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because of damage resulting in easier fluid movement. The fluid may cause the

quasiperiodic, viscoelastic behavior of brain tissue. The mechanical response
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connections.
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1
1 Introduction

Medical information about the mechanical behavior of brain and artery tissues must

extend beyond simple characterization of the tissue response to forces to include its

correlation with damage since damage in these vital organs can cause life changing

effects. Mild traumatic brain injuries result from impacts, high frequency blast waves

and inertial acceleration. In the skull, brain matter and arteries lie within close prox-

imity to each other; the Circle of Willis (on the inferior side of the brain) joins several

arteries together and branches off to the many smaller arteries that supply oxygen to

the cerebrum (Campellone 2015). To better understand brain and aortic tissue’s sus-

ceptibility to damage, the structures of each tissue, both non-homogeneous biological

tissues with high fluid contents, are compared to explore whether the structural dif-

ferences can explain the differing mechanical response of the two tissues and whether

the differing responses may cause damage between the tissues.

In brain tissue research, the mechanics of damage is not well defined. It is hy-

pothesized that the drop in load carrying ability directly correlates to the fluid-solid

interaction in the material; the easier the ability for the fluid in the structure to flow

(and therefore the more damage that has been inflicted) the more drastic the drop

in the load carrying ability. Damage is defined to be a reduction in load carrying

capability which may be due to the breaking of bonds within each structure.

The mechanics of an initial insult and repeated loading is of interest not only

because many other brain researchers neglect to include the initial impact loading

data within their findings, but also because repetitive loadings may cause an increase

in damage. Repeated loading does not reduce the carrying ability of aortic tissue in

vivo because the aorta undergoes life-long cycles of pressure from blood. The aorta

is a natural load bearing material, while brain tissue does not experience regular

mechanical insults. The stress responses of brain and aorta tissues in the two materials

are speculated to be different due to their difference in structures; however some
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response traits should be similar because both tissues have a high fluid content.

The shear stress response to sinusoidal translational shear deformation is used to

compare these materials because blood pressure for arterial tissue and shock waves

for brain tissue are sinusoidal. Combined compression and shear tests model both

the longitudinal and shear component in a deformation wave due to impact for the

brain tissue as well as model the combined compression and shear applied to an

artery as blood passes through it. The response to repeated loadings in the brain

is unknown; however the tissue might not be able to withstand this type of loading

without damage.

The goal of this research is to determine how two particular load-bearing and non-

load bearing hydrated soft tissues differ in their shear stress response to combined

translational shear deformation and unconfined compression. One hypothesis is that

a mechanical cause of brain tissue damage under an external mechanical insult is

the increased hydrostatic pressure in, and pathological flow of, the extracellular fluid

(ECF). A three parameter model is used to fit the peak stress response of bovine

aortic tissue and rat brain tissue. Fourier series and harmonic wavelet frequency de-

compositions are used to analyze the frequencies that exist within the stress response

and are related to the structure and fluid in each tissue.
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2 Background

Aortic tissue and brain tissue are both non-linear viscoelastic materials. Viscoelastic

materials are those that exhibit both elastic and viscous properties. These materials

behave elastically while loaded quickly but exhibit a continued increase in strain

as the stress is held constant called creep. Likewise, viscoelastic materials, when

held at a constant deformation after an initial deformation, experience a decrease in

stress called stress relaxation. Stress responses of viscoelastic materials are heavily

rate dependent due to their viscous properties. The stress response to sinusoidal

deformation may be sinusoidal or quasi-periodic, oscillations that may follow a regular

pattern but do not have a fixed period. A sinusoidal shear stress response may exhibit

a phase shift compared to the deformation which may depend on amplitude, frequency

and damping. If the response is quasiperiodic, the time shift may also depend on these

factors and may change with the number of cycles. The dependence for linear elastic

materials can give guidance in assessing the influence of these factors for both brain

and aortic tissue. The damping factor may be related to the role of the interstitial

fluid which may be responsible for the viscoelastic response in both tissues.

2.1 Phase shift

Linear viscoelastic materials subject to an oscillatory strain input respond with a

stress having the same frequency as the strain, however the curves are not synchro-

nized in time. The difference in synchronization can be characterized by the phase

shift. The phase shift is the difference in time between the displacement and stress

sine waves as they cross through the horizontal axis measured with respect to a cor-

responding cycle in radians or degrees. A phase shift can be measured only when

both a sinusoidal strain input versus time curve and a force versus time curve exhibit

the same frequency response. The phase angle, δ, numerically describes the lead or



4

Figure 1: Stress and strain curves having the same frequency but different amplitudes, for
which stress leads strain by δ.

lag that one curve has compared to the other; a curve leads if its corresponding cycle

crosses the horizontal axis at an earlier time. The phase angle can also be calculated

as a time shift given as

∆t =
δ

2πf
(1)

where f is the frequency.

The experimentally determined phase shift should give information about the

viscosity of the tissue. The following simple examples give insight into the possible

relation between phase shift and bulk viscosity. The sinusoidal stress and strain for

a strain input are

ε = ε0 sin(ωt); (2)

σ = σ0 sin(ωt+ δ); (3)

where δ is the phase shift, also called the phase angle. The storage modulus E1 and

the loss modulus E2 are

E1 =
σ0
ε0

cos(δ); (4)

E2 =
σ0
ε0

sin(δ). (5)

The tangent of the phase angle δ is calculated by taking the ratio of the loss modulus
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and the storage modulus,

tan(δ) =
E2

E1

. (6)

In linear viscoelasticity, dynamic mechanical analysis characterizes the phase shift

observed during oscillatory testing by relating the energy stored to the energy lost.

The dynamic modulus of a material is the complex sum of the storage modulus and the

loss modulus. The tangent of the phase shift is the ratio of the elastic and dissipative

energies (or the storage and loss moduli)(Equation 6), therefore, if no energy is lost

or if the material is purely elastic, the phase shift is zero. A material that is purely

viscous, on the other hand, would only have energy lost and would have a phase shift

of 90o.

The Standard Solid model, a spring (R1) connected in parallel with Maxwell’s

model (a spring (R2) and dashpot in series), demonstrates the behavior of a linear

viscoelastic material. This standard linear solid model is

ε̇ =
R1

η
( η
R2
σ̇ + σ −R1ε)

R1 +R2

. (7)

For sinusoidal strain control, ε = ε0 sin(ωt) is substituted into this equation to yield

ωε0 cosωt =
R1

η
( η
R2
σ̇ + σ −R1ε0 sinωt)

R1 +R2

. (8)

The differential equation solved to obtain stress is

σ(ωt+ δ) =
1

R1(R2
2 + η2ω2)

ε0R2[e
−R2t

η ηω(R2
1 −R1R2 −R2

2)

− ηω(R2
1 −R1R2 −R2

2) cosωt

+ (R2
1R2 + η2R1ω

2 + η2R2ω
2) sinωt] (9)
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Use the sum of sines to obtain

tan(δ) =
η(−R2

1 +R1R2 +R2
2)ω

R2
1R2 + η2R1ω2 + η2R2ω2

. (10)

If the spring in series with the dashpot (R2) is larger than the stiffness of the spring

in parallel (R1) the tangent will be positive which means that the stress leads the

strain. If the opposite stiffness is true (R1 > R2), the strain leads the stress.

The Zener standard solid model (used by Dennerll et al. (1989) to model an axon

in tension), a spring (R2) connected in series with a Kelvin-Voigt model (a spring

(R1) in parallel with a dashpot) is

σ +
R1

R2

σ +
η

R2

σ̇ = R1ε+ ηε̇. (11)

Under sinusoidal displacement control, ε = sin(ωt) is substituted into this equation

to produce

(1 +
R1

R2

)σ +
η

R2

σ̇ = R1 sin(ωt) + ηω cos(ωt). (12)

Solve the differential equation to obtain the stress

σ(ωt+ δ) =
R2(−e

−(R1+R2)t

η R2ηω +R2ηω cos(ωt) + (R2
1 +R1R2 + η2ω2) sin(ωt))

R2
1 + 2R1R2 +R2

2 + η2ω2
.

(13)

Use the sum of sines to obtain

tan(δ) =
R2ηω

R2
1 +R1R2 + η2ω2

. (14)

The tangent of the phase angle in the Zener model is always positive, meaning

that stress leads strain. Although the Zener and Standard solid models cannot cap-

ture the complexity of heterogeneous biological tissue, these models demonstrate the

dependence of phase shift on ω and the material parameters. The non-linearity of
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the biological tissue stress response may cause a phase shift that depends on other

factors than the linear model variables. These dependencies guide the investigation

into the cause of any time shift in the brain and aorta shear stress response.

2.2 Tissue Structure

Several arteries lie within close proximity to the brain including the Circle of Willis, a

joining area on the inferior side of the brain that branches into small arteries that carry

oxygen to 80% of the cerebrum (Campellone 2015). Arterial tissue and brain tissue,

although both soft biological tissues with high fluid content, have different physical

requirements. Arteries naturally expand and contract as blood pulses which causes

a compressive stress in the radial direction, a tensile stress in the circumferential

direction, and shear stresses. The effect of shear is of interest because it has not been

studied in much detail. Brain tissue undergoes a combined compressive and shear

stress wave during a blast. A comparison of the response to combined compression

and shear for both the brain and artery should be informed by an analysis of the

structures of each material.

Figure 2: Circle of Willis (Campellone 2015)
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2.2.1 Artery

Arterial tissue is a natural load bearing, soft biological tissue with high interstitial

fluid content and is comprised of three main layers called the intima (inner), media

(middle) and adventitia (outer). The intima is composed of endothelial cells, con-

nective tissue and axially oriented smooth muscle cells with an underlying layer of

collagen fibers. Ground matter is situated on either side of these fibers parallel to the

intimal and adventitial faces. Histology has shown a dominant direction of collagen

fibers in the circumferential direction with local variation. The internal elastic lamina

which separates the intimal and medial layers is comprised of an elastin sheet that is

responsible for transporting fluid. The media is comprised of many smooth muscle

cells, elastin and collagen (Figure 3). The fluid is located in the smooth muscle cells

and in the extracellular matrix (ECM). The extracellular fluid (ECF) is responsible

for transporting nutrients to the cells. Versican proteoglycans are the main filler sub-

stance in between cells which bond to water and allow for diffusion of nutrients to the

cells. These proteoglycans form large complexes and attach to collagen to regulate

the movement of molecules through the arterial wall.

Three schematic models are proposed in the literature for the structural organi-

zation of the aortic wall. These models eventually may allow an assessment of the

corresponding effects each set of substructures would have on the mechanical response.

Clark and Glagov (1985) proposed from histology images that the arterial wall

is comprised of overlapping, musculo-elastic fascicles which consist of smooth muscle

cells, elastin sheets, and collagen fibers which are similarly oriented. The commonly

oriented smooth muscle cells are encompassed by a matrix mat comprised of a fine

mesh-work of collagen fibrils. This matrix is related to a “Chinese finger trap” in Clark

and Glagov (1979), stating that the matrix holds the cells together when tension

forces exist. These fascicles were observed to be anchored by elastic fibers and in

the media lie mainly circumferentially. Wavy collagen bundles that never interfere
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with one another are oriented in the same direction as nearby elastin forms sheets.

Clark and Glagov note that there were connections between elastin fibers of each

layer that are “more easily disrupted than the elastin systems bracketing the layers.”

They argue that the medial wall is comprised of a repeating sequence of “elastin-

cells-elastin - collagen bundles - elastin- cells- elastin” (Figure 3). While the fascicles

are predominately oriented in the circumferential direction in the media, Clark and

Glagov found that the fascicles favor an axial orientation in the adventitia and luminal

side. Clark and Glagov conclude that there exists distinctly aligned collagen and

elastin on both sides of a cell layer. This predominately circumferential oriented

fascicle direction theory would create a mechanical response that hardens because

the matrix mat would create an increase in strength as a circumferential tensile force

is exerted. This theory implies a significant difference in shear response with respect

to specimen orientation, when deformed with or across the specimen fiber direction.

Using Clark and Glagov’s schematic model, when the tissue experiences a shear

force the longitudinally oriented specimens would predominantly test the connections

between the wall layers and the connections between the fascicles. The circumferen-

tially oriented specimens would predominantly test the strength of the collagen fibers

in shear. Both oriented specimens could test the strength of the interfiber bonds

between collagen fibers (Haslach et al. 2015b).

Much like the observations of Clark and Glagov, Davis (1993) reported that in

the aortic media there exists circumferentially oriented smooth muscle cell layers

alternating with elastic laminae (Figure 4). Davis observed that smooth muscle cells

are connected to the elastic laminae (which Davis refers to as musculo-elastic units)

within the aortic wall in alternating diagonal patterns. Davis boldly hypothesizes

that the tangential vessel wall stresses are not affected during regular blood pressure

induced deformation. Davis observed that a single elastic lamina separates each

smooth muscle cell layer in mice which differs from the double elastic laminae found
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Figure 3: Clark and Glagov Artery Schematic (C indicates the circumferential place, L
indicates the longitudinal plane) Each musculo-elastic fascicle contains commonly oriented
cells (Ce) enclosed in a matrix mat (M) surrounded by a system of elastic fibers (E) and
wavy collagen bundles (F). (Clark and Glagov 1985)

in larger mammals’ aortic walls as described by Clark and Glagov. Davis mentions the

findings of Pease and Paule (1960) that describe smooth muscle cell layers of the rat

aortic media as a single layer of obliquely oriented cells with each cell extending from

one elastic lamina to the next, the orientation of the smooth muscle cells changing

direction in successive layers. This herringbone design theory creates a different

mechanical response than the Clark and Glagov model.

