there are many matrices
E}, that will make U), a Krylov subspace of A+ Ej, and it is easy to calculate the one of
minimal norm. However, the matrix defined by (3.5), though not optimal, has special
structure, which we will use in establishing the convergence of the RA method.

Second since the residual r; from a Ritz approximation is orthogonal to Uy, the
vectors g; are zero. Equivalently, the matrix G, is nonzero only on its subdiagonal. We
have included these vectors in the definition of Ej, because in the analysis of the SIRA
method they are nonzero.

We now turn to bounding the terms in (2.13), starting with ||zx — Zg||. It turns out
this quantity is zero.

Lemma 3.2. We have
(k> 2) = (i, 2.

Proof. From (3.6) is follows that the Rayleigh quotient for Ay, is
Hy = (WpMy + Gr)W .
On the other hand from (3.4) it follows that that the Rayleigh quotient for A is

Hy, = (WM + Gp)W, ' - U Frw L
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Hence

prwi = Hywy,
= (Wp My + Gk)Wk_l’wk - U:Flg‘Wk_lwk
= (WeMy + Gp)W, 'wi — Uf Filep
= (W My + Gk)Wk_lwk since U:f,g- =0
= Hywy,.

Since py is a simple eigenvalue [see (2.8)], this implies wy = Wy, up to a scaling factor.
The result now follows from the fact that zp = Uywy = Uy, = 2. B

The proof of this lemma suggests why the Ritz vectors other than the candidate
stagnate. Specifically, the proof depends on the fact that the primitive Ritz vector
wy, satisfies W~ Lwy, = ey, a relation which is not satisfied by the other primitive Ritz
vectors.

If it were the case that £} — 0, then we would be finished. For then we would have
Zr — z; hence by (2.12) and Lemma 3.2, z; = 2, — z. Unfortunately, the Ejy do not
diminish. For from (3.5), we have || Ex|| = ||F-W, '||. Since W, ! is upper triangular
and its nonzero elements remain unchanged as k increases, it follows that the columns
of F;- remain unchanged as k increases. Thus, the norms of all the || F;-|| are bounded
below by the norm of the first column.

We now turn to bounding ||Zx — z|| in (2.13). We do it in two steps.

Lemma 3.3.
|12 — =l < V257! Bz

Proof. We have
Tl — all < |sin Z(z, Zy)] by (2.5)

_ ez — ]
sep(A, Lg)
_ |I(A+ Eg)z — Mz
B sep(\, L)
_ Bkl
a Sep()‘ai’k)
_ 1Bl
Y

by (2.5)

by (2.11). m

The next lemma bounds ||Ez||.
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Lemma 3.4.
| Bgz|| < ellri] (1 + 5" Cg).

Proof: Let z = a2z + qi, where a, = 2z is the cosine of the Z(zy, z). Hence, ||| is
the absolute value of sin Z(zg,z). From (2.5) and(2.11)

lgell <3 Ikl (3.7)

Now
Eyx = apEyz + Ergy

= ap FF WUk 2y, + Epqy,
Since z = Ugwy, the first term becomes akFléLek = akf,j‘. Hence
1Bl < el Il + 1Bk llgx
< ellrgll + A | Bklll|lrell by (3.7)
< |l + €y Crllrell. by (2.7). m
Combining the results of these two lemmas we get
|z — Zx || < eCxllrell, (3.8)

where

Cy =V27 (147 'Cg).

Theorem 3.5. Let € < Ceps. If

Te def 2¢Cy < 1, (3.9)
then )
lox = all < 5 Tk (3.10)
s
Proof. From Lemma 3.2 and (2.12), we have
2k = Zkll = 12k — Zkll < R

Hence from (3.8)

2k — 2| < ll2k — Zxll + |Z% — =]
< i+ 37elIrll
< R+ Tellze — x| by (2.4).
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If (3.9) is satisfied, we may solve this inequality to get for ||z — z|| to get (3.10). m

If e < 1/(2C%), the condition (3.9) will be satisfied. Moreover, when e is sufficiently
small, the bound (3.10) is effectively x; —that is, RA.(A) has essentially the same
properties (with respect to the target eigenpair) as RAg(A), which agrees with the
numerical experiments in Section 1. Of course, the constant Cy is not computable, and
even if it were it would probably be too large. Thus a workable value of ¢ must be
determined by trial.

