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Adaptive Diagnosis for Probabilistically rDiagnosable Systems

by

Feng-Hsien Warren Shih and Kazuo Nakajima

Abstract

We show that the adaptive diagnosis approach can be applied to probabilistically
diagnosable systems. Three adaptive diagnosis algorithms are developed under both the
symmetric and asymmetric test invalidation assumptions. A test selection strategy based
on a probabilistic measure of test results is derived and used in each algorithm. We show

that the adaptive algorithms are efficient in identifying all faulty units in a system.






I. Introduction

Consider a system denoted by S(U,T) or simply S, where U = {uy,uz,..., u,} is a
set of n units and T' is a connection assignment of test links which assigns each unit to test
a subset of the other units. Thus the system S can be represented by a digraph G = (U, T),
where U is the set of vertices of G and T = {(u;,u;)|ui,u; € U, and u; is assigned to test
u;} is the set of directed edges of G. The result of each test is either “pass” (fault-free) or
“fail” (faulty) and can be expressed as a binary weight a(u;,u;) of edge (u;,u;) in 7. In
particular, a(u;,u;) = 0 if u; judges u; to be fault-free, and a(u;,u;) = 1 otherwise. The

set of all test results of S is called the syndrome of S.

Preparata, Metze, and Chien [16] introduced the above graph theoretical model, which
is now known as the PMC model, to deal with system-level faults in a multiprocessor
system. In their model, it is assumed that the test result is reliable only if the testing unit
is fault-free; otherwise it is unreliable regardless of the condition of the other unit involved
in the test. This is called the symmetric test invalidation (abbreviated as STI) assumption.
They defined a system S to be t-diagnosable if given a syndrome of S, all faulty units in
S can correctly be identified, provided the number of faulty units does not exceed the
given bound, t. A considerable amount of research has been done on the characterization,

diagnosis and diagnosability of ¢-diagnosable systems under the PMC model [1,5,8,11,18].

A variation of the PMC model, called the BGM model, was later introduced by Barsi,
Grandoni, and Maestrini [2]. In this model, besides the test invalidation assumption of the
PMC model, it is further stipulated that a faulty unit is never evaluated to be fault-free.
This is called the asymmetric test invalidation (abbreviated as ATI) assumption. A char-

acterization theorem, diagnosis and diagnosability algorithms for ¢-diagnosable systems

under the BGM model have been developed [2,13,15].

In all of the work mentioned above, it is implicitly assumed that all system units
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have the same probability of failure. In other words, all faults of the system are treated
equally in the diagnosis process. On the other hand, Maheshwari and Hakimi [12] studied
a probabilistic nature of the processor fault and proposed a probabilistic weighted model.
In particular, they considered the a prior: probability of failure associated with each unit
in the system. They defined a system S to be probabilistically 7-diagnosable, or p-r-
diagnosable in short, if given a syndrome of S, the set of faulty units whose total a prior:
probability of failure is at least 7, can correctly be identified. Characterization theorems
for this model under both the STI and ATI assumptions have been obtained [6,7,12]. An
O(n?) diagnosis algorithm using network flow and vertex-cover set techniques has been
developed [4]. Furthermore, the diagnosability problem for p-7-diagnosable systems has

been shown to be NP-complete [19].

In the conventional diagnosis approach discussed so far, one first chooses a set of
diagnostic tests, then seeks the results of these tests, and finally proceeds to use the test
results to identify the faulty units. Due to the high complexity of the diagnosis algorithms
and the requirement for a complete syndrome, the on-line implementation of the diagnosis
process becomes very difficult. To overcome this problem, Nakajima [14] suggested a so-
called adaptive diagnosis approach. In this approach, tests are chosen and performed based
on the results of the previous tests until one can identify a fault-free unit. This fault-free
unit may then be used as a tester to identify all faulty units. Efficient diagnosis algorithms
using this adaptive approach were later developed under both the PMC and BGM models
[9]. Additional research work aiming at the reduction of the numbers of tests and testing
rounds required for the diagnosis of a system in the PMC model has also been reported
[3,10,17]. However, the application of the adaptive diagnosis approach to the more general

p-T-diagnosable systems has yet to be seen.

