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Analysis of images involving humans is of significant interest in computer vision

because problems such as detection, modeling, recognition, and tracking are funda-

mental to model interactions between people and understand high-level activities.

Visual information contained in images is generally represented using descriptors

(features). Many general classes of descriptors have been proposed focusing on dif-

ferent characteristics of images. Therefore, if one considers only a single descriptor,

one might ignore useful information for a given task, compromising performance.

In this research we consider a rich set of image descriptors analyzed by a statisti-

cal technique known as Partial Least Squares (PLS). PLS is a class of methods for

modeling relations between sets of observations by means of latent variables and it

is used to project exemplars from a very high dimensional feature space onto a low

dimensional subspace. We demonstrate the effectiveness of combining a richer set of

descriptors using PLS in two significant tasks in computer vision. First, we propose



a method to detect humans, which is then extended to handle partial occlusion and

finally a framework based on PLS regression models is incorporated to further re-

duce the computational cost. Second, an object recognition framework based on a

one-against-all scheme is exploited for appearance-based person modeling and face

identification.
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Chapter 1

Introduction

Analysis of images involving humans (application domain known as looking at

people [22]), is of significant interest in computer vision because problems such as

detection, modeling, recognition, and tracking are fundamental to model interactions

between people and understand high-level activities.

Image descriptors (features) are generally used to extract and represent visual

information contained in images. Many general classes of descriptors have been

proposed focusing on different characteristics of images [13, 49, 39, 8, 25]. Due to

that, if one considers only a single descriptor, one might ignore useful information

for a given task, compromising performance. Therefore, the use of a strong set of

descriptors is desirable.

Combinations of low-level feature descriptors have provided improvements in

tasks such as detection and recognition. A strong set of features provides high

discriminatory power, often reducing the need for complex classification methods.

Improvements in human detection have been achieved by using combinations of low-

level features [11, 78]. Several types of missclassifications can be largely avoided once

information such as homogeneity inside the body and difference between background

and foreground regions is considered. In face recognition, works such as [67, 85] also

have obtained improved results by combining multiple feature channels, particularly
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when data collected under uncontrolled conditions is considered.

A consequence of feature augmentation is an extremely high dimensional fea-

ture space, rendering many classical machine learning techniques intractable. Addi-

tionally, the number of positive samples in the training dataset is much smaller than

the number of dimensions. Furthermore, to obtain better discrimination, features

need to be extracted from neighboring blocks within a detection window, which

increases the multicollinearity of the feature set. Therefore, the nature of this fea-

ture set makes an ideal setting for Partial Least Squares (PLS) [75]. PLS is a class

of methods for modeling relations between sets of observations by means of latent

variables and it is used to project a very high dimensional feature space onto a low

dimensional subspace.

Although originally proposed as a regression technique, PLS can be also be

used as a class aware dimensionality reduction tool. We use PLS to project our high

dimensional feature vectors onto a low dimensional subspace. In such low dimen-

sional spaces, standard machine learning techniques such as linear and quadratic

classifiers, SVMs, and k-nearest neighbors can be applied to perform classification.

In addition, we exploit PLS regression as a way of feature weighting to perform

one-against-all classification for object recognition applications.

In this research we consider a rich set of image descriptors analyzed by partial

least squares (PLS). We show the effectiveness of combining a richer set of descriptors

using PLS in two significant tasks in computer vision. First we propose a method

to detect humans based on PLS, which is then extended to handle partial occlusion

and finally a framework based on PLS regression models is incorporated to further
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reduce the computational cost. Second, an object recognition framework based on a

one-against-all scheme is exploited for appearance-based person modeling and face

identification.

1.1 Human Detection

Effective techniques for human detection are of special interest in computer

vision since many applications involve people’s locations and movements. Over

the last few years the problem of detecting humans in single images has received

considerable interest. Variations in illumination, shadows, and pose, as well as

frequent inter- and intra-person occlusion render this a challenging task.

To overcome problems faced in human detection we propose an approach that

augments widely used edge-based features with texture and color information, pro-

viding us with a much richer descriptor set. Then, the approach is extended by

combining information from face detection to handle partial occlusions. Finally, a

set of regression models is integrated with the detector to reduce the computational

cost.

Humans in standing positions have distinguishing characteristics. First, strong

vertical edges are present along the boundaries of the body. Second, clothing is

generally uniform. Clothing textures are different from natural textures observed

outside of the body due to constraints on the manufacturing of printed cloth. Third,

the ground is composed mostly of uniform textures. Finally, discriminatory color

information is found in the face/head regions. In chapter 2 we exploit feature
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augmentation analysed by PLS to improve detection accuracy. This method is

referred to as the PLS detector.

Human detection under occlusion is also a challenging problem in computer

vision. In chapter 3, we address this problem through a framework which integrates

face detection and person detection. We first investigate how the response of a face

detector is correlated with the response of a person detector. From these obser-

vations, we formulate hypotheses that capture the intuitive feedback between the

responses of face and person detectors and use it to verify if the individual detectors’

outputs are true or false.

The combination of multiple feature channels allows the PLS detector to be

reliably used in different scenarios. However, even though this approach provides

accurate detection results, as it will be shown in chapter 2, it leads to a high com-

putational cost. On the other hand, if characteristics of the scene are known before-

hand, a set of simple and fast computable features might be sufficient to provide

high accuracy at a low computational cost.

Therefore, it is valuable to seek a balance between these two extremes such

that the detection method not only works well in different scenarios but also is able

to extract enough information from a scene to reduce the computation cost. With

this purpose, in chapter 4 we integrate a set of data-driven regression models with

the PLS detector to reduce the computational cost.

Experiments show that the use of multiple feature channels combined by PLS

provides detection results that outperform state-of-art approaches on multiple stan-

dard datasets. In addition, the integration of person and face detectors improves

4



human detection under occlusion, as well as reduces the number of false alarms.

Finally, the incorporation of data-driven regression models with the PLS detector

provides significant speed-up with a slight improvement in detection accuracy, which

is an important step towards achieving real time detection without loosing accuracy.

1.2 Appearance-Based Object Modeling and Recognition

Appearance-based modeling plays an important role when detection is per-

formed in video. A human detector may not be able to perform well in every frame

due to scale and pose variations present in the videos. Therefore, one might con-

sider building appearance-based models for the detected people, and then use these

models when the human detector fails. However, one of the main problems of using

appearance-based discriminative models is the ambiguities among classes when the

number of persons being considered increases. To reduce the amount of ambiguity,

we propose the use of a rich set of feature descriptors based on color, textures and

edges.

As well as in human detection, the nature of the input data poses great chal-

lenges to appearance-based modeling and the use of a single feature channel, such

as color-based features, may not be powerful enough to capture subtle differences

between different people’s appearances. Therefore, additional cues need to be ex-

ploited and combined to improve discriminability of appearance-based models. In

chapter 5 we describe a one-against-all scheme to build discriminative models using

PLS to weight the features according to their discriminative power for each different
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appearance.

The projection vectors estimated by PLS provide information regarding the

importance of features as a function of location. Since PLS is a class-aware di-

mensionality reduction technique, the importance of features in a given location is

related to the discriminability between appearances. High weights are located in

regions that better distinguish a specific appearance from the remaining ones. This

characteristic and the reduced number of samples available make PLS suitable for

appearance-based modeling.

Experimental results demonstrate that the use of an enriched feature set an-

alyzed by PLS reduces the ambiguity among different appearances and provides

higher recognition rates when compared to other machine learning techniques. Fur-

thermore, the combination of features usually outperforms the results obtained when

individual features are considered.

In addition to appearance-based modeling, we also use the one-against-all

scheme for face identification. This problem has received significant attention over

the years. For a given probe face, the goal of face identification is to match this

unknown face against a gallery of known people. Due to the availability of large

amounts of data acquired in a variety of conditions, techniques that are both robust

to uncontrolled acquisition conditions and scalable to large gallery sizes, which may

need to be incrementally built, are challenges.

In chapter 6 we tackle two problems related to face recognition. Initially,

we propose an approach to robust face identification based on PLS to perform

multi-channel feature weighting. Then, we extend the method to a tree-based dis-

6



criminative structure aiming at reducing the time required to evaluate novel probe

samples.

The proposed face identification approach outperforms state-of-art techniques

in most of the comparisons considering standard face recognition datasets, particu-

larly when the data is acquired under uncontrolled conditions, also supporting that

feature combination provides higher discriminative power. Furthermore, the use of

PLS is particularly useful in face identification due to the limited number of sam-

ples available to describe a subject. We show that our approach provides state-of-art

results when only a single sample is available per subject.
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Chapter 2

Human Detection Using Partial Least Squares

Two main approaches to human detection have been explored over the last

few years. The first class of methods consists of a generative process where detected

parts of the human body are combined according to a prior human model. The

second class of methods considers purely statistical analysis that combine a set of

low-level features within a detection window to classify the window as containing a

human or not. The method presented in this chapter belongs to the latter category.

Dalal and Triggs [13] proposed using grids of Histograms of Oriented Gradi-

ent (HOG) descriptors for human detection, and obtained good results on multiple

datasets. The HOG feature looks at the spatial distribution of edge orientations.

However, this may ignore some other useful sources of information, thus leading to

a number of false positive detections such as the ones shown in Figure 2.1. Our

analysis shows that information such as the homogeneity of human clothing, color,

particularly skin color, typical textures of human clothing, and background tex-

tures complement the HOG features very well. When combined, this richer set of

descriptors helps improve the detection results significantly.
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Figure 2.1: False positives obtained when only edge information (using
HOG features) is considered.

2.1 Related Work

The work of Dalal and Triggs [13] is notable because it was the first paper to

report impressive results on human detection. Their work uses HOG as low-level

features, which were shown to outperform features such as wavelets [43], PCA-

SIFT [31] and shape contexts [7].

To improve detection speed, Zhu et al. [88] propose a rejection cascade using

HOG features. Their method considers blocks of different sizes, and to train the

classifier for each stage, a small subset of blocks is selected randomly. Also based on

HOG features, Zhang et al. [86] propose a multi-resolution framework to reduce the

computational cost. Begard et al. [5] address the problem of real-time pedestrian

detection by considering different implementations of the AdaBoost algorithm.

Using low-level features such as intensity, gradient, and spatial location com-

bined by a covariance matrix, Tuzel et al. [70] improve the results obtained by Dalal

and Triggs. Since the covariance matrices do not lie in a vector space, the classifi-

cation is performed using LogitBoost classifiers combined with a rejection cascade

9



designed to accommodate points lying on a Riemannian manifold. Mu et al. [46]

propose a variation of local binary patterns to overcome some drawbacks of HOG,

such as lack of color information. Chen and Chen [11] combine intensity-based rect-

angle features and gradient-based features using a cascaded structure for detecting

humans. Applying combination of edgelets [79], HOG descriptors [13], and covari-

ance descriptors [70], Wu and Nevatia [78] describe a cascade-based approach where

each weak classifier corresponds to a sub-region within the detection window from

which different types of features are extracted. Dollar et al. [14] propose a method

to learn classifiers for individual components and combine them into an overall clas-

sifier. The work of Maji et al. [40] uses features based on a multi-level version of

HOG and histogram intersection kernel SVM based on the spatial pyramid match

kernel [33].

Employing part-based detectors, Mikolajczyk et al. [42] divide the human body

into several parts and apply a cascade of detectors for each part. Shet and Davis [63]

apply logical reasoning to exploit contextual information, augmenting the output of

low-level detectors. Based on deformable parts, Felzenszwalb et al. [20] simulta-

neously learn part and object models and apply them to person detection, among

other applications. Tran and Forsyth [69] use an approach that mixes a part-based

method and a subwindow-based method into a two stage method. Their approach

first estimates a possible configuration of the person inside the detection window,

and then extracts features for each part resulting from the estimation. Similarly,

Lin and Davis [36] propose a pose-invariant feature extraction method for simultane-

ous human detection and segmentation, where descriptors are computed adaptively
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based on human poses. Mikolajczyk et al. [42] divide the human body into seven

parts, and for each part a cascade of detectors is applied.

2.2 Proposed Method

Previous studies [40, 70, 78] have shown that significant improvement in hu-

man detection can be achieved using different types (or combinations) of low-level

features. A strong set of features provides high discriminatory power, reducing the

need for complex classification methods.

Edges, colors and textures capture important cues for discriminating humans

from the background. To capture these cues, the low-level features we employ are the

original HOG descriptors with additional color information, called color frequency,

and texture features computed from co-occurrence matrices.

To handle the high dimensionality resulting from the combination of features,

PLS is employed as a dimensionality reduction technique. PLS is a powerful tech-

nique that provides dimensionality reduction for even hundreds of thousands of

variables, accounting for class labels in the process. The latter point is in contrast

to traditional dimensionality reduction techniques such as Principal Component

Analysis (PCA).

The steps performed in our detection method are the following. For each detec-

tion window in the image, features extracted using original HOG, color frequency,

and co-occurrence matrices are concatenated and analyzed by the PLS model to

reduce dimensionality, resulting in a low dimensional vector. Then, a simple and
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efficient classifier is used to classify this vector as either a human or non-human.

These steps are explained in the following subsections.

2.2.1 Feature Extraction

We decompose a detection window, di, into overlapping blocks and extract a

set of features for each block to construct the feature vector vi.

To capture texture, we extract features from co-occurrence matrices [25], a

method widely used for texture analysis. Co-occurrence matrices represent sec-

ond order texture information – i.e., the joint probability distribution of gray-level

pairs of neighboring pixels in a block. We use 12 descriptors: angular second-

moment, contrast, correlation, variance, inverse difference moment, sum average,

sum variance, sum entropy, entropy, difference variance, difference entropy, and di-

rectionality [25]. Co-occurrence features are useful in human detection since they

provide information regarding homogeneity and directionality of patches. In gen-

eral, a person wears clothing composed of homogeneous textured regions and there

is a significant difference between the regularity of clothing texture and background

textures.

