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Abstract

The data cube operator encapsulates all possible groupings
of a data set and has proved to be an invaluable tool in ana-
lyzing vast amounts of data. However its apparent exponen-
tial complexity has significantly limited its applicability to
low dimensional datasets. Recently the idea of thedwarf
data cube modelwas introduced, and showed that high-
dimensional “dwarf data cubes” are orders of magnitudes
smaller in size than the original data cubes even when they
calculate and store every possible aggregation with 100%
precision.

In this paper we present a surprising analytical result
proving that the size of dwarf cubes growspolynomially
with the dimensionality of the data set and, therefore, a
full data cube at 100% precision is not inherently cursed
by high dimensionality. This striking result of polynomial
complexity reformulates the context of cube management
and redefines most of the problems associated with data-
warehousing and On-Line Analytical Processing. We also
develop an efficient algorithm for estimating the size of
dwarf data cubes before actually computing them. Finally,
we complement our analytical approach with an experimen-
tal evaluation using real and synthetic data sets, and demon-
strate our results.

1 Introduction

The data cube operator is an analytical tool which pro-
vides the formulation for aggregate queries over categories,
rollup/drilldown operations and cross-tabulation. Conceptu-
ally the data cube operator encapsulates all possible multi-
dimensional groupings and its an invaluable tool to applica-
tions that need analysis on huge amounts of data like deci-
sion support systems, business intelligence and data mining.

Such applications need very fast query response on mostly
ad-hoc queries that try to discover trends or patterns in the
data set.

However the complexity of the data cube increasesex-
ponentiallywith the number of dimensions and most ap-
proaches are unable to compute and store but small low-
dimensional data cubes. After the introduction of the data
cube in [6] an abundance of research followed for dealing
with the exponential complexity of the data cube. The main
ideas can be classified as either a cube sub-setting (par-
tial materialization) [7, 8, 17] or storing the full cube but
with less precision (approximation or lossy models) [1, 18].
However, all these techniques do not directly address the
problem of space complexity. Furthermore, all problems as-
sociated with the data cube itself appeared to be quite diffi-
cult, from computing it [2, 4, 14, 20, 3, 12], storing it [9, 5],
querying and updating it[13]. Even problems that appear
simpler, like obtaining estimates on the cube size, is actu-
ally quite hard and needs exponential memory with respect
to the dimensionality [15] in order to obtain accurate results.

Currently the most promising approaches for handling
large high-dimensional cubes lie in the context ofcoalesced
data cubes[16, 11, 19]. In [16] we demonstrate that the size
of the dwarf data cube even when they compute, store and
index every possible aggregate for all group-bys is orders
of magnitudes smaller than what expected. The coalesc-
ing discovery published for the first time in the dwarf data
cube model [16], completely changed the perception of a
data cube from a unordered collection of distinct groupings
into a complex network of interleaved groupings and aggre-
gates that eliminate bothprefixandsuffix redundancies. It is
these redundancies and their elimination that fuse the expo-
nential growth of the size of high dimensional full cubes and
dramatically condense their store without loss in precision.

To help clarify the basic concepts, let us consider a cube
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with three dimensions. In Table 1 we present such a toy
dataset for the dimensionsStore, Customer, andProduct
with one measurePrice.

Store Customer Product Price
S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

Table 1: Fact Table for Cube Sales

The size of the cube is defined as the number of the tu-
ples it contains, which essentially corresponds to the sum
of the tuples of all its 23 views. The size of the dwarf is
defined similarly as the total number of tuples it contains,
after data coalescing. For example, for the fact table in Ta-
ble 1 and the aggregate functionsumwe have a cube size of
23 tuples, while the dwarf size is just 9 tuples as depicted
in Table 2. The redundancy of the cube is eliminated in the
dwarf cube and the coalesced areas are only stored once. For
example, the aggregate $70 appears in total of five tuples,
(S1|ALL,C2,P2|ALL) and (S1,ALL,P2), in the cube and it
is coalesced in just one tuple in the dwarf.

no Coalesced Price

1 (S1|ALL,C2,P2|ALL) (S1,ALL,P2) $70
2 (S1|ALL,C3,P1|ALL) (S1,ALL,P1) $40
3 (S1,ALL,ALL) $110
4 (S2|ALL,C1,P1) (S2,ALL,P1) $90
5 (S2|ALL,C1,P2) (S2,ALL,P2) $50
6 (S2|ALL,C1,ALL) $140
7 (ALL,ALL,P1) $130
8 (ALL,ALL,P2) $120
9 (ALL,ALL,ALL) $250

Table 2: Dwarf Cube Tuples

In this paper we address the problem of the size of the
dwarf data cube and show that it’s complexity is:

O

(
dlogC T T

(logC T)!

