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Pool boiling heat transfer measurements from different heater sizes and shapes 

were obtained in low-g (0.01 g) and high-g (1.7 g) aboard the NASA operated KC-135 

aircraft.  Boiling on 4 square heater arrays of different size (0.65 mm2, 2.62 mm2, 7.29 

mm2, 49 mm2) was investigated.  The heater arrays consist of 96 independent square 

heaters that were maintained at an isothermal boundary condition using control circuitry.  

A fractional factorial experimental method was designed to investigate the effects of bulk 

liquid subcooling, wall superheat, gravitational level, heater size and aspect ratio, and 

dissolved gas concentration on pool boiling behavior.   

In high-g, pool boiling behavior was found to be consistent with classical models 

for nucleate pool boiling in 1-g.  For heater sizes larger than the isolated bubble departure 

diameter predicted from the Fritz correlation, the transport process was dominated by the 

ebullition cycle and the primary mechanisms for heat transfer were transient conduction 

and microconvection to the rewetting liquid in addition to latent heat transfer.  For heater 

sizes smaller than this value, the boiling process is dominated by surface tension effects 



  

which can cause the formation of a single primary bubble that does not depart the heater 

surface and a strong reduction in heat transfer.   

In low-g, pool boiling performance is always dominated by surface tension effects 

and two mechanisms were identified to dominate heat and mass transport:  1) satellite 

bubble coalescence with the primary bubble which tends to occur at lower wall 

superheats and 2) thermocapillary convection at higher wall superheats and higher bulk 

subcoolings.  Satellite bubble coalescence was identified to be the CHF mechanism under 

certain conditions.  Thermocapillary convection caused a dramatic enhancement in heat 

transfer at higher subcoolings and is modeled analytically.  Lastly, lower dissolved gas 

concentrations were found to enhance the heat transfer in low-g.  At higher dissolved gas 

concentrations, bubbles grow larger and dryout a larger portion of the heater surface.      
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Chapter 1:  State of the Art in Pool Boiling 

1.1  INTRODUCTION / MOTIVATION 

 Studies pertaining to the influence of gravity on boiling processes have been 

stimulated by two motivations.  Firstly, higher accuracy predictive modeling is desired 

for the design of robust, efficient, economical, and reliable space applications that utilize 

the efficiency of latent heat transport.  This type of modeling requires a firm 

understanding of boiling mechanisms in a host of operational environments.  Secondly, a 

comprehensive physical understanding of the complicated boiling mechanisms is sought.   

An important industrial application of heat transfer science and engineering in 

recent years has been electronics thermal control.  The relentless emphasis on 

miniaturization is the primary driving force behind systems with dramatically higher 

spatial densities.  Power dissipating devices, such as computer processors, are being 

designed to achieve higher computing performance while dissipating larger amounts of 

power per unit area, Fig. 1.1.   These trends pose significant challenges for future thermal 

design that are not easily solved using contemporary thermal solutions.  Boiling heat 

transfer has gained considerable attention over the years due to the relatively large heat 

fluxes that can be achieved at relatively small temperature differences, Fig 1.2.  Two-

phase cooling systems have the ability to provide efficient, application specific, 

temperature control, and these benefits have led to research efforts aimed at quantifying 

boiling efficiency at the small scale and in variable gravitational environments.  One of 

the goals of research in this area is to determine the feasibility of applying boiling 

technology in a space environment.  Such efforts will provide a predictive design aid to 
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scientists and engineers tasked with the design, analysis, fabrication, and testing of space 

based hardware that utilize two-phase transport.     

 
Figure 1.1:  Projected microchip cooling requirements (iNEMI Technology Roadmaps, 

Dec 2004). 

 

 
Figure 1.2:  Cooling potential for various processes (iNEMI Technology Roadmaps, Dec 

2004). 
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The second motivation for work in this area is centered on the desire to 

understand natural physical processes in space.  Many natural two phase processes occur 

in space systems such as liquid droplet formation in humid environments and vapor 

generation during distillation and purification.  These processes and others require a basic 

understanding of two-phase transport processes in order to affect reliable and robust 

operation.  For such processes, the design and research objectives are to understand and 

predict the behavior of the system as opposed to maximizing the efficiency of the 

transport process as in electronics thermal control.  Other multiphase applications where 

a basic understanding of the physical process is desired are: cryogenic fuel storage and 

transportation, wastewater recovery, distillation systems, air revitalization, water 

purification, and material processing.    

The third motivation for such work focuses on the space environment itself which 

creates an intriguing setting whereby complex processes on earth can be studied in a 

more simplistic manner.  The pool boiling process is an excellent example of this in 

which the complex interaction between various boiling mechanisms can be de-coupled 

and studied at a fundamental level.  The various mechanisms referred to and their relative 

effect on the pool boiling process will be discussed in detail throughout this thesis.   

Lastly, the human desire to understand their physical environment cannot be 

overlooked as a primary motivation for research in a general sense.  Such work is an 

intellectually stimulating endeavor providing its own benefits to those who enjoy 

studying fascinating complex problems.  Scientific idealism rooted in inquisitive minds 

has led to a greater understanding of our relationship with our environment, technological 

innovation, and provides tremendous insight into our prospects for the future. 
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A logical place to begin the discussion of boiling heat transfer in space is to 

briefly review the extensive data that has been collected regarding the phenomenon in 

higher gravitational environments.  Under such conditions, the pool boiling process is 

fairly well understood and the available data provides an excellent introduction into the 

complexities of a low-gravity boiling environment.  Along with introducing the relevant 

background information, this chapter provides the context in which to begin analysis of 

the microgravity boiling environment.   

1.2  CLASSICAL BOILING LITERATURE REVIEW 

Boiling in space is poorly understood.  The costs associated with experimentation, 

challenges of creating a suitable space environment, and logistical issues associated with 

space transportation have hindered progress to date.  The lack of progress requires one to 

look elsewhere to gain insight into the particular process under investigation.  In the case 

of pool boiling, extensive knowledge exists regarding the 1-g condition.  A review of the 

state of the art in 1-g pool boiling therefore provides a number of benefits to the 

researcher including; a foundation with which to begin further analysis, insight into some 

of the physical mechanisms of the process, and a plethora of models with which to begin 

an investigation and comparison.      

1.2.1  Terrestrial Boiling 

The pool boiling process is an extremely complicated one that extends into many 

disciplines.  The physical manifestations of the boiling process can be observed daily 

from boiling of water for cooking applications to natural processes such as hot spring 

evaporation.  It involves the physics of heterogeneous bubble nucleation, the chemistry of 
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two-phase and triple phase interfaces, the thermodynamics of local heat transport, and the 

hydrodynamics of two-phase flow.  Boiling heat transfer has traditionally been thought of 

as a combination of free convection, vapor liquid exchange, microconvection, transient 

conduction, and latent heat transport.  Vapor bubble dynamics associated with nucleation, 

bubble growth, departure, collapse, and subsequent rewetting of the heater surface 

characterize the classical ebullition cycle which constitutes the primary mechanisms of 

heat transfer from a superheated wall during nucleate pool boiling in earth gravity.   

Some of the early work mentioned above has laid the foundation for the classical 

boiling curve and its constituent boiling regimes, Fig 1.3.  At low superheats, natural 

convection dominates the transport process (a-b, Fig 1.3).  As the wall superheat is 

increased, the process progresses through the isolated bubble regime and regime of vapor  

 
Figure 1.3:  Classical nucleate pool boiling curve. 
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slugs and columns (d-f, Fig 1.3).  Eventually critical heat flux (CHF) is reached and the 

measured heat flux begins to decrease as transition boiling occurs (f-g, Fig 1.3).  

Eventually, the boiling process is completed dominated by film boiling (g-h, Fig 1.3).   

Early studies in the field focused on the qualitative aspects of the nucleate pool 

boiling process.  Photographic results identified the four heat transfer regimes mentioned 

above which were characterized based on the mode of vapor generation.  Consider first a 

heated flat surface.  As the surface temperature increases, vapor structures progress 

through a sequence of discrete bubbles, vapor columns, vapor mushrooms, and vapor 

patches, Fig. 1.4 (Gaertner, 1965).  The individual vapor structures and their various 

combinations determine the mechanism of transport.  Many researchers have studied 

these mechanisms in isolation and collectively.  A large portion of their results are from 

heater sizes much larger than the capillary length scale (Eq. 1.1).  The capillary length, 

Lb, as shown for various fluids in Table 1, is derived from a balance between surface 

tension and buoyant forces acting on a vapor bubble.  This length scale is relatively small  

      
Figure 1.4:  Discrete bubble region (left), vapor mushroom (right), (Courtesy of Gaertner, 

1965). 

 
      

 (1.1) 
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and many of the traditional sensors have been unable to accurately resolve heat transfer 

data at the capillary length scale or smaller.  In space, as the g-level goes to zero, the 

capillary length scale goes toward infinity which indicates that all finite sized heaters 

appear small compared to this length in space.  Boiling from heaters much smaller than 

the capillary length scale is less well known and is a large motivation for low-gravity 

pool boiling research.   

 Capillary Length, Lb (mm) 

Fluid Low-g (0.01g) 1-g high-g (1.7g) 
FC-87 7.48 0.75 0.57 
FC-72 7.81 0.78 0.60 
R113 12.00 1.20 0.92 
R22 12.08 1.21 0.93 

Water 27.13 2.71 2.08 
Table 1.1:  Capillary length of different fluids (NIST, 2003; 3M). 

 
1.2.1.1  Nucleate Boiling Regime.  Consider the nucleate pool boiling curve in greater 

detail, Fig 1.3.  At low wall superheats natural convection is the dominant transport 

mechanism.  Natural convection is characterized by single-phase buoyancy effects with 

no active nucleation sites on the heated surface.  Increasing the wall superheat eventually 

causes boiling incipience to occur with a resulting increase in heat transfer (labeled d in 

Fig. 1.3).  Many researchers have aimed to model the transport process in the nucleate 

boiling regime using single bubble models.  Latent heat transport as well as 

microconvection is thought to contribute to a relatively high heat transfer between the 

heater and working fluid.  Some researchers have proposed that latent heat transfer due to 

evaporation of a liquid microlayer near the three-phase contact line is the dominant 

energy removal mechanism (Straub et al. 1997, Moore and Mesler 1961, Fig 1.5).  In 

contrast, experiments conducted by Gunther and Kreith showed that the majority of heat  
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Figure 1.5:  Microlayer formation beneath bubble (Courtesy of Van Carey, 1992). 

 

transfer during subcooled nucleate pool boiling could be attributed to microconvection 

during liquid rewetting of the heated surface (Gunther and Kreith, 1956).  Yaddanapuddi 

and Kim later confirmed these experimental findings while studying nucleate boiling 

under saturated bulk conditions (Yaddanapuddi and Kim, 2001).  Their results showed 

that during one ebullition cycle, the majority of heat transfer occurred after the bubble 

departed through transient conduction and microconvection to the rewetting liquid.  

Additional studies by Zhang et. al. measured a very small amount of heat transfer through 

the microlayer during the isolated bubble regime lending further support to the 

microconvection theory (Zhang et. al. 2000).  Considerable debate still exists regarding 

the primary mechanism for heat transfer during isolated bubble growth and departure and 

is the primary motivation for current work in the area. 

The various isolated bubble models mentioned above provide some insight into 

the parameters which tend to enhance the heat transfer during isolated bubble growth and 

departure.  Microconvection theory predicts an increase in time averaged heat transfer 

from the heated surface if the bubble departure frequency increases.  Methods aimed at 
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increasing the bubble departure frequency, such as electrohydrodynamic (EHD) pool 

boiling, have clearly shown an increase in the attainable heat flux (DiMarco & Grassi, 

1992).  This technique involves applying an electric field body force which can produce 

forces that induce localized fluid motions enhancing the two-phase transport process in 

thermal systems.  The EHD mechanisms include a Coulomb force, dielectrophoretic 

force, and electrostriction force.  Baboi et al., while studying boiling from a platinum 

wire, observed an increase in nucleate boiling heat transfer and CHF in the presence of a 

strong electric field force collinear with buoyancy (Baboi et al. 1968).  They attributed 

the large increase in heat transfer primarily to an increase in bubble departure frequency.  

In addition, bubble growth times were diminished and departure diameter was reduced in 

the presence of an electric field.  Such work characterizes the importance of two critical 

physical parameters of the ebullition cycle on heat transfer:  the frequency of bubble 

departure or surface rewetting, f, and the bubble departure diameter, Dd.   

The bubble departure diameter depends directly on the forces acting on the bubble 

during dynamic vapor bubble growth while attached to the heater surface.  Many forces 

have been shown to influence departure dynamics including:  surface tension (Fτ,s), 

buoyancy (FB), inertia of induced liquid motion (FLM), Marangoni or thermocapillary 

forces (Fτ,v), and vapor bubble coalescence (FC,E), Fig. 1.6.  The magnitude and influence 

of these forces have in turn been shown to be a function of many system parameters 

including: bulk liquid subcooling (∆Tsub), gravity (g), wall superheat (∆Tsat), the 

thermophysical properties of the fluid, heater geometry, surface characteristics, and 

pressure. 

The frequency of bubble departure depends on the time needed for the bubble to 
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Figure 1.6:  Forces acting on a bubble. 

 

grow to the departure size (growth time) and the amount of time it takes after a bubble 

departs for nucleation to occur (waiting time).  The departure frequency in the isolated 

bubble regime tends to increase with wall superheat due to the increased rate of vapor 

generation producing a smaller growth time.  In addition, higher wall superheats tend to 

reduce the waiting time by decreasing the time needed for the rewetting liquid to reach 

the superheat limit required for nucleation.  It is clear from the research cited previously 

that bubble departure is critical to the enhancement of heat and mass transport during the 

pool boiling process.  Very little work has been conducted on systems where bubble 

departure is less frequent or non-existent.     

As the wall superheat is increased beyond the isolated bubble regime, bubble 

coalescence becomes a dominant physical occurrence characterized by the formation of 

vapor columns and slugs.  In this regime, metrics such as bubble departure frequency and 

FB 

FLM 

Fτ,v

FCond + Ftherm 

FC,E 

Fτ,s Heater 
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departure diameter tend to be much less useful due to turbulent vapor and liquid 

interaction where isolated bubbles are no longer present.  For large heaters, vapor is 

generated at a high rate and at multiple locations enabling lateral and vertical bubble 

coalescence to occur.  This causes vapor columns to form due to Taylor instability and 

the spacing between columns has been shown to be related to the capillary length scale, 

Fig. 1.7.   

 
Figure 1.7:  Vapor columns formation and the Taylor wavelength, λd (Courtesy of Van 

Carey, 1992). 
 

 Many analytical models have been developed that predict nucleate boiling 

behavior throughout the isolated bubble regime and into the regime of vapor slugs and 

columns in earth gravity from horizontal heaters significantly larger than Lb.  An early 

model developed by Fritz (1935), based on a quasistatic analytical force balance between 

surface tension and buoyancy, assumes the non-dimensional Bond number to be the 

governing parameter for bubble departure diameter, Eq. 1.2.  This equation predicts 
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departure occurs at a constant Bond number for a given fluid/surface combination.  A 

major deficiency in this model is that it only accounts for the effects of wall superheat 

and bulk subcooling through their influence on the contact angle, θ.  Later correlations 

[Eq. 1.3 (Rohsenhow, 1962), Eq. 1.4 (Cooper, 1984), and Eq. 1.5 (Stephan and 

Abdelsalam, 1980)] provide an estimate of nucleate boiling heat transfer  

 

(1.3) 

 

(1.4)  

 

(1.5) 

 

from relatively large heaters in earth gravity.  The Rohsenow model is based on 

microconvection theory in which the heat transfer is attributed to local agitation due to 

liquid flowing behind the wake of departing bubbles.  The equation is a modification of a 

single-phase forced convection correlation using the appropriate length (bubble departure 

diameter) and velocity scales.  The correlation developed by Stephan and Abdelsalam is a 

curve fit of available data and its accuracy varies widely depending on the operating 

conditions.    

 

1.2.1.2  Critical Heat Flux.  If the wall superheat is further increased along the nucleate 

pool boiling curve, Fig. 1.3, CHF will eventually occur.  CHF is the maximum heat flux 
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perhaps the most critical design parameter for two-phase cooling systems and accurate 

modeling of this phenomenon is paramount to predicting the operating range and 

reliability of cooling systems.   

Many mechanisms have been proposed to explain the behavior of CHF in earth 

gravity.  In one mechanism, a Helmholtz instability results from vapor columns that 

break down to form local dry patches on the heater.  The breakdown results from severe 

vapor drag on rewetting liquid that is flowing in the opposite direction and causes a liquid 

flow crisis to the heater surface.  The Helmholtz wavelength is shown in Fig. 1.7 as λh.   

Zuber’s CHF model for an infinite horizontal surface assumes that vapor columns formed 

by the coalescence of bubbles become Helmholtz unstable, blocking the supply of liquid 

to the surface (Zuber, 1959).  These vapor columns are spaced λD apart (Eq. 1.6), Fig 1.7.  

In this equation, the critical wavelength, λc, is the wavelength below which a vapor layer  

 
 

(1.6) 
 

can be stable underneath a liquid layer.  Only perturbations with a wavelength greater 

than λc will grow and cause interfacial instabilities.  The critical wavelength for a number 

of fluids is provided in Table 1.2.  The Zuber model predicts a maximum heat transfer of 

the form given by Eq. 1.7.  It is important to note that the gravitational dependence on 

 
 Critical Wavelength λc(mm) 

Fluid Low-g (0.01g) 1-g high-g (1.7g) 
FC-87 47.02 4.70 3.61 
FC-72 49.08 4.91 3.76 
R113 75.40 7.54 5.78 
R22 75.92 7.59 5.82 

Water 170.48 17.05 13.08 
Table 1.2:  Critical wavelength for different fluids. 
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CHF predicted by Zuber’s model, indicates that CHF in a zero-g environment would be 

zero.  This prediction differs greatly from experimental findings in low-gravity which 

will be presented in the next section.  Furthermore, the critical wavelength increases 

dramatically in low-g environments making it difficult to observe Taylor instabilities in 

low-g.     

Another popular model assumes CHF is governed by a hydrodynamic instability 

where large vapor bubbles hovering slightly above a surface are fed by smaller vapor 

columns (Haramura and Katto, 1983), Fig 1.8.  This model postulates that CHF occurs if 

the hovering time exceeds the time necessary to evaporate the liquid film between the 

hovering bubble and the heater causing the heater to dry out.  This model assumes the 

Bond number to be the governing parameter controlling the development of CHF in earth 

gravity and for horizontal flat plates is predicted by Eq. 1.8. 

(1.8) 

 
  Increasing the wall superheat beyond CHF causes a decrease in boiling 

performance.  In the transition boiling regime (f-g, Fig 1.3), the boiling process is 

increasingly dominated by dryout of the heater surface.  Eventually, a local minimum in 

heat transfer occurs when vapor completely covers the heater surface, commonly referred 

to as the Liedenfrost point.  Physically, this is the beginning of film boiling where a 

stable vapor film forms between the heater surface and the surrounding bulk liquid.  The 

major transport mechanism in this regime is conduction and radiation exchange through  
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Figure 1.8:  Helmholtz instability mechanisms (Courtesy of Van Carey, 1992).   

 

the vapor film.  The transport characteristics of this regime are quite poor and therefore 

operating conditions that create film boiling in two-phase cooling systems are largely 

avoided by the practicing design engineer.   

1.2.2  Terrestrial Pool Boiling Enhancement 

At first glance, the microconvection models provide some insight into the 

parameters which affect the heat transfer performance during the pool boiling process.  In 

addition to electrohydrodynamic and acoustic field bubble removal which focus on 
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altering the bubble departure frequency and departure diameter, other system operating 

parameters have been shown to dramatically influence heat transfer performance during 

pool boiling in earth gravity.  A commonly applied method for increasing heat transfer 

performance is to cool the bulk liquid below the saturation temperature under the system 

operating conditions, commonly referred to as subcooling the fluid.   

The effect of bulk liquid subcooling on nucleate pool boiling heat transfer has 

been of particular interest to some researchers over the years due to the enhancement in 

heat transfer that can be achieved by the additional sensible energy storage mode. An 

increase in subcooling is thought to provide higher heat transfer rates during the initial 

rewetting process in which the cool liquid contacts the heated surface and the mechanism 

for heat transfer is conduction and micro-convection.  Subcooling has been 

experimentally shown to influence bubble geometry as reported by Gunter and Kreith 

who observed a decrease in bubble size with an increase in bulk subcooling.  In addition 

departing bubbles rapidly collapsed in the presence of higher subcooling (Gunter and 

Kreith, 1949). 

At first glance one might expect to measure an enhancement in heat transfer under 

highly subcooled conditions in the nucleate boiling regime.  Smaller, rapidly collapsing 

bubbles provide less resistance for rewetting liquid and may increase the bubble density 

on the heated surface.  Despite such enhancement effects, experimental investigations 

have shown subcooling to have no effect on heat transfer during nucleate boiling in earth 

gravity (Forster and Grief, 1959).  Such measurements may be explained by the effect of 

subcooling on bubble departure frequency.  As condensation is increased from the top 

surface of growing bubbles that are attached to the heated surface, the bubbles tend to 
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grow much more slowly, increasing the bubble growth time and reducing the liquid 

rewetting frequency.  In addition, higher bulk subcoolings may tend to reduce the active 

site density on the heated surface.  In total, subcooling effects on bubble departure 

frequency, bubble size, liquid rewetting temperature, and active site population density 

act to mitigate heat transfer differences compared to near saturated bulk conditions in the 

nucleate pool boiling regime.   

 Although negligible subcooling effects have been measured during nucleate pool 

boiling, it appears to significantly increase CHF.  From a hydrodynamic perspective, an 

increase in subcooling acts to condense the vapor generated at the heated surface 

providing less resistance for bulk liquid to rewet the surface, delaying the onset of CHF 

to higher wall superheats.  Kutateladze postulated that CHF in subcooled boiling should 

increase above similar saturated conditions by the amount of energy required to bring the 

subcooled liquid to a saturated state, Eq. 1.10 (Kutateladze, 1962).  Ivey and Morris 

(1962) suggested Co=0.1 and n=0.75 based on available data.     

  

(1.10) 
 

 

1.2.3  High-g Boiling 

Boiling mechanisms at higher gravity levels are not thought to differ significantly 

from earth gravity.  The dominant effect of higher gravity levels on boiling is the increase 

in buoyancy driven flows such as bubble motion and natural convection. Most natural 

convection correlations predict heat transfer of the form given by Eq. 1.11, with C and n 

being empirical constants (Incropera and Dewit, 2002).  Studying natural convection 
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using a centrifuge at up to 1200g, Eschweiler and Benton provide a representative natural 

convection heat transfer correlation given by Eq. 1.12 (Eschweiler and Benton, 1967).      

  
(1.11) 

 
 

(1.12) 
 

As mentioned previously, boiling is dramatically affected by the bulk liquid 

conditions of the system.  The increase in natural convection at higher gravity levels can 

dramatically influence the bulk liquid characteristics and thus the boiling dynamics.   

An increase in natural convection can delay boiling incipience or suppress boiling 

completely depending on the level of liquid subcooling, the gravity level, and wall 

superheat (Koerner, 1970).  Studies performed by Beckman and Merte focused on the 

influence of acceleration on pool boiling of water up to 100g.  They found an increase in 

acceleration caused a decrease in the number of active nucleation sites on the heated 

surface.  This was attributed to a thinning of the superheated boundary layer near the 

surface as buoyancy driven flows increased (Beckman and Merte, 1965).   

Some pool boiling studies performed on horizontal heaters in high-g show similar 

trends to those mentioned above.  Using a centrifuge, Ulucakli and Merte studied boiling 

from a horizontal heater.  At 10g, they observed low heat flux boiling to be independent 

of subcooling for subcooling levels up 50°C.  Such observations agree with the 1-g 

results previously mentioned.  A further increase in bulk subcooling at this g-level 

suppressed boiling activity, and heat transfer was dominated by natural convection.  At 

high heat flux, an increase in subcooling resulted in an increase in the wall superheat (at 

50°C subcooling, a 35% increase in wall superheat was measured), holding all other 

( )
να

β 3

Pr LTTgGrRaCRaNu s
LL

n
LL

∞−
===

107363.0 10810215.0 ×≤≤×= LLL RaRaNu



 

 19 
 

variables constant.  At 100g, little effect of subcooling on wall superheat for subcooling 

up to 30°C was observed and boiling was completely suppressed as the subcooling was 

increased further (Ulucakli and Merte, 1990).  In addition, bubble departure frequency 

increased while the bubble growth rate was found to be essentially constant and 

independent of acceleration.  This indicates that the bubble departure diameter was 

reduced at higher gravity levels and is consistent with the Fritz model.  

 Ulucakli and Merte used the Mikic and Rosenhow Model (Mikic and Rosenhow, 

1968) as the basis for explaining why, under certain conditions, a decrease in heat 

transfer at higher subcoolings and heat flux are observed compared to near saturated 

conditions.  This model assumes the net heat transfer from a surface can be approximated 

by the sum of the boiling and natural convection components Eq. 1.13.  In this equation, f 

represents the mean area fraction of the heater surface not experiencing boiling.  Based 

(1.13) 

on this model, Ulucakli and Merte stated that the degradation of heat transfer at higher 

heat flux with increased subcooling resulted from a reduction in the superheated 

boundary layer thickness.  This caused the suppression of some active nucleation sites 

and increased the non-boiling natural convection component to overall heat transfer.  The 

natural convection contribution to the total heat flux began to outweigh that associated 

with the active nucleation sites as the subcooling was increased further, and eventually 

complete suppression of all boiling on the surface occurred (Ulucakli and Merte, 1990). 

Such experimental results clearly contradict what is predicted by Kutateladze and others 

and emphasizes the need for additional gravity dependent parameters in such correlations.        

ncb qfqq ′′+′′=′′
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 The contradictory results summarized here suggest that relatively little is known 

on the coupling between g-level and bulk subcooling.  Current models do not accurately 

account for this effect and further research is needed in order to clarify the conditions 

where gravity and subcooling combine to increase or decrease the level of heat transfer.  

1.2.4  Summary of Classical Boiling  

In summary, nucleate boiling at scales larger than the capillary length under 

terrestrial gravitational conditions are dominated by gravity effects such as buoyancy.  

Buoyancy driven convection is the fundamental transport mechanism at the macroscale 

and affects bubble departure characteristics and the complex interaction between vapor 

and liquid flows.  Heat transfer enhancement occurs in the nucleate pool boiling regime if 

the bubble departure frequency is increased, bubble departure diameter decreases, active 

nucleation site density increases, or any combination of these.  In high-gravity, the effects 

of liquid subcooling are still unclear and this has hindered the development of analytical 

and numerical models in this area.  Many models estimate performance based on various 

physical mechanisms such as surface tension and buoyancy.   

Much less experimental work has been devoted to studying the phenomena at 

significantly smaller scales and at lower gravity levels where buoyancy effects are less 

significant, and where the heater size is much smaller than the capillary length.  

Microgravity environments provide an intriguing setting to study smaller scale boiling 

activity due to the large increase in the capillary length with decreasing g-level.  

Microgravity environments may also provide a more desirable setting to study heat 

transfer mechanisms such as microlayer evaporation.   
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In conclusion, the models presented above tend to predict a very small heat 

transfer in low-g.  The heat and mass transport process is expected to be much less 

efficient as buoyancy driven flows become less significant.  The following section 

addresses this issue. 

1.3  MICROGRAVITY BOILING   

Although buoyancy driven flows have been shown to dominate the transport 

process at higher gravity levels, relatively little is known of the boiling phenomenon in 

the microgravity environment.  The principle reason for this can be related to the 

difficulty in creating a quality microgravity environment for long periods of time and the 

relatively high costs involved in space studies.   

The microgravity environment provides a setting in which some of the complex 

mechanisms previously mentioned are decoupled, simplifying the physical process.  As a 

result, microgravity environments provide an ideal setting to study reduced gravity 

effects as well as gather information about significant earth gravity mechanisms that are 

typically masked by natural convection.   

 A strong reduction in buoyancy driven flow is thought to dramatically affect the 

thermal boundary region near the heated surface.  In the case of a small heater submerged 

in a large pool of liquid without the presence of bubbles, the thermal boundary layer can 

be modeled assuming semi-infinite solid conduction.  In contrast, in earth gravity, the 

boundary layer is much thinner due to rising and falling convection cells near the surface.  

As a result, in low–g under constant heat flux conditions, the temperature of the heated 

surface tends to rise more quickly and reach a higher temperature at steady-state.  Energy 

transport within the fluid is dominated by diffusion transport and the thermal boundary 
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region is much larger than under comparable earth gravity conditions where advection 

tends to dominate the process, Fig. 1.9.  Such characteristics may explain why boiling 

incipience tends to occur at lower wall superheats and lower heat fluxes in low-g.  The 

thermal boundary layer is much larger and therefore nucleating bubbles have more 

energy within the superheated region to sustain growth.   

 
Figure 1.9:  Single phase thermal boundary layer development at various times.   

 

As mentioned previously, extensive research has been conducted on heaters larger 

than the capillary length while less is known of boiling on the smaller scale and at lower 

gravity levels.  Under low-g and microgravity conditions, the capillary length becomes 

quite large, raising questions about its scaling effectiveness. Analyzing the boiling 

mechanisms at the small scale in earth gravity, Bakru and Lienhard studied boiling from 

small wires.  Boiling curves presented in their work deviate significantly from classical 
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boiling behavior in that no transitional boiling regime from nucleate boiling to film 

boiling was observed, and the formation of “patchy” boiling partially covered the wire.  

The Liendenfrost point and CHF were not observed in their study, leading to the 

conclusion that such regimes vanish for heater sizes smaller than Lh/Lb < 0.01.  They 

concluded that classical pool boiling behavior is observed if the heater length is of the 

order Lh/Lb > 0.15 (Bakru and Lienhard, 1972).    

Keshok and Siegel were one of the first researchers to study boiling from flat 

heaters.  They observed that a reduction in gravity resulted in a decrease in buoyancy and 

inertial forces acting on vapor bubbles caused them to grow larger and stay on the surface 

longer (Keshok and Siegel, 1964).  Drop tower tests performed by Susumu showed that 

boiling in low-g can produce large primary bubbles that are surrounded by smaller 

satellite bubbles.  Susumu measured small changes in heat flux compared to normal 

gravity conditions and observed occasional bubble departure which was attributed to 

induced inertial effects within the liquid resulting from explosive bubble growth during 

nucleation (Susumu, 1969).   

DiMarco and Grassi performed additional studies of boiling on thin wires in low-

g where no remarkable effect of gravity on heat transfer was found.  Although the boiling 

heat transfer coefficient was largely unaffected by gravity, bubble dynamics were 

strongly affected.  The bubbles in low-g grew much larger than in earth gravity and 

occasionally departed the wire, Fig. 1.10.  The departure mechanisms in low-g were 

thought to be bubble coalescence and induced liquid motion from rapidly growing 

bubbles.  Such results indicate the inability of the Bond number to scale both effects of 

heater size and gravity level on boiling heat transfer (DiMarco and Grassi, 1999).     
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Figure 1.10: Pool boiling from wires (Courtesy of DiMarco and Grassi, 1999). 

 

Additional studies performed by Steinbichler et al. on boiling from a small hemispherical 

heater and wire under microgravity conditions demonstrate that the overall heat transfer 

coefficient under microgravity conditions is very similar to normal gravity.  They 

measured a slight enhancement in the heat transfer at saturated and slightly subcooled 

conditions.  This was attributed to bubble departure caused by bubble coalescence and 

induced liquid motion around the vapor bubble (Steinbichler et al. 1998).  All of these 

results indicate that the nucleate boiling correlations mentioned previously (Eq. 1.2-1.8) 

do not accurately account for the gravitational dependence on boiling in low-g. 

For flat horizontal heaters, the observations indicate the formation of a primary bubble 

that causes significant dryout over the heater surface.  At low heat flux, some researchers 

have measured a higher heat transfer compared to similar 1-g conditions (Merte et al., 

1998), Fig. 1.11.  Under such conditions, bubble departure can be non-existent and 

bubble dynamics associated with the classical ebullition cycle no longer occur.   

Under highly subcooled conditions in low-g, it has been shown that for heater 

sizes where the primary bubble does not cause total dryout, bubble coalescence on the 

peripheral regions of the heater array causes similar heat transfer performance to classical  
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Figure 1.11:  Comparison between low-g boiling and 1-g boiling predictions (Courtesy of 

Herman Merte). 
 

1-g nucleate boiling (Kim et al. 2002).   

Parametric studies dealing with the effects of fluid type on boiling in low-g have 

been performed by a few researchers.  Preliminary research has identified a significant 

impact on heat transfer in low-g for various fluids.  Oka et al. found CHF in low-g from a 

flat horizontal heater in n-pentane and CFC-113 are lowered by 40 percent when 

compared to earth gravity.  At smaller heat flux, only a slight change was measured, 

which agrees with previously mentioned measurements.  Studies using water as the 

working fluid showed a significantly higher deterioration (> 50%) in CHF at low-g.  The 

differences in performance can be attributed to the thermophysical properties of the fluids 



 

 26 
 

and in wetting characteristics on the heater surface.  For organic fluids, a smaller contact 

angle was measured and hemispherical bubbles shapes were observed while for water the 

contact angle is much larger causing the bubbles to be nearly spherical on the surface in 

low-g causing dryout to occur more rapidly (Oka et al., 1995).   

Studies on boiling in low-g indicate a strong gravitational dependence on CHF.  

For example, Kim et al. (2002) observed bubble coalescence to be the primary 

mechanism for CHF, which differs from the hydrodynamic instability model proposed by 

Zuber, Fig. 1.12.  CHF in low-g was measured to be significantly smaller and occurred at  

 
Figure 1.12:  Pictures of the Boiling Process in Low Gravity at Various Superheats and 

Subcoolings (Courtesy of J. Kim). 

 
lower wall superheats compared to higher gravity boiling.  They measured a gravitational 

dependence on CHF shown in Fig. 1.13.  This gravitational trend further emphasizes 

deficiencies in Kutateladze’s CHF model (Eq. 1.10).    



 

 27 
 

0 

5 

10 

15 

20 

25 

30 

35 

0 0.5 1 1.5 2 

Tbulk=23.0 oC
Tbulk=30.9 oC
Tbulk=39.5 oC
Tbulk=49.6 oC

C
H

F 
(W

/c
m

2 ) 

Gravity Level (g)
 

Figure 1.13:  Gravitational dependence on CHF (Courtesy of J. Kim). 
 

In contrast to horizontal heater studies in low-g, Shatto and Peterson studied the 

mechanisms for CHF from cylindrical heater cartridges and found that the previously 

mentioned Taylor-Helmholtz instability governs the critical heat flux mechanism in low-

g for this geometry (Shatto and Peterson, 1999).  Clearly, additional research is needed in 

order to clarify the mechanisms responsible for CHF in low-g on different heater 

geometries in addition to identifying the gravitational dependence on this critical value.  

Earth gravity CHF mechanisms, such as Taylor and Helmholtz instabilities do not 

accurately predict performance in low-g as measured by most researchers.    
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1.3.1  Thermocapillary Convection 

 The absence of gravity increases the contribution of other mechanisms normally 

masked by natural convection and buoyancy, such as Marangoni or thermocapillary 

convection.  Thermocapillary flow results from surface tension gradients along a two-

phase interface which can form due to temperature gradients, material composition, and 

electrical potentials (Ostrach, 1982), Eq. 1.14.  In equation 1.14, t is the tangential 

coordinate direction along the bubble interface.    

(1.14) 

Thermocapillary effects were first observed by Trefethen and McGrew where it 

was shown that flow around vapor and air bubbles can be very similar.  They predicted 

that thermocapillary flow is the primary mechanism for boiling in low-g supplanting 

ebullition cycle heat transfer mechanisms, although it should be noted that they were 

unable to validate this claim (Trefethen, 1961; McGrew, 1966).   