Edge information is captured using histograms of oriented gradients. HOG

captures edge or gradient structures that are characteristic of local shape [13]. Since

the histograms are computed for regions of a given size within the detection window,

HOG is robust to some location variability of body parts. HOG is also invariant to

rotations smaller than the orientation bin size.
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The last type of information captured is color. Although colors may not be

consistent due to variability in clothing, certain dominant colors are more often

observed in humans, mainly in the face/head regions. In order to incorporate color

we used the original HOG to extract a descriptor called color frequency. In HOG, the

orientation of the gradient for a pixel is chosen from the color band corresponding

to the highest gradient magnitude. Some color information is captured by the

number of times each color band is chosen. Therefore, we construct a three bin

histogram that tabulates the number of times each color band is chosen. In spite

of its simplicity, experimental results have shown that color frequency increases

detection performance.

Once the feature extraction process is performed for all blocks inside a detec-

tion window di, features are concatenated creating an extremely high-dimensional

feature vector vi. Then, vi is projected onto a set of weight vectors (discussed in the

next section), which results in a low dimensional representation that can be handled

by classification methods.

2.2.2 Partial Least Squares for Dimension Reduction

Partial least squares is a method for modeling relations between sets of ob-

served variables by means of latent variables. The basic idea of PLS is to construct

new predictor variables, latent variables, as linear combinations of the original vari-

ables summarized in a matrix X of descriptor variables (features) and a vector y

of response variables (class labels). While additional details regarding PLS meth-

13



ods can be found in [15, 60], a brief mathematical description of the procedure is

provided below.

Let X ⊂ Rm denote an m-dimensional space of feature vectors and similarly

let Y ⊂ R be a 1-dimensional space representing the class labels. Let the number

of samples be n. PLS decomposes the zero-mean matrix X (n×m) and zero-mean

vector y (n× 1) into

X = TP T +E

y = UqT + f

where T and U are n×p matrices containing p extracted latent vectors, the (m×p)

matrix P and the (1 × p) vector q represent the loadings and the n × m matrix

E and the n× 1 vector f are the residuals. The PLS method, using the nonlinear

iterative partial least squares (NIPALS) algorithm [75], constructs a set of weight

vectors (or projection vectors) W = {w1,w2, . . .wp} such that

[cov(ti,ui)]
2 = max

|wi|=1
[cov(Xwi,y)]

2

where ti is the i-th column of matrix T , ui the i-th column of matrix U and

cov(ti,ui) is the sample covariance between latent vectors ti and ui. After the

extraction of the latent vectors ti and ui, the matrix X and vector y are deflated

by subtracting their rank-one approximations based on ti and ui. This process is

repeated until the desired number of latent vectors had been extracted.

The dimensionality reduction is performed by projecting the feature vector vi,

extracted from a detection window di, onto the weight vectorsW = {w1,w2, . . .wp},

obtaining the latent vector zi (1×p) as a result. This vector is used in classification.
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The difference between PLS and PCA is that the former creates orthogonal

weight vectors by maximizing the covariance between elements in X and y. Thus,

PLS not only considers the variance of the samples but also considers the class labels.

Fisher Discriminant Analysis (FDA) is, in this way, similar to PLS. However, FDA

has the limitation that after dimensionality reduction, there are only c−1 meaningful

latent variables, where c is the number of classes being considered. Additionally,

when the number of features exceeds the number of samples, the covariance estimates

do not have full rank and the weight vectors cannot be extracted.

2.2.3 Speed Issues

Although detection results can be improved by utilizing overlapping blocks for

low-level feature extraction within the detection window, the dimensionality of the

feature vector becomes extremely high. As a result, the speed of the human detector

decreases significantly due to the time needed to extract features and project them.

To overcome this problem, we employ a two-stage approach. In a fast first

stage, based on a small number of features, the majority of detection windows

(those with low probability of containing humans) are discarded. The remaining

windows are evaluated during a second stage where the complete set of features

allows challenging samples to be correctly classified.

The reduced set of features used during the first stage is obtained by selecting

representative blocks within the detection window. We use a PLS-based feature

selection method called variable importance on projection (VIP) [76] to do this.
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VIP provides a score for each feature, so that it is possible to rank the features

according to their predictive power in the PLS model (the higher the score the more

importance a feature presents). VIP for the j-th feature is defined as

VIPj =

√√√√m

p∑
k=1

b2kw
2
jk/

p∑
k=1

b2k

where m denotes the number of features, wjk is the j-th element of vector wk, and

bk is the regression weight for the k-th latent variable, bk = uT
k tk.

The speed improvements are twofold: (i) reducing the overall number of feature

computations; (ii) reducing the time to create the data structure for a block, i.e.

computing a co-occurrence matrix from which features are extracted. If features

were selected individually, then a data structure might need to be constructed for

a block to compute only one feature. To avoid that, we select features based on

blocks. This way, data structures for a block are only built if several features within

the block present some importance.

To obtain the relative discriminative power among blocks we build a PLS

model for each block, from which only the first latent variable is considered (since

PLS considers class labels, the first latent variable can be used as a clue about how

well that block contributes to the detection). A global PLS model is built using as

input only the first latent variable of every block. Then, VIP scores are computed

with respect to this PLS model, in this way, blocks can be ranked according to their

importance in detection. Finally, the features used in the first stage of our approach

are those computed from blocks having high rank.
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2.3 Experiments

We now present experiments to evaluate several aspects of our proposed ap-

proach. First, we demonstrate the need for dimensionality reduction and the advan-

tages of using PLS for this purpose. Second, we evaluate the features used in our

system. Third, we compare various classifiers that can be used to classify the data

in the low dimensional subspace. Fourth, we discuss the computational cost of our

method. Finally, we compare the proposed system to state-of-the-art algorithms on

several datasets considering cropped as well as full images.

Experimental Setup. For co-occurrence feature extraction we use block

sizes of 16× 16 and 32× 32 with shifts of 8 and 16 pixels, respectively. We work in

the HSV color space. For each color band, we create four co-occurrence matrices,

one for each of the (0◦, 45◦, 90◦, and 135◦) directions. The displacement considered

is 1 pixel and each color band is quantized into 16 bins. 12 descriptors mentioned

earlier are then extracted from each co-occurrence matrix. This results in 63, 648

features.

We calculate HOG features similarly to Zhu et al. [88], where blocks with

sizes ranging from 12 × 12 to 64 × 128 are considered. In our configuration there

are 2, 748 blocks. For each block, 36 features are extracted, resulting in a total of

98, 928 features. In addition, we use the same set of blocks to extract features using

the color frequency method. This results in three features per block, and the total

number of resulting features is 8, 244. Aggregating across all three feature channels,

the feature vector describing each detection window contains 170, 820 elements.
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We estimate the parameters of our system using a 10-fold cross-validation

procedure on the training dataset provided by INRIA Person Dataset [13]. The

INRIA person dataset provides a training dataset containing 2416 positive samples

of size 64 × 128 pixels and images containing no humans, used to obtain negative

exemplars. We sample this set to obtain our validation set containing 2000 positive

samples and 10000 negative samples. In sections 2.3.1 to 2.3.4 our experiments are

performed using the INRIA person dataset.

Experimental results using INRIA Person Dataset are presented using detec-

tion error tradeoff (DET) curves on log-log scales. The x-axis corresponds to false

positives per window (FPPW), defined by FalsePos/(TrueNeg + FalsePos) and the

y-axis shows the miss rate, defined by FalseNeg/(FalseNeg + TruePos). To clarify

the results shown throughout the chapter, curves where the lowest FPPW is 10−4

are obtained using the training data, while curves where the lowest FPPW is 10−6

are obtained using the testing data.

All experiments were conducted on an Intel Xeon 5160, 3 GHz dual core pro-

cessor with 8GB of RAM running Linux operating system.

2.3.1 Dimensionality Reduction

PLS+QDA Vs SVM. We first examine the feasibility of applying support

vector machines (SVM) directly on the high dimensional feature space (170, 820 fea-

tures per sample). Table 2.1 shows the comparison between time required to train

a linear SVM and the time required to train a PLS model along with a Quadratic
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Table 2.1: Time, in seconds, to train SVM and PLS + QDA models. The number
of features per sample is 170,820. The training time increases with an increase in
the number of training samples.

# samples PLS + QDA SVM

200 23.63 131.72
600 62.62 733.63
1000 97.38 1693.50
1400 135.81 2947.51
1800 174.57 4254.63
2200 213.93 -
11370 813.03 -

Discriminant Analysis (QDA) model (we use the QDA classifier, but in later subsec-

tions we provide a comparison to other classifiers as well). We used the LIBSVM [10]

package for this purpose. As the number of training samples is increased, the train-

ing time also increases. For more than 1800 samples we were unable to train a linear

SVM since the procedure ran out of memory. In addition, the computational cost to

learn a PLS model and train a QDA classifier is an order of magnitude smaller than

the cost for training an SVM. These results indicate that for such a high dimensional

space, it is more suitable to project the data onto a low dimensional subspace and

then learn a classifier.

PLS Vs PCA. We now establish a baseline using Principal Component Anal-

ysis (PCA) to perform linear dimensionality reduction and compare its results to

PLS. Figures 2.2(c) and (d) show the DET curves obtained for a QDA classifier in

the PCA subspace as well as in the PLS subspace. It is interesting to note that while

the best results are obtained by using the first 20 PLS latent variables, the perfor-

mance of the system drops when the number of latent variables is increased beyond
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Figure 2.2: Comparison of PCA and PLS for dimensionality reduction.
(a-b) projection of the first two dimensions of the training samples for
one of the models learned in the cross-validation. (c-d) DET curves
according to the number of dimensions used to train the classifier.

20. This can be attributed to overfitting of the data caused by using a larger num-

ber of latent variables. The results achieved while using the first 20 latent variables

are the best results obtained over both subspaces (0.8% miss rate at 10−4 FPPW).

The best performance on the PCA subspace is obtained for a dimensionality of 180

(1.8% miss rate at 10−4 FPPW).

As the dimensionality of the subspace increases, the time required to project

the high dimensional feature vectors onto the low dimensional space also increases.

On our computer, projecting the feature vector for a single window onto a 180 dimen-
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Figure 2.3: Results obtained by using different features and combination
of all three feature channels used by this work.

sional PCA subspace takes 0.0264 seconds while it takes 0.0032 seconds to project

onto the 20 dimensional PLS subspace. Since an image contains several thousand

windows, a computational cost of 0.0264 seconds/window is substantially worse than

that for PLS. Thus, in addition to the superior performance, the computational cost

of projection makes PLS more suitable for our application than PCA. Figure 2.2(a)

and (b) show the training dataset projected onto the first two dimensions for PLS

and PCA. PLS clearly achieves better class separation than PCA.

2.3.2 Feature Evaluation

Comparing features. Figure 2.3 shows the results of the three classes of

features used in our system as well as the combined performance. We show results

combining the HOG and color frequency features to demonstrate the positive contri-

bution of the color features. A significant improvement is achieved when all features
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Figure 2.4: Weight vectors for different features within the detection
window. Red indicates high importance, blue low (the plots are in the
same scale and normalized to interval [0, 1]).

are combined.

Analysis of the PLS Weight Vectors. In this experiment, we perform an

analysis of the contribution of each feature channel based on the weights of the PLS

weight vectors used to project the features onto the low dimensional subspace. We

use the same idea as described in Section 2.2.3. For a given block in the detection

window, we create a PLS model for each feature channel. Then, using only the first

latent variable for every block, we learn a global PLS model. Figure 2.4 shows the
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weights for the first five projection vectors of this global PLS model. The features

considered are HOG, co-occurrence extracted from color bands H, S and V, and the

color frequency.

Figure 2.4 shows how each feature channel (edge, texture, color) provides in-

formation from different regions within the detection window. This supports our

claim that the considered features complement each other, leading to an improve-

ment over single-feature-based methods. For example, the first weight vector of the

HOG feature set captures information about the body shape due to the presence of

edges. Co-occurrence matrix features from color band H extract information around

the body silhouette. Color bands S and V provide information about the head and

homogeneous parts inside the body, respectively. Except for the first weight vec-

tor, color frequency features are able to identify regions located in the head due to

similarity of the dominant colors in that region (skin color).

2.3.3 Classification in Low Dimensional Space

To evaluate the classification in the low dimensional subspace, we compare the

performance of several classifiers using the 10-fold cross-validation described earlier.

Figure 2.5 shows the results. According to the results, QDA classifier, kernel SVM

and linear SVM achieved comparable performance in low dimensional subspace.

Due to its simplicity, we have chosen to use QDA in our system. PLS tends to

produce weight vectors that provide a good separation of the two classes for the

human detection problem, as shown in Figure 2.2(b). This enables us to use simple
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Figure 2.5: Comparison of several classification methods for the low
dimensional PLS subspace.

classifiers in the low dimensional subspace.

2.3.4 Computational Cost

We accelerate the process using the two-stage approach described in Sec-

tion 2.2.3. To reduce the number of features computed in the first stage, we rank

blocks according to their VIP scores and then select only those features in blocks

with higher rankings. Using 10-fold cross-validation in the training set, we select

a subset of blocks containing 3, 573 features per detection window, together with a

probability threshold to decide whether a detection window needs to be considered

for the second stage.

It is important to note that the use of the first stage alone achieves poor results

for low false alarm rates. Therefore, for the detection windows not discarded in the

first stage (approximately 3% for the INRIA person dataset), the complete feature
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Figure 2.6: Results after adding two stages compared to results obtained
without speed optimization.

set is computed. For the testing set of the INRIA person dataset, the results shown

in Figure 2.6 indicate no degradation in performance at low false alarm rates when

the two-stage approach is used, as compared to computing the full set of features for

all detection windows. After speeding the process up using our two-stage method,

we were able to process 2929 detection windows per second.