Davis’ herringbone schematic design (Figure 4) implies that the tissue would ex-

perience a tensile force within the contractile-elastic units when a longitudinal shear

stress is applied; the angled contractile-elastic units would be stretched out of the

circumferential plane. The response due to pure circumferential tension creates in-

ternal shearing between the elastin layers due to the alternating contractile-elastic

units. The mechanical response due to shear would create a tensile stress within the

contractile-elastic units oriented in one direction and would create a shear stress in

the smooth muscle cells in the layers with opposing contractile-elastic unit direction.

Much like Davis’ discussion of musculo-elastic units, Dingemans et al. (2000)

discusses a similar basic unit of the aortic media, the lamellar unit, which consists
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Figure 4: Davis Artery Schematic (Davis 1993)

of two elastic lamellae and intervening smooth muscle cells. These lamellar units are

comprised of a single layer of smooth muscle cells with elastic lamellae on both sides

(Figure 5). Dingemans noted that in collapsed specimens there exists wavy elastin

lamellae and that while parts of the lamellae were smooth, there were also irregular

focal protrusions that extended into the interlamellar space. The Dingemans model

agrees with Clark and Glagov (1985) in that the smooth muscle cells are oriented

mainly in the circumferential direction. Dingemans et al. observed that there are

relatively few direct contacts of smooth muscle cells with solid elastin lamellae and

that the smooth muscle cell extensions were found in close contact with irregular

protrusions from the elastin lamellae. Dingemans makes a contrasting argument to

Clark and Glagov’s “Chinese finger trap” theory of collagen fibril net organization

that preferential localization of collagen fibrils immediately adjacent to the smooth
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muscle cell surface was not observed. Dingemans et al. interpret their images as

showing that the collagen fibrils appear loosened and spiraled. Dingemans et al. state

that they did not observe any organization of the aortic medial in ‘musculo-elastic

fascicles’ as described by Clark and Glagov (1985) in several non-human species.

Dingemans et al. describe the structure of the aortic wall saying the longitudinal

surface ridges of the smooth muscle cells are connected by long elastin protrusions

to the lamellae on either side. The smooth muscle cells are also connected with

the elastin lamellae via oxytalan fibers that contain collagen. The collagen fiber

bundles are described to lie directly against the elastin lamellae in the circumferential

direction. The fibronectin appeared to not only connect smooth muscle cells to the

elastin sheets, but also to each other. Dingemans et al. observe that the smooth

muscle cells were connected by numerous gap junctions. Dingemans et al. conclude

that the collagen fibrils located adjacent to the smooth muscle cell surface as noted

in Clark and Glagov (1985), were absent.

Dingemans structural theory would create a mechanical response that would pri-

marily test the tensile strength of the elastin protrusions and after some displacement,

the smooth muscle cells and the oxytalan fibers that link them to the elastin sheets

would also be in shear and tension respectively. The linking elastin protrusions exhibit

different directions that would correlate to a lack of a significant difference between

the tested specimen orientations within small shear deformation; Dingemans theory

of predominately circumferential collagen fibers would affect the mechanical response

after the fibers become taut. Holzapfel et al. (2000) assume this mechanical response

within their mathematical models.

Dingemans et al. note the proteoglycans that surround all collagen fibrils are

oriented perpendicularly to the fibril direction. The ground substance appears com-

pletely filled with large proteoglycans seen on the very cell surface, but the elastin

lamellae and the oxytalan fibers do not contain proteoglycans. The location of pro-
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Figure 5: Dingemans Artery Schematic. The schematic shows smooth muscle cells (SMC)
and elastin lamellae (EL) and their connections. The collagen fibers (Coll) lie closely to the
elastin lamellae. Oxytalan fibers (Ox) connect the elastin lamellae to the smooth muscle
cells. Deposits (D) of collagen and proteoglycans are found on the cell surface. (Dingemans
2000)

teoglycans can indicate the primary locations of extra-cellular fluid within the tissue.

The collagen fibers act as a restraint to deformation. When the artery tissue

is relaxed, the collagen fibers are slack and when the tissue expands due to blood

pressure, the elastin sheets stretch and the collagen fibers become taut, restraining

the tissue.

Haskett et al. (2010) discuss probable cross-linking that bond between circum-

ferentially oriented bands of collagen fibers. This theory was drawn from tensile

testing performed perpendicular to the primary collagen fiber direction that results

in a higher stiffness than the tests performed in the direction of the collagen fibers.

2.2.2 Rat Brain

Brain tissue is a heterogeneous soft biological tissue comprised of many subsections

of both white and grey matter and is not a natural load bearing material (Figure

6). Brain tissue solid matter is primarily neurons and glial cells. A neuron is a
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nerve cell that transmits information through electrical and chemical signals. The

axons of the neuronal cells are responsible for carrying the electrical impulses from

the cell body toward the axon terminal to send information to other axon dendrites

which creates a network of neurons. Brain tissue has both a high intra- and extra-

cellular fluid content of around 80% of its mass. Extracellular fluid (ECF) which

makes up 20% (Verkman 2013) of the brain’s volume is responsible for transporting

nutrients from the capillaries to the cells and for removing waste from the cells as

part of the glymphatic system. The ECF creates an internal pressure in the brain

that is balanced by a linked network of axons in tension. Brain tissue does not

have a structured framework supporting the tissue as does the artery. The balance

between the internal pressure of the ECF and the tension within the axons allows

the tissue to keep its shape, and neurites adjust their length accordingly to maintain

a steady tension (Van Essen 1997). Brain tissue has viscoelastic properties and is

under resting tension which is demonstrated by the tissue’s ability to spring back

to its original position after a transient deformation. Van Essen states that all cells

have an natural pressure differential across their plasma membrane, resulting from a

mechanism to regulate the osmotic balance, but pressure can also arise from extrinsic

sources.

Figure 6: Rat Brain Schematic (University of Utah Health Sciences 2015)
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Astrocytes are star-shaped glial cells that provide biochemical support of the

blood-brain barrier, provide nutrients to the nervous tissue, maintain the extracel-

lular ion balance, and repair/scar the brain after traumatic injury. Three types of

astrocytes are involved in the physical structuring of the brain. Fibrous astrocytes

that are located in white matter that are responsible for connecting the cells to the

outside of capillary walls, protoplasmic astrocytes are located in grey matter and ra-

dial astrocytes are present during childhood development. Glial cells provide support

for the neurons to protect the brain. These cells also supply the neurons with nutri-

ents and oxygen because neurons are very active and generate a lot of waste. The

process of fluid redistribution, nutrient transport and waste removal within the brain

is referred to as the glymphatic system. Cerebrospinal fluid (CSF) is generated in the

4 ventricles of the brain and moves through the subaachnoid compartment (Figure

8). Iliff et al. (2012) describe the flow path of CSF and interstitial fluid (ISF) as

driven by the pulsing arteries in the brain that cause a pressure change between the

para-arterial and paravenous pathways (Figure 7).

Figure 7: Fluid flow in glymphtic system (Iliff 2012)

Iliff et al. propose that channels between cells provide low-resistance pathways for

fluid movement between the paravascular spaces. Due to the gaps between the astro-

cytes endfeet in the astroglial sheath that surround brain blood vessels (Mathiisen et

al. 2010), the nutrient filled fluid is able to flow between the dendrites, but that the
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Figure 8: CSF Circulation in humans (Silverthorn 2011)

exchange of fluid between the blood and brain is controlled by the size of the narrow

clefts between overlapping endfeet of the astrocytes which may restrict free flow of

the fluid. The CSF distributes the nutrients to the cells and picks up the metabolites

in the process and continues flowing toward the veins. The veins reabsorb the waste

and carry it to the cervical lymphatic system.

Damage within the brain can be categorized into two types: cell damage and

structural damage. Structural damage consists of the breaking of axonal connections

and may result in a separation of subregions. Structural damage could also include

the stretching of the axons. A strain of 20% has been suggested as the threshold for

diffuse axonal injuries (Bain and Meaney 2000). An increase in hydrostatic pressure
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causes stretching or relocation of subregions. Cell damage consists of the rupture of

cells or change in the cells’ permeability due to stretching of the cell walls.

Unconfined compression tests (Haslach et al. 2015) provide information about

the ECF-solid phase interaction in which the ECF-flow is multi-axial. A constant

deformation rate compression causes a disruption in the brain tissue’s equilibrium

balance of hydrostatic pressure. The lateral dimension changes indicates that the

tissue is compressible due to ECF loss. The tissue’s interstitial fluid may move in all

directions within the tissue causing transverse stress due to the drag force between

the fluid and solid phase. The compression may induce axonal stretching. The

solid matter’s resistance of ECF flow could be caused by the further restriction of

extracellular space in the compressed tissue.

2.3 Mullins Effect

In cyclic tensile tests, some biological tissues exhibit stress softening (Horney et al.

2010). This phenomenon is referred to as Mullins effect. Diani et al. (2009) observed

that in rubber most of the softening appears after the first load. This softening

occurs whenever the strain of the current cycle is less than or equal to the maximum

stretch ever applied. The physical explanation of Mullins effect has not been generally

agreed upon, but may be due to chain breakage, slipping of molecules, and cross-link

ruptures. Blanchard and Parkinson (1952) as well as Bueche (1960) attribute the

Mullins effect to bond rupture and crosslinking. Diani et al. describes the Mullins

effect to be due to the rupture of carbon-black structure in rubber. Typically, on the

initially loading, the material exhibits a relatively stiff response. When the material

is unloaded and then reloaded the stress-strain curve softens significantly. Zuniga

and Beatty (2002) describe the material as having a selective memory of only the

maximum of the previous strains ever experienced and represent the Mullins effect

with a 3 parameter model to fit the exponential type stress softening (Equation 15),
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F (m,M) = exp(−b
√
M −m) (15)

where M is the maximum previous strain, m is the current magnitude of strain, and

b is a softening parameter.

Mars et al. (2004) observes that the steady state of the response due to torsional

applied shear is softer if larger initial magnitudes of strain are experienced. They

discovered that the majority of the softening occurred in the first 10 cycles of loading

and that under constant-amplitude cyclic loading the stress-strain curve exhibits a

logarithmic trend. In some cases, Mars et al. describe without explanation a new

phenomenon called the ‘healing’ effect in which after several cycles, the stress-strain

response remains relatively constant and then starts to slightly stiffen.
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3 Methods

Arterial and brain tissue can experience internal deformation waves which consist

of both longitudinal and shear components simultaneously (translational shear and

compressive waves). Aortic and brain tissue are tested in an apparatus that can

operate in translational shear with an initial fixed unconfined compression.

3.1 Apparatus

The apparatus (Figure 9) was constructed to test cut rectangular specimens of di-

mensions up to 25 mm x 25 mm with thicknesses up to 8 mm in shear. The specimen

is placed between two parallel test plates. The bottom plate (9 -10) is mounted to

a Bose 250 gram load cell (Figure 9 -3) and rests on top of a linear bearing (Figure

9-1). The linear bearing ensures that the bottom test plate remains flat and parallel

to the top plate with negligible friction detected by the load cell. The other end of

the load cell is secured to a support bracket (Figure 9-8). This support is essential

to the design because one end of the load cell must be fixed at all times in order to

deflect due to the applied forces. The support bracket is connected to a spring-loaded

displacement stage, ThorLabs T12X (Figure 9-9), that enables the bottom plate and

load cell to move up and down as a unit to increase or decrease the compression

on the specimen and to adjust for different specimen thicknesses. This assembly is

fastened to a mounting bracket (Figure 9-4) that is screwed into a stationary stand.

The top test plate (Figure 9-11) is mounted on a Bose Electroforce Test Bench 200

N test machine that uses a linear motor design that is modified from a Bose sub-

woofer. The Bose machine is composed of a permanent magnet that is suspended

in an electromagnetic field. The magnet is able to produce translational motion as

the electromagnetic field changes. This design reduces any frictional energy loss by

avoiding the use of bearings or seals. The oscillating magnet is attached to an ac-
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tuator to record any error that occurs. The Bose machine allows the top test plate

to move linearly or sinusoidally at a set rate up to 3.2 m/s or 200 Hz and to a set

final displacement (Chan et al. 2008). The Bose proprietary software, WinTest 4.1,

is used to appropriately assign each variable for a given test.

Figure 9: Combined translational shear and unconfined compression apparatus

3.2 Specimen Preparation

Specimens are cut from bovine aortic tissue and from rat brain tissue.

3.2.1 Aorta

The samples are taken from bovine descending aorta purchased at J. W. Treuth &

Sons (328 Oelle Ave. Baltimore, MD 21228). The aorta must first be cleaned of fat

before the samples are taken from it; excess branches from the aorta as well as any

additional portions of the heart are removed with a No. 10 blade scalpel (Figure 10).