)
= O

(
T1+1/ logdC

)
whered is the number of dimensions,C is the cardinality

of the dimensions andT is the number of tuples. This sur-
prising result shows that, unlike the case of non-coalesced
cubes which grow exponentially fast with the dimension-
ality, the 100% accurate and complete (in the sense that it
contains all possible aggregates) dwarf representation only

growspolynomiallyfast. In other words, if we keep the num-
ber of tuples in the fact table constant and start increasing the
dimensionality of the fact table (by horizontally expanding
each tuple with new attributes) then the size of the dwarf
increases only polynomially. The first form shows that the
dimensionalityd is raised to logC T which does not depend
ond and is actually quite small for most realistic datasets1.

The second form of the complexity shows that the Dwarf
size is polynomial w.r.t to the number of tuples of the data
setT, which is raised to 1+1/ logdC (and is very close to 1
for most realistic datasets2). In other words, if we keep the
dimensionality of the fact table constant and start appending
new tuples, then the size of the dwarf increases polynomially
(and almost linearly). These results change the current state
of the art in data-warehousing because it allows to scale up
and be applicable to a much wider area of applications.

In addition we extend our analysis to cubes with varying
cardinalities per dimension and we provide a linear -w.r.t
to the dimensionality- algorithm which can be used to es-
timate the size of a dwarf cube based only on these cardi-
nalities without actually computing the dwarf cube. Such
estimates are invaluable for data-warehouse/OLAP admin-
istrators who need to allocate the storage for the dwarf be-
fore initiating its computation. Current approaches [15] can-
not be applied to high-dimensional data cubes, not only be-
cause they require an exponential amount of work per tuple
and exponential amount of memory but mostly because they
cannot be extended to handle coalesced cubes.

In particular in this paper we make the following contri-
butions:

1. We formalize and categorize the redundancies found in
the structure of the data cube into sparsity and implica-
tion redundancies

2. For the sparsity redundancies, we provide an analysis
on the size of the dwarf cube, and show that it scales
only polynomially w.r.t to the number of dimensions.

3. We complement our analytical contributions with an al-
gorithm and an experimental evaluation using both syn-
thetic and real data sets and we show that in real data
sets, the size of the dwarf cube is even smaller due to
implication redundancies.

Our work provides thefirst analytical results showing that
a full and 100% precision data cube is not inherently ex-

1For example for a data set of 25 million tuples and a cardinality of
5,000, logC T = 2

2I.e., for a dimensionality of 30 and a cardinality of 5,000, 1+
1/ logdC≈ 1.4
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ponential in size and that an effective coalescing data cube
model can reduce its size to realistic values. Therefore, we
believe it has not only theoretical but also practical value for
OLAP.

The remainder of the paper is organized as follows: In
Section 2 we differentiate between prefix and suffix redun-
dancies and show that suffix redundancies are by far the
most dominant factor that affects coalesced cubes. Section 3
categorizes suffix redundancies based on the sparsity of the
fact table or the implications between values of the dimen-
sions. In Section 4 we introduce the notion of basic par-
titioned node and we use it to analyze the coalesced cube
structure. In Section 5 we present an algorithm that can be
used to estimate the size of a coalesced cube given only the
cardinalities of each dimension and in Section 7 we show an
evaluation on both synthetic and real data sets. Finally the
conclusions are summarized in Section 8.

2 Redundancies

In this section we formalize the redundancies found in the
structure of the cube and explain their extend and signifi-
cance.

2.1 Prefix Redundancy

none

abc

ba c

acab bc

Figure 1: Lattice for the orderinga,b,c

This redundancy is the first that has been identified and
can be used to build indexes over the structure of the cube.
The idea is easily visualized in the lattice representation of
the cube. For example, in Figure 1, one can observe that
half the group-by’s share the prefixa. We can exploit this
by just storing the corresponding values just once and avoid
replicating the same values over all views(prefix-reduction).
By generalizing this to other prefixes (like for example to
prefix b, which appears to one fourth of the views) we can

reduce the amount of storage required to store the tuples of
the cube.