Raake and Siekmann studied temperature and velocity fields near an air bubble in 

silicon oil in the presence of a uniform temperature gradient and observed strong surface 

tension driven flows.  They measured convective velocities near the surface of a bubble 

on the order of 10-3 m/s which provided an additional force preventing departure in low-

g.  This additional force increased the departure size and decreased the bubble departure 

frequency (Raake and Siekmann, 1989).  Numerical studies performed by Kao and 

Kenning (1972) on gas bubbles showed that the magnitude of thermocapillary liquid flow 

is determined primarily by the Marangoni number (Ma, Eq. 1.15), the Prandtl number 

(Pr), and the Biot number (Bi).  They also found that the flow is very sensitive to surface 

active contaminants, a small amount of which can entirely suppress the thermocapillary 
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motion.  In addition, most of the driving surface tension gradient develops close to the 

liquid-vapor-solid interface and this driving gradient moves closer to the heater surface 

for higher Marangoni numbers (Kao and Kenning, 1972). 

  (1.15) 

Wang et al, used high-speed photography and laser PIV techniques to investigate 

liquid jets emanating from boiling on ultrathin wires during subcooled boiling in 1-g.  

Bubbles diameters were typically 0.03 mm and affected liquid velocities above the 

bubble ranging from 15mm/s to 140 mm/s.  Their results indicate that near the bubble, 

superheated liquid near the nucleation site is drawn toward the bubble and then expelled 

along its cap, Fig. 1.14.  These experimental results agreed very well with 3-D numerical 

simulations which predicted velocities between 20-40 mm/s above the bubble.   

 
Figure 1.14:  Suspended particle tracing during Marangoni convection, heat flux 6.0x105 

W/m2, 379 K, bulk temp 325K (Courtesy of Wang et al, 2005). 

 
Most of the above mentioned studies (except Wang et al.) were performed in a 

binary system with either gas bubbles injected into the chamber or large amounts of 

dissolved gases already present.  For a gas bubble on a vapor surface, it is clear that 

temperature gradients can exist along the liquid-gas interface due to the lack of latent heat 

transport across the interface.  For pure fluids however, much debate has centered on the 
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ability of the bubble’s liquid-vapor interface to maintain a temperature gradient during 

phase transition.  Recent studies in low-gravity show the formation of strong 

thermocapillary convection under highly subcooled conditions around a vapor bubble in 

systems with very low to minimal gas concentrations (nominally pure systems).    As first 

suggested by Straub, thermocapillary flows can form in such systems in the following 

manner.  In subcooled boiling, the top of a growing bubble may extend out of the 

superheated boundary layer and start to condense.  With evaporation occurring near the 

three-phase contact line, impurities such as dissolved gas in the liquid are liberated and 

carried along with vapor to the top of the bubble.  The vapor subsequently condenses 

while the noncondensable gases accumulate along the interface.  Under steady-state 

conditions, the presence of the noncondensables reduces the vapor pressure locally along 

the interface and therefore the saturation temperature is decreased locally.  A negative 

temperature gradient along the bubble interface forms which induces a thermocapillary 

motion directed from the base of the bubble to its top.  A diagram of some of the key 

transport mechanisms of this theory is presented in Fig. 1.15.  A force balance along the 

interface yields the boundary equations (Eq. 1.16-1.17).  Under near saturated boiling 

conditions, this theory predicts an absence of thermocapillary motion due to a nominally 

constant temperature interface (Straub, 2000). 

Marek and Straub found the bubble growth time to have a major effect on the 

accumulation of noncondensable gases.  Under saturated conditions, the bubble grows so 

fast (microseconds) that no accumulation of gas inside the bubble can occur.  In contrast, 

under subcooled conditions where the growth time can be on the order of milliseconds, 

significant gas accumulation occurs.  In addition, Straub measured strong thermocapillary 
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Figure 1.15:  Thermocapillary flow transport mechanisms. 

 

(1.16) 

 

(1.17) 

 

flow in systems with extremely low gas concentrations (Marek and Straub, 2001). 

The strength of thermocapillary convection has been observed to alter the wall 

heat transfer by changing the size of the bubble and allowing additional liquid to wet the 

surface in low-gravity.  Part of this thesis documents the important role this phenomenon 
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regime.  The complex nature of thermocapillary flows involving vapor/gas flow through 

the bubble, a dynamic phase boundary, accumulation of non-condensable gases, the 

dissolution of the gas in the liquid, and diffusion of gas through the liquid vapor interface 

poses a tremendous challenge.  

1.3.2  Summary   

Although no analytical models have been developed that accurately predict 

boiling behavior in microgravity, many of the research efforts to date share common 

observations including:    

1) The formation of a primary bubble in low-g and coalescence with smaller 

bubbles seems to dominate the boiling heat transfer process.  At low heat 

flux, boiling performance can exceed comparable 1-g boiling.   

2) Different heater geometries appear to affect bubble departure in low-g.   

3) The influence of thermocapillary motion increases significantly in low-g 

in the absence of natural convection.  Further research is necessary in 

order to quantify this effect.  Current theories such as those developed by 

Marek and Straub need to be investigated further.     

4) Low-g environments appear to cause boiling incipience to occur at lower 

wall superheats, which is attributed to a thicker superheated liquid region 

in the absence of natural convection.    

5) The use of the Bond number as a single scaling parameter is in serious 

doubt and additional non-dimensional numbers are needed to predict 

boiling behavior across different gravity levels. 
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Although CHF has been researched extensively in earth gravity, strong 

disagreements still exist over conditions just before CHF, the trigger mechanisms 

responsible for initiating CHF, and the combined influence of system parameters on 

CHF.  In low-g a fundamental identification and understanding of the relevant 

mechanisms is desired.  The ability to both greatly increase and predict the magnitude of 

CHF is of importance to high heat transfer applications in space.  A summary of the 

relevant low-gravity work to date is presented in Table 1.3.  
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1.4  PROBLEM STATEMENT / RESEARCH OBJECTIVE 

Considerable resources have been expended in recent years toward the study of 

phase change phenomena in low-g environments.  Particular attention has been given to 

the pool boiling process which is relatively well characterized under terrestrial 

conditions.  Despite such efforts, relatively little is known about the mechanisms 

responsible for energy, momentum, and mass transfer during the boiling process in low-g 

environments, placing considerable constraints on the nature and type of designs that can 

be incorporated into space based hardware.  If the boiling process can be quantified and 

modeled accurately, significant advances in the design and manufacture of space based 

hardware can be made.     

This thesis summarizes a mechanistic approach developed to identify measure, 

characterize, and model the fundamental heat and mass transfer mechanisms associated 

with the boiling process in space.  Experimental, analytical and numerical techniques are 

employed to provide further insight into the phenomenon.   

This study aims to further the state of the art in low-g pool boiling by providing 

accurate and reliable information for future scientists and engineers.  In addition to being 

a validation of previous work, the research objectives of this study include: 

1. Obtain spatially resolved heat flux information 

a. Develop optimized sensor for local temperature and heat flux 

measurement 

b. Obtain boiling data from small scale heaters (< capillary length scale) 

2. Characterize boiling in the absence of ebullition cycle behavior 

a. Determine applicability of 1-g models 
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i. Recommend revisions to current models 

3. Identify scaling parameters 

4. Identify boiling enhancement parameters 

5. Validate / identify the mechanisms responsible for boiling 

a. Model analytically and numerically 

6. Develop / recommend new mechanistic approaches where applicable 
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Chapter 2:  Experimental Method 

2.1  INTRODUCTION 

The experimental methodology was focused on measuring and characterizing the 

primary mechanisms important to the pool boiling process in low-g.  The mechanisms 

identified through literature surveys and experimentation mentioned in the previous 

chapter includes:  bubble coalescence, thermocapillary convection, and interfacial 

molecular kinetics.  System parameters, such as bulk subcooling, wall heat flux and wall 

superheat, appear to affect these mechanisms in a systematic manner.  The experimental 

research objective aims to identify, quantify, characterize, and model the relationships 

between system operating factors and boiling mechanisms as summarized in Fig 2.1.    

A brief study of the primary physical mechanisms identified above reveals a great 

deal about where to begin an experimental investigation.  The initial research effort was 

aimed at identifying, measuring, and characterizing important factors that are thought to 

influence the primary mechanisms and the phenomenon as a whole.  Such factors 

include; heat flux, wall superheat, bulk subcooling, pressure, and others.  Experimental 

factors were identified that would most dramatically influence coalescence and 

thermocapillary convection in low-g.  After identifying the global system factor space, a 

parametric experimental investigation was performed for a selected subset of the factor 

space.  In some cases, the results provided the impetus for modification of the 

experimental test apparatus allowing additional factors to be measured.  The results were 

also used to characterize the physical mechanisms and the relationship between factors 
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and mechanisms, and develop quantitative models to be presented in the following 

chapters.   

This chapter provides a summary of the design of the experiments.  It is organized 

to provide a discussion of the experimental design logic, a description of the various 

systems factors identified and parametrically investigated, and also to provide a rationale 

for design and fabrication of the experimental apparatus used.  The quantity and quality 

of the experimental data to be presented in the next chapter is largely dependent on the 

quality of the experimental design methodology presented below.     

 

Figure 2.1:  Block diagram of research process. 

2.2  EXPERIMENTAL METHODOLOGY 

The experimental methodology followed a fractional factorial approach which 

provides a number of advantages over a total factorial plan.  The primary advantage of 

this method rests in the ability to selectively study interaction effects between factors as 

opposed to a complete factorial plan which looks at interaction effects over the entire 

factor space.  A complete factorial design usually involves extensive experimentation 

which correlates to long periods of time and large data sets that can be difficult to obtain 

if significant constraints associated with cost and availability exist.   

The experimental approach first aimed to identify and quantify two types of 

factors; control factors and noise factors (non-controllable factors).  Control factors are 

variables that can be controlled in both the experiment and the physical process.  Control 
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factors include; wall superheat, bulk subcooling, g-level, fluid type, heater size, and 

heater aspect ratio.  The wall superheat is a critical parameter to study in any pool boiling 

experiment due to its influence on heterogeneous bubble nucleation, vapor formation, 

thermal boundary layer thickness, and liquid –vapor hydrodynamics as summarized in the 

previous chapter.  Bulk liquid subcooling plays a very strong role in the boiling dynamics 

primarily through its influence on the thermal boundary layer and vapor liquid 

hydrodynamics.  The capillary length scale has been proposed as a governing length scale 

for nucleate pool boiling performance and therefore an effort was made to study various 

heater sizes and heater aspect ratios that were on the order of and significantly smaller 

than this length.  The primary objective of this effort, quantifying the pool boiling 

phenomenon in low-gravity environments, necessarily identifies g-level as a parametric 

variable.  A complete list of the control factors studied in this experiment is shown in 

Table 2.1.   

Experimental factors investigated 
   
Factor  
Wall Temperature / Wall Superheat 
Bulk Temperature / Bulk Subcooling 
Gravity Level  
Heater Size  
Heater Aspect Ratio  
Fluid Type  

Table 2.1:  Experimental factors 

The design factors were chosen based on their suggested effects on the pool 

boiling process as identified from the literature review.  Factor operating ranges were 

determined from an iterative design process that looked at experimental design capability, 

NASA safety requirements, previous experimental ranges mentioned in the literature 

review, and preliminary experimental results mentioned in the next chapter.  For 
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example, the heater array control circuitry used in this study was designed for a 

maximum operating temperature which was later found to be too low to provide 

information about important trends in the low-g boiling curve.  As a result, redesign of 

the control circuits for the heater array focused on increasing the temperature range to a 

desirable limit that provided the maximum amount of information possible while 

ensuring safe and reliable operation of the heater.  Similar design scenarios were often 

encountered throughout the duration of this effort.    

Noise factors are predominately control factor uncertainties.  Noise factors 

naturally arise in any experiment.  The primary noise factor in this experiment is the g-

level uncertainty referred to as g-jitter.  Other noise factors include nucleation site 

location and bubble motion.  An effort is made throughout this thesis to quantify and 

explain the effect of noise factors on both the control factors and the phenomena being 

investigated.        

2.3  PARAMETRICALLY INVESTIGATED FACTORS 

2.3.1  Gravitational Environment 

Gravitational effects on the pool boiling process are the primary motivation for 

this study.  Over the years, microgravity environments have been difficult to create due to 

the technological, environmental, and economic challenges encountered.  Such an 

environment presents unique design, safety, and economic requirements that are not 

trivial.  Traditionally, drop towers, parabolic flight, sounding rocket flight, orbital flight, 

and space station operation have been thought of as “microgravity” platforms although in 

almost all cases,  10-6 g levels are not attained.  Throughout this thesis the term 
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“microgravity” and “low gravity” will be used interchangeably referring to a gravitational 

environment (10-2 g) produced in parabolic flight.   

As mentioned above, different means of achieving microgravity conditions exist 

and the various platforms provide different levels of quality and duration of microgravity 

periods.  Drop towers provide microgravity conditions without having to travel into 

space.  A drop tower is typically a vertical shaft which provides microgravity conditions 

during the free fall of the experimental package for a duration that depends on the length 

of the tower.  Two drop towers currently exist in the US and are operated by NASA in 

Cleveland, Ohio.  The major disadvantages of drop towers are the short duration of 

microgravity conditions and in some cases the cost.  Parabolic flight can circumvent one 

of these disadvantages by providing microgravity conditions for up to 25 sec at 

comparable costs.  The major advantages of parabolic flight include the frequency of 

experimentation, and the ability to modify the experimental package preflight, in-flight, 

and post flight.  The primary disadvantage is that the quality of microgravity achieved is 

low, 10-2 g, and the duration is limited compared to other techniques such as orbital 

flight.   

Sounding rockets have the ability to reach 400 km during parabolic flight and can 

achieve good microgravity levels (10-5 – 10-6 g) for 5 to 6 minutes.  Disadvantages 

include the need for recovery and high cost.  Recoverable satellites provide an on-orbit 

laboratory for conducting research in microgravity typically 500 km above earth in low 

earth orbit.  The space shuttle is a typical recoverable spacecraft that orbits the earth at 

300 km and can provide microgravity conditions for up to two weeks.  Last, the 

international space station provides a nearly indefinite microgravity condition to 
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researchers.  This facility offers microgravity levels of 10-6 g for months or years and can 

include isolation techniques for reducing the g-level even further (Thomas et al, 2000).  

Unfortunately, the latter microgravity platforms mentioned above are very expensive.  A 

summary of the various microgravity platforms and their respective quality and duration 

can be seen in Table 2.2.   

Microgravity Platform   Duration Gravity level 

Drop tower/shafts  2-9 sec 10-2__10-5g 
Parabolic flights (aircraft)  25 sec 10-2__10-3g 
Balloon-drop  60 sec 10-2__10-3g 
Sounding rocket  6 min 10-3__10-4g 
Space shuttle  > 9-11 days 10-3__10-5g 
Space station/recoverable satellite > months 10-5__10-6g 
Table 2.2:  Microgravity platform characteristics (Thomas et al, 2000). 

Selection of the appropriate microgravity platform for this particular study was 

motivated by cost, microgravity duration, ability to continually modify the test apparatus, 

and logistics.  The NASA operated KC-135 provided a relatively low cost and long 

duration microgravity environment and allowed continual test modification during flight 

operations.  All experimental data to be presented were taken aboard the NASA operated 

KC-135 in parabolic flight.  Data presented in this paper was taken over a 6 week period 

totaling 24 flights.  During portions of the parabolic flight, low-g (0.01g) and high-g 

(1.7g) levels are produced.  A typical flight consisted of 40 parabolic maneuvers.  Each 

parabolic maneuver consisted of a high-g pull-up (1.7g), a low-g period of about 25 s, 

followed by a high-g pullout (1.6g-1.7g), Fig. 2.2.  Data acquisition for a particular wall 

temperature was initiated during the transition from high-g to low-g, Fig 2.3.  Data were 

obtained for 90 s throughout the entire low-g period and into the high-g pullout and pull-

up.   
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Figure 2.2:  KC-135 flight profile (left); KC-135 in flight (right) (Courtesy of NASA). 
 

 
Figure 2.3:  Gravitational profile for a typical parabola (Courtesy of J. Kim). 

  

Experimentation aboard the KC-135 requires comprehensive design, analysis and testing 

of each experimental subsystem and the overall system.  Some of the design 
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considerations encountered include:  physical constraints such as size, weight, structural 

considerations, power requirements, physiological issues, in-flight spatial constraints, 

setup, and logistical design & management.  A comprehensive description of the 

experimental design challenges and an in-depth analysis of the experimental system is 

included in Appendix A (TEDP).  Logistical challenges included:  apparatus testing and 

preparation, transport to and from NASA facilities, loading onto the KC-135, and pre-

flight testing and qualification.  Experimentation during parabolic flight is not a trivial 

endeavor, requiring diligence and attention to detail surpassing the norm, Fig. 2.4.  

Physiological challenges encountered during flight included disorientation, nausea, 

lightheadedness, fatigue.   

 

 
Figure 2.4:  Pictures of the Test Environment  
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The g-level was a parametrically investigated parameter having a maximum and 

minimum value of 0.01g and 1.7g respectively.  The majority of experimental data 

obtained during flight was taken at these gravity levels.  A few data points were obtained 

at lunar, 0.17g, and earth gravity, 1g.  A summary of the g-level range studied and the 

percentage of experiments conducted at each level is shown in table 2.3.   

Parameter:  Gravity-Level

0.01g 47 10-2g
0.3g 1 10-2g
1g 5 10-2g

1.7g 47 10-2g

Uncertaintyg-level % exp

 
     Table 2.3: Gravity level parameter range 

2.3.2  Fluid 

Pool boiling is strongly dependent on the type of fluid undergoing phase 

transition.  Organic and inorganic fluids differ in both heat transfer performance and 

hydrodynamic manifestations at similar operating conditions.  The primary 

considerations in selecting a suitable working fluid for this experiment were the 

thermophysical properties and electrical properties of the fluid.   

As mentioned in the introduction, direct immersion electronic cooling 

applications require the use of an electrically inert working fluid.  The heater array used 

to initiate and sustain boiling activity in this experiment also required an electrically inert 

fluid.  The maximum heater array temperature studied was 100° C and in order to study 

an adequately large wall superheat range, the fluid boiling point need to be between 40° 

C and 70° C.    Last, the fluid needed to be non-toxic and non-flammable and satisfy 

stringent safety requirements set forth by NASA for operation aboard the KC-135.   
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A class of fluids which satisfied all of these conditions was the 3M fluorinert 

electronic liquids.  These fluids are part of a family of fully-fluorinated compounds 

known as perfluorocarbons.  Such liquids have been used as heat transfer media for direct 

immersion cooling, automated testing, reflow soldering, etching, CVD, and more.  In 

addition, these fluids were selected due to their good material compatibility, low toxicity, 

nonflammability, and documented working history.   

The working fluid, FC-72 (C6F14), was chosen from this class of fluids primarily 

based on the boiling point of the fluid at room pressure.  FC-72 is a clear, colorless, 

odorless, highly wetting, dielectric fluid manufactured by 3M.  Its dielectric properties 

and relatively low boiling point (Tsat = 56 °C, at 0.1 MPa) make it a desirable fluid for 

thermal management solutions in the electronics industry.  Of particular interest is the 

fluid’s relatively high density, low viscosity, and low surface tension, Table 2.4. 

FC-72 Properties, P = 1 atm, saturated fluid properties 

Boiling Point (K) 329.15   

ρl (kg/m3) 1614   

ρv (kg/m3) 14.8   

µ (kg/ms) 6.40e-04   

Cp (J/kgK) 1097   

hfg (J/kg) 83536   

kl (W/mK) 0.0522   

σ (N/m) 0.008   

β (1/K) 0.0094   

MW (kg/kmole) 338   

Dielectric constant 1.75   

Tcrit (K) 451.15   

solubility of water (ppm) 10   

solubility of air (ml/100ml) 48   

Table 2.4:  FC-72 saturated fluid properties. 
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Current theories on the origin of thermocapillary convection indicate that surface 

active contaminants may play a significant role in the interfacial kinetics at the two-phase 

interface.  As a result, significant effort was made to accurately quantify the purity of the 

fluid.  For FC-72, two impurities are typically present:   dissolved gases and the fluid 

isomers.   

 
2.3.2.1  Dissolved Gas Measurement.  A thorough distillation process was followed to 

remove less volatile contaminates in the fluid.  Unfortunately this process did very little 

to reduce the isomer concentration within in the fluid.   After distillation, the fluid was 

degassed by periodically reducing the pressure inside the boiling chamber down to the 

vapor pressure of FC-72 at room temperature.  The air concentration in the liquid was 

reduced to less than 3 ppm by repeatedly pulling a vacuum on the vapor/air mixture 

above the liquid. For a given partial pressure of gas (Pg) above the liquid, the dissolved 

gas concentration Cg (moles gas/mole liquid) in the liquid phase is given by Henry’s law 

Cg=H(T) Pg where H(T) is Henry’s constant.  For air in FC-72, H has been measured to 

be 5.4x10-8 mole/mole-Pa between 31 °C<T<60 °C.  Pg can be determined from a 

measurement of the total pressure (PT) and temperature (Tsat) of the gas above the liquid 

after it has come to equilibrium in a sealed container from Pg=PT-Psat(Tsat) where Psat is 

the saturation pressure of the liquid at the measured temperature Tsat.   

Consider now the case where liquid and air are sealed in a container of volume V, 

and that the volume of liquid containing dissolved air is Vl and the volume of vapor/air is 

Vg.  We wish to determine the number of times Vg must be removed to reduce Cg below a 

specified value.  The initial partial pressure of air above the liquid is assumed to be Pa,i. 



 

 49 
 

The initial concentration of gas in the liquid is then Ca,i=H(T)Pa,i.  The mass of air in the 

liquid (Ma,l) can be shown to be:   

Ma,l = H(T)Pa,iρlVl
MWa

MWl
                  (2.1) 

where MWl and MWa are the molecular weights of the liquid and air, respectively.  If the 

vapor and air above the liquid are removed using a vacuum pump (we will assume the 

liquid volume does not change) and the chamber allowed to equilibrate, the air contained 

in the liquid must come out of solution to fill this volume.  The total mass of air in the 

container is the sum of the air within and above the liquid:  

     H(T)Pa,iρlVl
MWa

MWl

=
Pa,i+1

RaT
Vg + H(T)Pa,i+1ρlVl

MWa

MWl
            (2.2) 

where Pa,i+1 is the partial pressure of air above the liquid after the vacuum has been 

applied. Rearranging equation 2.2 yields 

     
Pa,i+1

Pa,i

=
H(T)ρlVl

MWa

MWl

Vg

RaT
+ H(T)ρlVl

MWa

MWl

=
1

1+ Z                           (2.3) 

where 

      Z =
1

RaTH(T)ρl

Vg

Vl

MWl

MWa
                                    (2.4) 

Equations 2.3 and 2.4 give the reduction in partial pressure of air above liquid due to the 

removal of the air and vapor above the liquid. 

As an example, assume we wish to reduce the air concentration to below 3 ppm 

for liquid and air at 25°C (this corresponds to a partial pressure of air of 55 Pa), and we 

have a container half filled with liquid (Vg=Vl).  Using the properties of FC-72 we find 
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Z=1.57, so the partial pressure of air is reduced to 39% of its previous value every time a 

vacuum is applied.  If the initial total pressure is 101 kPa, then the vapor pressure is 36.6 

kPa, and the partial pressure of air above the liquid is 64.7 kPa, resulting in an initial air 

concentration in the liquid of 3500 ppm.  If we wish to reduce this to below 3 ppm, we 

find that a vacuum must be applied a minimum of eight times, Fig. 2.5.     
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Figure 2.5:  Theoretically predicted gas concentration during degassing procedure. 

High performance vacuum pumps are not needed to thoroughly degas the fluid 

because the pressure in the chamber is never below the vapor pressure of the liquid.  

During the degassing procedure, the pressure was measured using a high-accuracy 

pressure transducer (PTG PX01C1-015A5T 15 PSIA, 0.01% FS).  The accuracy of this 

transducer is about 10 Pa, well below the partial pressure of air at 3 ppm concentration.  

Accurate temperature measurements are also required.  Near room temperature, the vapor 

pressure of FC-72 changes by 3280 Pa/°C, so a 3 ppm error (55 Pa error) can result from 

a temperature change of 0.016 °C. The temperature was measured with a high precision 
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RTD (Techne, Inc. model WSP350 PRT with TECAL Accutemp RTD indicator, ±0.001 

°C).  Both of the instruments were chosen such that the dissolved gas content could be 

determined to levels well below 3 ppm.   

In practice, the chamber pressure and temperature were measured just before 

degassing, and the pressure measurements were corrected to obtain what the total 

pressure would be at a reference temperature of 25°C.  A vacuum pump was then 

connected to the chamber and the pressure above the liquid was lowered long enough to 

boil the liquid for a few seconds, ensuring that all of the vapor/air was removed.  The 

pressure was observed to quickly stabilize to levels below what would be expected at 

Cg=3 ppm after a few rounds, Fig. 2.6.  Once the liquid was degassed, the pressure 

around the bellows was brought up to 101 kPa—since there was no pressure differential 

across the seals in the boiling chamber, gas infiltration back into the liquid was 

minimized.   
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Figure 2.6:  Chamber pressure and gas concentration during degassing procedure. 
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Gas concentrations smaller than 2x10-3 have been shown to have little to no 

influence on the boiling behavior in earth gravity (You, 1995).    However even the 

presence of small amounts of dissolved gas mat cause the formation of Marangoni 

convection around vapor bubbles in subcooled, low-g environments (Straub, 2000).  

Strong Marangoni convection was observed in the present study under high subcoolings 

and therefore the effect of small gas concentrations is currently unknown.    

2.3.2.2  Isomer Concentrations.  The second fluid purity consideration analyzed was the 

effect of different isomer concentrations.  FC-72 was analyzed using mass spectrometry 

and gas chromatography by researchers from Rutgers University (Hartman, 2004).  The 

results of this analysis indicate that FC-72 is made up of various isomers of the chain 

C6F14.  The 6 highest concentration isomers in the FC-72 sample do not have similar 

boiling points at 1 atm and theoretically could introduce a temperature gradient along a 

two-phase interface if accumulation along the interface occurs, Table 2.5.  An effort was 

made to study as pure a fluid as possible due to this effect.  A purer form of FC-72 (99% 

n-perflurohexane) was obtained, and the experimental results were compared to those 

obtained using FC-72 (73% pure).   

Substance M.W. GC Area % BP (oC)   
n-perfluorohexane 338 73.2 56 C6F14 

perfluoro-2-methylpentane 338 17.892 57.66 C6F14 

perfluoro-3-methylpentane 338 5.954 58.37 C6F14 

perfluoro-2,3-dimethylbutane 
+ perfluoro-2,2-
dimethylbutane 338 1.723     

perfluorocyclohexane 300 1.105 50.61   
perfluoromethylcyclopentane 300 0.126 48 C6F12 

Table 2.5:  Mass spectrometry results for FC-72 (Hartman, 2004). 
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A decision was made early in the experimental design process to study the effect 

of various factors at single pressure of 1 atm.  This decision was based on NASA design 

constraints and the extensive pressure vessel certification process.  Significantly higher 

pressures would require more robust seals for the boiling chamber as well as redundant 

containment vessels.  It was concluded that in order to study the effect of pressure on 

boiling activity, much larger pressures than what is allowed aboard the KC-135 would 

have been desired.  In addition, pressure effects on nucleate pool boiling are thought to be 

similar (at relatively low pressure, 1-10 atm) to bulk subcooling effects which are studied 

extensively in this work.  In summary, the fluid purity level was parametrically 

investigated by varying the dissolved gas level and isomer content of the fluid, Table 2.6. 

 

Parameter:  Fluid      
      

Fluid Description Description 

FC-72 degassed w/isomers 
3M commercially available FC-72, < 3 ppm 
gas concentration, isomer concentration 
(Table 2.5) 

FC-72 w/gas & isomers 
3M commercially available FC-72, < 3 ppm 
gas concentration, isomer concentration 
(Table 2.5) 

n-perfluorohexane (pure) 3M, < 3 ppm gas concentration, 99% pure 

Table 2.6:  Parametrically investigated fluids. 
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2.3.3  Wall Temperature / Heat Flux Measurement 

The wall superheat is perhaps the most critical parameter study in any pool 

boiling experiment. Accurate measurement of the wall superheat requires an accurate 

measure of both the temperature of the heater and pressure near the heater surface.  As 

mentioned previously, all experiments were run at nominally 1 atm and therefore heater 

wall temperature was the dominant factor affecting the wall superheat.  The heater 

temperature was controlled using a microheater array as opposed to constant heat flux 

techniques.  This method allows the entire boiling curve to be quantified in a single 

incremental temperature run.  The complex shape of the nucleate pool boiling curve also 

requires that the wall superheat be measured with sufficient resolution to provide 

information about higher frequency effects.   

2.3.3.1  Microheater Array.  Local heat flux measurement and temperature control were 

performed using an array of platinum resistance heater elements deposited on a quartz 

wafer in a serpentine pattern.  Each of these heater elements in the array was 0.27 mm x 

0.27 mm in size, had a nominal resistance of 1000 Ω, and a nominal temperature 

coefficient of resistance of 0.002 °C-1.  The reference heater array consisted of ninety-six 

individual heaters arranged in a square array approximately 2.7 mm on a side, Fig. 2.7.  

 The quartz heater array is mounted in a PGA socket using an epoxy adhesive and 

electrical connections were made using a gold wire bonding method.  This package was 

then connected to a PCB board for interface with feedback electronics and data 

acquisition, Fig. 2.8.  Contact resistance due to the bonding method had a negligible 

nominally 700 Ω.  The quartz substrate has a thermal conductivity of 1.5 W/mK which 

limits the amount of substrate conduction.  A silicon dioxide passivation layer deposited     
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Figure 2.7:  Representative platinum resistance heater array, each heater element = 0.27 

mm x 0.27 mm (Courtesy of J. Kim). 

 
above the etched platinum was used to provide a uniform surface free energy over the 

heater.  The reader is referred to Rule and Kim (1999) and Rule (1997) for additional 

details.  Fig. 2.9 is a cross-sectional diagram of an individual heater.      

 
Figure 2.8:  Heater array connected to PCB board (Courtesy of J. Kim).   

270  µm 
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Figure 2.9:  Cross-sectional view of heater array (drawing not to scale). 

 

2.3.3.1  Feedback Control Circuit.  The temperature of each heater in the array was kept 

constant by a bank of 96 feedback control circuits similar to those used in hot wire 

anemometry, Fig. 2.10.  The control circuit operates in the following manner:  The 

chopper op amp is used to sense an imbalance in the wheatstone bridge, represented by 

R1, R3, R4, R5, Rh, and RDP.  If an imbalance exists, the op-amp outputs a proportional 

voltage to the gate of the transistor allowing additional current to flow from the 24 volt 

source through the bridge.  This current causes an increase in the temperature of the 

heater (joule heating) with a corresponding increase in resistance.  The resistance of the 

heater will continue to rise until a new equilibrium state is reached corresponding to a 

balance in the wheatstone bridge.  The wheatstone bridge balance can be adjusted by 

changing the digital potentiometer setting.  This change causes current to flow through 

the heater array heating it up until the bridge is once again balanced.  The circuit is 

designed so that very little power is dissipated across the right side of the bridge (R3, R4, 

R5 are very large). R1, R2, R3, R4, and R5 are high tolerance metal film resistors and 

change very little with temperature.  This entire process occurs very quickly, in 

approximately 66µs, much faster than the dynamic behavior of the boiling process.  

Quartz Substrate (500 µm) 

Platinum Heater (0.2 µm) 

Silicon Dioxide (1 µm) 
Aluminum Lead (0.5 µm) 
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During data acquisition, the time-varying voltage across the heater resistance, Vo in Fig. 

2.10, is measured and used along with the heater resistance at the given temperature to 

determine the total power dissipated by the heater to maintain it at constant temperature.     

 

Figure 2.10:  Feedback control circuit (Courtesy of J. Kim). 

 The feedback control circuits were individually optimized to extend the 

operational temperature range of each heater while simultaneously optimizing the heater 

temperature resolution.  An optimization model was developed based on the physical 

response of the feedback circuit.  The goals of the analysis included the desire to maintain 

the highest fidelity in measurement and to operate the heater array with the maximum 

number of operational heaters as possible.  The microheater array operates most 

effectively when there is a minimum temperature difference between adjacent heaters 

allowing all heaters to turn on.  A small temperature difference reduces lateral substrate 

conduction between heaters providing a better estimate of the heat transfer due to boiling.  

Lateral substrate conduction can also cause adjacent heaters to “turn off” during the 
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boiling process resulting in a non-uniform isothermal boundary condition and making it 

difficult to infer information about the boiling process.   

As mentioned above, under certain conditions conduction between heaters 

becomes significant.  Such conditions occur when there is very small heat transfer above 

and below the heater array.  Consider first a single heater in the array that is surrounded 

by other heaters that are 0.4 K higher in temperature (this value hypothetically represents 

the temperature resolution of a given heater), Fig. 2.11.  Under such conditions, heat will  

 
Figure 2.11:  Model of lateral conduction between heaters.  

be conducted from adjacent heaters toward the center at a rate of 6 W/cm2.  The total heat 

energy transferred in this case is approximately 300 µW.  In order for this heater to 

operate correctly, there must be a net energy removal from the heater so that power can 

be supplied to the heater and measured.  For this to occur, boundary conditions above and 

directly below the heater must be such that they remove heat at a rate greater than 300 

µW.  At the bottom of the heater, a large thermal resistance due to conduction through 

 350.0 K 

10 µm 

10 µm 

 350.4 K 

 350.4 K 

 350.4 K 

 350.4 K 

 6 W/cm2
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the quartz substrate and convection to air exists creating a nearly adiabatic boundary 

under most operational conditions.  The area for heat transfer to occur above the heater is 

7.29 x 10-8 (for a 2.7 x 2.7 mm2 array).  Assuming a temperature difference between the 

heater and surrounding medium of 60 K, the heat transfer coefficient would have to 

exceed 70 W/m2K in order to remove the 300 µW of energy being transferred from 

adjacent heaters.  For such a circumstance, the heater will turn off if the overall heat 

transfer coefficient above the heater is less than 70 W/m2K.  Many natural convection 

processes at the small scale can affect heat transfer rates close to this value and therefore 

in order to ensure effective heater operation under such conditions it would be desireable 

to reduce the required h so that an additional range of boundary conditions can be 

investigated.  The goal of the optimization analysis was to try and reduce the temperature 

difference between heaters by 50% which would result in a 50% reduction in the required 

heat transfer coefficient above the heater extending the range of conditions the array can 

be used to study.   

The optimization analysis modeled the control circuit analytically using electrical 

circuit theory.  A schematic of the feedback control circuit was shown in Fig. 2.10.  The 

circuit is characterized by three main electronic components: resistors, an operational 

amplifier, and a transistor.  Resistors, represented by R1, R3, R4, R5, Rh, and the digital 

potentiometer (RDP), define a wheatstone bridge that characterizes the performance of the 

control circuit as mentioned previously.  R1, R3, R4, R5, are metal film resistors with a 

manufacturer specified tolerance of 1% and are rated at 0.6 Watts.  High tolerance metal 

film resistors are used in this application for their relative insensitivity to temperature, 

high power dissipation, and commercial availability.  These resistors, in addition to RDP, 
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form the set of design variables which are optimized in the analysis.  RDP is a dual digital 

potentiometer consisting of two digitally controlled potentiometers manufactured by 

Dallas Semiconductor.  It consists of 512 resistive sections providing a resistance range 

of 0 – 20 kΩ.  Rh represents the resistance of a specific heater element.  As mentioned 

previously, each heater element can be modeled as an equivalent temperature dependent 

resistance (Rh has a temperature coefficient of resistance 1000 times larger that the metal 

film resistors described above).  The circuit regulating op-amp, labeled “Chopper Op-

Amp” in Fig 2.10, is a high-voltage, high-performance operational amplifier.  An 

additional op-amp is used to measure the voltage, Vo, across the heater element but does 

not directly influence the performance of the control circuit.  The transistor shown in Fig. 

