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Abstract

We consider the standard discrete-time slotted ALOHA system wiéh a finite number of
buffered terminals. The ;tability (ergodicity) region for this system is known for the case of two
terminals and for the case of infinite, but symmetric, terminals. In this paper we introduce
a new approach of studying the stability of this system by means of a simple concept of
dominance. As a result we show that the stability region for the case of two terminals can be
obtained in a very simple way. Furthermore, we obtain lower (inner) bounds for the stability
region of the system with an arbitrary finite number of terminals. These bounds are superior
to the ones already known. Finally we point out a similarity betwen these stability results
and the achievable region of the no-feedback collision channel that may suggest a connection

between the two problems.
1. Introduction

Interacting quéueing systems occur naturally in multiple access channel models and shared
computer processor systems. As is the case with most non-standard queueing systems, these
interacting queues are difficult to analyze. Their study has received much attention lately
owing to their importance in applications, as well as to their theoretical interest. In [1] Fayolle
and Iasnogordski displayed the inherent difficulty of the analysis of such systems. In [2] the
importance of interfering queues in multiple access systems was recognized. In (3] Sai‘da.wi and
Ephremides introduced an approximate model for the analysis of the slotted ALOHA system.
In [4,5] Sidi and Segall introduced different approximations that led to an exact analysis of a
simple 2-user system. Szpankowski in [6,7] has considered the ergodicity region of the slotted
ALOHA system and obtained lower bounds. Tsybakov and Mikhailov [8] obtained sufficient
or necessary conditions for the stability of this system for the case of M users and, based
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on a result by Malyshev [9], were able to obtain both neﬁwsa.ry and sufficient conditions for
ergodicity. Finally, in a number of papers that have appeared in the literature since the
early seventies it has been established that in the classical, bufferless, symmetric, infinite-user
- ALOHA system the stability threshold is e~ [10,11,12].

In this paper we consider the case of discrete-time, slotted ALOHA system with M users
each of which has a buffer of infinite capacity to store incoming packets. The assumptions of
the model are the usual ones. Time is slotted and the transmission time of a packet is equal
to one slot. Each user receives (generates) packets according to a Bernoulli process. The rate
of arrivals is A; for the ith user. Arrivals to different users are independent. In each slot user i
attempts to transmit the head-of-the-line packet with probability p;, provided the buffer is not
empty. Based on instantaneous ternary feedback (collison, idle, success) each user determines
the outcome of the attempted transmission. Simultaneous transmission attempts by two or

more users result in collision.

" We are interested in determining the region of values of the arrival rates A;,s =1,.... M
for which this system of M queues is stable.* We introduce a new approach in the study of
the stability question. This approach consists of considering hypothetical, auxiliary systems
of queues that closely parallel the operation of the system of interest but dominate it in a well-
defined sense. As a result, we are able to determine the stability region for the case of M=2,
that was obtained in [8], in a very simple way that illuminates the relationship and interaction
between the two queues. This is done in Section 2. Furthermore, by using the same approach
in a slightly more elaborate form we are able to obtain improved sufficient conditions for the
stability of the system of M queues, for any finite M. This is done in stages. In Section 3
a first set of bounds is obtained from the direct extension of the dominance concept as used
in Section 2 and in section 4 the more elaborate set of dominating systems is used to lead
to the derivation of the final set of bounds. Finally in section 5 we relate these results to
the achievable region of the collision channel without feedback [13,14]. Some of the"techniea.l
proofs have been moved to appendices for the sake of clarity and continuity in the main text.

2. The Dominant System for the Case of 2 Queues

" Let us denote by S the system of queues thaf is the object of our study as described in

* the precise definition of stability is provided in the next section
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the introduction. Let Q; denote the queue size at the ith terminal, § = 1,2. Clearly, the queue
sizes evolve as a 2-dimensional random walk in the first quadrant as shown in Fig. 1. The
transition probabilities of the underlying Markov chains can be easily obtained, based on the
rules of operation of the ALOHA system. In fact this chain is irreducible and aperiodic. What
makes the analysis difficult is of course the infinite size of the state space and the fact tﬁat
the probabilities of transition on the boundaries are different from those of their counterparts
in the interior of the quadrant. This is shown, for example, in the figure for the transition
(Q1,Q2) — (Q1—-1,Q3). If these transition probabilities were identical, regardless of whether
Q32 = 0, the system of two queues would decompose nicely* and each queue could be separately
analysed. This observation motivates the introduction of an auxiliary hypothetical system that
has precisely this propex:ty. Consider a new system, S2, consisting of copies of the two queues

of S, with the following properties:

1) arrivals at queue ¢ in the new system occur at exactly the same instants as in the
original system, s = 1,2;
2) the “coin-tosses” that determine transmission attempts at queue s,s = 1,2, have

exactly the same outcomes in both systems;

3) whenever Q; = 0,1 = 1,2, terminal ¢ continues to transmit “dummy” packets with
the same probability p;, thus continuing its interference with the other terminal,

whether it is empty or not.

It is clear that the queue sizes, at either terminal, in the new system will never be less than
their counterparts in the original system, provided they start from identical initial conditions
in both systems. In the new system S? the “service” rate seen by, say, terminal 1 is always
equal to p;(1 — p2) while in the original system it oscillates between the values of p; and
P (1 — p2) depending on whether terminal 2 is empty or not.