2.3.5 Evaluation and Comparisons

In this section we evaluate the proposed system on different datasets and

compare it to state-of-the-art methods.

INRIA Person Dataset. The INRIA person dataset [13] provides both

training and testing sets containing positive samples of size 64 × 128 pixels and

negatives images (containing no humans). To estimate weight vectors (PLS model)

and train the quadratic classifier we employ the following procedure. First, all
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Figure 2.7: Evaluation of our method using the INRIA Pedestrian
Dataset. First row shows performance and comparisons with state-of-
the-art methods. Second row shows some sample true detections for the
dataset.

2416 positive training samples and 5000 of the negative detection windows, sampled

randomly from training images, are used. Once the first model is created, we use it

to classify negative windows in the training set. The misclassified windows are added

into the 5000 negative windows and a new PLS model and new classifier parameters

are estimated. This process is repeated a few times and takes approximately one

hour. Our final PLS model considers 8954 negative and 2416 positive samples, using

20 weight vectors (as discussed in section 2.3.1).

Figure 2.7 compares results obtained by the proposed approach to methods

published previously. Our results were obtained using 1126 positive testing samples
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and by shifting the detection windows by 8 pixels in the negative testing images, all

of which are available in the dataset. While we were able to run the implementations

for methods [13, 70], curves for methods [14, 36, 40, 78] were obtained from their

reported results. The PLS approach outperforms all methods in regions of low false

alarm rates, i.e. 5.8% miss rate at 10−5 FPPW and 7.9% miss rate at 10−6 FPPW.

DaimlerChrysler Pedestrian Dataset. This dataset provides grayscale

samples of size 18 × 36 pixels [47]. We adapt our feature extraction methods for

these image characteristics as follows. For co-occurrence feature extraction, we use

block sizes of 8 × 8 and 16 × 16 with shifts of 2 pixels for both. Co-occurrence

matrices are estimated using the brightness channel quantized into 16 bins. For

HOG feature extraction, we adopt the same approach used for the INRIA person

dataset; however, block sizes now range from 8×8 to 18×36. Due to the lack of color

information, the color frequency feature cannot be considered in this experiment.

The DaimlerChrysler dataset is composed of five disjoint sets, three for training

and two for testing. To obtain results that can be compared to those presented by

Maji et al. [40] and by Munder and Gavrila [47], we report results by training on

two out of three training sets at a time. Therefore, we obtain six curves from which

the confidence interval of the true mean detection rate is given by the t(α/2,N−1)

distribution with desired confidence of 1 − α = 0.95 and N = 6. The boundaries

of this interval are approximated by y ± 1.05s, where y and s denote the estimated

mean and standard deviation, respectively [47].

Figure 2.8 compares results obtained by the proposed method to results re-

ported in [40, 47]. In contrast to previous graphs, this shows detection rates instead
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Figure 2.8: Evaluation of our method on the DaimlerChrysler Dataset.
First row shows performance and comparisons with state-of-the-art
methods. Second row shows some sample true detections for the dataset.

of miss rates on the y-axis and both axes are shown using linear scales. Similar to

experiments conducted on the INRIA person dataset, the results obtained with the

proposed method show improvements in regions of low false alarm rates.

ETHZ Dataset. We evaluate our method for un-cropped full images using

the ETHZ dataset [17]. This dataset provides four video sequences, one for training

and three for testing (640×480 pixels at 15 frames/second). Even though a training

sequence is provided, we do not to use it; instead we use the same PLS model and

QDA parameters learned on the INRIA training dataset. This allows us to evaluate

the generalization capability of our method to different datasets.

For this dataset we use false positives per image (FPPI) as the evaluation
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Figure 2.9: Evaluation of our method on the ETHZ Pedestrian Dataset.
First row shows performance and comparisons with state-of-the-art
methods. Second row shows some sample true detections for the dataset.

metric, which is more suitable for evaluating the performance on full images [69].

Using the same evaluation procedure described in [17] we obtain the results shown

in Figure 2.9 for the testing sequences provided. We use only the images provided

by the left camera and perform the detection for each single image at 11 scales

without considering any temporal smoothing. We do not train our detector on the

provided training set and we do not use any additional cues such as depth maps,

ground-plane estimation, and occlusion reasoning, all of which are used by [17]. Yet,

our detector outperforms the results achieved by [17] in all three video sequences.

The work by Ess et al. [18] also considers sequence #1 in their experiments, so

we have added their results in Figure 2.9(a). Even though [18] uses additional cues
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(a) 640× 480 (41,528 det. windows) (b) 1632× 1224 (389,350 det. windows)

(c) 1600× 1200 (373,725 det. windows) (d) 800× 533, (61,820 det. windows)

Figure 2.10: Results obtained from images containing people of different
sizes and backgrounds rich in edge information. The image size and
the total number of detection windows considered are indicated in the
caption.

such as tracking information, our method, trained using the training set of INRIA

dataset, achieves very similar detection results.

Additional Set of Images. We present some results in Figure 2.10 for a few

images obtained from INRIA testing dataset and Google. These results were also

obtained using the same PLS model and QDA parameters learned on the INRIA

training dataset. We scan each image at 10 scales. Despite the large number of

detection windows considered, the number of false alarms produced is very low.
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Chapter 3

Human Detection Under Occlusion by Integrating Face and Person

Detectors

As mentioned earlier, human detection in still images is a challenging problem

due to the presence of variations in people’s poses, lighting conditions, inter- and

intra- person occlusion, amongst others. Occlusion, in particular, poses a significant

challenge due to the large amount of variations it implies on the appearance of the

visible parts of a person.

Subwindow-based person detectors present degraded performance when parts

of the body are occluded; part-based approaches, on the other hand, are better

suited to handle such situations because they still detect the un-occluded parts.

However, since part-based detectors are less specific than whole body detectors, they

are less reliable and usually generate large numbers of false positives. Therefore,

to obtain more accurate results it is important to aggregate information obtained

from different sources with a part-based detector. For this, we incorporate a face

detector.

Face detection is an extensively studied problem, and the survey paper [80]

provides a comprehensive description of various approaches to this problem. For

example, Viola and Jones [72] use large training exemplar databases of faces and non-

faces, extract feature representations from them, and then use boosting techniques
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to classify regions as face or non-face. Other algorithms, for instance Rowley et

al. [61], uses a neural network to learn how the appearance of faces differ from non-

faces using training exemplars, and then detect faces by seeing how well the test data

fits the learned model. Another class of approaches, exemplified by Heisele et al. [26],

uses a part-based framework by looking for prominent facial components (eyes, nose

etc), and then uses their spatial relationship to detect faces. Although such methods

are more robust to image deformations and occlusions when compared with holistic

approaches, the choice of feature representations and accurate characterization of

the relationships between the facial components is still a challenge.

The question that arises naturally is then, how to fuse these two sources to

improve overall detection performance. Specifically, is it possible to use the response

profiles of the two separate detectors, to reinforce each other, as well as provide a

basis to resolve conflicts? This is the question we address here. Figure 3.1 motivates

the utility of combining face and person detectors. First, while the lower half of

person c is occluded, the face detector can still detect the face of the person, whereas

the person detector might fail. Nevertheless, we can try to explain the response

of the person detector based on the response of the face detector, and conclude

that a person is present. Another case is the reverse situation such as b and d in

Figure 3.1 whose faces are partially occluded while the body parts are completely

visible. Such situations occur often in real-world scenarios, and motivates exploring

feedback between face and people detectors.
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Figure 3.1: Image where occlusion is present and fusion of detectors can
increase detection accuracy. Face of person b is occluded. Once the legs
and torso are visible, results from a part-based person detector can be
used to support that a human is present at that location. On the other
hand, the legs of person c are occluded, in such a case, face detector
results can be used to reason that there is a person at that particular
location since the face of person c is perfectly visible.

3.1 Face and Person Detection

In this section we give a synopsis of our algorithms for face detection and

person detection. We also provide detection results of applying the individual al-

gorithms on standard datasets, showing that these detectors individually achieve

results comparable to state-of-art methods. However, a point to keep in mind is

that these standardized datasets do not have considerable amounts of occlusion,

which is the main problem that we address here.
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Figure 3.2: Experimental results for face detection on the MIT+CMU dataset.

3.1.1 Face Detection

We use a feature-based approach to detect faces from still images. Our ap-

proach, motivated by [44], is based on using an optimal step edge operator to detect

shapes (here, the facial contours are modeled as ellipses). The crux of the algorithm

is then to obtain the edge map of the image using a derivative of double exponential

(DODE) operator, and fit various sized ellipses to the edge map. Image regions that

have high response to ellipse fitting signify locations that likely contain faces.

We then conduct post-processing on these short-listed regions by computing

three different cues – color [28], histogram of oriented gradients [13], and eigen-

faces [6], and combine the three feature channels using support vector machines [50]

to decide whether a face is present or not. The motivation behind the choice of

these descriptors is: (i) the human face has a distinct color pattern which can be

characterized by fitting Gaussian models for the color pattern of face regions, and
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Figure 3.3: Experimental results for face detection on the maritime dataset.

non-face regions; (ii) the histogram of oriented gradients capture the high interest

areas in faces that are rich in gradient information (eyes, nose and mouth) that are

quite robust to pose variations, and (iii) eigenfaces captures the holistic appearance

of the human face. These three feature channels capture a mix of global and local

information about the face, and are robust to variations in pose.

Our algorithm was tested on the MIT+CMU face dataset [61]. This dataset

has two parts. The first part (A) has 130 frontal face images with 507 labeled faces,

the second part (B) has 208 images containing 441 faces of both frontal and profile

views. The results of our algorithm are presented in Figure 3.2. Most other algo-

rithms that are evaluated on this dataset do not provide the full ROC, but rather

provide certain points on the ROC. Since Viola and Jones [72] quote their ROC for

part A of this dataset, we have compared our ROC with theirs; even otherwise, it

can be observed that our performance is comparable to the ROC points of other
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(5) torso + legs

(4) torso (2) top + torso

(3) top + legs

(1) top

(6) legs

(7) full body

Figure 3.4: Parts of a detection window used to train multiple detectors.

algorithms (like Rowley et al. [61]). Since we are interested in detecting partially oc-

cluded faces we also compare our approach to the OpenCV implementation of Viola

and Jones [72] method on the internally collected maritime dataset in Figure 3.3.

3.1.2 Person Detection

For person detection we use the PLS detector described in Chapter 2. Since

part-based approaches are better suited to handle situations of occlusion, we split

the person detector into seven different detectors, which consider the following com-

binations of regions of the body: (1) top, (2) top-torso, (3) top-legs, (4) torso, (5)

torso-legs, (6) legs, and (7) full body, as illustrated in Figure 3.4. Therefore, at

each position in the image the person detector estimates a set of seven probabilities.

The training for these detectors was performed using the training set of the INRIA

person dataset.

As discussed earlier, part-based approaches for person detection have been

employed previously. Here, we use a part-based approach in tandem with a face
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detector creating a small number of intuitive case-based models for overall person

detection.

Although the face and person detectors present results comparable to the state

of the art on these datasets, these algorithms face difficulties when there is significant

occlusion. To this end, we explore how to overcome this problem by combining the

responses of the individual detectors.

3.2 Integrating Face and Person Detection

In this section we present our algorithm for integrating the response profiles of

face and person detectors. We model observations of the individual detectors, and

generate hypotheses that capture intuitive relationships between the responses of the

face detector and the person detector. Specifically, we describe a set of situations

where the output of one detector can be logically combined with the other detector’s

output to eliminate false alarms or confirm true positives.

3.2.1 Modeling the Response Profiles of the Individual Detectors

To integrate person and face detectors’ output we first create models according

to the probability profile resulting from individual detectors (the seven probabilities

from part-composition person detector and one from the face detector).

For the person detector, we summarize the probability profile obtained by the

seven probabilities into a set of four models that inherently capture situations in

which various combinations of face and person parts are detected with high proba-
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bility. Specifically,

Model M1: all body parts are visible

Model M2: top is visible, torso and legs may or may not be visible. This corresponds

to the typical situation in which a person’s legs are occluded by some fixed

structure like a desk, or the railing of a ship.

Model M3: top is invisible, whereas torso and legs are visible

Model M4: all body parts are invisible

Given the set of seven probabilities estimated by the person part-combination

detectors, we define probability intervals that characterize each model. The estima-

tion of the intervals for models M1 and M4 can be done automatically by evaluating

probability of training samples from standard person datasets. However, probability

intervals for models M2 and M3 only can be estimated if a training set containing

partially occluded people were available. Due to the absence of such dataset, we

define the probability intervals for M2 and M3 manually.

Figure 3.5 shows the probability intervals for each model. A model Mi fits

a detection window if all seven estimated probabilities fall inside the probability

intervals defined by Mi. We also estimate a degree of fit of a detection window to

each model by simply counting the number of probability intervals satisfied by the

response profile:
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(a) M1: all parts are visible
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(b) M2: top part is visible
and torso is visible
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(c) M2: top part is visible
and legs are visible
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(d) M3: top part is invisible
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(e) M4: all parts are invisible

Figure 3.5: Models designed considering the output profile of the person
detector. The x-axis has the seven detectors and the y-axis the proba-
bility interval for each one according to the model. Note that M2 has
two sub-cases, shown in (b) and (c).

f(Mi) =
7∑

j=1


1 if ui,j ≤ Pj ≤ li,j

0 otherwise

(3.1)

where Pj denotes the probability estimated by the j-th detector, ui,j is the upper

bound for the j-th interval defined for Mi and li,j denotes the lower bound. There-

fore, we can rank the models according to how well they fit a given detection window.