2.10 is a high current, low voltage, NPN switching transistor that is used to provide 

power to the heater elements.  It is important to note that the analysis presented 

subsequently applies to a single heater and its respective feedback control circuit.  An 

analysis similar to that shown below can be performed for each heater in the array to 

obtain an optimized heater array.           

A single objective optimization formulation (Eq. 2.5 – 2.11) was developed 

alongside a number of linear and nonlinear constraints.  This set of mathematical 

equations defined the optimization model that was solved using a number of methods in 

Matlab.  A parametric investigation was performed on a number of design parameters 

providing additional information about the optimized solution.  An in-depth description 

of the optimization model and its solution is provided in Appendix B. In summary, the 

design variables are defined as R1, R3, R4, R5, RDP (see Fig. 2.10).  The goal was to 

optimize these variables for maximum temperature resolution of a given heater in the 
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array subject to physical constraints.  All design variables are approximated as 

continuous variables. 

 

Single-Objective Optimization Formulation: 

Objective Function:   

(2.5) 

 

Subject to:              
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 One drawback to solving the optimization model is the time necessary to analyze 

and determine the optimized resistor values for all 96 circuits.  Therefore an effort was 

made to use as many of the same resistors as possible.  This saved a tremendous amount 

of time and money as resistors could be ordered in bulk.  As a result, R1 was the only 

resistor that was optimized for the individual circuits.  R3, R4, and R5 were chosen based 

on the analysis described above and the availability of in-house components.  The final 

resistor values for each feedback circuit can be found in Appendix C (Table C.1).  The 

heater numbering scheme is presented in Figure C.1.   

The optimized heater array resulted in a 50% increase in temperature resolution 

over the older design at higher operating temperatures, 100-120°C.  The optimized design 

has the same temperature resolution at low operating temperatures, 70°C, Fig 2.12.  The 

final worst case operational specifications of a heater in the entire array are a temperature  

 
Figure 2.12:  Comparison between optimized heater temperature resolution and older 

heater temperature resolution (current design). 

Operating 
temperature range 
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range of 15°C -120°C with a temperature resolution of ~ 0.21°C.  Results of the 

optimization analysis also identified a unique relationship between the temperature range 

and temperature resolution as shown in Fig. 2.13.  This figure indicates that a higher 

desirable temperature range creates a larger temperature uncertainty between heaters and 

very low temperature uncertainties can be created at higher operating temperatures for a 

given temperature range.        
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Figure 2.13:  Non-dimensional optimization results.   

 

2.3.3.2  Heater Calibration.  The heater array was calibrated using a constant temperature 

oven.  PID temperature controllers, two thermocouples, and two thin film heaters were 

used to maintain a constant temperature environment inside the oven.  The heater was 

allowed to equilibrate within the oven for two hours before the calibration program was 
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run.  The temperature of the heater array was measured using a NIST calibrated 

thermocouple which was attached using Kapton high-temperature tape close to the heater 

surface.  Pictures of this setup are shown in Fig. 2.14.   

    

 

 

Figure 2.14:  Calibration chamber (left), top view of PCB board inside oven (right). 

 At thermal equilibrium inside the oven, the calibration program determines the 

digital potentiometer resistance setting which balances the wheatstone bridge (Fig. 2.10).  

These settings, called DQ values, are written to a text file and stored on a flash disk for 

future use.  This process was repeated for 5°C temperature increments ranging from 65°C 

to105°C.  The actual measured DQ values (DQmeas), which are the values of the 

potentiometer wiper positions which corresponds to a resistance (RDP =  39*DQ Ω), agree 

very well with the predicted values (DQpred) Fig. 2.15.   Errors in the theoretical model 

are due to uncertainties in feedback circuit resistance measurements and uncertainties in 

the temperature reading of the heater elements.  
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Figure 2.15:  Comparison between measured and predicted DQ values for a 

representative heater data set. 
 

The temperature range investigated was chosen based on safety requirements, 

heater reliability, and wall superheat resolution and range, Table 2.7.  Based on previous 

studies (Merte 1994 , Dimarco & Grassi 1999), it appears that 5°C temperature 

increments provides a sufficient boiling curve resolution to measure higher-frequency 

effects in low-g.  Wall temperatures below 70°C were unable to sustain boiling activity 

on the heated surface and were therefore of little interest.  The maximum wall 

temperature studied, 100°C, corresponds to a safe and reliable operational temperature 

limit of the heater array and is usually beyond the temperature at which CHF occurs.  At 

higher heater temperatures, thermal expansion of the wire bonding metal and the 

encapsulation epoxy can create strong stresses within the device, causing individual wire 

bonds to detach from the bonding pads.  In addition, higher heater temperatures can cause 

high stresses within the quartz wafer due to thermal expansion mismatches between the 
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deposited metal layers and the substrate.   A more detailed analysis of the heater wall 

temperature uncertainty is provided in the next section.  Last, during experimentation, the 

heater wall temperature was initially set to 100 - 120 °C for 1 second in order to initiate 

boiling activity.  This large superheat was required due to very low dissolved gas 

concentrations within the boiling chamber.    

Parameter:  Heater Wall Temperature    
     

Wall Temperature (oC) Uncertainty  (oC) 
70 0.8 
75 0.8 
80 0.8 
85 0.8 
90 0.8 
95 0.8 

100 0.8 
Table 2.7:  Heater wall temperature range parametrically investigated. 

2.3.4  Heater Geometry 

2.3.4.1  Heater Size.  As mentioned in the literature review, heater size appears to have an 

effect on the boiling performance when the size of the heater is below or near the 

capillary length.  In low-g, the capillary length for FC-72 is 7.8 mm and therefore an 

effort was made to study boiling from scales close to and much smaller than this length.  

Two heater arrays were manufactured for this purpose (7 x 7 mm2  and 2.7 x 2.7 mm2).  

Various heater sizes were investigated by selectively powering a number of heaters in the 

96 heater arrays.  As fewer heaters are powered, the spatial resolution of heat flux 

measurement deteriorates and therefore the minimum size studied was a 3 x 3 array of 

heaters (0.65 mm2) and not a single heater.  Four heater sizes were selected from the 

entire heater size domain space providing information about higher-order heater size 
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effects on the boiling performance.  A summary of the square heater sizes is presented in 

Table 2.8 and Fig. 2.16.   

 
Figure 2.16:  Relative heater sizes parametrically investigated.  

Parameter:  Square Heater Size

Heater Array Area (mm2) # heaters Description Ind. Heater Area (mm2) Uncertainty (mm2)
0.66 9 3 x 3 array 0.073 0.005
2.62 36 6 x 6 array 0.073 0.005
7.29 96 10 x 10 array 0.073 0.005

49.00 96 10 x 10 array 0.49 0.01  
Table 2.8:  Heater sizes parametrically investigated. 

 

2.3.4.2  Heater Aspect Ratio.  In low-g, primary bubbles that form from square heater 

geometries tend to be highly symmetrical which may affect thermocapillary convection.  

The question was raised regarding the effect of rectangular heaters shapes that potentially 

could create and sustain boiling from ellipsoidal bubbles.  This was achieved by 

powering rectangular arrays of heaters with high aspect ratios.  The goal of this 

parametric investigation was to determine the extent to which stable ellipsoidal bubbles 

tend to form in low-g and the effect of elongated bubble shapes on thermocapillary 
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convection and heat transfer.    The minimum aspect ratio investigated was a square 

heater array.  The maximum aspect ratio heater array studied was determined by two 

considerations:  the maximum length of the array (10 heaters), and the minimum desired 

heat flux resolution.  The latter refers to the selection of a 2 x 10 array instead of a 1 x 10 

array which provides a heat flux distribution in both orthogonal coordinate directions 

instead of in one direction.    From the 7 x 7 mm2 heater array, five different heater aspect 

ratios were investigated as shown in Fig. 2.17 and are summarized in Table. 2.9. 

  

Figure 2.17:  Heater aspect ratios investigated. 

 

Parameter:  Heater Aspect Ratio

Aspect Ratio Heater Area (mm2) # heaters Description Ind. Heater Area (mm2) Uncertainty (mm2)
1:1 1.96 4 2 x 2 array 0.49 0.01
1:2 3.92 8 2 x 4 array 0.49 0.01
1:3 5.88 12 2 x 6 array 0.49 0.01
1:4 7.84 16 2 x 8 array 0.49 0.01
1:5 9.8 20 2 x 10 array 0.49 0.01  

Table 2.9:  Summary of heater aspect ratios investigated. 

7 mm 

 5.6 mm 
 4.2 mm 

 2.8 mm 
 1.4 mm 
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2.3.5  Bulk Liquid Subcooling 

The chamber working fluid temperature was controlled using a series of Kapton 

heaters, thermistor, and temperature controller.   The thermistor measures a point 

temperature 5 cm above the heater array.  The temperature control unit uses a PID 

controller and a solid state relay to supply power to the Kapton heaters attached to the 

exterior of the boiling vessel to maintain the bulk temperature at or above room 

temperature.  The minimum temperature investigated, approximately room temperature, 

was chosen based on the desire to avoid incorporating refrigeration systems into the test 

apparatus.  This addition would increase the complexity of the design, introduce system 

integration issues, require additional safety certification by NASA, and had the potential 

to increase the size and weight of the system dramatically.  The maximum bulk 

temperature studied corresponds to the saturation temperature of the fluid.  Table 2.10 

provides a summary of the bulk fluid conditions investigated in this study.  The bulk fluid 

temperature was recorded twice by hand during each parabolic maneuver.  The 

temperature control unit maintained the subcooling temperature to within 2°C of the set 

value over the course of a given flight.   

 
Parameter:  Bulk Fluid Temperature    
      

Bulk Temperature (oC) Uncertainty  (oC) 
28 2 
35 2 
45 2 
55 2 

Table 2.10:  Bulk fluid temperatures investigated. 
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2.4  DATA ACQUISITION  

 The analog voltage signal measured across each individual heater, shown in the 

feedback circuit Fig. 2.10 as Vo, is sent to a 12 bit A/D converter (AD7892) which 

connects through a serial interface to the computer module.   A PCMCIA digital I/O card 

takes the 12 bit digital signal and reads it into the computer.  The CPU module (IDAN-

CMM686) has two serial interfaces, a parallel interface, and a keyboard connection.  The 

transient voltage across the heater was sampled at 250 Hz by a data acquisition system 

with a maximum sample rate of 500 Hz.  The data was written to a 250 Mbyte memory 

flash disk for post-processing.  A pressure transducer and 3-axis accelerometer were 

integrated into the data acquisition system and data from these sensors were acquired at 

the same frequency as the heater voltage signal.    

2.5  IMAGING & PIV SYSTEM 

Video images of boiling in low and high-g were taken throughout the data 

acquisition process.  Side view boiling images were originally taken with a CCD camera 

and later with a high-speed Phantom camera capable of taking images at a rate of 10000 

fps.  Bottom view images of the boiling activity were recorded by a high-speed phantom 

camera that was later replaced with a CCD camera.  The heater array substrate is quartz 

which is transparent to visible light allowing images to be taken of the bubble motion on 

the heater surface from below.  Light from within the boiling chamber traveled down 

through the heater and was reflected at a 90 degree angle and then sensed by a 

horizontally mounted bottom view camera.  The images taken by the CCD cameras were 

recorded on a handheld mini digital video camera and later uploaded to a computer for 

further processing.   The video images were synchronized with the heater voltage 
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measurement using a series of light flashes (binary coding) that differed for each data 

run.   

Marangoni convection appears to be a dominant transport mechanism in low-g 

pool boiling.  This mechanism is known to strongly influence the liquid flow field around 

stable vapor bubbles.  Liquid velocity field measurements can be made during the 

formation and growth of the primary bubble in low gravity.  Particle tracking velocimetry 

(PTV) as well as particle image velocimetry (PIV) techniques can be used to provide 

valuable flow information.  Although PIV experimental measurements are not presented 

in this thesis, PIV and PTV capabilities were demonstrated during a concept verification 

experiment.  In this experiment, a small concentration of glass microspheres with density 

similar to FC-72 were used as seeding particles in the working fluid.  Individual particle 

movement throughout the fluid as a function of time was tracked using high-speed 

imaging.  This technique provided a good estimate of the fluid velocity and vorticity at 

specific points and various times.  A laser was used to illuminate a plane of boiling fluid 

centered directly above the heater, and the light reflected off the neutrally buoyant glass 

microspheres was imaged using a high-speed camera, Fig. 2.18.  From successive 

images, representative velocity vectors were obtained at various times within the fluid.  

Chapter 7 outlines recommendations for future work involving PIV techniques further.   

A diode type class II laser manufactured by Diode Laser Concepts is used as part 

of the PIV measurement system. The laser has internal electronics that provide static, 

surge, and reverse polarity protection.  The laser operates at 5 VDC and draws a 

maximum total power  of 1 mW.  Included as part of the laser assembly is a lens that 

converts the laser beam into a sheet of laser light at an angle of 45°.  The laser 
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wavelength is 635 nm.   The line width is 1mm at 1 meter and the fan angle is 10°.  A 

picture of the assembled laser mounting system is shown in figure 2.19.    

 
Figure 2.18: PIV conceptual drawing. 

 

   
 

Figure 2.19:  Laser mounting apparatus and CAD rendering. 
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2.6  SYSTEM INTEGRATION 

 A schematic of the boiling rig used in this study is shown in Fig. 2.20.  The  
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Figure 2.20:  Test chamber schematic (Courtesy of J. Kim). 

stainless steel bellows and the surrounding housing allowed the test section pressure to be 

controlled.  A pressure transducer rated at 200 psia was used to measure the pressure at 

the heater surface.  A micropump was used to break up thermal stratification within the 

test chamber, while a PID temperature controller, a thermistor, and thin film heaters 

attached to the boiling chamber were used to control the bulk fluid temperature as 

mentioned previously.  The test chamber, Fig. 2.21, was filled with nominally 3 liters of 

distilled FC-72.  The heater was cooled from the bottom using an air jet at ambient 

temperature with a flow rate of 660 cm3/s through a 1.6 mm diameter nozzle to prevent 

individual heaters from shutting off at low heat transfer levels (such as occurs when a 

large bubble covers the heater).  The heat flux associated with air jet cooling was 
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subtracted from the heat flux signal during data reduction to determine the actual heat 

transfer from the heater surface to the liquid and is discussed in greater detail in the next 

chapter.  Side windows and the transparent nature of the heater substrate allowed for 

images to be taken of the boiling from the side and bottom.  Two 29.97 Hz CCD cameras 

and mini DV camcorders were used for this purpose as described above. Acceleration 

data in the direction perpendicular to the floor of the aircraft was obtained using one axis 

of an accelerometer (Entran EGCS3) with a sensitivity of 2.5 V/g and frequency response 

of 0-90 Hz.  The assembled test package is shown in Fig. 2.22 and 2.23. 

 

      
 

Figure 2.21: 3-D boiling chamber renderings (Courtesy of J. Benton).  
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Figure 2.22:  Photograph of modified test package (the VER) and its components.  

 

     
Figure 2.23:  Assembled test apparatus, high speed camera mounting (left), front view 

(middle), side view and laser mounting (right). 
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2.7  EXPERIMENTAL TEST MATRIX 

As mentioned earlier a fractional factorial design approach was employed taking 

into account experimental capabilities, design and safety requirements, and logistical 

challenges.  The fluid charging procedure for this experiment requires multiple days to 

perform.  Therefore only one type of fluid could be studied per flight week.  The bulk 

fluid temperature can take up to 2 hours to stabilize after programming the temperature 

controller and therefore one set of data at a given bulk temperature was obtained per 

flight.  A typical flight week consists of four flights allowing different subcoolings to be 

studied on successive days.  A typical design matrix for a given flight is provided in Fig. 

2.24.  During a given flight, the g-level, 

 
Figure 2.24:  Fractional factorial experimental test matrix.   
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heater size, and wall superheat were parametrically varied (cubic structures in figure 

2.24).  In this diagram heater size and heater aspect are similar parameters.  The two-

dimensional figure (top right) in fig 2.24 represents a matrix of bulk subcoolings and 

fluid types.  For each circle in this figure, there is an associated 3-D cubic structure 

defining the parametric factors.  The color of the cubic vertices represents the subcooling 

and the vertices line type represents the fluid type.  The order in which data were 

obtained on a given day at various wall superheats and heater sizes was randomized.  A 

summary of the all of the parametric factors investigated and their respective ranges is 

shown in Table 2.11. 

Twall (oC) Tbulk (oC) Fbody Hsize (mm2) Haspect (mm2) Fluid P (kPa)

70 55 0.01-g 0.66 1:1 (1.96) FC-72 (no gas) 101
75 45 0.17-g 2.62 1:2 (3.92) FC-72 (pure gas)
80 35 1-g 7.29 1:3 (5.88) FC-72 (pure no-gas)
85 28 1.7-g 49.00 1:4 (7.8)
90 1:5 (11.9
95
100

Total Parabolas / Week 130-160
Total Flight Weeks/Year 3-6

Parabola/Year 390-960

Experimental Factor Space 

 
Table 2.11: Summary of factors parametrically investigated. 

 

2.8  EXPERIMENTAL SUMMARY 

The physical problem addressed in this study is of fundamental importance to 

thermal/fluid management in microgravity.  The goal of the experimental methodology 

developed is to measure and characterize the various pool boiling mechanisms in low and 

high gravity.   



 

 78 
 

Experimentation in low-gravity environments is a non-trivial endeavor.  In 

addition to the many design considerations and challenges mentioned herein, a risk 

analysis is required prior to experimentation that anticipates possible problems and either 

accounts for them at the design outset, or resolves the issue when it arises.  In addition, 

the difficulty in obtaining test time aboard the KC-135 puts further emphasis on 

experimental functionality, efficiency, and the ability to continually modify the test 

matrix and experimental capabilities.     

The fractional factorial experimental approach employed throughout this 

investigation was followed to the extent possible.  At minimum, this investigation 

provided a much needed basis of data upon which future work can be conducted and the 

experiments conducted serve to characterize the potential for passive phase change 

systems in low-g.    
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 Chapter 3:  Data Reduction and Uncertainty Analysis 

3.1  PURPOSE  

The primary goal of the data reduction was to accurately quantify the amount of 

heat transferred from the heater surface to the boiling fluid.  A number of methods are 

presented that were used to model, understand, and estimate this value.  The methods 

provide a significantly more accurate representation of the heat transfer due to boiling 

from the microheater array than was previously available.  This chapter also presents an 

in-depth analysis of the uncertainty in the various factors measured.  Data analysis was 

performed using a Matlab routine.  All data were stored as text files.  All uncertainties 

stated subsequently presume a 95% confidence interval.   

3.2  VOLTAGE / POWER MEASUREMENT 

The transient output voltage of each heater in the array, Vi, its corresponding 

resistance, Rh, and area, Ai, were used to quantify the transient power flux, qraw,i, supplied 

to each heater element during boiling, Eq. 3.1.   

 

(3.1) 

Individual heater resistances were measured at selected temperatures during the 

calibration process using a Fluke multimeter with an error of 0.4%.   A typical plot of 

temperature vs. resistance for seven randomly selected heaters in the 7 x 7 mm2 heater 

array is shown in Fig. 3.1.  These measurements were used to calculate the temperature 

coefficient of resistance, αi, for each heater element.  This value was used to evaluate  

ii

i
iraw AR

Vq
2

, =



 

 80 
 

250

270

290

310

330

350

370

15 25 35 45 55 65 75 85 95

Heater Temperature (oC)

H
ea

te
r R

es
is

ta
nc

e 
(O

hm
s)

 
Figure 3.1:  Representative heater resistance temperature dependence (7 x 7 mm2 heater 

array, α = 0.003 oC-1). 
 

heaters that performed inconsistently or exhibited large performance deviations from the 

norm.   For properly functioning heaters, the measured αi values agree to within ± 5% of 

the theoretical value (αt = 0.002 Ω/Ω°C, 2.7 x 2.7 mm2 array), Fig. 3.2.    For heater 

temperatures where the resistances were not measured, Eq 3.2 was used to estimate the 

resistance of the heater at the respective temperature.   

 
(3.2) 

 

In this equation, dT, represents the difference between the set temperature and reference 

temperature.    The uncertainty in estimating the heater resistance from Eq. 3.2 is given 

by Eq. 3.3, where the temperature uncertainty, udT, temperature coefficient of resistance 

( )dTRR irefi α+= 1,
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uncertainty, uα, and reference heater resistance uncertainty, uRref), are 2%, 5%, and 0.4% 

respectively.  The total uncertainty for Ri was calculated to be 1%.   
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Figure 3.2:  Measured αi values for a representative set of 2.7 x 2.7 mm2 heater array 

heaters (αt = 0.002, Kim et al. 2002).  

 

(3.3) 

 

The uncertainty associated with qraw,i was calculated from a propagation of 

uncertainty analysis using Eq. 3.4.  This equation assumes a first-order Taylor  

          (3.4) 

 

expansion of the uncertainty in the independent variables in Eq. 3.1.  The uncertainty in 

Rh, is 1% and the heater area was measured to within ± 5%.  The uncertainty in the 

voltage measurement, which is primarily due uncertainties in the A/D converter chip 

(Analog Devices, AD7892), are stated as ± 0.11 %.  Clearly the primary uncertainty in 
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qraw,i is due to the uncertainty in Ai and was calculated to be ± 5.1%.  In contrast, the 

uncertainty in the total heat (W) dissipated by the ith heater element, qw,i, is much smaller 

(± 1%).  A typical time resolved plot of qraw,i obtained during parabolic flight for a given 

heater element is shown in Fig. 3.3. 

 
Figure 3.3:  Time resolved voltage and heat flux for heater #15, ∆Tsat = 43°C, Tbulk = 

28°C, 96 heater array.    
 

3.3  SUBSTRATE CONDUCTION 

3.3.1  Analytical Model 

The amount of heat transferred to the boiling liquid for a given heater element, qi, 

was calculated by subtracting the heat flux dissipated into the quartz substrate, qsc,i, from 

qraw,i.  Substrate conduction is a complicated 3-D phenomenon that is strongly influenced 

by the wafer boundary conditions.  A 2-D schematic of the heat transfer mechanisms 

around the substrate are shown in Fig. 3.4.  During a given test run, the heater 

temperature and backside boundary conditions of the wafer remain constant resulting in 
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steady state substrate conduction.  For heaters located in the center of the array, 

surrounding heaters are at approximately the same temperature and substrate conduction 

is predominately 1-D.  A simple 1-D steady state conduction analysis was  

 
Figure 3.4:  2-D schematic of heat transfer around the 2.7 mm micro-heater array (not to 

scale). 
 

used to model such heaters.  In order to obtain an estimate of this value, the heat transfer 

coefficient on the backside of the heater due to air impingement cooling was calculated.  

As mentioned previously, backside cooling is provided using a circular impinging air jet 

produced by forcing air through a nozzle of 1.6 mm diameter (Dn) aboard the aircraft.  

The cooling air flow is maintained by a compressed air bottle with flow regulation 

typically set at 152 kPa (22 psia) for the 2.7 x 2.7 mm2 heater array.  The ambient 

pressure inside the aircraft averaged 83 kPa (12 psia) during the flight profile.  Martin has 
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performed an extensive review of heat transfer coefficients for impinging air jets with 

single round nozzles.  His results are presented in a form given by Eq. 3.5 (Martin, 1997).   

 
(3.5) 

In Eq. 3.5, Nu represents the average Nusselt number from the stagnation point to a radial 

distance (r).  The nozzle exit was positioned approximately 10 mm (Hn) below the 

backside of the quartz wafer and the radial distance over which an average heat transfer 

coefficient was desired was 2.7 mm.  Substituting these values into Eq. 3.5 yields the 

following (Eq. 3.6):     

  (3.6) 

For air velocities greater than Mach=0.3 (Ma = 0.3), compressible effects become 

significant and therefore the Reynolds number at the nozzle exit was calculated based on 

compressible flow theory.  For steady-state, 1-D, adiabatic, and inviscid ideal 

compressible flow, an isentropic assumption can be made which reduces the energy 

equation to Eq. 3.7-3.8 (Liepmann and Roshko, 1957). 

(3.7) 

 

(3.8)    

As previously mentioned, the pressure ratio, p/po, is equal to 0.545, and for air, γ  = 1.4.  

Substituting these values into Eq. 3.7 yields, Ma = 0.973.  The nozzle exit temperature 

and density of the airflow can be calculated from Eq. 3.8, ρe = 1.21 kg/m3, Te  = 15°C.  At 

the nozzle exit, the speed of sound is approximately 340 m/s, which gives an exit nozzle 

velocity of approximately 330 m/s.  The corresponding volumetric flow rate at the nozzle 
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exit is 660 cm3/s.  Based on these exit conditions, the exit Reynolds number was 

calculated (Eq 3.9).   

 
(3.9) 

      
From the graphical results presented in (Martin, 1997, pg. 17, fig. 9), Eq. 3.5 can 

be represented by Eq. 3.10.  All of the properties of air were taken at 15°C (ρ = 1.21 

kg/m3, ν = 15.03 *10-6 m2/s, k = 0.0255 W/mK, Pr = 0.710, Incropera and Dewitt, 2002).  

Further manipulation results in a heat transfer coefficient at the backside of the heater 

equal to 2050 W/m2K with an air temperature of 15°C.  This value represents the average 

convection boundary condition at the backside of the wafer.   

 

Km
WhNu

23

342.0

42.0 2050
106.1

)105.25()710(.148148
Pr

≈
×

×
=⇒= −

−

    (3.10) 

 
  
 Incorporating the heat transfer coefficient obtained above into the 1-D steady state 

conduction model simplifies the analysis into a resistance network analogy (Fig. 3.5).  

The resulting temperature at the center backside of the wafer is 65°C for a heater  

 
Figure 3.5:  1-D analytical conduction model for a middle heater (heater 1, Fig. 3.5).   
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temperature of 100°C with a corresponding substrate conduction heat flux of 10.4 

W/cm2.  This substrate conduction heat flux applies to a center heater that is surrounded 

by many other heaters at the same temperature.  This value agrees very well with 

experimental and numerical estimates of the substrate conduction to be presented. 

3.3.2  Numerical Model 

 Although the substrate conduction, qsc,i, appears to be 1-D near center heaters in 

the array, 2-D and 3-D effects are significant near edge and corner heaters.  At edge 

heaters (heater 5, Fig. 3.6), qsc,i is clearly 2-D and at corner heaters (heater 6, 7, Fig. 3.6), 

3-D effects are dominant.  An effort was made to estimate substrate conduction from  

   
Figure 3.6:  Heater numbers modeled using a numerical 3-D conduction routine.   

edge and corner heaters using a numerical program developed in Matlab.  Under steady 

state conditions, assuming no energy generation and a constant thermal conductivity, the 

energy equation within the substrate simplifies to Eq. 3.11.  This equation was discretized 

using a central differencing finite element scheme.  A 2-D schematic of the model  
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developed is shown in Fig. 3.7  (x and z coordinate planes are identical due to heater 

symmetry).  At symmetric boundary 1, adiabatic conditions exist.  At boundary 2, the  

 
Figure 3.7:  2-D numerical model of substrate conduction (not to scale). 

 

impinging air jet heat transfer coefficient obtained previously (h = 2050 W/m2K) was 

used with an air temperature of 15°C.  At boundary 3, the length to width ratio of the 

quartz substrate is sufficiently large (L/W = 10) allowing an adiabatic assumption to be 

made.  At the top, boundary 4, the heaters were modeled as a continuous, infinitesimally 

thick, constant temperature boundary.  Last, the top right boundary (5) condition was 

varied over a range of values (hb = 10-2000 W/m2K, Tbulk = 28°C, 55°C) due to the 

presence of strong thermocapillary convection which may significantly enhance the heat 

transfer in this region.  For the results presented below, a natural convection boundary 

with h = 10 W/m2K and Tbulk = 55°C was used.    
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 The 2-D domain was discretized using a Cartesion mesh and the resulting set of 

linear algebraic equations obtained was solved using a Gauss-Siedel iterative scheme.  

Convergence was assumed to occur when an energy balance on the interior nodes (one 

node in from all boundaries) was < 0.001 Watts or 0.0001% of the total energy supplied 

by the heaters.  2-D results are shown in Fig. 3.8.     

 
Figure 3.8:  2-D (x-y) non-dimensional temperature distribution within quartz substrate 

(heater numbers shown in white). 

A 3-D model was also developed in a manner similar to that mentioned above.  

Results presented below were obtained using a 3-D mesh size of 48 x 36 x 48 nodes.  A 

parametric numerical investigation was performed to study the effect of grid size, heater 

temperature, bulk fluid temperature, and bulk heat transfer coefficient on the steady state 

temperature profile within the quartz substrate.       



 

 89 
 

 Numerical results for a 96 heater array are shown below.  The non-dimensional 

temperature distribution for hb = 10 W/m2K within the substrate is shown in Fig. 3.9.  

Toward the middle of the heater array, the heat flux appears to be predominately 1-D and 

in good agreement with the analytical results mentioned previously.  For the edge heater 

(heater 5) 2-D conduction effects are clearly visible.  The temperature contours appear to 

be nearly perpendicular at the top natural convection boundary indicating negligible heat  

 

Figure 3.9:  3-D non-dimensional temperature distribution within quartz substrate (hb = 
10 W/m2K, Tbulk = 55°C, heater numbers shown in white). 

 

transfer across this surface.  Bulk liquid temperature was found to have a negligible effect 

on qsc,i over the experimental bulk temperature ranges tested (Tbulk = 28°C to 55 °C, h = 

10 W/m2K).  Near the heater corners (heater 6 and 7, Fig. 3.9), the heat transfer is clearly 

3-D. 

c)  bottom surface temperature 
profile (surface -y) 

θ

a)  3-D temperature profile along 
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b)  top surface temperature 
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 A plot of the non-dimensional temperature distribution on the top and bottom of 

the wafer is shown in Fig. 3.10.  Although a large temperature gradient exists at the 

corner and edge heaters in the x-direction, the heat transfer in this direction is minimal 

due to the small thickness of the heater elements (1µm) which results in a negligible 

cross-sectional area (edge heater - 270 µm2 and corner heater - 540 µm2).   

 
Figure 3.10:  Temperature distribution on the top (y = 0) and bottom (y = 0.5 mm) of the 

wafer (z = 0, hb = 10 W/m2K, Tbulk = 55°C). 
 
 

 The continuous isothermal boundary idealized as the heater can be broken up into 

24 equal size heaters of area = 0.0729 mm2 (neglecting the distance between heaters).  

The heat transfer from these 24 equal area sections was summed over the area of each 

individual heater element and divided by 0.0729 mm2 (the area of a 2.7 mm heater 
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element) to obtain an estimate of qsc,i .  The result of this calculation is shown in Fig. 3.11 

for heater temperatures ranging from 65-105 °C.  It should be noted that an additional 

line of symmetry exists running diagonal through the heater (surface y).  The heat flux 

values were symmetric about this line (therefore qsc,i  for heaters 6 and 7 are numerically 

equal).  The effect of mesh size on qsc,i was studied using a 2-D numerical model due to 

greatly reduced convergence times.  These results are shown in Fig. 3.12.  For mesh sizes 

larger than approximately 1000 nodes (in 2-D), the effect on substrate conduction heat 

flux was negligible.  For the largest mesh size studied, at convergence 99% of the energy 

entering the control volume from the isothermal heater surface was dissipated by the air 

 
Figure 3.11:  Heater temperature effects on substrate conduction (hb = 10 W/m2K, Tbulk = 

55°C). 



 

 92 
 

jet cooling on the backside of the array.  A summary of the numerical results can be 

found in Table 3.1.       

 
Figure 3.12:  2-D grid size effect on numerically calculated substrate conduction heat flux 

(hb = 10 W/m2K, Tbulk = 55°C). 

 
 Tbulk = 28 °C, h = 10 W/m2K Tbulk = 55 °C, h = 10 W/m2K 

Th 
[°C] 

heat. 
1 

heat. 
2 

heat. 
3 

heat. 
4 

heat. 
5 

heat. 
6 

heat. 
1 

heat. 
2 

heat. 
3 

heat. 
4 

heat. 
5 

heat. 
6 

65 6.16 6.25 6.53 7.43 14.57 20.93 6.16 6.25 6.53 7.43 14.53 21.04
70 6.78 6.87 7.19 8.18 16.03 23.06 6.78 6.87 7.18 8.17 15.99 23.18
75 7.39 7.50 7.84 8.92 17.49 25.19 7.39 7.50 7.84 8.91 17.45 25.32
80 8.01 8.12 8.49 9.66 18.95 27.32 8.01 8.12 8.49 9.66 18.91 27.46
85 8.62 8.75 9.15 10.41 20.41 29.44 8.62 8.75 9.14 10.40 20.37 29.59
90 9.24 9.37 9.80 11.15 21.87 31.57 9.24 9.37 9.80 11.14 21.83 31.73
95 9.86 10.00 10.45 11.89 23.32 33.70 9.86 10.00 10.45 11.89 23.29 33.87

100 10.47 10.62 11.11 12.64 24.78 35.83 10.47 10.62 11.10 12.63 24.75 36.01
105 11.09 11.25 11.76 13.38 26.24 37.95 11.09 11.25 11.76 13.37 26.20 38.14

Table 3.1:  Numerical substrate conduction results, qsc,i (W/cm2) (3648 nodes).  
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 As mentioned previously, for hb = 10 W/m2K, Tbulk had a negligible effect on qsc,i.  

During the boiling process in low-g, the heat transfer coefficient along this boundary 

(boundary 5 in Fig. 3.5) can increase at higher wall superheats and bulk subcoolings due 

to strong thermocapillary convection.  From side view images of the boiling process 

taken in low-g, thermocapillary velocities on the order of 1 cm/s were estimated.  This 

velocity is comparable to other experimental findings which recorded a thermocapillary 

velocity on the order of 1 mm/s (Raake and Siekmann, 1989).  Based on these 

observations, if turbulent thermocapillary flow over boundary 5 is assumed, a well known 

parallel flow correlation, given by Eq. 3.12 (Incropera and Dewitt, 2002), provides an 

estimate of the average heat transfer coefficient over this 

(3.12)        

 surface, hb = 60 W/m2K.  In Eq.3.12, Nub represents an average Nusselt number over a 

length of approximately 2.5 mm.  Based on numerical calculations for hb = 60 W/m2K on 

boundary 5, the difference in qsc,i (for all heaters) over a bulk temperature range of 28 – 

55 °C is < 1% (see Fig. 3.13).  Even if a much larger thermocapillary flow velocity is 

assumed, such as 10 cm/s, hb = 360 W/m2K and < 9% difference between qsc,i values 

result.  It can therefore be concluded that under the observed experimental conditions, 

qsc,i does not vary significantly with bulk temperature, Fig. 3.13.       

 In high-g, strong boiling may cause a significant increase in hb along boundary 5.  

During boiling, a vapor mass flux directed away from the heater surface can cause a 

strong radial inflow of liquid toward the heater from the surroundings.  Under these 

turbulent conditions, hb would take a maximum value that is well below 500 W/m2K 

3154 PrRe037.0 bbNu =
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validating the conclusions made in the previous paragraph that Tbulk has a negligible 

effect on qsc,i for all heaters over the experimental ranges encountered.   

 
Figure 3.13:  Effect of hb and Tbulk on qsc,i for middle (h-1), edge (h-5) and corner (h-6) 

heaters (96 heater array, 29 x 31 x 29 grid array). 
 

