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The Atlantic Multidecadal Oscillation (AMO), a sea surface temperature 

mode of natural variability with dominant timescales of 30 -70 years and largest 

variations centered on the northern North Atlantic latitudes is one of the principal 

climate signals that have earned considerable attention in the recent decades, due to 

its multilateral impact on both local and remote weather and climate and its 

importance in predicting extreme events, such as drought development over North 

America. A 3-dimensional structure of the AMO is constructed based on observations 

and coupled, ocean-atmosphere 20th century climate simulations. The evolution of 

modeled, decadal-to-multidecadal variability and its hydroclimate impact is also 

investigated between two successive model versions participating in the CMIP3 and 

CMIP5 projects. It is found that both model versions underestimate low frequency 



 

variability in the 70-80 and 30-40 year ranges, while overestimating variability in 

higher frequencies (10-20 year range). In addition, no significant improvements are 

noted in the simulation of AMO’s hydroclimate impact. A subsurface, vertically 

integrated heat content index (0-1000m) is proposed in an effort to capture the 

thermal state of the ocean and to understand the origin of AMO variability, especially 

its surface-subsurface link on decadal- to- multidecadal timescales in the North 

Atlantic basin.  The AMO-HC index exhibits stronger oscillatory behavior and 

shorter timescales in comparison to the AMO-SST index, while leading the latter by 

about 5 years. A cooling of the North Atlantic subsurface is discernible in the recent 

years (mid-2000s –present), a feature that is almost absent at the ocean surface and 

could have tremendous implications in predicting future North Atlantic climate and in 

relation to the recent hiatus in the rise of global surface temperatures that was noted 

in the latest Intergovernmental Panel on Climate Change assessment report. Finally, 

AMO’s decadal variability is shown linked to Gulf Stream’s northward surges and the 

low-frequency NAO, as envisioned by Vinhelm Bjerknes in 1964. A cycle 

encompassing the low-frequency NAO, Gulf Stream’s poleward excursions and the 

associated shifts in surface winds and SSTs over the subpolar North Atlantic is 

proposed as a possible mechanism for AMO’s origin and a principal target for future 

research. 
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Chapter 1: Introduction  

1.1 Formulation and Importance of the Problem 
 

The planetary-scale mode of sea surface temperature swings in the North Atlantic basin, 

known as the Atlantic Multi-decadal Oscillation (AMO) after Kerr (2000), has been noted in 

several past studies (Kushnir 1994; Enfield et al. 2001; Sutton and Hodson 2005; Guan and 

Nigam 2009; Ting et al. 2009; Frankcombe 2010; Medhaug and Furevik 2011) and has attracted 

considerable attention in the recent years due to its extensive impact on regional as well as global 

weather and climate (e.g., Ting et al. 2011). The principal drivers of these basin-wide SST 

perturbations are, however, unclear and a common consensus with respect to the origin of North 

Atlantic SST variability remains to be reached. Some of the most prevailing oceanic and 

atmospheric mechanisms proposed as key drivers of the AMO include density and salinity 

fluctuations driven by variations in the Atlantic Meridional Overturning Circulation, AMOC 

(Bjerknes 1964; Latif et al. 2004; Medhaug and Furevik 2011, Mauritzen et al. 2012; Wang and 

Zhang 2013), changes in wind forcing and air–sea interactions (Huang et al. 2011), the secular 

increase of greenhouse gases such as CO2, CH4 etc. (Webster et al. 2005; Mann and Emanuel 

2006), as well as fluctuations in atmospheric concentrations of anthropogenic and natural aerosols 

(Evan et al. 2009; Booth et al. 2012). Research into the origins of the AMO has also opened new 

questions. A question of key significance addresses the issue of how one can effectively separate 

the naturally induced, multidecadal North Atlantic SST perturbations from the upward, externally 

forced, SST trends that are attributed to global warming (e.g., Ting et al. 2009; Guan and Nigam 

2009). This along with additional questions involving the influence of the extra-tropical North 

Atlantic variability on the signal and evolution of the tropical Atlantic SSTs (the decadal 
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variability of the inter-hemispheric SST gradient across the Equator) and the extent to which 

these interactions manifest complementary features are the focus of ongoing climate research 

studies. 

AMO’s hydroclimate impact on the neighboring continents constitutes a cause of great 

concern, due to the large timescale of the phenomenon and its remarkable socioeconomic effects. 