Because the curvature of the aorta is very sharp at the proximal end of the aorta,
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this section is removed.

Figure 10: Cleaned bovine aorta

Once this process is completed, a ring is cut from a location of the tester’s choice

that is approximately 6+ mm in width. The thickness of the sample varies by location

on the aorta. For our tests, the specimen is cut from the middle section of the aorta.

After the ring is cut open by making a longitudinal incision along the convex side, a

tensile pattern fixture is used to cut the open ring along the circumferential direction

to create a strip with a width and length of approximately 6mm. Blue dye is used to

mark one of the two circumferential sides of each rectangular specimen so the tester

can record whether the specimen is loaded in the circumferential or longitudinal

direction.

3.2.2 Brain

The brain must be removed without damage by the carefully executed following pro-

cedure. (See Appendix, Section 7 for Planes of Dissection, Figure 54).

Place the euthanized rat dorsal surface up on a surgical mat with the anterior

side facing up. Using surgical scissors and tissue forceps, pinch the skin on the dorsal

surface by the nape of the neck and make a longitudinal incision at the mid-line.

Insert one end of the scissor blades under the skin surface to further the incision

longitudinally to the right and left side of the upper neck. With a No. 11 blade
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scalpel make transverse cuts into the muscle tissue just below the base of the skull,

using the forceps to separate the tissue as the cuts become more medial. Once the

muscle is separated on the posterior and lateral sizes of the neck, open the hand

held bone cutters (Fine Science Tools #16107 − 14) slightly so that the opening of

the curved jaws can fit the width of the spine. Holding the bone cutters vertically,

insert the jaws of the cutters on either side of the spine where the muscle tissue was

separated slightly distal to the skull and deep enough to ensure the length of the jaws

go slightly further than the depth of the spine. Slowly grip the bone cutters to cut

through the spine. Once the bone has separated, use the scalpel to cut the remaining

connecting tissue to complete the decapitation.

Figure 11: Mouse Skull Diagram (The Jackson Laboratory 2015)

After decapitation, make a sagittal incision down the center line of the head from

between the eyes back to the furthest posterior position. By pulling and if needed

making swift superficial cuts along the medial of the skin, separate the skin from the

muscle tissue on both the right and left sides to expose the muscles on the sides of

the skull.

Holding the head in the non-dominant hand and using the bone cutters in the

dominant hand, grab, twist slightly and pull the muscle tissue from the posterior
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occipital in jaw-sized pieces (Figure 11). When most of the muscle tissue is cleared

from the occipital, rest the right side jaw of the bone cutters with the blade proximal

to the skull on the superior edge of the occipital and while grasping the handles of

the bone cutters allow the left side jaw to gently scrape against the bone to remove

the residual muscle tissue. If any cerebral disks are still connected to the skull, gently

insert one jaw of the bone cutters from the posterior side through the hole of the disk

along the dorsal surface without coming in contact with the spinal cord and make the

cut. Grab the side of the cut disk that agrees with the researcher’s dominant side and

twist and pull toward the distal direction. Once all of the disks have been removed,

insert the bone cutters from the posterior side through the occipital hole, being very

careful not to come in contact with the brain tissue with the rounded edge of the

bone cutters facing medially and the sharp edge of the jaw placed inside of the skull

riding the inner surface of the occipital so that the tip of the jaw blade points toward

the dorsal, lateral corner of the occipital. Cut the occipital at this angle on both the

right and left sides (making sure that the rounded edge of the bone cutters is facing

the medial direction for both). Putting the bone cutters in the sagittal plane with the

rounded edge of the bone cutters facing toward the occipital, insert the lower cutter

jaw under the flap of the occipital that was created from the angled cuts. Lean the

upper jaw on the back of the interparietal and while keeping the upper jaw of the

bone cutters stable (like a joint), rotate the occipital flap away from the brain (in the

posterior and dorsal direction). The dorsal surface of the skull has two visible ridges

running in the sagittal plane on either side of the skull (these ridges exist at the most

medial intersection of the muscle tissue on either side of the skull and the bone).

With the curved edge of the bone cutters facing the medial direction, and directed

in the sagittal plane pointing toward the rostral direction (toward the nose) make

small cuts along the ridge on either side of the skull. Once cuts of approximately 1-3

mm have been made on both sides, the same approach can be used to remove this
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flap as was used to remove the occipital flap. Work down either side of the ridges

until the brain is exposed and the ridges begin to curve in the medial direction.

The dura mater should still be intact at this point, but must be removed so the

brain is unrestrained. Along the interface of the left and right hemisphere of the

cerebrum, a dark red line should be visible. Using the tip of the bone cutters, lightly

grab this line and pull very gently away from the surface of the brain and snip the

connection. The same should be done along the interface between the cerebellum and

the cerebrum.

Now the top of the brain should be fully exposed, however there are still bones

that are holding the brain in place that lie between the interface of the cerebrum and

cerebellum. The external acoustic meatus can be seen pulled from the interface of the

cerebrum and cerebellum (Figure 12). Bring the bone cutters in the coronal plane,

with the rounded edges facing the table toward the posterior side of the skull. By

tilting the bone cutters so the rounded edge faces toward the medial direction slightly,

insert the more medial directed jaw along the intimal surface of the side wall of the

skull at a depth of approximately 4 mm. Clamp the bone cutters slightly enough

to grab, but not cut, and twist along the lateral-medial axis in the lateral direction.

If the bone cutters are clamped too tightly, the bone will snap while twisting. This

process should be repeated on the other side. The twisting action ensures that the

acoustic meatus, which restrains the brain from being lifted from the skull, is removed

and does not damage the brain tissue in the process of its removal.

Remove the brain from the skull by flipping the skull upside down over a small

tray filled with PBS. Insert a surgical elevator between the ventral side of the brain

and the skull and gently assist the falling process of the brain into the tray. Small

cuts will need to be made to the olfactory bulbs and to any other connecting tissues

from the brain to the base of the skull. Allow the brain to fall into the tray being

sure that the brain is not pushed on by the elevator. This concludes the process of
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Figure 12: External acoustic meatus on human skull (Seward 2015)

harvesting a rat brain without damaging the tissue prior to testing.

After excising the brain from the rat, an incision is made with a No. 11 blade

scalpel parallel to the frontal plane to separate the cerebellum from the cerebrum

(Figure 13). A surgical elevator is moistened in the PBS to create a thin film of fluid

on the tool. The fluid creates a barrier to ensure that the brain tissue does not stick

to the tool. The surgical elevator is used to gently lift the cerebellum to place it into

a tray of PBS to avoid dehydration of the specimen. An incision is then made down

the center line of the cerebrum to separate its two halves (Figure 14). The separation

of the two cerebrum halves requires multiple stabbing cuts directed straight down

rather than a sawing or pivoting blade cut which could damage the tissue.

Each cerebrum half is cut in the sagittal plane into 3 mm thick specimen; creating

two specimens from each half (Figure 15). These specimens are lifted with a surgical

elevator into the PBS as well. The sagittal plane specimens are trimmed to 12 mm x

6 mm to ensure consistency throughout the tests. When it is time to test a specimen,

the surgical elevator is again moistened and then used to scoop each specimen out of

the tray filled with PBS. Using a surgical elevator is ideal, opposed to using tweezers

or other devices, because the specimen is not squeezed, merely lifted. A total of 24
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(12 rat brain specimens and 12 aortic) were tested.

Figure 13: Post cerebrum removal

Figure 14: Post cerebellum separation

Figure 15: The left half of the cerebellum cut to make 2 specimens. The incision plane is
facing upward for both specimens showing the heterogeneity. (O indicates the outermost
specimen, I indicates the inner specimen and the arrow pointing toward the front side of
the brain.)
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3.3 Protocol

To begin testing, the Bose stationary stand is loosened from the base and moved

away from the top grip. By doing this, the researcher has more room to carefully

place a drop of 3M VetBond No. 1469SB glue on the bottom plate to secure the

specimen. The specimen can easily be slid off the moistened surgical elevator and

must be precisely placed in its desired alignment on the bottom grip (with the 6 mm

side facing the Bose and the 12 mm side for the brain tissue facing perpendicular to

the Bose and with the circumferential direction parallel to the mover’s direction for

the aortic tissue). The specimen cannot be moved once placed without damaging the

tissue because the glue dries quickly. Another drop of glue is placed on the top of

the specimen. While one hand holds the spring loaded T12X in its lowest position,

the stationary stand is readjusted to a position in which the top and bottom plate

realign. Holding the plate down is essential to avoid additional normal loading on the

specimen. The stationary stand is refastened and the bottom plate is released slowly

upwards. The T12X is adjusted to raise the bottom plate so that the specimen is

squeezed to the desired thickness.

Throughout the test, WinTest 4.1 records the elapsed time, displacement, and the

reactive load induced in the load cell. The scan time is set to the fastest programmable

time of 0.0002 seconds to maximize the number of points during a test. Translational

shear stress is calculated from the detected load from the bottom grip of the apparatus

(Figure 9) by

σ = 10−3
gF
A

(16)

where g is the gravitational constant, F is the detected load (in grams), and A is the

cross sectional area parallel to the test plate (in m2). The translational shear strain
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is calculated from the detected displacement of the mover by

ε =
d

L
(17)

where d is the detected displacement (in mm) and L is the length of the specimen (in

mm) in the direction parallel to the displacement direction.

3.3.1 Combined Sinusoidal Translational Shear and Fixed Initial Uncon-

fined Compression

Aortic tissue experiences sinusoidal shear stresses due to blood pressure oscillations;

likewise, brain tissue can experience sinusoidal shear due to a blast wave. An uncon-

fined compression of either 0% or 33% of the thickness of the specimen is applied prior

to the sinusoidal translational shear test. The amplitude of the shear deformation is

25% of the length. The sinusoidal translational shear frequency is 1 Hz and 40 cycles

which is chosen to emulate the stresses and heart rate induced naturally within aortic

tissue. Aortic tissue, which is naturally load bearing, is loaded within the normal

range of stresses of an aorta. The graphs’ traits are compared with the same loads

exerted on brain tissue, which is not naturally load bearing, to hypothesize what on

the stress-strain graphs could correspond with damage. Brain tissue and aortic tissue

should experience differently not only due to structural differences, but possibly due

to damage as well. A specimen is tested at 2 Hz and 40 cycles to verify whether any

phenomena found in the 1 Hz stress response are characteristic of other frequencies

or if these phenomena only occur with a 1 Hz applied shear deformation.

3.4 Methods of Analysis

The shape and magnitude of the stress-strain data is compared for each compression

and material.
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3.4.1 Mullins Effect

Zuniga and Beatty (2002) propose that tensile stress softening in rubber can be mod-

eled with an exponential function with three parameters (Equation 15). Taking a

similar approach to their enriched form of the linear vibrations damping envelope

equation, for the brain and artery tests the decreasing trend of the peaks on subse-

quent cycles is fit to a three parameter model. The equation for Y , the peak stress

values with respect to time, is

Y = A exp(−bt) + c. (18)

The first term, A, controls the magnitude of the overall drop in the stress, the second

term, b, influences the quickness of the drop, and the third term, c, allows the model

to approximate the steady state value of the stress over time. A Matlab program is

used to fit each curve and computes the equation variables (Section 7.1).

3.4.2 Signal Processing Analysis

One technique to determine the dominant frequencies within the stress versus time

response is to subject the data to frequency filtering. Frequency filtering is a process

that takes a current signal and applies a pass filter of a set range of frequencies.

By expanding and restraining the band of frequencies allowed, the new signal shows

whether the frequencies chosen are present in the original signal. A Matlab program

is used to filter each stress curve (Section 7.1).

Fourier Series Decomposition is a method to represent a given periodic signal as

a sum of multiple sine and cosine functions. In terms of exp(2πiωt) = cos(2πωt) +

i sin(2πωt) , the Fourier series equation is given by,

h(t) =
n=∞∑
n=−∞

an exp(2πint). (19)
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The coefficient an is dertmined from orthogonality of the basis functions as

an =
1

T

∫ T

0
h(t)e−2πintdt (20)

where T is the period.

The Fourier transform generalizes the expression to obtain the coefficients of the

Fourier series

H(ω) =
∫ ∞
−∞

h(t)e−iωt dt or

H(f) =
∫ ∞
−∞

h(t)e−i2πft dt (21)

where ω is angular frequency and f is frequency given in Hz.

The signal can be described as a function in the time domain or the frequency

domain. In the frequency domain, the function is complex which gives amplitude

information as well as phase shift information at a given frequency. Using the Fourier

transform, one can pass between the two domains. The inverse Fourier transform is

(from the frequency to the time domain)

h(t) =
∫ ∞
−∞

H(f)e2πift df (22)

where H(f) is the signal in the frequency domain and h(t) is the signal in the time

domain.

One technique to compute the Fourier transform is Fast Fourier transform. Fast

Fourier transform (FFT) is a technique to estimate the Fourier transform of a dis-

crete periodic function. A magnitude spectrum graph displays the real and imaginary

magnitudes of the function in the frequency domain and easily shows which frequen-

cies in the signal are the most significant. A Matlab program is used to decompose

each stress curve using fast Fourier transform (Section 7.1). A Fourier decomposition
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analysis is applied to the displacement curve to verify that no artifacts exist.

