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In low-stakes assessments, a lack of test-taking motivation inevitably occurs 

because test scores impose inconsequential effects on test takers’ academic 

records.  A common occurrence is that some test takers are unmotivated and 

simply apply random guessing strategy rather than solution strategy in taking a 

test.  Testlet effects also arise because educational assessment items are frequently 

written in testlet units.  A challenge to psychometric measurement is that 

conventional item response theory models do not sufficiently account for test-

taking motivation heterogeneity and testlet effects.  These construct-irrelevant 

variances affect test validity, accuracy of parameter estimates, and targeted 

inferences.  This study proposes a low-stakes assessment measurement model that 

can simultaneously explain test-taking motivation heterogeneity and testlet 

effects.  The performance and effectiveness of the proposed model are evaluated 

through a simulation study.  Its utility is demonstrated through an application to a 



real standardized low-stakes assessment dataset.  Simulation results show that 

overlooking test-taking motivation heterogeneity and testlet effects adversely 

affected model–data fit and model parameter estimates.  The proposed model 

improved model–data fit and classification accuracy and well recovered model 

parameters under test-taking motivation heterogeneity and testlet effects.  For the 

real data application, the item response dataset, which was originally calibrated 

with the Rasch model, was fitted better by the proposed model.  Both test-taking 

motivation heterogeneity and testlet effects were identified in the real dataset.  

Finally, a set of variables selected from the real dataset is used to explore 

potential factors that characterize the latent classes of test-taking motivation.  In 

the science assessment, science proficiency was associated with test-taking 

motivation heterogeneity.   
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Chapter 1: Introduction 

 

1.1 Statement of the Problem 

Low-stakes educational assessments, such as National Assessment of 

Educational Progress, Progress in International Reading Literacy Study, 

Programme for International Student Assessment (PISA), and Trends in 

International Mathematics and Science Study, have been increasingly directed 

toward recording and monitoring students’ academic progress for the past several 

years.  These assessment measures are intended to collect information about 

student achievement and performance in targeted domains.  The outcomes of 

these assessments inform how well students are prepared for the future and 

determine the accountability of school systems, institutes, programs, and teacher 

instruction.  Test results also serve as essential references for creating educational 

policies that intend to improve students’ overall competence.  Achieving these 

goals necessitates a valid measurement tool that is free from construct-irrelevant 

noise.  Consequently, the adequacy of psychometric measurements has become 

crucial to formulating better measures of student skills, knowledge, and abilities. 

The common current practice is to use item response theory (IRT; Lord, 

1980) for developing standardized educational assessments.  IRT models define 

the mathematical relation between observable item performance and an 
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examinee’s unobservable ability.  An examinee’s probability of providing a 

correct response is predicted by his/her ability and the characteristics of the item 

(Hambleton, Swaminathan, & Rogers, 1991).  IRT models are grounded on two 

key assumptions: (1) unidimensionality and (2) local independence (de Ayala, 

2009; Embretson & Reise, 2000; Hambleton et al., 1991; Hambleton & 

Swaminathan, 2010; Yen & Fitzpatrick, 2006).  Unidimensionality pertains to the 

idea that only a single ability underlines the respondents’ performance on a set of 

items.  Local independence holds “when the relationship among items (or 

persons) is fully characterized by the IRT model” (Embretson & Reise, 2000, p. 

48).  According to Reckase (2009), the assumption of local independence is that 

“the probability of a collection of responses (responses of one person to the items 

on a test, or the responses of many people to one test item) can be determined by 

multiplying the probabilities of each of the individual responses” (p. 13).  This 

statement implicitly suggests that no clustering dependence among items and that 

no clustering effects among persons.  Local item independence and local person 

independence can be mathematically represented by Equations (1) and (2), 

respectively, as follows (Jiao, Kamata, Wang, & Jin, 2012; Reckase, 2009). 

 1 2
1

( | ) ( | ) ( | ) ( | )... ( | ),
I

i I
i

P U u P u P u P u P u    


                                     (1) 

where P(U = u | θ) is the probability of an item response vector u (u = [u1,.., uI]) 

for a respondent with ability θ, and P(ui | θ) denotes the probability of an 
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individual item response ui to item i for a respondent with ability θ.  This 

expression shows that an examinee’s joint probability of responses to a set of 

items is equal to the product of probabilities of individual items at a given ability.  

Equation (1) also indicates that a respondent’s responses to a set of items are 

statistically independent.  

1 1 2 2
1

( | ) ( | ) ( | ) ( | )... ( | ),
n

i i ij j i i in n
j

P U u P u P u P u P u    


                             (2)  

where Ui is the response vector to the item i by n respondents with abilities θj, and 

uij is the response of respondent j to the ith item.  This expression indicates that the 

probability of the responses to a single item i by n respondents is equal to the 

product of probabilities of individual respondents’ responses (with abilities in the 

θ vector) to the item i.  

In practice, however, the assumption of local independence usually cannot 

be stringently satisfied.  The present study highlights two nuisance factors that 

can violate local independence but are often overlooked in the analysis of test 

results for standardized educational assessment data such as PISA.  The first is 

person characterization—test-taking motivation—which makes test takers apply 

distinct test-taking strategies in taking a test and therefore introduces examinee 

heterogeneity into the data.  The second factor is test item characterization—

testlet effects—which refer to a group of homogeneous items that cluster 

dependently around a common stimulus (i.e., item clustering).  When person 
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heterogeneity and item dependence exist in the data, conventional IRT models are 

misspecified.  If such misspecification is not taken into account, it results in 

inaccurate parameter estimates and targeted inferences (Jiao et al., 2012).  

A basic requirement for obtaining accurate test results and obtaining valid 

inferences is that individual respondents should be motivated to take the test. 

Some standardized assessments, such as PISA, are low-stakes measures for test 

takers.  That is, assessment results are used to draw inferences and have 

inconsequential effects on individual test takers’ academic records.  It is common 

that some test takers in low-stakes assessments are unmotivated and simply guess 

randomly during a test; this therefore makes their test scores an invalid reflection 

of the actual levels of knowledge, skills, and abilities.  Although researchers have 

proposed different methods for enhancing test-taking motivation in low-stakes 

assessments (e.g., provision of incentives; see Cole, 2007; Wise & DeMars, 

2005), a lack of test-taking motivation cannot be completely avoided.  Besides, a 

number of studies have been devoted to direct and indirect measures of test-taking 

motivation, in which aberrant test takers are identified first and their item 

responses are excluded from subsequent data analyses.  Examples of direct and 

indirect measures of test-taking motivation are motivation filtering (e.g., Sundre, 

& Wise, 2003; Swerdzewski, Harmes, & Finney, 2011) and person-fit indices 

(e.g., Armstrong & Shi; 2009; Cui, & Leighton, 2009; Glas & Dagohoy, 2007; 

Glas & Meijer, 2003; Karabatsos, 2003; Wise & Kong, 2005; see also Meijer & 
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Sijtsma, 2001).  However, these approaches still have their own limitations which 

will be addressed in the next chapter. 

Central to the issue of test-taking motivation heterogeneity in low-stakes 

assessments is that test takers are likely to behave differentially in taking a test; 

that is, adopt the solution strategy or random guessing strategy.  A challenge to 

psychometric measurement is that conventional IRT measurement models 

including the Rasch model do not sufficiently account for such test-taking 

motivation heterogeneity.  Given that test-taking motivation is unobservable, a 

latent class perspective permits one to treat test-taking motivation as a latent 

variable that distinguishes examinees into distinct latent examinee populations.  

Following this line of thinking, a different approach would be to incorporate a 

latent class model (Dayton, 1999; McCutcheon, 1987) for describing qualitative 

examinee heterogeneity in conventional IRT modeling; this approach is called 

IRT-based mixture modeling (Kelderman & Macready, 1990; Mislevy & 

Verhelst, 1990; Rost, 1990).  A family of IRT-based mixture models has been 

applied by other researchers.  These models effectively describe examinee 

attributes that point to qualitative heterogeneity indicators, such as latent 

differential item functioning (e.g., Cohen & Bolt, 2005; de Ayala, Kim, Stapleton, 

& Dayton, 2002; Kelderman & Macready, 1990; Maij-de Meij, Kelderman, & van 

der Flier, 2010; Samuelsen, 2005), heterogeneous test-taking strategies or 

motivation (e.g., Lau, 2009; Mislevy, & Verhelst 1990; Subedi, 2009), 
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speededness (e.g., Bolt, Cohen, & Wollack, 2002; Meyer, 2010), faking or 

response style (e.g., Eid & Zickar, 2007; Zickar, Gibby, & Robie, 2004), and 

psychological attributes (e.g., Finch & Pierson, 2011; Smith, Ying, & Brown, 

2012).  Another appeal of IRT-based mixture modeling is that it offers the 

opportunity to predict latent class membership by using covariates (Samuselsen, 

2005).  

On these grounds, the present research (1) adopts the idea of IRT-based 

mixture modeling to capture test-taking motivation heterogeneity in low-stakes 

assessments; and (2) looks more closely into the potential factors that characterize 

latent class membership pointing to test-taking motivation heterogeneity in low-

stakes assessment.  The second objective is significant because there are few 

studies investigating the potential factors that are associated with unmotivated 

respondents after latent class members have been identified in previous studies.  

In addition to test-taking motivation heterogeneity in low-stakes 

assessments, testlet effects may be another serious problem when applying the 

traditional IRT models.  In most educational assessments, testlets that are 

deliberately constructed with a series of related items sharing a common stimulus 

are frequently used.  The use of testlets (i.e., context-dependent items) introduces 

local item dependence in the estimation of IRT model parameters, which leads to 

an overestimation of test reliability and biased parameter estimates (Bradlow, 

Wainer, & Wang, 1999; Chen & Thissen, 1997; DeMars, 2006; Sireci, Thissen, & 
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Wainer, 1991; Thissen, Steinberg, & Mooney, 1989; Wainer & Thissen, 1996; 

Wainer & Wang, 2000; Yen, 1993).  To manage testlet effects, researchers have 

devoted considerable effort on expanded versions of IRT models, such as the 

polytomous IRT model (Cook, Dodd, & Fitzpatrick, 1999; Thissen et al., 1989) or 

testlet IRT model (Bradlow et al., 1999; Jiao, Wang, & Kamata, 2005; Wainer, 

Bradlow, & Du, 2000; Wainer & Wang, 2000; Wang, Bradlow, & Wainer, 2002; 

Wang & Wilson, 2005).  The above models that manage testlet effects are 

comprehensively reviewed in the next chapter.  A deficiency in analyzing low-

stakes testlet-based assessments, however, is that no adequate psychometric 

measurement model can simultaneously account for test-taking motivation 

heterogeneity (i.e., valid respondents and random guessers) and testlet effects.      

1.2 The Purpose and Significance of the Study 

This study aims to address the issues of test-taking motivation 

heterogeneity and testlet effects in low-stakes educational assessments; it also 

aims to propose a measurement model that simultaneously incorporates test-

taking motivation heterogeneity and testlet effects of data.  The development of 

the proposed measurement model focuses on resolving test-taking motivation 

heterogeneity and testlet effects to improve measurement accuracy.  These efforts 

are worthwhile endeavors because the failure to incorporate examinee 

heterogeneity and item clustering (due to testlet effects) in traditional IRT models 
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has become a critical concern that affects model parameter estimation accuracy 

and related inferences.  Given that educational policies and related implications 

are typically data driven, to develop a measurement model for low-stakes 

assessments by this current research is important and necessary for improving 

parameter estimation intended for drawing inferences.  Furthermore, this work 

will enable low-stakes assessment-based decisions and associated implications to 

be more fair and just.  The proposed measurement model can also serve as a 

useful model-based filtering technique in low-stakes assessments because it is 

expected to identify unmotivated respondents who apply random guessing 

strategy based on item response data.  In this research, the performance and 

effectiveness of the proposed model are evaluated through a simulation study and 

through an application to a real standardized low-stakes assessment dataset.  

Furthermore, this study has practical significance and implications for those who 

seek empirical evidence for the likelihood of factors associated with respondents 

who apply random guessing strategy in low-stakes assessments.  As previously 

stated, very few researchers have investigated the empirical factors related to test-

taking motivation heterogeneity in real low-stakes assessment data.  In the current 

work, a follow-up exploratory investigation is conducted to empirically explore 

the potential factors that characterize heterogeneity, making the identification and 

interpretations of latent class membership more meaningful.  Elucidating the 

qualitative interpretations of identified latent class membership is a worthwhile 
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endeavor because understanding the attributes associated with unmotivated test 

takers who guess randomly can unravel the qualitative composition of latent 

classes and can help practitioners manage the issue of test-taking motivation in 

low-stake assessments.  The findings of this research are expected to advance 

methodological knowledge on analyzing item response data from testlet-based 

low-stakes assessments, as well as to identify the attributes that are potentially 

associated with unmotivated test takers in low-stakes assessments.  This research 

aims to answer the following questions:   

1. What is the effect of overlooking heterogeneous test-taking motivation and 

testlet effects in low-stakes testlet-based assessments? 

2. How well are model parameters recovered in the proposed model under the 

presence of heterogeneous test-taking motivation and testlet effects? 

3. How does the proposed model perform in real low-stakes assessment data in 

terms of model–data fit? Are there unmotivated test takers and testlet effects 

identified empirically?  

4. What are the potential factors that characterize test-taking motivation 

heterogeneity from real low-stakes assessment data?  

1.3 Outline of Chapters  

The remainder of the dissertation is divided into five chapters.  Chapter 

Two reviews the literature that makes up the theoretical foundation of this 
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dissertation.  Chapter Three presents an overview of the proposed measurement 

model and comparison models, as well as the simulation study design, Bayesian 

estimation, data analyses, and empirical study.  The results of the simulation are 

presented in Chapter Four, and the findings from the empirical study are provided 

in Chapter Five.  Finally, Chapter Six summarizes and discusses the research 

results; this chapter also contains the limitations of the study and suggestions for 

future research.  
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Chapter 2: Literature Review 

 

This research aims at developing a measurement model for low-stakes 

testlet-based assessments.  This chapter reviews the issues that revolve around 

low-stakes assessments, such as (1) the problems related to testing-taking 

motivation and the practical approaches that are currently used to manage this 

psychological process; (2) different modeling approaches that can account for 

test-taking motivation heterogeneity; (3) testlet effects and the modeling 

approaches to accounting for such effects; and (4) the technique used to estimate 

parameters in this study: a Bayesian estimation with a Markov chain Monte Carlo 

algorithm.    

2.1 Test-Taking Motivation in Low-Stakes Assessments 

Test-taking motivation refers to “an examinee’s drive to engage in and 

persist to the completion of a test” (Lau, 2009, p. 4).  Such motivation can be 

conceptualized from the perspective of educational psychology—expectancy 

value theory (Pintrich & Schunk, 2002; Wigfield & Eccles, 2000; Wise & 

DeMars, 2005)—a test taker would be motivated if (s)he associates high 

expectancy or strong value beliefs with a particular assessment.  Expectancy 

pertains to a test taker’s evaluation of his/her ability to complete a test.  Value 
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encompasses attainment value (e.g., the importance of doing well on a test), 

intrinsic value (e.g., the enjoyment derived out of accomplishing a test), utility 

value (e.g., the benefits of doing well on a test), and perceived cost (e.g., the 

perceived cost of prioritizing a test over other more valued personal investments, 

such as time or energy).  

In high-stakes assessments, test takers are universally motivated to devote 

committed efforts because results are linked to academic records which will be 

used for high-stakes decisions, such as admission or replacement in different 

instructional programs.  In low-stakes assessments, however, test results carry no 

substantial consequence (e.g., low attainment and/or utility values) for individual 

examinees.  Furthermore, test takers are compelled to sacrifice time or energy to 

take a test and in the process forgo other more valued activities (high perceived 

costs).  Consequently, lack of test-taking motivation inevitably occurs in low-

stakes assessments.  For example, Mislevy and Verhelst (1990) indicated that in a 

college low-stakes reading assessment, proctors observed some examinees 

completing answer sheets without opening the test booklets.   