Definition. The stability region of either system is the set of values of A;,s = 1,2.for which
the underlying irreducible, aperiodic Markov chain (Q1,Q3) is ergodic.

Clearly, the strong stochastic dominance of S? on S implies that the stability region of
S? inner-bounds that of S. The stability region of S? is easy to determine. Each terminal

* Note, however, that the queues would still be statistically dependent since the transition
(Q1,Q2) — (Q1 — 1,Q2 — 1) has zero probability.
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operates as a discrete M | M | 1 system and is therefore stable if and only if

X < [[(1-2))
I
Thus the stability region of S? is the rectangle shown in Fig. 2. This is of course a poor bound
for the stability region of S because S? dominates the original system too strongly. We would
like, to draw attention to one observation before proceeding any further. Note that each queue
behaves identically in both systems so long as neither queue empties. Thus if both systems
get started with identical, non-zero queue sizes, they will evolve following exactly identical
trajectories at least until one of the queues empties. This observation plays a crucial role in

some of the proof arguments that will follow.

Now, let us consider another hypothetical, auxiliary system S!, in the hope of obtaining
a dominant system that does not dominate the original system as strongly and that can lead,
therefore, to a closer tracking of the original system’s behavior and to a better bound of its
ergodicity region. The system S?! is identical to both S and S? with respect to arrivals and
attempted transmissions (that is, it has properties (1) and (2)) but differs with respect to
the behavior when the queues empty. In this system queue 2 behaves as in S while queue 1
behaves as in S?; that is, only queue 1 continues the irresponsible transmission of “dummy”
packets when it empties. As a result, queue 1 sees a “service” rate that oscillates between p;
and p;(1 — p3) depending on whether queue 2 is empty or not, while queue 2 always sees a
worst-case service rate of p3(1 — p;) regardless of the status of queue 1. It is clear that S!
dominates S since either queue will have a successful departure in S whenever it has one in
S, but not necessarily vice-versa. It is also clear that in S? the stability of queue 2 is easily
determined by the fact that it operates as a discrete-time M | M | 1 system. Thus it will be
stable iff

»”*

Az < pa(1-p1) (1)

Let us therefore assume that (1) is satisfied and let us determine the criterion for the
stability of queue 1. Terminal 1 sees a “service” rate that has the value p; when terminal 2 is
empty (and that happens with probability 1 — ;’-(%1-;7)- according to the well-known M | M | 1
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formula) and the value p; (1 —p;) when terminal 2 is non-empty (which occurs with probability
’—’-(f‘_‘_m). In appendix it is shown that a necessary and sufficient condition for the stability
of queue 1 is that the arrival rate A; be less than its average service rate, thus extending the
well-known result for a G | G | 1 queue [15]. Applying this result here yields

Az

A; < 1- "2
1 Pl( p(l Pl)

_(TT)-) +p1(1 - p3)

which can be written as

M <m(t-2i) ()

Thus the stability region of S? is as shown in Figure 3.

What is important is that the boundary of the stability region given by Eq. (2) is not
only a bound for the stability region of S but coincides with it. The proof relies on the
observation made earlier that, so long as the queues do not empty, systems S and S! are
indistinguishable. Here is the argument: Given that A; < p3(1 — py), if for some A; queue 1 is
stable in S, it is also stable in S by virtue of the dominance. Conversely, if for some ); queue
1is unstable in S!, then the queue size @;(n) will grow to co without emptying with finite
(non-zero) probability.* Thus, not all sample paths of Q(n) correspond to transient behavior
with infinitely often visits to 0. However, so long as queue 1 does not empty, S* and S behave
identically if started from the same initial conditions. Thus the same sample paths that go
to oo without visiting O belong to the evolution of queue 1 in system S. Therefore queue 1 is

unstable in system S as well.

Notice that by reversing the roles of the two queues in system S, that is by assuming
that queue 2 is the one that transmits dummy packets when it empties, we obtain 3 stability

region given by

AL < pi(1—p3)

* This follows from the fact that queue 2 is stable in its own right and decoupled from queue
1; nevertheless an independent proof can be supplied as in [16].

5



and

A2 < pz(l - 1 ilpz) . (3)

The branch of the boundary that corresponds to Eq. (3) can be shown to be part of the
stability region of S in a similar fashion. Thus the union of the branches corresponding to

Eqs. (2) and (3) defines the stability region for S as shown in Fig. 4. This is identical to the

region obtained by Tsybakov and Mikhailov in {8] through use of Malyshev’s lemma. Note
that by taking the envelope of these regions as p; and p, vary in [0, 1] we obtain the curve C,
shown in Fig. 4, which is analytically described by

Vaii+v=1 (4)

or parametrically, by

A1 =p1(1-p3)
Az = pa(l—p1) (5)
rrtp2=1

The idea of this simple derivation as well as the choice of dominant systems was first
briefly reported in [16].
8. The Dominant System for the case of M queues

Now consider the case of M > 2. The approach described in section 2 is insufficient to
yield the ergodicity region of the system. It does help however in producing bounds that are
superior to the ones known to date. In this section we will develop this dominance approach
and show how these bounds can be obtained.