We say that a model Mi has a rank higher than Mj when f(Mi) > f(Mj).

For the face detector, the observations are characterized by the probability

values indicating the presence of face for a given detection window. According
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to this probability we define three models. We say that a face is present if the

probability exceeds a certain threshold (model F1). We also consider the case when

the probability is smaller than the threshold but not negligible (i.e. face might be

partially occluded), we refer to this as model F2. Model F2 is interesting when the

person detector gives a response that supports the low (but not negligible) confidence

of the face detector. Finally, we say that a sample fits model F3 if the probability

of face detector is very low.

3.2.2 Generating Hypotheses to Integrate Detectors

Now that we have designed models according to the response profiles to capture

occlusion situations, we create a set of hypotheses (rules) to characterize the relation

between the detector responses so that these different sources of information can be

used to verify each other’s output. We separate the possibilities into five different

hypotheses. The first two hypotheses describe the scenario where the person detector

(PD) is used to verify the output of the face detector (FD), and the remaining three

hypotheses deal with the alternate scenario of using face detector to verify the person

detector outputs. The hypotheses are described in the form of conditional rules as

follows.

H1 : [(f(M1)∧f(M2)) > (f(M3)∧f(M4))|F1] Given that the face detector provides

high response for a detection window, we look at the models that characterize

the person detector output. Since the face is visible, the output of PD should

better fit models M1 or M2 than M3 and M4 since we expect the top (head
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and shoulder) features to be detected by the person detector. If that is the

case, then PD output verifies that the FD output is correct. Thus, a person

is present at that location.

H2 : [(f(M3) ∨ f(M4)) > (f(M1) ∧ f(M2))|F1] The alternate case is, given high

response for the face detector, if the output of PD fits either M3 or M4, then

PD indicates that the face is not visible, and hence the output of the FD is a

false alarm.

H3 : [(F1|(f(M1) ∨ f(M2)) > (f(M3) ∧ f(M4))] Given that the rank of M1 or

M2 is greater than M3, if FD gives a high response, then the face detector is

reinforcing the output of the person detector. Thus, we conclude that a person

is present at the corresponding location.

H4 : [(F2|f(M3) > (f(M1) ∧ f(M2) ∧ f(M4))] A slightly different case from H3 is

when FD has low response, but still has some probability higher than 0 but

not high enough to conclude the presence of face. In this case, if for the person

detector the rank of M3 is higher than M1, M2, and M4, then we still decide

that there is a person whose face is partially occluded. This is because M3

captures the situation where the face is occluded, while the torso and legs are

visible.

H5 : [F3|(f(M1) ∨ f(M2) ∨ f(M3)) > f(M4)]: This final hypothesis deals with the

case where the output of person detector fits either M1, M2, or M3, and the

probability outputted by the face detector is negligible, so that it cannot come
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under H4. In such a case, since the face is completely invisible, we decide that

the PD output is a false alarm.

Essentially, the above hypotheses are built on the fact that the presence of the

face implies the presence of a person and vice-versa. We do need some confidence

value for the presence of face to make decisions on the output of the person detector.

This is based on our observation that the presence of just the torso and legs with no

information regarding the face is not a strong cue to detect a person. This condition

gives rise to many false alarms.

3.3 Experimental Results

In this section, we demonstrate with experiments how our integration frame-

work improves detection under occlusion, as well as reduces the false alarms. We

tested our algorithm on challenging images taken from an internally collected mar-

itime dataset. It contains images of 3008×2000 pixels, which is suitable for face and

person detection, unlike standard datasets used for person detection, which in gen-

eral contain images with resolution too low to detect faces. This dataset is a good

test-bed since it provides challenging conditions wherein the individual face/person

detector might fail, thereby emphasizing the need to fuse information obtained by

these detectors.

We now present several situations where the integration framework helps to

detect humans. In the image shown in Figure 3.6(b) a person detector would fail

to detect people seated since the lower body is occluded. However, our framework
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Results on images from maritime dataset.

combines face information with the presence of the top part of the body (head and

shoulders) captured by the person detector. Therefore, it concludes that a person is

present. Additionally, Figures 3.6(c), (e), and (f) contain people who are partially

occluded. Such conditions would reduce significantly the probability estimated by
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an independent person detector, whereas the integration helps resolve this problem.

Next, if the face is partially occluded, then the person detector output will

belong to model M3, whereas face detector’s output will have some small value that

is not very high and not negligible either. In this case, the person detector results

can be used to identify the presence of the face. For example, Figures 3.6(d) and

(f) contain people whose faces are occluded. In these cases a face detector would

fail to give a high response, but the proposed framework overcomes this problem by

aggregating information from body parts.

Essentially, since we are using two separate detectors, if the observations of

the person detection and face detection provide conflicting information, then our

framework mitigates false positives. A typical example is when hypothesis H2 is

satisfied, which can be used to correct the false alarm of the face detector, and

when hypothesis H5 is satisfied, that helps in reducing the false alarms of the person

detector. Additionally, if both individual detectors denote the presence of a person,

detection is more reliable than when relying on only one detector.

We tested our algorithm on 20 images containing 126 people. Figure 3.7

presents the detection error tradeoff of our integration method and compares its

results to individual detectors. It can be seen that the use of the proposed method

results in a substantial improvement in detection accuracy/false alarm suppression.

To generate the curve for the our algorithm, we fix the threshold for the face detector

and for the person detector we measure how well each model fits a sample by
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Figure 3.7: Detection error tradeoff comparing the integration to indi-
vidual face and person detectors. The proposed framework outperforms
the individual detectors for all points on the curve.

g(Mi) =
1

7

7∑
j=1



|Pj − ui,j| if Pj > ui,j

|Pj − li,j| if Pj < li,j

0, otherwise

. (3.2)

With this equation we obtain values of g(Mi) for every sample. Then, varying

a threshold value from zero to one we are able to evaluate which hypotheses are

satisfied at each step.
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Chapter 4

A Data-Driven Detection Optimization Framework

High accuracy and low computational cost are desirable properties for object

detection systems. The need for low computational cost is dictated by the large

amount of data that needs to be processed, i.e. object detection may be applied on

thousands of frames of a surveillance video. In general, there is a trade-off between

accuracy and computational cost, in which the achievement of higher detection

speeds results in some degradation of accuracy.

Object detectors are learned using datasets representing different types of

scenes – e.g., indoor, outdoor, and urban – to be as general as possible during

the detection phase, so that they can detect objects in scenes with very different

characteristics. To accomplish this, detection methods usually combine different

types of strong feature descriptors, which leads to a higher computational costs.

On the other hand, simpler and fewer features can provide enough information to

perform accurate detection when scene-specific characteristics are considered dur-

ing the detector’s learning, i.e. a detector is learned to be used specifically with

a video feed from a fixed camera pointing towards a parking lot. As a result, the

computational cost of the scene-specific detector would be lower, but it would be

unlikely to work in scenes with different characteristics due to the bias incorporated

in the training set. Therefore, it is worth seeking a balance between learning done
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completely offline (and general enough to be used in multiple environments), and

learning considering specific characteristics of a scene, so that accurate detection

results can be obtained at lower computational cost.

Here we integrate a multi-stage detector learned using very general training

datasets (referred as generic detector), with regression models learned based on

information extracted from the video sequence of a specific scenario. The idea is to

use the response of the generic detector, considered to be accurate due to its use of

strong feature descriptors, to learn and update data-driven regression models. These

regression models are based on efficiently computable features and is used to estimate

the generic detector’s output (both the response of the detector and the precise

location of objects). This will allow us to reject large number of detection windows

without extracting expensive feature descriptors used by the generic detector.

Specifically, the regression models use feature descriptors as independent vari-

ables and two types of dependent variables. The first type estimates responses of the

generic detector at each stage using efficiently computable features in order to reject

detection windows quickly. The second type estimates the location of objects. Ac-

cording to our experiments, at each stage multiple detection windows located near

the correct location of objects are selected for the next stage. The regression based

on the second type of dependent variables is used to obtain a better estimate of the

correct location of objects, so that redundant detection windows can be rejected,

reducing consequently the number of detection windows evaluated by the generic

detector, which is applied to remaining detection windows.

We use the PLS human detector described in chapter 2 as the generic detector.
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Figure 4.1: Integration of the regression models into the PLS detector.
Regression models to estimate the detector’s response, the response re-
gression I and the response regression II, are added before each stage
and a regression to estimate the object location, the location regression,
is incorporated right before the second stage.

The PLS detector provides high accuracy across different datasets but with still

high computational cost. Its accuracy is due to the use of several feature channels

combined by partial least squares (PLS). The online data-driven regression models

proposed here also use PLS, but PLS regression instead of PLS as a dimensionality

reduction tool as in the generic detector. Three regression models are considered:

two to estimate the generic detector’s responses before each stage and one to estimate

the human’s location, performed right before the second stage of the PLS detector.

The flowchart of the integrated method is shown in Figure 4.1. Its details are

described later.
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4.1 Related Work

A common approach used to optimize object detection is based on a boosted

cascade composed of weak classifiers learned during the training phase. In their

seminal work,Viola and Jones [71] propose a face detector based on AdaBoost [21],

that combines successively more complex classifiers in the cascade so that a large

number of detection windows can be excluded in earlier (and faster) stages of the

cascade. More recently, Zhu et al. [88] extracted histogram of oriented gradients

features using a cascade classifier framework obtaining real-time detection with de-

tection accuracy comparable to the HOG detector proposed by Dalal and Triggs [13]

at the expense of largely increased training time. In addition, based on the covari-

ance features proposed by Tuzel et al. [70], Paisitkriangkrai et al. [52] propose a

cascade classifier that considers weak classifiers in the Euclidean space instead of on

the Riemannian manifold, which provides faster computation.

Looking at the data in multiple resolutions has also been an approach to opti-

mize object detection. Using a predefined feature hierarchy, where lower resolution

features are initially used to reject the majority of negative windows at relatively

low cost leaving a small number of detection windows to be processed in higher res-

olutions, Zhang et al. [86] consider HOG features for object detection. As a result,

they achieve real-time detection with performance comparable to the HOG detec-

tor. Not only using feature hierarchy but also considering the spatial stride of the

sliding window search inversely proportional to the features resolution, Pedersoli et

al. [53] propose a detection method that provides even higher speed-ups since fewer
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detection windows need to be considered.

Another approach to optimize the detection is to develop or change feature

descriptors so that they present lower computational cost. Pettersson et al. [54]

propose the HistFeat to reduce the memory bandwidth for evaluating the HOG

features. Only one memory access is required to perform a feature evaluation,

differently from six to nine accesses when the features are evaluated from an integral

image. The HistFeat was extended later by Overett et al. [51] aiming at a better

balance in terms of processing and memory bandwidth. Abramson et al. [1] propose

the control-points features, based on relations between sets of pixels avoiding the

need to compute histograms over regions of the image. These features are extended

and called connected-control-points in [45], by adding constrains on the location of

the points selected to be part of the relations.

Due to the availability of parallel processing units, several works seek for op-

timization using features provided by the parallel architecture provided by graphics

processing units (GPU). Wojek et al. [74], Zhang and Nevatia [84], and Prisacariu

and Reid [58] implement in GPU versions of the HOG detector. All three works

obtain detection accuracy similar to the CPU implementation but significant speed-

ups, i.e. speed-up of 67× are reported by Prisacariu and Reid [58].

The main difference between the approach proposed in this work and the

approaches described is that our method performs online learning, incorporated

by using the regression models. Therefore, differently from these approaches, the

characteristics of the video in which the detection is being performed are explicitly

used by our method to achieve lower computational cost.
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Several works also consider online learning [29, 32, 35, 77]. In general, they

consider an initial (possible weakly) trained model and update its parameters as the

detection is being performed. These works usually focus on improvements on accu-

racy rather than computational cost reduction. Even though we are not updating

the generic detector and our goal is not improvement on detection accuracy, ex-

periments show that the incorporation of regression models not only provides lower

computational cost but also higher detection rates.

4.2 Proposed Method

In this section we first present a brief review of partial least squares regression

and an brief overview of the PLS detector discussing particularly its inputs and

outputs for each stage, which will be used to learn the regression models. Then, the

data-driven optimization framework based on regression models and its integration

with the PLS detector are described.

4.2.1 Partial Least Squares Regression

Once the low dimensional representation of the data has been obtained by

NIPALS, as described in Section 2.2.2, the regression coefficients βm×1 can estimated

by

β = W (P TW )−1T Ty. (4.1)

The regression response, yv, for a feature vector v is obtained by

yv = y + βTv (4.2)
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where y is the sample mean of y.

It is important to point out that even though the number of latent vectors used

to create the low dimensional representation of the data matrix X is p (possibly

greater than 1), Equation 4.2 shows that only a single dot product of a feature

vector with the regression coefficients is needed to obtain the response of a PLS

regression model. This makes the use of PLS regression particularly fast to obtain

a estimation of the detector’s response for a detection window when compared to

the original detector, which needs to perform several dot products before obtaining

the response.

4.2.2 Overview of the PLS Detector

The first stage of the PLS detector (referred in this chapter as first stage)

considers a small subset of the 170,820 features in order to reject detection windows

faster. Then, for the detection windows not rejected by the first stage (detection

windows with response higher than a predefined threshold), the full feature set is

extracted and a second response value is obtained (this stage will be referred as

second stage). Finally, detection windows with high responses are identified by the

second stage as the location of the humans in the image.

Figure 4.2 shows a diagram illustrating the flow of the PLS detector. It is

important to note that although the first stage selects a set W2 ⊂ W1 of detection

windows, the features extracted during the first stage, F1(W1), and the responses

R1(W1), are available for all detection windows, W1, considered by that stage. This
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1st stage

input 

detection 

windows

W1

R1(W1), F1(W1), W2
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output 
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Figure 4.2: Steps of the PLS detector. Given an input set of detection
windows, W1, the first stage outputs the windows selected to be consid-
ered by the second stage, W2 ⊂ W1, the response and the features for
all input detection windows, R1(W1), F1(W1), respectively.

information will be used by the regression models to avoid recomputing features for

detection windows.