Based on the numerical results presented, the following conclusions can be made 

about substrate conduction:   

1) For middle heaters ( > 2 heaters away from boundary), qsc,i is 1-D and not affected 

by Tbulk  with excellent agreement between analytical, numerical and experimental 

results (to be presented).   

2) For edge and corner heaters, qsc,i is 2-D and 3-D respectively.  When strong 

thermocapillary motion is present, Tbulk appears to have a negligible effect on qsc,i  

(< 1% over the experimental ranges studied. 
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3) Substrate conduction from corner and edge heaters can decrease with an increase 

in hb for Tbulk = 55 °C.  This effect is eventually offset by higher heat transfer 

across the top boundary surface for larger hb values.   

 

3.3.3  Experimental Results 

 Three different experimental methods for determining qsc,i were designed and are 

analyzed below.  The first method, method 1, focuses on experimentally locating 

relatively long time periods during which vapor totally covered a heater (such as occurs 

when a large bubble causes dryout over a heater in low-g) element and attributing the 

heat flux at this time to substrate conduction.  The heat transfer from the heater through 

the vapor is very low due to the comparatively low thermal conductivity of FC-72 vapor 

with quartz (kFC-72 / kq < 0.038).  Assuming a vapor thermal conductivity equal to that of 

the liquid, a vapor layer thickness of 0.5 mm, and a maximum temperature difference 

equal to the maximum wall superheat tested (47°C), a conservative estimate of qvap = 0.5 

W/cm2 is obtained, Eq 3.13.  This value is an order of magnitude smaller than the 

numerically and analytically calculated substrate conduction values.  In addition, 

radiation heat transfer between the wall and the liquid is also negligible (0.016 W/cm2).  

As a result, all heat transferred to the bulk liquid during times when dryout occurred was 

assumed to be negligible.  

 (3.13)  

Experimentally determined qsc,i values using method 1 are shown in Fig. 3.14.  

Higher substrate conduction values are observed near the corner and edge heaters due to 

the increased area for 2-D and 3-D conduction effects which were confirmed 
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numerically.  At Tbulk = 55°C  and hb = 10 W/m2K, there is excellent agreement between 

numerically and experimentally determined qsc,i values for a 96 heater array (Fig. 3.14 - 

3.15).   

 
Figure 3.14:  Comparison of numerical and experimental (method 1)qsc,i for a 96 heater 

array (Tbulk = 55°C, hb = 10 W/m2K). 
 

At higher bulk subcoolings (Tbulk = 28°C, 35°C, 45°C) the experimental method 

for determining qsc,i appears to be flawed (Fig. 3.16).  For middle and edge heaters at low 

wall superheats, Tbulk appears to have a negligible effect on qsc,i as confirmed by the 

numerical results mentioned previously.  In contrast, at higher wall superheats a strong 

dependence on Tbulk is observed contradicting the numerical results which showed a  < 9 

% increase in qsc,i from edge heaters at higher bulk subcoolings.  Such observations 

indicate the experimental method (method 1) for determining qsc,i at higher bulk 

subcoolings is inaccurate.  The reason for this can best be explained by Fig. 3.17.  At  

Th = 70°C Th = 80°C Th = 90°C Th = 100°C 

qsc,i [W/cm2] 

N
um

er
ic

al
 

E
xp

er
im

en
ta

l 



 

 97 
 

 
Figure 3.15:  Comparison of numerical and experimental (method 1) qsc,i for middle (h-1), 

edge (h-5), and corner (h-6) heaters (Tbulk = 55°C, hb = 10 W/m2K). 
 

Tbulk = 55°C, the primary bubble that forms in low-g causes dryout over most of the 

heater array.  As shown in Fig. 3.17, heaters 1 and 5 are completely covered by vapor 

throughout the low-g boiling process and therefore the adiabatic assumption used to 

obtain the experimental qsc,i  values is justified.  For corner heaters (6 and 7), times do 

occur when the primary bubble covers most of the heater element (> 90%) and therefore 

the surface averaged condition for such heaters is also sufficiently adiabatic justifying 

method 1.  For Tbulk = 28 °C, heater 1 is also completely covered throughout the low-g 

boiling process which is why there exists good agreement between experimental and 

numerical values (Fig. 3.15).  At higher wall temperatures, 100°C, strong thermocapillary 

convection causes the primary bubble to shrink in size allowing bulk liquid rewetting of 
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Figure 3.16:  Comparison between analytical, numerical, and experimental qsc,i values.  

Emphasis should be placed on the large deviations between the experimental and 
numerical values for higher bulk subcoolings.     

 

the edge and corner heaters (heaters 5, 6, 7, Fig. 3.17).  The strong thermocapillary 

motion causes the primary bubble to remain stationary and therefore corner and edge 

heaters never experience adiabatic conditions above them.  As a result, the heat transfer 

measured during such conditions for these heaters is a combination of boiling heat 

transfer to the liquid and substrate conduction and unfortunately the magnitude of each is 

unknown.  This results in the large deviations observed in Fig. 3.16.  At Tbulk = 35°C and 

45°C, the primary bubble size is in between these two cases and intermediate deviations 

are observed.   
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Figure 3.17:  Low-g boiling for extreme subcoolings tested (96 heater array, Th = 100°C). 
 

 Based on these observations a modification to the experimental method for 

determining qsc,i was made.  The new method, method 2 involved using the Tbulk = 55°C 

qsc,i values for edge and corner heaters (obtained using method 1) for all other bulk 

temperatures.  Middle heater qsc,i values were calculated using method 1 for all 

subcoolings.  This method is justified by the numerical results showing little to no effect 

of bulk temperature on qsc,i.   The third experimental method, method 3, incorporates a 

minor variation to method 2 in that all of the qsc,i values obtained for Tbulk = 55°C were 

used as the baselines for the other bulk subcooling cases (for all heaters including interior 

ones).  The three different experimental methods are summarized below:   

1) Method 1:  qsc,i was calculated from the lowest heat flux measured during low-g 
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2) Method 2:  qsc,i was calculated from the lowest heat flux in low-g for middle 

heaters and the Tbulk = 55°C qsc,i values (obtained using method 1)were used for 

the corner and edge heaters. 

3) Method 3:  qsc,i  was calculated using Tbulk = 55°C (using method 1) experimental 

baseline for all subcoolings.     

The three methods described above provide a statistical error range for the qsc,i 

measurement.  Method 2 most accurately calculates the qsc,i  experimentally and methods 

1 and 3 provided an estimate of the experimental error in method 2.  Method 2 provides 

the most accurate experimental value of substrate conduction because the air jet flow rate 

was set to be constant throughout a given flight week (regulator setting fixed) and 

therefore the backside boundary condition remained consistent across various days 

(subcoolings as mentioned in the experimental test matrix section).  Therefore qsc,i 

should be subcooling independent as identified from the numerical models presented 

previously.        

 It should be noted that at very low wall temperatures (Th = 70°C,75°C) natural 

convection dominates the heat transfer process and therefore no primary bubble exists 

allowing qsc,i to be measured.  Under such conditions it appears that the experimental 

method of taking the lowest heat flux value during low-g appears to give good results that 

agree with correlations for the magnitude of natural convection in high-g.  Such results 

will be presented in the next chapter.   

In conclusion, estimating substrate conduction involves two methods and is based 

on the magnitude of the wall superheat.  For low wall superheats, method 1 and method 2 

provide almost identical results.  For higher wall superheats (with thermocapillary 
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convection present) method 2 appears to be the most accurate experimental method for 

determining substrate conduction.  A complete listing of the experimental, analytical, and 

numerical results can be seen in Table 3.2.     

 Based on the results presented above, the good agreement between analytical, 

numerical, and experimental data provides an estimate of the uncertainty in the 

experimentally measured substrate conduction values of ±10% (largest error for a given 

data point between experimental models).  Performing another propagation of uncertainty 

analyses yields an uncertainty in the heat flux due to boiling of ±11%.  The resulting 

uncertainty in qi , the heat transfer from a heater to the bulk liquid, is due primarily to 

uncertainties in qsc,i.   

3.4  BOILING HEAT FLUX 

 Boiling heat transfer data was computed from data obtained in high-g and low-g 

where the heat transfer had reached steady state over an interval of 5s to 10s where the g-

levels were within (± 0.05g).  Low-g (0.01) time periods were determined from the 

accelerometer signal and confirmed by the pressure signal.  Fig. 3.18 shows the typical 

gravitational environment with respect to time during one parabola (taken from both the 

pressure and accelerometer signals).  Spatially averaged, time resolved heat transfer data 

was obtained using the following equation, (Eq. 3.14):     

 
(3.14) 

 

where the subscript i denotes the heaters and n is the total number of powered heaters.  A 

typical qtotal(t) is shown in Figure 3.19 and illustrates the variation in heat transfer during   
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the low-g and high-g environments.  The space and time averaged heat flux were 

obtained using Eq. 3.15: 

( )

t

T

j
total

total T

ttq
q

∑
=

∆
= 1          (3.15) 

 where ∆t is the time between data points and Tt is the total time over which the average 

is obtained.  The Matlab codes used for data reduction are given in Appendix D. 

 

Figure 3.18:  Time resolved gravitational environment for 1 parabola aboard the KC-135, 
(Courtesy of J. Kim). 
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Figure 3.19:  Spatially averaged, time resolved heat transfer, 96 heater array, Tbulk = 

28°C, ∆Tsat = 32 °C. 

 

3.5  ADDITIONAL PARAMETERS 

Uncertainties associated with the heater wall superheat, ∆Tsat, are due to errors in 

the heater temperature resolution (2 digital potentiometer settings), calibration 

temperature errors, and errors in the saturation temperature of the fluid which arise from 

uncertainties in the pressure measurement.  Considering the worst case scenario, the 

saturation temperature of the fluid, Tsat, was calculated from a measurement of the time 

resolved pressure at the heater surface and the saturation curve data for FC-72 (3M 

Product and Contact Guide, 1995).  The pressure transducer was calibrated with an 

uncertainty of  ± 0.01 atm.  Incorporating this uncertainty into the saturation curve data, 

the resulting uncertainty in the time resolved saturation temperature is ± 0.25°C over the 
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ranges tested.  A propagation of uncertainty analysis of the heater wall temperature yields 

an error due primarily to the uncertainty in the temperature resolution of the heater of ± 

0.80°C.  The final uncertainty in the wall superheat is ± 0.84°C.   

The thermistor used to measure the fluid temperature and the RTD used to the 

control the chamber sidewall temperature were calibrated in a constant temperature water 

bath using a NIST traceable liquid-in-glass thermometer.  Although the thermistor 

measurement represents a local temperature value, it was assumed to be a representative 

average temperature of the bulk fluid.  The micropump adequately dissipated any thermal 

gradients within the fluid between runs.  For a given flight, the bulk temperature reading 

never varied by more than 2 °C and therefore represents a good measure of the 

uncertainty in Tbulk.   

The primary bubble departure frequency in high-g was determined from qtotal(t).  

For example, times when a peak in heat transfer occurs in Figure 3.19 (bottom) are 

thought to correspond to bulk liquid rewetting the heater surface.  The number of heat 

flux peaks per unit time was taken to be the average rewetting frequency.  For 

frequencies well below the video framing rate (29.97 Hz), the rewetting frequency as 

computed in this manner agreed exactly with the average primary bubble departure 

frequency obtained from the video.  Therefore uncertainties in the frequency 

measurement are on the order of ± 1 %.  Table 3.2 summarizes the uncertainties in the 

experimental variables.    
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Variable Uncertainty (2s)

qtotal [W/cm2] ± 2 W/cm2 
qw,i [W] ± 0.46 % 

qsc,i [W/cm2] ± 1.7 W/cm2  

qraw,i [W/cm2] ± 5.02 % 
f [Hz] ± 1 % 

Th [oC] ± 0.80 °C 

Tbulk [oC] ± 2.0 °C 

Tsat [oC] ± 0.25 °C  

∆Tsat [oC] ± 0.84 °C 

∆Tsub [oC] ± 2.02 °C 

Ai [cm2] ± 5.0 % 
Vi [volts] ± 0.11 % 

Ri [Ω] ± 0.4 % 

Table 3.2:  Summary of experimental uncertainties 
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Chapter 4:  Experimental High-g Boiling Results 

4.1  INTRO  

The experimental results of the fractional factorial experimental investigation 

described in the previous chapter are presented in the chapter.  Both qualitative and 

quantitative descriptions of the boiling behavior under the various conditions investigated 

are considered.  A discussion of boiling in a high-g environment is first discussed and the 

relevant physical mechanisms and models are analyzed.  This is followed by a brief 

description of the gravitational effects on the bubble shape and primary bubble departure 

frequency.  Such findings provide insight into the complexities of the low-g boiling 

environment which constitutes the majority of the discussion mentioned thereafter.  To 

this end, detailed experimental, analytical, and numerical results are presented and 

analyzed.   

4.2  BOILING FROM SQUARE HEATERS 

4.2.1  7 x 7 mm2, 96 Heater Array 

High-g boiling curves for a 7x7 mm2 heater array are shown in Fig. 4.1.  At low 

wall superheats, the heat and mass transfer process is dominated by natural convection.  

In this regime, the measured heat transfer is in good agreement with predictions of 

natural convection heat transfer from the upper surface of a horizontal heater plate, Eq 

4.1 (McAdams, 1954).  At higher wall superheats, the boiling dynamics are dominated by 

the ebullition cycle.  As described in the introduction, this cycle is characterized by rapid 

( )744
1

101054.0 ≤≤= LLL RaRauN                   (4.1) 
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Figure 4.1:  High-g boiling curves for a 7 x 7 mm2 heater array. 

 

bubble growth, departure, and coalescence that tend to occur in a periodic fashion.  This 

transport process enhances the heat transfer from the surface as the phenomenon  

transitions from single phase natural convection to nucleate pool boiling.  As expected, 

the onset of nucleate pool boiling is characterized by a dramatic increase in the boiling 

curve slope.  The measured surface and time averaged nucleate boiling heat flux is in 

good agreement with the Rosenhow correlation, Eq. 4.2, Csf = 0.0041 (n-perfluorohexane 

on quartz heater), Fig. 4.1.  In Eq. 4.2, Csf is a constant that is used to fit the data and 

varies depending on the surface/fluid combination.      
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Bottom view images of the boiling process in high-g are shown in Fig. 4.2.  As 

seen from these images, the isolated bubble departure diameter appears to be 

approximately the size of an individual heater, 0.7 mm, and is consistent with that 

observed for the smaller heaters.  The isolated bubble departure diameter refers to the 

diameter of a single growing bubble (just after departure) that is not influenced by 

adjacent bubbles.  In practice, an isolated bubble is difficult to create experimentally due 

to multiple active nucleation sites on the heated surface and therefore the isolated bubble 

departure diameter is calculated throughout this thesis using a number of models (i.e. 

Fritz, 1935).  The characteristic length scale, assumed to be equal to the heater length, is 

7 mm.  This value is larger than the isolated bubble departure diameter (0.34 -0.72 mm) 

calculated from Eq.  4.3-4.5, and is approximately eleven times larger than the capillary 

length scale, Eq. 1.1.   

θ0208.02
1

=Bo          (Fritz, 1935) (4.3) 
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Bo 10002
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 Over the entire range of wall superheats studied, no evidence of Taylor instability 

was observed.  This can be attributed to a number of factors.  First, the highest wall 

superheat investigated may not have reached the required level for the formation of vapor 

jets that are predicted from Taylor Instability.   Second, the heater length scale is 

sufficiently small so that if vapor jets were to form, the diameter of a single jet plus the 

spacing between adjacent jets would exceed the characteristic length scale of the array, as 

shown in Fig. 4.3.  A vapor column that forms in high-g has a diameter of approximately 
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Figure 4.3:  Predicted vapor column size and spacing from Taylor instability.  

  
3.26 mm (0.5*λd) and a spacing between adjacent jets of 6.5 mm.  This indicates that 

only a single vapor jet would tend to form on the heated surface at higher wall superheats 

as shown in Fig. 4.3.  At the highest wall superheat investigated, ∆Tsat = 31 °C, the 

formation of a single primary bubble began to occur and was measured to be 

approximately the same size (2.8-3.5 mm) as the vapor jet diameter predicted above, Fig. 

4.2.  The primary bubble in high-g did not grow to cover the entire array, as was observed 

for the smaller heater arrays.  As will be discussed later, a single primary bubble was 

observed above the heated surface at higher wall superheats for smaller heaters.  If the 

heater size is smaller than a vapor column diameter predicted from Taylor instability, the 

boiling characteristics are qualitatively different than if the heater size is much larger than 

this length scale.  For the cases where the heater size is smaller than the predicted  

vapor jet diameter (all heaters except the 7 x 7 mm2), a single primary bubble the size of 

the heater is observed at high wall superheats.  Lastly, a distinction should be made 

regarding primary bubbles and individual bubbles.  Firstly, the primary bubble forms due 

7mm 

7mm

λd = 3.0mm 

Vapor 
Columns 

λd = 3.0mm 

bD L32πλ =

d = 3.0mm 

d = 0.5*λd  
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to bubble coalescence that results in a bubble that is much larger in size than individual 

bubbles.  Individual bubbles tend to feed the primary bubble and are significantly 

smaller. 

4.2.2  2.7 x 2.7 mm2, 96 Heater Array 

High-g boiling curves for a 2.7 x 2.7 mm2 heater array are shown in Fig. 4.4.  As 

in the larger heater case, at low wall superheats the process is dominated by natural 

convection and in agreement with correlation predictions.  At higher wall superheats, the 

boiling behavior is similar to that observed during nucleate boiling at normal gravity  
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Figure 4.4:  High-g boiling curves for a 2.7 x 2.7 mm2 heater array. 

 
levels.  At low wall superheats, boiling activity on the surface is characterized by the 

formation of multiple bubbles on the heated surface.  These bubbles had diameters 

ranging from 0.27 mm to 0.81 mm and were similar in size to those measured for the 
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larger heater.  The bubbles tend to grow, depart, and merge with other bubbles on the 

surface and the rate of coalescence appears to increase as the wall superheat is increased.  

The measured heat transfer was found to be independent of bulk liquid subcooling as 

predicted from chapter 1.  The Rosenhow correlation provides a good estimation of the 

data up to a wall superheat of approximately 30°C.  Bottom view images of the boiling 

process over the whole range of superheats and subcoolings are shown in Fig. 4.5.   

The Rosenhow correlation coefficient, Csf, which quantifies the fluid/surface 

interaction effects is slightly lower (Csf = 0.0037) than that used for the 7 x 7 mm2 boiling 

curve fit (Csf = 0.0041).  There may be two explanations for this.  First, in the 7 x 7 mm2 

case, the fluid was 99% n-perfluorohexane that was completely degassed.  Data presented 

for the 2.7 x 2.7 mm2 array, Fig 4.4, was taken with FC-72 that had a purity slightly 

higher than 70%.  The slight difference in the purity of the fluid may result in different 

surface fluid interaction.  Second, the heater size is slightly smaller than the predicted 

diameter of a vapor jet (from Taylor theory) and the qualitative differences in the boiling 

behavior may explain the slight quantitative differences.  Taylor instability predicts the 

formation of a primary bubble in high-g that tends to cover the entire array at higher wall 

superheats.  The ramifications of this are discussed below.   

The formation of a single primary bubble is predicted at higher wall superheats 

and was experimentally validated at a wall superheat of ∆Tsat ~ 40 °C, ∆Tsub ~ 9°C, Fig. 

4.6.    The observed size of the primary bubble is in good agreement with the Taylor 

instability prediction of a vapor column diameter of approximately 3 mm, slightly larger 

than the array (Fig. 4.6a).  For ∆Tsub= 31°C and ∆Tsub= 25°C, the primary bubble that 

formed at the highest wall superheat fractured into four primary bubbles (e.g., Fig. 4.7   
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Figure 4.5:  Time-averaged, spatially resolved heat flux maps of boiling process for 
96 heater array in high-g at various ∆Tsat and Tbulk. 
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        (a) 

 
 
Figure 4.6:  bottom and side view images of the boiling process in high-g showing vapor 

column formation at high wall superheats, ∆Tsub = 9°C. 

 

 

(a)     (b)     (c) 
 

 
 

Figure 4.7:  bottom and side view images of the boiling process in high-g showing the 
formation of 4 primary bubbles at high wall superheats, ∆Tsub = 31°C. 

 
(c), ∆Tsat=41°C).  The mechanism for fracture is unclear but may be due to the increased  

level of liquid subcooling which brings cooler liquid closer to the heated surface causing 

increased condensation from the top of the primary bubble.  As the primary bubble gets 

∆Tsat = 37°C ∆Tsat = 28°C ∆Tsat = 17°C 
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smaller, surface tension forces the bubble to fracture into four bubbles.  These four 

bubbles occasionally coalesce and depart the heated surface forming a single vapor jet 

above the heater array.   

At the highest wall superheats, a large time averaged heat transfer was measured 

from the edge heaters in the array, Fig. 4.8.  The measured heat flux also deviates 

significantly from the Rosenhow correlation prediction.  The trends in the boiling curve 

data as well as the time resolved boiling heat flux indicate that the boiling activity is close 

to CHF.  It is clear from Fig. 4.8 that dryout of the center of the array occasionally occurs 

which lowers the time averaged heat transfer.  As vapor is generated and departs from the 

center of the array, a strong rewetting flow from the stagnant fluid medium at the edge 

heaters replenishes the departing fluid.  As the primary bubble departs, the resistance of 

liquid flow to the center of the array is larger than for the edge region due to the increased 

rate of vapor formation and coalescence at the center of the array.   

 
 

 
 

Figure 4.8:  Time averaged, spatially resolved heat flux (W/cm2) from a 2.7 x 2.7 mm2 
heater array in high-g, ∆Tsat = 37°C, ∆Tsub = 9°C. 
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The time resolved heat transfer at high wall superheats from an edge heater (Fig. 

4.8,  heater #96) and center heater (Fig. 4.8, heater #8) is shown in Fig. 4.9.  For the 

interior heater, #8, complete dryout of the heater occurs periodically as indicated by the 

heat flux curve going to zero.  For the corner heater, #96, smaller oscillations about the 

mean heat transfer were measured and the heat flux was always above 10 W/cm2 

indicating that dryout did not occur.  This signal also contains higher frequency signals, 

indicating faster vapor bubble growth and departure in this region. 

 
Figure 4.9:  Time resolved heat transfer from two heaters in the 2.7 x 2.7 mm2 heater 

array in high-g, ∆Tsat = 37°C, ∆Tsub = 9°C. 

 
Such trends provide information regarding the mechanisms for CHF.  Firstly, at 

low wall superheats, the time averaged heat transfer from the array is evenly distributed   
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across the heater area, Fig. 4.10.  As the wall superheat is increased, dryout of the interior 

portions of the heater occur due to the increased rate of vapor generation, and as the wall 

superheat is increased even further, most of the measured heat flux occurs around a small 

area along the edge of the heater where rewetting liquid has less resistance to flow.   

 
Figure 4.10:  Time resolved heat transfer from two heaters in the 2.7 x 2.7 mm2 heater 

array in high-g, ∆Tsat = 27°C, ∆Tsub = 9°C. 

 

The Rosenhow model is not expected to predict the decrease in slope of the 

boiling curve at higher wall superheats near CHF.  More importantly, very little 

predictive modeling is available from literature regarding CHF for heater sizes smaller 

than the Taylor wavelength.  The Zuber CHF model predicts a CHF value of 16 W/cm2 

which is approximately 50% lower than the measured maximum heat flux, but the Zuber 

model is based on mechanisms that are proposed for large heaters.  Additional 
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correlations used to predict CHF for finite-sized surfaces have been written in a form 

given by Eq. 4.6.  For an infinite, heated flat plate, the predicted CHF is 18.2 W/cm2 

(L/Lb > 30), (Leinhard and Dhir, 1973) which is again significantly smaller than the 

measured value.  This indicates that current CHF models do not account for the boiling 

performance seen from heaters with L/Lb < 5.     
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The time and surface averaged heat transfer appears to be larger for the 2.7 x 2.7 

mm2 array than for the 7 x 7 mm2 array across the entire range of wall superheats.  This 

again may be due to the differences in the purity of the fluid and/or the fact that the heater 

size is smaller than the Taylor wavelength which can cause edge heat transfer to increase 

dramatically.    

The formation of a single vapor column and single primary bubble was observed 

at higher wall superheats for the 2.7 x 2.7 mm2 array.  The time averaged edge heat 

transfer was measured to be dramatically higher from the heater edge (250%) indicating 

occasional dryout of the center of the array at higher wall superheats.  The mechanism for 

dryout and CHF is clear from Fig. 4.11.  As the wall superheat increases, vigorous 

boiling from the center of the array occasionally creates vapor at a rate greater than can  



 

 119 
 

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

∆Tsup (°C)

H
ea

t F
lu

x 
(W

/c
m

2 )

Heaters 1-64

Heaters 65-96

 
Figure 4.11:  High-g surface averaged heat transfer from interior heaters (1-64) and 

exterior heaters (65-96), ∆Tsub = 9°C. 

 
be removed from the surface.  This causes occasional dryout of the interior portion of the 

array reducing the time and surface averaged heat transfer.  The rapid formation and 

departure of vapor causes a stronger liquid flow from the edge of the array which 

enhances the heat transfer in this region.  It is posited that the heat transfer from the edge 

region (near the edge of the primary bubble) levels off as the wall superheat is increased 

further and the surface averaged heat transfer from the total array begins to decrease 

indicating CHF.  It is interesting to note that for ∆Tsat = 41°C and ∆Tsub = 29°C, Fig. 4.7, 

multiple primary bubbles form and the heat transfer in between bubbles is similar to the 

heat transfer at the heater edge for ∆Tsub = 9°C, Fig. 4.6.  Such trends indicate the 

mechanism for CHF in high-g. 

96 95 94 93 92 91 90 89 o

65 37 64 63 62 61 60 59 58 88
66 38 17 36 35 34 33 32 57 87
67 39 18 5 16 15 14 31 56 86
68 40 19 6 1 4 13 30 55 85
69 41 20 7 2 3 12 29 54 84
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71 43 22 23 24 25 26 27 52 82
72 44 45 46 47 48 49 50 51 81
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4.2.3  1.62 x 1.62 mm2, 36 Heater Array  

Boiling curves for the 36 heater array are shown in Fig. 4.12.  Boiling images 

over the entire range of conditions investigated are shown in Fig. 4.13.  At low wall 

superheats, the process is again dominated by natural convection and agrees with 

predictions.  Trends similar to the 2.7 x 2.7 mm2 array boiling curve are observed and the 

heat transfer was measured to be almost identical over the ranges investigated.  See the 

previous section for an in-depth discussion of the boiling dynamics on the surface.    
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Figure 4.12:  High-g boiling curves for a 1.62 x 1.62 mm2 heater array. 

 

Similar to the larger heater arrays, the formation of a primary bubble occurred at 

higher wall superheats and this bubble periodically departed the surface allowing the 

entire heater to be rewetted with liquid.  Although the bulk liquid subcooling had a  
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Figure 4.13:  Time-averaged, spatially resolved heat flux maps of boiling process 
for 36 heater array in high-g at various ∆Tsat and Tbulk. 
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negligible effect on the surface and time averaged heat flux, the size of the primary 

bubble was measurably smaller for higher subcoolings, as observed for the 96 heater 

case, Fig 4.13.  The formation of a primary bubble is again predicted from Taylor 

instability theory at higher wall superheats because the heater size is much smaller than 

½λd.   

The time resolved heat flux data allowed the primary bubble departure frequency 

to be measured at higher wall superheats.  The departure frequency was determined from 

qtotal(t), as discussed in the data reduction section.   For cases in which the departure 

frequency was less than 20 Hz, the measured value was corroborated by the frequency 

obtained from the side view video images.  Although the subcooling level was measured 

to have a negligible effect on time and space averaged heat flux, increased subcooling 

was shown to dramatically reduce the departure frequency of the primary bubble as 

shown on Fig. 4.14.  As seen in this figure, the bubble departure frequency increases by 

over 100% as the bulk subcooling decreases from ∆Tsub= 31°C to ∆Tsub= 9°C at a 

superheat of 32°C.  An increase in the bulk subcooling increases condensation at the cap 

of a growing primary bubble, reducing its growth rate.  The longer time needed for the 

bubble to reach departure size results in a decreased departure frequency, decreasing the 

time-averaged heat transfer.  It appears this effect is compensated by a larger heat transfer 

to the rewetting fluid due to a larger temperature difference between the heater surface 

and the bulk liquid at higher subcoolings (sensible heating effect).  This can be seen from 

Fig. 4.15 where at low subcoolings, Fig. 4.15a, a higher frequency signal is measured 

indicating a higher departure frequency.  At higher subcoolings, Fig. 4.15b, although the 

departure frequency is reduced (as indicated from a lower frequency signal), the peaks in 
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Figure 4.14: Primary bubble departure frequency in high-g for a 36 heater array (1.62 x 

1.62 mm2). 
 

the heat transfer are 20-30% higher and wider compared to the lower subcooling case. 

If a peak in heat transfer in Fig. 4.15 is associated with a rewetting event (post bubble 

departure) then there exists a time in which the rewetting liquid will increase to the 

saturation temperature of the fluid, at which point it is assumed vapor formation occurs 

which is followed by dryout of the interior heaters and low heat transfer.  The total heat 

required from the heater to bring the rewetting fluid up to the saturation temperature is 

estimated by Eq. 4.9.  Furthermore, if the heat transfer just after primary bubble departure 

is approximated by a semi-infinite conduction model, the time required to heat the 

rewetting fluid to the saturation temperature (given by Eq. 4.9) is estimated by Eq. 4.10. 

( )rewetsatpsens TTmcq −=                (4.9) 

) 

9 °C
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a) ∆Tsub = 9°C 

 
b) ∆Tsub = 30°C 

 
Figure 4.15:  High-g time resolved heat flux from interior heaters in the 1.62 x 1.62 mm2 

array. Twall = 100°C. 
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This equation was derived by integrating the semi-infinite conduction heat flux and 

solving for the time required to sensibly heat the fluid to Tsat . 

Considering the two cases shown in Fig. 4.15, if the rewetting temperature is 

estimated to be the bulk liquid temperature and the rewetting liquid mass is assumed the 

same in both cases, the estimated time required to bring the rewetting fluid up to the 

saturation temperature (from Eq. 4.10) is 4.5 times longer for ∆Tsub = 30°C (Fig. 4.15b) 

than for the ∆Tsub = 9°C case (Fig. 4.15a).  From Fig. 4.15 it is observed that the width of 

the heat flux spike in the ∆Tsub = 30°C case is approximately four times that for the ∆Tsub 

= 9°C case.  This calculation supports the idea that the measured spike in heat flux may 

be due to rewetting fluid on the heated surface and the primary mechanism of heat 

transfer is transient conduction over this short time period.  Experimental data taken by 

Kim and Demiray (2004) also support this idea.            

As measured for the 2.7 x 2.7 mm2 array, the edge and corner heat transfer was 

measured to be much higher than the center heat transfer at higher wall superheats.  This 

trend again indicates the mechanism for CHF for these heater sizes, Fig. 4.16.  First, 

dryout of the center of the array occurs due to high rate of vapor generation.  Second, 

most of the time and surface averaged heat transfer eventually occurs at the edges of the 

heater array as the wall superheat is increased.  Also note that the primary bubble tends to 
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break down into multiple primary bubbles as the subcooling is increased, Fig. 4.17.  This 

trend was also observed for the 2.7 x 2.7 mm2 array and is again attributed to increased 

condensation at the primary bubble cap as the bulk subcooling level increases reducing 

the primary bubble size until surface tension acts to pull the bubble apart.  Also note as  

 
 

 
 

Figure 4.16:  Bottom and side view images of a 36 heater array at low subcoolings, ∆Tsub 
= 9°C. 

  
 

 
 

Figure 4.17:  Bottom and side view images of a 36 heater array at high subcoolings, 
∆Tsub = 30°C. 
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the primary bubble breaks down, interior regions of the array are wetted which can 

enhance the time averaged heat transfer, Fig. 4.18.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.18:  High-g time averaged boiling heat transfer at high bulk subcooling, ∆Tsub = 
30°C and high wall superheat, ∆Tsat = 41°C. 

 
Based on the departure frequency shown in Fig. 4.14, an estimate of the amount 

of heat transfer due to condensation can be obtained if it is assumed that the measured 

heat transfer is due to a combination of three energy removal modes during the ebullition 

cycle.  These modes include:  sensible heating of the rewetting fluid after bubble 

departure (qs), latent heat transfer (qe) from the heater surface which is responsible for the 

formation of a bubble of mass mv, and condensation from the bubble (qc) while the 

bubble is in contact with the heater surface.  For the analysis that follows, these variables 

were calculated in joules and the heat transfer rate was determined by summing the three 

modes and then multiplying this value by the measured bubble departure frequency.  The 

three different modes are graphically depicted in Fig. 4.19.  As mentioned above, these 

heat transfer modes occur cyclically with a frequency shown in Fig. 4.14 at various  

1.62 x 1.62 mm2,  
6 x 6 heater array   

10 20 30 50 40 60 
W/cm2
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Figure 4.19:  Boiling heat transfer modes in high-g. 

subcoolings.  A complete cycle occurs over time ∆t which is equal to the inverse of the 

measured bubble departure frequency.  If these three modes are the only contributors to 

the measured heat transfer, an estimate of the heat transfer due to condensation can be 

obtained from Eq. 4.11.  In this equation, the total sensible heat transferred to the fluid is 

( )
heat

fgsubpbv

measccesmeas A

hTcfV
qqqqqq

+∆
−′′=⇒++=′′

ρ
               (4.11)  

assumed to be that required to bring the bulk fluid temperature up to the saturation 

temperature.  Vb is the volume of the primary vapor bubble that is generated and f is the 

measured primary bubble departure frequency.  Vb was calculated based on the bubble 

departure diameter measured just after the bubble leaves the heater surface.   

As seen in Table 4.1, for pool boiling under nearly saturated bulk conditions, the 

primary mode of heat transfer is latent heat while for highly subcooled bulk conditions, 

condensation accounts for the majority of heat transfer from the surface.  It should be 

noted that these results are for cases where a distinct primary bubble forms in high-g.  

Lastly, existing CHF correlations do not accurately account for the measured peak heat 

transfer as discussed for the 2.7 x 2.7 mm2 array.  
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    Table 4.1:  Condensation heat transfer at two different subcoolings.   

4.2.4  0.8 x 0.8 mm2, 9 Heater Array  

Boiling curves for the 9 heater array in high-g are presented in Fig. 4.20.  A set of 

images of boiling from the 0.81 x 0.81 mm2 array are shown in Fig. 4.21.  At low wall 

superheats, the images show few active nucleation sites and the process is again 

dominated by natural convection.  At higher superheats, the images clearly indicate the 

formation of a single primary bubble surrounded very occasionally by satellite bubbles, 

similar to what is observed in low-g for larger heaters.  The measured heat transfer at low 
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Figure 4.20:  High-g boiling curves for a 0.81 x 0.81 mm2 heater array.   
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Figure 4.21:  Time-averaged, spatially resolved heat flux maps of boiling process 
or 9 heater array in high-g at various ∆Tsat and Tbulk. 
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wall superheats agrees fairly well with the Rosenhow correlation but deviates 

significantly at higher wall superheats ∆Tsat > 25°C.  Primary bubble departure from the 

heater surface was not observed except for one case (∆Tsat=37 °C, ∆Tsub= 8 °C) in which 

departure was infrequent (< 1 Hz).   Surface tension clearly dominated the boiling 

dynamics over the superheat and subcooling ranges investigated.   

The boiling curves shown in Fig. 4.20 indicate what appear to be two distinct 

boiling regimes.  At low wall superheats, ∆Tsat < 25°C, multiple bubbles tend to form on 

the 3 x 3 heater array and tend to coalesce with a larger primary bubble which dominates 

the boiling activity, Fig. 4.21 - 4.22.  As indicated by the presence of multiple bubbles on 

the surface, there appears to be few active nucleation sites and vapor appears to be  

 

Figure 4.22:  High-g boiling images from a 0.81 x 0.81 mm2 heater array, ∆Tsub = 9°C. 