Impacts on the regional surface climate associated with the AMO include droughts over North 

America (Sutton and Hodson 2005; Nigam et al. 2011), decreased rainfall over the Sahel and 

changes in the frequency and intensity of North Atlantic hurricanes (Knight et al. 2006; Zhang 

and Delworth 2006; Enfield and Cid- Serrano 2006, Ting et al. 2009; Guan and Nigam 2009) as 

well as decadal variations in surface air temperature over NE Brazil (Knight et al. 2006) and parts 

of Northern Europe.  Although the SST footprint of the AMO is well identified to the north of the 

equator, the tropical part has been signaled as being very influential in driving the atmosphere and 

so the climate impacts (e.g., Sutton and Hodson 2005, Zhang and Delworth 2006) over the 

neighboring continents; on the other hand, the impact of the midlatitude SST signature has 

received little attention and just recently Nigam et al. (2011) proposed a mechanism of its 

influence in driving the global atmosphere. 

Multidecadal variability in the North Atlantic can be identified not only in the surface 

temperatures and Arctic sea ice but also in the subsurface via oceanic heat content, and salinity. 

As noted in several studies, the North Atlantic Ocean presents an extensive record of 

perturbations involving SST and salinity (Reverdin et al. 1997; Zhang and Vallis 2006; Polyakov 

et al. 2005a, b) as well as sea ice anomalies (Deser and Blackmon 1993; Deser et al. 2002). Fresh 

water anomalies (reduced salinity) over the Labrador Sea, a region of deepwater formation, 

stratify the ocean layer, contributing thus to the weakening of the thermohaline circulation and 
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deep water formation. This allows for the surface ocean layer to cool down due to the lack of 

vertical mixing with the warmer subsurface water, which in return and via a positive feedback, 

inhibits further the deep convection due to a reduction in the heat lost to the atmosphere 

(Gelderloos et al. 2012). 

It is also important to mention that most of Earth’s warming signal stemming from human 

forcing resides in the upper ocean (Hansen et al. 2005; Levitus et al. 2005) which makes difficult 

the identification of pure natural signals. The oceanic heat content acts as a key indicator of 

climate perturbations on seasonal, interannual and longer time scales (e.g., Chu 2011; Lozier et al. 

2008), accounting thus for the total amount of heat exchange between the ocean and the 

atmosphere, via heat transport (i.e., surface heat fluxes that dominate variability on seasonal and 

annual timescales) and heat storage (Kelly and Dong 2004). That is not to say that temperature 

anomalies in the deeper (1,000–3,000 m) layer below the sunlit zone are not important for climate 

variability on a global scale, but that their contribution to the net integral of ocean heat content is 

small, when compared to that of the upper ocean (Levitus et al. 2000). The evolution and 

respective changes between surface and sub-surface temperature and salinity is also a strong 

fingerprint of decadal fluctuations in the oceanic overturning circulation (AMOC) and can thus 

provide significant insight on the vertical structure of the AMO (Zhang 2007) and its linkage to 

meridional density and salinity transport processes (Sundby and Drinkwater 2002). Assessing 

such long-term variability, however, can be challenging due to the short record of sub-surface 

data that is available, in relation to the extensive variability timescale (Keenlyside et al. 2008). 

Examining therefore the spatial and temporal patterns of sub-surface temperature and ocean heat 

content is essential in understanding regional warming trends and relating them to low-frequency 

modes of climate variability. 
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Advancing our ability to identify the principal drivers and impacts of the AMO, and the 

relative roles of anthropogenic and natural contributions to AMO’s spatiotemporal evolution can 

therefore: 

1. Facilitate	
   the	
   formulation	
   of	
   a	
   more	
   refined	
   image	
   of	
   the	
   North	
   Atlantic	
   SST	
  

variability	
  and	
  its	
  local	
  and	
  remote	
  climate	
  influences.	
  

2. Help	
   to	
   improve	
   the	
  accuracy	
  and	
  reliability	
  of	
   climate	
  model	
  projections	
  of	
   future	
  

trends.	
  

1.2 Motivation for this Work and Scientific Questions 
	
  

Achieving the aforementioned goals, however, remains a challenge. Proxy data (ice-core records, 

tree rings etc.) and climate simulations with models of varied complexity (e.g., Frankcombe 2010; 

Hodson et al. 2010) offer supplemental tools for improving our understanding of such low 

frequency, planetary-scale interactions. A holistic image of the AMO and its climate impacts, as 

well as its accurate representation in climate simulations is yet to be reached, however. 

Specifically, this study aims at addressing the following fundamental open questions:  

1. How	
  robust	
   is	
   the	
  observed	
  AMO	
  spatial	
   structure	
  and	
  how	
  does	
   it	
  evolve	
   through	
  

time?	
  

2. How	
   are	
   low	
   frequency	
   North	
   Atlantic	
   sea	
   surface	
   temperature	
   perturbations	
  

associated	
  with	
  vertically	
  integrated	
  salinity	
  and	
  heat	
  content	
  anomalies?	
  