In this paper, we show for the first time that the adaptive diagnosis approach can

3



be applied to probabilistically diagnosable systems. We develop three adaptive diagnosis
algorithms for identifying a fault-free unit under both the STI and ATI assumptions. In
the next section, we review the p-r-diagnosable system model and obtain characterization
theorems from previously known such theorems. We derive a test selection strategy based
on a probabilistic measure of test results in Section IIl. In Section IV, we present the
adaptive diagnosis algorithms based on the theorems given in Section II. The complexity

analysis of each algorithm is also provided. Section V concludes the paper.

II. Preliminaries
Let S(U,T) be a system, where U = {u1,us,..., un} and T = {(ui,uj)|ui,u; € U,

and u; is assigned to test u;}.

Definition 1: A subset F C U is called an aellowable fault set of S if given a syndrome
of S, (1) u; € U~ F and a(u;,u;) = 0 imply u; € U — F and (2) u; € U — F and
a(u;,u;) =1imply u; € F. [

Thus, F is an allowable fault set if the assumptions that the units contained in F are
faulty and that the units contained in U — F' are fault-free are consistent with the given
syndrome.

Let p(u;) be the a prior: probability of failure of unit «;. Assuming that all p(u;)’s
are independent, the a prior: probability of the set of faulty units * C U in S is given as
P(F)= [ ptws) I -pCu).

u;EF u;€U-F

Definition 2: A system S is called probabilistically 7-diagnosable or simply p-r-

diagnosable if for any syndrome of S, there exists a unique allowable fault set F¥ C U

such that P(F) > 7, assuming that the a priori probability of occurrence of the set of

faulty units in S is at least 7. []



Let F C U be a set of faulty units such that

P(F)= [] pws) ] (1=pw)) 2~
u,€EF u,€U-F
Then
log (P(F)) =) log (p(u:))+ Y, log(1—p(us))> log ().

u; €EF w,eU~F

It follows that

1 —plu;
3 log (———p-(——)) <—log (1) + 3 log (1-p(w) 2 K(r).

If with each unit u; € U a weight w(u;) = log [(1 — p(u;))/p(u:)] is associated, then
the problem of identifying the set of faulty units in a p-r-diagnosable system S is equivalent
to that of determining the allowable fault set F' for which

W(F) =Y wu)< K(r).
u, €F
The class of conventional t-diagnosable systems then becomes a special case of p-7-

diagnosable systems in which the weight of each unit is identical. Note that in the above

model, it is assumed that p(u;) < 1/2 and hence w(u;) > 0 for every u; € U.

Under the STI assumption, the test result a(u;, u;) is reliable only if u; is a fault-free
unit. On the other hand, under the ATI assumption, unit u; is fault-free if a(u;,u;) =0
regardless of the condition of unit u;. The following theorems give necessary and sufficient
conditions for a system to be p-r-diagnosable under both assumptions. They are derived
directly from those given by Fujiwara and Kinoshita [6,7]. Let S(U,T) be a system with
each unit u; € U having weight w(u;), where its corresponding digraph G = (U,T) is

assumed to be fully connected.



Theorem 1: S is p-r-diagnosable under the STI assumption if and only if there exists

no 2-partition (V1,V,) of U such that W(V;) < K(7) and W(V2) < K(7). O

Theorem 2. S is p-r-diagnosable under the ATI assumption if and only if there exists
no 3-partition (V, {u}, {v}) of U such that W(V)+w(u) < K(7) and W(V)+w(v) < K(7).
1

ITI. Test Selection Strategy

In order to achieve efficient diagnosis using the adaptive approach, the selection of tests
among various units in a system is very important in all diagnosis algorithms [3,9,10]. For ¢-
diagnosable systems, the performance of such an algorithm is simply judged by the number
of tests used in the diagnosis, since the probability of failure is assumed to be equal for
each unit in the system. In this case, when selecting a new unit in the adaptive diagnosis
process, only the connection assignment of that unit has to be considered. However, for
p-T-diagnosable systems, the performance of an algorithm should also be judged by the
probability of the occurrence of an adaptive test sequence. This in turn requires the

consideration of the probability of failure for each unit in the test selection strategy.