 

generated at a small rate.  Heat transfer in this regime appears to be due primarily to the 

movement of the individual bubbles on the heated surface which tends to enhance local 

mixing.  At higher wall superheats, ∆Tsat > 25°C, another boiling regime appears to occur 

W/cm2 
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and is characterized by the formation of a single primary bubble on the heated surface.  

Coalescence of the satellite bubbles with the primary bubble, surface tension, and 

increased condensation at the cap of the bubble due to natural convection prevented the 

primary bubble from reaching the size required for departure.  A strong jet was observed 

above the bubble indicating the presence of natural convection and/or thermocapillary 

convection which served to regulate the primary bubble size by enhancing condensation 

at the bubble cap.  The condensing vapor flux was balanced by vapor addition from 

smaller coalescing bubbles at its base.  The occasional departure mentioned previously 

may indicate that the bubble is close to the required isolated bubble departure diameter 

for the specified operating conditions.  At first glance, the primary bubble appeared to be 

an isolated bubble.  Further analysis showed the primary bubble has a number of 

interesting characteristics.  First, it appears to be fed by microscopic bubbles that form 

around the edge of the array and coalesce with it, Fig. 4.23.  Second, it remains relatively 

stable in both size and position throughout high-g.   

 

Figure 4.23:  High-g boiling from a 0.81 x 0.81 mm2 heater array.  Tbulk = 28°C,  ∆Tsat = 
34°C.  Colored area represents powered heaters. 
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Due to the stability and size of the primary bubble on the heated surface, the 

mechanism of heat transfer is not solely dominated by buoyancy driven flows but is 

instead a combination of thermocapillary and natural convection.  As mentioned in 

Chapter 1, for small bubbles that do no depart the heated surface, experiments have 

shown thermocapillary convection to be the dominant heat and mass transport 

mechanism and buoyancy effects play a much smaller role (Wang et al, 2005).   

From the side view images, an estimate of the force balance acting on the bubble 

can be calculated.  The surface tension and coalescence force that counteracts buoyancy 

can be estimated based on the primary bubble size to be ≥ 3 x 10-6 N.  This force is 

calculated based on the buoyancy force acting on a bubble, Fb = ∆ρlvVbg where Vb is 

calculated from the bubble diameter measured from the bottom view images.  Side view 

images of the bubbles in high-g show a contact angle of approximately 90 degrees with a 

resulting surface tension force of approximately 20 x 10-6 N.  This surface tension force is 

an order of magnitude larger than the buoyant force acting on the bubble and therefore 

explains why the bubble remains on the heated surface.   

Increased subcooling was measured to have a negligible effect on heat transfer 

over the ranges tested.  This tends to indicate that the thermocapillary and/or buoyancy 

driven flow above and around the bubble is not strongly influenced by the level of bulk 

subcooling.  The heat transfer from the array at higher wall superheats appears to be the 

result of a competition between increase in heat transfer associated with the satellite 

bubble region and the decrease in heat transfer due to growth of the dry area under the 

stable primary bubble.  Further analysis of the boiling images indicates that the primary 

bubble acts as a pump, bringing liquid in from the side of the heater array and pumping it 
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out at the top of the vapor bubble where it is transported upward due to natural 

convection and the momentum of thermocapillary flow.   

The primary bubble shape and position on the heater caused local dryout over the 

center of the array.  The heat transfer from the heater under and outside of the primary 

bubble is shown in Fig. 4.24.  The presence of the primary bubble causes very large heat 

transfer from the edge of the array due to presence of strong thermocapillary and/or 

buoyancy driven flows toward the center of the bubble.  In addition, interior heaters 

(8,22-24,46, Fig. 4.24), or heaters that are >50% covered by a primary bubble appear to 

reach a surfaced average CHF at relatively low superheat. 
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Figure 4.24:  High-g surfaced averaged boiling heat flux from representative heaters in 

the 0.81 x 0.81 mm2 heater array.  ∆Tsub = 9°C.   
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It should be noted that the heater array size is close to the predicted bubble 

departure diameter from correlations and is significantly smaller than the Taylor 

wavelength, lending support to the idea that boiling at such scales is not governed by the 

models and methods presented in Chapter 1.  The mechanisms for CHF are clearly not 

Taylor and Helmholtz instabilities as predicted from Zuber model and others. 

4.3  COMPARISON OF BOILING CURVE AND HEATER SIZE RESULTS 

Boiling curves for all four square heater arrays investigated in high-g are shown 

in Fig. 4.25.  At low wall superheats, the data is in good agreement with natural 

convection correlations for a horizontal heated surface facing upward for all subcoolings 

and heater sizes as mentioned previously.  The fact that natural convection correlations 

are in good agreement with the experimental data serves additionally to validate the 

substrate conduction estimation method described in the previous chapter.  At higher wall 

superheats, there appears to be a negligible subcooling dependence on the heat flux over 

the ranges tested for all heater sizes.  This may be attributed to the fact that CHF was not 

measured for all the cases studied, although it can be approximated based on the trends in 

the data.  These findings agree with classical boiling models, correlations, and 

experimental data which show a negligible subcooling dependence in the nucleate pool 

boiling regime.  In addition, the data for the 1.62 x 1.62 mm2 array shows the primary 

bubble that tends to form at higher wall superheats in high-g departs less frequently as the 

liquid subcooling increases.  It is thought that a reduction in the departure frequency 

would cause a reduction in the heat transfer but this effect is counteracted by larger 

sensible heating to the rewetting fluid and additional condensation as discussed in detail 

previously.   
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Figure 4.25:  High-g boiling curves for various square heater arrays.   

 

Depending on the size of the heater, boiling in high-g appears to be defined by at 

least two distinct regimes.  For heater sizes smaller than the predicted isolated bubble 

departure diameter, surface tension dominates the process and classical models fall short 

of explaining the behavior.  Under such conditions, the primary bubble that forms on the 

heater surface does not depart and the transport mechanisms appear to be a combination 

of thermocapillary and buoyancy driven flow.  Current nucleate pool boiling correlations 

used to predict the heat transfer cannot explain the differences in performance seen across 

heater sizes indicating the need for new models and correlations that more effectively 
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account for appropriate length scales such as the Taylor wavelength and isolated bubble 

departure diameter.     

Boiling from the smallest heater array is clearly surface tension dominated, 

although natural convection may play a role in enhancing condensation from the bubble 

cap which tends to regulate the primary bubble size.  The corner and edge heat transfer 

compared to the larger arrays, 36 and 96 arrays, is slightly less due to the fact that vapor 

is not removed from the heated surface by bubble departure.  

For heaters that are larger than the isolated departure diameter and smaller than 

the vapor jet diameter predicted from Taylor instability (1.62 – 2.7 mm arrays), the heat 

transfer at higher wall superheats was measured to be 100% higher than for the 0.81 x 

0.81 mm2 array.  This enhancement is due to primary bubble departure that occurs 

frequently allowing rewetting of the heated surface and an enhancement in heat transfer.       

For the largest heater size investigated (7 x 7 mm2), the boiling measurements 

appear to fall in between the two cases mentioned above.  As indicated previously, this 

may be due to the purity of the fluid and/or the given surface/fluid combination which 

may act to slightly alter the heat transfer from the surface.   

In summary, the data appears to show three different boiling regimes in high-g.  

These regimes are directly related to the heater size relative to the bubble sizes.   The 

important non-dimensional length scales that govern pool boiling performance in high-g 

are: the ratio of the heater length to the bubble departure diameter predicted from the 

Fritz correlation, and the ratio of the heater length to the Taylor wavelength.  The heater 

hydraulic diameter (ratio of surface area to perimeter) may also play a significant role by 

determining the relative effect of heat transfer from the edge of the heater, which has 
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been shown to be dramatically enhanced under certain conditions.  These length scales 

were found to be equally important across gravity levels as will be discussed in the next 

section. 

It is hypothesized that the transition from buoyancy to surface tension dominated 

boiling occurs when the bubble departure diameter (Db) and the heater size are of the 

same order.  The largest bubbles observed for the 1.62 mm and 2.7 mm heater cases in 

high gravity have a diameter of approximately 0.8 mm, supporting this hypothesis.  In 

addition, the bubble departure diameter in high-g predicted from correlations is 0.72 mm.  

In summary, the three distinct boiling regimes are shown in Fig. 4.26.  This figure shows 

the three boiling regimes defined by the relative size of the heater to the predicted  
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Figure 4.26:  Boiling regime map.  

departure diameter (Fritz correlation) and Taylor wavelength.  If the heater length is 

smaller than both of these length scales, boiling is surface tension dominated.  If the 

Buoyancy Dominated Boiling 

Surface Tension Dominated Boiling 
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heater is larger that both of these length scales then buoyancy dominated boiling results.  

The various heater sizes investigated in this thesis are shown by the symbols in Fig. 4.26.     

4.4  TRANSITION FROM HIGH TO LOW-G 

4.4.1  Gravitational Effects on the Bubble Departure Diameter 

The gravitational environment produced aboard the KC-135 provides a transition 

from high-g to low-g over approximately five seconds.  Although the transient 

gravitational environment produced does not allow a steady-state boiling process to be 

observed, significant information can be obtained nonetheless.  Consider first the 

measured primary bubble departure frequency for the 0.81 mm to 2.7 mm heater arrays 

(Fig. 4.27-4.29).  The departure frequency was reduced dramatically as the g-level 

declined, as expected, and can be explained by the reduction in buoyant forces acting on 

the bubble.  It should be noted that a consistent primary bubble was not observed across 

gravity levels for a 7 x 7 mm2 array because the heater size was much larger than a vapor 

column diameter and sufficiently high wall superheats that cause the formation of a 

primary bubble in high-g were not investigated.    

Looking first at the g-level dependence on the primary bubble departure 

frequency for various heater sizes, as the gravity level is reduced, the primary bubble was 

observed to depart less frequently, Fig. 4.27.  An interesting trend can be observed from 

Fig. 4.27.  It appears that for the 1.62 and 2.7 mm heaters, the bubble departure frequency 

is a function of the ratio of the heater length, Lh, to the Taylor wavelength, λD.  Best fit 

curves of the data shown in Fig. 4.27 were used to calculate the data shown in Fig. 4.28.  

For the few data points that can be considered, the data appears to fall along the same 
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curve indicating once again the importance of the Taylor wavelength on the dynamics of 

the primary bubble.    
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Figure 4.27:  Effect of Heater Size on primary bubble departure frequency (Tbulk = 54oC, 

Twall = 100oC).  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40
λ D/Lh

D
ep

ar
tu

re
 F

re
qu

en
cy

 (H
z)

1.62 mm x 1.62 mm, 36 Heaters

2.7 mm x 2.7 mm, 96 Heaters

 
Figure 4.28:  Effect of the ratio of the Taylor wavelength to heater length on primary 

bubble departure frequency (Tbulk = 54oC, Twall = 100oC). 
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The frequency of bubble departure vs. gravity level is shown in Fig. 4.29 for the 

1.62 x 1.62 mm2 array at higher bulk subcoolings.  A higher subcooling reduces the 

bubble departure frequency for a given wall temperature, g-level, and heater size since 

the size of the primary bubble decreases due to increased condensation at the top of the 

vapor liquid interface.   

As mentioned previously, the effect of bubble coalescence at the base of the 

primary bubble is thought to significantly influence the primary bubble departure  
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Figure 4.29:  Effect of bulk fluid temperature and g-level on bubble departure frequency.  
Data taken from a 36 heater array (1.62 x 1.62 mm2), Twall = 95°C. 

 

frequency.  Higher wall superheats increase vapor generation from satellite nucleation  

sites, increasing the rate of coalescence.  The dynamic effects of the coalescence process 

are thought to provide a net force that holds the bubble onto the surface, counteracting 

buoyancy as shown in Fig. 4.30.   
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Figure 4.30:  Bubble departure frequency for 1.62 x 1.62 mm2 heater array Tbulk = 55°C. 

 

4.4.2  Gravitational Effects on Primary Bubble Size 

The transition from high-g to low-g also had a dramatic effect on the primary 

bubble diameter for the 0.81 x 0.81 mm2 array.  A plot of the gravity level vs. time with 

representative bottom view images of the boiling process is shown in Fig. 4.31.  It is 

interesting to note that the boiling behavior for this heater size at all gravity levels studied 

is strikingly similar to what is observed in low gravity boiling for all heater sizes, Fig. 

4.32.  The primary bubbles in high-g were seen to be significantly smaller than those 

observed in low-g for the same heater size. 

This boiling is dominated by the formation of a stable primary bubble that does 

not depart the heated surface.  Surface tension clearly dominated the boiling process for a 

9 heater array across gravity levels which indicates that if the heater size is smaller than  

the bubble departure diameter, the boiling heat flux is dramatically affected.    
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Figure 4.31:  Bubble size vs. gravity level, ∆Tsat =  38°C, Tbulk = 28°C. 

 
 

 
 

Figure 4.32:  Boiling on a 3 x 3 Heater Array (.8 mm x .8 mm) at 1.6 g, Tbulk = 28°C,  
∆Tsat = 34°C.  Colored area represents powered heaters. 
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Observations showed the primary bubble (formed in high-g) increases in size as 

the gravity level decreases.  The increase in primary bubble diameter may be due to a 

decrease in natural convection causing decreased condensation at the top of the bubble.  

At equilibrium the bubble was nearly 100% larger in low-g.   

4.5  HIGH-G CONCLUSIONS  

In conclusion, the data presented in this section serves to validate previous work 

for boiling from heater sizes larger than the isolated bubble departure diameter.  In 

addition, the Rosenhow correlation accurately predicts the pool boiling performance at 

relatively low wall superheats.   The primary mechanism for heat transfer during nucleate 

pool boiling was different for various levels of subcooling.  Under near saturated bulk 

conditions, the majority of heat removal from the surface occurs due to sensible heating 

to the rewetting fluid as well as latent heat transfer required for bubble formation.  Under 

high bulk subcoolings, the primary bubbles that formed tended to stay on the heated 

surface longer and large heat transfer due to condensation was identified.  For large 

heaters, the mechanism for CHF was identified to be dryout of the interior portion of the 

heater which is accompanied by a strong increase in heat transfer from the edges.   

High gravity boiling on small heaters can be surface tension dominated, similar to 

boiling in low gravity.  Surface tension dominated boiling results in a dramatically lower 

heat flux and the transition to surface tension dominated boiling is not a function of BoB 

alone but depends additionally on wall superheat, bulk fluid subcooling, heater size, and 

gravity level.   
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Chapter 5:  Low-g Boiling Results 

5.1  INTRO 
 
 Buoyancy was found to be the primary bubble departure mechanism at higher g-

levels.  The primary effect of a reduction in the gravitational level is a reduction in the 

buoyant force acting on bubbles which causes them to grow large and depart the heated 

surface less frequently.  Bubble departure from the heated surface was found to account 

for the majority of the heat transfer during saturated pool boiling while under highly 

subcooled conditions, condensation from the bubble cap was identified as the primary 

heat transfer mechanism in the presence of strong buoyancy driven convection around the 

primary bubble.  Because the transport process is enhanced by bubble removal and 

buoyancy driven convection, it can be expected that a reduction in bubble departure 

frequency in addition to a reduction in buoyancy driven convection tends to reduce the 

time and surface averaged heat transfer.  This chapter discusses in detail the heat and 

mass transport characteristics due to bubbles that do not depart the heater surface.  In 

low-g, bubbles tended to grow much larger than their high-g counterparts and the heat 

flux in most cases were found to be dramatically reduced.  Although this might be 

expected at first glance, physical mechanisms not thought to be significant were found to 

dominate the transport process.  Extensive experimental data is presented throughout this 

chapter which serves to support the many inferences made.   

 This chapter is organized in a similar manner to Chapter 3.  Experimental results 

for the square heater arrays are first presented and analyzed.  The effects of bulk liquid 

subcooling and wall superheat are discussed in detail for each heater size.  This is 
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followed by a brief discussion on the effects of boiling in low-g from heaters of larger 

aspect ratio.  Lastly, information is presented which identifies the effect of dissolved 

gases on the boiling performance in low-g which was found to be dramatic.   

Throughout this chapter, experimental data is discussed alongside analytical and 

numerical models.  These models are meant to facilitate understanding of the phenomena 

in addition to providing a predictive capability for future design.  Last, a summary of the 

significant contributions of this work and design recommendations for a passive thermal 

control system in space are discussed.  The conclusions section discusses 

recommendations for future work in this area. 

 

5.2  HEATER SIZE EFFECTS 

5.2.1  7 x 7 mm2, 96 Heater Array 

Boiling curves for a 7 x 7 mm2 heater array in low-g are shown in Fig. 5.1 for all 

bulk liquid subcoolings.  Images of the boiling process for a 7 x 7 mm2 array are shown 

in Fig. 5.2.  At low wall superheats, the process is dominated by single phase conduction 

through the liquid.  This transport process is much less efficient than the natural 

convection process observed in high-g at similar superheats and is the reason why a 

smaller heat flux is measured.  In a zero-g environment, the heat transfer from the heater 

during single phase transport can be modeled at first approximation using a steady state 

conduction model assuming the liquid located a distance, x, away from the heater is at 

constant bulk temperature.  As an example, assuming the temperature of the bulk liquid 

located 1 cm away from the heater surface is at Tbulk then the resulting heat transfer due 

to conduction is 0.02 W/cm2.  This value is much smaller than the measured heat flux 

which may be due to residual buoyancy driven fluid motion.  Steady natural convection  
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Figure 5.1:  Boiling curves for a 7 x 7 mm2 heater array in low and high-g. 

  
that is set up in high-g may not be significantly damped out in the amount of time the g-

environment transitions from high to low-g (< 5 sec).  Therefore, it is concluded that the 

residual fluid motion within the system enhances the single phase heat transfer process in 

low-g.   In a true microgravity environment, the steady-state time and surfaced averaged 

heat flux is predicted to be much smaller.    

As bubble formation occurs at low wall superheats, 15°C  < ∆Tsat < 25°C, the 

measured heat transfer in low-g is similar to what was measured in high-g, Fig. 5.1.  This 

is due to the formation of small bubbles on the heater that move around and coalesce with 

other bubbles on the heater surface.  Under such conditions, the nucleation site density 

was relatively small, and the formation of a primary bubble was not observed and may be 
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due to the fact that vapor is not generated at a sufficient rate to sustain a larger bubble on 

the surface, Fig 5.3.  For all of the subcooling levels investigated, condensation from the  

 

    
 

W/cm2 
Figure 5.3:  Boiling in high and low-g at low wall superheats, ∆Tsat = 21°C. 

 

bubbles was observed which regulates their size.  The bubble coalescence process in low-

g mentioned above appears to have the same effect on the heat transfer as in high-g where 

much smaller bubbles were observed, Fig. 5.3.  As seen from Fig. 5.3, the heat transfer 

appears to be evenly distributed across the heater array for both g-levels and although the 

bubbles are much larger in low-g, the time and spatially averaged heat transfer is nearly 

the same and independent of subcooling.  It appears that the lateral bubble motion on the 

surface low-g can create the same heat flux as smaller departing bubbles in high-g.  In 

this boiling regime which can be defined as, “isolated satellite bubble regime”, the 

bubbles act as turbulence generators and their relative movement across the heater 

surface allows the surrounding cooler liquid to wet the surface, enhancing the heat 

transfer.  In low-g at low wall superheats, the primary heat transfer mechanism appears to 

Low-g, ∆Tsub = 9°C High-g, ∆Tsub = 21°C 
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be single phase conduction to the rewetting liquid although an appreciable condensation 

component may exist.  This will be discussed in greater detail for the smaller heater 

arrays.  It is interesting to note that the Rosenhow correlation, which was shown to be a 

good predictor of performance in high-g, predicts a heat transfer that is much smaller 

than the measured value in low-g, Fig 5.1.  It is clear from this data that such models 

need to be modified to account for the pertinent mechanisms in low-g.     

At higher wall superheats, the boiling curves in low-g are strongly dependent on 

the level of subcooling.  Consider first the lowest subcooling investigated (∆Tsub=9°C).  

The heat transfer increases with superheat up to 26°C, then decreases at higher 

superheats.  The primary bubble that formed at ∆Tsat = 26°C increased in size as the 

superheat increased but did not grow large enough to cover the entire heater, Fig. 5.2.  

The primary bubble moved around the heater surface coalescing with smaller satellite 

bubbles.  Primary bubble movement in low-g may be due to induced liquid motion from 

the surrounding satellite bubbles and/or the significant g-jitter in all three axial directions 

aboard the KC-135. G-jitter has a much larger effect on the primary bubbles that form on 

the 7 mm array than on the smaller heaters.  Thermocapillary effects were not observed to 

be significant at this particular subcooling.  CHF is clearly indicated from the trend in the 

boiling curve and measured to be approximately 7.8 W/cm2 at ∆Tsat = 27°C, Fig 5.1.  The 

mechanism for CHF appears to be breakdown of the satellite bubble region into a single 

primary bubble which tends to insulate most of the heater area.   

The CHF at the highest subcooling (∆Tsub=29°C and 31°C) was much higher than 

for the case mentioned above.  As indicated from Fig 5.1, CHF was not reached for this 

particular subcooling over the range of the wall superheats measured.  Coalescence with 
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the primary bubble was observed to be the satellite bubble removal mechanism at all wall 

superheats investigated.  As the wall superheat was increased from 25°C < ∆Tsat < 30°C, 

the size of the primary bubble increases slightly causing dryout over a larger portion of 

the array.  This effect is counteracted by higher heat transfer around the primary bubble 

due to increasingly active nucleation sites and strong coalescence that increases as the 

wall superheat is increased.  As the superheat is increased to 30°C, the primary bubble 

size reaches a maximum, but does not cause complete dryout on the heater.  The heat flux 

continues to increase, however, due to a higher nucleation site density and heat transfer 

around the primary bubble.  As the wall superheat is increased above 30°C, the primary 

bubble size decreases due to the onset of strong thermocapillary driven flows.  This 

allowed increased satellite bubble formation and an enhancement in heat transfer.  

Further increases in superheat were accompanied by increases in thermocapillary 

convection which reduced the primary bubble size and increased the overall heat transfer.  

CHF was not reached since the derivative of the satellite bubble heat transfer w.r.t the 

wall superheat was positive, Eq. 5.1.  In this equation, q”wet refers to the average heat  

    (5.1) 

flux over the satellite bubble area, Awet.  In addition, it is assumed that the heat transfer 

beneath the primary bubble is negligible.  The derivatives shown in Eq. 5.1 were 

calculated using a backward differencing scheme.  As shown in Fig. 5.4, this value is 

positive at ∆Tsat = 30°C.  A comparison between high-g and low-g boiling at high 

subcooling is shown in Fig. 5.5.  Clearly, the presence of the primary bubble in low-g 

causes a reduction in time and surface averaged heat transfer. 
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Figure 5.4:  Wetted area heat transfer calculation. 

 

 

Figure 5.5:  Boiling in low and high-g, ∆Tsub = 29°C.  Top row corresponds to boiling in 
high-g and bottom row corresponds to boiling in low-g. 

 
At the intermediate subcooling (∆Tsub=19 °C) the boiling process is again 

dominated by the primary bubble.  Trends similar to the high subcooling cases are 

observed in both the heat flux data and the images for all heater sizes.  As expected, the 

primary bubble size falls between the high and low subcoolings sizes as does the 

measured time and surface averaged heat flux, Fig. 5.6.          

Awet = 26.2 mm2 

7 mm 

( ) ( )

( ) ( )sat

wet

sat

wet

sat

wet

sat

wet

T
q

T
q

T
A

T
A

∆
′′

≈
∆∂

′′∂
∆

≈
∆∂

∂

δ
δ

δ
δ

q"wet (W/cm2) 16.4
Awet (cm2) 0.262

dAwet/d(∆Tsat) (cm2/C) -0.036
dq"wet/d(∆Tsat) (W/cm2C) 2.8

dq/d(∆Tsat) (W/C) 0.1432

∆Tsat = 30°C,  ∆Tsub = 29°C  



 

 153 
 

 

  
  

 
 

 
 

Figure 5.6:  Bulk liquid subcooling effect in low-g pool boiling from a 7 x 7 mm2 array, 
∆Tsat = 32 - 33°C. 

 

5.2.2  1.62 x 1.62 mm2, 36 Heater Array and 2.7 x 2.7 mm2, 96 Heater Array 

5.2.2.1  Low Subcooling.  Boiling curves for the 1.62 x 1.62 mm2 and 2.7 x 2.7 mm2 heater 

arrays are shown in Fig. 5.7.  At low subcoolings (∆Tsub = 6°C), a large primary bubble 

was observed over most of the wall superheat range investigated.  At low wall superheat, 

∆Tsat = 9°C, no bubbles were observed on the heated surface and the heat transfer 

mechanisms were similar to those describe previously for the larger heater.  At higher 

wall superheats, ∆Tsat > 15°C, vapor generated at active nucleation sites coalesced into a 

stable primary bubble that caused dryout over nearly all of the heater area resulting in a 

very small heat transfer, Fig. 5.8-9.  

Although the bubbles sizes remain nearly the same, the heat transfer from the 

edge of the array, heaters 65-96, appears to reach a time and surface averaged maximum 

at ∆Tsat = 30°C, Fig 5.10.  This is due to two competing effects, 1). an increase in heat  

∆Tsub = 29°C ∆Tsub = 19°C ∆Tsub = 9°C 

W/cm2 
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Figure 5.7:  Low-g boiling curves for a 1.62 x 1.62 mm2 & 2.7 x 2.7 mm2 heater arrays. 

 
 

    

    
 ∆Tsat=38.9 oC ∆Tsat=29.0 oC ∆Tsat=19.0 oC   

 

Figure 5.8:  Bottom and side view time averaged low-g boiling images of a 2.7 x 2.7 mm2 
heater array at low subcooling, ∆Tsub = 6°C.   
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 ∆Tsat=19.0 oC ∆Tsat=29.0 oC ∆Tsat=39.0 oC  

 
 
  

 
 

Figure 5.9:  Bottom and side view time averaged low-g boiling images of a 1.62 x 1.62 
mm2 heater array at low subcooling, ∆Tsub = 6°C.   
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Figure 5.10:  edge (black,#65-96) and center (gray, #1-64) boiling from a 2.7 x 2.7 mm2 

heater array at low subcooling, ∆Tsub = 6°C . 

10 155 20
W/cm2

96 95 94 93 92 91 90 89
65 37 64 63 62 61 60 59 58 88
66 38 17 36 35 34 33 32 57 87
67 39 18 5 16 15 14 31 56 86
68 40 19 6 1 4 13 30 55 85
69 41 20 7 2 3 12 29 54 84
70 42 21 8 9 10 11 28 53 83
71 43 22 23 24 25 26 27 52 82
72 44 45 46 47 48 49 50 51 81

73 74 75 76 77 78 79 80



 

 156 
 

 
 transfer from the wetted heaters outside the primary bubble as the wall superheat 

increases, and 2). an increase in the size of the primary bubble which reduces the wetted 

heat transfer area as described previously for the larger heater array.        

 
5.2.2.2  High Subcooling.  As the subcooling is increased, the low-g boiling curve takes a 

dramatically different shape.  At low wall superheats ∆Tsat < 13°C, the heat transfer 

process is again dominated by conduction and residual buoyancy driven convection.  

Consider first the 1.62 x 1.62 mm2, 36 heater array at the highest subcooling investigated, 

∆Tsub = 29°C, Fig 5.11.  At low superheats, the primary bubble is significantly smaller 

than the heater size and few active nucleation sites are observed.  The rapid increase in 

wall heat transfer as the superheat increases to 23°C (CHF) is due to an increase in the 

number of active nucleation sites as observed from the bottom view videos.  These 

nucleation sites produce small bubbles that tend to coalesce with the primary bubble that 

forms.  At CHF, the primary bubble was observed to rotate counterclockwise with a 

frequency of 28 rad/sec or 4.4 Hz as shown in Fig. 5.12. 

Consider first heater #8 in the 2.7 x 2.7 mm2 heater array, the colored heater in 

Fig. 5.12.  The time resolved heat flux for this heater is shown in Fig. 5.13 a-b.  

Considering the movement of the primary bubble at CHF, Fig. 5.12, it is clear from the 

bottom view images that heater #8 is periodically completed covered by the primary 

bubble for approximately 0.05-0.1 seconds.  During such times, heat transfer is expected 

to be very small.  This is in good agreement with the time resolved heat flux 

measurement shown in Fig 5.13b which periodically goes to zero.   
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 ∆Tsat=17.8 oC ∆Tsat=27.9 oC ∆Tsat=37.9 oC ∆Tsat=23.0 oC, CHF  

 
 

         

    
 ∆Tsat=33.8 oC ∆Tsat=42.7 oC ∆Tsat=13.2 oC ∆Tsat=23.0 oC, CHF  

 
 

 
  

 
 

Figure 5.11: Bottom and side view time averaged low-g boiling images of a 1.62 x 1.62 
mm2, 36 heater array (a) and a 96(b) heater array at high subcooling, ∆Tsub = 29°C. 

 
Such trends indicate a number of interesting findings.  First, the primary bubble 

acts as a vapor reservoir that moves around the heater surface, pulling bubbles into it.  

This causes a significant heat transfer in the region where coalescence occurs.  

Comparing this performance to high-g, the measured time averaged heat flux appears to 

be nearly identical.  Therefore, it can be concluded that satellite bubble coalescence with 

W/cm2 
  10  20      30       40      50      60  

(b)  2.7 x 2.7 mm2, 96 heater array, ∆Tsub = 29°C 

(a)  1.62 x 1.62 mm2, 36 heater array, ∆Tsub = 29°C 
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Figure 5.12:  Time resolved low-g boiling images at CHF, ∆Tsat =23°C, ∆Tsub = 29°C for 
a 2.7 x 2.7 mm2 heater array.  Colored heater corresponds to heater # 8 in the array. 

 

the primary bubble replaces bubble departure as the primary mechanism for heat transfer 

in low-g at relatively low wall superheats and high subcoolings.  More importantly, it 

appears that the effect of the primary bubble is similar to the heat transfer mechanism in 

high-g indicating that high-g correlations may be able to predict the heat transfer in low-g 

if the gravitational term is replaced by another term that accounts for primary bubble size.  

It should also be noted that heat transfer from the corner of the array, heater #96 at CHF 

is nearly identical to heat transfer in high-g, Fig. 5.14, indicating once again that low-g 

mechanisms produce the same measurable behavior during high-g.   

The CHF condition described extensively above can be analyzed further by 

considering the following scenario.  At any given instant in time, the heater has a 

distribution of satellite bubbles on its surface as seen from Fig. 5.12.  The total mass of 

vapor on the surface in the form of satellite bubbles at each instant in time can be 

1.07 s 1.14 s 1.21 s 1.28 s 

1.35 s 1.42 s 1.49 s 1.56 s 
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 .  
(a) Time resolved heat flux over entire parabola. 

 

 
(b) Time resolved heat flux over smaller time scale. 

Figure 5.13:  Time resolved boiling heat flux from Heater #8 (Fig. 5.10) at CHF, ∆Tsat = 
23°C, ∆Tsub = 29°C.  Fig. 5.10 does not correspond to the time scale in this graph.   



 

 160 
 

 
Figure 5.14:  Time resolved heat transfer for heater #96, 2.7 mm array, at low-g CHF, 

∆Tsat = 23°C, ∆Tsub = 29°C. 

calculated by summing the volume of the bubbles, Vb,i, and multiplying by the density of 

FC-72 vapor, 16.4 kg/m3.  Furthermore, the amount of latent heat required to produce 

such a bubble distribution on the surface can be estimated by multiplying the mass of 

vapor by the latent heat of vaporization.  As mentioned previously, the primary bubble 

rotates in a counterclockwise direction around the surface coalescing with satellite 

bubbles.  After one complete counterclockwise revolution, the primary bubble has 

removed all of the satellite bubbles shown in a given picture at time, t.  As the primary 

bubble coalesces with the satellite bubbles, it is interesting to note that the primary 

bubble does not increase in size.  The vapor addition to the primary bubble from satellite 

bubble coalescence is balanced by condensation at the top of the primary bubble.  In this 

manner, the primary bubble acts as a vapor sink.  Considering the above scenario, an 
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estimate of the latent heat transfer from the heater surface can be obtained from Eq. 5.2.  

Furthermore, a more accurate estimate of the latent heat transfer to the fluid can be 

calculated by considering the above scenario for all images, Eq. 5.3, where k is total 

number of pictures and n is total number of bubbles on a given picture.  The analysis 

described above assumes condensation from satellite bubbles to be negligible which is 

justifiable by the fact that they do not grow to the size of the primary bubble and 

therefore are in contact with higher temperature liquid which is possibly superheated.  In 

addition, the absence of buoyancy driven convection enables condensing vapor to remain 

in the local vicinity of the bubble interface heating up the surrounding bulk liquid.  This 

idea predicts a decreasing rate of condensation as time increases due to the transient 

increase in the bulk fluid temperature surrounding a bubble locally.  This analysis also 

neglects coalescence between adjacent satellite bubbles which increases the latent heat 

transfer estimation.  Performing this analysis for the image shown in Fig. 5.11 (0.21s 

image), results in a heat flux estimation of 0.046 W/cm2, Table 5.1.   
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             (Eq. 5.2-5.3) 

It is clear from the above calculation that the amount of heat transferred to the 

fluid as latent heat at CHF does not account for the amount of heat transfer measured 

experimentally.  In fact, the measured heat flux is 2.5 orders of magnitude higher than the 

calculated value.  This indicates that the majority of heat transfer at CHF in low-g is not 

due to latent heat transfer but is instead due to sensible heating of the fluid that wets the 

heater surface as bubbles coalesce and move around the heater.  This rewetting process is 

enhanced by the movement of the primary bubble on the heater surface which acts as a  
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CHF Latent Heat Calculation  
Bubble # Db (mm) Vb,i (m3) qlatent (J) 

1 0.27 1.030E-11 1.274E-05 
2 0.54 8.241E-11 1.019E-04 
3 0.4 3.349E-11 4.141E-05 
4 0.135 1.288E-12 1.592E-06 
5 0.3 1.413E-11 1.747E-05 
6 0.15 1.766E-12 2.184E-06 
7 0.32 1.715E-11 2.120E-05 
8 0.11 6.966E-13 8.612E-07 
9 0.135 1.288E-12 1.592E-06 
10 0.27 1.030E-11 1.274E-05 
11 0.135 1.288E-12 1.592E-06 
12 0.2 4.187E-12 5.176E-06 
13 0.13 1.150E-12 1.421E-06 
14 0.13 1.150E-12 1.421E-06 
15 0.1 5.233E-13 6.470E-07 
16 0.35 2.244E-11 2.774E-05 
17 0.23 6.367E-12 7.872E-06 
18 0.27 1.030E-11 1.274E-05 
19 0.27 1.030E-11 1.274E-05 
20 0.135 1.288E-12 1.592E-06 
21 0.35 2.244E-11 2.774E-05 
22 0.54 8.241E-11 1.019E-04 
23 0.3 1.413E-11 1.747E-05 
24 0.135 1.288E-12 1.592E-06 
25 0.27 1.030E-11 1.274E-05 
26 0.6 1.130E-10 1.398E-04 
27 0.6 1.130E-10 1.398E-04 
   Fp (Hz) 4.4 
   Aheat (cm2) 0.069984 
    q'' (W/cm2) 0.046 

    Table 5.1:  Latent heat flux calculation at CHF.  

 
single phase turbulence generator.  This finding is also in agreement with the results 

presented for the larger 7 mm heater array.     