3. How	
  do	
  simulations	
  from	
  state-­‐of-­‐the-­‐art	
  global,	
  coupled	
  ocean-­‐atmosphere	
  models	
  

participating	
   in	
   the	
   CMIP3	
   (Meehl	
   et	
   al.	
   2007[1])	
   and	
   CMIP5	
   (Taylor	
   et	
   al.	
   2012[2])	
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projects	
   portray	
   the	
   observed	
   spatiotemporal	
   features	
   of	
   the	
   AMO	
   and	
   its	
   surface	
  

climate	
  impact?	
  

4. Is	
  there	
  satisfying	
  progress	
  from	
  CMIP3	
  to	
  CMIP5	
  projects	
  in	
  simulating	
  AMO-­‐related	
  

variability,	
  its	
  structure	
  and	
  hydroclimate	
  impact?	
  

5. What	
   is	
   the	
   link	
  between	
  surface	
  and	
   subsurface	
   temperature,	
   salinity	
  and	
  density	
  

anomalies	
  in	
  the	
  subpolar	
  North	
  Atlantic,	
  and	
  how	
  do	
  they	
  relate	
  to	
  the	
  decadal	
  and	
  

multidecadal	
  spectral	
  peaks	
  of	
  the	
  AMO,	
  from	
  an	
  observational	
  point	
  of	
  view?	
  

6. How	
  are	
  the	
  low-­‐frequency	
  changes	
  in	
  the	
  Gulf	
  Stream’s	
  latitudinal	
  position	
  related	
  

to	
  the	
  AMO	
  and	
  extra-­‐tropical	
  atmospheric	
  variability?	
  

These questions are addressed by the following fundamental tasks: 

• Identification	
  of	
  the	
  three-­‐dimensional	
  structure	
  and	
  temporal	
  evolution	
  of	
  the	
  AMO	
  

in	
   observations	
   and	
   their	
   characterization	
   in	
   historical	
   simulations	
   of	
   the	
   20th	
  

century	
  climate	
   from	
  models	
   that	
  participated	
   in	
   the	
   latest	
  CMIP5	
  project	
   (Chapter	
  

2).	
  

• Assessment	
   of	
   the	
   representation	
   of	
   the	
   AMO	
   and	
   its	
   hydroclimate	
   impact	
   in	
  

simulations	
  of	
  the	
  20th	
  century	
  climate	
  from	
  CMIP3	
  to	
  CMIP5	
  projects	
  (Chapter	
  3).	
  

• Characterization	
  of	
  subsurface	
  low-­‐frequency	
  features	
  of	
  the	
  AMO	
  through	
  (Chapter	
  

4):	
  

o An	
  alternate	
  definition	
  of	
  the	
  AMO	
  based	
  on	
  vertically	
  integrated	
  heat	
  content	
  

in	
   order	
   to	
   enhance	
   subsurface	
  ocean	
  variability	
   and	
  minimize	
   atmospheric	
  

variability.	
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o Identification	
  of	
  the	
  thermohaline	
  structure	
  of	
  the	
  subpolar	
  North	
  Atlantic	
  in	
  

relation	
  to	
  the	
  AMO	
  with	
  a	
  focus	
  on	
  the	
  Labrador	
  and	
  Irminger	
  Seas.	
  

o Clarification	
   of	
   the	
   phase	
   relationship	
   between	
   the	
   AMO	
   and	
   the	
   North	
  

Atlantic	
  Oscillation-­‐Gulf	
  Stream	
  couplet.	
  

o Analysis	
  of	
  the	
  subpolar	
  North	
  Atlantic	
  during	
  the	
  past	
  decade.	
  	
  

The thesis is concluded with a brief summary of the main results and key remarks (Chapter 5). 
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Chapter 2: AMO’s Structure and Climate Footprint in Observations 
and IPCC AR5 Climate Simulations 
 

2.1 Introduction 
 

The planetary-scale mode of sea surface temperature swings in the North Atlantic basin, 

known as the Atlantic Multi-decadal Oscillation (AMO) after R. Kerr (2000), has been noted in 

several past studies (Kushnir 1994; Enfield et al. 2001; Sutton and Hodson 2005; Guan and 

Nigam 2009; Ting et al. 2009; Frankcombe et al. 2010; Medhaug and Furevik, 2011) and has 

attracted considerable attention in the recent years due to its extensive impact on regional as well 

as global weather and climate (e.g. Ting et al. 2011). The principal drivers of these basin-wide 

SST perturbations are, however, unclear and a common consensus with respect to the origin of 