The stress versus time and strain versus time data for each material is studied for

the first three cycles to determine the lag-lead relationship between stress and strain

for the initial response and how it changes with subsequent cycles. Since Fourier

series can only accurately fit periodic functions, the Fourier series may not able to fit

the data; in that case Newland harmonic wavelet analysis is used. Harmonic wavelet

analysis is different from the Fast Fourier Transform because instead of breaking the

signal into harmonic sine functions that do not decay with time, the harmonic wavelet

transform (HWT) breaks the signal into local wavelets that are defined over infinite

time but have significant amplitudes in a finite time. Harmonic wavelets specifically

involve orthogonal wavelets which creates easier mathematics and allows for a unique

set of wavelets in a given signal (Newland 1994b). Harmonic wavelets take the form

of

w(x) =
exp(i4πx)− exp(i2πx)

i2πx
. (23)

Harmonic wavelet transform is used to capture dominant frequencies (j-level) and the

times (k-level translation) that occur within the data. The harmonic wavelet written

in terms of j and k is

w(2jx− k) =
exp(i4π(2jx− k))− exp(i2π(2jx− k))

i2π(2jx− k)
. (24)

The translations in the time domain within a frequency level is induced by k from

the wavelet’s Fourier transform in the frequency domain (Newland 1993). An increase

in k level corresponds with a further shift in time. A wavelet with j = 1, k = 0 and

that is purely real is shown in Figure 16.

The harmonic characteristic of the wavelets allow for the interpretation of the

levels and translations are confined to an octave band of frequencies. The harmonic

wavelet transform uses a FFT and inverse FFT process to analyze discrete experi-
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Figure 16: A real wavelet graphed versus time for j = 1 and k = 0.

mental data, which does not need to be periodic or sinusoidal. This method looks at

frequency levels that correspond to frequency ranges starting at j = 0 and a frequency

range from 2π
T

to 4π
T

where T is the total time of the data being evaluated. Each fre-

quency range increases in width as the frequency level increases. The frequency range

doubles with each sequential j level increase and the equation for the frequency range

at any j level is

(2π)2j

T
≤ f <

(2π)2j+1

T
. (25)

The total time of the experiment must be rounded down to a new evaluated time,

T = 2n for the FFT computations with the highest integer value of n so that 2n is

less than the original total time. Therefore, the analysis is applied to the number of

cycles that occur in time T . The component frequencies that can be identified are

limited and not exact (since they are given in ranges) however this method finds the

most prominent frequency ranges and the time intervals in which they occur. This

method is very dependent on the number of data points; the more data points over

a given time frame, the more frequencies that can be analyzed and the more tightly

defined time intervals can be examined at a given j level (Equation 25). A faster

programmed sampling time gives more points in a test, but the sampling rate on
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the Bose test machine does have a limit (0.0002 s). This method can give us the

transient information as well as information on how the frequency components may

change with time.

Both the FFT and the harmonic wavelet method give information about the aver-

age value of the curve or measure of symmetry around the time-axis, given as a zero

frequency level amplitude. They also both provide information about the importance

or dominance of certain frequencies.

To determine the goodness of fit of the decomposition as compared to the original

curve, the L2 error is calculated as the ratio of the L2 norm of the difference between

the curves to the L2 norm of the original curve

|G− g|
|g|

=

√∑ |G− g|2√∑ |g|2 (26)

where G is the decomposed function and g is the original stress signal. A Matlab

program is used to organize the wavelets into 20 bins in order of their magnitudes. The

bins magnitude ranges are determined by a step size of max−min
20

where the maximum

and minimum wavelet magnitudes are calculated (Section 7.1). An increase in bin

number corresponds to a decrease in wavelet amplitude. The bin number captures

the highest magnitude wavelet in bin number 1 with decreasing magnitudes as the

bin number increases.

3.4.3 Statistical Analysis

Two-factor ANOVA (Analysis of Variance) tests are used to examine statistical de-

pendence of the stress response on compression and material. Parts of the stress

versus time response are analyzed including the first stress peak magnitude, the mag-

nitude of stress drop over the cycles (A), the quickness of stress drop over the cycles

(b), and the steady state response (c) (Equation 18). Two-factor ANOVA tests are
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computed to determine the dependence of the Fourier series coefficients for 0 Hz, 1

Hz, and 3 Hz on material and compression.

Reproducibility, a relative standard deviation, is calculated for the numerical val-

ues used as

R =
SD

AV G
(27)

where SD is the standard deviation and AV G is the average of a set of values.

Reproducibility gives relative meaning to the standard deviation. For example, if the

standard deviation is 10 and the average is 1000, the reproducibility is 0.01, but if the

average is 5 the reproducibility is 2. A reproducibility factor of less than 1 shows a

relatively small standard deviation and therefore a likely reproducible set of ANOVA

statistics. Reproducibility loses its meaning as the average approaches zero.
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4 Results

The cerebral arteries and brain lie in close proximity in the head so that during

a trauma, the brain tissue and the arteries are likely affected at the same time.

The bovine aorta is a model for the cerebral arteries since human cerebral arteries

are not available for testing. Brain and aortic tissue were tested under sinusoidal

translational shear and fixed unconfined compression. Particularly of interest is the

difference between brain tissue, a naturally non-load bearing material, and aortic

tissue, a naturally load bearing material in vivo. The results are presented in two

sections, qualitative and quantitative. First, the qualitative section provides graphs

for each type of test and analysis using values that can be pulled from the graphs:

first peak stress amplitude, change in stress amplitude, symmetry of response, and the

time shift between the stress response and the applied deformation response. Next,

the quantitative section provides signal analysis of each type of test to determine the

frequencies present in the stress response.

4.1 Qualitative Analysis

Throughout this study, repetitions of the same tests were performed not only to

gather statistical evidence, but also because of the amount of specimen variability.

Specimen variation in soft biological tissue stress responses exists based on animal

to animal differences (e.g. size differences). With a lack of exact reproducibility,

the tests were performed several times to gather information about the average and

standard deviation of the data to better characterize and interpret the results.

From the 0% compression graphs (Figure 17, 19), it is clear that the mechanical

behavior of the two tissues is not the same. Within this section, the magnitude of

the stress amplitudes is compared for each tissue at both 0% compression and 33%

compression. The first stress peak amplitude is specifically of interest because this
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Figure 17: Stress versus time response of aortic tissue under 0% compression and 1 Hz, 25%
translational shear strain (22515b).

Figure 18: Stress versus time response of aortic tissue under 33% compression and 1 Hz,
25% translational shear strain (22515d).

is the tissues’ initial mechanical response to deformation. The change in amplitude

over time is of interest because this is the tissues’ mechanical response to a repetitive

deformation. The time shift between the stress versus time and strain versus time

graphs is analyzed for the first 3 cycles and calculated as the time between each curve

crossing through the horizontal axis. The shape of the stress graphs is checked for



37

Figure 19: Stress versus time response of brain tissue under 0% compression and 1 Hz, 25%
translational shear strain (20515a).

Figure 20: Stress versus time response of brain tissue under 33% compression and 1 Hz,
25% translational shear strain (12915a).

symmetry with respect to a vertical line through the center of a half cycle as well as

with respect to the horizontal axis over all cycles. These graphical comparisons are

meant to help understand the mechanical response of brain tissue as compared to a

natural load carrying tissue.
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4.1.1 First Peak Amplitude of Sinusoidal Shear Response

The shear stress magnitude is largest on the first deformation cycle (Figure 17, 18, 19,

20). The brain and aortic tissue shear peak stress magnitudes under a deformation

strain of 25% are nearly the same on the first deformation cycles and have average

amplitudes of 2856 Pa and 2578 Pa respectively. It should be noted that the first

peak stress magnitude response does vary by specimen.

Table 1 reports the peak shear stress which occurs on the first deformation cycle

for 24 total specimens (6 of each type of test) of which 12 are under no compression

and 12 are under 33% compression. A two-factor ANOVA with replication determines

the statistical difference between the first peak stress of brain tissue and aortic tissue

as well as the dependence on compression. The brain and aortic tissues do not show a

statistically significant difference in the first stress peak magnitude (P=0.2723). For

both tissues, compression causes a significant increase in stress magnitude (P=0.014).

The standard deviation has little meaning when viewed alone. The reproducibility

ratios for the peak stress magnitudes are less than 1 so these tests satisfy the criterion

for repeatability used in biomechanics.

4.1.2 Mullins Effect in Shear Stress Response to Translational Shear De-

formation

The Mullins effect (Section 3.4.1) under sinusoidal deformation describes stress soft-

ening in which the stress magnitude of subsequent reloading cycles significantly de-

creases from the stress of the initial loading cycle. Most of the Mullins effect reports

are for tensile deformation; however, in the present reported data for brain and aortic

tissue a similar effect is seen in translational shear.

The stress response of both materials displays a transient part of about 6-10

cycles during which the peak stress amplitudes decrease over time (Figure 17, 18, 19,
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Table 1: Brain and Aortic Tissue 40 Cycles at 0% and 33% Compression

Test Name First Peak Stress (Pa) A b c
Aorta, 0%

22515b 2275.38 972.2 0.3715 1440.4
22515c 3338.13 1011.8 0.1734 1995.2
40915a 1640.45 147.7 0.1286 1588.9
40915b 1752.18 208.4 0.153 1642.8
40915c 2100.98 270.1 0.1465 1945.6
40915d 2430.7 213.5 0.1093 2325.2

AVG 2256.303 470.6167 0.180383 1823.017
SD 609.6996 405.9098 0.096132 325.7441
R 0.2702 0.8625 0.5329 0.1786

Aorta, 33%
22515d 2294.4 1063.2 0.4276 2372.6
22515e 2741.3 587.1 0.7343 3344.5
22515f 2043.7 405.5 0.5862 1661.9
40915e 3719.6 496.6 0.1335 3273.4
40915f 3259.3 863.1 0.1612 5542.2
40915g 3346.3 853.4 0.5633 2833.9

AVG 2900.8 711.48 0.43435 3171.4
SD 651.9 253.8 0.2428 1318.4
R 0.2247 0.3567 0.5590 0.4157

Brain, 0%
20515a 2695.0 1822.2 0.7917 1095.7
20515b 2485.2 1666.4 0.5695 904.2
21915a 3284.9 2376 0.2705 810.7
21915b 2252.2 1233.8 0.0758 572.7
42315b 3302.7 2250.5 0.6012 1196.6
42315c 2714.1 1997.3 0.7096 933.07

AVG 2789.0 1891.0 0.5030 918.8
SD 425.38 415.41 0.2744 219.2
R 0.1525 0.2196 0.5456 0.2385

Brain, 33%
12915a 3116.0 1794.1 0.6526 1491
42315d 2839.4 2063.1 0.6929 951.6
42315e 4696.5 4732.8 1.1969 1001.7
42315f 4058.8 2828.6 0.6562 1446.6
42315g 4805.5 4235.4 1.0737 1388
42315h 3001.5 2556.7 0.6678 656.0

AVG 3753.0 3035.1 0.8233 1155.8
SD 882.7 1189.8 0.2451 336.4
R 0.2352 0.3920 0.2977 0.2910
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20). Table 1 lists the parameter values A, b, and c for the 24 specimens found from

Equation 18. Brain tissue experiences a much larger drop in peak stress magnitude

in the first few cycles than aortic tissue, while aortic tissue has a more gradual decay

in peak stress magnitude.

For both tissues, after the stress drop over the first few cycles, the stress peaks

appear to level out with a more gradual change in stress. However, in some cases

for aortic tissue, the stress peak amplitude gradually decreases as the number of

cycles increases and in other cases there is a slight stiffening past about 20 cycles, or

increase in stress peak amplitude. The brain tissue stress response does not exhibit

any stiffening, only a stress drop in the initial deformation cycles.

Figure 21: Stress versus time response and exponential fit curve of aortic tissue under 0%
compression and 1 Hz, 25% translational shear strain.

The exponential fit is not exact (Figure 21, 22, 23, 24), but the fit does provide

insight on whether the stress response is similar to Mullins effect. A two-factor

ANOVA with replication is used to evaluate the effect of tissue and compression

on each coefficient in the decay equation. The first term, A, from the exponential

fit for brain tissue is significantly larger than that for the aortic tissue (P=1.3E-
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Figure 22: Stress versus time response and exponential fit curve of aortic tissue under 33%
compression and 1 Hz, 25% translational shear strain.

Figure 23: Stress versus time response and exponential fit curve of brain tissue under 0%
compression and 1 Hz, 25% translational shear strain.

06). The compression causes a significant increase in the first exponential fit term

for both tissues (P=0.020). The second term, b, for the fit, which corresponds to
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Figure 24: Stress versus time response and exponential fit curve of brain tissue under 33%
compression and 1 Hz, 25% translational shear strain.

the quickness of the drop in stress is also larger (Table 1) for brain tissue than for

aortic tissue (P=0.005). Compression causes an increase in the second term, b, for

both tissues (P=0.0009). The third term, c, corresponds to the steady state stress

magnitude which is higher for the compressed tests for both specimens as compared

to each materials uncompressed test (P=6.13E-05). The third term is lower for brain

tissue than aortic tissue (P=0.0125). The reproducibility factors for A, b, and c are

all less than 1.