Let

Qi(n) = queue size at terminal i at time n
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D;(n) = number of departures from terminal i at time n,s = 1,...,M,n = 1,2,....

and let

P = PrlQi(n) = K] (6)

pi(n) = Pr{Di(n) = 1] ()

Thus p;(n) is the “service” rate at terminal i at time n. It clearly depends on the status of
the queues at the different terminals and assumes values between p;, when all other queues
are empty and p; [];.;(1 — p;), when none of the other queues are empty. Let /i;(n) denote
the average value of u;(n). We further define two types of events of interest:

éx(n) = {Qx(n) = 0}, i.e. the event that at time n the kth queue is empty (8)

and

Eukan)= [ &) [ &») (9)

‘({k; ,...,k.) "(hx.....k.}
i.e. the event that at time n the only empty queues are the ones corresponding to termi-
nals ky,...,k.. Also note that the family of everts E forms a partition of the sample space.

Furthermore we have

&) =Em U U B NU-UL U Bner 0 - U Br2s,.cbma(n),

k k Kyoeees
1# all distinct

. (10)

In Appendix 1 it is established that the limits of y1;(n) as n — oo exist; we denote them

by p; and their average values by j;. Let us consider also the system S 1 defined in a manner
similar to that of the preceeding section. Namely, S is identical to S in all respects (arrival
instants, transmission attempts, etc.) except that terminal 1 continues to transmit “dummy”

packets, even when it is empty, with the same probability p; as when it is not empty. All other
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terminals behave as in S. We define the quantities Q!, D!, P!, and u! as above but with the
use of the superscript “1” to denote reference to system S!. Similarly we also consider for
reference purposes the system S™, in which all terminals continue to transmit when empty.

This system is the generalization of S? as defined in Section 2.

Our goal is to derive sufficient conditions for the stabilityof S! and to conclude, by virtue
of the dominance relationship, that these are also sufficient conditions for the stability of S.
We shall focus on queue 1. To “decouple” its stability status from that of the other queues
we need to assume that the other queues are stable. Uﬁfortunately, unlike the case of M = 2,
we do not know what is the stability criterion for the set of queues 2,..., M and thus we are

forced to assume a “strong” stability status for them, namely that

X< uMEpTI(-95), i=2,.,M (11)
I#s

The validity of Eq. (10) implies stability of this group of queues under system S™ and thus
under S? and S as well.

Let B] (n) denote the event that in system S?, terminal 1 at time n successfully transmits
a packet, whether real of “dummy”; its probability is ul(n). We shall presently show that a

sufficient condition for the stability of queue 2 in S? is

A < ¢(A2: ceey AM 3 Ply ooey PM) (12)

where ¢ is a specific function of the other arrival rates and all retransmission probabilities,
that lower-bounds the asymptotic service rate p} of terminal 1. In Appendix 2 we show that
this bound is already an improvement over these derived in [6-8]. We present the results in the
form of two lemmas that lead to a theorem. The first lemma lower-bounds u}(n), the second
lemma establishes the bound as n — oo, and the theorem establishes the sufficient condition

by making use of the results of Appendix 1.
Lemma 8.1

In the system S, the probability of a successful transmission by queue 1 at the instant n
satisfies the following lower bound inequality for all n > 1:



M M M
W) 22 [0 -2) 42 Y Priei)] - [T 1 - 2) )
= =2 12

Proof
By definition:

k1(n) = Pr(B; (n)] (14)

We apply the theorem of total probability to Eq. (14) conditioning the event B} (n) on the

2M-1 mytually exclusive events of Eq. (9). This results in the following equation:

pi(n) = Pr[B](n)] = Pr[B](n)/{E4(n)] - P[E}(n)]+

M
+ ) Pr[B}(n)/E}, (n)]- PrlE}, (n)] + .

b; =3

w+ Y Pr[Bl(n)/E}, 4, (n)) PrlEs,, . a(n)] + ..

all k; distinct

+Pr[B}(n) | 3, m(n)|Pr[E;,. a(n)] (15)

The following further decomposition is now possible.

Pr[B}(n)/Ei,,...x,(n)] .
= Pr|B} (n)/{Qi(n) > 0}, E}, s, (n)] - Prl{Qi(n) > O}/E}, ., (m)}+

+Pr[B} (n)/{Q1(n) = 0}, B}, ...s,(n)] - Prl{Q}(n) = O}/E}, _ s, (n)] (16)
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Now, if queue 1 is non-empty and of the remaining ones only queues k; through k. are empty
then the probability of a successful transmission by terminal 1is p; [];4(4,,....x,} (1 —#:). Note
that in this case the transmitted packet is a real information packet. On the other hand,
if queue 1 is empty and the status of the other queues is as before then the probability of
a successful transmission is still given by p1 [[;y,,....x.} (1 — #:)- The difference is that in
this case the transmitted packet is a dummy packet. However, we are not concerned yet
with this distinction since at this stage we seek a lower bound for the probability of successful
transmission of information or dummy packets u}(n). Besides, near saturation, all packets

tend to be information packets since, then, the queues are rarely empty.