North Atlantic SST variability remains to be reached. Some of the most prevailing oceanic and 

atmospheric mechanisms proposed as key drivers of the AMO include density and salinity 

fluctuations driven by variations in the Atlantic Meridional Overturning Circulation, AMOC 

(Bjerknes 1964; Latif et al. 2004; Medhaug and Fuverik 2011), changes in wind forcing and air-

sea interactions (Huang et al. 2011), the secular increase of greenhouse gases such as CO2, CH4 

etc. (Webster et al. 2005, Mann and Emanuel 2006), as well as fluctuations in atmospheric 

concentrations of anthropogenic and natural aerosols (Evan et al. 2009, Booth et al. 2012). A 

question of key significance addresses the issue of how one can effectively separate the naturally 

induced, multidecadal North Atlantic SST perturbations from the upward, externally forced, SST 

trends that are attributed to global warming (e.g., Ting et al., 2009; Guan and Nigam, 2009). This 

along with supplemental, open questions involving the influence of the extra-tropical North 
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Atlantic variability on the signal and evolution of the tropical Atlantic SSTs (the decadal 

variability of the inter-hemispheric SST gradient across the Equator) and the extent to which 

these interactions manifest complementary features are the focus of ongoing climate research 

studies. 

Persistent, large-scale SST anomalies exert a meaningful and often predictable influence 

on climate. AMO’s hydroclimate impact on the neighboring continents is thus well anticipated 

and constitutes a cause of great concern, due to the large timescale of the phenomenon and its 

remarkable socioeconomic effects. Impacts on the regional surface climate associated with the 

AMO include droughts over North America (Sutton and Hodson 2005, Nigam et al. 2011), 

decreased rainfall over the Sahel and changes in the frequency and intensity of North Atlantic 

hurricanes (Knight et al. 2006, Zhang and Delworth 2006, Enfield and Cid-Serrano 2009, Ting et 

al. 2009, Guan and Nigam 2011) as well as decadal variations in surface air temperature over NE 

Brazil (Knight et al. 2006) and parts of Northern Europe.  

Apart from the atmospheric response, multidecadal variability in the North Atlantic 

climate system also exhibits a signature on subsurface oceanic heat content and salinity, as well 

as on Arctic sea ice. As noted in several studies, the North Atlantic Ocean presents an extensive 

record of perturbations involving SST and salinity (Reverdin et al. 1997; Zhang and Vallis 2006; 

Polyakov et al. 2005) as well as sea ice anomalies (Deser and Blackmon 1993; Deser et al. 2002). 

Fresh water anomalies (reduced salinity) over the Labrador Sea, a region of deepwater formation, 

stratify the ocean layer, contributing thus to the weakening of the thermohaline circulation and 

deep water formation. This allows for the layer to cool down due to the lack of vertical mixing 

with the warmer subsurface water, which in turn and via a positive feedback, inhibits further the 

deep convection due to a reduction in the heat lost to the atmosphere (Gelderloos et al. 2012).  
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Furthermore, most of Earth’s warming signal stemming from human forcing resides in the 

upper ocean (Hansen et al. 2005, Levitus et al. 2005). That is not to say that temperature 

anomalies in the deeper (1000-3000 m) layer below the sunlit zone are not important for climate 

variability on a global scale, but that their contribution to the net integral of ocean heat content is 

small, when compared to that of the upper ocean (Levitus et al. 2000).  The oceanic heat content 

acts as a key indicator of climate perturbations on seasonal, interannual and longer time scales 

(e.g., Chu 2011, Lozier at al. 2008), accounting for the total amount of heat that is made available 

to the atmosphere, via heat transport (i.e. surface heat fluxes that dominate variability on seasonal 

and annual timescales) and heat storage (Kelly and Dong 2004).  Examining, thus, the spatial and 

temporal patterns of sub-surface temperature and ocean heat content is essential in understanding 

regional warming trends and relating them to low-frequency modes of climate variability. The 

evolution and respective changes between surface and sub-surface temperature and salinity is also 

a strong fingerprint of decadal fluctuations in the oceanic overturning circulation (AMOC) and 

can thus provide significant insight on the vertical structure of the AMO (Zhang 2007) and its 

linkage to meridional density and salinity transport processes (Sundby and Drinkwater 2002). 

Assessing such long-term variability, however, can be challenging due to the short record of sub-

surface data that is available, in relation to the extensive variability timescale (Keenlyside et al. 

2008).  