Lemma 1 The total number of tuples of the cube is not af-
fected by prefix redundancy, only the storage required to
store each tuple is reduced.

This lemma essentially says that the prefix-reduced cube
still suffers from the dimensionality curse, since we have to
deal with every single tuple of the cube. The benefits of the
prefix-reduction are therefore quickly rendered impractical
even for medium dimensional cubes.

2.2 Suffix Redundancy

In this section we formally define the suffix redundancy and
we give examples of different suffix redundancies.

DEFINITION 1 Suffix Redundancyoccurs when a set of
tuples of the fact table contributes the exact same aggre-
gates to different groupings. The operation that eliminates
suffix redundancies is calledcoalescion. The resulting cube
is calledcoalesced cube.

EXAMPLE 1 Suffix redundancy can occur for just a single
tuple: In the fact table of Table 1, we observe that the tuple:

〈 S1 C2 P2 $70〉

contributes the same aggregate$70 to two group-bys:
(Store,Customer) and (Customer). The corresponding tu-
ples are:

(Store,Customer)(Customer)

〈 S1 C1 $70〉 〈C2 $70〉

EXAMPLE 2 We must point out that suffix redundancy
does not work only on a per-tuple basis, but most impor-
tantly it extends towhole sub-cubes, for example the sub-
cube that corresponds to the tuples:

〈 S2 C1 P1 $90〉,〈 S2 C1 P2 $50〉

contributes the same aggregates to sub-cubes of
(Store,Product), (Customer,Product), (Store), (Customer) :

The reason that whole sub-cubes can be coalesced is the
implication between values of the dimensions. In our ex-
ample,C1 implies S2, in the sense that customerC1 only
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(Store,Product)(Customer,Product)

〈 S2 P1 $90〉 〈C1 P1 $90〉
〈 S2 P2 $50〉 〈C1 P2 $50〉

(Store) (Customer)

〈 S2 $140〉 〈C1 $140〉

buys products from storeS2. Dwarf is the only technique
that manages to identify such whole sub-cubes as redundant
and coalesce the redundancy fromboth storage and com-
putation time,withoutcalculating any redundant sub-cubes.
For comparison, the condensed cube[19] can only identify
redundant areas only tuple-by-tuple, and QC-Trees[11] have
to compute first all possible sub-cubes and then check if co-
alescing can occur.

Such suffix redundancies demonstrate that there is signifi-
cant overlap over the aggregates of different groupings. The
number of tuples of the coalesced cube, where coalesced ar-
eas are only store once is much smaller than the size of the
cube, which replicates such areas over different groupings.

DEFINITION 2 The size of a cube is the sum of the tuples
of all its views. The size of a coalesced cube is the total
number of tuples after the coalescion operation.
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Figure 2: Compression vs. Dimensionality

Prefix redundancy works in harmony with suffix redun-
dancy by eliminating common prefixes of coalesced areas.
A comparison between these redundancies is demonstrated
in Figure 2, where we depict the compression ratio achieved
by storing all the tuples of a cube exploiting in the first case
just the prefix redundancies and in the second both prefix
and suffix redundancies w.r.t to the dimensionality of the

dataset. We used a dataset with a varying number of di-
mensions, a cardinality of 10,000 for each dimension and
a uniform fact table of 200,000 tuples. It is obvious that
in high-dimensional datasets the amount of suffix redundan-
cies is many orders of magnitudes more important the prefix
redundancies.

3 Coalescing Categories

In this section we categorize suffix redundancies insparsity
andimplicationredundancies. We use the Dwarf model[16]
-a summary is in the appendix- in order to define and visual-
ize the redundancies. In the rest of the paper we will use the
Dwarf model for analysis, but our approach can be applied
to other coalesced cube approaches[11, 19].

3.1 Sparsity Coalescing

’y y’y y

...

Path P

’z zz z’

Coalesced Tuples

Tail Coalescing

Left Coalescing

...

x x’

Figure 3: Sparsity Coalescings

In Figure 3 we depict two types of suffix redundancies
due to the sparsity of the dataset. Lets assume that a path
〈P〉 leads to a sparse area and that for the paths〈P x〉 and
〈P x′〉 there is only one tuple due to the sparsity of the cube.
We differentiate to two different types of coalescing based
on the nature of the pathP.