43
4.1.3 Symmetry of one Load-Unload Cycle

About the vertical axis through the peak of a half cycle, the aortic tissue is nearly

symmetric and the brain tissue is not symmetric. The load response of brain tissue

displays ‘shoulders’, an asymmetric deformity causing opposing concavity on each

cycle (adding more inflection points on the curve) that differs from a pure sine wave

signal (Figure 25). The shoulders break symmetry about the vertical line through

the peak because they are at different locations on the loading side of a half cycle as

compared to the unloading side. No visible shoulder appears on the first deformation

of the brain (Figure 19, 20). The aortic tissue stress response in a single half cycle

is nearly symmetric with respect to the vertical axis that crosses through the peak

values. No shoulders are visibly present in the aortic tissue response (Figure 17,

18); this difference indicates that some component of one of the tissues significantly

influences its stress response.

Figure 25: Shoulder shown on a stress versus time curve for brain tissue under 0% com-
pression and 1 Hz, 25% translational shear strain.
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4.1.4 Symmetry about the Horizontal Axis

The vertical symmetry with respect to the horizontal axis in a single cycle varies with

specimen and is not always symmetric because the maximum positive and negative

stresses are unequal in magnitude. The symmetry with respect to the time axis can

be seen more clearly toward the last set of cycles when the stress peaks are mostly

constant (Figure 17, 18, 19, 20). For the compression tests for both specimens,

the symmetry about the horizontal axis is more offset (when the average magnitude

of the entire stress signal is nonzero) than the non-compressed tests so it is not

symmetrical about the horizontal time axis. The stress response of the compressed

tissue tests shows a shift about the horizontal axis (sometimes in the positive and

sometimes negative direction) causing a difference in the positive and negative stress

magnitudes. For the compressed brain tissue tests, the ‘shoulders’ shift with respect

to the horizontal axis and no longer occur on the horizontal axis, but rather on the

negative side of the stress response (Figure 20).

4.1.5 Time Shift

A time shift on each cycle is defined as the time between the stress versus time graph

and the strain versus time graph as they cross through the horizontal time axis on the

corresponding cycle (Section 2.1). The time shift that is defined here is more general

than the phase shift that is commonly known for sine curves because the phase shift

involving sine curves is constant over many cycles. Aortic tissue stress versus time

response with respect to the strain versus time data has a time shift that is smaller

in magnitude than the time shift in brain tissue. The aortic tissue stress time shift

creates a lag in the stress (the stress curve crosses the horizontal time axis after the

deformation reaches zero) for most tests while some have small amplitude time shifts

(near zero). Conversely, the brain tissue stress time shift creates lead in the stress

(the stress curve crosses the horizontal axis before the deformation reaches zero).
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For aortic tissue, the average time shift is approximately 0.04 s with displacement

leading the stress curve (Figure 26). For brain tissue, the average time shift is approx-

imately 0.1 s with the stress leading the displacement curve. The brain tissue stress

versus time response is quasiperiodic; the shift changes over time within the brain

stress data and typically increases and eventually stabilizes (Figure 27, 28) (Table 2).

All reproducibility factors are less than 1 from Table 2.

Figure 26: Strain leads stress for the aortic tissue stress versus time response under 0%
compression and 1 Hz, 25% translational shear strain.
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Table 2: Brain Tissue Time Shift at the End of Each of the First 3 Deformation Cycles

Test Name Shift 1 Shift 2 Shift3
Brain, 0%

20515a 0.0914 0.1004 0.1029
20515b 0.0776 0.0938 0.0956
21915a 0.0674 0.1053 0.109
21915b 0.0626 0.063 0.0638
42315b 0.0742 0.096 0.1119
42315c 0.0864 0.077 0.1182

AVG 0.0766 0.0892 0.1002
SD 0.0109 0.0160 0.0194
R 0.1433 0.1797 0.1940

Brain, 33%
12915a 0.1376 0.1524 0.1529
42315d 0.1012 0.112 0.114
42315e 0.0835 0.1282 0.1348
42315f 0.0879 0.0943 0.1009
42315g 0.1064 0.1156 0.1187
42315h 0.0883 0.1022 0.108

AVG 0.1008 0.1174 0.1215
SD 0.02003 0.02068 0.01914
R 0.1987 0.1760 0.1575
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Figure 27: Stress leads strain for the brain tissue stress versus time response under 0%
compression and 1 Hz, 25% translational shear strain.

Figure 28: Stress leads strain for the brain tissue stress versus time response under 33%
compression and 1 Hz, 25% translational shear strain. The time shift changes on subsequent
cycles and is different for the front and back side of a half cycle.
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4.1.6 Limit Cycle

Stress versus strain graphs over 40 cycles help to visualize whether a limit cycles exists

and the presence of hysteresis (Figure 29, 30, 31, 32). The stress versus strain graphs

are compared to the stress versus time analysis of the Mullins effect to help visualize

the transient response. The number of cycles prior to the limit cycle is related to the

quickness of stress drop variable, b, from the exponential fit equation (18); the higher

the b value in the exponential fit equation, the quicker the stress drops and the fewer

number of cycles before steady state. The magnitude of the drop in the stress-strain

curves over the first few cycles is related to the magnitude of stress drop variable, A,

from the exponential fit equation.

Figure 29: Stress versus strain curve for aortic tissue under 0% compression and 1 Hz, 25%
translational shear strain.

The aortic tissue stress-strain graphs are a much different shape than the brain

tissue stress-strain graphs; the brain tissue cycles have more of a pronounced ‘S’

shape and are much thinner in the sense that the area within the loop is smaller

than that of the aortic tissue stress-strain cycles (Figure 29, 30, 31, 32). The stress-

strain graphs for brain tissue exhibit a flat section at low strains and then harden;

this flattening/hardening does not occur in the aortic tissue and does not exist on
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Figure 30: Stress versus strain curve for aortic tissue under 33% compression and 1 Hz,
25% translational shear strain.

the first cycle of the brain tissue response. The flat region of the brain tissue stress-

strain response correlates to the shoulder in the brain tissue stress-time response.

Compression causes an increase in the area within the stress-strain cycles for both

materials. If the material were elastic, then there would be no area within the cycles.

The area in the loops of the stress-strain curves are often used to measure to amount

of energy absorbed and dissipated, however no attempt was made to measure the

area enclosed because it is not clear that in this case the area enclosed is the energy

lost; many other factors may cause the appearance of energy dissipation (eg. fluid

redistribution and solid phase damage). The compression in brain tissue causes a

negative shift of the center of the loop (Figure 32) which correlates to the shift in

the stress from the stress-time graph (Figure 20). The loops are graphed clockwise

through time so the gap between the horizontal axis and where the stress-strain curve

crosses through the zero-strain axis verifies that stress leads strain for the brain tissue

because stress is zero before strain is zero.
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Figure 31: Stress versus strain curve for brain tissue under 0% compression and 1 Hz, 25%
translational shear strain.

Figure 32: Stress versus strain curve for brain tissue under 33% compression and 1 Hz, 25%
translational shear strain.
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4.2 Frequency Decomposition of the Stress Response

One long-term goal is to correlate the frequency components of the stress response to

the behavior of the fluid and solid portions of the tissues that might cause differences

in the response such as the shoulders in the brain tissue. A frequency filter is used to

determine the main frequencies responsible for the shoulders in the brain tissue stress

response. The frequency of the stress response and the magnitude of each frequency

component from each tissue are further examined in a Fourier series decomposition,

and in a harmonic wavelet decomposition as described in the Methods section (3.4.2).

4.2.1 Frequency Filter

Matlab is used to apply a pass filter on the uncompressed brain stress response data to

graph only the part of the stress versus time signal with a frequency response within

the frequency range given. Expanding and constricting the pass filter from 0-1 Hz,

2-3 Hz and 0-3 Hz, shows the shear stress response of brain tissue to an applied 1 Hz

sinusoidal deformation has a 1 Hz component which is the same as the applied strain

frequency and a 3 Hz component which captures the shoulders in the stress response

(Figure 33). The fit is not perfect with only the sum of 1 and 3 Hz components,

however the sum captures the majority of the response (Figure 34). Other higher

frequencies may also exist to capture the rest of the signal response.
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Figure 33: Frequency decomposition using two pass filters for 1 Hz and 3 Hz, of a original
stress versus time curve for brain tissue under 0% compression and 1 Hz, 25% translational
shear strain.

Figure 34: Sum of 1 Hz and 3 Hz curves detected from pass filters and original stress versus
time curve for brain tissue under 0% compression and 1 Hz, 25% translational shear strain.
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4.2.2 Fourier Series Analysis

To verify the shape and frequency of the mover displacement amplitude and to ensure

that no artifacts in the controlled displacement can account for some characteristics

of the shear stress response, Fourier series decomposition is used to analyze the dis-

placement versus time data.

The frequencies extracted from the BOSE displacement versus time data for a

programmed displacement amplitude of 3 mm at 1 Hz are 0, 1, and 3 Hz with Fourier

coefficient amplitudes respectively 0.1547, 2.9916, and 0.0129 (Figure 35, 36). The

most significant frequency is 1 Hz with small amplitude frequencies of 0 and 3 Hz so

the applied displacement is close to a 1 Hz signal. Figure 35 is a frequency spectrum

graph which displays the magnitude, Y (t) (in mm), of each sine function with respect

to each frequency. Figure 36 is the Fourier decomposition displacement versus time

curve plotted on top of the original displacement data.

The Bose displacement mover is electromagnetically controlled which allows the

mover to move nearly friction-free as compared to hydraulic testing machines. Further

sometimes during testing with hydraulic machines, spurious waves are induced in the

hydraulic fluid that can add components to the controlled displacement of other

hydraulic testing machines.

The frequency components of the shear stress response for each material at 0%

and 33% compression are analyzed by a Fourier series decomposition. In particular,

Fourier series decomposition is used to further examine the 3 Hz frequency component

for the brain tissue response determined from the frequency pass filter analysis. For

both aortic tissue and brain tissue, the significant frequencies from the Fourier series

decomposition are 0, 1, and 3 Hz (Figure 37, 39). The reproducibility factor was less

than 1 for all of the 1 Hz and 3 Hz components which are most significant due to their

large magnitudes (Table 3). Small 2 Hz and 4 Hz components appear in some tests.

A two-factor ANOVA with replication is used to determine the significance of tissue
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Figure 35: Fourier coefficient magnitudes versus frequency for BOSE displacement mover
at 1 Hz and 3 mm amplitude.

Figure 36: Fourier series decomposition curve (blue) and original curve (red) for BOSE
displacement mover at 1 Hz and 3 mm amplitude. The two curves lie on top of each other.

and compression on the Fourier coefficients for each dominant frequency (0, 1, and 3

Hz). The magnitude of the Fourier coefficient for the 0 Hz component corresponds
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to a magnitude shift or the average stress value and did not significantly depend on

tissue type or compression. The 0 Hz Fourier coefficient is not statistically different

with respect to tissue type or compression. The 1 Hz Fourier coefficient is higher in

aortic tissue (P=1.2E-05) and under 33% compression is higher than 0% compression

in both materials (P=0.051). The 3 Hz Fourier coefficient is higher in brain tissue

(P=8.87E-07) and is not statistically affected by compression, however visually the

shoulders are influenced by compression as a shift toward the negative stress side with

respect to the horizontal axis (Figure 20).

The Fourier Series Decomposition cannot model the transient portion of either

set of data (Figure 38, 40). The brain has a quasiperiodic stress response (Table 2)

that makes the Fourier series not able to model it correctly since the Fourier series

summands are periodic sine functions each of which has a fixed phase shift.
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Figure 37: Fourier coefficient magnitudes versus frequency for aortic tissue under 1 Hz, 0%
compression, 25% translational shear strain (22515b).

Figure 38: Fourier decomposition curve versus time (blue) and original stress versus time
(red) curve for aortic tissue under 1 Hz, 25% translational strain (22515b).
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Figure 39: Fourier coefficient magnitudes versus frequency for brain tissue under 1 Hz, 0%
compression, 25% translational shear strain (21915a).