Let S(U,T) be a system with each unit v; € U having a priori probability of failure

p(u;). Let Po(ui,u;) denotes the probability that the test result a(u;,u;) = 0.

Under the STI assumption, it is assumed that (1) a(u;,uj) = 0 if both u; and u;
are fault-free, and (2) a(ui,uj) = 0 or 1 if u; is faulty. A natural interpretation of the
second case is that Pp(u;,u;) = 1/2 if u; is faulty. In this paper, however, we treat this
case in a more general setting, by introducing two probabilistic measures. Let a (resp., )
be the probability of the occurrence of a(u;i,u;) = 0 when u; is faulty and u; is fault-free
(resp., faulty). Note that 0 < a, f < 1. Furthermore, it is reasonable to stipulate that

a + B < 1 since if the testing unit u; is faulty, it is more likely to have a(u;,u;) = 1 than
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a(u;,u;) = 0. Based on these assumptions, Py(u;,u;) can be expressed as
Po(uiyuj) = (1 = p(ui))(1 - p(u;)) + ap(ui)(1 — p(u;)) + Bp(ui)p(u;) -

Under the ATI assumption, (1) a(u;,u;) = 0 if both u; and u; are fault-free, (2)
a(ui,uj) = 1 if both u; and u; are faulty, and (3) a(ui,u;) = 0 or 1 if u; is faulty and u;
is fault-free. Using the same probabilistic measures a and f introduced above, the second
case implies that § = 0 while the third case can be treated with « in the same way as

under the STI assumption. Thus, we have
Po(us,uj) = (1 — p(ui))(1 — p(u;)) + ap(ui)(1 — p(u;)) .

Theorem 3: For any two units u;,u; € U, if p(u;) < p(u;), then Po(uj,ui) > Po(ui,u;)
under both the STI and ATI assumptions.
Proof: Under the STI assumption, we have
Po(uj,ui) = (1 = p(u;))(1 — p(wi)) + ap(u;)(1 — p(ui)) + Bp(u;)p(u;) , and

Po(ui,uj) = (1 = p(ui))(1 — p(u;)) + ap(ui)(1 — p(u;)) + Bp(ui)p(u;) .
It follows that
Po(uj,ui) — Po(ui,uj) = ap(u;)(1 — p(ui)) — ap(ui)(1 — p(u;))
= a(p(u;j) — p(ui)) 2 0 .
Under the ATI assumption, we have
Po(uj,ui) = (1= p(u;))(1 — p(ui)) + ep(u;)(1 — p(ui)) , and
Po(ui,uj) = (1 = p(ui))(1 — p(u;)) + ap(ui)(1 = p(u;)) .

Hence,
Po(uj,ui) — Po(ui,uj) = a(p(u;) — p(ui)) 2 0.
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The main idea of the adaptive diagnosis approach 1s to identify a fault-free unit as
quickly as possible. Under the ATI assumption, once a «g” test result is obtained, the unit
tested is fault-free. Under the STI assumption, the accumnulation of “0” test results as well
as that of “17 test results will lead to the : dentification of a fault-free unit. Theorem 3
implies that in order to produce a “0” test result probabilistically quicker, a unit with a
higher probability of failure should test a unit with a lower probability. Without loss of
generality, we can assume, in the remainder of the paper, that the units in U are sorted in

nondecreasing order of their o prior: probabilities of failure; that 1s, p(ug) < plug) < ... <

p(tn), OF equivalently, w(u1) 2 w(ug) > ... 2 w(Un)-
Theorem 4: For any three units ui,uj,ux € U, if plus) < pluj) < p(uy), then