DEFINITION 3 Tail coalescinghappens on all groupings
that have〈P x〉 as a prefix, where path〈P x〉 leads to a sub-
dwarf with only one fact tuple and path Pdoes not follow
any ALL pointers.

EXAMPLE 3 In Figure 3, since there is only one tuple in
the area〈P x. . .〉 then all the group-bys that have〈P x〉 as
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a prefix (i.e.〈P x ALL z. . .〉, 〈P x y ALL. . .〉 etc.) share the
same aggregate.

DEFINITION 4 Left coalescingoccurs on all groupings
with prefix〈P ALL y〉, where path〈P ALL y〉 leads to a sub-
dwarf with only one tuple. In this case, P may follow ALL
pointers.

EXAMPLE 4 Left coalescing complements tail coalescing
and in Figure 3 we depict the case where〈P ALL y. . .〉 is
redundant and corresponds to〈P x y. . .〉. Tha same is ob-
served for〈P ALL ALL z〉 and〈P ALL ALL z′〉.

Areas with just one tuple (like〈P xy〉 and〈P x′y′〉) there-
fore produce a large number of redundancies in the structure
of the cube. The difference between tail and left coalescing
is two-fold:
• Paths the lead to tail coalescingdo not followanyALL

pointers while in left coalescing the paths follow at
least oneALL pointer -the one immediately above the
point where coalescing happens-.

• Tail coalescing introduces one coalesced tuple in the
dwarf, while left introduces no coalesced tuples.

In our analysis we only consider these two types of coa-
lescing (tail and left) and we show that their effect is so over-
whelming that the exponential nature of the cube reduces
into a polynomial dwarf.

3.2 Implication Coalescing

The final type of coalescing that the dwarf very effi-
ciently performs is calledimplication-coalescing. The
sparsity-coalescing types defined in Section 3.1 work only
in sparse areas of the cube where a single tuple exists. The
implication-coalescing complements these redundancies by
coalescingwhole sub-cubes. For example, for the fact table
in Table 1 we observe thatC1 impliesS2 -in the sense that
customerC1 only buys products fromS2. This fact means
that everygrouping that involvesC1 andS2 is essentially
exactly the same with the groupings that involveC1. This
redundancy can be depicted in Figure 4

The implication coalescing is the generalization of left-
coalescing when implications between the values of dimen-
sion occur. Such implications are very apparent in real
datasets and -since we do not consider those in our analysis-
they are the reason that in the experiments section weover-
estimatethe size of the coalesced cube for real data sets.

...

...S2

...

... C1

P1P2

C1

Path P

Figure 4: Implication Coalescing, whereC1→ S2

4 Basic Partitioned Node

In this section we formulate coalesced cube structure us-
ing the dwarf model by first introducing thebasic parti-
tioned nodeand then by building the rest of the coalesced
cube around it -by taking into account both tail and left
coalescing-.

Assume a uniform fact table withd dimensions, where
each dimension has a cardinality ofC = l ! and that there are
T = C tuples. The root node of the corresponding dwarf is
depicted in Figure 5, where the node has been partitioned3

into l groups. We refer to such a node as thebasic parti-
tioned node. GroupG0 contains cells that get no tuples at
all, groupG1 contains cells that get exactly one tuple, group
G2 contains cells that each one gets exactly two tuples, etc.

G1G0 G2

�������������
�������������
�������������

�������������
�������������
�������������

...... ...

...

Gl−1

l−1

Figure 5: Node partitioned in groups where each cell in
groupGz gets exactlyz tuples

Lemma 2 From a collection of C items, if we uniformly pick
an item and repeat T times, then the probability that we pick
one item exactly z times is:

Pz(C,T) =

(T
z

)
(C−1)ze−T/C

3for this analysis we relax the property of the dwarf, where the cells
inside a node are lexicographically sorted
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[Proof: The probability that we will pick one item exactlyz
times is:

Pz(C,T) =
(

T
z

)
1/Cz(1−1/C)T−z =

=
(

T
z

)
1/Cz(C−1)−z/C−z(1−1/C)T

where the quantity(1− 1/C)T can be approximated by
e−T/C and the binomial

(T
z

)
corresponds to the number of

different ways the product 1/Cz(1− 1/C)T−z can be writ-
ten. ]