Figure 40: Fourier decomposition curve versus time (blue) and original stress versus time
(red) curve for brain tissue under 1 Hz, 25% translational strain (21915a).
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Table 3: Fourier Coefficients for Frequencies 0-6 Hz of Shear Stress Response (Pa)

0 Hz 1 Hz 2 Hz 3 Hz 4 Hz 5 Hz 6 Hz
Artery, 0%

22515b 755.8 1749.5 32.4 144.4 15.1 11.8 2.2
22515c 1092 2613.6 46.4 187.4 33.4 12.5 3.9
40915a 86.8 1621.3 0 18.6 0.7 0.9 0.3
40915b 89.8 1639.8 0 32.8 0.9 1.1 0
40915c 102.6 1885.3 21.4 39.9 0.8 0.5 0
40915d 121.7 2274.7 31.4 32.9 0 0 0
AVG 374.7833 1964.0333 21.9333 76 8.4833 4.4666 1.0666
SD 438.6019 398.3133 18.7628 71.2886 13.5181 5.9674 1.6317
R 1.1702 0.2028 0.8554 0.9380 1.5935 1.3360 1.5297

Artery, 33%
22515d 121.5 2110.5 52.7 278.9 14.7 16.5 4
22515e 138.2 2969.4 132.6 175 13.4 18.2 0
22515f 76.5 1638.6 51 75.5 9.5 11.5 2.6
40915e 178.2 3229.8 0 41.2 0 1.4 0
40915f 299.1 5561.9 88.6 80.7 3.1 2.4 0
40915g 257.3 2600.4 25 68.7 2.2 1.3 0
AVG 178.4666 3018.4333 58.3166 120 7.15 8.55 1.1
SD 84.8893 1372.5405 46.9702 90.1555 6.2227 7.8298 1.7606
R 0.4756 0.4547 0.8054 0.7512 0.8703 0.9157 1.6006

Brain, 0%
20515a 59.8 717.4 0 324 0 92 5.1
20515b 53.4 629.6 0 265.5 0 68.2 2.6
21915a 67.8 757.8 25 310.8 0 93.2 4.2
21915b 68.1 690.9 25 280.1 16.7 73.1 4.5
42315b 66.8 810.1 49.7 352.5 16.4 104.8 3.4
42315c 56.6 642.2 41 282.4 19.2 84.9 4.8
AVG 62.0833 708 23.45 302.55 8.7166 84.6 4.1
SD 6.35308 68.9368 20.5020 32.5757 9.5980 14.6977 0.9380
R 0.1023 0.0973 0.8742 0.1076 1.101 0.1737 0.2288

Brain, 33%
12915a 523.6 1041.5 270 388.9 32.2 106.2 13.9
42315d 58.9 713.5 41.3 265.2 9.7 78.2 0
42315e 132.1 811.1 0 320.7 0 98.3 0
42315f 86.5 1092.8 33.8 391.5 0 101.8 0
42315g 115 966.6 75.1 350 17.7 103.5 0
42315h 56.8 625.7 0 166 0 48.7 2.1
AVG 162.15 875.2 70.0333 313.7166 9.9333 89.45 2.6666
SD 179.5852 187.5448 101.9412 86.3042 13.0552 22.3424 5.5669
R 1.1075 0.2142 1.4556 0.2751 1.3142 0.2497 2.0875
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4.2.3 Harmonic Wavelet Analysis

Fourier series decomposition provides information about the dominant frequencies

present in the stress versus time response, but does not fit the data with precision since

the shear stress response for brain tissue is not periodic. Harmonic wavelet analysis

provides information about the change in amplitude and the location of the frequency

components with respect to time. Figure 41 displays the same 0% compression brain

test from Figure 40; it can be seen that the harmonic wavelet decomposition analysis

has a better fit than the Fourier series decomposition analysis.

Figure 41: Harmonic wavelet decomposition curve and the original stress curve for brain
tissue under 0% compression and 1 Hz, 25% translational shear strain. The curves lie on
top of one another. (20515a)

Recall from Section 3.4.2, the harmonic wavelet analysis with a time step of 0.0002

s between sample points over 40 cycles requires a total evaluated time of T = 26.2142.

The harmonic wavelet decomposition level j = 4 corresponds to the frequency range

of 0.6 − 1.2 Hz (Equation 25, Table 4) which is interpreted as the 1 Hz frequency

response because the Fourier series decomposition contained dominant 1Hz and 3 Hz

components. A j = 6 level is interpreted as the 3 Hz frequency response by the same

argument.
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Table 4: Frequency Ranges for j Levels

j level Frequency Lower Bound (Hz) Frequency Upper Bound (Hz)
1 0.1 0.2
2 0.2 0.3
3 0.3 0.6
4 0.6 1.2
5 1.2 2.4
6 2.4 4.9
7 4.9 9.8
8 9.8 19.5
9 19.5 39.1
10 39.1 78.1

The coefficient magnitude for the j = −1 level corresponds to a vertical shift in the

signal at all points (much like the Fourier series coefficient for the 0 Hz component).

Table 5, 6, 7, and 8 show the j and k levels for the most significant wavelets computed

from the harmonic wavelet decomposition. Figures 42, 43, 44, 45 show the harmonic

wavelet decomposition of the dominant wavelets (only the wavelets in Tables 5 to 8)

along with the original stress data.

The dominant frequency consistently present within the harmonic wavelet analysis

for brain tissue and aortic tissue is 1 Hz, which is the applied deformation frequency.

The brain tissue analysis detects a dominant 3 Hz component throughout the signal.

The 3 Hz component does not appear at every value of k, however more 3 Hz compo-

nents may exist within the many more small magnitude wavelets in Bin 20. Wavelets

also interact and may overlap to create a 3 Hz signal in the areas in time where the

k values are not dominant. The lowest k values (wavelets at the beginning of the

signal in time) have the largest magnitude of all of the wavelets in the signal. The 3

Hz component only exists at low values of k, or in the first few cycles for the aortic

tissue.
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Table 5: Brain Tissue 40 Cycles at 0% Compression (20515a)

Bin number j level k level
1 4, 4 0, 1
7 4 2
11 4 4
12 4, 4 3, 5
13 4 ,4, 4, 6 7, 8, 14, 1
14 4, 4, 4, 4 6, 10, 11, 13
15 4, 4, 5, 6 9, 12, 0, 2
16 6 0
17 4, 6, 6, 6 15, 3, 4, 7
18 6, 6, 6, 6, 6, 6, 6, 6, 6 5, 6, 9, 10, 11, 12, 14, 16, 19

Figure 42: Harmonic wavelet decomposition curve (including only the binned wavelets from
Table 5) and the original stress curve for aortic tissue under 0% compression and 1 Hz, 25%
translational shear strain. (20515a)

An increase in bin number corresponds to a decrease in wavelet amplitude. An

increase in k level corresponds with a further shift to a later time. The bin number

captures the highest magnitude wavelet in bin number 1 with decreasing magnitudes

as the bin number increases. In general at a fixed j level, the k values trend from
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Table 6: Brain Tissue 40 Cycles at 33% Compression (12915a)

Bin number j level k level
1 4 0
3 4 1
7 4 2
11 4, 4, 4 4, 5, 14
12 4, 4, 4, 4, 4 3, 7, 8, 10, 11
13 4, 4, 4 6, 9, 13
14 4 12
16 4, 5, 6 15, 0, 1
17 6 0
18 6, 6 2, 3

Figure 43: Harmonic wavelet decomposition curve (including only the binned wavelets from
Table 6) and the original stress curve for aortic tissue under 33% compression and 1 Hz,
25% translational shear strain. (12915a)

low to high with respect to the bin number which correlates to the drop in amplitude

with respect to time. The first 5 largest amplitudes are consistently j = 4, and low

level k. Small k values correspond to the stress at the beginning of the response (first

few cycles).

As described in Section 3.4.2, the bins are organized by magnitude. For all tests,

Bin 20 contains a large amount of wavelets with the bottom 5% magnitudes. If a bin
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Table 7: Aortic Tissue 40 Cycles at 0% Compression (22515b)

Bin number j level k level
1 4 2
2 4 1
3 4, 4 0, 14
4 4 5
5 4, 4, 4 4, 8, 11
6 4, 4, 4, 4, 4, 4 3, 6, 7, 9, 10, 13
7 4 12
8 4 15
17 5 0
18 -1 0
19 6 0

Figure 44: Harmonic wavelet decomposition curve (including only the binned wavelets from
Table 7) and the original stress curve for brain tissue under 0% compression and 1 Hz, 25%
translational shear strain. (22515b)

contains many wavelets (greater than 50), then the bin is not considered for analysis

(This only happens for these tissue responses in the smallest magnitude bins, 19 and

20). Any other bin excluded from the tables above is due to the lack of any wavelets

in that particular magnitude range.

The harmonic wavelet analysis successfully fits both tissue stress response curves

as shown by the very low L2 Error for All Wavelets in Table 8 and Figure 41. The L2
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Table 8: Aortic Tissue 40 Cycles at 33% Compression (22515d)

Bin number j level k level
1 4, 4 1,2
4 4, 4 0, 14
5 4, 4, 4 4, 5, 8
6 4, 4, 4 3, 7, 11
7 4, 4, 4, 4, 4 6, 9, 10, 12, 13
9 4 15
16 5 0
19 6, 7, 15 0, 0, 0

Figure 45: Harmonic wavelet decomposition curve (including only the binned wavelets from
Table 8) and the original stress curve for brain tissue under 33% compression and 1 Hz,
25% translational shear strain. (22515d)

norm error (Equation 26) depicts the standard deviation as a relative fraction that

contains a more obvious meaning. The L2 error for the binned wavelets (top 90%

in magnitude) are low and show a good fit without using all wavelets (wavelets from

Bin 20 are excluded). The harmonic wavelet decomposed artery stress response has

a lower L2 error value than the brain stress response L2 error.
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Table 9: L2 Error for Binned Wavelets and All Wavelets

Test L2 Error Binned Wavelets L2 Error All Wavelets
Artery, 0%

22515b 0.1284 6.73E-08
22515c 0.1146 1.03E-08
40915a 0.0725 6.67E-09
40915b 0.0667 4.02E-08
40915c 0.0675 1.15E-08
40915d 0.0652 1.73E-09
AVG 0.0858 2.29E-08
SD 0.0280 2.55E-08

Artery, 33%
22515d 0.1545 8.94E-09
22515e 0.106 1.42E-08
22515f 0.0913 1.53E-08
40915e 0.0707 5.51E-09
40915f 0.0701 8.73E-09
40915g 0.0933 1.62E-07
AVG 0.0976 3.58E-08
SD 0.0311 6.20E-08

Brain, 0%
20515a 0.3517 8.73E-06
20515b 0.3567 2.89E-06
21915a 0.3723 3.28E-07
21915b 0.3563 4.37E-08
42315b 0.3605 2.16E-08
42315c 0.3626 5.62E-06
AVG 0.3600 2.93E-06
SD 0.007 3.58E-06

Brain, 33%
12915a 0.4743 2.74E-06
42315d 0.3504 6.54E-09
42315e 0.318 1.06E-08
42315f 0.3343 3.29E-08
42315g 0.311 1.44E-08
42315h 0.237 7.02E-07
AVG 0.3375 5.83E-07
SD 0.0775 1.08E-06



66
4.2.4 2 Hz Analysis

To verify that the shoulder response was not a phenomena of only a 1 Hz applied de-

formation, a test was completed at 2 Hz under 0% compression and 25% translational

strain; the shoulders are still present (Figure 46). The Fourier series decomposition

coefficients are given in Table 9.

Figure 46: Stress versus time for brain tissue under 0% compression and 2 Hz, 25% trans-
lational shear strain.

Table 10: Fourier Coefficients for Brain Tissue 0% Compression and 2 Hz

Frequency Fourier Coefficient Magnitude
0 Hz 30.8052
2 Hz 817.4784
4 Hz 43.5473
6 Hz 337.1983
10 Hz 96.2478

The dominant frequency values from the 2 Hz test are twice those obtained from

the 1 Hz tests due to the doubling in applied deformation frequency. The 2, 6, and

10 Hz coefficients (Table 9, Figure 47) correlate to dominant 1, 3, 5 Hz components

in the 1 Hz tests. Harmonic wavelet analysis has a fractional error of 0.2965 for the

wavelets in bin 1-19. Table 11 shows the harmonic wavelet coefficients for the brain
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tissue under an applied 2 Hz deformation frequency and 0% compression. A j level

of 4 corresponds to 2 Hz and a j level of 6 corresponds to 6 Hz (Equation 25).

Figure 47: Fourier series decomposition coefficients versus frequency for brain tissue under
0% compression and 2 Hz, 25% translational shear strain.

Table 11: Harmonic Wavelet Coefficients for Brain Tissue at 0% Compression and 2 Hz

Bin number j level k level
1 4 0
4 4 1
11 4 2
14 4, 4, 5, 6 4, 5, 0, 1
15 4, 4, 4 3, 7, 8
16 4, 4, 4, 4, 4 6, 10, 11, 13, 14
17 4, 4 9, 12
18 5, 6, 6, 6, 6 1, 0, 2, 3, 4
19 4, 5, 6, 6, 6, 6, 6, 6, 0, 15, 5, 6, 7, 8, 9, 10,

6, 6, 6, 6, 6, 6, 6 11, 12, 14, 15, 16, 19, 24
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4.2.5 Results Summary

The stress response of bovine aortic tissue and rat brain tissue under combined un-

confined compression and translational sinusoidal shear deformation exhibits many

similarities. The first peak stress amplitudes (the largest peak in the signal) of both

materials are statistically similar. The stress response for both materials displays a

transient response and drop in stress magnitude after subsequent cycles. The brain

tissue stress drops more in magnitude and more rapidly over the cycles than the aortic

tissue stress response causing the brain tissue to have a lower steady state stress value.