4. Analysis of the inexact STRA method

We now turn to the analysis of the STRA method (1.7). The analysis parallels the
analysis of the RA method — with some differences.

1. The error in SIRA¢(A) occurs in the computation of vy = Srg, not in the compu-
tation of 7.

2. The backward error is in S, and we must bound a corresponding error in A.

3. In addition to the separation hypotheses (2.11), we must postulate additional ones
for S.

4. The vectors z; and Zx are no longer the same, and we must bound their difference.

In what follows we will use the notation and assumptions of §3.
Regarding item 1, we assume the following.

Let
v = St = (A —ol) 1.

Then

U = vk + i (4.1)
where

[1fell < ellogll,

Since |Jvg|| < ||S]l||7%]|, we also have
1 f&ll < ellSHlirell- (4.2)

We now turn to the construction of the backward error matrix Ej in S. In order to
do so, we impose a condition on the Ritz values py of SIRA(A).

|uk—0'|277>0. (4.3)
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Lemma 4.1. There is a matrix Ej, defined by (4.4) below, such that Uy spans the
Krylov subspace generated by the kth step of SIRAy(S + Ey).

Proof. From (4.1) we have
(I = UU")oy, = (I = UpUR) (ve + f) = vk — Ukgr + fir
where g, = Ufvy, and fi- = (I — UpUS) i If we write ppug1 = (I — UU¥)%y, we get
vk = Ukgk + prtrs1 — fi-

Now
SA=(A-ol)'"A=(A—o)"'(A=0cl) + oIl =T1+08.

Hence
vg = S, = S(Azg — przx) = 2 + (0 — k) Sz

It follows that
2+ (0 — ) Szk = Upwy, + (0 — ) SUgwi = Upgi + pruks1 — firs
or equivalently
(0 — 1) SUpwi = Uk(g — wi) + prtss1 — fi-
Using the definition of G, and W), above [see (3.3)], we get
SUW (oI — My) = U(Gy, — Wi) + pruks1es — Fi,
where
My, = diag(p,.., ) and  Fy = (fi" -+ fi).
Postmultiplying by (o1 — My)™'W, ! whose existence is ensured by (4.3), we get

SU, = U(Gy, — Wi) (oI — My)"'W ' + © _”l’jk)wkuke;: — FiH (oI — M)~ 't
Hence if we define R
Ey = Fy (oI — My)"'W,'UY, (4.4)
we have
(S + Ep)Uy, = Up(Gr, — Wi) (oI — M)W, ' + (U_pmuk-i—lelt- (4.5)

The matrix (G, — Wy) (oI — M) "W, ! is upper Hessenberg. Hence (4.5) is a Krylov
relation for )
Sy = Sk + Ej,
which establishes the lemma. m

As with the case of the RA analysis, we will make the following assumption.
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There is a constant CE such that
| Bl < €C.

This means that we can adjust Ceps so that
€ < Ceps = Sy, is nonsingular. (4.6)

Since the Ritz values in the SIRA method are calculated from A rather than S, we
need to derive a bound for the perturbation Ej in A corresponding to E,. Specifically,
let

Ak = Sk_l + UI.
Equivalently
gk = S+Ek = (Ak — 01)71.

Premultplying by S'k_ 1 and postmultiplying by S, we get
A—ol = (Ak —ol)+ (Ak — UI)Ek(A —ol),

or

Ap = A— (A — o) Ex(A —ol). (4.7)

Hence
Ek:Ak—A:—(Ak—UI)Ek(A—UI). (48)

Now we cannot use (4.8) directly to bound || Ej ||, since A depends on Ej. However,
if we write

Ep = —EyEy(A—ol) — (A— ol)EL(A - o),

then
BRI = |ER 1A —oTl]) < ||A = oT||?|| Ex]l.

If we adjust Ceps 50 that ||Ey|||A — oI|| is less than 1/2 whenever € < Ceps, then
with

C = 2C3||A — oI|?

we have
| Ex|| < eCr.

It is worth noting that, since in practice o will approximate an eigenvalue of A, the
quantity ||A—oI|| is unlikely be much greater than 2||A||. Consequently Cg, and Cf are
approximately of the same order of magnitude.
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At this point we must introduce two more separation assumptions. Let 6 = (A—0o) !
be the target eigenvalue of S. By Lemma 2.1, if E}, is sufficiently small, S, = S + Ej,
has a Schur reduction of the form

PN a oo (O BF
(e) 3 %0= (5 5),

Then we assume that we adjust Ceps so that

€ < Ceps = sep(f, Ni) > 7. (4.9)

The second assumption concerns the Rayleigh quotient H &, whose Schur reduction
is given by (2.10).