In the literature, varied percentages of unmotivated test takers have been 

observed in low-stakes assessments.  For example, in Brown and Gaxiola (2010) 

4% of university students reported that they did not exert their best effort in a 

low-stakes information skills test.  In Sundre and Wise (2003), 12.5% and 12.8% 

of university students were classified under the “very low” test-taking motivation 
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category (scores below 20 out of 50), as measured by a self-report scale in a 

Nature World (NAW-5) test and in a quantitative reasoning quotient test, 

respectively.  In Wise and DeMars (2005), 7.27% of test takers scored low (scores 

below 20 out of 50), as measured by a self-report motivation scale in a low-stakes 

US history and political science test.  Wise and DeMars (2006) reported that in a 

university low-stakes Information literacy test, about 5% of the test takers were 

categorized as unmotivated on the basis of a post-test self-report motivation scale.  

Lau (2009) revealed that approximately 1.2% of university test takers were 

random responders, as identified by the mixed-strategies IRT modeling and a self-

report test-taking motivation scale.  Subedi (2009) found that approximately 5% 

of the test takers of a statewide mathematics assessment were unmotivated test 

takers, as classified via the mixed-strategies IRT modeling.  

Unmotivated students who take low-stakes assessments deserve 

considerable attention and comprehensive investigation.  The phenomenon of lack 

of motivation requires resolution because the test scores of unmotivated test 

takers provide inaccurate psychometric information for assessing test 

performance; they are also poor indicators of actual proficiency levels.  In 

particular, test validity would be negatively influenced and average proficiency 

levels would be underestimated if respondents continue to be unmotivated.  In an 

experimental study, for example, community college students performed 

significantly better in the graded exam than in the non-graded exam, with 



14 
 

performance exhibiting a large effect size, Cohen’s d = 1.27 (Napoli & Raymond, 

2004).  Wise and DeMars (2005) conducted a meta-analysis designed to compare 

12 empirical and experimental studies.  In their meta-analysis, test-taking 

motivation was measured by a self-report test-taking motivation scale or 

manipulated with external incentives during the experiment.  Examples of 

external incentives include paying students to participate, awarding students with 

extra course points, or informing students about the importance of the test scores 

prior to test administration (see Table 1 in Wise & DeMars for more details).  

Their results indicate that the average test scores of unmotivated examinees were 

significantly lower than those of motivated examinees, with an average effect size 

of 0.59.  

To mitigate the negative effects arising from the unmotivated completion 

of low-stakes assessments, researchers frequently use the following practical 

methods:  

(1) Implementing treatments designed to increase test-taking motivation 

Strategies for enhancing test-taking motivation are implemented prior to 

test administration.  Examples of such treatments are offering incentives and 

explaining the importance/benefits of taking a test (e.g., Cole, 2007; O’Neil, 

Abedi, Miyoshi, & Mastergeorge, 2005; Wise & DeMars, 2005).  These 

treatments are practical and easily implementable, but nonetheless require 

monetary or time investments.  Using treatments to increase test-taking 
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motivation also prevents the accurate determination of test takers’ preferences for 

incentives.  Put it differently, although a selected incentive (e.g., money) 

effectively works for some test takers, such incentive may be ineffective or may 

even pose a negative effect on others (e.g., O’Neil et al., 2005).  

(2) Direct and indirect measures of test-taking motivation 

Motivation filtering and person-fit measures can be used to detect 

suspected unmotivated respondents.  These methods are then succeeded by 

statistical adjustments, such as the exclusion of suspected unmotivated 

respondents from data analyses.  A commonly used motivation filtering tool is the 

self-report test-taking motivation scale (e.g., Sundre, 2007; Sundre, & Wise, 

2003; Swerdzewski et al., 2011; Wise & DeMars, 2005; Wise & Kong, 2005; 

Wise, Pastor, & Kong, 2009) which is implemented immediately after a given 

test.  Test takers respond to questions or prompts (e.g., “Doing well on this test is 

important to me.” or “I engaged in good effort throughout this test.”) using a 

Likert scale with a score range of 1 (strongly disagree) to 5 (strongly agree).  

However, employing a self-report test-taking motivation scale casts doubt on the 

accuracy of the results because unmotivated test takers may also provide random 

or false responses on the test-taking motivation scale.  Furthermore, the adequacy 

of the cutoff point for classifying unmotivated and motivated respondents requires 

more empirical evidence (Swerdzewski et al., 2011; Wise & DeMars, 2005; Wise 

& Kong, 2005).  
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An alternative to measuring test-taking motivation is determining the 

length of response time (e.g., Swerdzewski et al., 2011; Wise & Kong, 2005; 

Wise, Pastor, & Kong, 2009), a method that uses item response time as a proxy 

for test-taking motivation.  Unfortunately, this particular feature is also the origin 

of this method’s limitations.  First, the supposed consistency (i.e., convergent 

validity) between the manifest response time and unobservable test-taking 

motivation requires strong empirical support.  For example, in Wise and Kong 

(2005), the correlation between the self-report test-taking motivation scale and the 

total test time was very low (r = 0.22); moreover, the self-report test-taking 

motivation scale and the index developed by the authors (i.e., Response Time 

Effort) were weakly correlated (r = 0.25).  In Wise et al. (2009), the correlation 

between self-report test-taking motivation scale and Response Time Effort was 

negligible (r = 0.06).  Second, the effectiveness of a time threshold in 

distinguishing response strategies also requires more evidence and examination 

(Wise & Kong, 2005).  Finally, the collection and accuracy of item-level response 

time heavily depend on the administration of computer-based testing, which is not 

implemented in most traditional testing scenarios.  

An indirect approach to detecting unmotivated test takers is through 

person-fit statistics (e.g., Armstrong & Shi; 2009; Cui, & Leighton, 2009; Glas & 

Dagohoy, 2007; Glas & Meijer, 2003; Karabatsos, 2003; Wise & Kong, 2005; see 

also Meijer & Sijtsma, 2001).  Aberrant item respondents are flagged because 
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their observed item response patterns are inconsistent with expected item response 

patterns.  However, the unanticipated item response patterns detected by person-

fit statistics may be due to different factors such as cheating (or answer copying), 

item disclosure effects, guessing, inattention/carelessness, a lack of motivation, 

creative responses, test anxiety, tendency to choose extreme options, or ignoring 

reverse wording (Cui, & Leighton, 2009; de la Torre & Deng, 2008; Emons, 

2008; Emons, Sijtsma, & Meijer, 2004; Glas & Meijer, 2003; Karabatsos, 2003). 

The person-fit indices are excessively sensitive to different types of aberrancy; 

thereby suspected misfit test takers may not necessarily be unmotivated test takers 

(Wise & DeMars, 2006; Wise & Kong, 2005; Wise et al., 2009).  Wise and Kong 

(2005) found that person-fit statistics and the self-report test-taking motivation 

scale were weakly correlated (r = –0.17); the authors concluded that person-fit 

indices and the self-report test-taking motivation scale may measure different 

constructs.  

Apparently, the use of direct and indirect measures of test-taking 

motivation presents numerous unresolved problems.  Given that traditional IRT 

models have an implicit homogeneity assumption related to test-taking motivation 

(Hambleton et al., 1991), identifying a suitable psychometric model is important 

in managing test-taking motivation heterogeneity that is encountered in low-

stakes assessments.  This study considers a psychometric modeling approach to 

accounting for test-taking motivation heterogeneity.  The succeeding section 
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introduces and discusses a modeling approach that incorporates test-taking 

motivation heterogeneity in analysis.   

2.2 Accounting for Heterogeneous Test-Taking Motivation with Mixture 

Modeling 

Distinct test-taking motivation drives test takers to behave differently 

during a test.  Motivated test takers respond to items in a way (i.e., solution 

strategy) that reflects actual knowledge, skills, and abilities, whereas unmotivated 

test takers are apt to respond in a random fashion (i.e., random guessing strategy) 

in low-stake assessments because of low-stakes test results.  The heterogeneity of 

test-taking motivation in low-stakes assessments generates qualitatively 

heterogeneous item response patterns which may distinguish between motivated 

and unmotivated test takers.  

Unfortunately, test-taking motivation heterogeneity is unobservable.  

Furthermore, the traditional IRT models commonly used to calibrate educational 

assessments cannot adequately account for such examinee heterogeneity.  One 

solution to capturing unobservable test-taking motivation heterogeneity is to use 

mixed-strategies IRT models (Lau, 2009; Subedi, 2009; Mislevy & Verhelst, 

1990), which incorporate IRT and random guessing strategy models in a model 

and allow for different item response functions for distinct latent classes at the 
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examinee level.  The mixed-strategies IRT models are special cases of the 

HYBRID model (Yamamoto, 1987, 1989; Yamamoto & Gitomer, 1993).   

The original HYBRID model (Yamamoto, 1987, 1989; Yamamoto & 

Gitomer, 1993) combines an IRT model with an LCA model (LCA; Dayton, 

1999; McCutcheon, 1987) into a single model.  It incorporates multiple response 

strategies, i.e., the target strategy of solving an item and other strategies that test 

takers may employ.  It is assumed that “correct solutions indicate that the student 

has acquired the cognitive skills necessary to solve a problem, and incorrect 

solutions indicate some deficit in that set of skills” (Yamamoto & Gitomer, 1993, 

p. 276).  Test takers who employ the demanded response strategy of solving items 

are modeled by an IRT two-parameter logistic (2PL) model, whereas test takers 

who represent a unique understanding or misunderstanding of the material being 

measured are modeled by an LCA model.  Each test taker belongs to either the 

IRT group or one of the LCA groups.  Within the IRT group, local independence 

and unidimensionality are assumed.  In the HYBRID model, ability parameter is 

only meaningful to test takers whose item responses are best fitted by the IRT 

model. 

Mislevy and Verhelst (1990) further extended Yamamoto’s work (1987, 

1989) and proposed an IRT-based mixed-strategies measurement model.  The 

authors illustrated how IRT mixture modeling can be used when test takers 

employ different strategies.  An example presented in the study is a mixture IRT 
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model that comprises two latent classes, enabling the simultaneous identification 

of valid respondents and random guessers in an examinee population.  A test taker 

belongs to only one exhaustive and exclusive latent class.  The item response 

patterns of unmotivated test takers who provide random responses are assumed 

distinctly and qualitatively different from those of valid respondents.  The latent 

class of valid respondents corresponds to the Rasch measurement model, whereas 

that of random guessers corresponds to a function of the chance of success.  

Mislevy and Verhelst used marginal maximum likelihood (ML) estimates with an 

expectation–maximization (EM) algorithm for model estimation.  The authors 

used item response probabilities as bases in estimating latent class membership.  

They did not conduct a simulation to evaluate model effectiveness under varied 

testing conditions, but their application to a real low-stakes dataset showed 

differences in item parameter estimates between the one-class Rasch model (i.e., 

all respondents’ item responses were used for item parameter estimation) and 

mixed-strategies two-class model (i.e., random guessers corresponded to a chance 

model, and valid respondents’ responses were used for item parameter estimation; 

see also Equations 3 and 4). 

Lau (2009) has recently extended Mislevy and Verhelst’s (1990) mixed-

strategies Rasch model to mixture one-parameter logistic (1PL) and mixture 2PL 

IRT models, with estimation implemented in Mplus (Muthén & Muthén, 1998-

2010).  The results of her simulation study show that the mixed-strategies IRT 
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models produced accurate model–data fit and model parameter estimates under 

the presence of random guessing respondents.  The findings also indicate that the 

one-class model may still function when less than 1% of guessers were present.   

Subedi (2009) also extended this modeling approach to a mixture 2PL IRT 

model (called the mixture IRT model with random guessing) to distinguish 

random guessers and valid respondents.  Subedi implemented Bayesian estimation 

in WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000).  The model 

effectively identified subsets of guessers and produced accurate model parameter 

estimates.  In Subedi’s sequential real data application, around 5% of the test 

takers were identified as random guessers; the final distribution of the proficiency 

classification decision (i.e., advanced, proficient, basic, and below basic) was only 

slightly influenced when a small proportion of test takers (e.g., less than 5%) 

engaged in random guessing.  

Mathematically, the marginal probability of a correct answer in IRT-based 

mixed-strategies modeling and the probability of success by a test taker within a 

class are expressed in Equations (3) and (4), respectively (Lau, 2009; Mislevy & 

Verhelst, 1990; Subedi, 2009): 

1 2

exp[ ( )] exp( )
( 1) ,

1 exp[ ( )] 1 exp( )
i j i i

i j i i

a b
P x

a b

  
 

   
           

                                   (3) 
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exp[ ( )] exp( )
( 1) (1 ) ,

1 exp[ ( )] 1 exp( )
i j i i

j j
i j i i

a b
P x g g

a b

 
 

   
             

                           (4) 

where a response vector is represented by x = (x1,.., xI).  The latent class 

proportions for motivated and unmotivated classes are π1 and π2, respectively.  

The item discrimination and difficulty parameters for item i are denoted by ai and 

bi.  The ability parameter for test taker j is represented by θj.  The indicator of the 

latent class membership of an examinee j is gj, in which g = 1 indicates the latent 

class of valid respondents and g = 0 refers to the latent class of random guessers.  

The item response patterns by motivated examinees that apply solution strategy 

correspond to an IRT model, whereas those by unmotivated examinees that apply 

random guessing strategy correspond to a random guessing strategy model.  The 

item threshold for the random guessing strategy is a constant, τi.  The probability 

of a correct response by guessing takes the value of the reciprocal of the number 

of options in a multiple-choice item.  In a mixed-strategies 2PL model, ai is 

allowed to vary across items; in a mixed-strategies 1PL model, ai is constant 

across items; in a mixed-strategies Rasch model, ai takes on a constant value of 1 

across items.   

An essential assumption underlying the mixed-strategies modeling is that 

categorical latent class membership can describe examinees’ latent heterogeneous 

test-taking motivation.  This modeling approach (Lau, 2009; Mislevy & Verhelst, 

1990; Subedi, 2009) and aforementioned direct and indirect measures of test-
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taking motivation (i.e., motivation filtering, person-fit statistics) are governed by 

the same logic because their ultimate goals are to classify examinees into 

unmotivated and motivated groups and to facilitate follow-up statistical 

adjustment.  Test-taking motivation is fundamentally regarded as a person 

characteristic that is kept constant in a test.   

This study adopts the mixed-strategies modeling approach because it 

presents many desirable advantages.  First, this modeling approach aids the 

identification of unmotivated respondents who guess randomly and therefore 

serves as a useful model-based motivation filtering technique for low-stakes 

assessments.  Second, it does not require two-step modeling because both latent 

class membership and model parameters can be estimated on the basis of item 

response patterns rather than on external manifest variables (e.g., item response 

time).  Third, this approach is suited for both pencil-and-paper and computer-

based testing scenarios.  Fourth, the mixed-strategies approach eliminates the 

need to consider the issues that arise from the use of motivation filtering (i.e., 

self-report test-taking motivation scale, item response time, or person-fit 

statistics).  These issues are discussed earlier in the dissertation, such as validity 

concerns, appropriateness of a cutoff score or time threshold for identifying 

unmotivated test takers, or the consistency between test-taking motivation and 

item response time/person-fit statistics.  More important, a latent class approach 

enables researchers to further use covariates to characterize latent class 
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membership (Samuelsen, 2005).  Such investigation considerably improves result 

interpretation and delineation of the implications of using mixed-strategies 

modeling.  

A major limitation of the current applications of the mixed-strategies 

modeling is that those models disregard testlet effects that are often encountered 

in educational assessments.  Failure to control for test-taking motivation 

heterogeneity and testlet effects can contribute to inaccurate estimation and 

invalid inferences.  Another limitation of the current applications of the mixed-

strategies modeling is that after the latent classes (i.e., motivated and unmotivated 

respondents) in the examinee population have been identified, previous studies 

did not further explore which indicators can potentially help the interpretation of 

the latent classes of test-taking motivation heterogeneity.  The failure to interpret 

identified latent class membership makes an unobservable latent class variable 

much difficult to understand and diminishes the applicability of the mixed-

strategies modeling to real-world testing scenarios.  The current research is 

different from previous work in that it incorporates test-taking motivation 

heterogeneity and testlet effects into a single measurement model in testlet-based 

assessments and aims to empirically investigate the potential attributes that are 

associated with latent class membership from real data.  The literature on testlet 

effects and the modeling approaches that explain such effects are reviewed in the 

next section.   
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2.3 Testlet Effects and Measurement Models that Manage Such Effects 

A testlet is a commonly used item format in educational assessments. 