4.2.3 Data-Driven Detection Optimization Framework

As discussed earlier, our goal is to develop a framework to optimize detection

methods by incorporating a set of online learned regression models based on cheap

(and possibly already computed) feature descriptors to increase the number of de-

tection windows rejected prior to expensive feature computation. This will lead to

a significant reduction in computational cost while keeping accuracy high.

The regression models are used to accomplish two goals. First, they are used

to estimate the generic detector’s response at each stage, so that detection windows

with low expected response can be quickly rejected. Second, based on the obser-

vation that multiple detection windows with high response but incorrect location

tend to cluster around a true object location (as shown in Figure 4.5(b)), regression

models are learned to estimate the correct location and size of objects. Both of
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Fk-1(Wk-1)

k-th stage
learn/update

k-th regression

Rk(Wk-1)
Wk-1 βk

Figure 4.3: Learning a regression model to estimate the generic detector’s
responses for the k’st stage. Using features extracted from the previous
stage, k-1, and responses obtained by the generic detector at the k’th
stage, a regression model is learned using Fk−1(Wk−1) and Rk(Wk−1)
as independent and dependent variables, respectively.

these regression models use features already available as the independent variables,

i.e. features computed by the k-th detection stage are used to learn the regression

used at the k+1’st stage. Therefore, overhead generated by feature extraction can

be largely avoided.

4.2.3.1 Regression to Estimate the Detector’s Response

Since the goal is to estimate the detector response without having to compute

expensive features used by the generic detector for the k’th-stage, features from the

previous stage are used as independent variables. The responses of the detector

at the k’th-stage are considered as dependent variables. Figure 4.3 illustrates the

learning process. The details of the model are described as follows.

We now describe how the detection model used to estimate the detector’s

response at each stage is learned. The approach is data-driven – the regression

models are not learned from a training set but from the video sequence in which the

detection is being performed. After applying the generic detection method to the

first frame of the video sequence to obtain the detector’s response and the features
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Fk-1(Wk-1) k-th stage
Wrk

k-th regression Wk

Figure 4.4: Execution of the regression model to estimate the generic
detector’s response for the k’th stage. Before executing the k’th stage,
features extracted from the k − 1’th stage are used to estimate the re-
sponse of the generic detector at the k’th stage. The detection windows
with low response are rejected before expensive features for the current
stage need to be extracted.

extracted for each stage, an initial regression model is built to estimate each stage’s

responses.

Once the models to estimate each stage’s responses are available, they are

used to reject detection windows before the execution of the generic detector at

a given stage, as illustrated in Figure 4.4. Note that Wrk ⊂ Wk−1. After the

detector is executed, only the responses for detection windows in the set Wrk will

be available, denoted by Rk(Wrk). Therefore, the regression model for the k-th

stage is rebuilt by adding Fk−1(Wrk) and Rk(Wrk) as independent and dependent

variables, respectively. Practically, a list of limited size is considered to store samples

used to build the regression model, and when new samples are added and the size of

the list exceeds its limit, samples from older frames are discarded first. This allows

the regression model to adapt to changes (i.e., changes in background patterns and

statistics) that take place over time.
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4.2.3.2 Regression to Estimate Object Location

In addition to the estimation of detector’s response for each stage, we also use

a regression model to predict the object location. This allows us to reduce further

the number of detection windows that need to be considered by the generic detector

at a given stage. For this regression model, while the independent variables are also

the features extracted for the previous stage, the dependent variables are the tuple

(∆x,∆y,∆w,∆h), where ∆x and ∆y denote the difference on the x and y axes of

the centroid of a given detection window and the correct location of the object, and

∆w and ∆h denote the difference between a given detection window’s width and

height and the correct object size, respectively.

Since ground truth object location is not known during the detection for a

video sequence, the correct location used to learn the regression model is assumed

to be the location specified by the last stage of the generic detector after performing

non-maximum suppression.

The algorithm used to learn the regression model is as follows. After non-

maximum suppression is performed on the detection windows selected by the last

stage, only the ones with response higher than a threshold are stored in a set Wt =

{d1, d2, . . . , dk} where di = (cxi, cyi, wi, hi). Here, (cxi, cyi) denotes its centroid

and wi, hi its width and height, respectively. Then, values for (∆x,∆y,∆w,∆h)

of each incorrect detection window considered by the last stage are computed and

added with their respective features to learn the regression model. Once learned,

the regression model is used to estimate the correct location of objects given a
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(a) input frame (b) centroids after first stage (c) centroids after regression 

Figure 4.5: Location of objects. (a) input frame; (b) map showing the
concentration of centroid locations for detection windows selected after
the first stage of the PLS detector (regions in red show larger concen-
tration than regions in blue); (c) concentration of the centroids after
executing the regression to estimate object locations. The peaks are lo-
cated mostly at the same positions as the pedestrians are in the input
frame.

detection window’s locations and its features. Similar to the regression models used

to estimate detection responses, this regression model is also updated over time.

During execution, for a set of detection windows Ws selected from a previous

stage, the features describing each detection window di ∈ Ws are projected using

the regression model and the tuple (∆xi,∆yi,∆wi,∆hi) is obtained. The new (and

expected to be correct) location of di is then (cxi + ∆xi, cyi + ∆yi, wi + ∆wi, hi +

∆hi). Then, considering the new locations of the detection windows, non-maximum

suppression is conducted and the detection windows with small estimated response

are rejected. Note that if non-maximum suppression were applied before correcting

the locations, fewer detection windows would be rejected because they would be

more sparsely located in the frame, as illustrated in Figure 4.5.
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4.2.4 Integrating the Regression Models into the PLS Detector

Now we describe how the regressions models are integrated into the PLS detec-

tor. Figure 4.1 shows a flowchart of the resulting method, the black arrows describe

the path of selected detection windows and the dashed-red arrows show the flow

used to update the regression models. The steps are sorted in a increasing order of

complexity (additional features are added along the path). Detection windows with

low responses are rejected as early as possible to reduce the computational time

significantly.

The integrated detector is described as follows. First we construct regression

models to estimate the detector’s response for each stage, the response regression I

to estimate the responses of the first stage and the response regression II to estimate

the responses of the second stage. Furthermore, a regression model to estimate the

location of the objects, called the location regression, is added right after the response

regression II so that additional detection windows can be rejected before reaching

the computationally expensive second stage.

Features extracted during the first stage are used for the response regression II

and the location regression, which avoids extracting features to be used specifically

for these two regressions. However, features need to be computed to apply the

response regression I since no features are available at this point of the process.

Therefore, a feature extraction module is added prior to the first regression (denoted

simple features). This module extracts a very small number of features for each input

detection window (a subset of the features used in the first stage), which is used
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by the response regression I to reject quickly a large number of detection windows.

Although only a few features are used, experiments show that approximately 98%

of the input detection windows can be rejected at the response regression I without

decreasing detection accuracy when compared to the original PLS detector.

4.3 Experimental Results

In this section we describe the results obtained by the integrated detection

method. After describing the experimental setup, we analyze how often the regres-

sion models need to be updated in order to provide a satisfactory trade-off between

recall and computational cost. Then, we evaluate the detection results when regres-

sion models are learned offline and no updates are performed. Finally, we compare

the detection results obtained by the original PLS detector with our proposed in-

tegrated detection method and analyze the rejection of detection windows and the

speed-up obtained when each regression model is incorporated into the detection

process.

4.3.1 Experimental Setup

To evaluate our method we use the ETHZ pedestrian dataset [17], which is

composed of three video sequences collected from a moving platform. The first

frame of each sequence is shown in Figure 4.6. These sequences contain frames of

size 640 × 480 pixels. For all the experiments the detection is performed over 16

scales to consider humans with heights between 60 and 500 pixels, with strides of 4

59



(a) Seq. #1 (1000 frames) (b) Seq. #2 (451 frames) (c) Seq. #3 (354 frames)

Figure 4.6: First frame of each video sequence used to evaluate the
proposed method.

pixels on the x-axis and 8 pixels on the y-axis. This setup results in 64, 292 detection

windows per frame.

The features used for the integrated detector are the following. The features

extracted for the first regression, referred to as F1, are HOG features computed from

blocks of 32 × 32 pixels with stride of 8 pixels. The features, F2, extracted for the

first stage are also HOG features computed from blocks of 16×16 and 32×32 pixels

with strides of 8 and 16 pixels respectively. Finally, the features used for the second

stage, F3, are the same as those used by [62]. Note that F1 ⊂ F2 ⊂ F3, therefore

features computed earlier can be reused in later stages.

In the generic PLS detector, a threshold is used at each stage to reject detec-

tion windows presenting low responses (first stage uses 0.2 and second stage 1.0).

The same thresholds used for the first and second stages are considered for the

response regressions I and II, respectively. For the location regression a thresh-

old based on the intersection-over-union measure [19] between detection windows

is considered. If the intersection-over-union between two detection windows, after
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correcting their location by the response, is greater than a threshold, the detection

windows with lower (expected) response are rejected. In our experiments we use 0.5

as this threshold.

To evaluate several aspects of the integrated method and compare them to the

original PLS detector, we consider the following detector setups. Orig : the generic

PLS detector is applied; 1reg : only the response regression I is incorporated with

the generic method; NMS : after executing the response regression I and the first

stage, non-maximum suppression is conducted before executing the second stage;

2reg : the response regressions I and II are incorporated with the generic detector;

3reg : the fully integrated method, as shown in Figure 4.1, is considered.

We conduct evaluations with respect to computational time, detection tradeoff,

and the number of detection windows selected to be considered at each step of the

detection process. In plots of computational time, as in Figure 4.11, the total

time is divided into overhead (time to load the images and compute the integral

histograms for HOG), updating and executing the regressions, and the first and

second stages. The detection tradeoff is either shown for a single fixed value of false

positive per image (FPPI) to evaluate the computational time, as in Figure 4.9,

or for multiple values of FPPI, as in Figure 4.7(b). Finally, details regarding the

number of detection windows selected after each step are shown in plots as the one

in Figure 4.10.

All experiments were conducted on an Intel Core i7-860 processor, 2.8 GHz

with 4GB of RAM running Windows 7 using a single processor core. The method

was implemented in C++.
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Figure 4.7: Frequency of updates for the regression models. In noUp-
date the response regression I is learned based on the first frame of the
sequence and never updated, in update10 and update20 the models are
updated every 10 and 20 frames, respectively, and in 1reg the update is
performed every frame. (a) average computational time per frame for
each setup; (b) detection rates at fixed false positive per image.

4.3.2 Updating the Regression Models

Our first experiment evaluates the frequency with which the regression mod-

els are updated, a parameter for the method. For this experiment, we use video

sequence #3 of the ETHZ dataset to setup this parameter and then we use it in the

remaining experiments, where we consider all three videos. Figure 4.7(a) compares

the average computational time per frame to the frequency that the response re-

gression I is updated. We see that the fastest approach is obtained when no updates

are performed (about 4.25s per frame), followed by the approaches that perform

updates every frame (1reg), every 10 and 20 frames, respectively. In addition, ac-

cording to the detection tradeoff shown in Figure 4.7(b), we see that the poorest

detection result is obtained when the regression is not updated and the best when
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Figure 4.8: Number of detection windows selected by the response re-
gression I for each frame for sequence #3.

the regression models are updated every frame.

Although the time consumed to update the regressions every frame is greater,

as shown in Figure 4.7(a), the number of detection windows selected by the response

regression I is smaller than the number of detection windows selected when the

update is performed at every 10 or 20 frames, as shown in Figure 4.8. This makes

the overall computational time smaller when the regressions are updated more often.

Based on the results shown in Figure 4.7, we conclude that the best trade-off

between speed and detection results is achieved when the regressions are updated

every frame. Therefore, in the remaining experiments the regression models will be

updated every frame.
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Figure 4.9: Comparison between online and offline learning of the re-
gression models. All values for recall are obtained with FPPI fixed at
1.5. Online learning: 1reg, 2reg, and 3reg. Offline learning: learned from
Seq. #1, learned from Seq. #2, and learned from Seq. #3.

4.3.3 Offline Learning of the Regression Models

This experiment aims at assessing the degradation of the detection rates when

the regression models are learned offline using either a different video sequence or

the same video sequence (in this latter case the regression models are not updated

after few frames to emulate an offline learning).

Figure 4.9 compares online and offline learning for the regression models. The

results obtained for the three video sequences clearly show that online learning

provides higher recall for a fixed computational cost. In addition, we can see that

even when a higher computational cost is allowed, the detection obtained with the

offline learning does not outperform the results obtained by the online learning.

In none of the sequences does online learning provide lower recall than offline

learning. However, depending on the video sequence that the offline regression

models are learned from, the detection rates can be significantly degraded; i.e. when

the regression models are learned from sequence #1 and the detection is performed
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Table 4.1: Detection trade-off at different values of false positive per image.

Sequence FPPI Recall
Orig 1reg NMS 2reg 3reg

Seq. #1

0.0 0.086 0.086 0.066 0.079 0.058
0.5 0.399 0.397 0.344 0.401 0.357
1.0 0.513 0.513 0.446 0.518 0.487
1.5 0.592 0.591 0.497 0.596 0.574
2.0 0.640 0.635 0.528 0.638 0.619

Seq. #2

0.0 0.008 0.008 0.008 0.009 0.007
0.5 0.537 0.539 0.442 0.544 0.533
1.0 0.612 0.613 0.488 0.614 0.609
1.5 0.637 0.636 0.509 0.642 0.639
2.0 0.652 0.652 0.521 0.658 0.657

Seq. #3

0.0 0.042 0.042 0.038 0.042 0.036
0.5 0.572 0.583 0.491 0.616 0.586
1.0 0.706 0.709 0.579 0.753 0.735
1.5 0.755 0.755 0.616 0.789 0.787
2.0 0.781 0.777 0.636 0.805 0.805

in sequence #3.