Based on the above comments we deduce that
PBi(n)/EL, +m]=nn J] (@-2) (17)
. "'{kl okzv--kc}

Now, note that the following inequalities can be easily verified for any set of indices
kl, kz’ o--k‘ M

1= H (P +(1- Pi)) = (pe, +1- ph) H (pe+ (1 Pi)) =
h({kl ,bz ,...k.} k({h: ,E‘ ,...k.}

=l +0-p)]  JI -0+ 7E)2p [T (-p+
ke{ka ks, ko) Pk Re{ka ks,...k.}

+ I a-m (18)

'l
b({k; ,hz ,...k.}

M M M M
1= [[ls+ @ -p)1 2 [[(1-0)+ D o, [T (1-124) (19)

k=2 k=2 k=2 erd

Using eqns. (17), (18) and (19), we rewrite Eq. (15) as follows:
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M
i) 2 p1 [ (1 - ps) - PriE}(m)}+
k=2

M M M
+ Y Up: [T - 2a)} + {pape, I (2 - i)} PriEL, (9)] + -

k=2 k=2 k=3
kyxk)

M M ‘
et > [{p1 [T (1 = 2&)} + {p1p, I_I (1-p(k)} - Pr[EL, 4,0, (n)] + ...

{ky.kg,...kg)ec(3,8,...M) k=2
all k; distiact Ak,

M M M
et [ [T =2} + {3 mow, J] (1= p)}IPr(EL 5, ae(n)] (20)
k=3

§‘=2 k=32
Aytk;

Rearranging Eq. (20) and using eqs. (9) and (10) we obtain the following inequality

M M M
Bi(n) > p H(l ~pj) + Zm {p: I_I(l ~ p;)} Pr[¢} (n)] (21)

This concludes the derivation.

In the next result, we derive the asymptotic value of the bound of Lemma 3.1. The bound
is calculated on the assumption that queues 2 through M are stable.

Lemma 3.2

If

4\i<#.M=PiH(1-Pj)’ t=1.,M -
I#s

then

M M N M
lim ul(n) > 9 JJ(1-p;)+ ) _mp( - S5) [T (1-25)
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Proof:
It is sufficient to show that
. 1 Ai .
“lx_x.r:oPr[f,-(n)]Zl—“M 2<i<M

s

Note that by definition

Prl¢] ()] = Pr[Q; (n) = 0]

Since SM dominates S! we know that

P|Q}(n) =0] > Pr[QM(n) = 0]

Therefore, taking limits and using the decoupling properties of S™ we obtain

Jim Prl¢} (n)] 2 Jim PriQM(n)=0]=(1- _‘:\_;‘ )

(22)

Taking limits on eq. (21) and employing the inequality (22) we obtain the desired result,

namely

M M
. A‘.
Jdim pi(n) <pJI1-p) 42 ) (1- “M)(l - p;) = p}

=2 =2 ¢

The existence of these limits is again justified in Appendix 1.
Now we proceed to establish the main theorem.
Theorem 8.1
The system S is stable if

M M y M
M<o JJ-p)+p ) pi(1-Z5) [T (1-p)
=2 i=2 “’ :::

and

12
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Aj < pM, 2<j<M (25)

where
M
s =p; [T(1- )
i
Proof

From Lemma 3.2 we know that the R.H.S. of Eq. (24) is a lower bound for u}, hence
A1 < u} and A; < i}, According to the results in Appendix 1, this is sufficient to ensure that

PrlQi=0]>0

The inequalities (25) are also sufficient to imply that

PriQl =0]>0, 2<i<M

Thus under the hypothesis of the theorem the system S! is stable and so is S since it is
dominated by S?.

Comments

1. Recall that in System S?! we required that terminal 1 transmit dummy packets when
empty; the choice of terminal was clearly arbitrary. If we interchange the roles of
terminal 1 and terminal i and repeat the proof we will derive a similar result for a
different ordering of the terminals. In fact the union of the regions that are obtained

in this manner for all possible orderings produces a better bound.

2. Szpankowski’s results on the stability of system S [6,7] are of similar nature. In
appendix 2 we show that the stability region established in [6,7] is a strict subset
of the region obtained here. We should like to record that Szpankowski’s results
apply to systems for which the arrival rates are not necessarily Bernoulli, and in
that sense his results are more general. Nevertheless, we believe that our results

can also be easily generalized to accomodate non-Bernoulli arrival processes because
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the dominating systems S! and SM, crucial to our analysis, retain their essential

properties for arbitrary arrival processes.

3. The bound obtained in Theorem 3.1 is not satisfactory. As shown in Fig. 5, it fails
to provide values for regions of values of the );’s that are outside the strict strong
stability ones implied by Eq. (25). These regions correspond to the areas marked by
question marks in Fig. 5. Also it is clearly not very tight since on the A;-axes the
actual stability surface intersects at the points p;, p;, ps etc. In the case of M = 3,
as shown in Fig. 5, the bound is below these values by an amount equal to p; paps.

4. A Series of Dominant Systems that Yield Improved Bounds

In the preceeding section we obtained an inner bound to the stability region of S by
essentially using the same approach as in section 2 in which we were successful in determining
exactly the stability region for the 2-user system. In this section we refine our approach by

“considering a series of dominant systems that are able to track the behavior of S a little closer
then S! could. These systems permit us to by-pass the shortcomings of the bound of Theorem
3.1 and to relax the sufficient conditions for the stability of S.

Retaining the notation we have used so far we introduce now an extended set of systems.
For j =1,2,...,M we define S7 as follows:

1) Arrivals at the ith queue of S7,¢ = 1,..., M, are identical to those at the ith queue of
S.

2) “Coin tosses” that determine transmission attempts at the ith queue of Sii =
1,..., M, have identical outcomes to those at the ith queue of S.