As the superheat is increased above CHF to 28°C, a sharp decrease in heat 

transfer occurs due to increased dryout of the heater.  Considering the CHF condition 

described previously, if the rate of vapor addition from the satellite bubbles increases due 

to an increased satellite bubble density, the condensation from the primary bubble is 

unable to condense enough vapor to maintain a constant primary bubble size.  Therefore 
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the primary bubble tends to grow which decreases satellite bubble formation allowing the 

bubble to reach a larger stable size.  At this point, vapor generation is balanced by 

condensation from the bubble cap which serves to regulate the primary bubble size.  As 

the superheat is increased above 32°C, a strong increase in thermocapillary convection 

was observed from the side view video images.  The mechanism for the sudden increase 

in thermocapillary driven flow is currently unknown but may be due to the increased 

vapor generation from the edge of the array that occurs at higher wall superheats or it 

may be related to the presence of dissolved gases in the liquid, as suggested by Straub 

(2001).  Similar trends in the heat transfer data are observed for the lower subcooling 

cases, Tbulk = 35° C and Tbulk = 45°C, Fig. 5.15-16. 

For the 2.7 mm 96 heater array, coalescence was again observed to be the primary 

mechanism for CHF at higher subcoolings (similar to the 36 heater array).  Although 

strong thermocapillary convection was observed at high subcoolings and high superheats, 

data was not obtained with sufficient superheat resolution to determine whether a local 

maximum occurs after CHF (as was observed for the 36 heater array).  

A comparison between boiling in high and low-g for these heater sizes is shown 

in Fig. 5.17-18.  As mentioned previously, correlations do not account for the nearly 

identical performance at low wall superheats and do not predict the trends at higher wall 

superheats during the presence of strong thermocapillary flow.  At the highest superheat 

and subcooling, (∆Tsat = 43°C, ∆Tsub = 29°C), the heat flux surpassed CHF, suggesting 

that thermocapillary convection can limit the rise in heater temperature even for an 

applied heat flux greater than CHF.     
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Figure 5.15:  Time-averaged, spatially resolved heat flux maps of boiling process 
for 96 heater array in low-g at various ∆Tsat and Tbulk. 
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Figure 5.16:  Time-averaged, spatially resolved heat flux maps of boiling process 
for 36 heater array in low-g at various ∆Tsat and Tbulk. 
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Figure 5.17:  Boiling Curves for a 1.62 mm and 2.7 mm heater arrays. 

 
 

 
Figure 5.18:  Boiling behavior on a 6 x 6 array, 1.62 x 1.62 mm2 powered array for high-

g (top row) and low-g (bottom row).  Heat flux is in W/cm2. 
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5.2.2.3  Thermocapillary Convection.  The formation of very strong thermocapillary 

convection was observed at high subcoolings and high wall superheats.  Fig. 5.19 plots  
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Figure 5.19:  time and surface averaged heat flux from the wetted area in high and low-g 

Tbulk = 28°C, ∆Tsub ranges from 29-30°C.  Wetted heaters are highlighted in black. 
  
 

the heat flux measured in the wetted area for both high and low-g.  The wetted heaters are 

those that are completely outside of the primary bubble dryout region.  It is interesting to 

note that the heat transfer in the wetted area in low-g is slightly larger than in high-g, 

indicating that the rate of vapor generation and removal is more efficient in low-g than in 

high-g.  The primary bubble is able to sustain a large vapor influx from around its edges 

as thermocapillary convection is increased.  At certain wall superheats, ∆Tsat = 33°C and 

∆Tsat = 37°C, the wetted area heat transfer is slightly larger in low-g than in high-g.  The 

time resolved heat flux plot for heater #96, corner heater, is shown in Fig. 5.20a-b.  As 

indicated from the heat flux trace in low-g, the corner heaters are always outside the   
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(a) Time resolved boiling in high and low-g throughout parabolic maneuver. 

 

 
(b) Time resolved boiling over one second. 

Figure 5.20:  2.7 x 2.7 mm2 heater, Twall =100°C, Tbulk = 28°C heater #96 (corner heater). 
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primary bubble area and continuously wetted with bulk liquid.  As shown in Fig 5.21a, 

vapor generated in this region is removed by the primary bubble allowing continuous thin 

film vapor generation throughout low-g.  In high-g, the corner heater is occasionally 

partially covered with a bubble and this causes the heat transfer to drop dramatically, Fig 

5.21b.  When this bubble departs a spike in the heat transfer is measured. 

 

         
 

        
    
 

(a)  Low-g time resolved image sequence.  ∆Tsat = 43°C , ∆Tsub = 29°C 
 
 

         
 

        
  
 

(b)  High-g time resolved image sequence.  ∆Tsat = 41°C, ∆Tsub = 30°C. 
 

Figure 5.21:  Time resolved boiling images in high-g (b) and low-g (a). 
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At high wall superheats and bulk subcoolings, the presence of strong 

thermocapillary convection was observed.  Analyzing the wetted area in low-g further 

shows a number of interesting trends.  First, the effect of bulk liquid subcooling on 

wetted area heat transfer is shown in Fig. 5.22.  In high-g the time averaged wetted area 

heat flux is independent of bulk subcooling.  This agrees with the data presented in the 

previous chapter which showed that subcooling had a negligible effect on the boiling heat 

flux in the nucleate boiling regime and agrees with the work of other researchers 

presented in Chapter 1.  In low-g, a nearly linear dependence of subcooling on wetted 

area heat flux is observed.  This indicates that the bulk liquid subcooling in low-g 

influences the thermocapillary flow as mentioned previously.  The data from various 

subcoolings and wall superheats is plotted in Fig. 5.23 showing that the data tends to  
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Figure 5.22:  Wetted area heat flux at various subcoolings for Twall = 90°C. 
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Figure 5.23:  Low-g time and surface averaged heat transfer from the wetted area for 

various heater arrays and different wall superheats and subcoolings. 

 

collapse onto a single curve indicating that the driving temperature difference for such 

flows is the wall temperature minus the bulk temperature.  The heat transfer coefficient 

obtained from the wetted area and the wall temperature minus the bulk temperature, 

which appears to be the driving temperature difference, is shown in Fig. 5.24.  It can be 

inferred that increased subcooling enhances the thermocapillary flow rate around the 

bubble which acts to enhance the heat transfer coefficient in the wetted area.   

Further information about the thermocapillary phenomenon can be obtained by 

considering a number of different analytical models.  An estimate of the liquid velocity 

around the primary bubble during thermocapillary convection can be obtained by 

considering the bubble shape and heat transfer measured.  This model will be referred to 

as the “latent heat transfer model”.  If it is assumed that all of the measured heat flux  
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Figure 5.24:  Low-g time and surface averaged heat transfer coefficient from the wetted 

area. 

 

from the wetted heater area goes into latent heat transfer, the vapor generated near the 

base of the bubble must condense somewhere along the primary bubble surface area, Fig. 

5.25.  From the bottom view images, the wetted area can be calculated by subtracting the 

heater area by the primary bubble dryout area.  The area for vapor condensation to occur 

across the primary bubble interface is assumed to be some fraction of the total surface 

area of the primary bubble, f.  It is assumed that the majority of the primary bubble area 

has condensation occurring across it and vapor is only generated in a small region near 

the contact line.  From the equations shown in Fig. 5.24, an estimate of the average liquid 

velocity normal to the bubble interface can be obtained, 2.5 mm/s < vliq < 10 mm/s.  

These equations represent a simple energy balance near the heater surface and assumes 

all of the measured heat transfer goes into vapor generation and a mass balance over the   
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Figure 5.25:  Thermocapillary convection velocity analytical model example for 

following condition, 2.7 x 2.7 mm2 heater array, ∆Tsat = 43°C, ∆Tsub = 29°C. 

 

same region equates the vapor mass flux to the liquid mass flux.  The calculated velocity 

values provide a good analytical estimate of the minimum liquid velocity directly above 

the bubble interface and is in good agreement with experimentally measured values (15 

mm/s -140 mm/s, Wang et. al, 2005).  During the presence of thermocapillary 

convection, the actual liquid velocity above the bubble is expected to be higher than this 

value due to the presence of thermocapillary stresses which provide additional impetus 

for flow.   

The second analytical model developed, referred to as the “sensible heating 

model”,  was created based on the experimental results shown in Fig. 5.23 which 

identifies the bulk fluid temperature and wall temperature as the driving temperature 

difference for thermocapillary flow.   This model assumes the primary bubble acts as a 

heat pump bringing in liquid from the bulk fluid at its base and pumping the fluid along 

the two-phase interface until it is expelled at the top of the bubble in a saturated 

thermodynamic state.    A diagram of the model is shown in Fig. 5.26.  This model 
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predicts a zero liquid velocity in low-g under bulk saturated conditions which is similar to 

what was observed at the lowest subcooling measured experimentally.  This model 

assumes the heat transfer is directly proportional to the bulk subcooling level which has 

been shown to strongly influence the strength of thermocapillary convection, Fig 5.26.    

 

Figure 5.26:  Sensible analytical model for the liquid velocity above the vapor bubble. 
Example for following condition, 2.7 x 2.7 mm2 heater array, ∆Tsat = 43°C, ∆Tsub = 29°C.  

 

5.2.3  0.8 x 0.8 mm2 (9 heater array) 

Images of the boiling behavior for a nine heater array are shown in Fig. 5.27.  

Boiling curves for the nine heater array in low-g are presented in Fig. 5.28.  At low wall 

superheats, ∆Tsat < 15 °C, the transport process was dominated by single phase 

conduction and convection to the bulk fluid.  For the nine heater array, a primary bubble 

was observed to form and cause dryout over significant portions of the heater surface.  

Subcooling was found to have little effect on the size of the dry area.  At low wall 

superheats, the primary bubble oscillated laterally on the surface.  The cause of such 

oscillations is currently unknown but may be due to g-jitter aboard the aircraft.  The 

magnitude of oscillations decreased with increasing wall superheat and the size of the dry  

q"heat (W/cm2) 12.5
A0.5h (cm2) 0.036
mdot (kg/s) 1.38E-05
vliq (mm/s) 1.215
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∆Tsat=18.9 oC ∆Tsat=29.1 oC ∆Tsat=39.0 oC 

∆Tsat=18.1 oC ∆Tsat=27.9 oC ∆Tsat=37.9 oC 

(a)  ∆Tsub=6 oC, Tbulk=55 oC 

(b)  ∆Tsub=29 oC, Tbulk=28 oC  

Figure 5.27:  Low-g time averaged boiling images from a 0.81 x 0.81 mm2 heater array.     
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Figure 5.28:  Low-g boiling curves for a 0.81 x 0.81 mm2 heater array. 
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area increased, resulting in a lower average heat flux.  CHF appears to occur at very low 

superheats immediately following boiling incipience.  Also, in contrast to boiling from 

larger heaters, the onset of thermocapillary convection was not observed.  This may be 

due to the heater size and amount of satellite bubble formation in addition to the size of 

the primary bubble which is much smaller and therefore may not grow large enough to 

grow out of the superheated liquid layer.  This observation suggests that if the growing 

primary bubble is within the superheated region, then the onset of thermocapillary 

convection cannot occur.  Furthermore, this also suggests that the superheated boundary 

layer thickness is an important scaling parameter and its value relative to the heater 

length appears to strongly influence thermocapillary behavior.  A complete listing of the 

boiling images from this array is shown in Fig 5.29.     
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Figure 5.29:  Time-averaged, spatially resolved heat flux maps of boiling process 
for a 9 heater array in low-g at various ∆Tsat and Tbulk. 
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5.3  LOW-G HEATER SIZE EFFECTS SUMMARY  

Boiling curves from all of the square heaters investigated in this study are shown 

in Fig. 5.30.  It appears that low-g boiling behavior on square heaters appears to be 

dominated  by the dynamics of the primary bubble.  At low wall superheats (∆Tsat < 

18°C), boiling performance appears to be constant across gravity levels.  At higher wall 

superheats, boiling performance is significantly reduced in low-g.  Increased subcooling 

decreases  
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Figure 5.30:  Low-g boiling curves for various heater sizes and subcoolings.  

 

the size of the primary bubble, allowing satellite bubbles to form with a corresponding 

increase in heat transfer.  CHF for the intermediate sized heaters, appeared to be a result 
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of the competition between increasing heat transfer associated with the satellite bubbles 

and the decrease in heat transfer due to growth of the dry area under the primary bubble 

as the wall superheat increases.  It was shown that the primary mode of heat transfer at 

CHF was single phase conduction to the rewetting fluid.  Depending on the heater size, 

there appears to be an initial CHF which is dominated by satellite bubble coalescence.  

This is attributed to heater dryout and the reduction of bubble removal mechanisms such 

as buoyancy.  Increased subcooling appears to delay the reduction in boiling performance 

(compared to high-g) to higher wall superheats.  Thermocapillary convection may be 

responsible for the post-CHF increase in heat flux observed on the two intermediate sized 

heaters (2.7 mm-6x6 and 2.7 mm-10x10) at higher subcoolings.  For the largest heater (7 

mm-10x10), CHF was not observed at high subcoolings although the thermocapillary 

mechanism was still dominant. 

Multiple models were presented that predict the liquid flow velocity above the 

bubble at higher wall superheats and subcoolings (post CHF).  It is thought that increased 

subcooling causes increased condensation at the bubble cap, resulting in a smaller bubble, 

which in turn increases the temperature gradient along the surface of the bubble.  This 

leads to an increase in the strength of the thermocapillary convection, which brings cold 

liquid to the bubble cap increasing condensation and causing the bubble to shrink even 

further.  The ultimate size of the primary bubble results from a balance between vapor 

removal by condensation and vapor addition by evaporation at the base which is 

primarily due to coalescence with the satellite bubbles.   

The size of the heater appears to strongly affect the primary bubble size and onset 

of thermocapillary motion through its effect on the superheated boundary layer near the 
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surface.  As indicated, the boiling performance for the smallest heater 0.8 x 0.8 mm2 is 

very different from boiling from larger heaters in low-g.   

In a low-g environment, the thermal boundary layer during the initial growth of 

the bubble near the heater can be modeled using a single phase axisymmetric transient 

conduction model.   Assuming no vapor generation, the model is shown in Fig 5.31.  In 

this figure, boundary 4 represents the heater which is at bulk temperature at time =0 and 

then set to Twall for t>0.   Boundaries two and five are constant temperature boundaries 

where T = Tbulk.   Boundary 1 is an insulated boundary and boundary 3 is an 

axisymmetric boundary.  The length of boundary four relative to the length of all other 

boundary is sufficiently small such that the effects of boundary 2 and 5 are negligible 

over the time scales considered.  The transient conduction model was developed and  

 
Figure 5.31:  2-D axisymmetric model of the thermal boundary layer near the heater 

surface in low-g. 

analyzed using FEMLAB.  In Fig 5.31, the two pertinent length scales should be noted, 

Lheater, or the length of the heater array, and Lsat, or the superheated boundary layer 
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thickness which is defined as the vertical distance away from the heater element where 

the temperature of the liquid is above the saturation temperature.  It should also be noted 

that Lsat is a function of time.       

Different numerical results were obtained by varying Lheater to correspond to the 

actual heater lengths encountered in this experiment.   Representative results obtained in 

FEMLAB at a given time are shown in Fig. 5.32.  In this figure a hemispherical boundary 

is drawn on the contour plot which would represent the maximum size of a growing  

 
Figure 5.32:  Axisymmetric transient conduction results for a 7 mm heater at t = 1000 s.  

The x and y axis represent the distance in meters, and the colors represent the 
temperature, Twall = 100°C.  Tbulk = 28°C. 

 

bubble on the heater surface (constrained from growing larger than the heater).  A 

growing bubble is constrained from growing by two different mechanisms.  Firstly, if the 

bubble reaches a diameter the size of the heater array, it is constrained from further 
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growth and secondly, the bubble may reach a height above the heater (bubble radius) 

where cool liquid at the two-phase interface prevents further growth by allowing 

significant condensation.   

A plot of the thermal boundary layer development as a function of time is shown 

in Fig. 5.33.  It is significant to note that the boundary layer does not develop in a 

hemispherical manner.  This has profound effects for a hemispherically growing bubble 

that is on the heated surface.  Firstly, consider the various length scales mentioned above,  

 
Figure 5.33:  Time resolved boundary layer development.  Colors represent temperatures 

and the vertical axis represents various times. 

 

Lsat and Lheater.  A non-dimensional number can be defined which is the ratio of these 

lengths.  This value is plotted as a function of time in Fig. 5.33 for the various heater 

lengths investigated experimentally.  It is interesting to note that the growth of the 
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superheated region is much faster for the smaller heater array than for the larger heaters.  

Furthermore, it is assumed that a hemispherically growing bubble on the surface is 

limited in radius by Lsat or Lheater, whichever is smaller.  In Fig 5.34, for the smallest 

heater array, Lsat is equal to Lheater in a much smaller time than for the larger heater arrays 

which may explain why the bubbles for this array cause dryout over the heater array for 

all conditions investigated.  The experimentally measured bubble shapes for this heater 

are shown in Fig 5.35.  It is clear from the data that the bubbles that grow from a 0.8 x 

0.8 mm2 heater array are much less hemispherical than the bubbles observed from the 

larger arrays.  It can be inferred that the bubble wants to continue to grow vertically 

above the heater surface but is constrained from growing laterally by the heater boundary.  

This indicates that the bubble has not reached sufficient height to allow significant  
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Figure 5.34:  Development of the superheated boundary layer for various heaters 

(numerical results obtained using FEMLAB). 
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Figure 5.35:  Primary bubble geometric characteristics for different heaters.   

condensation to occur above the bubble.  It appears that the constraining mechanism on 

bubble size is not growth of the superheated boundary layer but is instead the heater 

length. 

For the 7 mm heater array the observation is completely the opposite.  Firstly, 

note that CHF was not observed experimentally for this array at high subcoolings as 

opposed to the two intermediate sized heaters where CHF was defined as the breakdown 

of the satellite bubbles into a single primary bubble on the heater surface.  For the 7 mm 

heater array, a single primary bubble was never observed to cover the entire array.  This 

might again be explained by Fig 5.34 which shows that for a 7 mm array, the time 

required for the thermal boundary layer to grow to the size of the heater length is very 

large.  In other words, it appears the constraining bubble growth mechanism is the 

development of the superheated boundary layer and not the heater length.     
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The above model is valid for short times after nucleation where the bubble begins 

to grow and remains inside the superheated region.  Once the bubble reaches a stable 

size, which occurs at later times, thermocapillary motion and additional mass fluxes 

across the vapor bubble interface (condensation) may significantly affect the thermal and 

velocity boundary layers around the bubble.  For the larger heaters, strong 

thermocapillary motion was observed at higher wall superheats and it is acknowledged 

that the model presented is less valid.  The above analysis should be used instead to 

understand the growth of the boundary layer around the small heater array, 0.81 x 0.81 

mm2, where liquid motion was not observed and dryout occurred under all conditions.  A 

more vigorous model would account for evaporation, condensation and thermocapillary 

effects along a two-phase interface.  In summary, it appears that the size of the primary 

bubble compared to the heater size determines the heat transfer.  The wall superheat, 

heater size, subcooling, and the development of thermocapillary convection all impact the 

size of the bubble that forms.   

In conclusion, as the heater gets larger, it takes a much longer time for the thermal 

boundary layer thickness, measured directly above the center of the heater, to reach a 

length equal to the heater length.  If the growing bubble extends out of the superheated 

layer, condensation and thermocapillary effects become increasingly significant.  As an 

example, consider a hemispherically growing bubble.  As the bubble grows, if the bubble 

quickly extends out of the superheated region and begins to condense before the bubble 

can reach a diameter that is equal to the heater length then the governing length scale is 

the superheated boundary thickness (as is in the larger heater, 7 mm).  In contrast, 

consider a hemispherically growing bubble that reaches a diameter that is equal to the 
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heater length and is within the superheated boundary layer.  Under such conditions, the 

bubbles is constrained from further lateral growth by the heater and grows vertically 

within the superheated boundary layer.  If the heater is completely covered by vapor, the 

bubble may not extend out of the superheated region (as in the small heater case, 0.81 

mm). 

 

5.4  HEATER ASPECT RATIO EFFECTS 

5.4.1  Comparison of 2 x 2, 1.4 x 1.4 mm2 array and Baseline Heater (1.62 x 
1.62 mm2) 

 The 2x2 array on the 7x7mm2 heater was of similar overall size (1.92 mm2) to that 

used to obtain the baseline data, 1.62 x 1.62 mm2 (Fig. 5.7).  At low superheats (∆Tsat < 

29.5°C) nucleation did not occur and the heat transfer was due to conduction and 

convection to the fluid.  G-jitter in the three coordinate directions during the low-g 

portion of parabolic flight and undamped natural convection may have caused small scale 

convection within the test chamber.  Compared to the baseline boiling curve, differences 

can be attributed to a lower wall superheat used to initiate boiling in the larger 7 mm case 

compared to the baseline case.  In those cases where nucleation did occur at low wall 

superheats, a clear reduction in active nucleation sites compared to the baseline case was 

observed.  This may be attributed to the fact that these two heater arrays were made 

approximately two years apart and the oxide deposited on the surface may not have the 

same structure.  The width and length of the serpentine resistance elements were also 

different, perhaps leading to a different surface morphology.  Lastly, the extensive 

degassing process used for the larger array may have resulted in a deactivation of 

nucleation sites that might have been active if a small amount of gas were present.   
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An increase in superheat to 29.5°C resulted in the formation of a stable primary 

bubble which caused dryout over most of the heated surface, similar to what was 

observed for the baseline data at a similar superheat.  Increasing the superheat to 34.7°C 

increased the strength of the thermocapillary convection and reduced the primary bubble 

size, allowing additional wetting of the heater edges and corners.  The ratio of wetted to 

heated area was measured from the images to be from the images to be 68% for the 2x2 

array, and 31% for the baseline data at similar superheats.  The increase in wetted area is 

directly proportional to the increase in the heat transfer (roughly 50%). 
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Figure 5.36:  Boiling curves for various aspect ratio heaters at various bulk subcoolings. 
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5.4.2  Aspect Ratio Effects 

 Boiling curves for heaters of various aspect ratio (2x2, 2x4, 2x6, 2x8, and 2x10 

heaters powered on the 7 mm array) at three subcoolings (9°C, 19°C, and 29°C) are 

shown on Fig. 5.36.  Images of the boiling behavior obtained through the heater array are 

shown on Fig. 5.37.  In general, higher subcoolings for a given aspect ratio result in 

higher overall heat transfer. The boiling behavior at various subcoolings is described 

below.  The heater aspect ratio was changed by varying the number of heaters powered 

(2x2, 2x4, 2x6, 2x8, 2x10, and 10x10) on a 7x7 mm2 array.   

 

5.4.2.1  Low subcooling.  For all aspect ratios at low superheats (<20°C), the nucleation 

site density was very low as described above.  The heat transfer process is this regime is 

dominated by conduction and convection to the bulk liquid.  At low subcooling, the heat 

flux appears to increase with increasing aspect ratio, especially at higher superheats.  

Thermocapillary motion around the bubble was observed to be very weak.  For example, 

at ∆Tsat=31.4°C (Fig. 5.38), it can be seen that large increases in the wetted area fraction 

occur as the aspect ratio increases from 2x2 to 2x6.  On non-square heaters, surface 

tension acts to pull the bubble away from the ends of the array, allowing liquid to 

partially rewet the surface and the bubble shape becomes less spherical.  As seen from the 

images, the wetted area fraction increases from nearly 0% (2 x 2 array ) to 25% (2 x 6 

array) and correspondingly larger increases in heat flux are observed.  The wetted area 

fraction increases less dramatically between 2x6 and 2x8 (25-28%) with smaller 

increases in heat flux.  On the 2x10 array, two large bubbles are observed, Fig. 5.38, 

which may result in a nominally larger increase in wetted area and larger heat transfer.  In 

the absence of thermocapillary effects, larger aspect ratio heaters may enhance the heat
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transfer by allowing multiple bubbles to form on the surface increasing the wetted area.  

Also, the presence of multiple bubbles allows bubble coalescence which has been shown 

to account for the majority of the heat transfer in low-g near CHF.  The aspect ratio can 

have a dramatic effect on the heat transfer by affecting the shape of the bubble which 

dictates the wetted area fraction. 

  

     

 
Figure 5.38:  Time averaged heat transfer from heaters of various aspect ratio, ∆Tsub = 

9°C, ∆Tsat = 32°C. 
   

5.4.2.2  High Subcooling.  At low superheats (<20°C), the nucleation site density was very 

low as described above.  At higher wall superheats, the heat transfer tends to decrease as 

the aspect ratio is increased from 2x4 to 2x10.  At a superheat of  ~24.6°C, a single 

oblong bubble is observed on the 2x4 array.  This bubble moved slightly back and forth 

on the surface as it merged with smaller bubbles nucleating at the ends of the array, 

accounting for the higher heat transfer at the ends.  As the aspect ratio increases, the 

single bubble split into two bubbles (2x6 and 2x8) due to surface tension effects. On the 

2x2 2x4 2x6 2x8 2x10 
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2x10 array, the increased heater area allows for additional nucleation sites, but similar 

heat transfer levels are observed.  At high subcooling (∆Tsub= 29°C) the heat flux 

increases slightly with aspect ratio at low superheats (<20°C). Visual observations 

indicated that the nucleation site density was very low under such conditions.  At higher 

superheats, the heat flux decreases as the aspect ratio increases, contrary to what was 

observed at low subcooling.  Heat fluxes up to 30 W/cm2 are seen around the three phase 

bubble interface.     

Bubble motion for a superheat of  ~29.7°C is shown on Fig. 5.39.  Boiling on the 

2x4 array was the result of the interplay between thermocapillary convection and bubble 

coalescence.  The thermocapillary convection decreased the size of the primary bubble, 

allowing additional bubbles to form. Two bubbles occasionally merged into a single 

bubble at the center of the heater (which subsequently shrinks due to thermocapillary 

convection) allowing new bubbles to nucleate at the ends.  The large bubble then merges 

with one of the growing bubbles, and the cycle repeats.    

 
Figure 5.39:  Time lapse images for the (a) 2x4 and (b) 2x8 arrays at ∆Tsat = 29.7°C. 
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  To a first approximation, the trends in the high subcooling data might be due to 

the increasing two dimensionality of the flow field around the heater.  The 2x2 array 

experiences thermocapillary convection from all four sides of the array equally, causing 

the primary bubble size to shrink to its minimum value.  As the aspect ratio increases, 

thermocapillary convection from the ends of the array become less important, and the 

bubble is cooled only on two sides.   

Thermocapillary convection dominated boiling is observed at the highest 

superheat (34.7°C).  The size of the bubbles on all of the heaters decreases as the 

superheat is increased, which is due to increased thermocapillary flow causing enhanced 

condensation on the top of the bubbles.  More of the heater surface is wetted by liquid, 

allowing nucleation to occur.  The nucleating bubbles merge with the larger bubbles, 

resulting in higher heat transfer.  The large bubbles on the 2x4 and 2x6 arrays were 

stable, while the large bubbles on the 2x8 and 2x10 arrays occasionally merged with the 

nucleating bubbles, disturbing the steady thermocapillary convection that had been 

developed and decreasing the heat transfer from the edges.   

5.4.2.3  Intermediate Subcooling.  At the intermediate subcooling (∆Tsub= 19°C), the data 

tends to collapse onto a single curve.  This case represents a case where both 

thermocapillary convection and surface tension are important.  

5.4.3  Summary of Heater Aspect Ratio Effects 

 With varying aspect ratios, there appears to be two boiling mechanisms at play: 

thermocapillary convection and surface tension.  In both cases, as the wetted area 

increases so does the heat transfer.  At low subcooling, it appears that the heat transfer 

increases due to an increase in wetted area fraction when surface tension acts to pull the 
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bubble away from the heater edges at higher aspect ratios. At high subcooling, 

thermocapillary convection causes the primary bubble to shrink due to increased 

condensation, resulting in more wetted area.    

 At high wall superheats and subcoolings, boiling performance appears to decrease 

with an increase in aspect ratio.  Again as for the square heaters, strong thermocapillary 

convection was observed even for gas concentrations in the liquid <3 ppm.  The origins 

for the thermocapillary convection are not known, but may be due to contaminants in the 

liquid.  The effect of heater aspect ratio on the boiling performance is shown in Fig. 5.40.  

It is predicted that as the aspect ratio is increased above the measured values, multiple 

bubbles would form on the heater surface causing the performance to be independent of 

the heater aspect ratio.    
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Figure 5.40:  Heater aspect ratio effects on boiling heat transfer in low-g at relatively high 

wall superheats.
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5.5  DISSOLVED GAS EFFECTS 

 
The effect of dissolved gas content was investigated during a single flight week in 

October, 2003 by conducting experiments with pure fluid (n-perfluorohexane) that was 

completely degassed (< 3 ppm) for two days, and then opening the boiling chamber to 

allow ingassing to occur until an equilibrium gas concentration was reached at room 

temperature and pressure (Cg = 3600 ppm).   

 The boiling performance with very small gas concentrations has been discussed in 

detail throughout this chapter.  All of the data previously shown was taken with a 

negligible gas concentration in the working fluid.  For cases where the liquid gas 

concentration is very high, the boiling characteristics and performance are dramatically 

different.  In a gassy system, the bubbles tended to grow much larger and cause dryout 

over a larger portion of the heater surface, Fig 5.41b.  The reason for this may be due to 

the dissolution of gas as vapor is generated near the contact line.  As more and more gas 

is released into the bubble, the bubble grows larger until its size has reached sufficient 

surface area for gas diffusion back into the liquid, balancing the rate of gas addition near 

the contact line.  It is thought that the bubble that forms is predominately a gas bubble 

and the partial pressure of vapor inside the bubble is quite small.  Boiling curves at the 

two different dissolved gas concentrations are shown in Fig 5.42.  In high-g, it appears 

that the dissolved gas level has little effect on the measured heat transfer or on the 

qualitative boiling dynamics as observed from the side view images.  Since conduction to 

rewetting liquid after bubble departure was shown to be the dominate mechanism in high-

g, higher gas concentrations, although they may affect the bubble composition, do not 

seem to interrupt the bubble growth and departure process.  
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(a) Cg < 3 ppm 
(b)  

    

    
 
 

(b) Cg = 3600 ppm 
 

 
 

Figure 5.41:  Time resolved boiling images from a 7 x 7 mm2 heater array at low and 
high gas concentrations in the fluid a,b, ∆Tsub = 28°C. 
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Figure 5.42:  Boiling curves for a 7 x 7 mm2 heater array for various dissolved gas 

concentrations. 

 

In low-g, at higher wall superheats a single large primary bubble forms for high gas 

concentrations and the heat transfer is small and independent of wall superheat.  For a 

degassed fluid, the boiling performance is quite different.  It appears the a thin film of 

vapor is located on the heater surface post CHF and a strong liquid jet above the heater 

was observed and is attributed to thermocapillary convection.  It is interesting to note that 

for negligible gas concentrations in low-g, CHF is 19 W/cm2 or 70% of the high-g CHF, 

27 W/cm2.  This value is much higher than expected and is not predicted from any 

contemporary correlations.  The dramatic enhancement in CHF for negligible gas 

concentrations is due to the dynamics of the boiling process which causes a thin vapor 

region to form near the heater and strong thermocapillary convection carries the 
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condensing vapor away from the heater at a high rate accounting for the large heat 

transfer measured.   

 At the highest wall superheat investigated in low and high-g, ∆Tsat = 50-52°C, 

there appears to be no difference in the boiling performance for a degassed fluid, Fig 

5.43.  For this particular case, the boiling regime is in the transition region and 

surprisingly the boiling dynamics in high and low-g are identical.  This indicates that a 

degassed fluid might provide significant enhancement in heat flux at high wall superheats 

and subcoolings for a passively cooled two-phase system in space.     

 
 
 

                

            
 

 
 
Figure 5.43:  Time resolved boiling in high and low-g for a degassed fluid, Cg = 3 ppm. 

∆Tsat = 50 – 52°C, ∆Tsub = 28°C. 
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Chapter 6:  Summary of Gravitational Effects on Pool Boiling 

At low wall superheats, boiling performance appears to be independent of gravity 

level although the heat and mass transfer mechanisms are different.  In high-g, buoyancy 

dominates the process which is characterized by the ebullition cycle.  In low-g, satellite 

bubble coalescence is responsible for the heat transfer.   

At higher wall superheats, boiling performance is significantly reduced in low-g.  

This is attributed to heater dryout and the reduction of bubble removal mechanisms such 

as buoyancy.  Increased subcooling appears to delay the reduction in boiling performance 

(compared to high-g) to higher wall superheats.  The heater size appears to strongly affect 

thermocapillary induced heat transfer that occurs post CHF.     

Surface tension dominated boiling was observed in both high and low-g under 

certain conditions.  In high-g, if the heater size is smaller than the isolated bubble 

departure diameter predicted from the Fritz correlation then bubble departure does not 

occur and the formation of a single primary bubble is observed.  The transport process is 

dominated by natural convection and thermocapillary transport around the primary 

bubble interface.  In low-g, surface tension dominated boiling occurred under all of the 

conditions investigated.  The absence of buoyancy means that thermocapillary convection 

around the primary bubble is the dominant heat and mass transport mechanism.   

It appears that the primary bubble dominates the boiling performance in low-g.  If 

the primary bubble grows in size to completely dryout the heater surface then low heat 

transfer results.  Contrastingly, the smaller the primary bubble relative to the heater 

surface, the larger the heat transfer.  The effect of bulk liquid subcooling was found to 

have a more dramatic relative effect on heat transfer in low-g.  This is attributed to the 
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strong dependence of thermocapillary convection on the bulk liquid subcooling level in 

low-g.  Thermocapillary effects are less significant in high-g due to the presence of 

buoyancy driven convection around the bubble which tends to compensate for a reduction 

in thermocapillary convection at lower subcoolings.   

In low-g, CHF appeared to be a result of the competition between increasing heat 

transfer associated with the satellite bubble and the decrease in heat transfer due to the 

growth of the dry area under the primary bubble as the wall superheat increases.   

It is hypothesized that the primary bubble size in microgravity is affected by a 

number of parameters including the thickness of the superheated boundary layer and the 

heater length.  For a growing bubble in microgravity, the bubble is constrained from 

growing either vertically or laterally depending on the thickness of the superheated 

boundary layer or the heater length.  For smaller heaters, it appears that the heater length 

determines the maximum size of the primary bubble while for larger heaters, the 

superheated boundary layer thickness determines the size.  If the heater size is the 

dominant parameter affecting bubble size then thermocapillary convection may be very 

small and low heat transfer results.   

The presence of dissolved gases in the system was shown to have a dramatic 

effect on boiling performance in low-g.  The presence of non-condensables changes the 

composition of a growing bubble.  Consider a binary system of n-perfluorohexane and 

nitrogen.  As a bubble forms on the surface and grows, nitrogen is carried into the bubble 

along with vapor.  At equilibrium, the bubble reaches a size whereby vapor and gas 

addition at its base is balanced by vapor and gas removal near the top of the interface.  

Gas transport across the bubble interface is governed by diffusion and is directly 
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proportional to the concentration gradient of gas near the bubble interface.  The 

equilibrium gas concentration in the bubble causes it to grow larger than it would if no 

gas was present.  This larger bubble causes increased dryout of the heater surface and a 

reduction in heat transfer.  In high-g, the composition of the bubble is less significant due 

to buoyancy effects.  The bubble departure size, departure frequency (and heat transfer) 

are unaffected by the composition of the bubble in this case because the density of the 

two components are nearly identical.  

Thermocapillary flow is important due to its local transport of the hot thermal 

boundary layer near the heater.  It appears that the thermocapillary flow velocity near the 

bubble can be approximated if the heat flux and bubble size are known.  It was also 

observed that during thermocapillary dominated boiling, heat transfer from the wetted 

region in low-g is comparable to heat transfer in high-g under similar conditions.  The 

driving temperature difference for the flow was found to be the wall temperature minus 

the bulk temperature.   