So, even though there is overhead due learning and applying the regressions,

online learning provides consistently higher accuracy and lower computational cost

than offline learning.

4.3.4 Evaluation and Comparisons

Since we are proposing a framework to speed up an existing detection method,

we compare accuracy and speed between the original PLS detector and the inte-

grated method described in Section 4.2.4. We also evaluate the individual modules.

Figures 4.10-4.15 compare several variations of the method, where we vary the

number of detection windows considered by each module and the computational

time for the three video sequences. Table 4.1 compares the recall obtained by each
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Figure 4.10: Number of detection windows considered for each part of
the integrated method when detection is performed using sequence #1.

Figure 4.11: Computational time for each part of the integrated method
when detection is performed using sequence #1.

setup when multiple false positive per image values are considered.

Regarding the number of detection windows, we see that on later steps of the

detection process the number of detection windows selected is reduced significantly.

It is important to observe that even though very few features are used in the response

regression I, approximately 98% of the input detection windows are rejected at this
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Figure 4.12: Number of detection windows considered for each part of
the integrated method when detection is performed using sequence #2.

Figure 4.13: Computational time for each part of the integrated method
when detection is performed using sequence #2.

step. This high rejection rate is due to the online learning, which provides a way of

tuning the regressions to the environment being considered.

Based on the plots showing computational time, it is clear (and expected due

to the large number of features) that the second stage has the highest computational

cost - more than half of the time is spent in the second stage. This emphasizes the
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Figure 4.14: Number of detection windows considered for each part of
the integrated method when detection is performed using sequence #3.

Figure 4.15: Computational time for each part of the integrated method
when detection is performed using sequence #3.

importance of incorporating the regression models before this stage to reject as many

detection windows as possible. Furthermore, we also see that there is some overhead

added when more regression models are incorporated; this is mainly due to the time

required to update the models, because the time to apply the regressions is almost

constant and very small.
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Table 4.2: Summary of the detection results. Recall is shown for FPPI
fixed at 1.5.

Sequence Orig 1reg NMS 2reg 3reg

Seq. #1
time 50.1s 12.0s 3.45s 8.48s 5.97s
recall 0.592 0.591 0.497 0.596 0.574

speed-up 1.0× 4.1× 14.5× 5.9× 8.4×

Seq. #2
time 52.4s 12.6s 3.57s 6.57s 5.42s
recall 0.637 0.636 0.508 0.642 0.639

speed-up 1.0× 4.1× 14.6× 8.0× 9.6×

Seq. #3
time 39.5s 7.59s 2.81s 5.12s 4.43s
recall 0.755 0.755 0.616 0.789 0.787

speed-up 1.0× 5.2× 14.0× 7.7× 8.9×

Besides the speed-up achieved by incorporating the regressions, Table 4.1

shows that when the first two regression models are considered (2reg), the recall

increases for all three sequences compared to the generic method. Therefore, even

though many fewer detection windows are being considered by the second stage, the

rejection of detection windows based on data-driven regressions is keeping only the

windows more likely to be in their correct locations.

Table 4.2 summarizes the detection results showing the average computational

time per frame, the speed-up obtained compared to the original PLS method, and

the recall obtained when the FPPI is fixed at 1.5. We see that the highest speed-up

is obtained by the method applying non-maximum suppression after the first stage,

but the reduction in recall is unacceptable. The best trade-off between speed-up and

recall is achieved by 2reg. In addition, even though there is a slight drop in recall,

the setup 3reg achieves a significant speed-up, providing an acceptable trade-off

between speed-up and recall when higher detection speeds are necessary.
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Finally, the choice between 2reg and 3reg can be guided by the user’s goal. If

the accuracy can be slightly lower but speed is necessary, then 3reg can be used; on

the other hand, if accuracy is the most important factor, 2reg should be considered.

In any case, the original PLS detector, which is several times slower, does not need

to be used since 2reg provides higher recall.

70



Chapter 5

Learning Discriminative Appearance-Based Models

Appearance-based person recognition has widespread applications such as track-

ing and person identification and verification. However, the nature of the input data

poses great challenges due to variations in illumination, shadows, and pose, as well

as frequent inter- and intra-person occlusion. Under these conditions, the use of a

single feature channel, such as color-based features, may not be powerful enough

to capture subtle differences between different people’s appearances. Therefore,

additional cues need to be exploited and combined to improve discriminability of

appearance-based models.

In general, human appearances are modeled using color-based features such

as color histograms [12]. Spatial information can be added by representing appear-

ances in joint color spatial spaces [16]. Also, appearance models of individuals based

on nonparametric kernel density estimation have been used [37]. Other representa-

tions include spatial-temporal appearance modeling [23] and part-based appearance

modeling [34].

Due to improvements that can be achieved using feature combination, we

consider feature augmentation to model people’s appearances. We augment color-

based features with other discriminative cues. We exploit features based on textures

and edges, obtaining a richer feature descriptor set as result.
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To detect subtle differences between appearances, it is useful to perform a

dense sampling for each feature channel, as will be shown on the experiments. How-

ever, as a result, the dimensionality of the feature space increases considerably (a

feature vector describing an appearance is composed of more than 25,000 features).

Once discriminative appearance-based models have been built, machine learn-

ing methods need to be applied so that new samples of the appearances can be

correctly classified during a testing stage. Learning methods such as support vec-

tor machines (SVM) [9], k-neareast neighbors combined with SVM [83], decision

trees [4], learning discriminative distance metrics [37] have been exploited. How-

ever, since feature augmentation results in a high dimensional feature space, these

machine learning methods may not always be used directly due to high computa-

tional requirements and low performance, as we show in the experimental results.

The dimensionality of the data needs to be reduced first. We apply PLS for this.

The projection vectors estimated by PLS provide information regarding the

importance of features as a function of location. Since PLS is a class-aware di-

mensionality reduction technique, the importance of features in a given location is

related to the discriminability between appearances. For example, Figure 5.1 shows

the spatial distribution of the weights of the first projection vector when PLS is

used to combine the three feature channels. High weights are located in regions

that better distinguish a specific appearance from the remaining ones. For example,

blacks regions of the homogeneous jackets are not given high weights, since several

people wear black jackets. However, the regions where the white and red jackets are

located obtain high weights due to their unique appearances.

72



(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 5.1: Spatial distribution of weights of the discriminative
appearance-based models considering eight people extracted from video
sequence #0 of the ETHZ dataset. The first row shows the appearance
of each person and the second row the weights estimated by PLS for
the corresponding appearance. Models are learned using the proposed
method combining color, texture and edge features. PLS is used to re-
duce the dimensionality and the weights of the first projection vector are
shown as the average of the feature weights in each block. Red indicates
high weights, blue low.

Here we exploit a rich feature set analyzed by PLS using an one-against-all

scheme [48] to learn discriminative appearance-based models. The dimensionality

of the feature space is reduced by PLS and then a simple classification method is

applied for each model using the resulting latent variables. This classifier is used

during the testing stage to classify new samples. Experimental results based on

appearance-based person recognition demonstrate that the feature augmentation

provides better results than models based on a single feature channel. Addition-

ally, experiments show that the proposed approach outperforms results obtained by

techniques such as SVM and PCA.
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5.1 Proposed Method

In this section we describe the method used to learn the appearance models.

The features used are described in section 5.1.1 and section 5.1.2 describes the

learning stage of the discriminative appearance-based models.

5.1.1 Feature Extraction

In the learning stage, only one exemplar is provided for each appearance i in the

form of an image window. This window is decomposed into overlapping blocks and

a set of features is extracted for each block to construct a feature vector. Therefore,

for each appearance i, we obtain one sample described by a high dimensional feature

vector vi.

To capture texture we extract features from co-occurrence matrices and edge

information captured using HOG. In addition to these cues, color is also considered.

In order to incorporate color we use color histograms computed for blocks. To

avoid artifacts obtained by monotonic transformation in color and linear illumination

changes, before calculating the histogram the value of pixels within a block are

transformed to the relative ranks of intensities for each color channel R, G and B,

similarly to [37]. Finally, each histogram is normalized to have unit L2 norm.

Once the feature extraction process is performed for all blocks inside an image

window, features are concatenated creating a high dimensional feature vector vi.
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Figure 5.2: Proposed method. For each appearance represented by an
image window, features are extracted and PLS is applied to reduce di-
mensionality using a one-against-all scheme. Afterwards, a simple clas-
sifier is used to match new samples to models learned.

5.1.2 Learning Appearance-Based Models

The procedure to learn the discriminative appearance-based models for a train-

ing set t = {u1,u2, . . . ,uk}, where ui represents a subset of exemplars of each person

(appearance) to be considered, is illustrated in Figure 5.2 and described in details

as follows. Each subset ui is composed of feature vectors extracted from image

windows containing examples of the i-th appearance.

Here we exploit one-against-all scheme to learn a PLS discriminatory model for

each person. Therefore, when the i-th person is considered, the remaining samples
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t \ ui are used as counter-examples of the i-th person.

For the one-against-all scheme, PLS gives higher weights to features located in

regions containing discriminatory characteristics, as shown in Figure 5.1. Therefore,

this process can be seen as a feature selection process depending on the feature type

and the location.

Once the PLS model has been estimated for the i-th appearance, the feature

vectors describing this appearance are projected onto the weight vectors. The re-

sulting low-dimensional features are used during the testing stage to match a query

samples.

When a sample is presented during the testing stage, its feature vector is pro-

jected onto the latent subspace estimated previously for each one of the k appear-

ances and has its Euclidean distance to the samples used in training are computed.

Then, this sample is classified as belonging to the appearance with the smallest

Euclidean distance.

5.2 Experimental Results

In this section we present experiments to evaluate our approach. Initially, we

describe the parameter settings and the dataset used. Then, we evaluate several

aspects of our method, such as the improvement provided by using a richer feature

set, the reduction in computational cost and improvement in performance compared

to PCA and SVM.

Dataset. To obtain a large number of different people captured in uncon-
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(a) sequence #1 (b) sequence #2 (c) sequence #3

Figure 5.3: Samples of the video sequences used in the experiments. (a)
sequence #1 is composed of 1,000 frames with 83 different people; (b)
sequence #2 is composed of 451 frames with 35 people; (c) sequence #3
is composed of 354 frames containing 28 people.

trolled conditions, we choose the ETHZ dataset [17] to perform our experiments.

This dataset, originally used for human detection, is composed of four video se-

quences, where the first (sequence #0) is used to estimate parameters and the

remaining three sequences are used for testing. Samples of testing sequence frames

are shown in Figure 5.3.

The ETHZ dataset presents the desirable characteristic of being captured from

moving cameras. This camera setup provides a range of variations in people’s ap-

pearances. Figure 5.4 shows a few samples of a person’s appearance extracted from

different frames. Changes in pose and illumination conditions take place and due

to the fact that the appearance model is learned from a single sample, a strong set

of features becomes important to achieve robust appearance matching during the

testing stage.

To evaluate our approach, we used the ground truth information regarding

people’s locations to extracted samples from each video (considering only people
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Figure 5.4: Samples of a person’s appearance in different frames of a
video sequence belonging to ETHZ dataset.

with size higher than 60 pixels). Therefore, a set of samples is available for each

different person in the video. The learning procedure presented in Section 5.1.2 is

executed using one sample chosen randomly per person. Afterwards, the evaluation

(appearance matching) considers the remaining samples.

Experimental Setup. To obtain the experimental results we have considered

windows of 32 × 64 pixels. Therefore, either to learn or match an appearance, we

rescale the person size to fit into a 32× 64 window.

For co-occurrence feature extraction we use block sizes of 16× 16 and 32× 32

with shifts of 8 and 16 pixels, respectively, resulting in 70 blocks per detection

window for each color band. We work in the HSV color space. For each color band,

we create four co-occurrence matrices, one for each of the (0◦, 45◦, 90◦, and 135◦)

directions. The displacement considered is 1 pixel and each color band is quantized

into 16 bins. The 12 descriptors mentioned earlier are then extracted from each

co-occurrence matrix. This results in 10, 080 features.

We calculate HOG features considering blocks with sizes ranging from 12× 12

to 32 × 64. In our configuration there are 326 blocks. As in [13], 36 features are
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extracted from each block, resulting in a total of 11, 736 features.

The color histograms are computed from overlapping blocks of 32 × 32 and

16 × 16 pixels extracted from the image window. 16-bin histograms are computed

for the R, G and B color bands, and then concatenated. The resulting number of

features extracted by this method is 5, 472. Aggregating across all three feature

channels, the feature vector describing each appearance contains 27, 288 elements.

To evaluate the approach described in Section 5.1.2, we compare the results

to another well-know dimensionality reduction technique, PCA, and to SVM. With

PCA, we first reduce the dimensionality of the feature vector and then we use the

same classification approach described for PLS. However, with SVM the data is

classified directly in the original feature space.

We consider four setups for the SVM: linear SVM with one-against-all scheme,

linear multi-class SVM, kernel SVM with one-against-all scheme, and kernel multi-

class SVM. A polynomial kernel with degree 3 is used. In the experiments we used

the LIBSVM [10].

Since the high dimensionality of the feature space poses difficulties to com-

pute the covariance matrix for PCA, we use a randomized PCA algorithm [59]. In

addition, the classification for PCA uses the same scheme described in Section 5.1.2

for PLS, where a query sample is classified as belonging to the model presenting the

smallest Euclidean distance in the low dimensional space.