3) For ¢ > 7, terminal i behaves exactly as in S, that is it does not attempt to transmit

“dummy” packets when empty.

4) For i < j, terminal i attempts to transmit “dummy” packets when empty according
to the following rules: with the aide of a “genie”, terminal i is informed whether
any terminal k, with k < ¢, will attempt a transmission in the slot; if yes, terminal
i refrains from attempting to transmit; if no, it attempts to transmit a “dummy”
packet with probability p;.

As a result we have a series of systems in each of which terminal 1 is afforded the first

choice to transmit a “dummy” packet, if empty. If it fails to transmit, *dummy” or real
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packet, terminal 2, if empty, is afforded the same choice. If it doesn’t transmit, terminal 3

is given the chance, and so on, up to terminal j in the system S’. Terminals with identity

number greater than j do not attempt to transmit “dummy” packets in S7.

As a result, this series of systems has the following properties.

i)

iii)

S7 dominates S7~1,5 = 2,..., M, and, of source, S! dominates S. Note that S! coin-
cides with the system S? considered in section 3 and so does SM with its counterpart
in that section. The reason for the dominance is this: Terminal j in S~ is always
silent when empty, while it may transmit a “dummy™ packet in S7. Furthermore, all
other terminals in S7~! will have a successful transmission whenever they do have

one in S7, but not vice-versa. Thus, it is clear that

Qi(n) 2 Qi (n) > Qs(n), n=1,2.35=2,..Mi=1.,M

The joint queue sizes of the M users in each of these systems evolve according to an

M-dimensional, aperiodic, irreducible Markov chain.

In system S’ the cummulative contention from terminals 1,2,....j for the use of the

channel remains fixed and equal to

J

I—H(l—p,‘)

=1

irrespective of whether any of these queues are empty. Thus any terminal k,k > j,
faces competition from the group of the first j terminals that stays always fixed. This

is ensured by the rules of transmission explained above in (4).

We present the derivation of the new bounds in the form of some lemmas that lead to a
theorem. We start by introducing some notation similar to that of Eqs. (8), (9), and (10).

For any set of distinct indices k;, (5 + 1) < k; < M, let
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& (n) = {Q] (n) =0}

M
Ej,(») = {Q],(n) =0} _U {Qi(n) > 0}

Bipoam= [ Q@=0 N @®x>0 (26)
se{k1 Kz, ko) AL A

. M .
Ej(n)= () {Qi(»)>0}

t=5+1

Thus f,’;l (n) is the event that the k;th queue of S7 is empty at time n. E,'il (n) is the event
that only the k;th queue of S7 in the group from 5+ 1 to M is empty at time n (all others

being non-empty). E,‘il k3,..k, (1) i8 the event that only queues k;, k3, ...k, are empty at time
n and all the others in the group are non-empty. Since the group of terminals from 1 to j,
collectively, present the same behavior in competing for the channel, regardless of the status
of their queues, there is no interest in whether they are empty or not. Thus we consider only

the events that pertain to the group {5 + 1,..., M}.

There are (Ml‘ 7) events of the type EI{; (n) and (M: 7) events of the type E’,’;‘ ks ks (B)-
The total number of events is 2M~7, and they are all mutually exclusive. Their union

exhausts the sample space. The event f,’;l may be decomposed into mutually exclusive events

as follows.

am=EmU U E.LekUE.. ) (27)

kge{j+1,...M)
hath) *,

We now prove a lemma that generalizes lemma 3.1.
Lemma 4.1

In the system S7, the probability of a successful transmission by terminal j at time n
satisfies the following lower bound inequality for all n > 1, ‘
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M M M
win) 2 p; [T =) +p; D PrlE!(n)lp: J] (1 - ps)
ot $=5+1 ris

Proof

By definition,

wi(n) = PriBi(n)] (28)

where B;«. (n) is the event that at time n terminal j has a successful transmission of a real
or a “dummy” packet in system j. We apply the theorem of total probability to Eq. (28)
conditioning the event B:: (n) on the 27 mutually exclusive events of Eq. (26). This results

in the following equation.

M
Pr[B](n)] = Pr|B}(n)/{E}(n)}]- PrEj(n)]+ )_ Pr|B}(n)/E],(n)]- Pr[E], (n)] + ..

h=j+1
ot Z P'[Bj (ﬂ)/sz N TYen (n)] * Pr[sz 182 yeeky (ﬂ)] + ..
Byokg,kee{s+1,.. M)
kg all distiact
+P "[B;: (n) | E,’“M(n)] -P '[Ejﬂ,...,u(")] (29)

A successful transmission by terminal j is impossible if any of the stations 1 through j-1
transmit. Let us define by T'-" (n) the event that terminal i attempts a transmission in slot n

in system j. Then we decompose the general term of Eq. (29) according to the following:

L3

Pr{Bi(n)/EL . _.(n)] = PriB3 ()] (T ()} (WQE(R) > O} (Y EL, s, 5. ()}

=1

'P'lﬁ {T} ()} /{Q}(n) > 0}V EL,,..x.(n)] - PrlQ}(m) > O/, 4,4 (m)]+

=1
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+Pr[BI(n)/ (T W)Y (NQm) = 0}V EL. 1, o ()]

Jj-1

°Pf[’r—] {T! ()} /{Q}(n) = 0} EL,,.. 4, (n)] - Prl{Q}(n) = 0}/E{ 4, .. ()]  (30)