Advancing our ability to identify the principal drivers and impacts of the AMO, and the 

relative roles of anthropogenic and natural contributions to AMO’s spatiotemporal evolution can 

therefore facilitate 1) the formulation of a more refined image of the North Atlantic SST 

variability and its local and remote climate influences and 2) the accuracy and reliability of 

climate model projections of future trends. Achieving these goals, however, remains a challenge; 
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proxy data (ice-core records, tree rings etc.) and climate simulations with models of varied 

complexity (e.g., Frankcombe 2010, Hodson et al. 2010) offer supplemental tools for improving 

our understanding of such low frequency, planetary-scale interactions. A holistic image of the 

AMO and its climate impacts, as well as its accurate representation in climate simulations is yet 

to be reached, however. 

In this study, the structure and evolution of the Atlantic Multidecadal Oscillation have 

been investigated in observations and model simulations of the 20th century climate from models 

participating in the CMIP5 project (Taylor et al., 2011). We have sought to identify ways in 

which the spatiotemporal evolution of North Atlantic SSTs that are associated with the AMO 

compares between models and observations, while also constructing a 3-dimensional image of its 

structure, by examining decadal-scale perturbations on the North Atlantic surface, subsurface, as 

well as the overlying atmosphere 1. Some of the central questions that have been addressed 

include: 

• How robust is the AMO structure and how does it evolve through time (i.e. how 

coherently does it evolve in space and time)? 

• Is the AMO associated with deep, coherent salinity and heat content anomalies? 

• How do simulations from four state-of-the-art global climate models participating in the 

CMIP5 project portray the observed features of the AMO and its surface climate impact? 

2.2 Datasets and Analysis Methods 

2.2.1 Datasets 
 

                                                
1 The use of coupled, ocean-atmosphere models from the CMIP5 project allows for the ocean circulation to freely evolve, facilitating, in this way, 
a more accurate understanding of the AMO-related ocean state and its imprint on local as well as remote climate features. A downside of this 
approach, however, is that in such models, there are so many fields that are varying simultaneously, that it becomes very challenging to separate 
cause from effect. 
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To investigate the structure, properties and impacts of the AMO, we used a variety of 

observational variables including sea surface temperature (SST), sub-surface potential 

temperature and salinity, as well as geopotential height, surface air temperature and precipitation. 

The SSTs were obtained from the Met Office’s (UKMO) Hadley Centre Sea Ice and Sea Surface 

Temperature dataset, HadISST version 1.1 (Rayner et al. 2005), available on a 1°×1° grid at a 

monthly resolution for the 1870-present period. Both subsurface temperature and salinity fields 

were obtained from the National Oceanographic Data Center (NODC) (Levitus et al. 2001) and 

the SODA Ocean Reanalysis product, version 2.2.4 (Carton et al. 2005). The NODC dataset 

included subsurface temperature anomalies on a 1°×1° horizontal grid with 26 vertical levels 

(sfc–2000m) at seasonal resolution for the winter 1955 – fall 2010 period. NODC subsurface 

salinity measurements were provided as 5-year (pentadal) averaged anomalies (Boyer et al. 2005) 

at annual resolution on a 1°×1° horizontal grid and with 26 vertical levels, for the period 1955–

2006. The SODA 2.2.4 dataset was provided at a 0.5°×0.5° horizontal grid with 40 vertical levels, 

at monthly resolution for the period between January 1871 and December 2008. Geopotential 

height data were obtained from the National Center for Environmental Prediction (NCEP) 

Reanalysis (Kalnay et al. 1996) at a horizontal resolution of 2.5°×2.5° and with 17 vertical levels, 

at monthly resolution for the January 1949 – December 2009 period. Finally, we obtained 

precipitation and surface air temperature data from the CRU TS3.1 monthly data set (Mitchell and 

Jones 2005), available over land points at a 0.5°x0.5° resolution for the January 1901 – October 

2009 period. 

Models from the CMIP5 project that we used to analyze the 20th century climate simulations 

included those from leading climate research centers around the world: NCAR’s CCSM4 (6 

ensemble members), NOAA’s GFDL-CM3 (5 ensemble members), UK Meteorological Office’s 
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UMKO-HadCM3 (9 ensemble members) and the German Max Planck Institute’s ECHAM6/MPI-

ESM-LR (3 ensemble members). For most models, the historical simulation scenario covered the 

period 1850/1860 – 2005. The time varying forcing agents that were employed included 

emissions or concentrations of natural and anthropogenic aerosols (or their precursors), solar 

forcing, greenhouse gases (CO2, CH4, N2O), atmospheric composition as well as land use change 

(Meinshausen et al. 2011). Table 1 shows the model simulations (ensembles) that were used 

(based on availability at the time) for the analysis of the different oceanic and atmospheric, 

AMO-related fields. 