Frequently seen testlets comprise subsets of related items that correspond to a 

common stimulus, such as passages, graphic contexts, listening records, or 

laboratory tasks.  Testlet-based items are desirable in educational assessments for 

several reasons.  First, formulating testlet-based items is an economical and 

efficient option for test developers; the same holds true for test takers (i.e., 

examinees can answer several questions with one passage).  Second, using testlet-

based assessment conserves testing time, making it significantly more realistic 

and applicable to real-world testing scenarios.  More important, testlet-based 

items can measure the higher level cognitive skills (e.g., Evaluating or Creating 

in Bloom's revised taxonomy; see Anderson & Krathwohl, 2001) that are often 

embedded in situational or authentic contexts. 

The drawback to testlets is that the items are usually interdependent on 

one another, and the estimation and interpretation of an item are correlated to that 

of other items within the same testlet (i.e., testlet effects).  Testlet effects can 

violate the assumption of local item independence in the IRT models.  As stated 

earlier (see Chapter 1), local item independence is that an examinees’ responses to 

different items are statistically independent after taking examinee ability into 

account (Hambleton et al., 1991); namely, a respondent’s performance on one 

item is independent of his or her responses to any other items in the test.  Previous 
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studies have indicated that the presence of local item dependence caused an 

overestimation of test reliability and produced inaccurate parameter estimates 

(e.g., Bradlow et al., 1999; Chen & Thissen, 1997; DeMars, 2006; Sireci et al., 

1991; Thissen et al., 1989; Wainer & Thissen, 1996; Wainer & Wang, 2000; Yen, 

1993). 

To manage testlet effects in the unidimensional IRT modeling framework, 

researchers have developed two major modeling approaches: the polytomous and 

testlet models.  The polytomous modeling approach involves treating testlet-based 

items as polytomous items and then fitting data by using the polytomous model 

(Cook et al., 1999; Thissen et al., 1989).  The rationale that underlies this 

approach is that “a summed score of items within a testlet” is regarded as “a super 

item with partial credits” because testlet-based items share a common stimulus.  

Polytomous items are treated as locally independent and thereby local item 

dependence caused by testlets can be absorbed (Yen & Fitzpatrick, 2006).  This 

approach manages testlet effects (Cook et al., 1999; Sireci et al., 1991; Thissen et 

al., 1989; Yan, 1997) but still suffers from certain limitations.  First, it requires 

coding of raw item response scores into testlet scores.  The testlet effects are 

indirectly resolved and psychometric information at the individual item level is 

lost.  For example, it is criticized that “a testlet score does not say anything about 

the response pattern that produced the score” (de Ayala, 2009, p. 132).  Second, 

aggregating the item scores within a testlet to a testlet score dramatically shortens 
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test length (e.g., if five items exist within each of four testlets, only four 

polytomous items remain after a re-coding procedure).  Given that the testlet 

scores are used to estimate respondents’ ability levels, a decrease in the total 

number of items may reduce the information for estimating person-related 

parameters, thereby potentially affecting the accuracy of person-related parameter 

estimates.  Chen, Jiao, and von Davier (2013) compared the effectiveness of 

different approaches to dealing with testlet effects in the framework of mixture 

IRT modeling.  The authors assessed model parameter recovery in the mixture 

Rasch model, mixture polytomous model, and mixture Rasch testlet model.  The 

results indicate that the polytomous modeling approach produced poor 

classification accuracy for latent classes, biased estimates of mixing proportions, 

and low accuracy for ability parameter estimates.  Their results also implicitly 

suggest that person-related parameters (i.e., latent class classification accuracy, 

mixing proportion estimates, and ability parameter estimates) were negatively 

affected by the polytomous scoring of a testlet as a single item. 

The testlet modeling approach entails directly incorporating testlet 

parameters into IRT measurement models (Bradlow et al., 1999; Jiao et al., 2005; 

Wainer et al., 2000; Wainer & Wang, 2000; Wang et al., 2002; Wang & Wilson, 

2005).  This method explicitly accounts for testlet dependence and enables the 

evaluation of the magnitudes of testlet effects.  The probability of correctly 
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obtaining an item in a testlet model with three item parameters is mathematically 

expressed as (Wainer et al., 2000; Wainer & Wang, 2000) 

( )

( )

exp[ ( )]
( 1) (1 ) ,

1 exp[ ( )]
i j i jd i

i i
i j i jd i

a b
P x c c

a b

 
 

  
     

    
                                             (5) 

where ci is the item guessing parameter, and γjd(i) is the random-effects testlet 

parameter associated with item i within testlet d for examinee j.  If ci is 0 and 

testlet variances are constant across testlets, the model is reduced to the two-

parameter testlet model developed by Bradlow et al. (1999).  If ci is 0 and ai takes 

on a fixed value of 1, the model is reduced to the one-parameter Rasch testlet 

model proposed by Wang and Wilson (2005).  Table 1 briefly summarizes the 

studies devoted to testlet models, outlining how previous researchers manipulated 

testlet effects, what kinds of item formats have been explored, and which testlet 

models have been investigated.   

There are potential limitations of testlet modeling that may possibly 

restrict its applicability.  First, in most cases, testlet units can be easily recognized 

on the basis of an observable common passage, table, graph, or diagram.  

However, identifying testlet units become difficult when the items formulated are 

based on unobservable stimuli.  For example, items clusters are designed to 

measure different constructs, such as comprehension or critical thinking in a 

reading literacy assessment.  In such a testing scenario, correctly identifying 
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unobservable constructs that form testlet units necessitates expert content 

knowledge, making testlet modeling less applicable.  Second, many educational 

assessments use conventional IRT models not only for test development and 

parameter estimation, but also for test scoring, equating, linking, and norming.  

Applying testlet modeling solely on test estimation can bring forth challenges to 

the aforementioned psychometric analyses including test equating, linking, and 

norming, thereby diminishing the applicability of testlet modeling. 

The advantages of testlet modeling are that individual item-level 

psychometric information can be retained and test length does not decrease.  

These features are attractive because interpreting the results of dichotomously 

scored items is more straightforward and meaningful than elucidating those of 

polytomously scored items.  Testlet models have shown to improve model fit and 

estimation accuracy (Bradlow et al., 1999; Wainer et al., 2000; Wainer & Wang, 

2000; Wang et al., 2002; Wang & Wilson, 2005).  For these reasons, this study 

adopts the testlet modeling to account for testlet effects in educational 

assessments.  The proposed model that combines the mixed-strategies Rasch 

modeling with a testlet model will be comprehensively discussed in the next 

chapter. 
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2.4 Bayesian Estimation 

A Bayesian estimation with Markov chain Monte Carlo (MCMC) 

algorithm and ML estimation are two major statistical techniques for model 

parameter estimation.  An essential difference between MCMC and ML methods, 

as indicated by Kim and Bolt (2007), is that ML calculates parameters by finding 

the maximum likelihood of the observed data; MCMC, on the other hand, uses 

prior distributions to estimate model parameters, assuming that observations can 

be sampled from the parametric posterior distributions implied by the model.  For 

the present research, the MCMC method is chosen over the ML algorithm for 

model estimation for a number of reasons.  First, the MCMC method enables 

highly flexible implementation for complex models (Kim & Bolt, 2007).  Yen and 

Fitzpatrick (2006) pointed out that MCMC methodology can easily accommodate 

complex data, such as item responses with complicated dependence.  For these 

reasons, MCMC has been popular and useful in the estimation of IRT-based 

mixture models (e.g., Bolt et al., 2002; Cho, Cohen, & Kim, 2013; Dai, 2009; 

Cohen & Bolt, 2005; Jiao et al., 2012; Li, Cohen, Kim, & Cho, 2009; Meyer, 

2010; Samuelsen, 2005; Subedi, 2009) and in the estimation of testlet models 

(e.g., Bradlow et al., 1999; Jiao et al., 2012, 2013; Wainer et al., 2000; Wang et 

al., 2002).  By contrast, ML exhibits estimation efficiency (i.e., short estimation 

time) and has been widely used for mixture models (e.g., Alexeev, Templin, & 

Cohen, 2011; Cho, Jiao, & Macready, 2012; Finch & Pierson, 2012; Jiao et al., 
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2010; Mislevy & Verhelst, 1990; Rost, 1990) or testlet models (e.g., Glas, 

Wainer, & Bradlow, 2000; Jiao et al., 2010; Wainer & Wang, 2000).  However, in 

complex models, ML method with the EM algorithm may suffer from unbounded 

likelihood functions or from the generation of multiple local maxima of likelihood 

(Kiefer & Wolfowitz, 1956).  When respondents have perfect or all-zeros 

response patterns, ML estimation may pose critical challenges, such as a failure of 

convergence.  Considering that this research focuses on developing a new 

measurement model that is also highly complex, MCMC method is chosen 

because it offers an opportunity for researchers to experiment with the proposed 

model.  The second factor that drives the use of MCMC is its provision of more 

comprehensive information for describing model parameters.  MCMC describes 

model parameters on the basis of their corresponding posterior distributions, 

whereas ML implements description in terms of point estimates.  The third reason 

is that MCMC exhibits high estimation accuracy.  Glas et al. (2000) compared the 

calibration performance of marginal ML and MCMC in testlet-based adaptive 

testing.  The authors found that (1) the parameter estimates obtained from MCMC 

and ML were highly correlated, but ML tended to underestimate the width of the 

interval region; and (2) MCMC provided interval and point estimates that were 

closer to true values in the main.  Jiao et al. (2013) compared parameter recovery 

by ML, MCMC, and six-order Laplace estimation in the one-parameter testlet 

model.  Their results show that (1) MCMC generated the least amount of bias in 
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item parameter estimates; (2) no discernible difference in terms of ability variance 

and ability parameter recovery was found between ML and MCMC; and (3) 

MCMC and Laplace estimation satisfactorily recovered testlet variance, whereas 

ML underestimated true testlet variance under large testlet effects.  Another 

reason MCMC is chosen is that it offers both numerical and graphical tools that 

are useful for monitoring convergence.  The accumulated evidence excellently 

facilitates the determination of appropriate cases.  A major limitation of MCMC 

estimation, however, is that it demands a long iterative process, so that a 

substantial amount of time is needed for model parameter estimation.  

Basically, MCMC computation involves obtaining posterior distributions 

on the basis of both prior distribution and the likelihood function.  Bayes’ theorem 

is expressed as follows: 

( | )* ( )
( | ) ,

( | ) ( )

f X f
f X

f X f d


 
 

  
                                                                        (6) 

where X is a set of item response data,   is a set of model parameters, ( )f 

represents the prior of model parameters, ( | )f X  denotes the likelihood of item 

response data given all the model parameters, and ( | )f X is the posterior density 

of model parameters given the data (Kim & Bolt, 2007).  With an MCMC 

algorithm, the model is fitted to the item response dataset by simulating a random 
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sample that can approximate the probability distribution of the model parameter 

(Sinharay, 2003, 2004).   

The MCMC estimation requires the specification of priors.  A suggested 

probability distribution is the conjugate prior, which causes posterior distribution 

to take on the same form as prior distribution (i.e., the posterior distribution has a 

known functional form), as well as facilitates more efficient sampling from the 

posterior.  The strength of the prior can be reduced by specifying prior 

distribution (i.e., the mean and variance of a prior distribution) as noninformative; 

for example, a normal prior is assigned to the ability parameters, but the mean or 

variance of this prior can be specified with hyper priors (Kim & Bolt, 2007).   

After a set of priors for model parameters are determined, a sampling 

mechanism is iteratively run.  Gibbs sampling (German & German, 1984) and 

Metropolis Hastings algorithm (Hasting, 1970) are two popular samplers.  The 

former is preferred when conjugate priors are used, so that samples can be 

directly simulated from a known form of posterior distribution; and the latter is 

useful when the distributional form of conditional distributions is unknown, so 

that samples are indirectly generated as candidate observations from proposal 

distributions (Kim & Bolt, 2007; Sinharay, 2003).  MCMC estimation runs until 

Markov chains achieve convergence; then, inferences are drawn from the 

stationary posterior distribution of the targeted model parameters.    
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In this research, the WinBUGS software (Lunn et al., 2000) is used for 

MCMC estimation because the software is free and flexibly applied to complex 

models.  WinBUGS is easy to implement because in the internal phase of the 

program, sampling algorithms are automatically selected and therefore do not 

require specification by users (Kim & Bolt, 2007).  It also numerically and 

graphically provides multiple diagnostic tools that are useful for monitoring 

convergence.  More details on WinBUGS can be found on its official website 

(http://www.mrc-bsu.cam.ac.uk/bugs/). 
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Chapter 3: Methodology 

 

This study has multiple facets.  First, the issues arising from overlooking 

test-taking motivation heterogeneity and testlet effects in low-stakes testlet-based 

assessments are addressed through a simulation study.  Second, this study 

proposes a measurement model that incorporates test-taking motivation 

heterogeneity and testlet effects in analysis.  The performance of the proposed 

model is evaluated with simulated data under varied testing conditions and is 

explored with an empirical dataset.  Finally, this study empirically explores 

potential indicators for facilitating the explanation of heterogeneous test-taking 

motivation in real low-stakes testlet-based assessment data.  The following 

section introduces the proposed and comparison models, simulation study design, 

estimation procedure, data analyses, and empirical study.  

3.1 Models 

As mentioned in Chapter 2, test-taking motivation can be conceptualized 

from the perspective of expectancy value theory.  The existence of unmotivated 

test takers in low-stakes assessments stems from low-stakes test results and the 

time and energy costs incurred by test takers.  In such a scenario, unmotivated test 

takers tend to provide random responses rather than respond in way that reflects 

their actual knowledge; motivated and unmotivated test takers therefore behave 
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differently during a test.  Test-taking motivation in low-stakes assessments is 

observed or measured through the manner by which test takers respond to items—

via a solution strategy or random guessing strategy.  In the proposed measurement 

model, test-taking motivation is operationalized and modeled through probability-

based item response functions.  A latent class variable categorizes test takers into 

motivated and unmotivated classes on the basis of item response patterns.  Test 

takers whose item responses are best predicted by the IRT model belong to the 

motivated class that applies the solution strategy, whereas those whose item 

response patterns are best fitted by the random guessing function belong to the 

unmotivated class that applies the random guessing strategy.  Test takers within 

the same latent class have qualitatively homogeneous item response patterns, 

whereas test takers between classes have qualitatively heterogeneous item 

response patterns. 

The proposed measurement model incorporates both test-taking 

motivation heterogeneity and testlet effects in its analysis.  The development of 

the proposed model (hereafter called the mixed-strategies Rasch testlet model) 

borrows the ideas from the HYBRID model (Yamamoto, 1987, 1989; Yamamoto 

& Gitomer, 1993).  In essence, the proposed model is an extension of the 

following models: the mixture Rasch model with a combination of valid 

respondents and random guessers (Mislevy & Verhelst, 1990), the mixture two-

parameter model with completely guessing behaviors (Subedi, 2009), and the 
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Rasch testlet model (Wang & Wilson, 2005).  The marginal probability of a 

correct response in the proposal model is expressed as 

1 2
( )

1 1
( 1) ,

1 exp[ ( )] 1 exp( )j i jd i i

P x
b

 
  

   
              

                            (7) 

and the probability of getting an item correctly in the proposed model is expressed 

as 

( )

1 1
( 1) (1 ) ,

1 exp( ) 1 exp[ ( )]j j
i j i jd i

P x g g
b  

  
                

                (8) 

where a response vector is represented by x = (x1,.., xI).  The mixing proportions 

are π1 and π2, in which π1 + π2 = 1 and 0 < πg < 1.  P(x = 1) refers to the 

probability of success for item i of examinee j in latent class g.  The indicator of 

latent class membership for examinee j is gj, which distinguishes latent classes in 

a population (i.e., the latent group membership of an examinee is a model 

parameter to be estimated).  The categorical latent class variable has two 

categories: g = 1 for motivated item respondents (i.e., solution strategy) and g = 0 

for unmotivated respondents (i.e., random guessing strategy).  For unmotivated 

test takers across the entire proficiency continuum, their probabilities of obtaining 

correct responses can be expected by chance.  Assuming that four options are 

available in a multiple-choice item, the probability of a correct response by 

guessing is 0.25—the reciprocal of the number of item options.  Therefore, τi as a 
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constant of item threshold for random guessing response is fixed as -1.0986, 

making 1/[1+exp(-τ)] to be equal to 0.25.  For motivated test takers, their 

probabilities of success can be characterized by the Rasch testlet model, in which 

bi is the difficulty for item i, θj is the ability parameter for examinee j, and γjd(i) is 

the random-effects testlet parameter associated with item i within testlet d for 

examinee j.  The testlet parameter describes the interaction between a test taker 

and an item nested within a testlet, and the strength of testlet effects is indicated 

by testlet variance
2

( )jd i .  The integration of both item response functions enables 

the management of test-taking motivation heterogeneity and testlet effects in a 

single measurement model.  