=1

Since the competition from the first group of j-1 terminals is fixed we have

P (VT () /4Q1(m) = 0} [\ Enu,rosu ()] = TL(1 - p) (31)
=1 k=1

The same result holds for the case of Q;: (n) > 0. Now let us consider the first term of the first
summand of Eq. (30). The conditioning event implies that

i) terminals 1 through j-1 remain silent at time n.

ii) terminal j has a non-empty queue and hence will independently attempt transmission

of an information packet with probability p;.

iii) of the remaining terminals only k; through k. are empty and hence they will remain

silent (according to the rules of system S7).
Based on this we deduce that

j—-1

Pr(B](n)/ [{T! ()}* [{Q}(n) > 0} E{, 4,,..s,(n)]

=1

Se{F41...00 M)
k) kg ....hg)

Consider now the first term of the second summand of Eq. (30). The conditioning event

implies that
i) terminals 1 through j-1 remain silent at time n.
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ii) terminal j has an empty queue; therefore, by the rules of in 84, it will broadcast a
dummy packet with probability p;.

iii) Of the remaining terminals only k, through k. are empty and hence they will remain

silent. Based on this we have

o j—l o . .
Pr(B}(n)/ (WTi ()} Qi) =0} E], .otmll=p; JI (1-2) (33

i=1 [£ X2 YOeue M
Sk kg,...ke)

Note that when the 5°h queue is empty terminal j broadcasts a dummy packet, whereas
when the queue is non-empty it broadcasts an information packet. However, this distinction is
again of no concern since we seek a lower bound for the probability of successful transmission of

information or dummy packets, and since the distinction becomes meaningless near saturation.

Substituting Eqs. (31), (32) and (33) in Eq. (30) we obtain

PriBi(n)/E] ..()=p; J[ (1-») (34)
A ky,...okgn)
Also note that
Pr(Bi(n)/Ein)]=p; ] (1-») (35)

Note that the special nature of S7 enabled us to obtain eqns. (34) and (35) without
having to estimate Pr{Q; (n)>0/ EI{; k()] or Pr[Qf (n)= O/Ei;,...k. (n)], which would not
be possible.

Now we invoke the inequality (18) and a slightly modified version of inequality (19),

namely,

M M M M
1= [] e+ (1-ps)] 2 II G-p)+ Yo e ] 1-p) (36)

k=5+1 k=j+1 ki=j+1 *&i“;l
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Substituting eqns. (34), (35) and using inequalities (18) and (36) in eqn. (29) we obtain

. M . M M M _
#(n) 2 p; [T (1-pi)- PrlE}(n)] + > v [T -pa)+pims, II (-pa)}priE] (n))+
ans ki=j+1 k=1 erigp

M

M
+ D ({p; I:I (1=pa)} +{pioe, J[ (1-21)})- Pr[E] 4. 0. ()] + .

(k. kg, .kg)e{i+1,...M) k=1
sl) distinct ks hythk) .5

M . M M .
vt ({pi [IO-2}+{ X wims, II a-20)p -Pr(E} ., am(n)] (37)

k=1 k=1 k=1
ks 1=3+1 kthy .

or, by further rearranging and using Eq. (27),

. M M M .
W) 2 e T[-pd+ 3 pites T[ (1= p)}Priein) (39)
¥ =it ey

This concludes the derivation.

By letting n — co in Eq. (38) we obtain the following asymptotic bound.

M M M

B> pi= lim wi(n) 29 [I 5+ Y (ie: [ 5)PrIQ7 =0 (39)
e TR e R vy
ity ki, 5

It is clear now that lower bounds for p;: can be found if lower bounds for Pr[Qf = 0] can
be determined. The latter are derived in the next lemma by examination of the departure
statistics at queue i in S7 for § < ¢, and assuming that \; < ii}, for § > j, where ! is the

.,

average asymptotic service rate of queue i in system S°*.
Lemma 4.2

H X; < i@ for all i, then in steady state Pr[Q] > 0] < ‘—’.:Ev forany y <. *

* This result is similar to the one for the G | G | 1 queue, see Kleinrock [15], with average

arrival rate A and average service time Z. If the queue is stable for A < 1, then Pr[Q > 0] = )z
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Proof:
Let Xj (n) denote the number of packets in the ith queue of S7 after the n*h departure.

Let A;i (n+1) denote the number of packets that arrive at queue i of S7 during the (n+1)**

service interval. Then:

Xi(n+1) = X](n) + Al (n + 1) - 1{X (n)] (40)
where
1[z] = l‘,) ’ ze;eo

We know from Appendix 1 that if A; < ii{ then the ith queue of S7 is stable. Hence
there exists a steady state distribution for the system satistics. Furthermore, the results of
Appendix 1 imply that the average queue sizes are finite in that case. Taking expectations in

Eq. (40) with respect to this distribution we obtain the following:

E[X](n +1)] = E[X] (n)] + E[4](n +1)] - Pr[X](n) > 0] =
= E[X? (n)] + M\E][ length of (n 4 1)** service interval for queue i]

—Pr[XI(n) > 0] (41)

Now, in steady state, E[X?(n + 1)] = E|X (n)]; hence

»”*

Pr[X? > 0] = A\;E[length of service interval of queue i in S7]