Let
fir, = wy Hywy. (4.10)

Then we assume that
sep(fig, Nk) > 7. (4.11)

As in the RA analysis, we have two sets of candidate primitive Ritz vectors: wy
from Hj, = U} AU}, and 1wy, from Hy, = U}f AUy Unlike the RA case, however, they are
not the same. But we can bound the difference.

Lemma 4.2.

”/J]k o wk” < 62\/5 ||A — UIH”SICHHTICH

Proof. From (4.7) we have
fIk = Hk - U]::k(;lk - UI)Ek(A - O'I)Uk
We will regard wy, as an approximation to wy. Let py = Hywy — fixwg. Then by (2.5)
and (4.11) we have
i — ] < v2 221 (412)
Now
pr = Hywg — prwy

= Hywg — U (Ag — o) Ex(A — oT)Upwy — prwy
= U} (Ay, — o) Ex(A — o) Ugwy,.
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Since By = Fi- (oI — My)~'W, 'U}, we have

Ey(A — oD)Upwy = Fj-(oI — My) "W UF (A — oI)Upwy,
= F- (oI — My)~'W, '(Hy, — oI)wy
= Fy- (o — M)~ IWk Lwg (u — o)
= Fi- (o] — My)"*W; ' wi (i — 0)
= _ij_ek = _f]c

Hence from (4.12)

g — e < V22
Yk

< \/§||U/f(f~1k —ol)fill
- Vi
o L
S\/§||Ak U~I||||fk I
v

A, — ol
ge\/i” k 04|||Sllllrk|| by (4.2).

Because Ay, = A + Ej, we can adjust Ceps so that | Ay — oI|| < 2||A — o1||. Hence

A—oI||S
g — | < 2yl A= LIS Tlmell - g
v

If we set

0, — oz A= TllISI

then we have
12k — 2z&l| < ellril|Ca, (4.13)

The next two lemmas parallel Lemmas 3.3 and 3.4 in the analysis of the RA method.
As usual, let = be the target eigenvector, and let Zy be the corresponding eigenvector
of Ay. Note that z is an eigenvector of S and Zj is an eigenvector of Sj.

Lemma 4.3.
@, — z|| < V277 Egz]). (4.14)
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Proof. We have

1
—||Zg — z|| <L |sinL(z, T by (2.5
\/in <] (z, Zi)| y (2.5)
< ISk = 0] by (2.5)
Sep(eaNk)
Ey)z -6
S+ BJa=oa] |,
Y
E
_ 1Bl
The second lemma bounds ||Exz||.
Lemma 4.4. Is| ¢
IBuc < el (1214 52, (4.15

where 7 is defined by (4.3)

Proof: Let z = a2y, + g5, where ay = 2}z is the cosine of the Z(z, z). Hence, ||gxl| is
the absolute value of sin Z(zg, z). From (2.5),

7kl

<A Irell-
sep(uk, L)

llaxll <
Now . . .
Eyz = apFEpz + Epgy
= OékaJ‘(O'I — Mk)—1Wk_1U,:‘zk + Erqx
o,

= ka-l‘Eka-
o~ Pk

Hence

. ok | -
|Epz|| < r _Mk|||f1f|| + || Ek |l llgx |

€S E
ISIrell [l
Ui Y
< Sl , <Callell
Ui Y
In follows from (4.14) and (4.15) that if we define

o2 (181, %)

¥ Y] ¥
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then
|12k — z|| < ellrgl|Cx. (4.16)

We are now in a position to prove the convergence of STRA(A).

Theorem 4.5. Let
Te = 2¢(C, + Cx).

If 1. < 1, the

K

26 — || < (4.17)

1—7.~

Proof. We have

lzk — 2|l < 12k — 2kl + |l2x — 2|l + |2 — 2|

< &+ [z — 2l + |13k — 2| by (2.12)

< g + e|lre]|(Cp + Cx) by (4.13) and (4.14)
= Rk + el

< B+ ez — | by (2.4).

If 7. < 1 we can solve this inequality for ||z — z|| to give (4.17).