This study compares the results from the proposed model with the findings 

from the Rasch model and the mixed-strategies Rasch model.  This analysis is to 

demonstrate the impact in disregarding test-taking motivation heterogeneity and 

testlet effects, as well as to assess the effectiveness of the mixed-strategies Rasch 

testlet model.  The Rasch model, which has been widely used to analyze item 

response data in large-scale assessments, assumes zero testlet variance and 

conditionally independent items.  It considers a one-class examinee population.  

The Rasch model disregards both test-taking motivation heterogeneity and testlet 

effects.  The probability of a correct response in the Rasch model is expressed as 

1
( 1) .

1 exp[ ( )]j i

P x
b

 
  

                                                                            (9) 
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The mixed-strategies Rasch model incorporates test-taking motivation 

heterogeneity but disregards testlet effects in data.  This model is included in the 

study because testlet-based items are often calibrated as though they were 

independent (Wainer et al., 2000).  The probability of a correct response in this 

model is expressed by 

1 1
( 1) (1 ) .

1 exp( ) 1 exp[ ( )]j j
i j i

P x g g
b 

  
               

                         (10) 

3.2 Simulation Study Design 

The simulation study mimics a real-world testing scenario that 

approximates a standardized educational assessment, the PISA assessment, which 

is constructed and calibrated under the Rasch measurement model (Rasch, 1960).  

In this simulation, data are generated under the Rasch model with testlet effects 

(see Equation 8, in which g j = 1).  Both item and ability parameters are simulated 

from standard normal distribution.  In the generated data matrix, a proportion of 

item responses are replaced with unmotivated test takers’ item response patterns.  

The item response probabilities of obtaining correct responses for unmotivated 

respondents are simulated under the random chance model (see Equation 8, in 

which g j = 0).  

To elicit test-taking motivation on the basis of expectancy value theory, 

low-stakes assessments should address at least one of the components of the 
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expectancy value model (i.e., expectancy, attainment value, intrinsic value, utility 

value, perceived cost).  In this simulation, six testlets are generated, each with six 

dichotomously scored multiple-choice items.  In this design, test length enables 

test takers to complete all items within an appropriate duration.  Thus, expectancy 

is high because a test taker believes (s)he can complete the test, and perceived 

cost is reasonable because a test taker exerts an acceptable level of energy.  Items 

are also of appropriate difficulty (neither too easy nor too difficult), prompting 

test takers to deem the items intellectually challenging (thus, high intrinsic value).  

 
Table 2 

The Specification of the Simulation Design 

Manipulated Factors Levels 
Sample size  1,000 

3,000 
5,000 

Percentage of unmotivated 
respondents in the examinee 
population 

1% 
5%  
15% 

Magnitude of testlet effects Testlet variance = 0.25 (small) 
Testlet variance = 1.00 (large) 

Estimation model The Rasch model 
The mixed-strategies Rasch model 
The mixed-strategies Rasch testlet model 

 

Four factors are manipulated in the simulation: sample size, percentage of 

unmotivated respondents in the examinee population, testlet variance, and the 
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estimation model.  The specification of the simulation design is summarized in 

Table 2.  

Sample size.  Three sample sizes—1,000, 3,000 and 5,000—are 

considered because such variety facilitates observation in standardized 

educational assessments.  Besides, the variety of sample sizes in the current study 

can provide evidence of how model parameters are recovered in terms of small-, 

moderate-, and large-sample conditions.  

Percentage of unmotivated respondents.  This study manipulates the 

percentage of random guessers in an examinee population at three levels: 1%, 5%, 

and 15%.  This series of percentages are applied in accordance with the findings 

in previous empirical studies and with the levels used in earlier simulation studies.  

In real data analyses, the percentages of unmotivated test takers in low-stakes 

assessments may differ depending on testing conditions.  As reviewed in Chapter 

2, a range of 1.2% to 12.8% has been observed across empirical studies (Brown & 

Gaxiola, 2010; Lau, 2009; Subedi, 2009; Sundre & Wise, 2003; Wise & DeMars, 

2005, 2006).  In previous simulation studies, Subedi (2009) manipulated 0%, 5%, 

and 10% of random guessers in an examinee population, with 0% serving as the 

baseline and the other two levels functioning as benchmarks for assessing the 

effects of different guessing proportions on parameter estimation.  Lau (2009) 

manipulated 0.9%, 9%, and 20% of an entire population and classified them as 

random guessers.  Lau then added these groups to valid respondents (N = 5,000), 
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thereby coming up with approximately 0.89% (i.e., 45/5045 × 100%), 8.26%, and 

16.67% of random guessers in the examinee population, respectively.  In Lau, 

0.89% and 8.26%, respectively, represented the low- and high-end plausible 

estimates, respectively, of the random guessers observed in Wise and DeMars 

(2006); 16.67% represented the maximum allowable percentage of random 

guessers in an examinee population.  In the current research, the choice of 5% was 

decided upon to reflect a middle frequency of random guessers in real-world low-

stakes assessments—an approach consistent with the findings of Brown and 

Gaxiola (2010), Subedi (2009), and Wise and DeMars (2006).  One percent 

corresponds to a minor effect of random guesses and 15% as equivalent to a 

considerable effect of random guesses on the accuracy of parameter estimates.   

Testlet effects.  Two magnitudes of testlet effects (i.e., testlet variance = 

1.00 or 0.25) are included to represent large and small testlet effects; these levels 

are consistent with those applied in previous simulation studies (i.e., Jiao et al., 

2012, 2013; D. Li, 2009; F. Li, 2009; Wang & Wilson, 2005).  The manipulated 

testlet variances in the current research are reasonable and realistic when 

evaluated against the estimated testlet variances in previous empirical examples.  

For example, Wainer et al. (2000) reported that estimated testlet variances on 

SAT and GRE verbal tests ranged from 0.11 to 0.96; Jiao et al. (2013) revealed 

that six estimated testlet variances on a K-12 large-scale reading comprehension 

test ranged from 0.0510 to 0.8630; D. Li (2009) found that testlet variance 
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estimates on Assessing Comprehension and Communication in English State-to-

State for English Language Learners ranged from 0.245 to 1.072.  In F. Li (2009), 

eight estimated testlet variances on a large-scale grade-three reading assessment 

ranged from 0.19 to 0.71.  

Number of replications.  Each testing condition is replicated 25 times.  In 

selecting the number of replications, a primary consideration is the heavy 

computation required in MCMC estimation and the intensive time that a single 

estimation involves.  For example, the proposed model spends 10 to 25 hours in 

implementing estimation for a single dataset with a sample of 5,000.  The number 

of replications in the current research (i.e., 25) has been indicated as sufficient to 

generate good power with which to detect whether manipulated factors affect the 

precision of item difficulty parameters in a Monte Carlo IRT 2PL model study 

(Harwell, Stone, Hsu, & Kirisci, 1996).  Following the post-hoc procedure 

introduced in Jiao et al. (2013), the current work shows that the magnitudes of 

estimation bias in item difficulty parameters (between –0.017 and 0.051) were 

only about 1.5% of the range of simulated values (between –2.140 and 2.307).  In 

Wang and Wilson (2005, as cited in Jiao et al., 2013), the magnitudes of 

estimation bias in item difficulty parameters (between –0.063 and 0.050) over 100 

replications were about 2.8% of the range of simulated values (between ±2.00).  

In the current study, another post-hoc analysis is conducted to assess the standard 

deviation of Monte Carlo errors (MC errors) of model parameter estimates across 
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25 replications under a given testing condition.  Results indicate that the standard 

deviation values of the MC errors across replications were very small: at a range 

of 0.0015 to 0.0040 for the mixed-strategies Rasch testlet model; 0.0015 to 0.0037 

for the mixed-strategies Rasch model; and 0.0004 to 0.0005 for the Rasch model 

across testing conditions.  These results imply that the standard errors of model 

parameter estimates across 25 replications varied to a minimal extent; put it 

differently, such errors were highly stable and only slightly varied.  The low 

estimation bias, as well as the small standard deviation of MC errors of model 

parameter estimates, across the replications in the current simulation study 

implicitly support the appropriateness of 25 replications.  Furthermore, the 

number of replications in the present work is, in actuality, relatively larger than 

those used in previous Bayesian IRT-based simulation studies.  For example, five 

replications (e.g., Cho & Cohen, 2010), 10 replications (e.g., Cho et al., 2013; 

Dai, 2009; Meyer, 2010), 15 replications (Subedi, 2009), and 20 replications (e.g., 

S. Frederickx, F. Frederickx, De Boeck, & Magis, 2010) are observed in IRT-

based mixture models with MCMC estimation.  

Estimation model.  After datasets are generated, they are estimated by the 

Rasch model (Rasch, 1960), the mixed-strategies Rasch model (Mislevy & 

Verhelst, 1990), and the mixed-strategies Rasch testlet model.  As previously 

stated, the mixed-strategies Rasch testlet model represents a combined 

measurement model that simultaneously manages test-taking motivation 



47 
 

heterogeneity and testlet effects; the mixed-strategies Rasch model represents a 

measurement that accounts for a mixture of latent examinee populations, but 

disregards testlet effects; the Rasch model assumes a one-class population and 

zero testlet variance of data, which represents a commonly used approach for 

analyzing low-stakes testlet-based assessments (e.g., PISA assessment). 

3.3 Estimation 

The specification of priors.  The Bayesian estimation with MCMC 

algorithm implemented in WinBUGS 1.4.3 (Lunn, et al., 2000) is used for 

estimation.  To ensure convergence, the priors and hyper-priors are specified 

using the priors recommended by other researchers who applied comparable IRT-

based mixture models (i.e., Cho et al., 2013; Dai, 2009; Jiao et al., 2009; Jiao, von 

Davier, Kamata, Chen, 2011; Subedi, 2009):  

bi ~ normal (0, 1), i = 1,…, I; 

θj ~ normal (  , 
2
 ),  j = 1,…, J; 

  ~ normal (0, 1); 

2
  ~ inverse-gamma ( a , b

); 

( )jd i ~ normal (0, 
2

( )jd i ); 

2
( )jd i ~ inverse-gamma ( a ,b ); 
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gj ~ categorical (πg []),  j = 1,…, J; 

(π1, π2) ~ dirichlet (alpha[]); 

where item difficulty parameters are assumed from a standard normal distribution.  

The sum normalization of the item difficulty parameters is posited for scale 

identification.  Two-stage normal priors are assigned to ability and testlet 

parameters.  Ability parameters are assumed from a normal distribution, where 

the mean is from a standard normal distribution (normal [0, 1]) and the variance is 

from an inverse-gamma distribution.  Testlet parameters are assumed from normal 

distributions (0, 
2

( )jd i ), in which testlet variances are assigned inverse-gamma 

distributions.  According to Curtis (2010), “the inverse-gamma prior is the 

conjugate prior for a variance parameter from a normal likelihood, so the update 

in an MCMC algorithm is a simple random draw from an inverse-gamma 

distribution” (p. 12).  Inverse-gamma priors are used for variance parameters 

primarily to achieve convergence (Curtis, 2010).  On the basis of previous studies 

(i.e., Dai, 2009; Jiao et al., 2012, 2013; F. Li, 2009) and the preliminary analyses 

in the current work, the inverse-gamma distribution of ability and testlet variances 

is specified as gamma (1, 1) to ensure convergence.  Class membership is 

estimated on the basis of the frequencies of an examinee being sampled into each 

class.  As a conjugate prior for a categorical parameter g, the hyper-prior for latent 
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class membership follows a Dirichlet distribution.  Mathematically, Dirichlet 

distribution is expressed as follows (Spiegelhalter, Thomas, Best, & Lunn, 2003): 

1
( )

,
( )

g

G
gg

g
gg g









 


                                                                                         (11) 

where G is the number of categories and 0 < πg <1, 1g
g

  .  The parameters are 

(α1,…, αg), which take positive values.  In Bayesian mixture models, Dirichlet 

distribution serves as a prior distribution and is the conjugate prior of the 

categorical distribution (i.e., a generalization of the Bernoulli distribution; the 

parameters are the probabilities for the categories given one trial) or the conjugate 

prior of the multinomial distribution (i.e., a generalization of the binomial 

distribution; the parameters are the probabilities for the categories given n trials).   

The alpha parameters for the mixing proportion distribution are (.5, .5) as starting 

values (Bolt et al., 2002; Cohen & Bolt, 2005; Li et al., 2009; Meyer, 2010).  This 

study estimates latent class membership, item difficulty parameters, ability 

parameters, and variances of ability and testlet parameters.  

Label switching.  Label switching of latent classes is a potential problem 

in mixture models.  Cho et al. (2013) comprehensively described two types of 

label switching in IRT-based mixture models.  The first type arises across 

iterations within a single Markov chain, and the second occurs when labels switch 

over replications.  Label switching problems frequently occur when different 
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latent classes are respectively characterized by a common item response function 

(e.g., in the mixture Rasch model, a Rasch model is assumed for each class), in 

which no constraints (e.g., item difficulty) are posited on a certain class.  In the 

current research, respondents from two classes de facto correspond to distinct 

item functions, and each latent class label is embedded in its item function (see 

Equation 8).  A respondent’s item response patterns are best fitted by either the 

chance model or the Rasch (testlet) model; thus, it is expected that no label 

switching occurs in this study.  To verify this expectation, in the data analysis 

procedure, label switching is monitored; the latent class labels of the datasets in 

which labels switch are corrected.  

Convergence assessment.  In MCMC estimation, monitoring chain 

convergence is an important step that guarantees sampled observations from the 

algorithm can represent a sample from the posterior distribution of a model 

parameter (Kim & Bolt, 2007).  In this study, two chains of iterations are run and 

chain convergence is diagnosed with multiple criteria.  Diagnostic plots are used 

to examine whether Markov chains converge to a stationary distribution.  The 

plots used include history plots (where convergence is achieved when Markov 

chains combine and become stationary after an initial burn-in), quantiles plots 

(where the mean and 95% confidence interval of a parameter should stabilize at 

the posterior mean), autocorrelation plots (in which autocorrelation dropping to 

zero as evidence of convergence refers to a lack of correlation among iterations in 
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the chain), and density plots (in which a smooth density distribution shows 

satisfactory convergence).  This study also monitors MC errors, which are 

estimates of the standard errors of the mean, to determine how many sampled 

states of the chain are needed.  A suggested approach is to run simulations until 

the MC error of a parameter is less than 0.05 (Spiegelhalter et al., 2003).  Once 

sufficient evidence of convergence is obtained, the burn-in iterations are 

disregarded and the remaining iterations are used as bases for drawing inferences 

on model parameters from the posterior distribution.  If non-convergence is 

diagnosed in MCMC estimation, the solution used by this study is to remove non-

converged datasets and replace them with new item response datasets from the 

same study condition.  Non-converged cases are discarded because their estimates 

are merely random values which cannot represent a sample from the posterior 

distribution of a model parameter.  

3.4 Data Analyses 

The outcome statistics for evaluating the performance of the proposed 

model are model selection, latent class classification accuracy, and model 

parameter recovery.  The outcome statistics are computed over replications.  

Model selection.  In this research, the Akaike Information Criterion (AIC; 

Akaike, 1974), Bayesian Information Criterion (BIC; Schwarz, 1978), corrected 

Akaike Information Criterion (AICc; Burnham & Anderson, 2002), and sample 
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size-adjusted Bayesian Information Criterion (SABIC; Sclove, 1987) are used for 

model selection.  Multiple model-fit indices rather than a single index are used for 

latent class selection because the estimation of latent class membership can vary 

among model-fit indices under varied testing conditions.  