By applying lemma 2 to the partitioned dwarf node we
get by substitutingT = C:

Lemma 3 A group Gz of a basic partitioned node, where
z= 0. . . l−1, contains≈ C

z! e
−1 cells that get exactly z tuples

each

In Figure 5 we depict that the dominated nodes of a group
Gz have exactlyzcells. From lemma 3 we know that exactly
z tuples are associated with each cell of groupGz and from
the independence assumption we have that the probability
that a key is duplicated for these tuples is 1/C2 with an ex-
pected number of duplicated keysz/C2. Even forz= l , we
expectl/(l !)2� 1 duplicate cells.

4.1 Left Coalesced Areas

In this section we deal with areas of the dwarf that are reach-
able through paths that follow ALL pointers. These areas
have the possibility of left coalescing and as we’ll show they
are dominated by such redundancies.

In Figure 6 we show a basic partitioned node which cor-
responds to a pathP that follows at least one ALL pointer
and that it corresponds to a subset of the fact table with
T = C tuples. We refer to the corresponding sub-dwarf as
left-coalesced sub-dwarfand we show that it introduces a
”small” number of new coalesced tuples. Obviously cells in
groupG0 that get no tuples offer no tuples at all. Cells in
groupG1 that get only a single tuple, left-coalesce to other
tuples in the structure and offer no aggregation. This is the
reason we differentiate between paths that follow at least
one ALL pointer and those which do not. Cells in groups
G2,G3, . . . ,Gl−1 introduce only a single aggregate per cell.

To help clarify this, consider a cell in groupG2. Since
there are two fact tuples associated with this cell (by defini-
tion) there are two paths〈P x 〉 and〈P x′ 〉 that correspond
to these two tuples. Since the pathP follows at least one

G1G0 G2

...

�������������
�������������
�������������
�������������

...... ...
Gl−1

P with at least one ALL pointer

...
l−1

... ...

One new Coalesced Tuple per root cell

...

Left Coalescing

Figure 6: Left-Coalesced partitioned node withT = C

ALL pointer, theexact same tuplesappear with another path
Q that does not follow any ALL pointer, and therefore paths
〈P x 〉 and〈P x′ 〉 coalesce to〈Q x 〉 and〈Q x′ 〉. The only
aggregate that this sub-dwarf introduces is the aggregate of
these two tuples (located at the leaf nodes). The same holds
for all groupsG2,G3, . . . ,Gl−1 and therefore the number of
new coalesced tuples that a left-coalesced sub-dwarf withd
dimensions andT = C fact tuples introduces is (by using
lemma 3):

NLe f t(T = C,d,C) = a0 ·C ·d+1

wherea0 = (e−2)/e

Left Coalesced
area

Left Coalesced
area

Tuples: C
k−1

#Dims: d−1

...

Left Coalesced
area

Left Coalesced
area

...

...

Tuples: C
k−1

#Dims: d−2

Figure 7: Left-Coalesced partitioned node withT = Ck

We can extend our analysis to the general case whereT =
Ck, k = logC T in the way that is depicted in Figure 7. By
induction one can easily prove that:
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Lemma 4 The number of new coalesced tuples that a left-
coalesced area introduces is:

NLe f t(T = Ck,d,C) =

= C ·
d−1

∑
i=1

NLe f t(T = Ck−1,d− i,C)+1 =

= a0C
k
(

d
k

)
+

k−1

∑
i=1

Ck−i
(

d
k− i

)
+1

4.2 Tail Coalesced Areas

In this section we deal with areas that are reachable through
paths that do not follow any ALL pointers. These areas have
less chances for left-coalescing but as will show the amount
of coalescing is still very significant.