2.2.2 Methods 
 

The current analysis aimed at documenting the spatiotemporal characteristics and evolution of 

the observed and modeled low frequency AMO pattern, along with its impact on various seasonal 

resolution fields for the period 1900-1999. Seasonal averages of the different monthly variables 

were calculated based on the usual Northern Hemisphere meaning of the three-month season 

average: December-February for winter, March-May for spring, June-August for summer and 

September-November for fall. Seasonal anomalies of the different fields were calculated by 

subtracting the seasonal climatology (i.e., the long-term mean using the 1900-1999 base period, 

unless noted otherwise) from the seasonal fields. Observed and simulated AMO indices were 

created by taking the following steps: a. constructing the observed and simulated AMO indices by 

first averaging the respective seasonal SST anomalies (SSTA) over the Atlantic region (5°-75°W, 

0°-60°N)2, and subsequently, linearly de-trending them over the January 1900- October 1999 

period, using the least-squares method, b. smoothing these indices by applying a binomial (1-2-1) 

                                                
2 Note the similarity in the domain used to define the area-averaged SST anomalies by Sutton and Hodson (2003) which used the 7.5°-75°W, 0°-
60°N domain, as well as the different way to smooth the area-averaged SST anomalies by using a 37-point Henderson filter. 
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filter 50 times to efficiently remove interannual variations without aliasing the decadal-scale 

pulses and c. normalizing the de-trended and smoothed time series to unit variance, by dividing 

each time series by the respective standard deviation of the calculated index. Finally, indices for a 

specific season were created by extracting that season from the all-season, smoothed and 

normalized index.  

Lead/lag regressions of the all-season (derived from step a.) AMO indices on the different 

field variables were calculated for both observational and model-generated data. Regressions 

from model simulations were computed for each ensemble member of a given model, separately, 

and a mean value of the combined regression results was subsequently obtained and shown 

(rather than demonstrating the regressions on the mean ensemble field of a given model). 

It should be noted that the defined seasons for the provided temperature anomalies from 

NODC were calculated in a slightly different way, in comparison to the ones from other datasets 

that were used in this analysis: January-March was used for winter, April-June for spring, July-

September for summer and October-December for fall. Finally, since the NODC salinity 

anomalies were given at annual resolution, we linearly interpolated this dataset in time, to create 

its seasonal version. Despite the fact that this technique did not produce meaningful seasonal 

values and it wasn’t thus optimal for researching the time evolution or spatial footprint on a 

particular season, it allowed the investigation of all-season, contemporaneous salinity regressions 

and latitudinal salinity profiles (seasonal differences were leveled out in this case.)  

 

2.3 Results 

2.3.1 Observed versus modeled, spatiotemporal features of the AMO 
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Climate simulations of the 20th century constitute a real challenge for the models, since they 

largely depend on their ability to simulate natural variability given the relatively modest role of 

the observed GHG and aerosol forcing that is being used (in comparison with the 21st century, 

forced projections). Thus, a first-order question that one can ask is whether the models possess 

the necessary elements to portray the characteristic, basin-wide SST anomalies that relate to the 

AMO. The structure of the SST anomalies associated with the warm phase of the AMO in 

observations and simulations is shown in Figure 2.1, via simultaneous all season regressions. 

Positive anomalies are present over the entire North Atlantic basin in observations, with 

maximum values of as high as 0.4K arising just south of Greenland in the mid-latitudes, between 

40o and 50o N and 35o to 45oW and with a secondary maximum (half the size of the one over the 

mid-latitudes) noted over the northern tropical Atlantic, off of the coast of northwest Africa; 

normal conditions are evident in the western subtropical latitudes.   

The four models capture the general spatial structure of the SST anomalies as portrayed in 

observations, with some clear differences, however. Most models exhibit a region of positive 

anomalies in the mid-latitudes, while placing the maximum of the anomalies further to the east 

(southeastward of Greenland) than observations show; furthermore, the models also exhibit 

weaker positive anomalies over the Davis Strait and the Labrador Sea, while also showing a 

weaker secondary maximum off of the northwestern African coast, in comparison to 

observations. It is interesting to note that GFDL-CM3 is the only model that portrays the same 

anomalies over the Labrador Sea as seen in observations, with the subtropical/tropical extension 

of the anomalies appearing further to the west; anomalies are also shown over the equatorial 

Pacific, a feature not present in observations. On the other hand, anomalies in CCSM4 are 

constrained to the northern latitudes, with two local maxima southward of Iceland and over the 
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Greenland Sea, but with normal conditions off of the northwest African coast. Similarly to 

GFDL-CM3, CCSM4 demonstrates anomalies over the equatorial Pacific that are not present in 

observations. Anomalies over the N. Atlantic mid-latitudes from ECHAM6/MPI-ESM-LR and 

UKMO-HadCM3 appear weaker and stronger, respectively, in comparison to observations. In 

addition, the latter two models appear unable to capture the magnitude of the observed anomalies 

in the subtropical/tropical Atlantic, with UKMO-HadCM3 being closer to observations than 

ECHAM6/MPI-ESM-LR. 