This research uses the above-mentioned likelihood-based model-fit indices 

for three reasons.  First, Bayesian-based model-fit indices, such as the deviance 

information coefficient (DIC; Spiegelhalter, Best, Carlin, & von der Linde, 2002) 

and posterior predictive model checks (PPMC; Gelman, Carlin, Stern, & Rubin, 

1998), are favorable for Bayesian modeling with MCMC estimation; however, 

they have been demonstrated to perform disproportionally worse in the mixture 

one-parameter model, generating only about 0% to 50% accuracy on selecting the 

correct model across testing conditions (Li et al., 2009).  Given the unreliability of 

the aforementioned Bayesian-based model-fit indices, they are disregarded in this 

research.  Second, this research adopts AIC and BIC because they are widely used 

model-fit statistics and have been recommended for Bayesian modeling with 

MCMC estimation (Congdon, 2003).  Li et al. (2009) investigated the efficacy of 

five model-fit indices (AIC, BIC, DIC, BF, & PPMC) in the mixture IRT models. 

The authors found that BIC exhibited the best performance, generating 100% 

accuracy in selecting correct models for all testing conditions; AIC came in the 

second, slightly tending to select a model with a high number of latent classes.  

Similar findings regarding the performance of AIC and BIC in IRT-based mixture 



53 
 

models can also be found in Cho and Cohen (2010), Cho et al. (2012), and 

Preinerstorfer and Forman (2012).  Given that the mixed-strategies Rasch testlet 

model is a newly constructed measurement model, and that model selection could 

vary depending on different testing conditions, it is important and necessary to 

evaluate how BIC and AIC function in the proposed model.  Third, this study 

includes SABIC and AICc as well because they are suitable for numerous 

parameters or for small samples (Burnham & Anderson, 2002; Yang, 2006), 

issues that are often encountered in mixture models.  In some related mixture 

models or latent class analysis models, SABIC has been indicated to accurately 

select the correct model (Nylund, Asparouhow, & Muthén, 2007; Tofighi & 

Enders, 2008; Yang, 2006).  

The formulas for computing the model-fit statistics in this work are as 

follows 

A IC =  -2 lnL+ 2k ,                                                                                     (12) 

B IC =  -2 ln L +  k ln (N ),                                                                          (13) 

2k(k+1)
AICc = AIC+ ,  

N-k-1
                                                                           (14)        

N+2
SABIC = -2lnL+ kln ,  

24
 
 
 

                                                                 (15) 
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where lnL is the log-likelihood, k is the number of parameters, and N is the 

sample size.  Lower values of the model-fit statistics indicate better fit; therefore, 

a model with the smallest value is selected as the best fitting model.  For each of 

the model-fit indices, the percentages of replications in which a particular 

measurement model is chosen are summarized.  Evaluating the performance of 

model-fit indices is valuable because the models selected could differ depending 

on varied testing conditions.  The evaluation in this research can improve the 

understanding of how different model-fit indices behave when the proposed 

model is applied.   

Latent class classification accuracy.  Classification accuracy assesses 

how well a model assigns test takers to distinct latent classes.  Put it differently, a 

test taker is classified into a particular latent class because his/her item response 

patterns are best fitted by a particular item response function embedded in a 

mixture model.  A high classification accuracy indicates the capability of the 

mixed-strategies model to distinguish test takers in terms of test-taking 

motivation.  In this research, latent class classification is evaluated in the mixed-

strategies Rasch model and in the mixed-strategies Rasch testlet model because 

these two allow for heterogeneous examinee groups.  This outcome statistic 

pertains to the percentage of examinees correctly classified as valid respondents 

and random guessers.  It is expressed as follows:    
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Classification accuracy = 

Number of examinees correctly classified into the correct latent class
×100%.

Total number of examinees
         

(16)     

Model parameter recovery.  After the estimated parameter distribution is 

adjusted to the equivalent scale as the true parameter distribution, bias and root 

mean square error (RMSE) are used to assess the recovery of item and ability 

parameters.  These two statistics are used because they both can quantify the 

distance between estimated and simulated parameter values, and because they 

have been regarded as useful indices for evaluating parameter recovery in 

previous simulation studies.  Bias refers to the difference between generated and 

estimated values across replications; it indicates an overestimation or 

underestimation of a model parameter estimate.  RMSE is the square root of the 

average of the squared difference between generated and estimated values across 

replications; the squaring process makes it more sensitive to large biases.  Small 

values of these statistics indicate good recovery of model parameters.  They are 

expressed thus: 

Bias =  
 

1 ,

R

r
r

R

 



                                                                                       (17) 
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RMSE =  
 2

1 ,

R

r
r

R

 



                                                                                 (18) 

where ηr is the estimated model parameter for the rth replication, η is the 

simulated model parameter for the rth replication, and R is the number of 

replications.  In terms of model parameter recovery, ANOVA analysis and effect 

sizes (a small effect size [η2 = 0.01]; a medium effect size [η2 = 0.06]; a large 

effect size [η2 = 0.14]; see Cohen, 1988) are provided to determine which 

manipulated factors would significantly affect the precision of model parameter 

estimates.  The current study also assesses how well the ability and testlet 

variances are recovered in the proposed measurement model under varied testing 

conditions.   

3.5 Empirical Study 

To answer the research question 3 (the performance of the proposed model 

in real data; see Chapter 1), a real item response dataset drawn from the PISA 

assessment is used.  PISA is appropriate for this research for four reasons.  First, 

PISA dichotomously scored items are constructed and calibrated under the Rasch 

measurement model.  Second, the test results of the PISA assessment attach no 

consequence to examinees’ academic records.  Some unmotivated test takers 

therefore exist in the sample.  Third, PISA cognitive assessment items are 

designed in testlet units.  The PISA 2006 Technical Report (OECD, 2009) stated 
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that “PISA items are arranged in units based around a common stimulus.  Many 

different types of stimulus are used including passages of text, tables, graphs and 

diagrams, often in combination.  Each unit contains up to four items assessing 

students’ scientific competencies and knowledge” (p. 28).  Fourth, PISA data not 

only assess domain-specific knowledge and skills; but also provide rich 

information (from student surveys) on student background, learning strategies, 

traits, and attitudes.  A panel of experts deliberately designed the assessment to 

include the aforementioned information, which is collected for use in analyzing 

PISA results. 

The PISA assessment is held every three years with different targeted 

domains (i.e., reading, mathematics, and science) and is administered to 15-year-

old students in 57 OECD countries (OECD, 2006).  PISA 2006, a pencil-and-

paper assessment with focus on science literacy, is selected for investigation in 

this research.  OECD (2006) defines science literacy as “the ability to use 

scientific knowledge and processes not only to understand the natural world but to 

participate in decisions that affect it” (p. 12).  A sample item response dataset is 

extracted from the 2006 PISA international science assessment data (OECD, 

2007a), with 2,327 examinees (1,122 males, 48.2%; 1,205 females, 51.8%) 

corresponding to 21 dichotomously scored items.  There are seven testlets, each 

with three multiple-choice items.  Examinees with complete responses on the set 

of items are included.  The extracted sample assessment dataset is estimated in 
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WinBUGS 1.4.3 (Lunn et al., 2000) with MCMC estimator.  The priors and 

hyper-priors, as well as the convergence assessment in the real data analyses, are 

the same to those used in the simulation study.  The model-fit indices used in the 

simulation study are used for model selection in the real data application.  Model 

selection has been a critical issue in real data applications; the results from the 

simulation study provide useful information on selecting a model for the real data 

analyses.  In addition to model-fit selection, the percentage of unmotivated test 

takers, estimates of item difficulty and ability parameters, and estimated testlet 

variances are summarized.  

As stated earlier, previous studies that applied mixed-strategies IRT 

models have not further explored the factors that characterize test-taking 

motivation heterogeneity empirically.  To answer the research question 4 (see 

Chapter 1), a follow-up exploratory investigation is conducted in the second stage 

of the current empirical study to explore the potential factors that characterize the 

heterogeneity of test-taking motivation.  This investigation illustrates the way to 

empirically interpret latent class members (i.e., valid respondents and random 

guessers) after they are identified by the proposed model.  The categorical latent 

class membership obtained from the first stage of the empirical study is then 

connected to a series of selected variables in the PISA 2006 student survey data 

(OECD, 2007a).  In this case, the selected variables are gender, language, and 

science proficiency, as well as economic, social, and cultural status (ESCS), 
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enjoyment of science, interest in science, self-efficacy in science tasks, self-

concept of science, and motivation to learn science.  These variables are possibly 

relevant to test-taking motivation in the domain of science achievement (Table 3).  

Gender and language are categorical variables, and the other variables are 

continuously scored (i.e., z score: positive scores indicate higher levels of the 

attribute).  This study hypothesizes that unmotivated test takers are characterized 

by certain personal attributes related to the specific domain; i.e., science.  For 

example, an examinee who minimally enjoys science may be more likely to 

exhibit no test-taking motivation in a low-stakes assessment.  

Among these selected variables, gender and ability (i.e., mathematical 

ability was measured by SAT math and the Natural World Test) predicted test-

taking motivation (i.e., test-taking motivation was measured by a self-report 

opinion scale) in a university-wide low-stakes quantitative test (Barry, Horst, 

Finney, Brown, & Kopp, 2010).  Ability (i.e., ability was measured by math test 

scores) and language described aberrant item respondents (i.e., high-scoring 

students or second-language learners tended to provide aberrant item responses), 

as detected by person-fit statistics in a mathematical assessment (Petridou & 

Williams, 2007).  Dodeen and Darabi (2009) investigated the correlations 

between a person-fit index and several variables in a mathematic achievement 

test, and results show that students’ math attitudes and math motivation were 

negatively related to person-fit statistics; namely, students with low motivation to 
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learn math or with low attributes toward math were more likely to give unusual 

response patterns.  

This investigation is exploratory in nature.  The statistical model of fitted 

logistical regression modeling can be expressed as  

0 1 2 3 4

5 6 7 8 9

ˆ( )
ln

1 ( )

,

j j j j j

j j j j j

x
Gender Language ScienceProficiency ESCS

x

Enjoyment Interest SelfEfficacy SelfConcept Motivation

     


    

 
      

    



  
 

                                                                                                                           (19) 

where the left-hand side of the equation represents the predicted log odds of 

success (i.e., x = 1, examinees that are random guessers) and ˆ ( )x  shows the 

predicted probability of being an unmotivated respondent.  The right-hand side of 

the expression lists intercepts (β0j), as well as predictors and their corresponding 

regression coefficients (β1j–β9j).  The set of variables include categorical and 

continuous covariates.  Categorical variables are re-coded as dummy variables in 

the regression model.  This investigation aims to facilitate the explanation of 

latent class membership that characterizes test-taking strategy heterogeneity in 

low-stakes assessments.  
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Chapter 4: Results of Simulation Study  

 

This chapter presents the results of the simulation study.  Section 4.1 

provides the descriptive statistics of the simulated parameters, and Section 4.2 

presents the convergence of parameter estimation.  Sections 4.3, 4.4, and 4.5 

present the findings on model selection, classification accuracy, and recovery of 

model parameter estimates, respectively.   

4.1 Descriptive Statistics of the Simulated Parameters 

The descriptive statistics of the simulated parameters are summarized in 

Table 4.  The item difficulty parameters ranged from –2.140 to 2.307.  The 

generated item parameters contained no items that are too easy or too difficult, as 

is observed in many practical low-stakes assessments.  A complete list of the 

generated item difficulty parameters is provided in Appendix A.  The generated 

ability parameters for three sample sizes exhibited mean values around 0 and 

standard deviation values around 1.  
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Table 4 

Descriptive Statistics for the Simulated Item Parameters 

Parameter Test Condition Minimum Mean Maximum Standard 
Deviation 

b All conditions -2.140 -0.150 2.307 0.991 
θ Sample = 1,000 -3.147 0.011 3.404 1.019 
θ Sample = 3,000 -3.090 -0.005 3.417 0.995 
θ Sample = 5,000 -3.587 -0.009 3.492 1.017 

 

4.2 Evaluation of Parameter Convergence 

Generally, the model parameters converged well, as indicated by the 

multiple criteria.  Figures 1–4 show some examples of quantile, autocorrelation, 

density, and history plots, which indicate a good mixing of Markov chains and 

satisfactory convergence.  Most model parameters reached convergence after 

3,000 iterations, whereas testlet variances required more iterations for them to 

reach convergence.  Numerically, all MC errors of the targeted parameters were 

less than 0.05 (Table 5), indicating convergence.  For each Markov chain, a 

minimum of 10,000 iterations are generally required with a burn-in of 5,000 and a 

post-burn-in of 5,000 iterations for inferences (i.e., two Markov chains result in 

10,000 iterations for inferences).  For some datasets, 10,000 to 20,000 iterations 

are needed to guarantee convergence for all model parameters; for those datasets, 

additional 5,000 iterations are added to draw inferences when all model 
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parameters converge.  Non-converged datasets and label switching problems were 

not observed in the simulation study.  
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Figure 1. Sample Quantiles Plots.  
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Figure 2. Sample Autocorrelation Plots. 
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Figure 3. Sample Density Plots.  
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Figure 4. Sample History Plots. 
 



68 
 

Table 5 

WinBUGS MC Errors for the Selected Parameters  

Parameter  MC Error  
 Mixed-Strategies 

Rasch Testlet Model 
Mixed-Strategies 

Rasch Model 
Rasch Model 

b[1] 0.0015 0.0009 0.0009 
b[2] 0.0017 0.0012 0.0011 
b[3] 0.0015 0.0011 0.0013 

theta[1] 0.0174 0.0090 0.0082 
theta[2] 0.0154 0.0069 0.0067 
theta[3] 0.0152 0.0079 0.0089 

mu 0.0004 0.0003 0.0002 
var 0.0009 0.0005 0.0004 

G[1] 0.0000 0.0000 ̶ 
G[2] 0.0000 0.0000 ̶ 
G[3] 0.0000 0.0000 ̶ 

vart[1] 0.0032 ̶ ̶ 
vart[2] 0.0033 ̶ ̶ 
vart[3] 0.0029 ̶ ̶ 
vart[4] 0.0031 ̶ ̶ 
vart[5] 0.0032 ̶ ̶ 
vart[6] 0.0035 ̶ ̶ 

Note. The parameters are selected from the first replicated dataset with sample = 
5,000, testlet variance = 0.25, and guessers = 1 %. 
 

4.3 Results for Model Selection 

In this study, the model–data fit is compared in terms of AIC (Akaike, 

1974), BIC (Schwarz, 1978), AICc (Burnham & Anderson, 2002), and SABIC 

(Sclove, 1987).  The smallest value of the model-fit indices indicates the best 

fitting model.  Results of model-fit statistics are shown in Table 6, which presents 

the number of replications favored by a particular model within a testing 

condition.  In 25 replications, all the indices suggested the mixed-strategies Rasch 
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testlet model as the best fitting model and the Rasch model as the worst.  That is, 

under test-taking motivation heterogeneity and testlet effects, the mixed-strategies 

Rasch testlet model provided the best model–data fit.  The model-fit statistics 

reflected consistent and equivalently effective performance across testing 

conditions, indicating that these model–data fit statistics are useful for the 

estimation models considered.  
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4.4 Results for Classification Accuracy 

The accuracy of latent class classification is reflected by the percentage of 

correctly classified test takers.  Table 7 presents the results on classification 

accuracy for the mixed-strategies Rasch testlet model and for the mixed-strategies 

Rasch model.  The Rasch model is excluded because it allows for only one latent 

class in an examinee population.  The mixed-strategies Rasch testlet model and 

the mixed-strategies Rasch model exhibited satisfactory and comparably correct 

identification of latent class membership.  The percentages of correct 

classification across varied testing conditions ranged from 95.48% to 99.33% for 

the mixed-strategies Rasch testlet model and from 94.61% to 99.31% for the 

mixed-strategies Rasch model.  Subedi (2009) also reported high classification 

accuracy, with a range of 96.92% to 98.06% for the mixture IRT model with 

random guessing.  The classification accuracy in the current work was 

uninfluenced by sample size or testlet effects, and accuracy was slightly higher as 

the percentage of unmotivated respondents increased.  The latter result may be 

attributed to the fact that when the percentage of unmotivated respondents 

decreases (e.g., from 15% to 1%), the mixing proportion of latent classes in an 

examinee population becomes more extreme (e.g., from 0.85:0.15 to 0.99:0.01), 

making the partitioning of latent classes in the examinee population more easily 

achievable.  Previous studies that investigated the varied mixing proportions in 

mixture IRT models also revealed similar findings, i.e., that more unbalanced 



73 
 

composition of latent classes in the examinee population produced slightly better 

classification accuracy (e.g., Chen et al., 2013; Cho et al., 2012).   