Experimental results are reported in terms of the cumulative match charac-

teristic (CMC) curves. These curves show the probability that a correct match is

within the k-nearest candidates (in our experiments k varies from 1 to 7).
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Figure 5.5: Recognition rate as a function of the number of factors (plots
are shown in different scales to better visualization).

Before performing comparisons, we use the video sequence #0 to evaluate how

many dimensions (number of weight vectors) should be used in the low dimensional

latent space for PLS and PCA. Figure 5.5 shows the CMC curves for both when

the number of factors is changed. The best results are obtained when 3 and 4

factors are considered for PLS and PCA, respectively. These parameters will be

used throughout the experiments.

All experiments were conducted on an Intel Xeon, 3 GHz quad-core processor

with 4GB of RAM running Linux operating system. The implementation is based

on MATLAB.

Evaluation. Figures 5.6-5.8 show recognition rates obtained for each feature

individually and their combination. In both cases the dimensionality is reduced

using PLS. In general, the combination of features outperforms the results obtained

when individual features are considered. This justifies the use of a rich set of features.
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Figure 5.6: Recognition rates obtained by using individual features and
combination of all three feature channels for sequence #1.
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Figure 5.7: Recognition rates obtained by using individual features and
combination of all three feature channels for sequence #2.
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Figure 5.8: Recognition rates obtained by using individual features and
combination of all three feature channels for sequence #3.

Figure 5.9 compares the PLS method to PCA and different setups of the SVM.

We can see that the PLS approach obtains high recognition rates on the testing

sequences of the ETHZ dataset. The results demonstrate, as one would expect, that

PLS-based dimensionality reduction provides a more discriminative low dimensional

latent space than PCA. In addition, we see that classification performed by SVM in

high dimensional feature space when the number of training samples is small might

lead to poor results. Finally, compared to the other methods, our approach achieves

better results mainly when the number of different appearances being considered is

high, i.e. sequences #1 and #2.

In terms of computational cost, Figure 5.9 shows that the proposed method,

is in general, between PCA and SVM. The training and testing computational costs

depend on the number of people and number of testing samples. Sequence #1 has

4, 857 testing samples amongst the 83 different people and sequences #2 and #3
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(a) Recognition rates for sequence #1 (b) Computational time for sequence #1

(c) Recognition rates for sequence #2 (d) Computational time for sequence #2

(e) Recognition rates for sequence #3 (f) Computational time for sequence #3

Figure 5.9: Performance and time comparisons considering the PLS
method, PCA and SVM. SVM1: linear SVM (one-against-all), SVM2:
linear SVM (multi-class), SVM3: kernel SVM (one-against-all), SVM4:
kernel SVM (multi-class).
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Figure 5.10: Misclassified samples of sequence #3. The images on the
left show the training samples used to learn each appearance model.
Images on the right contain samples misclassified by the PLS method.

have 1, 961 and 1, 762, respectively. The number of different people in each sequence

is shown in Figure 5.3.

Figure 5.10 shows some of the misclassified samples of sequence #3 together

with the samples used to learn the PLS models. We see that the misclassifications

are due to changes in the appearance, occlusion and non-linear illumination change.

This problem commonly happens when the appearance models are not updated over

time. However, if integrated into a tracking framework, for example, the proposed

method could use some model update scheme that might lead to higher recognition

rates.

Finally, samples used to learn the appearance-based models for sequence #1

are shown in Figure 5.11. The large number of people and high similarity in their

appearances increases the ambiguity among the models.
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Figure 5.11: Samples of different people in sequence #1 used to learn the models.
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Chapter 6

A Robust and Scalable Approach to Face Identification

The three primary face recognition tasks are verification, identification, and

watch list [55]. In verification, the task is to accept or deny the identity claimed by

a person. In identification, an image of an unknown person is matched to a gallery

of known people. In the watch list task, a face recognition system must first detect

if an individual is on the watch list. If the individual is on the watch list, the system

must then correctly identify the individual. The method described here addresses

the identification task.

Previous research has shown that face recognition under well controlled acqui-

sition conditions is relatively mature and provides high recognition rates even when

a large number of subjects is in the gallery [68, 87]. However, when images are col-

lected under uncontrolled conditions, such as pose variations, uncontrolled lighting,

and changes in facial expressions, the recognition rates decrease significantly.

Due to the large size of realistic galleries, not only the accuracy but also

the scalability of a face identification system needs to be considered. The main

scalability issues are the following. First, the number of subjects in the gallery

can be quite large, so that common search techniques, such as brute force nearest

neighbor, employed to match probe faces do not scale well. Second, in applications

such as surveillance and human computer interaction, in which new subjects are
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added incrementally, the necessity of rebuilding the gallery models every time a new

subject is added compromises the computational performance of the system.

We tackle both problems. In order to reduce the problems associated with

data collected under uncontrolled conditions, we consider a combination of low-level

feature descriptors based on different clues. Then, feature weighting is performed

by Partial Least Squares, which handles very high-dimensional data presenting mul-

ticollinearity and works well even when very few samples are available. Finally, a

one-against-all classification scheme is used to model the subjects in the gallery.

To make the method scalable to the gallery size, we modify the one-against-all

approach to use a tree-based structure. At each internal node of the tree, a binary

classifier based on PLS regression is used to guide the search for the matching

subject in the gallery. The use of this structure provides substantial reduction in

the number of comparisons when a probe sample is matched against the gallery and

also eliminates the need for rebuilding all PLS models when new subjects are added

to the gallery.

6.1 Related Work

Detailed discussion of face recognition and processing can be found in recent

and comprehensive surveys written by Tolba et al. [68] and Zhao et al. [87]. Most

approaches to face recognition can be divided into two categories: holistic matching

methods and local matching methods [89]. The methods in the former category use

the whole face region to perform recognition and includes techniques such as sub-
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space discriminant analysis, SVM, and AdaBoost; these may not cope well with the

generalizability problem due to the unpredictable distribution of real-world testing

face images. Probe images might be dramatically different from those considering

during training [85]. The methods in the latter category first locate several facial

features and then classify the faces according to local statistics.

Local binary patterns (LBP) and Gabor filters are descriptors widely used

in face recognition. LBP is robust to illumination variations due to its invariance

to monotonic gray-scale changes and Gabor filters are also robust to illumination

variations since they detect amplitude-invariant spatial frequencies of pixel gray

values [89]. There are several combinations or variations based on these descriptors

that have been used for face recognition [3, 67, 85, 82].

Most recently developed face recognition systems work well when images are

obtained under controlled conditions or when the test image is captured under sim-

ilar conditions to those for the training images. However, under varying lighting

or aging effects, their performance is still not satisfactory. To perform recognition

under fairly uncontrolled conditions Tan and Triggs [66] proposed a preprocessing

chain for illumination normalization. They used the local ternary patterns and a

Hausdorff-like distance measure. Holappa [27] used local binary pattern texture

features and proposed a filter optimization procedure for illumination normaliza-

tion. Aggarwal [2] presented a physical model using Lambert’s Law to generalize

across varying situations. Shih [64] proposed a new color space LC1C2 as a linear

transformation of the RGB color space.

Another challenge is that most current face recognition algorithms perform
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well when several training images are available per subject; however they are still

not adequate for scenarios where a single sample per subject is available. In real

world applications, one training sample per subject presents advantages such as easy

to collect galleries, low cost for storage and lower computational cost [65]. Thus, a

robust face recognition system able to work with both single and several samples per

subject is desirable. In [38], Liu et al. proposed representing each single (training,

testing) image as a subspace spanned by synthesized shifted images and designed a

new subspace distance metric.

Regarding the scalability issues discussed previously, there is also previous

work focused on how to scale recognition systems to large datasets. In [81] a tech-

nique for combining rejection classifiers into a cascade is proposed to speed up the

nearest neighbor search for face identification. Guo and Zhang [24] proposed the

use of a constrained majority voting scheme for AdaBoost to reduce the number of

comparisons needed.

6.2 Proposed Method

In this section, we first present the feature extraction process. Then, the pro-

posed face identification approach is explained in two steps. Initially, we describe

the one-against-all approach, then we describe the tree-based structure, which im-

proves scalability when the gallery is large and reduces the computational cost of

matching probe samples.
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6.2.1 Feature Extraction

After cropping and resizing the faces, each sample is decomposed into overlap-

ping blocks and a set of low-level feature descriptors is extracted from each block.

The features used include information related to shape (captured by HOG), tex-

ture (captured by local binary pattern (LBP) [3]), and color information (captured

simply by averaging the intensities of pixels in a block).

Local binary patterns [3] have been successfully applied in texture classifica-

tion. LBP’s characterize the spatial structure of the local image texture and are

invariant under monotonic transformations of the pixel gray values. The LBP op-

erator labels the pixels of an image by thresholding the 3× 3 neighborhood of each

pixel using the center value. A label is obtained by multiplication of the thresholded

values by the binomial factors 2p followed by their addition. The 256-bin histogram

of the resulting labels is used as a feature descriptor.

Once the feature extraction process is performed for all blocks inside a cropped

face, features are concatenated creating a high-dimensional feature vector v. This

vector is used to describe the face.

6.2.2 One-Against-All Approach

The procedure to learn models for subjects in the gallery g = {s1, s2, . . . , sn},

where si represents exemplars of each subject’s face, is illustrated in Figure 6.1 and

described as follows. Each si is composed of feature vectors extracted from cropped

faces containing examples of the i-th subject.
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remaining subjects

subject si

feature extractionfeature extraction

PLS model for subject si

Figure 6.1: One-against-all face identification approach. Construction
of the PLS regression model for a subject in the gallery.

As in Chapter 5, here we employ a one-against-all scheme to learn a PLS

discriminatory model for each subject in the gallery. Therefore, when the i-th

subject is considered, the remaining samples g \ si are used as counter-examples

of the i-th subject. In addition, if the face dataset provides a training set we

also add those samples, (excluding samples from the subject under consideration),

as counter-examples of the i-th subject. Experiments show that the addition of

training samples as counter-examples improves recognition rates.

Once the models have been estimated for all subjects in the gallery, the PLS

regression models are stored to be later used to evaluate the responses for a probe

sample. Then, when a probe sample is presented, its feature vector is projected onto

each one of the PLS models. The model presenting the highest regression response

gives the best match for the probe sample, as illustrated in Figure 6.2.
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Figure 6.2: One-against-all face identification approach. Matching of a
probe sample against the subjects in the gallery. The best match for a
given probe sample is the one associated with the PLS model presenting
the highest regression response.

6.2.3 Optimization Using a Tree-Based Structure

In terms of scalability, two drawbacks are present in the one-against-all scheme

described in the previous section. First, when a new subject is added to the gallery,

PLS models need to be rebuilt for all subjects. Second, to find the best match

to a probe sample, the feature vector representing this sample needs to be pro-

jected onto all PLS models learned for the subjects in the gallery (common problem

faced by methods that estimate matching scores using brute force nearest neighbor

search [81]).

To reduce the need for projecting features onto all PLS models to find the

best match for a probe sample, we construct a binary tree in which each node, nj,

contains a subset of the gallery subjects tj ⊂ g, where g = {s1, s2, . . . , sn} as defined

previously. A splitting procedure is used to decide which elements of tj will belong

to the left and right children of nj, assigning at least one sample to each child. Each

internal node is associated with a PLS regression model, used afterwards to guide
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the search when probe samples are analyzed. In order to build the regression model

for a node, the subjects assigned to the left child are defined to have response −1

and the subjects assigned to the right child are defined to have response +1. The

splitting procedure and the building of PLS models are applied recursively in the

tree until a node contains only a single subject (leaf node).

The application of the described procedure for a gallery with n subjects results

in a tree containing n leaf nodes and n − 1 PLS regression models located on the

internal nodes.

We consider two approaches to split subjects between the children nodes. First,

a procedure that uses PCA to create a low dimensional subspace (learned using

samples from a training set) and then the K-means algorithm clusters data into two

groups, each one is assigned to one child. The second approach chooses random

splits and divides the subjects equally into two groups. We evaluate these splitting

procedures in Section 6.3.3.

When a feature vector describing a probe sample is analyzed to find its best

matching subject in the gallery, a search starting from the root of the tree is per-

formed. At each internal node, the feature vector is projected onto the PLS model

and according to its response, the search continues either from the left or from the

right child. The search stops when a leaf node is reached. Figure 6.3 illustrates this

procedure.

According to experimental results shown in Section 6.3.3, the traversal of a

few search paths is enough to obtain the best match for a probe sample. Starting

nodes for alternative search paths are stored in a priority queue. An internal node
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n3

s1 s2 s3 s4 s5 s6 s7 s8

probe sample

Figure 6.3: Tree-based structure used to optimize the search for matches
to a probe sample. Each internal node contains a PLS regression model
used to guide the search, as shown in details for node n3, which has a
PLS model constructed in a way that the response directs the search
either to node n6 or n7. In this example the first path to be traversed
is indicated by arrows (in this case, it leads to the correct match for
this particular probe sample). Alternative search paths are obtained by
adding nodes that have not been visited into a priority queue (in this
example nodes n3 and n5 will be the starting nodes for additional search
paths). After pursuing a number of search paths leading to different leaf
nodes, the best match is chosen to be the one presenting the highest
response (in absolute value).

nk is pushed into the priority queue when its sibling is chosen to be in the current

search path. The priority associated with nk is proportional to its response returned

by the PLS regression model at its parent. Finally, since each search path leads to a

leaf node, the best match for a given probe sample is chosen to be the one presenting

the highest response (in absolute values) among the leaf nodes reached during the

search.