After investigating the spatial structure of the AMO at the surface, we now concentrate on the 

propagation of its spatial footprint through time. For this purpose, we compare the time series of 

the observed and model-based AMO indices for the January 1900 – October 1999 period, while 

choosing to display the AMO time series of the ensemble member (of each model) that manifests 

the highest correlation with observations (2.1, bottom panel.) The AMO index from GFDL-CM3, 

Run 5, is the closest to the observed index, with a simultaneous correlation of 0.75. This is 

followed by the AMO index from UKMO-HadCM3, Run 5, with a 0.48 correlation, and the index 

from CCSM4, Run 4, with a correlation of 0.29. Finally, the AMO index from ECHAM6/MPI-

ESM-LR, Run 3, shows the least co-variability with observations, with a maximum correlation of 

0.01.  All correlation coefficients for the ensemble members of each model are shown in Table 2. 

The statistical significance of the correlations is assessed via a two-tailed Student’s t-test at the 

5% level using an effective sample size that accounts for serial correlation (Quenouille, 1952), Ne 

(=N/[1 + 2rx,1ry,1 + 2rx,2ry,2 + ...]), where N is the time-series length (here 300 seasons after the 

smoothing); rx,1, rx,2... are the first, second, ...-order autocorrelations for the observed time series 

(x), and ry,1, ry,2... are the corresponding first, second, …-order autocorrelations for the time series 

of each ensemble member of each model ensemble mean (y); stable Ne (and thus t-test) values are 
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obtained by summing up to the 6th-order. The degrees of freedom corresponding to the ensemble 

mean for all four models are found to be in the 24-26 range so a value of 25 was used.  Based on 

this analysis, the critical correlation is subsequently calculated via the formula:  

and is found to be |±0.38|. Correlations above this value are considered statistically significant.  

 Supplemental information regarding the spatial and temporal features of the smoothed 

AMO indices derived from observations and the ensemble means of the four models is found in 

Figure 2.2, via the use of Taylor diagrams (Taylor, 2005). Comparison of the temporal features of 

the AMO indices indicates that the majority of the models have poor correlation with 

observations and under-estimate the observed variability, with the exception of GFDL CM3, 

which shows a slightly above 0.5 correlation to observations and a standardized, standard 

deviation of ~ 0.94. Regarding the spatial variability and spatial correlations between the 

observed and modeled SST anomalies of the mature phase of the AMO, UKMO-HadCM3 is the 

best among the four models in depicting AMO’s observed, spatial structure, with a correlation of 

0.74, followed by MPI-ESM-LR and GFDL CM3, with correlations of 0.55 and 0.24, 

respectively. CCSM4 is the least efficient in capturing the spatial structure and variability of the 

AMO, with temporal and spatial correlations of -0.01 and -0.16, respectively. To resume, 

UKMO-HadCM3 and MPI-ESM-LR seem to be most efficient in capturing the spatial features of 

the mature phase of the AMO, whereas GFDL CM3 appears to be the best model in capturing 

AMO’s temporal structure and variability.  

Next, we focus on the time scale of the AMO indices, by looking at their autocorrelation 

functions (Fig. 2.3). The time span defined by the crossing of the autocorrelation line of the AMO 

t = r * Ne

1! r2
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index with the zero line at both ends indicates the half-period of the AMO index3. The crossing of 

the autocorrelation of the observed AMO index with the zero line (thick black line) shows a 

dominant period of approximately 58 years. The color lines, representing the mean 

autocorrelation for each model, display varying amplitudes and a general underestimation of the 

AMO period. These appear to be relatively close together, particularly the ones corresponding to 

UKMO-HadCM3, CCSM4 and GFDL-CM3 models, with periods of 52, 50 and 48 years, 

respectively (looking at the zero line crossing); the ECHAM6/MPI-ESM-LR autocorrelation 

function demonstrates the shortest period (40 years). An estimate of the observed and model-

based AMO periods is shown in Table 3. It is interesting to point out that while the characteristic 

time of the AMO indices by the models is up to 31% apart from the observed value when 

considering the zero crossing metric, it is further apart (within 65% of the observed value) when 

considering the time needed for the autocorrelations to decay to 1/e of their values, a measure of 

the memory or persistency of the AMO. Graphically, this suggests that higher frequency 

variability remains present in the model indices, in contrast to the observed AMO index. Spectral 

analysis of the smoothed AMO indices is displayed in Figure 2.4 (histograms of the spectral 

peaks, derived from the mean spectral peaks of the different model ensembles are shown in 10-yr 

bins). The observed smoothed AMO index (Figure 2.4) reveals a spectral peak in the 70-80 years 

range, which is four times larger than the peak in the 10-20 years range. However, the mean 

spectral peaks in the 10-20 years range of the smoothed indices from model simulations have a 

more prominent role than their corresponding 70-80 year peaks (and than the ones seen in 

observations); in fact, these higher frequency peaks are comparable to (actually slightly larger 