Po(uj,ui) 2 Poluk, ui) = Po(uk,us) under both the ST and ATI assumptions.
Proof. Under the ST1 assumption, we have
Po(u;ui) = (1 — p(u))(1 = p(us)) + ap(u;)(1 — plus)) + Bp(u;)p(ui) ;
Po(ug,ui) = (1 — plu))(1 — plui)) + ap(ur)(1 — p(ui)) + Bp(u)p(us) , and

Polur,u;) = (1 = plur))(l = ;) + ap(ur)(l = p(u) + Bp(ur)p(u;) -
Therefore, we derive

Po(uj, us) — Po(ur,wi) = (plur) = p(u))(1 — plui)) + ap(u;) = P(ua))(1 = p(ui))
+ B(p(us) — p(ur))p(wi)
= (p(ux) — p(ug))[1 = p(wi) — ol = p(us)) — Bp(wi)]
= (p(ug) = pu))l —a— (1 —a+ B)p(ui)]

- o) —plulL (=t 8- (snce (0 < 5)

= (p(ux) — p(u])) (%) 1-a—-p)20 (since a + 8 < 1), and
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Py(uk,ui) — Po(uk,uj) = (1 — p(ur))(p(u;) — p(ui)) + ap(ur)(p(u;) — p(u;))
+ Bp(ur)(p(ui) — p(uj)) -
= (p(uj) = p(ui))(1 = p(uk) + ap(ur) — Bp(ur))

= (p(u;) = p(ui))[1 = (1 — o+ B)p(ur)] 2 0

1
(since p(ur) < 5 and 1+ 3 —-a<2).

Under the ATI assumption, we have
Po(ujyui) = (1 = p(u;))(1 — p(ui)) + ap(u;)(1 — p(us))
Po(uk, ui) = (1 — p(ur))(1 — p(ui)) + ap(ur}(1 — p(ui)) , and

Po(ur, uz) = (1 — p(ur))(1 — p(u;)) + ap(ur)(l — p(u;)) .
Therefore, we obtain

Po(uj,ui) — Po(ur,ui) = (1 — p(ui))(p(us) — p(u;)) + a(l ~ p(ui))(p(u;) — p(ur))
= (1= a)(1 = p(u:))(p(ur) — p(u;)) 2 0, and
Po(uk,ui) — Po(uk,uz) = (1 = p(ur))(p(u;) — p(ui)) + ap(ur)(p(u;) — p(u:))

= (1= (1 = a)p(ur))(p(u;) —p(v:)) 2 0.0

The above theorems suggest the following test selection strategy. First, use tests of
the form (u;41,u;) rather than those of the form (u;, ui4+1). Then, perform the test (uq,u;)
rather than the test (us,uz2), and proceed to carry out the tests (uz,u1),(uq,uy),..., until
unit u, is hopefully identified to be fault-free; otherwise repeat the process starting with the
test (us,uq) and so forth. Based on this strategy, we develop adaptive diagnosis algorithms

in the next section.



IV. Adaptive Diagnosis Algorithms

Let S(U,T) be a system with each unit u; € U having weight w(u;). Recall
the assumption that the units in U are sorted in nondecreasing order of their a prior:
probabilities of failure, or equivalently in nonincreasing order of their weights; that is,
w(uy) 2 w(uz) 2 ... 2 w(u,). Before we proceed to present adaptive diagnosis algo-
rithms, we introduce optimal base sets for p-r-diagnosable systems under the STI and ATI
assumptions. They play a key role in the algorithms. Let G = (U,T) be the digraph
representing system S. We say that a subset V C U of S is p-7-diagnosable if the sub-
system of S defined by the induced subgraph (V,T(V)) of G is p-r-diagnosable, where
T(V) = {(u,v) € T|u,v € V}. Namely, the subsystem consists of the units in V and the

test links of T which connect units in V.