Since for A; < ﬁf the i** queue is stable in S7, we have

12> Pr(Xi >0 = A fi(X) (42)
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where f7();) denotes the expected length of the service interval of queue i in S7. Obviously
this service time is also a function of the other arrival rates A3,k > 7, but not of the ones for
k < 3, since arrivals to the first j queues have no bearing on how often there are tra.nsmiﬁsion
attempts from the group of the first j queues in S7 (they occur with probability I—Hf;___1 (1-p1)
in every slot). In any event, the function f 7 is non-decreasing in \,; this is quite obvious since
more frequent arrivals will create more frequent collisions and less frequent successes by all

queues, including the i** one. Thus, for A; < ﬁf ,

(%) < £ (&) (43)

Using inequality (43) in Eq. (42) we obtain

12> @l f (i)

or

1iad) < “i

L 3

Hence

Pr[X;-’. > 0] = A.'fj(A,') < A,f’(ﬁi) < 3—'- (44)

=53

Y

Now we argue that

PrX? > 0] = Pr|Q? > 0] (45)

»”

Recall that Q7 is the steady state size of queue i in S7 at any arbitrary instant in
time, whereas X,j is the steady state queue size at any arbitrary departure point in time.
" They could conceivably be different random variables. However since the joint queue size
[Q¥(n) — — — Qi(n)] is an irreducible aperiodic Markov Chain, ergodicity implies that eq. (45)
is valid.
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Finally, by virtue of the dominance of S by S7+! we conclude that

B> at, 1<j<M-1
Consequently
i ) YRERP ¥ . .
PrlQi >0 < =X < 2, jH1<i<M
s [

This completes the proof.

Now we state the main gheorem of this section.

Theorem 4.1

The system S is stable if

Aj < b;:, 1<)<M
where
LM M M. 1T
b} S0 [T -p)+ 3 pi(1-30)p ]I (1-p4) (46)
=1 s=j+1 ' k=1
L i [ 1 %)
and
R M-1
oM 2 M =pue [ (1-p0) (47)
=1
Proof d

By lemma 4.2 we know that if A; < i} we have

At .l .
;.2"7, 1 >'J

1

PrlRi=0]>1-

Substituting this in Eq (39) we obtain
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M M . .

-3 - - At

w2p [+ X im [ B - 3 (48)
ST

Note that the b;:’s, as defined in Eqs (46), (47), are less than or equal to the ﬁ;:’s. Therefore
substituting the b;’s in the RHS of inequality (48) we strengthen the bound. Thusif A; < b;:,

it is also true that A; < ﬁ;: and, hence, the queue is stable in S and, by the dominance
property, in S as well. This completes the proof.

Notes:

1. This is an improved bound as easily seen from the comparison of 4] to the value of
the RHS of Eq. (24). In fact, it is easily verified that 5} > M.

2. The ordering of the terminals has been arbitrary, but the bound depends on that
ordering. The union of the bounds of the stability regions over all possible orderings
yields an improved bound.

5. The Connection to Information Theory

The results obtained so far for the stability of the slotted-ALOHA system present a striking
similarity to those concerning the achievalbe region of the no-feedback collision channel [13,14].
First of all let us refer to the problem we studied here as the “stability” problem and to that

considered in [13,14] as the “capacity” problem. Let us discuss their similarities and differences:

“Stability” problem - Determine the regions of values of the arrival rates A; of the Bernoulli
arrival processes for which the discrete-time, slotted-ALOHA system of M buffered users is
stable in the sense of ergodicity of the underlying chain, or finiteness of the average queue size
(the two are equivalent here); that is, find the values of A; for which 3 values of p;, such that
the system is stable. There is no concern about Shannon capacities, and feedback is assumed
to be provided to the terminals. - '

&Capacity” problem - The object of study is the same; however, a different question is asked
about it, namely at what rates R; can the terminals simultaneously transmit to the common
receiver reliably (in the Shannon sense). There is no concern about stability of queues; in
fact the queues may very well be assumed to be infinite in order to provide an inexhaustible
supply of packets, when needed, for transmission. There is no feedback, and the terminals are
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not constrained to use the ALOHA protocol for transmission, but only some (any) protocol
sequence of packet transmission and retransmission.
To summarize:

Both problems consider the same channel (the collision channel), that requires a single
packet transmission to ensure successful reception. However they differ in terms of the question
of interest (queue stability vs. reliable transmission rate), and in terms of the assumptions on

feedback, arrivals, and transmission protocol.
Interestingly the results are remarkably similar for the two problems. In fact,
1) for M = oo (and A; = A3 =...) the “stability” problem requires that lim:\:‘-_..: M); <
e~ ! and the “capacity” problem states that lim U MR; < e~! is achievable.

2) for M = 2 the “stability” problem, as shown here and in [8], requires that

Vai+vA <1

and the “capacity” problem as shown in [13,14] states that

vVRi+vR; <1

defines an achievable region.

3) for 2 < M < oo the “stability” problem leads to the bounds derived here and
elsewhere [6,7]. These bounds can be shown to be consistent with the results of the
“capacity” problem, which state that

Ri=p]J(1-»))
i

M

ZP.'=1

=1

defines an achievable region (capacity region, actually, under the constraint of using
a transmission protocol sequence); namely that region contains the region of inner

bounds obtained for the stability problem (as can be shown quite easily).
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These observations lead to the following two questions.