5. Comments

We have established the convergence of the RA and SIRA algorithms under conditions
that are likely to hold when the underlying problem is well behaved. Unfortunately, we
have not been able to prove the boundedness of the backward errors F; upon which
the convergence proof is based. The following appendix gives some insight into this
problem.

The practical use of the algorithm requires that we be able to switch targets once
satisfactory convergence has been achieved for a given target. This situation is illus-
trated by the third plot in Figure 1.1. Unfortunately, this is a more difficult problem
than proving convergence to a single target, and we have not treated it here.

The proofs are relative, in the sense that they assume that the the error free al-
gorithm behaves well for the problem at hand. This means that we do not have to
intermingle general convergence proofs for Krylov sequences with the particular conver-
gence proofs for the RA and the SIRA methods. We feel that this approach may be
useful in other contexts.
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6. Appendix: The matrix F;

Throughout this paper we have made the assumption that the matrix Ej is proportional
to e. Although we have not been able to prove the empirically observed fact, in this
appendix we will analyze a specific example that will show why it might be expected to
hold in general.

From (3.5), Ey = F-W, 'Uf. Since Uy is orthonormal,

1Bl = 17 Wi -

The natural approach to bounding || Ex|| is to apply the submultiplicative norm inequal-
ity to get the bound ||Eg| < ||F,€J-||||Wk_1|| and then determine bounds for ||F-| and
W, || Unfortunately this approach will not work because ||W; || grows with increas-
ing k. Thus we must investigate the interaction between the matrices FkL and Wk_l. To
do this we will make some simplifying assumptions.

We will consider the kth stage of the RA method, and suppose that n is much
larger than k, so that for practical purposes the vector z can be considered infinite
dimensional. We will work in the U, coordinate system and assume that Uz has
components that decrease geometrically. Thus we assume there is a 8 € (0,1) such that
(in the Up,-coordinate system)

s=ylg|, v=Vi-p

We will also assume that the primitive Ritz vector has the corresponding components
of z; i.e.,
1

we=w| 0| =i,

ﬁk—l
This amounts to saying that the Rayleigh-Ritz procedure returns the best possible

approximation from the column space of Uy.
It follows that the matrix Wj can be written

11 --- 1 -
g - B V2
Wi = . }

pE-1 Yk
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The inverse of Wy is

-1
Yk

The first column of Py, = F, kJ_Wk is p1

e

IBi*l

Since «y; > 7, we have
et <

61

The Residual Arnoldi Method

_5—1
13—1 _5—2

616*2 _ﬁkfl

,Bk_l

= fi*. The ith column is

fz'J_ iL—l
(-5
(LFE 1+ 12 D (6.1)

~Ri—1

Thus our next step is to bound ||f;]|. By the relative error condition (2.6) and by

(2.4), we have

Now in the U,-coordinate system

lz = zl* = (i -

)2(1 + ﬁZ 4. .I82(i71)) _I_,YQ(IBQZ + ,62(i+1

1
11 < NAill < ellrill < 2elle — z]l.

The first term in this expression can be written

(vi —7)?
v

The second term is simply 3%. Hence

= (1_.
—(1- Vi)

S (ﬂ?i)?

e
Yi

;

S IBZi.

IF11l < 2v2¢8°.

It now follows from (6.1) that

1P| < 2v2¢(8

+ B

2v2

—(i-1)
BT = T(l + B)e.
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And finally

7l < 22 14 g (62)
Under the assumptions of this appendix, the columns of kal increase in size while
the columns of FkJ- decrease in size. The decrease is exactly enough to compensate
for the increase in the columns of W, !, Here the bidiagonality of W, Ujs critical. Tt
prevents large values of the kth of W, ! column from combining with the large columns
at the beginning of FkJ- In our numerical experiments we do not observe this strict
locality. However, the larger elements of any column of W~ 1 are near the diagonal,
and the elements decrease as one moves up the column enough to compensate for the
increasing norms of the fiL as one moves to the beginning of FkL
If (6.2) is to be believed, the bound assumed in (2.7) must take the form

2v2n
y

| Bl < (1+ B)e, (6.3)
in which the factor 2v/2n can be quite large. Fortunately, our proofs are predicated on
the convergence of RAyp(A), which restricts the values of k to be less than the value
kena1 at which we declare convergence. Thus we can assume a bound of the form

2 V 2kﬁna,l
Y

1Bkl < 1+ B,

which for large n may be considerably smaller than (6.3).
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