Definition 3: Let S(U,T) be a p-r-diagnosable system under the STI (resp., ATI)
assumption. A smallest cardinality subset B C U of S that is p-7-diagnosable under the
STI (resp., ATI) assumption, is called an optimal base set of S under the STI (resp., ATI)

assumption. []

Given a p-7-diagnosable system S(U,T), one can construct an optimal base set

B, under the STI assumption in the following manner: if } w(u;) < 2K(r), set
=1

b—1 b

B, = U; otherwise, find index b such that > w(u;) < 2K(7) < 3 w(u;), and set
i=1 =1

B, = {u1,u2,..., up}. Similarly, an optimal base set B, under the ATI assumption

can be obtained as follows: if > w(u;) < K(7), set B, = U; otherwise, find index b such
1=2
b—1 b
that ) w(u;) < K(7) —w(uy) < > w(u;), and set B, = {ug,uz,..., up}.
i=3 =3
We now show an adaptive diagnosis algorithm which identifies a fault-free unit under

the STI assumption. Let By = {uy,u2,..., up} be an optimal base set of S.
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Algorithm SYM:
te1; Fe¢; ke K(r)
while z < b do
if W(F)+ w(ui) > K(7) then return /u; is fault-free /*
else Vo — {u;}; Vi —¢; j—i+1
while j < b do
Perform test (uj,u;)
if a(uj,u;) = 0 then Vp « VU {u;}
if W(V5) > k then return */u; is fault-free /+
else Vi « Vi U {u,}
ifW(V1) > k then F — FPU {u;}; k « k —w(u;); ¢ — i + 1; break
*[u; is faulty /*
if W(F) + w(u;) > K(r) then return */u; is fault-free /*
Je=Jj+1
endwhile
te—1+4+1
endwhile []

Let [z] denote the smallest integer that is greater than or equal to z.

Theorem 5: Let S(U,T) be a system which satisfies the condition of Theorem 1, and
let B be an optimal base set of S with {B,| = b. Under the STI assumption, Algorithm

SYM always identifies a fault-free unit in S using at most bz — z(z + 1)/2 tests, where
= [(b-1)/2].
Proof: We first note that the set Vi contains those units that are faulty if unit u; is

assumed to be fault-free. Therefore, if W(V;) > k, Vi cannot be a set of faulty units,

and hence the assumption that u; is fault-free is wrong. Thus, ¥; must be faulty. This
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implies that F' always contains faulty units which have correctly been identified so far.
Therefore, if the termination condition that W(F) + w(u;) > K(7) is met, u; must be
fault-free. On the other hand, the set V; contains those units that are faulty if unit w; is
assumed to be faulty. Using the same reasoning as above, if the algorithm terminates when
W(Vo) > k, u; is fault-free. Finally, it is not difficult to see that the algorithm terminates
on the third line only when F = ¢ and w(u;) > K(7). Apparently u; cannot belong to

any allowable fault set of cardinality at most K(7), and hence u, is fault-free.

We have shown that the algorithm correctly identifies a fault-free unit if it terminates.
We now show that it does terminate using at most bz — z(2 + 1)/2 tests. Recall that the
units in the optimal base set B, are sorted in nonincreasing order of their weights, that
is, w(uy) > w(ug) > ... 2 w(up). Let Vo = {u;]l < i <z}and Vy =U -V, — {uz41},

where z = [(b— 1)/2]. Clearly W(V;) > W(V,) and hence W (V) + w(uz41) > K(1)

b
since Y w(u;) > 2K(7) due to the property of B,. Therefore, in the worst case in which

i=1

no unit in V; is identified as fault-free in the diagnosis process, uz4+1 will be diagnosed as

fault-free. Clearly, the total number of tests used is at most (b—1)+(b—2)+...+(b—2z) =
br — z(z +1)/2. [