 

Table 7 

Classification Accuracy  

Sample 
 

Testlet 
Variance 

Guessers % 
 

Mixed-strategies 
Rasch testlet model

Mixed-strategies 
Rasch model 

1,000 0.25 1% 99.28 99.25 
  5% 97.64 97.56 
  15% 95.58 95.52 
 1 1% 99.29 99.14 
  5% 97.70 97.34 
  15% 95.52 94.61 

3,000 0.25 1% 99.29 99.29 
  5% 97.65 97.62 
  15% 95.62 95.52 
 1 1% 99.32 99.22 
  5% 97.73 97.32 
  15% 95.78 94.85 

5,000 0.25 1% 99.33 99.31 
  5% 97.70 97.64 
  15% 95.48 95.37 
 1 1% 99.31 99.20 
  5% 97.76 97.30 
  15% 95.66 94.69 

  

4.5 Results for Parameter Recovery 
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Item parameter recovery.  To assess whether test-taking motivation 

heterogeneity and testlet effects influence the precision of item parameter 

estimation, this study evaluates the recovery of item difficulty parameters by 

comparing the estimated and simulated parameters in terms of bias (Table 8) and 

RMSE (Table 9).  Across testing conditions, the variability of the bias in item 

difficulty parameters was lowest in the mixed-strategies Rasch testlet model and 

highest in the Rasch model.  The Rasch model exhibited a noteworthy trend: an 

increase in testlet variance or an increase in the percentage of unmotivated test 

takers increased the variability of the bias in item difficulty parameters.  

Similarly, in the mixed-strategies Rasch model, the variability of the bias in item 

difficulty parameters was higher under large testlet variance conditions than it 

was under small testlet variance conditions.  In the mixed-strategies Rasch testlet 

model, this variability decreased as sample size increased. 

The RMSE values of the item difficulty parameters are numerically 

summarized in Table 9 and graphically depicted in Figures 5–12.  The recovery of 

item parameters differed depending on estimation model, magnitude of testlet 

effects, percentage of unmotivated respondents, and sample size.  The precision of 

item parameter estimation was most strongly affected by the estimation model 

fitting to data.  For example, item parameters were recovered to the greatest 

extent by the mixed-strategies Rasch testlet model because the mean RMSE 

values approached zero across testing conditions (RMSE = 0.034 to 0.097).  The 
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Rasch model exhibited the worst item parameter recovery (RMSE = 0.055 to 

0.228).   

Generally, an increase in testlet effects and in the percentage of 

unmotivated respondents, as well as a decrease in sample size, increased the 

RMSE values of the item difficulty parameters.  RMSE visibly increased as testlet 

variance increased (Figures 5–10), particularly in the comparison models where 

testlet effects are not taken into account (i.e., the mixed-strategies Rasch model 

and Rasch model).  Disregarding the heterogeneity of test-taking motivation and 

testlet effects in the Rasch model affected its precision in item parameter 

estimation; the RMSE of the item difficulty parameters increased as the 

magnitude of testlet effects and/or the percentage of unmotivated test takers in the 

examinee population increased (Figures 5–10).  Under a large sample size, the 

RMSE values of the item difficulty parameters were typically lower, particularly 

those estimated by the mixed-strategies Rasch testlet model (Figures 11–12).  

The ANOVA and effect sizes are analyzed for the RMSE in item difficulty 

(α = .05), which evaluates how estimation model and testing conditions affected 

the recovery of item parameters.  Significant main effects were found for 

estimation model (F[2, 1890] = 221.76, p < .001, a large effect size [η2 = 0.190]), 

testlet effects (F[1, 1890] = 162.12, p < .001, a medium effect size [η2 = 0.079]), 

percentage of guessers (F[2, 1890] = 43.29, p < .001, a small effect size [η2 = 

0.044]), and sample size (F[2, 1890] = 40.96, p < .001, a small effect size [η2 = 
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0.042]).  The post-hoc Turkey comparisons indicate that significant differences in 

terms of the RMSE in beta were found (1) between any pair of estimation models; 

(2) between small and the other two samples; (3) between any pair of percentages 

of guessers; and (4) between levels of testlet effects.  In addition, two interaction 

effects on the RMSE in item difficulty were statistically significant: model*testlet 

effects (F[2, 1890] = 29.49, p < .001, a small effect size [η2 = 0.030]) and 

model*guessers (F[4, 1890] = 31.46, p < .001, a medium effect size [η2 = 0.062]).  

This finding indicates that one level of testlet effects had high RMSE in item 

difficulty within a certain estimation model, and that the other level of testlet 

effects showed high RMSE in item difficulty within other estimation model(s).  

Additionally, one level of guessers exhibited high RMSE in item difficulty within 

a certain estimation model, while the other level of guessers had high RMSE in 

item difficulty within other estimation models. 
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Table 8 

Bias in Item Difficulty Parameter Estimates (continued) 

Sample 5,000 
Testlet Variance  0.25   1  

Guessers % 1% 5% 15% 1% 5% 15% 
Mixed-strategies Rasch testlet model 

Minimum -0.021 -0.023 -0.012 -0.020 -0.021 -0.019
Mean 0.000 0.000 0.000 0.000 0.000 0.000

Maximum 0.015 0.016 0.015 0.018 0.014 0.022
Standard Deviation 0.007 0.009 0.007 0.010 0.009 0.010

Mixed-strategies Rasch model 
Minimum -0.096 -0.096 -0.095 -0.326 -0.346 -0.332

Mean 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 0.079 0.091 0.099 0.266 0.285 0.308

Standard Deviation 0.042 0.044 0.042 0.135 0.138 0.136
Rasch model   

Minimum -0.117 -0.217 -0.460 -0.343 -0.443 -0.632
Mean 0.000 0.000 0.000 0.000 0.000 0.000

Maximum 0.113 0.241 0.519 0.292 0.409 0.649
Standard Deviation 0.053 0.100 0.205 0.144 0.186 0.276
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Table 9 

RMSE of Item Difficulty Parameter Estimates (continued) 

Sample 5,000 
Testlet Variance 0.25 1.00 

Guessers % 1% 5% 15% 1% 5% 15% 
Mixed-strategies Rasch testlet model 

Minimum 0.025 0.025 0.028 0.025 0.026 0.023 
Mean 0.034 0.035 0.037 0.037 0.038 0.040 

Maximum 0.050 0.049 0.051 0.055 0.051 0.054 
Standard Deviation 0.006 0.005 0.006 0.006 0.005 0.007 

Mixed-strategies Rasch model 
Minimum 0.026 0.023 0.027 0.027 0.030 0.024 

Mean 0.049 0.051 0.050 0.112 0.115 0.114 
Maximum 0.107 0.104 0.106 0.328 0.348 0.335 

Standard Deviation 0.020 0.020 0.020 0.079 0.082 0.081 
Rasch model 

Minimum 0.028 0.023 0.025 0.026 0.029 0.032 
Mean 0.055 0.086 0.158 0.119 0.149 0.214 

Maximum 0.127 0.243 0.520 0.344 0.445 0.649 
Standard Deviation 0.028 0.059 0.131 0.085 0.114 0.173 

 

 
 



81 
 

 

Figure 5. Plot of RMSE of Item Difficulty Estimates at a Sample = 1,000.  
 

 

Figure 6. Plot of RMSE of Item Difficulty Estimates at a Sample = 3,000. 
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Figure 7. Plot of RMSE of Item Difficulty Estimates at a Sample = 5,000. 
 

 

Figure 8. Plot of RMSE of Item Difficulty Estimates at Guessers = 1%.  
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Figure 9. Plot of RMSE of Item Difficulty Estimates at Guessers = 5%.  
 

 

Figure 10. Plot of RMSE of Item Difficulty Estimates at Guessers = 15%. 
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Ability parameter recovery.  Table 10 presents the bias in ability 

parameter estimates.  Three factors affected bias variability: percentage of 

unmotivated respondents, magnitude of testlet variance, and estimation model.  

An observed tendency is that the increasing magnitude of testlet effects and 

percentage of unmotivated respondents elevated bias variability.  Across testing 

conditions, bias variability was generally smallest in the mixed-strategies Rasch 

testlet model and largest in the Rasch model.   

The RMSE values of the ability parameter estimates are listed in Table 11 

and graphically illustrated in Figures 13–20.  The recovery of ability parameters 

differed in terms of estimation model, testlet effects, and percentage of 

unmotivated respondents.  The precision of ability parameter estimation 

diminished as the magnitude of testlet effects and percentage of unmotivated 

respondents increased.  The mixed-strategies Rasch testlet model and mixed-

strategies Rasch model exhibited minimal difference in the RMSE values of the 

estimates.  Chen et al. (2013) reported similar findings, revealing that the mixture 

Rasch model and mixture Rasch testlet model produced comparable ability 

parameter estimates when testlet effects were present in the data.  In the current 

study, under numerous unmotivated respondents (i.e., 5% & 15%), the Rasch 

model provided the worst ability parameter recovery among the three estimation 

models.  
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The ANOVA is conducted for the RMSE in ability parameter estimates, 

which assesses which manipulated factors significantly contributed to the 

precision of ability parameter estimates.  Three main effects exhibited statistical 

significance: (1) estimation model (F[2, 154386]= 944.62, p < .001, a small effect 

size [η2 = 0.012]); (2) testlet effects (F[1, 154386]= 4519.04, p < .001, a small 

effect size [η2 = 0.028]); and (3) percentage of unmotivated respondents (F[2, 

154386]= 721.36, p < .001).  The post-hoc Turkey comparisons indicate 

significant differences in the RMSE of ability parameters (1) between the Rasch 

model and the other estimation models; (2) between any pair of the percentages of 

unmotivated respondents; and (3) between levels of testlet effects.  In addition, 

two significant interaction effects occurred: model*guessers (F[4, 154386]= 

364.86, p < .001) and guessers*testlet effects (F[2, 154386]= 11.62, p < .001).  

This finding shows that estimation model and unmotivated respondents, as well as 

testlet effects and unmotivated respondents, exerted joint effects. 
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Table 10 

Bias in Ability Parameter Estimates (continued) 

Sample 5,000 
Testlet Variance 0.25 1.00 

Guessers % 1% 5% 15% 1% 5% 15% 
Mixed-strategies Rasch testlet model 

Minimum -1.116 -1.104 -1.198 -1.331 -1.345 -1.349 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 

Maximum 0.991 1.193 1.210 1.384 1.282 1.624 
Standard Deviation 0.192 0.217 0.255 0.280 0.297 0.330 

Mixed-strategies Rasch model 
Minimum -1.131 -1.120 -1.215 -1.354 -1.377 -1.384 

Mean 0.000 0.000 0.000 0.000 0.000 0.000 
Maximum 1.010 1.230 1.243 1.395 1.292 1.638 

Standard Deviation 0.198 0.223 0.262 0.289 0.310 0.350 
Rasch model 

Minimum -2.708 -3.082 -3.695 -2.694 -3.126 -3.701 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 

Maximum 1.782 1.721 1.819 1.765 1.765 1.913 
Standard Deviation 0.240 0.395 0.598 0.314 0.433 0.616 
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Table 11 

RMSE of Ability Parameter Estimates (continued)  

Sample 5,000 
Testlet Variance 0.25 1.00 

Guessers % 1% 5% 15% 1% 5% 15% 
Mixed-strategies Rasch testlet model 

Minimum 0.209 0.201 0.218 0.253 0.248 0.226 
Mean 0.405 0.413 0.429 0.499 0.503 0.515 

Maximum 1.146 1.253 1.303 1.421 1.405 1.764 
Standard Deviation 0.088 0.104 0.134 0.116 0.125 0.151 

Mixed-strategies Rasch model 
Minimum 0.208 0.198 0.215 0.253 0.237 0.214 

Mean 0.405 0.412 0.429 0.498 0.503 0.517 
Maximum 1.160 1.298 1.336 1.428 1.438 1.753 

Standard Deviation 0.090 0.106 0.137 0.120 0.131 0.163 
Rasch model 

Minimum 0.209 0.223 0.197 0.258 0.233 0.238 
Mean 0.413 0.456 0.560 0.505 0.541 0.627 

Maximum 2.735 3.103 3.712 2.710 3.143 3.722 
Standard Deviation 0.145 0.282 0.414 0.156 0.268 0.393 
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Figure 13. Plot of RMSE of Ability Parameter Estimates at a Sample = 1,000. 
 

 

Figure 14. Plot of RMSE of Ability Parameter Estimates at a Sample = 3,000. 
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Figure 15. Plot of RMSE of Ability Parameter Estimates at a Sample = 5,000. 

 

Figure 16. Plot of RMSE of Ability Parameter Estimates at Guessers = 1%. 
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Figure 17. Plot of RMSE of Ability Parameter Estimates at Guessers = 5%. 
 

 

Figure 18. Plot of RMSE of Ability Parameter Estimates at Guessers = 15%. 
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Recovery of ability and testlet variances.  The estimated ability 

variances and testlet variances are summarized in Table 12.  The estimates of 

ability variances were comparable among three estimation models across testing 

conditions.  The ability variances were adequately recovered.  The mixed-

strategies Rasch testlet model also well recovered the testlet variances.  The slight 

differences may be due to sample variations.  

 



98
 

 T
ab

le
 1

2 

R
ec

ov
er

y 
of

 A
bi

li
ty

 a
nd

 T
es

tl
et

 V
ar

ia
nc

es
  

 
T

es
tl

et
 V

ar
ia

nc
e 

 
 

 
 

0.
25

 
 

 
 

 

 
S

am
pl

e 
 

1,
00

0 
 

 
3,

00
0 

 
 

5,
00

0 
 

 
G

ue
ss

er
s 

%
 

1%
 

5%
 

15
%

 
1%

 
5%

 
15

%
 

1%
 

5%
 

15
%

 

R
as

ch
 m

od
el

 
A

bi
li

ty
  

0.
99

9 
1.

02
4 

1.
05

1 
0.

95
0 

0.
97

7 
0.

97
9 

0.
99

8 
1.

01
4 

1.
04

8 

M
ix

ed
-s

tr
at

eg
ie

s 
R

as
ch

 m
od

el
 

A
bi

li
ty

  
0.

99
3 

0.
99

5 
1.

00
3 

0.
94

5 
0.

95
0 

0.
92

0 
0.

99
2 

0.
99

0 
1.

00
2 

M
ix

ed
-s

tr
at

eg
ie

s 
R

as
ch

 te
st

le
t 

m
od

el
 

   

A
bi

li
ty

  
1.

04
8 

1.
04

9 
1.

06
0 

0.
99

2 
0.

99
8 

0.
96

5 
1.

04
3 

1.
04

0 
1.

05
4 

T
es

tl
et

 1
 

0.
29

4 
0.

28
3 

0.
30

6 
0.

26
1 

0.
27

7 
0.

26
3 

0.
26

1 
0.

26
3 

0.
26

2 
T

es
tl

et
 2

 
0.

27
9 

0.
28

2 
0.

31
8 

0.
27

0 
0.

26
5 

0.
26

5 
0.

26
6 

0.
26

0 
0.

27
2 

T
es

tl
et

 3
 

0.
29

7 
0.

29
5 

0.
29

0 
0.

25
5 

0.
27

3 
0.

27
3 

0.
26

0 
0.

26
5 

0.
25

4 
T

es
tl

et
 4

 
0.

28
9 

0.
28

6 
0.

31
0 

0.
27

0 
0.

26
9 

0.
27

0 
0.

26
3 

0.
25

5 
0.

26
8 

T
es

tl
et

 5
 

0.
29

8 
0.

31
5 

0.
30

1 
0.

26
9 

0.
26

8 
0.

26
5 

0.
25

3 
0.

25
6 

0.
26

1 
T

es
tl

et
 6

 
0.

31
4 

0.
29

4 
0.

28
8 

0.
25

9 
0.

27
3 

0.
26

4 
0.

26
1 

0.
26

7 
0.