In Figure 8 we show a basic partitioned node which cor-
responds to a pathP that does notfollow any ALL point-
ers and that it corresponds to a subset of the fact table with
T = C tuples. We refer to the corresponding sub-dwarf as
tail-coalesced sub-dwarfand we count the number of co-
alesced tuples it introduces. As in the left-coalesced case,
cells in groupG0 that get no tuples offer no tuples at all.
Cells in groupG1 that get only a single tuple, offer just a
single aggregate, due to tail coalescing. Cells in groupsGz,
wherez= 2, . . . , l −1 introducez+1 coalesced tuples,thez
tuples of the fact table plus their aggregation. The number
of coalesced tuples a tail-coalesced sub-dwarf withd dimen-
sions andT = C fact tables introduces is:

NTail(T = C,d,C) = b0C+a0C(d−1)+1

wherea0 = (e−2)/eandb0 = (2e−2)/e.
We can extend our analysis to the general case whereT =

Ck, k = logC T in the way that is depicted in Figure 9. Using
induction we prove that:

Lemma 5 The number of new coalesced tuples that a left-
coalesced area introduces is:

NTail(T = Ck,d,C) =

= C ·NTail(Ck−1,d−1,C)+
d−1

∑
i=2

NLe f t(Ck−1,d− i,C) =

= a0C
k
[(

d
k

)
−1

]
+

k

∑
i=1

ck−i
[(

d
k− i

)
−1

]
+b0C

k

G1G0 G2

...

...
l−1

�������������
�������������
�������������
�������������

...... ...
Gl−1

3 coalesced tuples l coalesced tuples

... ... ... ... ... ... ... ...

1 coalesced tuple
per root cell per root cell per root cell

Left CoalescingTail Coalescing

P with no ALL pointers

Figure 8: Tail-Coalesced partitioned node withT = C

Tuples: C
k−1

#Dims: d−1

...

Left Coalesced
area

Left Coalesced
area

...

...

Tuples: C
k−1

#Dims: d−2

area area
Tail Coalesced Tail Coalesced

Figure 9: Tail-Coalesced partitioned node withT = Ck

4.3 Total Dwarf Size

The analysis for the tail coalesced areas gives the total num-
ber of coalesced tuples for the full dwarf withd dimen-
sions, cardinalityC per dimension andT fact table tuples4.
Lemma 5 gives that:

CoalescedTuples= O

(
T

dlogC T

logC T!

)
= O

(
T1/1+logdC

)
with the surprising result that even if we consider only two
out the three coalescings that dwarf performs, the size of the
coalesced cube is only polynomial w.r.t to the dimensional-
ity of the fact table and polynomial (and very close to linear)
w.r.t to the number of tuples in the fact table.

4When we start creating the root node of the full dwarf there is no
chance of left-coalescing, since nothing has been created
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5 Algorithm for Dwarf Size Estimation

In this section we extend our analytical contribution to gen-
eral case of varying cardinalities per dimensionality. Algo-
rithm 1 can be used to estimate the number of coalesced
tuples for sparse uniform data sets given the cardinalities of
each dimension. We have extended the algorithm to work
with zipfian distributions, but due to space constrains we re-
fer the reader to the full version of the paper.

Algorithm 1 SparsityTraverse Algorithm
Input: d: Number of Dimensions

Card: array of dimension cardinalities
FactT: current no of fact tuples
nc: tail coalesce flag(0 or 1)

1: if FactT=0then
2: return 0
3: else ifFactT=1then
4: return nc{here tail or left-coalescing happens}
5: else ifd=0 then
6: return 1
7: end if
8: coalescedT← 0
9: mC← Card[d]

10: zeroT← mC·e−FactT/mC

11: oneT← FactT/(mC−1) ·zeroT
12: if oneT≥ 1 then
13: x← 1
14: while there are still fact tuplesdo
15: xT←

(FactT
x

)
/(mC−1)x ·zeroT

16: coalescedT += SparsityTraverse(d-
1,Card,xTuples,nc) {tail or left-coalescing
may happen here}

17: FactT -= xT
18: x++
19: end while
20: else
21: coalescedT += SparsityTraverse(d-

1,Card,FactT/mC,nc){drill-down traversal}
22: end if
23: coalescedT += SparsityTraverse(d-1,Card,FactT,0)
{roll-up traversal with left-coalescing}

24: return coalescedT

Initially the algorithm is called with the tail coalescing
flag set to 1, since there is no chance for left-coalescing
(there are no tuples to coalesce to). In line 4 we check if
there is just one tuple in the subcube where tail or suffix

coalescing happens depending on the tail coalescing flag. In
lines 12- 19 we traverse the basic partitioned node by check-
ing iteratively how many cells get one, two, three, ... tuples
until all the available tuples for the subcube are exausted.
The quantity: (FactT

x
)

(mC−1)x
·mC·e−FactT/mC

where FactT is the number of fact tuples for the current sub-
dwarf and mC is the cardinality of the current dimension,
returns the number of cells that get exactly x tuples5.