We now present two adaptive diagnosis algorithms which identify a fault-free unit
under the ATI assumption. The first algorithm is applicable to systems which satisfy the

condition of Theorem 1. Note that if a system is p-7-diagnosable under the STT assumption,

it is so under the ATI assumption. Let B, = {u1,u2,..., up} be an optimal base set of S.
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Algorithm ASYM1:
12, Fe¢
while : < b do
if W(F) + w(u;1) > K(7) then return */u, is fault-free /*
else Perform test (uit1,u;)
if a(uit1,u;) = 0 then return */u; is fault-free /*
else F — F U {uj+1}
1142
endwhile

print “u; is fault-free”[]

Theorem 6: Let S(U,T) be a system which satisfies the condition of Theorem 1, and
let B, be an optimal base set of S with |B,| = b. Under the ATI assumption, Algorithm

ASYM1 always identifies a fault-free unit in S using at most [(b — 1)/2] tests.

Proof: If a(uit1,u;) = 0 occurs forvsome i, then clearly u; is a fault-free unit under
the ATI assumption. Suppose that the results of all tests performed are “1”. Let Vj =
{u; € B,li is odd and 7 > 3} and V3 = {u; € B,|i is even }. Since w(ugj—1) = w(uy;) for
i=12,..., [(b-1)/2], w(u1)+ W(Vi) = W(V;). Due to the property of the optimal
base set B, under the STI assumption and Theorem 1, w(u;) + W(Vy) > K(r). Since
F =V, w(uy)+ W(F) > K(r). Thus, the algorithm terminates and u; is a fault-free

unit. Clearly, the total number of tests used is at most [(b—1)/2]. []

The last algorithm we present is applicable to systems which satisfy the condition of

Theorem 2. Let B, = {uj,u2,..., up} be an optimal base set of S.
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Algorithm ASYM2:
12 =2, Fed
while : < b do
If w(uy) + W(F) > K(r) then return */u; is fault-free /*
else Perform test (ui,u;)
if a(ui,u1) = 0 then return */u; is fault-free /x
else j —i+1
while j < b do
Perform test (u;,u;)
if a(uj,u;) = 0 then return */u; is fault-free /*
jej+l
endwhile
F — FU {u;}
te—1+41
endwhile []

Theorem 7: Let S(U,T) be a system which satisfies the condition of Theorem 2, and
let B, be an optimal base set of S with |B,| = b. Under the ATI assumption, Algorithm

ASYM2 always identifies a fault-free unit using at most (b — 1)b/2 — 1 tests.

Proof: Let V = {u;|3 < < b}. Due to the property of the optimal base set B, under
the ATI assumption, w(uy) + W(V) > K(7). During the first cycle, if the results of all
tests that involve unit uy are “1”, u, is faulty; otherwise, all units in {u;} UV would be
faulty and their total weight would exceed K (7). Using a similar reasoning, during the i-th
cycle, if the results of all tests that involve unit u;4y are “1”, u;44 is faulty. If no fault-free
unit is found in V — {up}, F = {u2} UV — {u}}. Since w(uz) > w(uy), W(F) > W(V) and

hence w(uy) + W(F) > K(7). Thus, the algorithm terminates and unit wu, is fault-free.
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Therefore, the algorithm always identifies a fault-free unit. Clearly, the total number of

tests used is at most (b—1)+(b—-2)+...+2=(b-1)3/2-1. O

V. Conclusions

We have presented efficient adaptive diagnosis algorithms for probabilistically diag-
nosable systems under both the symmetric and asymmetric test invalidation assumptions.
Using a probabilistic measure of test results and the property of an optimal base set, we
have derived a test selection strategy. Thus, each algorithm terminates with a higher
probability of using a minimum number of tests. We have given the worst case complexity
analysis of each algorithm for identifying a fault-free unit. Such an analysis for the iden-
tification of a faulty unit can easily be done. These analyses are useful when executing
the algorithms in either without repair or with repair processes. The adaptive approach
has been shown to provide simple and efficient fault diagnosis even for the more general

system-level model.
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