Although very strong thermocapillary flow was observed throughout these 

experiments, its origins are not known.  It is believed that the thermocapillary motion 

observed in these experiments is not due to dissolved gas effects as suggested by Straub 

(2000) since the gas concentration was reduced to well below 3 ppm and strong liquid 

jets above the bubbles were still observed.  Its presence may instead be due to 

contaminants in the system.  Although reasonable care was taken to clean the system, it 

was not possible to remove all contaminants.  Contaminants may have been introduced 

into the system from the O-rings used to seal the system, or the small amount of silicone 

RTV used to seal the PGA containing the heater array to the bottom of the test chamber.   
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Chapter 7:  Contributions and Future Scope 
 

7.1  CONTRIBUTION TO THE STATE OF THE ART 

This thesis provides a much needed basis for future research concerning two-

phase flows in space.  In addition to providing an in-depth discussion of the boiling 

process in a variable gravity environment, this effort has identified some of the pertinent 

pool boiling mechanisms in low-g including thermocapillary convection and bubble 

coalescence.  A comprehensive discussion of the CHF mechanisms in low-g was 

presented and provides a firm groundwork for future two-phase thermal design in space.  

In addition, contributions to the state of the art include: 

1) Development of an optimized sensor capable of heat flux and temperature 

measurement at the small scale 

2) Development of analytical and numerical methods for interpreting sensor data 

3) Characterization of pool boiling in the absence of ebullition cycle behavior 

a. Applicability of classical models was determined 

4) Identification of pertinent scaling parameters  

5) Fundamental boiling mechanisms in low gravity identified and analyzed 

       

7.2  FUTURE WORK 

7.2.1  Numerical  

 A number of numerical investigations were presented in this thesis.  Although 

these models provide support for the experimental observations made, additional models 

could be developed which account for:  a dynamic bubble interface, energy and mass 
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transport across the two-phase interface, surface tension effects near the three-phase 

contact line, and the effects of multiple components in the fluid.  In addition, statistical 

thermodynamic modeling (molecular dynamic simulations) could serve to identify the 

governing mechanisms for the onset of thermocapillary flow.  

 
7.2.2  Experimental  

 This thesis focused on a single fluorocarbon fluid.  Additional research should be 

conducted that investigates the performance of various other fluids including organic and 

inorganic compounds.  The selection of such fluids would have to meet the most stringent 

of design specifications for testing in space.  These specifications, noted earlier in this 

thesis, are extensive and may require redundant safety systems and containment vessels 

that could prove costly for future space experimentation. 

 The effect of g-jitter on bubbles is still unclear.  This effect needs to be quantified 

entailing experimentation aboard microgravity platforms that are more robust and 

significantly more expensive than the KC-135.   

 The thermocapillary phenomenon is discussed throughout this thesis.  Future 

experimentation should focus on the origin of such flows.  This would entail 

measurements (temperature, pressure, velocity) near the two-phase interface.       

 In conclusion, while some recent studies shed light on the complex phenomena 

governing pool boiling in microgravity, these studies are mostly qualitative in nature and 

inconclusive at best.  This effort provides a discussion of extensive experimental 

measurements taken aboard the KC-135.  Analytical and numerical models were also 

presented which aid understanding of the phenomenon.  Additional efforts are needed to 
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build upon the solid foundation established and will hopefully lead to new aerospace 

designs characterized by enhanced efficiency and optimized functionality.   
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A.1  CHANGE PAGE 

Doc. 
Version 

Date Process Owner Description 

Basic Aug, 2004 J. Kim/C.D. Henry TEDP submitted for KC-135 flight 
Revision 1 June, 2005 J. Kim/C.D. Henry • Revised according to NASA TEDP 

0205 requirements.  
• Maximum Temperature Raised to 

120 deg C  
• Added PIV capability (laser)  
• Integrated power supply and 

monitor into a single test apparatus. 
• Removed UPS and replaced with 

surge suppressor    
 

A.2  QUICK REFERENCE DATA SHEET 

Principal Investigator:  Jungho Kim 
 
Contact Information:  University of Maryland, Dept. of Mechanical Engineering, 
College Park, MD  20742, 301-405-5437 (O), kimjh@eng.umd.edu.   
 
Experiment Title: Pool Boiling Heat Transfer Mechanisms in Microgravity  
 
Flight Date(s):  July 2005 
 
Overall Assembly Weight (lbs.):  Test Package (est. 256)  
 
Assembly Dimensions (L x W x H): Test Package:  24”wide x 24” deep x 42” high,  
 
Equipment Orientation Requests:  Facing back of aircraft 
 
Proposed Floor Mounting Strategy (Bolts/Studs or Straps):  Bolts,/Studs  
 
Gas Cylinder Requests (Type and Quantity):  Air, 1 per day  
 
Overboard Vent Requests (Yes or No):  No 
 
Power Requirement (Voltage and Current Required):   

Aircraft AC Power:  110 VAC (<6.5A)  
Aircraft DC Power:  28VDC (<4A) 

 
Free Float Experiment (Yes or No):  No   
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Flyer Names for Each Proposed Flight Day:  Christopher Henry, Jonathan 
Coursey, Hitoshi Sakamoto, Jungho Kim 

Camera Pole or Video Support:  No 
 

A.3  FLIGHT MANIFEST 
Minimum number of personnel required to operate test apparatus during flight: 2 
 
Trained Test Operators: 
 

1) Christopher Henry, experienced test operator having previously flown aboard the 
KC-135 during: March 2004 (GRC), October 2003 (GRC), May 2003 (GRC), 
July 2002 (GRC). 

 
2) Jungho Kim (PI), PI and experienced test operator having previously flown 

aboard the KC-135 during:   March 2004 (GRC), October 2003 (GRC), May 2003 
(GRC), July 2002 (GRC). 

 
3) Jonathan Coursey, flew aboard KC-135 during:  July 2002 (GRC) 

 
4) Hitoshi Sakamoto, never flown aboard KC-135 

 
 

A.4  EXPERIMENT BACKGROUND 

Experimental Purpose 

The physics of systems incorporating phase change processes needs to be better 

understood in order to provide a predictive capability for design.  The current work aims 

to identify, measure, characterize, and model the fundamental heat transfer mechanisms 

associated with the boiling process in space.         

 
Experiment History 

The experiment is a follow-up of a previous experimental system that included a 

microgravity payload to study subcooled pool boiling heat transfer.  This payload was 

flown on a Terrier-Orion sounding rocket in December, 1999 from NASA Wallops.  The 
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test was considered to be very successful, with the exception of obtaining video data.  

The payload was therefore repackaged to fly on the KC-135, and was flown in April, 

2000 from GRC.  Additional data was taken in January 2001 from JSC and May, 2001 

using the same test rig, but with slight modifications.  The modifications include the 

addition of a PI supplied accelerometer in place of SAMS-FF, a temperature controller on 

the boiling chamber to vary the liquid subcooling, the addition of high-speed digital 

video, and a low-pressure air jet for cooling the bottom of the microheater array.  This 

system was then transferred into a flight qualified rack supplied by NASA and flown in 

2002, 2003, and 2004.     

In this series of tests, we have integrated the experimental system into a single test 

apparatus.  A Sorenson 35 volt DC power supply, and LCD monitor have been integrated 

into the payload eliminating the need for an additional rack for instrumentation purposes.  

This dramatically reduces the space required aboard the KC-135 during flight.  In 

addition, Particle Image Velocimetry (PIV) experimental capabilities have been 

incorporated into the test apparatus.  The goal of this technique is to provide experimental 

information regarding the velocity field in the fluid around a stationary bubble in low-g 

under the influence of thermocapillary convection.  This is achieved by seeding the fluid 

with glass microspheres and illuminating a plane of these spheres using a class II laser.  

High-speed video images are then used to track the particle motion providing information 

about the velocity and vorticity fields.  We will be performing a series of tests to look at 

the effect of heater size and thermocapillary convection on microgravity boiling heat 

transfer.  The effective heater size will be varied by turning on and off a different number 
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of heaters in the array.  This series of experiments are in direct support to a space flight 

experiment (BXF/MABE) being developed by NASA Glenn.   

 

A.5  EXPERIMENT DESCRIPTION 

The experimental test apparatus aims to characterize pool boiling mechanisms in 

a variable gravity environment.  The experimental system uses a microheater array (2.7 

mm x 2.7 mm) to measure time and spatially resolved heat flux during pool boiling.  The 

heaters are made up of an array of 96 individually controlled heater elements that are 

maintained as an isothermal surface through the use of feedback control circuits.  PIV 

measurement techniques have been incorporated into the system.  The experimental fluid 

(n-perfluorohexane) has been seeded with glass microspheres (app. 1-10 µm diameter) at 

relatively small concentration levels.  During the experiments, the particles become 

entrained in the liquid flow field around growing bubbles and, if illuminated, reflect light 

allowing high-speed cameras to track their position with time.   Successive images can be 

correlated using various software algorithms providing information about the velocity 

and vorticity field.  A plane of particles is illuminated by a class II laser directly in the 

center of the boiling chamber.   

Visualization of the bubbles during their growth and departure with high-speed 

cameras will be correlated to periods of high heat transfer – this should lead to better 

understanding of the mechanisms by which heat is transferred during boiling.  Boiling 

curves will be obtained at various subcooling levels under low and high gravity.  The 

scientific objectives of the project are:  

1) Obtain microgravity data with a test package hard mounded to the floor of the 

aircraft.   
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2) Obtain and correlate microscale heater data with video data. 

3) Obtain PIV measurements of the liquid flow field around the primary bubble.   

4) Compare data and observations against existing models and develop new 

mechanistic models where appropriate.   

This test will be operated with the test apparatus mounted to the floor of the aircraft.  

Data will be obtained regarding:    

1) The time required for the heat transfer from the surface to reach a steady state 

after exposure to a microgravity environment. 

2) Boiling curves under various subcooled conditions, including critical heat flux.   

3) Low-speed visualization of bubbles using a regular CCD camera, and high-speed 

visualization using a Phantom digital camera. 

4) The effect of heater size on boiling heat transfer. 

5) Thermocapillary convection and its effects on heat and mass transfer in low-

gravity    

The maximum temperature within the test rig will never exceed 120 °C.  

Temperatures this high may occur at small areas on the heater surface (2.7 mm x 2.7 mm) 

for very short periods of time (< 2 sec) in order to initiate nucleate boiling.  This situation 

poses minimal risk to operators because the system is hermetically sealed and 

inaccessible.  Three sides of the boiling chamber are inaccessible to the user and the front 

side of the boiling chamber has a video camera in front of it, making unintentional 

contact unlikely.   
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A.6  EQUIPMENT DESCRIPTION 

The experimental package consists of a single main component.  This component 

is a PI built sounding rocket payload mounted in a NASA supplied Vertical Equipment 

Rack (VER).  This component also contains a PI supplied monitor, keyboard, and DC 

power supply.  A photograph of the test package along with the components is shown on 

Fig. A.1. The components are described in greater detail in Tables 1and 2.  The total 

weight of the package is approximately 256 lb.  The dimensions of the test section are 

24”x24”x42”.  

The ideal test operator location during experimentation is to sit fore or aft of the 

experimental package.  To satisfy the structural requirement, the VER handles must also 

face fore and aft.  Straps bolted to the floor of the aircraft will be used to restrain the test 

operators during the microgravity maneuvers.   

Table A.1:  Description of components in VER. 

Type Descriptio
n 

Component Description & Considerations 

Experimenta
l Test rig 

Sounding rocket payload.  This contains the boiling 
chamber, the high-speed camera for taking pictures from 
below, a computer, flash disk, control electronics, keyboard,  
class II laser, and temperature readout.  This structure is very 
rigid, and has survived numerous vibration tests in 
preparation for the sounding rocket flight.  The structure was 
designed to handle 50g loads in all directions.   

Experimenta
l Frame 

This flight qualified frame was supplied by NASA.  It bolts 
directly to the floor of the aircraft using four bolts at each 
corner.  The frame will have lexan panels on each side to 
prevent damage to the payload from aircraft personnel, and 
will also keep any loose parts within the frame envelope.   

Experimenta
l 

DC Power 
Supply 

This is a Sorenson  LH35-10 capable of supplying 35 V, 10 
A. 

Experimenta
l 

Computer 
Monitor 

This is a flat panel 15" LCD monitor.  Power required:  110 
VAC, 1.2 A. 

 



 

 216 
 
 

The experiment will not free float. The current test package (VER) will be 

mounted in the same orientation.  Lexan panels are attached to the each side of the VER 

to prevent unintentional damage to the test rig.  The lexan is 0.1”” thick, and bolted to 

holes in the VER.  These panels are to prevent unintentional contact with the test rig by 

research personnel–they are not structural.   

The test fluid to be used will be either FC-72 or n-perfluorohexane, which is the 

mail constituent of the FC-72.  Approximately 3 liters of one of the fluids will be used.  

Both fluids are completely inert at the temperatures encountered in this experiment.  A 

hazards analysis and MSDS’ for these fluids are included later in this report.   

Equipment to be taken on-board the flight other than the main components listed 

above include a pen, notepad, hand held digital video camera with power supply, a laptop 

computer to acquire data from the high-speed camera, and a small digital still camera.  A 

list of equipment for each flight is given below: 

 1).  VER 

 4).  Clipboard with checklists 

 5).  Pens (4) 

 6).  2 digital video cameras 

 7).  Videotapes (4) 

 8).  PCMCIA flash disks (2) 

 9).  Digital still camera 

 10). Laptop 

The VER has handles by which it  can be carried onto the plane and moved about.  

The VER can be handled by 2 people if necessary.  The experiment can be located in any 
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location aboard the aircraft that provides enough room around the experiment for 2 

people.  During setup and disassembly aboard the aircraft, a tool box containing various 

tools will be brought aboard the aircraft if troubleshooting of the experimental system is 

required.  The tool box is completely inventoried and this inventory will be checked 

anytime the tool box is taken off the aircraft.    A clipboard, and laptop can be secured  

 
Figure A.1:  Photograph of modified test package (the VER) and its components.  
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to the floor of the aircraft with VELCRO during flight.  The remaining items will be 

carried in a backpack.  This backpack will be stored in storage bins provided by the 

aircraft facility for takeoff and landing.  During the flight, the equipment in the backpack 

will be taped or velcro’d to the floor, held by hand (e.g. video cameras and pens), or 

placed in pockets in the flight suits.   

A.7  STRUCTURAL VERIFICATION 

This report summarizes the testing that has been conducted on the VER.  Included 

in this report is a listing of flight load requirements, component weights, results of the 

stress test, and turning moment calculations.  This report concludes that the VER 

structure is well within flight regulations set forth in AOD 33897, Rev A:  Experiment 

Design Requirements and Guideline -NASA 932 C-9B.  

For the purposes of this test, the sounding rocket payload will be considered to be 

an independent and structurally sound member of the VER.  The sounding rocket payload 

was designed to withstand 50 g loads in all directions, has undergone severe vibration 

testing, and has successfully withstood rocket launch with no damage to any of the 

systems.  For these reasons, and since no modifications have been made to the core 

payload, it will be considered a structurally sound and rigid component of the test 

package, and no further analysis of the payload will be performed.  The VER the test rig 

is housed in was sent to us by NASA, and is flight certified.  An analysis of the frame is 

included in the appendix for reference.  The frame we are using is actually stronger than 

the analysis suggests since the basebar and original baseplate were replaced by a 24” x 

24” x 1/2” aluminum plate.  The new plate is much wider than originally analyzed, and is 

capable of handling much higher shear loads.  The sounding rocket payload is in exactly 
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the same configuration it was in when it flew on the Terrier-Orion except that the VCR is 

not being used.  AOD 33897, Rev. A outlines five possible flight load scenarios that must 

be considered in conducting a structural analysis.  These five scenarios are listed in Table 

A.3.  The component weights are listed in Table 4.  The rack capabilities, per Vertical 

Equipment Rack:  Structural Analysis for Use on Aircraft are summarized in Table A.5. 

Scenario Load Direction
One 9g Forward
Two 3g Aft

Three 2g Lateral
Four 2g Upward
Five 6g Downward  

Table A.2:  Maximum Flight Loads 

 
Table A.3:  Component weights & moment arms about base 

Component Weight 
(lbs) 

Component’s Center of 
Gravity (in) 

Moment 
arm (in·lbs)

Test rig  146 24 3504
Frame  57 22 1254
DC Power Supply & 
mounting plate  45 44 

1980
High Speed Camera  5 14 

70
Monitor  3 30 90
Total  256 27  6898 

 
 
Table A.4:  VER Rack capabilities 

Allowable weight (lbs) 500  

Actual Weight (lbs) 256 

Rig C.G. from floor of rack (in) 27 

Rig turning moment 7071 
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The philosophy behind the testing is a follows.  Because both the test rig and the 

VER are structurally sound, a test only needs to be performed to ensure that the 

connections between the two are sound.  Since stress testing on the actual test rig was 

risky, a model of the test rig was built that mounts to the frame in exactly the same way 

as the test rig.  The exact same bolts and holes are used in both the model and test rig.  A 

photograph of the model is shown on Figure A.2.  The model was mounted in the VER, 

as shown in Figure 3.  The model is bolted directly to the 1/2” thick base plate of the 

VER using four 5/16” steel bolts.  The top of the test rig is bolted to a 0.25” thick 

aluminum plate using eight 5/16” steel bolts.  The corners of this plate are attached to 

existing holes on the VER using 1/4” aluminum angle using 1/4” steel bolts.    

Stress testing for the forward direction (9 g) for the test rig (146 lbs.) was 

performed using an Instron SRV017 machine.  The model/frame was mounted as shown 

in Figure 4, and model loaded at a rate of 1000 lb/min up to 1600 lbs through the steel 

pipe shown on Figure A.3.  This pipe imparted the load directly to the model.  The load 

was held at 1600 lbs for a few seconds.  The test rig weighs no more than 150 lbs, so the 

1600 lb loading represented at least 10 g of loading.  No creaking or cracking of the test 

rig was observed during the test.  Because the test rig is mounted in the frame 

symmetrically in the forward and aft directions, the load capability in the aft direction is 

similar to that in the forward direction.   

Stress testing in the other directions (lateral, and upward) for the test rig (146 lbs.) 

was performed by having two people (Combined weight of 325 lbs) stand on the model 

close to the center of gravity of the model after the model was rotated to various 

orientations.  Testing in the lateral and upward directions is shown in Fig. A.5.  The 
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weight of the two people combined with the weight of the model resulted in a loading in 

each direction that was close to 3 g.   

Stress testing in the downward direction was not performed.  Because the test rig 

is mounted directly to the bottom of the frame (which is mounted to the floor of the 

aircraft) there is nothing that can break.  The center of gravity of the test rig is 27 inches 

from the floor of the rack.  This results in a turning moment of the test rig about the 

baseplate of  6912 in-lbs (assuming a 1-g loading in the forward and aft direction).  A 

high speed camera and side view camera will be used in this series of tests, similar to 

what was done in April 2001.  As part of the TEDP for that series of flights, the camera 

mounting was stress tested by placing the appropriate weights in all three directions.   

          
Figure A.2-3:  Model of test rig used for stress testing & model of test rig mounted in the 

frame.   
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Figure A.4:  Testing of model/frame in forward (9 g) direction. 

 
 

   
   (a)      (b) 

Figure A.5:  Stress testing in various directions:  (a) lateral, and (b) upward. 
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Stress analysis for monitor: 
 

The 15” LCD monitor is held in place between two aluminum U-channel (1-1/4” 

x 0.125”) brackets which are themselves held in place by two 1/4” bolts to the VER. The 

mass of the LCD monitor and brackets is less than 4 lbs.  For a 10g loading, the stress the 

two bolts are subjected to can be computed to be  

4x10 lbs

π
0.25 in( )2

4

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 2 bolts( )

= 410 psi  

which is roughly two hundred times smaller than their yield strength.  Two additional 

bolts on either side of the monitor prevent the monitor from sliding back and forth within 

the channels.  These bolts also hold a 1/8” thick lexan sheet in front of monitor to protect 

it from unintended impact.   

Stress analysis for power supply: 

The power supply (Sorensen LH35-10) weighs 45 lbs, and is mounted onto a 

6061 Al top-plate (24”x24”x1/8”) using two nylon straps (minimum 800 lb ultimate 

tensile load).  It is positioned on the top plate by four Al angle brackets, each of which is 

bolted to the top-plate using two 1/4” bolts.  The stress the bolts would experience under 

a 10g load is the weight of the power supply distributed over two bolts:   

 45x10 lbs

π
0.25 in( )2

4

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 2 bolts( )

= 4600 psi  

The stresses on the bolts are about seventeen times smaller than their yield strength.  The 

top-plate is attached to the VER using four 1/4” bolts.  The mass of the top plate is 3.2 
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lbs.  The stress these bolts would experience under a 10 g load is the sum of the weight of 

the power supply and the top-plate distributed over four bolts: 

 48x10 lbs

π
0.25 in( )2

4

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 4 bolts( )

= 2400 psi  

The stresses on the bolts are about thirty times smaller than their yield strength.  The top 

plate was also stressed over 6g’s in the downward direction by having two people stand 

on it (total weight 330 lbs). 

Stress analysis for laser mount: 

The mounting apparatus for the laser consists of a laser mounting block which is 

bolted to a micro-positioner (using three -1/8” bolts).  The micro-positioner is bolted 

(using two 1/4” diameter bolts) to a cantilever beam with a diagonal support member 

(both 6061 Al).  This system is then bolted to the experimental system by two 1/4” bolts, 

see Figure below. 

The laser mounting block, micro-positioner, and cantilever beam weighs 2 lb, 4 

lb, and 1 lb respectively.  Analyzing first the mounting block, the maximum shear stress a 

given 1/8” bolt would experience is 600 psi well below the yield strength (10g loading 

assumed).  A similar analysis at the micropositioner and cantilever levels results in a 

maximum stress of  350 psi and 611 psi respectively.   

The cantilever support system is designed to withstand a 6g downward loading as 

shown in the figure below.  Under such conditions a maximum load of 36 lb is supported.  

Under such conditions the maximum stress within the support structure will occur along 

the diagonal support member (400 psi, cross sectional area 0.125 in2).  This number is 

140 times below the yield strength limits of 6061 Al (58,000 psi).         
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Figure A.6:  Laser mounting system:  laser mounted block (orange square), micro-

positioner (red square), cantilever support (maroon square).   

A.8  ELECTRICAL LOAD ANALYSIS 

An electrical schematic of the test apparatus is shown in Fig.A.7.  Lists of the 

components along with their electrical characteristics are listed in Table A.8  The total 

current draw on the aircraft 110 VAC source is no more than 5.3A.  Total power required 

is less than 700 W.   

A PID temperature controller is used to control the temperature of the liquid in the 

boiling chamber.  The output of the RTD in the boiling chamber is input to the 

temperature controller.  The output of the temperature controller is a 0–5 V pulse width 

modulated signal to a solid state relay (SSR) that determines whether or not current flows 

through the heaters surrounding the boiling chamber. 

Both the sounding rocket payload (Test Apparatus) and the heaters are protected 

using a slo-blo fuse rated at 10A.  All wire gauges shown interior to the test apparatus are 

either 16-18 gauge and are well within the load limits specified in Table 8.  14 gauge 

wires are used to connect the test apparatus to the aircraft power supply.   

7.1” 

3.75” 

36 lb (6g downward loading) 

58° 
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The wires in the test apparatus were sized according to Table 7:   

Table A.5:  Wire Gauges 

Current (A) Wire size (Ga) 
< 0.25 22 
< 0.50 20 

< 1 18 
< 5 16 

< 12 14 
 

 

 Figure A.7:  Electrical schematic. 
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These wire sizes are more conservative than those suggested in the JSC User’s Guide.  

Two mini digital video cameras will be used to record images of the boiling process.  

These cameras are manufactured by Canon (model Elura).   

 

A.9  LOAD ANALYSIS  

The total current draw on the rack 28 VDC power supply no more than 4.0 A.  

The total current draw on the aircraft 28 VDC source is no more than 3.4 A.   

 

Table A.6:  Components and their power requirements. 

The master kill switch for the experiment is on the top of the VER.  By depressing 

this red knob, all power to the experiment is cut off.  The experiment has been designed 

to allow for a sudden loss of power without permanent damage to the experimental 

system and automatically defaults to a safe configuration.  Alternatively, power to the 

VER can be turned off by turning off the power strip located at the bottom of the rig and 

turning off the power to the SSR.   For the payload, an alternate kill switch is on the DC 

Power Source Details Load Analysis 
Name:  110 VAC  2 video cameras:  0.03 Amps 

Monitor:    1.2 Amps 
High-speed camera:  0.25 Amps 
Laptop:  0.15 Amps 
Laser:  0.005 
DC Power Supply:  1.5 Amps 

Description:  Aircraft 110 VAC 

Micropump:  3.0 Amps 
 

Wire Gage:  14 Total power:  550 W 
Outlet Current:  20.0 A Total current draw:  5.0 A 

Power Source Details Load Analysis 
Name:  Aircraft 28 VDC Power Heaters for boiling chamber:  3.4 Amps 
Description:  28 VDC from aircraft  
Wire Gage:  14 Total power:  96 W 
Outlet Current:  20.0 A Total current draw:  3.4 Amps 
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power supply.  The Micropump utilizes a 2A fuse.  There is also a switch on the front that 

is easily accessible to shut the pump off in an emergency.  The wire size used by the 

pump is regulated by the pump manufacturer.   

A.10  PRESSURE VESSEL CERTIFICATION 

The only chamber that experiences a pressure differential is the dome/boiling 

chamber, figure 8.  This chamber has been pneumatically tested to 37 psia (over night) by 

pressurizing the chamber around the bellows.  The pressure difference on the boiling 

chamber (the chamber containing the FC-72) will be 22.4 psig (37.1 psia).   

The chamber will be sealed off while the aircraft is on the ground so that the 

pressure will be 14.7 psia, and all tests will be performed at this pressure.  In the event of 

a catastrophic decrease in cabin pressure at altitude, the pressure around the boiling 

chamber could decrease to 3.5 psia. The maximum pressure differential possible during  

 

       
 

Figure A.8: Low-pressure air cooling jet schematic (Courtesy of J. Benton).  
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the flight is therefore 11.2 psig.  Since this is 2 times smaller than the pressure difference 

at which the chamber will be tested, the risk of the boiling chamber failing and releasing 

FC-72 or normal perfluorohexane is very small.  Even if the test fluid is released into the 

cabin, the it poses no health risks since there are no toxicity limits below the temperatures 

at which we are operating.  As an added measure of protection, a pressure relief valve 

(Nupro SS-RL3S4) has been installed onto the dome to relieve the pressure whenever the 

dome pressure exceeds the cabin pressure by 10 psig. 

The other pressure system being used on this flight is the low-pressure air 

impingement nozzle.  This system is shown is Figure A.8.  The system consists of a K-

bottle of compressed air, a pressure regulator, a flexible hose, a needle valve, and a 

nozzle.  The pressure downstream of the regulator will be maintained at 5 psig or less.  A 

certified hose and pressure regulator to connect the K-bottle to the needle valve and 

nozzle will be supplied by NASA.  The nozzle exits to the cabin.   

 
Figure A.9: Low-pressure air cooling jet schematic.  
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Table A.7: Pressure 

System 

Component 

MAWP 

(psi) 

Relief Valve  

Setting (psi) 

Regulator 

Setting (psi) 

Supplied/Built 

By 

1. Air K-Bottle 2200 N/A N/A GRC 

2. Pressure Regulator 2200 N/A 15 Victor MF43011 

3. Needle Valve 400 N/A N/A Hoke 

4. Nozzle 500 N/A N/A Custom Built 

Dome/boiling chamber 37 psia 10 psig N/A Custom build 

 

A.11  LASER CERTIFICATION 

A diode type class II laser manufactured by Diode Laser Concepts will be used as 

part of the PIV measurement system. The laser has internal electronics that provide static, 

surge, and reverse polarity protection.  The laser operates at 5 VDC and draws a 

maximum total power  of 1 mW.  Included as part of the laser assembly is a lens that 

converts the laser beam into a sheet of laser light at an angle of 45°.  The laser 

wavelength is 635 nm.   The line width is 1mm @ 1 meter and the fan angle is 10°.   

The laser is used to illuminate a plane of the boiling fluid, and the light reflected 

off neutrally buoyant glass microspheres is imaged using a high-speed camera.  Power to 

the laser is controlled by a switch located on the front of the experimental test rig and will 

be used only during parabolic maneuvers.  The laser light is completely enclosed by the 

experimental system.  Black protective mats have been attached to all viewport holes on 

the experimental system so that minimal laser radiation leaves the experimental chamber.  

No protective eyewear is required due to the laser class and since minimal laser radiation 

leaves the boiling chamber.  The laser will be aligned and fixed in place prior to travel to 

NASA facilities and therefore no alignment is necessary during the flight week.    
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A.12  PARABOLA DETAILS AN D CREW ASSISTANCE 

We will be testing with both the test apparatus and the instrumentation rack 

attached to the aircraft floor for all flights.  Accelerometers on the package will be used 

to measure the g-levels the package experiences.  Data will be taken using an on-board 

data acquisition system throughout the parabolas for every other parabola.  Ideally, a one 

minute window will be provided prior to the start of microgravity periods after aircraft 

turns for camera preparation and manual data recording.  Thirty or more standard 

parabolas per day are desired.  No crew assistance is required to operate the test 

equipment.  A block diagram of the relevant procedures are shown in Fig. A.10.   

 
Figure A.10:  In-flight operational procedure (left), pre-flight routine (right).  I have some 

updated sheets of this to put in the Appendix. 

1. Accelerometer data acquisition  

2. Begin recording side view 
images to DV cam to (100s) 

3. Initiate heater data acquisition 
routine (90s) 

4. Pause image recording and 
accelerometer acquisition when 
finished

5. Record by hand run information 
to data sheets and begin second 
initiation

6. Turn on pump in turns 

2. Set bulk temperature 

3. Ensure backside airside is 
operating correctly 

4. Create manifest flight manifest 

5. Connect digital video cameras to 
CCD outputs 

7. Test in-flight data acquisition 
routine 

6. Test accelerometer data 
acquisition 

3. Power on instrumentation rack 
and test rig 

IN-FLIGHT PROCEDURE PRE-FLIGHT ROUTINE
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A.13  HAZARDS ANALYSIS REPORT GUIDELINES 

 
HAZARD SOURCE CHECKLIST 

 
Enumerate or mark N/A 
_N/A_ Flammable/combustible material, fluid (liquid, vapor, or gas) 
__5__ Toxic/noxious/corrosive/hot/cold material, fluid (liquid, vapor, or gas) 
__1__ High pressure system (static or dynamic) 
_N/A_ Evacuated container (implosion) 
_N/A_ Frangible material 
_N/A_ Stress corrosion susceptible material 
__3__ Inadequate structural design (i.e., low safety factor) 
_8_     High intensity light source (including laser) 
_N/A_ Ionizing/electromagnetic radiation 
_N/A_ Rotating device 
_N/A_ Extendible/deployable/articulating experiment element (collision) 
_N/A_ Stowage restraint failure 
_N/A_ Stored energy device (i.e., mechanical spring under compression) 
_N/A_ Vacuum vent failure (i.e., loss of pressure/atmosphere) 
_N/A_ Heat transfer (habitable area over-temperature) 
_N/A_ Over-temperature explosive rupture (including electrical battery) 
__6__ High/Low touch temperature 
__7__ Hardware cooling/heating loss (i.e., loss of thermal control) 
_N/A_ Pyrotechnic/explosive device 
_N/A_ Propulsion system (pressurized gas or liquid/solid propellant) 
_N/A_ High acoustic noise level 
_N/A_ Toxic off-gassing material 
_N/A_ Mercury/mercury compound 
_N/A_ Other JSC 11123, Section 3.8 hazardous material 
_N/A_ Organic/microbiological (pathogenic) contamination source 
__4__ Sharp corner/edge/protrusion/protuberance 
_N/A_ Flammable/combustible material, fluid ignition source (i.e., short circuit; 

under-sized wiring/fuse/circuit breaker) 
__2__ High voltage (electrical shock) 
_N/A_ High static electrical discharge producer 
_N/A_ Software error or compute fault 
_N/A_ Carcinogenic material 
_____ Other:______________________________________________________ 
_____ Other:______________________________________________________ 
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Appendix B:  Optimization of a Constant Temperature 
Microheater Array Feedback Control Circuit 
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B.1  PROBLEM DEFINITION  

The primary goal of this optimization analysis is to maximize the temperature 

resolution of the heater array while maximizing a user defined operational temperature 

range.  Such results serve two purposes:  Firstly, the goal of experimental research is to 

maintain the highest fidelity in measurement and, secondly, the microheater array 

operates ideally when there is a minimum temperature difference between adjacent 

heaters.  A minimum temperature difference reduces lateral substrate conduction between 

heaters providing a better estimate of the heat transfer due to boiling.  In addition, lateral 

substrate conduction can cause adjacent heaters to “turn off” during the boiling process 

which is problematic because the array no longer provides an isothermal boundary 

condition locally making it difficult to infer information about the boiling process.   

 The control circuit mentioned previously can be modeled analytically based upon 

electrical circuit theory.  A single and multiobjective formulation is presented alongside a 

host of linear and nonlinear constraints.  This set of mathematical equations defines the 

optimization formulation that is solved using a number of methods in Matlab.  A 

parametric investigation is performed on a number of the design parameters providing 

additional information about the optimized solution. 

A schematic of the feedback control circuit is shown in Fig. 2.1.  The circuit is 

characterized by three main electronic components: resistors, an operational amplifier, 

and a transistor.  Resistors, represented by R1, R3, R4, R5, Rh, and the digital potentiometer 

(RDP), define a wheatstone bridge that characterizes the performance of the control 

circuit.  R1, R3, R4, R5, are metal film resistors with a manufacturer specified tolerance of 

1% and are rated at 0.6 Watts.  High tolerance metal film resistors are used for their 
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relative insensitivity to temperature, high power dissipation, and commercial availability.  

These resistors, in addition to RDP, form the set of design variables which are optimized 

in the analysis that follows.  RDP is a dual digital potentiometer consisting of two digitally 

controlled potentiometers manufactured by Dallas Semiconductor.  It consists of 512 

resistive sections providing a resistance range of 0 – 20 kΩ.  Rh represents the resistance 

of a specific heater element.  As mentioned previously, each heater element can be 

modeled as an equivalent temperature dependent resistance (Rh has a temperature 

coefficient of  

 
Figure B.1:  Feedback Circuit Schematic 

 
resistance 1000 times larger that the metal film resistors described above).  The circuit 

regulating op-amp, labeled “Chopper Op-Amp” in Fig B.1, is a high-voltage, high-

performance operational amplifier.  An additional op-amp is used to measure the voltage, 
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Vo, across the heater element but does not directly influence the performance of the 

control circuit.  The transistor shown in Fig. B.1 is a high current, low voltage, NPN 

switching transistor that is used to provide power to the heater elements.  It is important 

to note that the analysis presented subsequently applies to a single heater and its 

respective feedback control circuit.  Similar analysis can be performed for each heater in 

the array to obtain an optimized heater array.           

 The control circuit operates in the following manner:  The chopper op amp is used 

to sense an imbalance in the wheatstone bridge, represented by R1, R3, R4, R5, Rh, and 

RDP.  If an imbalance exists, the op-amp outputs a proportional voltage to the gate of the 

transistor allowing additional current to flow from the 24 volt source through the bridge.  

This current causes an increase in the temperature of the heater (joule heating) with a 

corresponding increase in resistance.  The resistance of the heater will continue to rise 

until a new equilibrium state is reached corresponding to a balance in the wheatstone 

bridge.  This entire process occurs very quickly, in approximately 66µs, and much faster 

than the dynamic behavior of the heater boundary surface.  Based on these functional 

characteristics, the heater resistance can be controlled by controlling RDP.  During data 

acquisition, the time-varying voltage across the heater resistance, Vo in Fig. B.1, is 

measured and used along with the heater resistance at the given temperature to determine 

the total power dissipated by the heater to maintain it at constant temperature.    