The algorithm works in a depth-first manner over the lat-
tice and estimates recursively the number of coalesced tu-
ples that its sub-dwarf generates. For example, for a three-
dimensional cubeabc, the algorithm in line 21 starts the
drill-down to all subcubes with prefixa and recursively it
proceeds to those with prefixaband finally reaches prefixes
abc, by estimating appropriately the number of tuples that
each subdwarf gets. When (lines 1-7) there are no more di-
mensions to drill-down (or a tail or left coalescing can be
identified), the drill-down over the subdwarfs with prefixes
in abcstops and the algorithmrolls-up to the subdwarfs with
prefixesab in line 23 by setting the nC flag to 0 -since now
there is possibility of left-coalescing with the subcubes in
abc-. The process continues recursively to all the views of
the lattice.

6 Related Work

The data cube operator is introduced in [6] and its potential
has generated a flurry of research on a wide-variety of top-
ics. Its exponential complexity on almost every aspect first
guided to the rediscovery of materialized views and their
adaptation. For example view selection algorithms can be
found in [7, 8, 17]. However the general problem is show to
be NP-Complete [10] and even greedy algorithms are poly-
nomial in the number of views that need to consider which
is actually exponential in the dimensionality of the datasets,
rendering these approaches to a certain degree impractical
for high-dimensional datasets.

Estimating the size of the data cube given its fact table
is only addressed in [15] by using probabilistic techniques,
however that approach cannot be extended to work with co-
alesced cubes.

5assuming a uniform distribution. For zipfian distribution we refer the
reader to the full version of the paper
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The problem of just computing the data cube appears es-
pecially interesting. Various techniques that try to benefit
from commonalities between partitions or sorts, partial sorts
and intermediate results are proposed in [2, 4, 14]. Other
techniques that use multidimensional array representation
techniques [20] suffer as well from the dimensionality curse.
Techniques that try to exploit the inherent sparsity of the
cube like [3, 12] seem to perform better.

Several indexing techniques have been devised for stor-
ing data cubes. Cube Forests [9], exploit prefix redundancy
when storing the cube. In the Statistics Tree [5] prefix re-
dundancy is partially exploited. Unique prefixes are stored
just once, but the tree contains all possible paths (even non-
existing paths) making it inappropriate for sparse datasets.
Cubetrees[13] use packed R-trees to store individual views
and exhibit very good update performance.

Recently compressed cubes are introduced which try to
exploit the inherent redundancies in the structure of the
cube. In [19] the notion of abase single tupleis intro-
duced. Such a tuple is “shared” between different group-bys
and is similar to the coalesced tuples discussed in this pa-
per. However its applicability is limited since such tuples
are discovered one at a time. Dwarf[16] provides a more ef-
ficient method for the automatic discovery of all type of suf-
fix redundancies, since whole sub-cubes can coalescedbe-
fore actually computing them. Dwarf also indexes the pro-
duced cube and is designed to work in secondary memory.
QC-trees[11] use a bottom-up approach in discovering re-
dundancies which checks if every grouping is redundant or
not with every other grouping that it is possible to coalesce
with.

7 Experiments

In this section we provide an extensive experimental evalu-
ation of our approach based on synthetic and real data sets.
We compare the results of our analytical approach with ac-
tual results taken from our implementation of Dwarf.

7.1 Synthetic Datasets

In Figure 10 we demonstrate how the number of coa-
lesced tuples scales w.r.t to the dimensionality, for a uniform
dataset. The number of fact table tuples was set to 100,000.
We used two different cardinalities of 1,000 and 10,000. We
see that our analytical approach provides extremely accu-
rate results for large cardinalities.The reason that the error

decreases as the cardinality increase is the approximation
in lemma 3, where we assume thatC− 1 ≈ C. The sec-
ond observation has to do with the scalability w.r.t. to the
dimensionality. The quantity logC T which determines the
exponent ofd is much smaller in the case ofC = 10,000
and therefore this data set scales better.
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Figure 10: Accuracy v.s. dimensionality for varying cardi-
nalities

7.2 Real Datasets

For this experiment we use a real eight-dimensional data set
given to us by an OLAP company. The data set has vary-
ing cardinalities per dimension. We used various projections
on the data set in order to decrease the dimensionality and
study its effect on the accuracy. For this experiment the fact
table had 672,771 tuples and two measures. Table 3 sum-
marizes the parameters of each projection. Column “Projec-
tion” denotes the name of the data set, columnd the number
of dimensions and column “Cardinalities” the cardinalities
of each dimension. In Figure 11 we depict the estimates of
our approach compared with the actual numbers taken, when
the dwarf is computed and stored.