The aortic tissue stress response for some specimens slightly stiffens after 20 cycles;

the brain tissue stress response does not display stiffening. Compression causes an

increase in the stress response and an increase in the magnitude of the stress drop.

Neither stress response is in phase with the displacement and the brain tissue

response exhibits a variable time shift (quasiperiodic).The brain tissue stress response

leads the displacement response which differs from the lagging stress response of the

aortic tissue. The aortic tissue stress response is nearly symmetric with respect to

the vertical axis of one half cycle but the brain tissue stress response is not symmetric

due to shoulders in the curve.

A Fourier series decomposition of the stress response of both materials detects a 1

Hz and 3 Hz component. Likewise, a harmonic wavelet decomposition captures how

each frequency component changes with respect to time. The shoulders correspond to

a 3 Hz component that exists throughout the signal of the brain tissue response; the

aortic tissue stress response 3 Hz component does not persist throughout the signal.

The Fourier 1 Hz component has a larger magnitude in the stress response of aortic

tissue and the Fourier 3 Hz component has a larger magnitude in the stress response

of brain tissue.



69
5 Discussion

The mechanisms underlying the mechanical response of either aortic or brain tissue

are not yet definitively determined. Because both tissues are hydrated, the interstitial

fluid probably plays a significant role in the mechanical response. The influence of the

fluid-solid interaction appears in the transient stress response, the stress frequencies

detected from frequency analyses and the shape of each stress versus time response,

each of which is interpreted using the structural properties.

Aortic tissue can hold a translational shear stress due to the highly structured,

layered form of the tissue (Section 2.2.1). The structure of brain tissue is much

different than aortic tissue and is maintained by a balance between axonal tension

and hydrostatic pressure (Van Essen, 1997). A possible explanation for how brain

tissue holds a translational shear stress is that the hydrostatic pressure within the

tissue increases with an applied unconfined compression or with an applied shear that

causes distortion and that the axons tension increases to compensate for the pressure

change. Since axons exist in all directions (Figure 48), an applied shear stress would

cause some of those axons to stretch in tension. The increased tension in the axons

could resist further stretch of the axons which may resist shear deformation.

A positive and negative mover direction is defined by the Wintest programming

and refers to a relative center, or zero displacement (B), position (Figure 50, 52) of

the Bose mover. The positive and negative displacement indicates the location of the

mover, away (Figure 49 and point A in Figure 52) or toward (Figure 51 and point

C in Figure 52), the Bose machine with respect to the center position. The center

position is where the mover is located at the beginning of every test. A positive and

negative stress is directly calculated from the detected load cell reading; a negative

load indicates a compressive load from the bottom plate pushing on the load cell and

a positive load indicates a tensile load. The displacement reading corresponds to the

top surface of the specimen attached to the Bose mover and the load detected is the
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specimen action on the bottom plate.

Figure 48: (a) Axons are oriented in all directions; each line in this schematic represents a
possible direction of axons in undeformed brain tissue. (b) Schematic of a brain specimen
in translational shear. Red lines represent directions that are in tension and blue lines
represent compression (axons would be ‘slack’).
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Figure 49: Brain tissue specimen at positive shear position corresponding to point A in
Figure 52.

Figure 50: Brain tissue specimen at center shear position corresponding to point B in Figure
52.

Figure 51: Brain tissue specimen at negative shear position corresponding to point C in
Figure 52.
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Figure 52: A is the positive shear position, B is the center, or zero, shear position, and C is
the negative shear position. A, B, and C correspond to the position of the mover on each
displacement cycle.
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5.1 Solid-Fluid Interaction in the Mechanical Response

Brain tissue contains both solid and fluid phases that may affect the shear stress

response of the tissue separately as well as interfere with each other. The extracellular

space (ECS) of the brain contains and allows the extracellular fluid (ECF) to move.

Normally, in vivo the ECF is known to transport nutrients and remove cell waste.

Pulsing arteries cause a pressure differential that drive the fluid from the para-arterial

to the paravenous pathways (Section 2.2.2). The volume and construction of the ECS

controls the tortuosity, the measure of path curvature that the fluid must travel in a

given physical length, of the tissue. To better explain the tissue’s stress response, the

behavior of the solid and fluid phases and their interaction will be interpreted during

the applied deformation.

The solid-fluid interaction is defined by the influence that the fluid phase has on

the solid phase of the material or vice versa. The solid phase can affect the fluid

because an applied stretch of the solid phase may cause pressure differentials in the

ECF and fluid redistribution. The fluid can affect the solid phase due to drag. A drag

force is equal and opposite on the fluid and solid parts, but the fluid phase cannot

hold a shear stress. Only the solid phase is connected to the load cell and therefore

is the only phase that can create a stress from the load cell attached to the bottom

grip. Drag can result from fluid friction on a surface of the solid matter wall or from

fluid hitting the solid matter surface normal to the fluid flow.

Stress relaxation is largely due to fluid redistribution in hydrated viscoelastic ma-

terials such as brain tissue (Haslach et al. 2015a) or cartilage (Mow et al. 1980). A

redistribution of fluid causes a decrease in pressure and therefore a drop in axonal

tension and a drop in stress. Stress relaxation occurs after a deformation is applied

and then fixed over time while the stress drops through time often to a steady state

stress value. Since stress relaxation occurs at a fixed strain as fluid redistribution,

fluid redistribution is likely to also occur in cyclic loadings. If the fluid within the
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brain tissue structure redistributes from high pressure locations toward low pressure

locations, the total stress supported would decrease over time. The stress relaxation

may also be dependent on the moisture content in the aorta because hydration lowers

the glass transition of elastin and causes the elastin to be rubbery at body tempera-

ture. Lillie and Gosline (1990) state that elastin, when dry, exhibits little elasticity

and hydrated elastin exhibits significant elasticity.

5.2 Transient Response

Over the 40 cycles of applied deformation, the stress response of the brain and aortic

tissue drops over the first few cycles and levels off to an apparent limit cycle. The

transient stress response may be due to several different causes in aortic tissue than in

brain tissue. The aortic tissue has residual stresses within the tissue in vivo that are

lost once the specimen is cut. Rings that are slit gradually open over time probably

because the residual stresses relax in the elastic sheets (Vaishnav and Vossoughi 1987,

Rahal et al. 2006). The relaxation of residual stresses prior to testing may cause the

transient response of aortic tissue possibly due to relaxed collagen fibers and elastin

sheets prior to testing. In vivo, the aortic tissue would not exhibit a transient response

because it is always undergoing cyclic loadings. If the aortic tissue has relaxed and

is not in its natural, original in vivo stress carrying state, the stress response in vitro

may be affected.

The brain tissue transient stress response may be due to a buildup of pressure

within the tissue causing axonal stretch and possible axonal breakage which would

change the tortuosity of the material. Damage of the solid matter could create ad-

ditional pathways for the fluid to flow. The redistribution of the fluid could cause a

decrease in pressure on subsequent loadings and therefore less axonal stretch which

leads to a lower stress carrying ability. If the fluid carries hydrostatic pressures high

enough to damage the solid state of the tissue, additional pathways would be cre-
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ated rapidly which correlates with the stress peak drop that occurs quickly and in

large magnitudes in the first few cycles. A theorized principle used throughout this

discussion is the easier the fluid can flow, the lower the shear stress measured.

The transient stress response of both tissues is similar to the Mullins effect in

rubber. The Mullins effect is speculated to be an effect due to bond breaking, and it

is likely that aortic and brain tissue also experience bond breaking. The exponential

fit equation (Equation 18) provides insight on how quickly the stress is dropping and

by how much. The brain tissue drops quickly and in large magnitudes; this could be

due to large quantities of axonal breakage and the opening of pathways in the tissue.

The stress-strain curves help visualize the transient response as the loops change

after each cycle (Section 4.1.6). The brain tissue stress-strain curves include just a

few initial, transient curves that lie outside of an apparent ‘limit cycle’, but have a

large difference in stress magnitude between those cycles whereas the aortic tissue

does not have as large of a stress magnitude change on subsequent cycles after the

transient response. This difference reflects the explanation given about the transient

response and possible damage in the brain tissue during testing.

The limit cycle would be expected for the artery but not the brain; the aortic tissue

is naturally cyclically loaded and brain tissue is not significantly loaded naturally.

(The brain does experience small changes in pressure due to the pulsing arteries.)

The limit cycle does not have a physiological explanation in the brain stress response.

A steady state, or limit cycle in brain tissue, possibly occurs when the pressure

buildup no longer causes axonal breakage and the ECF redistributes more freely.

5.3 Frequency Analysis

The harmonic wavelet decomposition analysis here is a novel application of the tech-

nique to the mechanical response of soft, hydrated, biological tissue and is successful

in giving information about the material stress response. Harmonic wavelets have
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previously been used in music analysis and signal analysis (Newland 1993, 1994a).

Harmonic wavelets successfully fit the quasiperiodic, changing magnitude stress re-

sponse, unlike Fourier series analysis. The harmonic wavelets have a significant non-

zero magnitude during a finite time interval that differs from Fourier series analysis

that uses infinite homogeneous magnitude sine waves. Harmonic wavelet decomposi-

tion analysis allows for the capture of change in magnitude and variable time shifts

of each cycle.

Frequencies other than the expected 1 Hz and the harmonic 3 Hz components

exist in the harmonic wavelet decomposition at the beginning of the signal (k = 0)

for aortic and brain tissue. These other frequencies could be due to the starting up

of the Bose displacement mover or may be due to the breaking of bonds in the tissue.

The 3 Hz component in both the Fourier series and harmonic wavelet decomposition

corresponds to the appearance of a shoulder in the brain tissue stress response. The

aortic tissue stress response does not exhibit a distinct shoulder like the brain tissue

stress response, but does exhibit a smaller magnitude 3 Hz component. The shoulder

does not occur on the first quarter cycle of initial loading, but otherwise the shoulder

appears to maintain a similar shape throughout the cycles in the brain tissue tests.

How the fluid may induce the shoulder in the brain tissue shear stress response is

further examined below.

5.3.1 Fluid Influence on Brain Tissue Response during a Load-Unload

Deformation Cycle

The shear stress leads translational deformation in the brain tissue response. An

increase in hydrostatic pressure and resistance to shear deformation could make the

stress lead the displacement curves during the initial applied half sine wave. Axons

have viscoelastic properties that when in tension exhibit a stress leading response,

that is effectively modeled by Dennerll et al. (1989) using Zener’s model, the Kelvin-
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Voight model in series with a spring (R1 =4 microdynes/µm, R2=9 microdynes/µm,

η= 6,000 microdynes*s/µm). The phase shift, δ, is calculated from the parameters

found by Dennerell et al. (1989) by solving the differential equations for the Zener

model. The phase shift is converted to time by Equation 1. Using a fixed frequency

of 1 Hz in Mathematica, the time shift calculated for an axon is 0.0000169s. This

time shift due to axonal stretch is much smaller than the observed time shift in the

brain tissue stress-time curve. The axonal material properties may cause some of the

time shift within the data, but the remainder of the time shift is speculated to be due

to the fluid. Time shift may be related to the viscoelastic response.

As the mover displacement starts to slow down to change directions at the peak

of the first half sine (Figure 49, point A on Figure 52), the difference in hydrostatic

pressure within the tissue due to a distortion of the extracellular space forces the

fluid to redistribute and reduce hydrostatic pressure which causes a stress relaxation

to occur because the zero velocity position is temporarily a fixed deformation. This

fluid redistribution that is initiated by a slowing in the mover until the displacement

approaches zero velocity could cause a drop in stress prior to the peak deformation

which would cause stress to further lead prior to the peak of the deformation sine

waves. If the fluid is driven to redistribute due to the pressure differential in the

tissue, the axonal tension would decrease as the fluid moves to equalize the pressure

difference and the stress would drop. As the mover stops (Figure 49, point A on

Figure 52) and changes direction, the stress continues to relax due to further fluid

redistribution while the solid state is at its most distorted configuration. As the mover

begins to return toward its initial position (Figure 50, point B on Figure 52), axonal

tension and tissue distortion decrease.

As the mover accelerates to the zero position (Figure 50, point B on Figure 52),

the deformation rate reaches its fastest speed as the mover crosses through the zero

position; this speed could be related to the slope of the stress response or to the
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shoulder phenomenon (Figure 25). The shoulder includes the positions at which the

displacement crosses through the horizontal axis (Figure 50, point B on Figure 52), i.e.

where the mover is accelerating to its fastest speed. Due to a reduction of distortion

in the extracellular space and fluid redistribution during the unloading initial half

sine, the stress reaches zero before the mover reaches the zero position which creates

a leading stress response. The stress therefore may have a new zero stress position,

that may be related to permanent distortions in the tissue.

The mover speed and acceleration could cause an inertial force in the fluid or drag

from the neurons as the fluid passes through the tortuous ECS of the material. The

stress may lead the displacement due to the inertial effects caused by the mover‘s

acceleration when the stress is zero. It may also be possible that, as the mover slows

after passing the zero position, tissue inertia keeps the tissue force on the load cell from

the bottom grip and contributes to an overshoot of negative stress after the half cycle

is completed. When the deformation continues to the zero position, after the stress

has already reached zero, the repositioned fluid and possibly permanently distorted

tissue may now resist the shear deformation in the opposing direction causing the

negative shear stress detected.