25
2 

     



99
 

 T
ab

le
 1

2 

R
ec

ov
er

y 
of

 A
bi

li
ty

 a
nd

 T
es

tl
et

 V
ar

ia
nc

es
 (

co
nt

in
ue

d)
 

 
T

es
tl

et
 V

ar
ia

nc
e

 
 

 
 

1.
00

 
 

 
 

 

 
S

am
pl

e 
 

1,
00

0 
 

 
3,

00
0 

 
 

5,
00

0 
 

 
G

ue
ss

er
s 

%
 

1%
 

5%
 

15
%

 
1%

 
5%

 
15

%
 

1%
 

5%
 

15
%

 

R
as

ch
 m

od
el

 
A

bi
li

ty
  

0.
91

8 
0.

92
2 

0.
96

9 
0.

85
1 

0.
88

8 
0.

90
4 

0.
88

9 
0.

91
7 

0.
96

2 

M
ix

ed
-s

tr
at

eg
ie

s 
R

as
ch

 m
od

el
 

A
bi

li
ty

  
0.

91
0 

0.
88

9 
0.

89
6 

0.
84

5 
0.

85
7 

0.
83

0 
0.

88
4 

0.
88

7 
0.

90
0 

M
ix

ed
-s

tr
at

eg
ie

s 
R

as
ch

 te
st

le
t m

od
el

 
   

A
bi

li
ty

  
1.

06
2 

1.
03

6 
1.

04
7 

0.
98

2 
0.

99
7 

0.
96

1 
1.

03
4 

1.
03

8 
1.

05
4 

T
es

tl
et

 1
 

0.
97

5 
1.

01
0 

0.
99

5 
0.

99
5 

1.
01

6 
1.

00
1 

1.
02

0 
0.

99
7 

1.
00

8 
T

es
tl

et
 2

 
0.

95
4 

1.
00

0 
1.

04
2 

0.
97

9 
1.

01
1 

0.
98

6 
1.

00
4 

1.
01

7 
0.

98
2 

T
es

tl
et

 3
 

0.
95

3 
0.

99
2 

1.
00

7 
1.

01
4 

1.
01

8 
1.

00
6 

0.
99

6 
0.

99
5 

1.
00

0 
T

es
tl

et
 4

 
0.

95
0 

0.
98

8 
0.

98
5 

0.
99

8 
0.

99
2 

0.
99

6 
0.

99
5 

0.
99

8 
0.

98
9 

T
es

tl
et

 5
 

1.
01

8 
0.

98
9 

0.
97

7 
0.

99
1 

0.
99

3 
1.

00
8 

0.
98

8 
1.

01
6 

1.
00

9 
T

es
tl

et
 6

 
1.

00
4 

0.
93

6 
0.

96
3 

1.
00

1 
0.

97
5 

0.
99

4 
0.

99
3 

0.
99

0 
0.

98
2 



100 
 

Chapter 5: Results of Empirical Study 

 

This chapter presents the results of the empirical study.  Section 5.1 

presents the model selection and the descriptive statistics of model parameters; 

the analysis is designed to answer the research question 3.  Section 5.2 explores 

the empirical factors that are potentially associated with the heterogeneity of test-

taking motivation; a logistic regression analysis is conduced and summarized.  

5.1 Real Data Application  

The real dataset is fitted by the proposed model and the two comparison 

models.  In case the real dataset may require more runs, the function “thin” in 

WinBUGS is used to reduce computer storage space before convergence is 

achieved; for example, the actual number of iterations carried out is 40,000 when 

4,000 iterations are stored after thinning (thin = 10).  When convergence is 

obtained, post-burn-in 5,000 iterations (without thinning) are run for drawing 

inferences (i.e., two Markov chains result in 10,000 iterations for inferences).  

Figure 21 shows example plots for convergence assessment.  Generally, 15,000 

iterations are needed for Markov chains to achieve convergence.  The MC errors 

of the model parameters were less than 0.05, indicating convergence.   
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Figure 21. Examples of Plots of Convergence Assessment.  
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Results of model-fit statistics are shown in Table 13.  All mode-fit indices 

pointed to the mixed-strategies Rasch testlet model as the best fitting model and 

the Rasch model as the worst.  The results of model selection in the real data 

application agree with the findings in the simulation study: the model-fit statistics 

exhibited consistent and effective performance.   

 

Table 13 

Summary of Model Selection  

  AIC AICC BIC SABIC 
Mixed-strategies Rasch testlet model 51190 51200 51370 51270 
Mixed-strategies Rasch model 53000 53000 53130 53060 
Rasch model 53150 53150 53280 53210 

 

In the real dataset, of the 2,327 test takers, 46 (around 2.0%) were 

classified into the unmotivated class.  Put it differently, the item response patterns 

of these 46 test takers were best characterized by the random guessing strategy 

model rather than by the item response theory model.  Tables 14 and 15 present 

the descriptive statistics of the item and ability parameters, as well as the 

estimates of testlet variances in the mixed-strategies Rasch testlet model.  The 

estimates of the item difficulty and ability parameters were of medium range (b: –

1.129 to 2.314; θ: –2.244 to 2.817).  The testlet variances ranged from 0.137 to 

0.448, indicating the existence of item clusters in the real dataset.   
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Table 14 

Descriptive Statistics of Item and Ability Parameters  

Parameter Minimum Mean Maximum Standard Deviation 
b –1.129 0.000 2.314 0.814 
θ –2.244 0.458 2.817 0.934 

 

Table 15 

Estimates of Testlet Variances  

Testlet Variance # Estimate 
Testlet variance 1 0.448 
Testlet variance 2 0.440 
Testlet variance 3 0.145 
Testlet variance 4 0.301 
Testlet variance 5 0.235 
Testlet variance 6 0.137 
Testlet variance 7 0.241 

 

5.2 Potential Factors that Characterize Test-Taking Motivation 

Heterogeneity 

To answer the research question 4, several variables are empirically 

explored in characterizing the latent classes of test-taking motivation 

heterogeneity.  The logistic regression model with nine predictors and one binary 

dependent variable is fitted to the dataset.  Unlike linear regression, the logistic 

regression does not require the linear, normality, and homogeneity assumptions 

(Lomax, 2007); yet the logistic regression requires that only minimal liner 

dependency occurs among a set of predictors.  Prior to model fitting, the 
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correlations among predictors are examined, and results indicate that all 

correlation coefficients were not exceeding |0.7|—a criterion suggested by Pallant 

(2007).   

The Hosmer and Lemeshow test measures goodness of fit: a significant χ2 

indicates poor model fit.  In this real data example, the logistic regression model 

passed the Hosmer and Lemeshow test, suggesting that the model fit the data 

well, χ2 = 7.337, df = 8, p = .501.  The fitted logistic regression model is 

expressed by  

ˆ ( )
ln 1.544 0.169( ) 1.101( ) 0.013( )

1 ( )

+0.318( ) 0.117( ) 0.086( ) 0.034( )

0.014( ) 0.268( ).

x
Gender Language ScienceProficiency

x

ESCS Enjoyment Interest SelfEfficacy

SelfConcept Motivation




 
     
  

 



                                                                                                                          (20) 

The omnibus test of model coefficients was statistically significant, χ2 = 58.572, 

df = 9, p = .000, which implies that the subset of predictors jointly contributed to 

the heterogeneity of test-taking motivation.  The Wald statistics in Table 16 

indicate that all of the predictors, except for science proficiency, were 

unnecessary in the model; only science proficiency explained heterogeneity to a 

significant degree, Wald = 39.357, p = .000.  The predicted probability of being 

an unmotivated respondent was higher at low scores of science proficiency (  = –

0.013).  One unit decreased in science proficiency increased the predicted log 

odds by 0.013, holding all else constant.  Put it differently, assuming that all else 
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remained constant, for each unit decreased in science proficiency, there was a 

1.3% increase in the odds of being an unmotivated respondent.   

 

Table 16 

Parameter Estimates for the Logistic Regression Model  

 B S.E. Wald df Sig. Exp(B) 
Gender 0.169 0.346 0.239 1 0.625 1.184 
Language -1.101 1.033 1.138 1 0.286 0.332 
Science proficiency -0.013 0.002 39.356 1 0.000 0.987 
ESCS 0.318 0.169 3.551 1 0.060 1.375 
Enjoyment of science -0.117 0.256 0.210 1 0.647 0.889 
Interest of science -0.086 0.195 0.196 1 0.658 0.917 
Self-efficacy of science -0.034 0.202 0.029 1 0.865 0.966 
Self-concept of science -0.014 0.236 0.004 1 0.952 0.986 
Motivation to learn science 0.268 0.251 1.138 1 0.286 1.307 
Constant 1.544 0.844 3.347 1 0.067 4.684 
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Chapter 6: Conclusion and Discussion 

 

This chapter summarizes and interprets the findings of the simulation 

study and empirical application.  It discusses how the research questions are 

answered as well as how the simulated design characteristics perform in terms of 

model parameter recovery.  Implications, limitations, and directions for future 

research are also presented.  

6.1 Summary and Discussion of Findings—Simulation Study 

To answer the research question 1—the effect of overlooking test-taking 

motivation heterogeneity and testlet effects in low-stakes assessments—a variety 

of testing conditions are manipulated, and the performances of the proposed and 

comparison models are compared in a simulation study.  Results show that 

neglecting test-taking motivation heterogeneity and testlet effects adversely 

affected model–data fit and model parameter estimation.  The existence of these 

phenomena in data cannot be disregarded because these effects will, in turn, result 

in inaccurate targeted inferences.  

To answer the research question 2—how well model parameters are 

recovered under test-taking motivation heterogeneity and testlet effects in low-

stakes assessments—model–data fit, classification accuracy, and model parameter 

recovery are examined under simulated testing conditions.  The results 
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promisingly demonstrate the effectiveness of the proposed model and suggest its 

utility for low-stakes testlet-based assessments.  More specifically, test-taking 

motivation heterogeneity and testlet effects were well controlled by the proposed 

model.  The mixed-strategies Rasch testlet model outperformed the two 

comparison models, exhibiting superior model–data fit and satisfactory 

classification accuracy.  The good fit between model and data indicates that 

observed item response patterns were in accordance with the expected item 

response patterns implied by the class-specific models.  The high classification 

accuracy of the mixed-strategies Rasch testlet model is evidenced that test takers 

were responding in a manner (i.e., solution strategy or random guessing strategy) 

highly consistent with the hypothesized latent classes (i.e., a class of IRT model 

or a class of random guessing function).  It is implied that the proposed model is 

capable of classifying examinees in terms of heterogeneous test-taking 

motivation.  The mixed-strategies Rasch testlet model also demonstrated 

improved measures of model parameter estimates, making test results more 

accurate and reliable.  

A close look at the item parameter recovery shows that the accuracy of the 

item parameter estimates was influenced by estimation model, magnitude of 

testlet effects, percentage of unmotivated respondents, and sample size.  In the 

mixed-strategies Rasch testlet model, in which both test-taking motivation 

heterogeneity and testlet effects are accounted for, the item difficulty parameter 
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estimates were very close to true values across testing conditions.  In the mixed-

strategies Rasch model, wherein only test-taking motivation heterogeneity is 

described, the accuracy of the item difficulty parameter estimates tended to 

decrease as the magnitude of testlet effects increased.  Finally, in the Rasch 

model, which does not characterize test-taking motivation heterogeneity and 

testlet effects, the discrepancy between estimated and simulated parameters 

markedly expanded as testlet effects and/or the percentage of unmotivated test 

takers increased.  Item parameter recovery generally improved as sample size 

increased, regardless of which model was fitted to the data.  These findings have 

two implications.  First, overlooking test-taking motivation heterogeneity and 

testlet effects exerted considerable influence on the precision of item parameter 

estimates, particularly when testlet effects and/or percentage of unmotivated 

respondents increased.  This implication suggests the use of the proposed model 

given the need to carefully manage test-taking motivation heterogeneity and 

testlet effects.  Second, item parameter recovery via the proposed model will 

benefit from a larger sample size, but a large sample size is not necessary.  In the 

proposed model, item parameters recovered to a fairly satisfactory degree even 

under a small sample size (i.e., 1,000).  

In the analyses of ability parameter recovery, the precision of ability 

parameter estimates differed in testlet effects, estimation model, and percentage of 

unmotivated respondents.  The Rasch model generated the worst ability parameter 



109 
 

recovery among three estimation models, especially when high testlet effects 

and/or numerous unmotivated respondents (i.e., 15%) were present in the data.  

The mixed-strategies Rasch testlet model and the mixed-strategies Rasch model 

offered fairly comparable recovery of ability parameters.  Therefore, if one solely 

focuses on drawing inferences on the basis of ability parameters, no distinct 

difference is expected between the mixed-strategies Rasch testlet model and the 

mixed-strategies Rasch model.  Based on the findings from this study, it is 

recommended the use of the mixed-strategies Rasch testlet model over the mixed-

strategies Rasch model for two reasons: (1) the proposed model provided superior 

model–data fit and (2) facilitated the assessment of the existence and the 

magnitude of testlet effects, a task that the Rasch model or the mixed-strategies 

Rasch model is not able to accomplish.  

In addition to the above-mentioned findings, two more findings were 

worthy of note in the simulation study.  First, label switching of latent class did 

not occur in the proposed model.  Mixture IRT and mixture Rasch modeling 

approaches frequently suffer from this problem (e.g., Cho et al., 2013; Dai, 2009; 

Li et al., 2009; Jiao et al., 2009).  This drawback is attributed to the fact that in 

these mixture models, respondents from different latent classes correspond to the 

same form of item response functions.  For example, the mixture Rasch model 

(Rost, 1990) involves at least two Rasch models, in which no constrains are 

deliberately imposed on a certain class (e.g., item difficulties are high for one 
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class and low for other classes); therefore, the labels of latent classes can be 

switched across iterations within a single Markov chain or across replications.  In 

the proposed model, test takers from distinct latent classes are characterized by 

either the random guessing function or the Rasch testlet model exclusively; thus, 

sufficient information is available for effectively classifying test takers into latent 

classes.  The simulation results verify this hypothesis that the proposed model 

does not suffer from latent class label switching.  The second noteworthy finding 

is that the model selection indices considered in this research worked equivalently 

well in classifying test takers into (true) simulated latent classes.  The 100 % 

accuracy of model selection indicates that these model-fit indices effectively and 

consistently functioned across varied testing conditions and replications.  On this 

basis, the four statistics examined—AIC, AICC, BIC, and SABIC—are 

tremendously useful to researchers who apply the mixed-strategies Rasch testlet 

model.  This study also recommends that researchers use accumulated evidence 

rather than a single index in determining model–data fit.  

6.2 Summary and Discussion of Findings—Empirical Study 

The proposed model allows for distinct subgroups of test-taking 

motivation be to modeled with different measurement functions.  The empirical 

study is included to answer the research questions 3 (How does the proposed 

model perform in real low-stakes assessment data in terms of model–data fit? Are 
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there unmotivated test takers and testlet effects identified?) and 4 (What are the 

potential factors that characterize heterogeneous test-taking motivation from 

empirical low-stakes assessment data?) 

As stated in Chapter 3, the sample item response dataset extracted from 

the PISA 2006 science assessment is constructed under the Rasch model.  Given 

that the PISA assessment is low stakes in nature (i.e., some unmotivated 

respondents are expected) and that the assessment is primarily comprised of 

testlet-based items (i.e., testlet effects), this study therefore hypothesizes that the 

proposed model will satisfactorily fit the item response dataset.  

Three models are fitted to the real dataset: the Rasch model (i.e., the 

original calibration model for the dataset), the mixed-strategies Rasch model (i.e., 

the Rasch model that incorporates the heterogeneity of test-taking motivation), 

and the mixed-strategies Rasch testlet model (i.e., the Rasch model that manages 

testlet effects and test-taking motivation heterogeneity).  All the model-fit indices 

exhibited preference for the mixed-strategies Rasch testlet model, suggesting that 

the real low-stakes assessment dataset was best fitted by the proposed model. 