Projectiond Cardinalities

A 5 1300,2307,2,2,3098
B 6 1300,2307,3098,130,561,693
C 7 1300,2307,2,3098,130,561,693
D 8 1300,2307,2,2,3098,130,561,693

Table 3: Real data set parameters

We observe a very interesting pattern. As the dimen-
sionality increases our approachoverestimatesincreasingly
more the coalesced size. The reason is that our ap-
proach currently handlesonly sparsity coalescingand ig-
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Figure 11: Accuracy v.s. dimensionality for real data set

nores theimplication coalescingthat is very apparent in
high-dimensional data sets. As the dimensionality increases
such implications increase and complement the sparsity im-
plications reducing even further the coalesced size!

8 Conclusions

We have presented an analytical and algorithmic framework
for estimating the size of coalesced cubes, where suffix re-
dundancies diminish the number of aggregates that need to
be stored and calculated. Our analysis on the Dwarf model
although it uses only sparsity coalescing, derives the surpris-
ing result, that the coalesced cube grows polynomially w.r.t
to the dimensionality! This result changes the establish state
that the cube is exponential on the number of dimensions
and extend the applicability of data warehousing methods to
a much wider area. In addition we have demonstrated using
real data, that the coalesced cube iseven smallerthan our
analysis derives. The reason is that the effects of implica-
tion coalescing complement the results of sparsity coalesc-
ing that we have presented here.
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Figure 12: The Dwarf Cube for Table 1

A Dwarf Representation

In order to visualize and define the coalescing properties we
use the dwarf structure and describe how the structural re-
dundancies appear under this model.

A.1 Dwarf Structure

We briefly describe the Dwarf structure. The reader is di-
rected to [16] for a complete discussion.

Figure 12 shows the Dwarf Cube for the fact table shown
in Table 1. It is a full cube using the aggregate function
sum. The height of the Dwarf is equal to the number of
dimensions, each of which is mapped onto one of the lev-
els shown in the figure. The root node contains cells of the
form [key,pointer], one for each distinct value of the first
dimension. The pointer of each cell points to the node be-
low containing all the distinct values of the next dimension
that are associated with the cell’s key. Each non-leaf node
has a special ALL cell, shown as a small gray area to the
right of the node, holding a pointer and corresponding to
all the values of the node. Leaf nodes contain cells of the
form [key,X], where X is either an aggregate or a pointer to
another leaf node that contains the corresponding aggregate.

A path from the root to a leaf such as〈S1,C3,P1〉
corresponds to an instance of the group-by
(Store,Customer,Product) and leads to a cell[P1 $40]
which stores the aggregate of that instance. Some of the
path cells can be open using the ALL cell. For example,
〈S2,ALL,P2〉 leads to the cell[P2 $50], and corresponds
to the sum of the Prices paid by any Customer for Product
P2 at Store S2. At the leaf level, each cell is of the form
[key,aggregate] and holds the aggregate of all tuples that
match a path from the root to it. Each leaf node also has

an ALL cell that stores the aggregates for all the cells in
the entire node.〈ALL,ALL,ALL〉 leads to the total Prices
(group-by NONE).

Prefix redundancies are eliminated by storing each unique
prefix just once, for example StoreS1 is only stored just one
in the DAG, as is the prefixS2,C1.

Suffix redundancies are visualized in nodes that are reach-
able through many paths. The reader can observe that the
three paths〈S2,C1,P2〉, 〈S2,ALL,P2〉, and〈ALL,C1,P2〉,
whose values are extracted from processing just the last tu-
ple of the fact-table, all lead to the same cell[P2 $50]. We
refer to all nodes reachable through more than one path as
coalescednodes.
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