In summary, the design variables are defined as R1, R3, R4, R5, RDP (see Fig. B.1).  

The optimization goal involves optimizing these variables for maximum temperature 

resolution of a given heater in the array subject to constraints described subsequently.  

All design variables are approximated as continuous variables.       
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B.2  FORMULATION 

B.2.1  Objective Function 1:  Maximize Temperature Resolution 

 As mentioned previously, under steady state operation a balance exists in the 

wheatstone bridge.  Written mathematically, Eq. 1 characterizes this behavior.  In Eq. 1, 

Rh is written as the dependent variable and RDP as the independent variable as described 

in the previous section.  Taking the derivative of Eq. B.1 with respect to RDP yields the 

differential change in heater resistance with respect to a differential change in RDP, Eq. 

B.2.       

 
            (B.1)   

    
 

 
(B.2) 

  
  
 Since RDP can only be adjusted in 512 equal increments, the minimum possible 

change in the digital potentiometer resistance is given as 39 Ω.  This value also describes 

the maximum resolution control of the wheatstone bridge.  Substituting this value into 

Eq. B.2 defines the minimum increase in heater resistance for a minimum change in RDP, 

Eq. B.3.  Stated differently, Eq. 3 represents the smallest theoretical change in heater 

resistance for a step change in digital potentiometer setting. 
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 In addition to Eq. B.3, the heater resistance is also strongly dependent on 

temperature.  The temperature dependence on the resistance of the heater was measured 
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Using this parameter, a resistance-temperature relation can be formulated, Eq. 4, where 

Rref, Th, Tref, and ∆T, represent some arbitrary metal reference resistance (corresponding 

to the reference temperature), heater temperature, reference temperature, and change in 

temperature (Th-Tref) respectively.  These additional variables are considered design 

parameters and appear in the optimization formulation summary at the end of this section.  

Differentiating Eq. B.4 with respect to ∆T, yields Eq. B.5.  Equation B.5 states that a 

differential change in heater temperature is proportional to the differential change in 

resistance.   

 

 (B.4) 

  

(B.5) 

 

From the previous analysis, dRh can only be controlled to a minimum value specified by 

Eq. B.3.  Substituting ∆Rh  for dRh (Eq. B.3 into Eq. B.5) yields the temperature 

resolution of the heater element, Eq. 6.  Equation 6 represents the minimum possible 

theoretical temperature change for a step change in digital potentiometer resistance 

(temperature resolution or uncertainty).  Therefore, the optimization objective involves 

the minimization of Eq. B.6, or in simplified form Eq. B.7.   
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B.2.2  Objective Function 2:  Maximize Temperature Range (Single 

Objective Constr. 4) 

 The second objective considers the maximum operating temperature of the heater.  

Substituting Eq. B.1 into Eq. B.4 for Rh and setting RDP to 20000 (the maximum 

controllable potentiometer resistance), the high temperature limit is obtained, Eq. B.8.  

As a constraint, Eq. B.8 states that the maximum temperature that the heater can operate 

at must be greater than or equal to Thigh, or the user specified high temperature limit.  This 

constraint is written as an inequality constraint for the single objective formulation.  

Ideally, the user would like the largest possible temperature range.  Therefore, Thigh is a 

design parameter and, written in standard form, this constraint is given by Eq. B.9.  

Formulating Eq. B.8 as a second objective results in Eq. B.10 (note:  the second objective 

function shown in Eq. B.10 is transformed using the epsilon constraint method to a single 

objective formulation, constraint g4, introducing design parameter Thigh). 
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B.2.3  Inequality Constraint 1:  Low Temperature Control    

 The lowest temperature that a given heater element can be controlled to is 

determined by substituting Eq. B.1 into Eq. B.4  for Rh and setting RDP to zero 

theoretically (experimentally this would be a very low value).  Setting RDP equal to zero 

approximates the low end temperature control range.  Performing this manipulation and 

simplifying results in Eq. B.11 with Tlow representing the lowest controllable heater 

temperature.  Stating Eq. B.11 as a constraint in standard form says that the optimized 

circuit design must be able to operate to atleast a temperature defined by Tlow, Eq. B.12.  

Tlow is a user specified design parameter.  Additional information regarding the 

operational temperature range of the heater element is given by Eq. B.13.  This equation 

is for the user’s reference and is introduced later in this report and does not enter into the 

optimization formulation.    
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to have the largest current flow through the heater element Rh.  This situation further 

validates the assumption that the metal film resistors on the right side of the bridge do not 

change resistance because very little current will flow through them and thus a negligible 

amount of heat is generated.  In addition, this allows large amounts of power to be 

dissipated through the heater which can occur during times of large boundary heat flux 

conditions.  The larger the voltage present across the heater, the larger the range of 

boundary conditions the heater can accommodate.  In order to ensure that a small amount 

of power is dissipated by the right side of the bridge, the resistance R3 + R4 should be 

significantly higher that R1 + Rref. Stated mathematically, Eq. B.14 represents this 

constraint with Cmin being the minimum value of this ratio chosen by the user.     

 

(B.14) 

  

B.2.5  Inequality Constraint 3: Maximum Voltage Drop Across R1 

 The voltage drop across R1 should not be too high as to decrease the maximum 

performance of the heater array.  Under high heat flux conditions, the heater resistance 

may require a large voltage to regulate its temperature.  If the voltage drop across R1 is 

too large, this will not occur.  The voltage drop across a resistor in series with another is 

represented by Eq. B.15.  Defining a maximum voltage drop permissible across R1, Vdrop, 

and substituting in Eq. 1 for Rh, an additional constraint is formulated, Eq. 16.   
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B.2.6  Inequality Constraint 5:  Op-amp Sensitivity (R1 Bound)   

The chopper op-amp has a minimum sensitivity (voltage difference) for accurate 

operation.  The maximum sensitivity in the wheatstone bridge occurs when R1 and Rh are 

approximately equal.  If the ratio of these two resistances becomes extremely large or 

small, the op amp is incapable of detecting the voltage difference and thus cannot 

compensate for an imbalance in the bridge.  Therefore, an additional constraint on the 

system is required (Eq. B.17).  Similar to equation B.14, design parameter Dmin is the 

lowest user specified ratio of R1 and Rref  and is dependent on the specifications of the op-

amp.  This equation can be restated as the lower bound of the design variable R1, Eq. 

B.18.          

(B.17) 
 
 

(B.18) 
 
 

B.2.7  Inequality Constraints 6-11:  Additional Design Variable Bounds   

 All design variables must be real numbers greater than or equal to zero.  In 

addition, R1, R3, and R4 have maximum bounds specified by the design parameters 

R1Ubnd, R3Ubnd, and R4Ubnd respectively.  R5 can be any real number greater than zero and 

RDP has a maximum value of 20,000.  Equations B.19-B.24 represent additional design 

variable bounds.   
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B.2.8  Equality Constraint 1:  Define Optimized Temperature    

 A brief analysis of Eq.7, the optimization objective function, provides some 

insight into this next constraint.  Firstly, Eq. 7 is nonlinear w.r.t RDP indicating that the 

temperature resolution increases with the inverse of the quadratic of RDP.  This means 

that the heater temperature resolution will increase with an increase in heater 

temperature.  It can be shown that the temperature uncertainty is monotonically 

decreasing w.r.t RDP for RDP > 0, Eq. B.25.  This indicates that the worst temperature 

resolution always occurs for a digital potentiometer setting of zero.   
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 Since RDP is controlled by the user and can take on 512 incremental values 

between 0 and 20 k Ω, a particular heater temperature, Topt, is defined which corresponds 

to the heater temperature being optimized.  This constraint forces RDP to take on a single 

value corresponding to Topt  and eliminates the semi-infinite behavior of this variable, Eq. 

B.26.  The monotonic behavior of the objective function w.r.t RDP indicates that all 

temperatures above Topt will have a temperature resolution that is guaranteed to be better 

than the temperature resolution at Topt.  This characteristic aids the user in selecting this 

critical design parameter value.   

 

(B.26) 

 

 In summary, equality constraint 1 (Eq. B.26), reduces the optimization goal from 

optimizing the temperature resolution over the entire temperature range, to optimizing a 

01:
335

51

3

41
1 =+−+

+
−− optref

hrefhDPrefh

DP

refh

TT
RRRRRR

RRR
RR

RRh
αααα



 

 244 
 
 

single heater temperature value.  This constraint was formulated as such because in the 

particular research context that the author is involved, excellent temperature resolution is 

not required at the low temperature limit, Tlow, but is instead desired over a temperature 

range from Topt to Thigh.  The solution therefore optimizes the temperature resolution at 

Topt and because of the monotonic nature of the objective function w.r.t RDP, all 

temperatures between Topt and Thigh are guaranteed to have a temperature resolution better 

or equal to the temperature resolution at Topt.     

B.2.9  Optimization Formulation Summary   

 In summary, customization of the feedback control circuits is governed by an 

optimization formulation that seeks to minimize the temperature resolution of a single 

heater, Eq. B.6, and maximize the high temperature limit, Eq. B.10,  subject to the non-

linear inequality constraints, g1-g3 (Eq. B.12, B.14, B.16), non-linear equality constraint, 

h1 (Eq. B.26), and the design variable bounds, g5-g11 (Eq. B.18-B.24).  The representative 

multiobjective and single objective optimization formulations are summarized on the 

following pages (note:  the single objective formulation applies the epsilon constraint 

method to the multiobjective formulation).    

 
Design Variables (resistor values, see Fig 1.2): 
R1 [Ω],   R3 [Ω],   R4 [Ω],   R5 [Ω],   RDP [Ω]    
 
Design Parameters: 

αh:   temperature coefficient of resistance of the heater [Ω / Ω oC] 
Rref:   reference resistance of the heater array at reference temperature [Ω] 
Tref:   reference temperature corresponding to reference resistance [oC] 
Cmin:   constant used to minimize power dissipated across the right side of the wheatstone 

bridge 
Dmin:   minimize ratio defined by the operation of the chopper op-amp (see 1.2). 
Thigh:   the highest temperature that the heater must reach [oC] 
Tlow:   the lowest temperature the heater must be able to operate at [oC] 
Topt:  the temperature being optimized [oC] 
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R1Ubnd:  upper bound of R1 [Ω] 
R3Ubnd:  upper bound of R3 [Ω] 
R4Ubnd:  upper bound of R4 [Ω] 
Vdrop:   max voltage drop across R1 [V] 
 

Single-Objective Optimization Formulation: 
 

Objective Function:   
(B.7) 

 

Subject to:              
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(B.14) 
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Multiobjective formulation: 
 

Objective Function:   
(B.7) 

 

 

(B.10) 

 

 

Subject to:              
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B.3  ASSUMPTIONS 
 
 The formulation derived previously incorporated a number of assumptions in 

addition to assuming the ideal behavior of the op-amp and transistor.  Firstly, the circuit 

leads are assumed to have a zero resistance.  Parasitic effects associated with inductance 

and capacitance within the circuits is assumed to have a negligible effect on the circuit 

performance.  Design variables R1, R3, R4, and R5 are assumed to have negligible 

temperature dependence.  This is a valid assumption for R3, R4, and R5 but significant 

power may be dissipated through R1 causing a measurable change in its resistance.  A 

more robust model would account for slight changes in this resistance due to joule 

heating. 

 The heater resistance is assumed to be solely dependent on temperature.  In 

reality, thermal fatigue of the heater array can cause wire bond detachment, cracking of 

the heater substrate, voids to form between the substrate and epoxy adhesive, and many 

other problems which can lead to operational transients.  This assumption defines what it 

means to be an ideal heater (one that has uniform temperature and no time varying 

thermal properties).  The heater properties have been measured experimentally and the 

heater itself has been sufficiently tested so that the ideal heater assumption is valid.  

 For the following analysis, all design variables are assumed to be continuous 

variables.  In reality, the commercial market only sells discrete resistors.  It is assumed 

that multiple resistors can be put together in parallel or series combinations so that, 

practically speaking, the continuous assumption is valid.  Theoretically, RDP is a discrete 

variable, but can be modeled as a continuous variable with little loss in modeling 

accuracy.  
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 It should be noted that the nature of the current control circuit design allows 

resistors to be removed and installed quite easily.  Through hole mounted sockets are 

used on printed circuit boards which eliminates the need for any additional soldering.  

Therefore, optimized resistance values can be installed and modified with little effort and 

the performance can be validated experimentally with relative ease.    

 

B.4  METHODS, RESULTS, AND DISCUSSION 
 
 The presence of the nonlinear equality constraint, h1, makes it difficult to obtain 

any significant insight into the problem using monotonicity analysis.  Nonetheless, the 

monotonic behavior w.r.t the different design variables for the temperature resolution 

objective function, ∆Th or Tunc, is shown for positive valued design variables, Eq. B.27-

B.30.   
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the second objective, Eq. B.10, to a constraint, g4 (Eq. B.9) which was varied over a 

specified range to obtain the Pareto frontier.  A representative optimum was chosen based 

on user preferences and is elaborated on later in this report.      

 An initial point sensitivity analysis was performed to assess the affect of the 

initial point on the optimization results.  It was observed that the initial point strongly 

affects the optimized solutions and further discussion will be provided in the next section.  

A parametric investigation was performed on the design parameters Tlow, and Topt and 

their affect on the optimized design is presented subsequently.  These design variables 

were chosen to be parametrically varied because it was observed that the constraint g1 

was active at the optimum and furthermore, h1, has a strong dependence on Topt.  Lastly, a 

custom optimization solution algorithm, based on the exterior penalty method, was 

developed and used to verify the results obtained using the Matlab function, “fmincon”.  

As will be shown, both methods agree very well with one another adding to the validity 

of the solutions presented herein.     

 Before proceeding any further, it is necessary to define the different values chosen 

for the design parameters.  The lower bounds for design variables, R3, R4, R5, RDP, were 

chosen to be a very small value, as shown in Table B.1, which avoids any singularity 

issues associated with the objective or constraint functions.  In addition, consideration 

was given to avoid lower boundary values which became active constraints at the 

optimized solution.  Similar reasoning was applied to the upper boundary limits on the 

design variables where all resistances except R5 were specified to be less than 1 MΩ.  R5 

can naturally tend toward infinity without degrading the performance of the circuit.  The 

design parameters α, Rref, and Tref were determined based on the physical characteristics 
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of the heater array and confirmed experimentally.  Cmin and Dmin were chosen from 

experience, where adequate performance of the circuit has been observed.  Vdrop was 

chosen based upon the maximum operating boundary conditions that are applied to 

heater.  It has been shown through experimentation that the heater can require up to 14 

volts in order to accommodate large heat flux boundaries and therefore, Vdrop was to 

chosen to be 10 volts (24V – 14V).   

 For the particular boiling fluid being studied (FC-72), the saturation temperature 

is 56 oC at atmospheric pressure.  Of particular interest are the boiling characteristics at 

temperatures higher than 70 oC.  Therefore, the temperature resolution below this value is 

not significant and the baseline Topt value was chosen as 70 oC.  The low operational 

temperature limit, Tlow, was chosen to allow for adequate operation of the heater under 

ambient room temperature conditions with some margin added for safety.    Operation of 

the heater at room temperature provides time saving diagnostic capabilities that can be 

used to quickly characterize the heater prior to data acquisition.  Thigh was chosen based 

on reliability and safety considerations (120 oC).  Most industrial electronic devices are 

rated to 125 oC which makes this a good temperature limit while providing a suitable 

range for the superheat of the fluid during boiling to be studied.  Lastly, Thigh, Tlow, and 

Topt were parametrically studied over a range of values shown in Table 1.  The baseline, 

or user preferred, case is the default design parameter vector used while varying the 

parametric variables in question.     
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    Table B.1:  Design parameter values 

Baseline

R1 89.4

R3 0.000001

R4 0.000001
R5 0.000001

RDP 0.000001

R1Ubnd 500

R3Ubnd 1000000
R4Ubnd 1000000

R5 inf
RDP 20000

α 0.003
Rref 298

Tref 24.7

Cmin 20

Dmin 0.3
Thigh 120

Tlow 10

Topt 70

Vdrop 10

Parametric Study

LOWER 
BOUND

UPPER 
BOUND

DESIGN 
PAR.

Topt:  20, 30, 40, 50, 60, 70, 80, 
90, 100, 110, 120

Tlow:  10, 15, 20, 25, 30, 35, 40, 
45, 50, 55, 60, 65 

Thigh:  71, 75, 77.5, 80, 82.5, 85, 
90, 95, 100, 105, 110, 115, 120, 
130, 140,   

 
 

 

B.5  SINGLE OBJECTIVE RESULTS USING “fmincon” 

 As mentioned above, the Matlab function, “fmincon” was used to solve the single 

objective optimization formulation.  This function finds the constrained minimum of a 

scalar function of several variables starting at an initial point estimate.  It takes a number 

of input arguments including the function to be minimized, nonlinear equality and 

equality constraints, variable bounds, and others.   

B.5.1  Initial Point Sensitivity 

 After programming the single objective formulation into Matlab and solving for a 

number of different initial points, it was observed that each optimized output was 
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quantitatively different.  After verifying the Matlab output solutions were feasible, it was 

determined that a rigorous initial point sensitivity analysis was required to characterize 

the outputs.  The approach developed shares many similarities to Monte Carlo analysis. 

 The first step involved obtaining a representative set of initial points that spanned 

the entire range of the variable bounds.  Considering the fact that there exist 5 variables 

and a low, medium, and high, value for each variable was desired, the number of 

different combinations one can obtain from this set is 125.  Adding additional robustness, 

250 randomly distributed initial value sets were computed in Matlab (for a single design 

parameter vector, ex. “Baseline”) and the optimized solution of each was determined 

using “fmincon”.   

 The initial design points, used as an input into the “fmincon” function were 

calculated by first generating a uniformly distributed random number from zero to one in 

Matlab and then applying that value on a percentage basis to the design variable 

bounding limits.  Since the high limit bounds are so large for the design variables, a 

random permutation vector between 2 and 6 was also generated at each iteration to 

represent the exponent of the high limit (Ex. 102, 103, 105, 106, 20000).  This ensured that 

low value combinations could be obtained in the simulation and provides a better 

representation of the initial value space.  This additional step enabled a more random 

distribution to be obtained.  The process as described above was repeated for all five 

design variables until a single initial point vector was generated.  An iterative process 

was then used to obtain an initial point matrix with the total number of rows equal to the 

total number of initial point vectors, 250 (Eq. B.31).  This matrix was input into Matlab 

and a solution was obtained for each initial point vector.  
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 The 250 optimized solutions obtained were then plotted on a histogram to observe 

the distribution of objective function values, Fig. B.2.  The majority of the optimized 

solutions fall very close to the global minimum (lowest optimized objective value) of the 

formulation.  The minimum of these 250 results was then chosen as the “representative” 

optimum or the design that most closely represents the global optimum for the particular 

formulation.  In the parametric analysis that follows, this modified Monte Carlo 

procedure was conducted for each design parameter vector.   

 
 
 

(B.31) 
 
 
 

 

 
Figure B.2.  Example objective function distribution for different initial points 
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B.5.2  Pareto Frontier 

 As mentioned previously, the multiobjective formulation was converted to a 

single objective problem using the epsilon constraint method.  The epsilon constraint 

method is an A posteriori method used to solve multiobjective optimization problems and 

is of the form: 

( )
( )

Sx
ljkjallforxftosubject

xfimize

jj

l

∈

≠=≤ ,.....,1
min

ε  

 Where S is the feasible design space. 

 

 The Pareto frontier provides the solution to the multiobjective optimization 

formulation in k variable space (where k is the total number of objective functions).  A 

decision vector x* ε S is Pareto optimal if there does not exist another decision vector x 

such that fi (x) less than or equal to fi (x*) for all i = 1,….k, and fj (x) < fj (x*) for atleast 1 

index j 2.  In order to obtain a single optimum design from the Pareto solution set, a user 

weighting method was applied to the objectives.  For the particular problem under 

investigation, the Pareto frontier is shown in Fig. B.3.  From this graph it is clear than the 

objective space in nonconvex.  In addition, the constraint, g4  (epsilon constraint) was 

active for all the optimal solutions obtained which helps to validate the choice of the 

second objective. 

 Applying user preferences to Fig. B.3, a single design is chosen based on the 

“baseline” design parameter vector from Table. B.1.  This design has a number of 

interesting characteristics as shown in Fig. B.4.  In this figure, the x-axis represents the 

temperature of the heater and the y-axis is the single objective function value or Tunc.  
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When compared to the current design, it is clear that the optimal design performs much 

better at temperatures above 70 oC.  It should be noted that at 70oC, a slight (< 1%) 

enhancement in performance in observed.  Table B.2 provides additional information 

regarding the optimal and current designs and Table B.3 summarizes the Pareto results.   

 
 

Figure B.3:  Pareto frontier 
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Figure B.4:  User specified optimal design (“baseline” design parameter values). 

 
 

 
      Table B.2:  Current vs. optimal design comparison (single-objective formulation). 

OPTIMUM DESIGN CURRENT DESIGN
R1 [Ω] 167 237

R3 [kΩ] 27.733 47.6
R4 [kΩ] 47.379 57
R5 [kΩ] 89.786 1000000
Rdp [kΩ] 9.906 10.7

g1 0 0
g2 -142 -175.3975
g3 -2.08 -0.099
g4 0 -2.025
h1 1E-13 1E-13

CONSTRAINTS

F 0.2127 0.2157

DESIGN VARIABLES

OBJECTIVE 
FUNCTION
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Table B.3:  Pareto results 

 
R1 246.4 474.02 187 310 410 311 120 168.61 474.3 365 466 253.98

R3 4033.1 423810 20363 523110 650 64 34150 18231 1780.4 323 5311 479940

R4 4851 70 3930 770 250 84 675030 60 893.9 11141 91653 85.912

R5 49.8 6910 345 6480 296700 76373 30 810 457.6 69189 86592 56.331
RDP 5844.3 15520 3010 4590 7880 13268 1114 17738 440.2 2839 19241 12020

R1 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4

R3 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06

R4 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06

R5 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
RDP 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06

R1 500 500 500 500 500 500 500 500 500 500 500 500

R3 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06

R4 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06

R5 inf inf inf inf inf inf inf inf inf inf inf inf
RDP 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000

α 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Rref 298 298 298 298 298 298 298 298 298 298 298 298

Tref 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7

Cmin 20 20 20 20 20 20 20 20 20 20 20 20

Dmin 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Thigh 71 75 80 85 82.5 77.5 90 95 105 115 120 140
Tlow 10 10 10 10 10 10 10 10 10 10 10 10

Topt 70 70 70 70 70 70 70 70 70 70 70 70
Vdrop 10 10 10 10 10 10 10 10 10 10 10 10

R1 241.78 240.13 242 238 89.898 164 231 211.36 106 89.553 167 129.61

R3 4957 6893 12628 17759 5758 6811 20035 28752 13907 14722 27733 22305

R4 5840 8176 14875 21243 18246 11802 24707 38750 37422 46830 47379 49021

R5 1184 1820 3911 6667 5239 2857 8992 21396 25235 67567 89786 1E+11
RDP 15406 10004 9912 1000 9982 10000 9640 11073 9777 10142 9906 9231

OBJ. 
FUNC. F1 0.0108 0.036 0.0669 0.0936 0.0807 0.052 0.1172 0.1393 0.1725 0.2006 0.2127 0.2535

g1 0 0 0 0 0 0 0 0 0 0 0 0

g2 0 -8 -31 -52.7 -41.9 -20.3 -64.581 -112.52 -107.1 -138.82 -141.62 -146.8

g3 0 -0.04 0 -0.09 -4.96 -2.15 -0.2652 -0.7747 -4.2825 -4.979 -2.0795 -3.3548

g4 0 0 0 0 0 0 0 0 0 0 0 0
h1 1E-13 1E-13 1E-13 1E-13 1E-13 1E-13 1E-13 1E-13 1E-13 1E-13 1E-13 1E-13

MATLAB 
OUTPUT 

(GLOBAL 
OPTIMUM)

DESIGN 
VAR.

INITIAL 
POINT

LOWER 
BOUND

UPPER 
BOUND

MATLAB 
INPUTS

DESIGN 
PAR.

CONSTR.
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B.5.3  Parametric Study 

 Results of the parametric investigation of Tlow are shown in Fig. B.5 and Table 

B.5 (located in Appendix III).  In all of the cases studied, g1 was active at the optimum, 

Fig. B.5. Tlow appears to have a linear affect (monotonically decreasing) on the optimized 

objective function value Tunc over the range studied.     

 The second parametric investigation focused on the affect of Topt.  Topt has a very 

interesting affect on the optimal solution as seen in Fig. B.6.  For low values (near Tlow), 

Tlow appears to have no effect on the optimum.  At larger values, near Thigh, strong 

dependence on the optimized objective function is observed.  Table B.6 (Appendix III) 

details the results of this parametric investigation.   

 Lastly, the optimization effects of Tlow, Thigh, and Topt can be represented in a non-

dimensional form combining all of effects presented in this section and the previous one.  

If the non-dimensional values shown in Eqs. B.32, B.33 are defined, and the results from 

Tables B.3, B.5 and B.6 are written in terms of Eq. B.32, B.33, then Fig B.7 results.  

Tabular non-dimensional results are presented in Appendix III, Table B.8.  The important 

observation is that the non-dimensional results collapse onto the same curve.  This 

indicates that if the temperature range and optimization temperature is chosen, the 

optimal temperature resolution can be taken directly from the graph (although a complete 

solution would have to be obtained using one of the solution methods described herein).  

This provides the user with a powerful predictive means of determining the optimal 

design.   

 

  (B.32,B.33) 
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The matlab code used to obtain the results presented herein is available in Appendix D.   

 
Figure B.5.  Parametric effect of Tlow on optimum solution. 

 
Figure B.6.  Parametric effect of Topt on optimum solution. 
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Figure B.7.  Non-dimensional results (Par. g4, Par. g1, and Par. h1 represent the results 

obtained from Tables 3, 5, and 6 respectively in non-dimensional form).   

B.6  EXTERIOR PENALTY METHOD  

A second optimization solution method was developed based on the exterior 

penalty approach.  This method involves converting the constrained single objective 

formulation to an unconstrained optimization problem which can then be solved using a 

number of well-developed unconstrained optimization techniques.  The method is 

classified as a transformation method for this reason.  The Penalty method considers the 

transformation of the constrained formulation to unconstrained form given by Eq. B.34, 

where ∆Th is the objective function (Eq. B.7) and g(x) and h(x) are vectors defined in the 

single objective formulation presented previously.   

 (B.34) 
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For small penalty terms, Matlab was unable to obtain a solution, Fig. B.8.  As the 

penalty term is increased above 100, the optimized solution reaches a steady value.  The 

entire unconstrained exterior penalty formulation can be found in Appendix II.  As can be 

seen in Table B.4, the optimization results obtained using this exterior penalty approach 

agree very well with the results obtained in Matlab using “fmincon” (detailed results can 

be found in Table B.7, Appendix III).  

 
Figure B.8.  Affect of the penalty term on the unconstrained optimization results. 

Table B.4.  Exterior penalty and “fmincon” comparison 
Topt [

oC] Tunc ("fmincon") [oC] Tunc EP  [oC] % DEV
71 0.0108 0.0114 5.56%
75 0.036 0.0365 1.39%
80 0.0669 0.0686 2.54%
85 0.0936 0.0947 1.18%

82.5 0.0807 0.0825 2.23%
77.5 0.052 0.0547 5.19%
95 0.1393 0.1386 0.50%

105 0.1725 0.1729 0.23%
120 0.2127 0.2129 0.09%
140 0.2535 0.2535 0.00%  
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Appendix C 

C.1  FINAL HEATER RESISTANCE VALUES 
Card # Circuit # Heater # Rh (Ω) R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) R5 (Ω)

0 17 199 66.5 48800 26200 76800 200000
1 65 195 64.8 48800 26200 76800 200000
2 18 11 48800 26200 76800 200000
3 38 199 66.3 48800 26200 76800 200000
4 66 193 64.7 48800 26200 76800 200000
5 6 170 55.9 48800 26200 76800 200000
6 39 193 64.7 48800 26200 76800 200000
7 67 170 55.9 48800 26200 76800 200000
8 19 217 71.3 48800 26200 76800 200000
9 40 191 63.2 48800 26200 76800 200000
10 68 210 69.6 48800 26200 76800 200000
11 1 225 74.7 48800 26200 76800 200000
12 2 226 74.8 48800 26200 76800 200000
13 69 210 69.6 48800 26200 76800 200000
14 41 192 63.2 48800 26200 76800 200000
15 20 219 71.2 48800 26200 76800 200000
16 70 172 57.5 48800 26200 76800 200000
17 42 194 64.6 48800 26200 76800 200000
18 7 200 66.4 48800 26200 76800 200000
19 71 194 64.9 48800 26200 76800 200000
20 43 200 66.2 48800 26200 76800 200000
21 21 227 74.7 48800 26200 76800 200000
22 72 196 64.8 48800 26200 76800 200000
23 22 200 66.2 48800 26200 76800 200000
0 44 218 73 48800 26200 76800 200000
1 73 198 64.6 48800 26200 76800 200000
2 8 221 73 48800 26200 76800 200000
3 45 201 66.5 48800 26200 76800 200000
4 74 189 63.3 48800 26200 76800 200000
5 23 225 74.7 48800 26200 76800 200000
6 46 220 73 48800 26200 76800 200000
7 75 207 68 48800 26200 76800 200000
8 24 223 74.7 48800 26200 76800 200000
9 76 215 71.3 48800 26200 76800 200000
10 47 202 67.9 48800 26200 76800 200000
11 9 239 78.6 48800 26200 76800 200000
12 10 230 76.9 0 26200 76800 200000
13 48 202 66.2 48800 26200 76800 200000
14 77 222 73.1 48800 26200 76800 200000
15 25 224 74.9 48800 26200 76800 200000
16 78 209 69.6 48800 26200 76800 200000
17 49 221 73.1 48800 26200 76800 200000
18 26 226 74.8 48800 26200 76800 200000
19 79 192 63.1 48800 26200 76800 200000
20 50 221 73.2 48800 26200 76800 200000
21 11 223 74.9 48800 26200 76800 200000
22 80 201 66.3 48800 26200 76800 200000
23 51 222 73 48800 26200 76800 200000

0

1
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Card # Circuit # Heater # Rh (Ω) R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) R5 (Ω)
0 27 204 67.8 48800 26200 76800 200000
1 81 201 66.2 48800 26200 76800 200000
2 28 228 76.8 48800 26200 76800 200000
3 52 203 68.2 48800 26200 76800 200000
4 82 198 66.8 48800 26200 76800 200000
5 12 203 67.9 48800 26200 76800 200000
6 53 197 64.9 48800 26200 76800 200000
7 83 174 57.5 48800 26200 76800 200000
8 29 220 73 48800 26200 76800 200000
9 54 196 64.9 48800 26200 76800 200000
10 84 215 71.3 48800 26200 76800 200000
11 3 227 74.9 48800 26200 76800 200000
12 4 227 74.9 48800 26200 76800 200000
13 85 213 71.5 48800 26200 76800 200000
14 55 195 64.9 48800 26200 76800 200000
15 30 220 73.2 48800 26200 76800 200000
16 86 174 57.6 48800 26200 76800 200000
17 56 196 64.9 48800 26200 76800 200000
18 13 202 66.1 48800 26200 76800 200000
19 87 196 64.8 48800 26200 76800 200000
20 57 202 66.6 48800 26200 76800 200000
21 31 228 76.8 48800 26200 76800 200000
22 88 199 66.6 48800 26200 76800 200000
23 32 203 68.2 48800 26200 76800 200000
0 58 219 73.4 100065 26200 76800 200000
1 89 199 66.6 100054 26200 76800 200000
2 14 222 73.1 100110 26200 76800 200000
3 59 202 66.1 100079 26200 76800 200000
4 90 190 63.3 100053 26200 76800 200000
5 33 226 74.9 100044 26200 76800 200000
6 60 220 73.2 100064 26200 76800 200000
7 91 207 68.2 100133 26200 76800 200000
8 34 208 69.8 100051 26200 76800 200000
9 92 219 73 100007 26200 76800 200000
10 61 INF 0 100036 26200 76800 200000
11 15 231 76.5 100032 26200 76800 200000
12 16 230 76.6 100073 26200 76800 200000
13 62 200 100058 26200 76800 200000
14 93 220 73.1 100076 26200 76800 200000
15 35 222 73.1 100060 26200 76800 200000
16 94 207 67.8 100037 26200 76800 200000
17 63 219 73.2 99998 26200 76800 200000
18 36 225 74.7 100050 26200 76800 200000
19 95 188 61.8 100041 26200 76800 200000
20 64 200 66.3 100055 26200 76800 200000
21 5 221 73.2 100046 26200 76800 200000
22 96 196 64.9 100031 26200 76800 200000
23 37 217 71.6 100058 26200 76800 200000

2

3
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C.2  COMPRESSIBLE FLOW THEORY 
 

For one-dimensional compressible flow, the variation of density makes the 

continuity and momentum equations interdependent.  Under adiabatic, inviscid, and 

equilibrium conditions the field equations simplify to:  Under steady conditions, the 

continuity equation simplifies to:  
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For 1-D steady compressible flow neglecting body forces terms, the momentum equation 

becomes: 
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the energy equation for an ideal gas becomes: 

.
2
10.

2
1 22 constvTcvdvdTcvdvdhconstvh pp =+⇒+==+⇒=+    

combining the energy and momentum equations it can be shown along with the second 

law of thermodynamics that:   
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This shows that compressible flow under the assumptions stated above is isentropic.  The 

speed at which waves propagate through the fluid is equal to the speed of sound.  It is 

related to the compressibility of the fluid by: 
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For an ideal gas,  

RTpaconstp γ
ρ
γρ γ ==⇒= 2.  

And the Mach number is used to represent compressibility effects.  Combining the 

momentum and continuity equations and introducing the Mach number it can be shown: 
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Therefore M = 1 only at the throat of a tube and cannot go supersonic unless the throat 

diverges downstream.  Combining the energy equation and substituting in for T gives 

(assuming a reservoir initially with no velocity: 
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because and ideal gas that is isentropic becomes: 
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P/Po must be 0.5532 in order to justify  Ma = .96. 
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hr
an

ge
(1

)+
15

0,
:);

 
   

 x
ax

 =
 z

oo
m

hi
gh

(:,
2)

-z
oo

m
hi

gh
(1

,2
); 

   
 p

lo
t(x
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= 
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 p
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*'
); 



  
29

5 
     

 %
le

ge
nd

('H
IG

H
-G

','H
IG

H
-G

 A
V

G
', 

'H
IG

H
-G

, #
96

','H
IG

H
-G

 A
V

G
, #

96
');
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 c
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R
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x(
4)

+R
_d

p)
-R

_d
p.

/((
x(

4)
+R

_d
p)

.^
2)

); 
T_

ra
ng

e 
= 

+x
(1

)*
x(

3)
/(a

lp
ha

*x
(2

)*
r_

re
f)

+R
_d

p*
x(

1)
*x

(4
)./

(a
lp

ha
*x

(4
)*
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x(
4)

+R
_d

p)
-R

_d
p.

/((
x(

4)
+R

_d
p)

.^
2)

); 
T_

ra
ng

e2
 =

 +
x(

1)
*x

(3
)/(

al
ph

a*
x(

2)
*r

_r
ef

)+
R

_d
p*

x(
1)

*x
(4

)./
(a

lp
ha

*x
(4

)*
x(
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= 
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ra
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= 
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 [x
,T

ob
j]=

fm
in

co
n(

'T
re

so
pt

',x
0,

[]
,[]

,[]
,[]

,L
bn

d,
U

bn
d,

'T
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