1) Is there a non-superficial connection between the informationtheoretic and the queue-
ing theoretic versions of the problem, or is the identity of the results a mere coinci-

dence?

2) In either case, is the conjecture that for 2 < M < oo the stability region is given by

x=pnJ(1-9))

I#i

M
D p=1
=1

true?
Whatever the answers to these questions we may close with two, hopefully, useful remarks.

i) Feedback is known to, in general, enlarge the capacity region of a multi-user channel;
the results seem to imply that, at least for M=2, the ALOHA transmission protocol
makes poor use of this feedback in that the achievable region is not enlarged, but,

rather, stays puzzlingly the same.

ii) The meaning of the requirement that Ef_‘__l p; = 1 in the parametric description of
the capacity region remains unclear, in connection with the role of the p;’s in the
transmission protocol of the “stability” problem. The intriguing nature of the sum
of the values of the p;’s was first noticed by Szpankowski in [6,7]. Here we simply

note that for the “stability” problem one can easily show that if

M
Zp.‘(l -

=1

all users can improve their delay (or queue-size) performance if they uniformly in-

crease their respective p;’s by an amount given by

Ap; = pi(1 —pi) - At (49)
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where At is a common auxiliary variable, until the sum hits the value 1. Specifically
one can show that any increment in the values of the p;’s according to Eq. (49)
produces a system dominated by the previous one in the dominance sense that was
used throughout this paper. We do not know how to show the improvement by

decreasing the p;’s when Y or, p; > 1.
6. Conclusions

In this paper we have used a new technique involving stochastic dominance to study the
ergodicity region of the discrete-time slotted-ALOHA system with a finite number of buffered
users. We have obtained the region exactly for M=2 and derived inner bounds to it for
M > 2, that improve upon earlier ones. The results look remarkably similar to those of
the no-feedback collision channel and thus lead to speculation about a deeper relationship
between the queueing-theoretic and information-theoretic approaches to the problem. They
also suggest a conjecture about the precise boundaries of the stability region for M > 2; The
dominance approach introduced in this paper represents a natural and simple concept that
may be of further value to the study of other related problems.

»*
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Appendix 1

In this appendix we establish the dynamics of the ith queue in system SI, as defined in
the general formulation of section 4, and obtain the stability criterion that is used repeatedly
in all sections of the paper. Specifically the objective is to show that in SI,if X\ < iif , the ith

queue is stable in the sense that

Pi,=Pr[Qi =0]> 0.

Consider the ith queue of S7 at time n and the system equations for the queue-size

probabilities. These are

-

Fly(n) = XiPio(n - 1) + Xl s (n = 1) Py (n — 1) (41.1)

Ply(n) = a2 {(n — 1) + Mgy (n —~ 1)]PE, (n - 1)
+‘\-'P.":o(" -1)
+Xipd 1 (n — 1)Piy(n - 1) (41.2)
Pi’;k(“) = X‘ﬁ{,k—l(n - I)Pi’;k-x(“ -1)
+XE 4 (n = 1) + Apd y (n - 1)Pli(n-1)
+x‘#f,,,+1(ﬂ - l)Pi’:k+1("' -1) (A1.3)

Obviously the “death-rates” pf’k (n) are functions of the status of the other queues, which is
why the queues are coupled and difficult to anlayze. However, the above equations are valid
conditioned on the status of the other queues. There is, in our notation, an explicit dependence

%

shown on the size of the ith queue. Thus

#14(n) = Pr[D}(n) = 1| Qi(n) = k|

Suppose now that P"’ x(n) and pf,,,(n) possess limits as n — oo; that they indeed do will
be established a little later. By considering the limits of the system equations we obtain
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Pi,;o = R’{oxi + X-'l‘{.x I,s’,l

P}, = st.-’;o
+X77] + Ml P,

+Xil‘?,z”.{z

Pl = NPl sy Pl
+Xi#3.:.+11’.-’,»+1

These equations can be solved to yield

Y
P{",x = Pc o, >
‘l“‘.l
AF il ﬁ{,g
Pl =P, —
A “" k £-1 “g (4
and hence
; 1
Pi’,o = —
1+ -*—+ 2 x.» H (“‘:\.)
Based on Eq. (A1.9) we conclude that: d

1. Queue i is stable in the sense that

PriQi=0]=Pj;>0
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(ALS5)

(AL86)

(A1.7)

(A1.8)
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i < Jlim pi, (A1.10)

2. Queue i is unstable in the sense that

Pr[Qf =o0] = klin:o P::,,k =

A.‘ > kllonalo Bk (Al.ll)

Note also that Eqs. (Ai.S) and (A1.9) imply that under the stability condition the moments

of the queue sizes exist as well.

We now wish to show that At < ftf implies stability. If A; < ﬁf , one of the following is

true:
Case 1- X < i < lim ul,
Case 2- A < lim pl, < i
| Case3-kg=klixrgopf’k<ﬁf
Case 4 - ,,‘E%o“{»k <A< @l
Cases 1 and 2 satisfy Eq. (10) and hence the queue is stable.

Case 4 cannot occur, because if it does then by Eq. (A1.11) klim P.-’. & = 1, which imples
-0 O’

that

©o
-5 _ i pi _ 1 j ~
B = Z piaFiy = ,}E‘; B
k=0

which contradicts the inequality

lim “{,k < ﬂ:.

k—oo
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