When the displacement is at the zero position (Figure 50, point B on Figure

52), the distortion of the ECS may not have fully recovered to its original condition

(Figure 53). The distortion of the ECS may vary during the sinusoidal deformation

and after repetitive loadings. A change in time shift after repeated loadings may

indicate a change in tortuosity of the tissue creating an easier available pathway for

the fluid to flow, which could be related to possible damage. The hydrostatic pressure

may increase in the direction of initial loading and result in a higher stress in that

direction possibly due to the fluid’s initial redistribution and possible initial damage.

The change in stress amplitude after repeated loadings may be caused by the breaking

of some connections within the structure of the tissue.
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Figure 53: The arrow shows the rupture surface of brain tissue.

The shoulder is of great interest in the brain tissue stress response because it does

not appear in aortic sinusoidal deformation and because it may indicate the role of

the ECF in the mechanical response. The shoulder is closely related to the 3 Hz

component detected from the harmonic wavelet decomposition analysis. The 3 Hz

component may be due to a drag force of the fluid exerted on the solid phase. If the 3

Hz component is the stress component required to overcome drag, the bulk direction

of fluid flow would be the same as the sign of the 3 Hz component at any given time

because the force exerted from the ECF on the solid phase is in the direction of the

ECF flow. The 3 Hz component magnitude decreases over the subsequent cycles in

the harmonic wavelet decomposition, suggesting that the drag force may be smaller

as the cycles continue which may be due to the fluid moving more easily. It is not

definite that the drag force is responsible for all of the 3 Hz component because

there are many other possible influences on the stress response of brain tissue such

as stress relaxation, pressure differentials in the tissue, solid frictional forces between

subsections, axonal damage and subsection shearing.

The shoulder does not occur on the initial loading in the first cycle. A possible

explanation of the lack of a shoulder may be due to lack of damage during the initial

cycle. Initially, the ECS has not been distorted by the load, but at each shoulder the

ECS has been previously distorted. Only during the initial loading cycle does the

displacement mover need to “start up” or accelerate up to speed since the mover can-

not instantaneously move at the desired displacement rate. During the first loading,
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the mover accelerates from the zero position because it is starting from rest, but on

subsequent cycles the maximum velocity occurs at the zero displacement position and

the mover decelerates during the loading. This start up may cause a slightly different

displacement curve because of this acceleration period which may cause a different

stress response.

5.3.2 Aortic Tissue Stress Response

Unlike the brain tissue stress response in which stress leads displacement, the aortic

tissue stress response stress lags the displacement. When the aortic tissue specimen

is cut, the residual stresses from the tissue holding a nearly circular shape are able to

relax and the collagen fibers may crumple (no longer be stretched straight). At the

beginning of the test, the mover displaces in the positive direction (Figure 49, point

A on Figure 52) and for a small initial displacement the stress is very small which

may indicate the small force and stretch required to elongate the collagen fibers from

their crumpled state. Since the top surface of the tissue is controlled by the mover

displacement and the bottom surface of the tissue is attached to the load cell to

detect the load reading, the change in displacement direction of the top plate is not

immediately reflected as a change in direction of the force on the load cell. The stress

lag is due to the viscoelastic properties of the tissue which is comprised of elastin

sheets, smooth muscle cells, and ECF. Recall, a purely elastic material would have

stress and displacement in synchronization and a purely viscous material would have

stress lagging by 90o; Viscoelastic materials have a stress response that lags by a phase

angle between 0o and 90o. The aortic tissue has a nearly constant time shift which

differs from the brain tissue stress response which is quasiperiodic (non-constant time

shift). The change in time shift is likely due to the damage in the brain tissue that

does not occur in the aortic tissue.

As the displacement returns to the zero displacement position (Figure 50, point
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B on Figure 52), the aortic tissue stress response does not have a distinct shoulder

like the brain tissue stress response possibly because the material is more structured

which may prevent the interstitial fluid from moving as easily. Aortic tissue in shear

may prominently test the strength of the collagen, elastin and fibronectin that con-

nects the smooth muscle cells and extracellular matrix (Section 2.2.1). This lack of an

apparent shoulder in the aortic stress response correlates with the much smaller mag-

nitude 3 Hz component from the Fourier series decomposition and harmonic wavelet

decomposition analysis than the brain tissue stress response. If the 3 Hz component

is the stress to overcome drag due to fluid movement, the small magnitude 3 Hz

component from the aortic tissue stress response may correlate to the restriction of

fluid causing less fluid motion throughout the tissue and a smaller drag force. Water

is bonded to proteoglycans in aortic tissue near the smooth muscle cells which may

prevent some fluid from moving. In aortic tissue, the fluid does not have a significant

role in the structure of the tissue, unlike brain in which the structure is due to the

balance of hydrostatic pressure and axonal tension.

An additional possible explanation for the shape of the aortic tissue response is

tissue stiffening (Section 2.2.1). In the stress strain loops, the initial less steep slope

at smaller strains correlates to the higher frequency components in the stress versus

time graphs. This change in slope as the strain increases may be due to material

properties of the aortic tissue; Clark and Glagov (1985) state that the aortic stress

response hardens because of the matrix mat. Both the restricted fluid flow and the

material stiffening could contribute to the small 3 Hz component.

The aortic peak stress response decreases with time in the in vitro tests but is

not expected to occur in vivo, however a transient response may occur because prior

to testing the residual stresses have relaxed which puts the specimen in a slightly

different state. Fluid loss has been seen in aortic tissue ring inflation tests (Haslach

2011, 2015b). Some aortic tissue tests exhibit slight stiffening after many cycles which
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may be due to the fluid being driven out of the specimen causing tissue dehydration;

this is not likely to occur in vivo where the body is able to rehydrate the tissue.

5.4 Role of Compression

Fixed compression normal to the shear deformation increases the magnitude of the

shear stress response of both tissues. In the brain, this may be due to an increase in

ECF pressure when compressed. In the aortic tissue, compression may cause initial

elongation of collagen fibers and smooth muscle cells which would create a higher

stress under the same applied shear because the fibers may have a higher stretch

magnitude. The stress drops more quickly and in larger magnitudes in the brain

tissue stress response when compressed possibly due to a larger amount of damage

due to the higher internal pressures. The aortic tissue stress response drops more

quickly and in larger magnitudes when compressed possibly due to the fluid driven

out of the specimen more rapidly due to internal pressures. The amount of stress

drop and the quickness of drop is larger in the brain tissue stress response than in the

aortic tissue stress response probably due to the damage that occurs in brain tissue

and fluid redistribution which would occur rapidly whereas the aortic tissue response

is very structured and may not be damaging.

The steady state stress value under compression for aortic tissue is larger than

that of the steady state stress value for brain tissue perhaps because the aortic tissue

holds its structural integrity whereas the brain is likely damaged under similar applied

conditions. Brain tissue in vivo is not expected to hold a stress through time and

meet an apparent limit cycle, however there may be a balance between the amount of

damage and the fluid flow creating a drag force after several cycles. The brain tissue

steady state stress is larger under compression which may be due to an increase in

frictional force between subsections that may slide over one another or a tightening

of pathways for the fluid to flow. Under compression, a higher force is required to
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maintain the 1 Hz deformation with an amplitude of 25% strain.

5.5 Clinical Applications

Fibrous astrocytes connect white matter in the brain to the capillary walls at the

blood brain barrier. The differing responses of cranial artery and brain tissue response

under the same applied conditions could cause an immediate shearing between the

tissues during an external insult and may cause disruptions between the interfaces of

these tissues including the blood-brain barrier (Section 2.2). Because of a difference

in matter density, interfaces between grey and white matter usually damage easier

causing “hemorrhages [to be] characteristically located at the gray-white matter inter-

face” (Wasserman 2014). The density and mechanical response differences may cause

damage between arterial and brain connections. The loss in load carrying ability of

brain tissue may be due to the breaking of neuron-neuron or neuron-glial connections

due to excessive ECF pressure, leading to symptoms of mild traumatic brain injury

(mTBI), especially in the hippocampus. After some of these connections are broken,

the fluid is able to move easier resulting in a lower overall ECF pressure.

The results suggest that the fluid content has a large influence on the stress re-

sponse of the tissue and should lead to future testing to further examine how the fluid

moves during mechanical deformation of the brain tissue. Tests that could track fluid

movement would provide further information on the solid-fluid interaction during an

applied force. Future work should be directed at a mathematical explanation of the

3 Hz response in terms of the drag force in the brain tissue.

5.6 Shortcomings or Limitations

A few limitations are noted for the test protocol. The unconfined compression was

applied before the shear was applied due to the fixture design limitations. The Vet-

bond had to be placed in a thin enough layer that it did not ride up the sides of the
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specimen, but a thick enough layer for the specimen not to shear off of the plates.

The tuning for the feedback loop of the Wintest 4.1 program for each tissue is not

exact because Wintest approximates tuning based on linear elastic properties. Spec-

imen variability exists for the thickness of aortic tissue because the natural thickness

changes around a ring.



85
6 Conclusion

During trauma resulting from impacts and blast waves, sinusoidal waves permeate the

brain and cranial arterial tissue, both non-homogeneous biological tissues with high

fluid contents. Aortic tissue, used to model cranial arteries, is much more structured

by the bonds between substructures, but the brain tissue structure is maintained by

a balance of pressure and axonal tension. Both tissues exhibit Mullins effect in shear

and have an apparent limit cycle. Harmonic wavelet decomposition shows significant

1 Hz and 3 Hz components. The 3 Hz component magnitude in brain tissue, which is

much larger than in aortic tissue, may correlate to interstitial fluid induced drag forces

that decrease on subsequent cycles perhaps because of damage resulting in easier

fluid movement. Compression increases the stress response of both tissue and the

hydrostatic pressure in brain tissue. A shear deformation causes the pressure inside

the tissue to grow possibly because the fluid is unable to redistribute at a comparable

rate. This pressure buildup is probably highly deformation rate dependent and may

cause disruptions in the connections between substructures of the brain tissue. The

difference between and mismatch of the responses of the arterial and brain tissues may

cause damage between the connections of these two cranial tissues during external

insults.
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7 Appendix

7.1 Matlab Code

7.1.1 Mullins Effect

The initial step for the Mullins effect analysis is a matlab code written to determine

the positive peak stress peak values for each test and the time corresponding to each

peak stress. Starting guesses for the A, b, and c values are needed to use “lsqcurvefit”

to fit the equation y = A exp bt + c to the peak values. Different results are possible

if different initial guess points are taken so it is essential to choose the guess point to

fit the curve correctly.

7.1.2 Time Shift

The time shift is determined from a matlab code that defines a ratio for all points as

stress(i+1)/stress(i), for i = 1, ..., n for n number of total points, where stress is

σ = 10−3
gF
A

(28)

where F is the detected load in grams, A is the cross-sectional area of the specimen

parallel to the test plate (in m2), and g is the gravitational constant. When this

ratio is negative, this indicates where the stress curve crosses the horizontal axis.

Linear interpolation approximation determines the time that each curve crosses the

horizontal axis. The matlab output is the difference between the time that the stress

crosses the horizontal axis and the time that the strain crosses zero (time is known

and fixed from the programmed frequency), defined as ∆t.



87
7.1.3 Filter Analysis

The pass filter analysis matlab code uses the command idealfilter(f,t,interval, ‘pass’)

which is analyzed at a defined interval on the data. The stress and time data as well

as the interval for the pass filter defined in Hz are input into the program, and the

code outputs a graph of original data and the filtered data. The ideal filter command

uses a range for the filter interval, which was set from 1-3 Hz.

7.1.4 Fourier Series

The Fourier series decomposition matlab code was written to determine the Fourier

series frequencies, coefficients, and phase shifts. The input values for the code are

the time and stress data, and the number of points per second. The code outputs

several graphs including the magnitude frequency spectrum, the real and imaginary

frequency spectrum, the reconstructed Fourier series and the original signal. This

code uses the fast Fourier transform command to analyze the discrete data.

7.1.5 Harmonic Wavelet Analysis

The Harmonic wavelet analysis code has an input of time and stress from the original

data, and outputs of the original signal graph, the reconstructed 20 bins organized by

magnitude of wavelets, the final reconstructed signal aligned with the original signal,

the total time analyzed, the L2 norm for the reconstructed fit, the maximum and

minimum load values of sine signal, and the 20 bin wavelet coefficients for each j and

k level. This code uses the fast Fourier transform command as well as the inverse fast

Fourier transform to perform the harmonic wavelet analysis, as outlined in Newland

(1994b).
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7.1.6 Wavelet Examination

An additional matlab code was created to better examine a particular wavelet with

given a-values (where a is the complex magnitude of the wavelet). The code inputs

the values determined from the harmonic wavelet analysis into equation

Y = 2 real(a)
sin(4πx)− sin(2πx)

2πx

− 2 imag(a)
−[cos(4πx)− cos(2πx)]

2πx
(29)

to graph the single wavelet with respect to time.
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7.2 Planes of Dissection

Figure 54: Planes of Dissection (Zimmerman 2015)
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