Results of model–data fit verify the need for a more sophisticated model that 

integrates the IRT model and random guessing strategy model for low-stakes 

assessments.  The consistency of model selection among indices echoes that 

indicated by the results of the simulation study.  
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Both test-taking motivation heterogeneity and testlet effects were 

identified in the extracted real dataset.  A total of 2.0 % of test takers were 

classified under the unmotivated test-taking group, which appeared at a lower rate 

than has been reported in previous empirical studies (e.g., Brown & Gaxiola, 

2010; Subedi, 2009; Sundre & Wise, 2003; Wise & DeMars, 2005, 2006).  A 

possible explanation is that examinees who attended the PISA 2006 science 

assessment had high perceived value/expectancy of the test, thereby taking the 

test more seriously.  The magnitudes of testlet variance were not negligible in the 

real dataset at a range of 0.137 to 0.448.  These findings therefore support the 

study hypothesis on the occurrence of test-taking motivation heterogeneity and 

testlet effects in low-stakes assessments.   

The follow-up exploratory study is intended to yield empirical evidence 

that demystifies the composition of unobservable latent class membership for 

whom test-taking motivation is distinct.  Several variables are selected to 

characterize the heterogeneity of test-taking motivation in a logistic regression 

model.  The findings from this empirical study are expected to help educators and 

practitioners identify potential sources that are associated with heterogeneity in 

real-world situations.  Among the set of variables, science proficiency explained 

the heterogeneity of test-taking motivation at a statistically significant level.  Low 

science proficiency was associated with a high likelihood of being an unmotivated 

respondent.  More specifically, test takers with low science proficiency were more 
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likely to have random guesses in the science assessment—a finding that agrees 

with Barry et al. (2010), Petridou and Williams (2007), and Wise et al. (2009).  

An important note is that this investigation is a methodological demonstration of 

exploring the potential characterizations of latent class membership after the 

proposed model identifies latent classes.  This study has no intention to draw a 

definite conclusion regarding respondent motivation in taking the PISA science 

assessment.  Furthermore, the findings from the follow-up exploratory study are 

based only on a single sample dataset and no strong evidence is derived as to 

cause–effect relationship.  Identifying conclusive sources of test-taking 

motivation heterogeneity in real data necessitates future research and powerful 

support from both educational psychology theories and related empirical studies. 

6.3 Limitations and Future Research Directions 

Similar to the findings of any other studies, the interpretations in this study 

should be limited to the conditions considered.  Several limitations and 

recommendations for future directions are addressed here. 

Number of replications.  The selection of the number of replications in 

this research is limited by practical considerations; that is, the heavy 

computational demand in MCMC estimation.  Given that the importance of the 

number of replications in a simulation study is akin to that of the number of 

participants in an empirical study (Harwell et al., 1996), the small number of 
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replications in this research could raise concerns on the generalizability of the 

findings.  In addition, the number of replications could influence the sampling 

variance of the parameter estimates and the power with which effects are detected 

in a simulation study (Harwell et al., 1996).  Ideally, researchers should perform 

as many replications as possible to ensure estimation precision.  Such an approach 

will afford researchers more confidence in statistical inferences.  This advantage 

particularly holds for more complex models, in which a higher number of 

parameters are estimated or convergence problems are more likely to occur.  With 

the rapid growth of computer technology, the time required to run MCMC 

estimation can be substantially diminished in the near future.  A larger number of 

replications or the inclusion of more simulation design factors in a simulation 

study will therefore be achievable.  

Number of item characteristics.  This study proposes the mixed-

strategies Rasch testlet model for low-stakes assessments.  In this model, the 

items are preselected on the basis of the one-parameter Rasch model.  Thus, the 

proposed model is currently inapplicable to items that are calibrated under the 

2PL model or 3PL model.  Nevertheless, the promising findings obtained in this 

research permit the extension of the proposed model to low-stakes assessments 

that are calibrated under the 2PL model or 3PL model (i.e., a mixed-strategies 

two-parameter testlet model or a mixed-strategies three-parameter testlet model).   



115 
 

Type of response data.  This research is interested in low-stakes 

dichotomously scored multiple-choice items, which means that the proposed 

model does not incorporate polytomously scored (e.g., a scoring range of 0 [no 

credit] to 3 [3 points]) or Likert scaled items (e.g., a scoring range of 1 [strongly 

disagree] to 4 [strongly agree]).  Random guessing response patterns due to lack 

of test-taking motivation are expected in polytomously scored or Likert scaled 

items, making the extension of the idea in this research to a test with 

polytomously scored items a favorable endeavor.   

Item format.  This study investigates tests with fixed item format and 

testlet length.  More specifically, all items in a test are testlet-based items, and the 

testlet lengths are constant across testlet units.  In practice, some low-stakes 

assessments may contain a few items that are written individually rather than built 

upon testlets (e.g., Wainer & Wang, 2000; Wang & Wilson, 2005) and have 

varying testlet lengths in a test.  Researchers can further extend the proposed 

model to a test with a mixture of testlet-based items and individual items by 

specifying zero testlet effect for individual items, as well as to a test with varying 

testlet lengths.  

Null condition.  This research includes a null model—the Rasch model—

to address the effect of overlooking test-taking motivation heterogeneity and 

testlet effects upon model-data fit and model parameter recovery.  This study, 

however, does not include “nothing to detect” conditions in the simulation study; 
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i.e., an absence of guessers or testlet effects.  Therefore, little is known about the 

capability of the proposed model in recognizing an absence of guessers and testlet 

effects of data, as well as in determining how outcome statistics vary from 

baseline to simulated levels of targeted factors.  Future studies should include null 

conditions of simulation factors to enable the comprehensive understanding of a 

targeted model’s effectiveness.        

Test-taking motivation.  In this study, the heterogeneity of test-taking 

motivation stems from the low-stakes test results for individual test takers.  Given 

no consequential effect on an individual test taker’s academic records in low-

stakes assessments, a proportion of test takers are assumed unmotivated to exert 

effort in taking a test and simply apply the random guessing strategy.  On this 

basis, probability-based item response functions are created to represent the 

likelihood that a test taker in a given class will respond to items in a given 

manner—that is, adopt the solution strategy or random guessing strategy.  

Admittedly, test-taking motivation is a highly complicated psychological process 

that possibly drives the use of other test-taking strategies excluded in the current 

study.  Furthermore, random guessing response patterns could result from other 

testing conditions.  For future researchers, an interesting direction would be to 

investigate other types of heterogeneity in test-taking motivation or other patterns 

of random guessing responses under a particular testing scenario.   
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Predictors that characterize test-taking motivation heterogeneity.  The 

empirical study in this dissertation provides an illustration of investigating 

whether science domain-specific predictors (e.g., enjoyment of science, interest of 

science) and latent classes are meaningfully related in the low-stakes science 

assessment.  Such exploration is also worthwhile for other content domains, 

including mathematics and reading literacy, because they facilitate the empirical 

interpretation of domain-specific heterogeneous test-taking motivation.  

Furthermore, the random guessing strategy that test takers apply to items may 

vary as people age; e.g., the probability of being a random guesser in low-stakes 

assessments may be lower for younger test takers.  An interesting initiative in 

educational psychology is the investigation of item response strategies across ages 

through longitudinal or cross-sectional studies.  Such explorations can elicit 

useful findings on training programs or instructional courses that help test takers 

employ targeted response strategies in low-stakes assessment scenarios.  In 

addition to person characteristics, item-related covariates (e.g., the type/level of 

skills required for solving an item) as well as the manner by which such features 

interact with person characteristics may be associated with test-taking motivation 

heterogeneity.  Including item-related characteristics entails evaluations of 

cognitive levels (i.e., remembering, understanding, applying, analyzing, 

evaluating, & creating; in Bloom's revised taxonomy, Anderson & Krathwohl, 
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2001) or content areas assessed by the items.  Therefore, the participation of 

domain-specific context experts is required.                

 6.4 Implications and Conclusion 

IRT models implicitly assume that test takers are motivated to demonstrate 

proficiency and that no construct-irrelevant variances in item characteristics occur 

during assessments.  In low-stakes assessments, some test takers do not put forth 

effort in performing well and testlet effects may be present as well, thereby 

limiting the utility of currently used IRT models.  Measurement practitioners and 

professionals, therefore, needs to be cautious about such noise when developing, 

estimating, and interpreting test results from low-stakes assessments.  They are 

responsible for maintaining the quality of estimation and the integrity of 

educational assessments.  

In this research, the effects of overlooking test-taking motivation 

heterogeneity and testlet effects have been demonstrated to show negative 

influence on parameter estimation quality.  The findings of this dissertation serve 

as substantive evidence of how construct-irrelevant variances adversely affect the 

precision of parameter estimates.  This study highlights the psychological 

importance of the manner by which test takers heterogeneously respond to low-

stakes assessments—the cognitive process underlying item responses.  The 

proposed model is an evolution of a psychometric model combined with 
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psychology.  It enables the simultaneous modeling of test-taking motivation 

heterogeneity and testlet effects in low-stakes assessments.  With the promising 

performance of the proposed model (good model–data fit, satisfactory 

classification accuracy, and well-recovered model parameters), assessment 

practitioners and professionals can confidently use it to improve estimation 

quality for low-stakes assessments.  In addition to model estimation, another 

function of the proposed model is that it serves as a psychometric filtering tool for 

test-taking motivation and testlet effects; such filtering is based on item response 

patterns—an attribute that is truly helpful in verifying whether the studied 

datasets exhibit the examinee homogeneity and local item independence that are 

assumed in IRT models.  Finally, the illustration in the empirical study serves as 

an example of explaining latent class membership.  The incorporation of external 

variables in the follow-up exploratory study enables more practical and 

meaningful interpretations of the latent classes of test-taking motivation.  To sum 

up, this dissertation provides empirical evidence related to the impact of test-

taking motivation heterogeneity on model parameter estimation in testlet-based 

assessments.  The findings of this study are anticipated to inspire more 

investigations into low-stakes assessments, on which educational policy and 

implications heavily rely.    
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Appendix A: Simulated Item Parameters 

Item ID Difficulty Item ID Difficulty

Item 1 0.137 Item 19 -0.341 
Item 2 0.989 Item 20 -0.567 
Item 3 1.257 Item 21 0.223 
Item 4 -2.14 Item 22 -0.99 
Item 5 -0.086 Item 23 -0.317 
Item 6 0.823 Item 24 -0.273 
Item 7 -0.968 Item 25 -0.047 
Item 8 1.04 Item 26 0.075 
Item 9 -1.677 Item 27 -0.779 
Item 10 -0.711 Item 28 1.555 
Item 11 -0.99 Item 29 0.176 
Item 12 -0.558 Item 30 0.372 
Item 13 0.012 Item 31 -2.029 
Item 14 -0.262 Item 32 2.307 
Item 15 -1.066 Item 33 0.474 
Item 16 0.893 Item 34 -0.181 
Item 17 -0.223 Item 35 -1.524 
Item 18 0.936 Item 36 -0.944 
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Appendix B: WinBugs Codes for the Proposed Model 

# J: the number of persons 
# I: the number of items 
# G: the label of latent classes 
# b: item difficulty 
# theta: ability  
 
model 
{ 
for (j in 1:J) { 
for (i in 1:6)  { 
p[j,i] <- (2-G[j])*1/(1+exp(1.0986))+(G[j]-1)*1/(1+exp(-(theta[j]+gam1[j]-b[i]))) 
        r[j,i] ~ dbern(p[j,i]) 
        } 
for (i in 7:12)  { 
p[j,i] <- (2-G[j])*1/(1+exp(1.0986))+(G[j]-1)*1/(1+exp(-(theta[j]+gam2[j]-b[i]))) 
        r[j,i] ~ dbern(p[j,i]) 
        } 
for (i in 13:18)  { 
p[j,i] <- (2-G[j])*1/(1+exp(1.0986))+(G[j]-1)*1/(1+exp(-(theta[j]+gam3[j]-b[i]))) 
        r[j,i] ~ dbern(p[j,i]) 
        } 
for (i in 19:24)  { 
p[j,i] <- (2-G[j])*1/(1+exp(1.0986))+(G[j]-1)*1/(1+exp(-(theta[j]+gam4[j]-b[i]))) 
        r[j,i] ~ dbern(p[j,i]) 
        } 
for (i in 25:30)  { 
p[j,i] <- (2-G[j])*1/(1+exp(1.0986))+(G[j]-1)*1/(1+exp(-(theta[j]+gam5[j]-b[i]))) 
        r[j,i] ~ dbern(p[j,i]) 
        } 
for (i in 31:36)  { 
p[j,i] <- (2-G[j])*1/(1+exp(1.0986))+(G[j]-1)*1/(1+exp(-(theta[j]+gam6[j]-b[i]))) 
        r[j,i] ~ dbern(p[j,i]) 
        } 
gam1[j] ~ dnorm(0,taut1) 
gam2[j] ~ dnorm(0,taut2) 
gam3[j] ~ dnorm(0,taut3) 
gam4[j] ~ dnorm(0,taut4)  
gam5[j] ~ dnorm(0,taut5) 
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gam6[j] ~ dnorm(0,taut6)  
G[j]~dcat(PI[]) 
pg[j]<- equals(G[j],1)  
} 
 
#priors 
PI[1:2] ~ ddirich(alpha[]) 
mu ~ dnorm(0,1) 
tau ~ dgamma(1,1)       
var <- 1/tau   
taut1 ~ dgamma(1,1) 
taut2 ~ dgamma(1,1) 
taut3 ~ dgamma(1,1) 
taut4 ~ dgamma(1,1) 
taut5 ~ dgamma(1,1) 
taut6 ~ dgamma(1,1) 
vart[1] <- 1/taut1 
vart[2] <- 1/taut2 
vart[3] <- 1/taut3 
vart[4] <- 1/taut4 
vart[5] <- 1/taut5 
vart[6] <- 1/taut6 
 
for (i in 1:I-1) { 
    b[i] ~ dnorm(0, 1)} 
b[I]<- -1*sum(b[1:I-1]) 
for (j in 1:J) { 
    theta[j]~ dnorm(mu,tau)} 
 
# Log Likelihood 
for (j in 1:J) { 
for (i in 1:I) { 
lik[j,i]<-   log(p[j,i])*r[j,i]+log(1-p[j,i])*(1-r[j,i])}} 
loglik <-  sum(lik[1:J,1:I]) 
AIC <-  -2*(loglik - np) 
BIC <-  -2*loglik + np*log(J) 
SABIC<- -2*loglik +np*log((J+2)/24) 
AICC<-AIC+2*np*(np+1)/(J-np-1) 
} 
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Appendix C: Simulation Procedure  

What follows is a description of the simulation steps for data generation in 
MATLAB. 

1. Generate 36 random beta values from a standard normal distribution. 
2. Generate 1000 random theta values from a standard normal distribution. 
3. Generate 3000 random theta values from a standard normal distribution. 
4. Generate 5000 random theta values from a standard normal distribution. 
5. Generate the first set of testing conditions: sample size = 1000; testlet 

variance = 0.25; guessers = 1%.  For each testlet unit (testlet 1: items 1–6; 
testlet 2: items 7–12; etc.):  

5.1 Repeat theta values 6 times and create a matrix of theta values with 
dimensions = (1000, 6) 

5.2  For each testlet unit, repeat beta values 1000 times and create a matrix of 
difficulty values with dimensions = (1000, 6).  

5.3  Generate 1000 random gamma values from a normal distribution with a 
mean of 0 and a standard deviation of 0.5. 

5.4 Repeat gamma values 6 times and create a matrix of gamma values with 
dimensions = (1000, 6). 

5.5 For each testlet unit, compute a matrix of probabilities by using Equation 
(8) with g = 1.  

5.6 When the data generation for 6 testlet units are completed, a matrix of 
probabilities is created with dimensions = (1000, 36). 

6. Introduce random guessing responses into the first set of testing 
conditions. 

6.1  Create a temporary matrix of probabilities of guessing responses by 
using Equation (8) with g = 0 (τ = –1.0986).  The dimensions of the 
matrix = (1000, 36). 

6.2  For the selected number of guessers (number 991 to 1000), their original 
matrix of probabilities (created in step 5.6) is replaced with the matrix of 
probabilities created in step 6.1. 

6.3  Create a matrix of item response data on the basis of the matrix of 
probabilities (created in step 6.2) by using binomial distribution with 
number of trials = 1 (i.e., Bernoulli distribution).    

7. The design comprises 25 replications.  For each replication, repeat steps 5 
and 6 and save item response datasets.  

8. Repeat steps 5 to 7 for the remaining 17 sets of testing conditions by 
varying sample sizes, theta values, testlet variances, and percentages of 
guessers in an examinee population.  
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