The tree-based structure can also be used to avoid rebuilding all PLS models

when a new subject is added into the gallery. Assuming that a tree is built for k
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subjects, the procedure to add a new subject sk+1 is described as follows. Choose

a leaf node ni, where ti = {sj}; set ni to be an internal node and create two new

leaf nodes to store sj and sk+1; then, build a PLS model for node ni (now with

ti = {sj, sk+1}). Finally, rebuild all PLS models in nodes having ni as a descendant.

Therefore, using this procedure, the number of PLS models that needs to be rebuilt

when a new subject is added no longer depends on the number of subjects in the

gallery, but only on the depth of node ni.

6.3 Experiments

In this section we evaluate several aspects of our proposed approach. Ini-

tially, we show that the use of the low-level feature descriptors analyzed by PLS in

a one-against-all scheme, as described in Section 6.2.2, improves recognition rates

over previous approaches, particularly when the data is acquired under uncontrolled

conditions. Then, we demonstrate that the tree-based approach introduced in Sec-

tion 6.2.3 obtains comparably high recognition rates with a significant reduction in

the number of projections1.

The method is evaluated on two standard datasets used for face recognition:

FERET and FRGC version 1. The main characteristics of the FERET dataset are

that it contains a large number of subjects in the gallery and the probe sets exploit

differences in illumination, facial expression variations, and aging effects [57]. FRGC

contains faces acquired under uncontrolled conditions [56].

1The reduction on the number of projections is obtained due to reduction in the number of

subjects in the gallery that need to be considered when probe samples are matched.
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All experiments were conducted on an Intel Core i7-860 processor, 2.8 GHz

with 4GB of RAM running Windows 7 operating system using a single processor

core. The method was implemented using C++ programming language.

6.3.1 Evaluation on the FERET Dataset

The frontal faces in the FERET database are divided into five sets: fa (1196

images, used as gallery set containing one image per person), fb (1195 images,

taken with different expressions), fc (194 images, taken under different lighting

conditions), dup1 (722 images, taken at a later date), and dup2 (234 images, taken

at least one year apart). Among these four standard probe sets, dup1 and dup2

are considered the most difficult since they are taken with time-gaps, so some facial

features have changed. The images are cropped and rescaled to 110× 110 pixels.

Experimental Setup. Since the FERET dataset is taken under varying

illumination conditions, we preprocessed the images for illumination normalization.

Among the best known illumination normalization methods are the self-quotient

image (SQI) [73], total variation models, and anisotropic smoothing [27]. SQI is

a retinex based method which does not require training images and has relatively

low computational complexity; we use it due to its simplicity. Once the images are

normalized, we perform feature extraction. For HOG features we use block sizes of

16×16 and 32×32 with strides of 4 and 8 pixels, respectively. For LBP features we

use block size of 32× 32 with a stride of 16 pixels. The mean features are computed

from block size of 4× 4 with stride of 2 pixels. This results in feature vectors with

96



1 3 5 7 9 11 13 15
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rank

R
e
c
o
g
n
it
io

n
 R

a
te

Cumulative Match Curve

fb

fc

dup1

dup2

(a) FERET

1 3 5 7 9 11 13 15
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rank

R
e
c
o
g
n
it
io

n
 R

a
te

Cumulative Match Curve

Experiment 1

Experiment 2

Experiment 4

(b) FRGC

Figure 6.4: The cumulative match curve for the top 15 matches obtained
by the one-against-all approach based on PLS regression for FERET and
FRGC datasets.

35, 680 dimensions.

To evaluate how the method performs using information extracted exclusively

from a single image per subject, in this experiment we do not add samples from the

training set as counter-examples. The training set is commonly used to build a sub-

space to obtain a low dimensional representation of the features before performing

the match. This subspace provides additional information regarding the domain of

the problem.

Results and Comparisons. Figure 6.4(a) shows the cumulative match

curves obtained by the one-against-all approach for all FERET probe sets. We

see that our method is robust to facial expressions (fb), lighting (fc) and aging

effect (dup1, dup2). The computational time to learn the gallery models is 4519 s

and the average time to evaluate a pair of probe-gallery samples is 0.34 ms.

Table 6.1 shows the rank-1 recognition rates of previously published algorithms
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Table 6.1: Recognition rates of the one-against-all proposed identifica-
tion method compared to algorithms for the FERET probe sets.

Method fb fc dup1 dup2

Best result
of [57]

95.0 82.0 59.0 52.0

using training set
LBP [3] 97.0 79.0 66.0 64.0
Tan [67] 98.0 98.0 90.0 85.0

not using training set

LGBPHS [85] 98.0 97.0 74.0 71.0
HGPP [82] 97.6 98.9 77.7 76.1
SIS [38] 91.0 90.0 68.0 68.0
Ours 95.7 99.0 80.3 80.3

and ours on the FERET dataset. As shown in the table, the one-against-all approach

achieves similar results on fb and fc without using the training set. Additionally,

our results on the challenging dup1 and dup2 sets are over 80%.

6.3.2 Evaluation on the FRGC Dataset

We evaluate our method using three experiments of FRGC version 1 that

consider 2D images. Experiment 1 contains a single controlled probe image and a

gallery with one controlled still image per subject (183 training images, 152 gallery

images, and 608 probe images). Experiment 2 considers identification of a person

given a gallery with four controlled still images per subject (732 training images,

608 gallery images, and 2432 probe images). Finally, experiment 4 considers a

single uncontrolled probe image and a gallery with one controlled still image per

subject (366 training images, 152 gallery images, and 608 probe images). We strictly

followed the published protocols. The images are cropped and rescaled to 275× 320
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pixels.

Experimental Setup. FRGC images are larger than FERET; thus we have

chosen larger block sizes and strides to avoid computing too many features. For

HOG features we use block sizes of 32×32 with strides of 8 pixels. For LBP features

we use block size of 32 × 32 with strides of 24 pixels. And the mean features are

extracted from block sizes of 8× 8 with a stride of 4 pixels. This results in feature

vectors with 86, 634 dimensions.

Experiment 4 in FRGC version 1 is considered the most challenging in this

dataset. Since it is hard to recognize uncontrolled faces directly from the gallery set

consisting of controlled images, we attempted to make additional use of the training

set to create some uncontrolled environment information using morphed images.

Morphing can generate images that with reduced resemblance to the imaged person

or look-alikes of the imaged person [30]. The idea is to first compute a mean face

from the uncontrolled images in the training set. Then, we perform triangulation-

based morphing from the original gallery set to this mean face by 20%, 30%, 40%.

This generates three synthesized images. Therefore, for each subject in the gallery

we now have four samples.

Results and Comparisons. Figure 6.4(b) shows the cumulative match

curves obtained by the one-against-all approach for the three probe sets of FRGC. In

addition, the computational time to learn gallery models is 410.28 s for experiment

1, 1514.14 s for experiment 2, and 1114.39 s for experiment 4. The average time to

evaluate a pair of probe-gallery samples is 0.61 ms.

Table 6.2 shows the rank-1 recognition rates of different algorithms on the
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Table 6.2: Recognition rates of the one-against-all proposed identifica-
tion method compared to other algorithms for the FRGC probe sets.

Method Exp.1 Exp.2 Exp.4

PCA
(from [41])

87.6 95.6 -

UMD [2] 94.2 99.3 -
LC1C2 [64] - - 75.0
Tan
(from [27])

- - 58.1

Holappa [27] - - 63.7

Ours 97.5 99.4 78.2

FRGC probe sets. Our method outperforms others in every probe set considered,

especially on the most challenging experiment 4. This is, to the best of our knowl-

edge, the best performance reported in the literature.

6.3.3 Evaluation of the Tree-Based Structure

In this section we evaluate the tree-based structure described in Section 6.2.3.

First, we evaluate procedures used to split the set of subjects belonging to a node.

Second, we test heuristics used to reduce the search space. Third, we compare

the results obtained previously by the one-against-all approach to results obtained

when the tree-based structure is incorporated. Finally, we compare our method to

the approach proposed by Yuan et al. [81].

To evaluate the reduction in the number of comparisons, in this section the x-

axis of the plots no longer displays the rank; instead it shows either the percentage

of projections performed by the tree-based approach when compared to the one-
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Figure 6.5: Evaluation of the tree-based approach. (a) comparison of
the recognition rates when random splits and PCA+K-Means approach
are used; (b) evaluation of the heuristic based on stopping the search
after a maximum number of tree traversals is reached.

against-all approach (e.g. Figure 6.5(a)) or the percentage of tree traversals when

compared to the number of subjects in the gallery (e.g. Figure 6.5(b)). The y-axis

displays the recognition rates for the rank-1 matches. We used probe set fb from

the FERET dataset to perform evaluations in this section.

Procedure to Split Nodes. Figure 6.5(a) shows that both splitting pro-

cedures described in Section 6.2.3 obtain similar recognition rates when the same

number of projections is performed. The error bars (in Figure 6.5(a)) show the

standard deviation of the recognition rates obtained using random splits. They are

very low and negligible when the percentage of projections increases. Due to the

similarity of the results, we have chosen to split the nodes randomly. The advan-

tages of applying random splits are the lower computational cost to build the gallery

models and balanced trees are easily obtained. Balanced trees are important since
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the depth of a leaf node is proportional to lg n, which is desirable to keep short

search paths.

Heuristics to Reduce the Search Space. The first experiment evaluates

the recognition rate as a function of the maximum number of traversals allowed to

find the match subject to a probe sample; this is limited to a percentage of the

gallery size. Figure 6.5(b) shows the maximum recognition rates achievable for a

given percentage. We can see that as low as 15% of traversals are enough to obtain

recognition rates comparable to the results obtained by the one-against-all approach

(95.7% for the probe set considered in this experiment).

In the second experiment we consider the following heuristic. For the initial

few probe samples, all search paths are evaluated and the absolute values of the

regression responses for the best matches are stored. The median of these values

is computed. Then, for the remaining probe samples, the search is stopped when

the regression response for a leaf node is higher than the estimated median value.

Our experiments show that this heuristic alone is able to reduce the number of

projections to 63% without any degradation in the recognition rates2.

Results and Comparisons. Using the results obtained from the previous

experiments (random splits and adding both heuristics to reduce the search space),

we now compare the recognition rates obtained when the tree-based structure is

used to results obtained by the one-against-all approach. Then, we evaluate the

speed-up achieved by reducing the number of projections.

2Since the median is used, this heuristic is expected to work when more than 50% of the matches

are correct. Therefore, it would fail only if the recognition rate for a dataset is lower than 50%.
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Figure 6.6: Recognition rates as a function of the percentage of pro-
jections performed by the tree-based approach when compared to the
one-against-all approach.

Figures 6.6(a) and 6.6(b) show identification results obtained for FERET and

FRGC datasets, respectively. Overall, we see that when the number of projections

required by the one-against-all approach is reduced to 20% or 30%, there is a negli-

gible drop in the recognition rate shown in the previous sections. Therefore, without

decreasing the recognition rate, the use of the tree-based structure provides a clear

speed-up for performing the evaluation of the probe set. According to the plots,

speed-ups of 4 times are achieved for FERET, and for FRGC the speed-up is up to

10 times depending on the experiment being considered.

Finally, we compare our method to the cascade of rejection classifiers (CRC)

approach proposed by Yuan et al. [81]. Table 6.3 shows the speed-ups over the brute

force nearest neighbor search and rank-1 error rates obtained by both approaches.

We apply the same protocol used in [81] for the FRGC dataset. Higher speed-ups

are obtained by our method and, differently from CRC, no significant increase in
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Table 6.3: Comparison between our tree-based approach and the CRC approach.

test set size as fraction of
dataset

10% 21% 32% 43% 65%

CRC
speed-up 1.58 1.58 1.60 2.38 3.35
rank-1 error rate 19.5% 22.3% 24.3% 28.7% 42.0%

Ours
speed-up 3.68 3.64 3.73 3.72 3.80
rank-1 error rate 5.62% 5.08% 5.70% 5.54% 5.54%

the error rates is noticed when larger test set sizes are considered.
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Conclusions

Characteristics presented by partial least squares such as selecting the most

discriminative features for a given application, performing class-aware dimensional-

ity reduction, and handling a large number of features in a fast manner provide a

desirable framework for a wide range of applications in computer vision, especially

for detection and recognition tasks.

We first proposed a human detection method, referred to as the PLS detector,

using a rich descriptor set including edge-based features, texture measures and color

information, obtaining a significant improvement in results over previously published

approaches. The augmentation of these features generates a very high dimensional

space where many classical machine learning methods are intractable. The charac-

teristics of our data make an ideal setting for applying PLS to obtain a much lower

dimensional subspace where we use simple and efficient classifiers. We have tested

our approach on a number of varied datasets, demonstrated its good generalization

capabilities and shown it to outperform state-of-the-art detection methods. Then

we have described an extension of the PLS detector to handle partial occlusions. It

combines face and person detectors into different models, and makes decisions based

on the hypotheses derived from those models. Finally, we have proposed a set of

data-driven regression models to estimate detector’s responses and object locations

using efficiently computable features. When integrated with the PLS detector, sig-

nificant speed-up was obtained. The online learning performed on specific scenes

not only provided speed-up, but also improvements on detection accuracy.

Second, we described a framework to learn discriminative appearance-based
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models based on PLS. The results show that this method outperforms other ap-

proaches considering a one-against-all scheme. It has also been demonstrated that

the use of a richer set of features leads to improvements in results. Then, also using

the one-against-all scheme we have proposed a face identification method using a set

of low-level feature descriptors analyzed by PLS which presents the advantages of

being both robust and scalable. Experimental results have shown that the method

works well for single image per sample, in large galleries, and under different con-

ditions, such as variation in illumination, aging effect, and expression variations.

The use of PLS regression makes the evaluation of probe-gallery samples very fast

due to the necessity of only a single dot product evaluation. Optimization is fur-

ther improved by incorporating the tree-based structure, which significantly reduces

the number of projections when compared to the one-against-all approach, with

negligible effect on recognition rates.
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