                                                
3 That is, the time to take the anomaly to grow from climatological conditions to reach its maximum value and then go back to climatological 
conditions before going in the opposite direction. 
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than) their 70-80 year peaks. This helps explain why the peaks displayed in the autocorrelation of 

the indices in Fig. 2.3 are so narrow.  

An additional insight with respect to the models’ skill to simulate low-frequency 

variability over the North Atlantic Ocean associated with the AMO is investigated by the 

evolution of the SST anomalies associated with the AMO via all-season lead/lag regressions, four 

years before and after the mature phase of the AMO (Figure 2.5). Observations indicate that 

positive SST anomalies emerge from the Davis Strait and Labrador Sea following a 

southeastward propagation in the higher mid-latitudes and a subsequent southwestward advection 

in the lower latitudes, as time evolves, tracking the east branch of the subtropical gyre until they 

reach maximum amplitude and extension in the mature phase. The subtropical anomalies appear 

weaker than those in the mid-latitudes, with a local maximum developing off of Northwest 

Africa. In the post-mature phase, the anomalies gradually abate, with the signal first dissipating 

over the tropical latitudes and subsequently further to the north. Positive anomalies over the North 

Pacific appear more extensive in the SODA-based AMO evolution than in the HadISST dataset4.  

The modeled AMO structure and evolution around the mature phase of the AMO (±4 

years) agrees partially with observations, particularly in the mid-latitudes just before and after the 

mature phase (±2 years). Noticeable differences are present, however, in the CCSM4 evolution, 

which manifests a focus on the northern North Atlantic over the Greenland Sea that is not present 

in observations; furthermore, GFDL-CM3 and ECHAM6/MPI-ESM-LR show negative 

anomalies at the end of the +4 years lag period, a feature that is also not present in observations. 

Except for CCSM4, anomalies in the other three models reach maximum latitudinal extension 

                                                
4 To investigate this difference, we used NOAA’s Extended Reconstructed SST data set (ERSSTv3b, Smith et al. 2008) to generate a smoothed 
AMO index and lead/lag SST regressions (not shown); the pattern that emerges agrees with the lead/lag regressions from HadISST,  with SST 
anomalies over the Pacific being less widespread than the ones noted  in the SODA lead/lag regressions. 
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into the tropics in the mature phase; GFDL-CM3 and UKMO-HadCM3 exhibit a greater ability in 

capturing AMO-related anomalies in the tropical North Atlantic, which remains almost 

completely quiescent in the other two models, during the pre- and post-mature phases (in contrast 

to observations). It can therefore be inferred that even though the models do capture the 

northward focus of the observed SSTA maxima, they lack the ability to effectively reproduce 

their structure and evolution, especially over the tropical part. The quick setting and dismissal of 

the simulated tropical SST anomalies may be related to the superficial nature of the anomalies, 

with little consideration of subsurface processes, in the models.  

 

2.3.2 Subsurface features of the AMO: Salinity 
 

The identification of footprints of low-frequency variability of North Atlantic SSTs on 

ocean surface and sub-surface fields is essential for the construction of a more holistic image of 

the AMO. The current study focuses on the sfc–50m oceanic layer in an attempt to assess the 

spatial distribution, magnitude and vertical structure of any AMO-related salinity anomalies 

during the winter 1955–fall 1999 period, which is common among observations and model 

simulations. The AMO indices are re-calculated for this shorter period (by using NODC, SODA 

and simulated SST fields, respectively, Figure 2.6).  

The regressed observed SST anomalies from the 1955-1999 period (Fig. 2.6, left column, upper 

two panels) display only a small variation in their structure, when compared with those of the 

larger period (Fig. 2.1), with slightly weaker/stronger anomalies over the mid/tropical Atlantic 

and almost normal conditions over the subtropical western Atlantic (off of the eastern US coast). 

Negative anomalies are now discernible, north of the Greenland Sea. The associated anomalies 
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over the Atlantic mid-latitudes appear of the same magnitude to the ones over the tropics. The 

simulated anomalies for this shorter period retain their spatial structure, as seen in the longer 

period, but are unable to capture the extension and magnitude of the cold anomalies off of the US 

coast as well as the increase in magnitude of the anomalies over the tropical Atlantic. Except for 

GFDL-CM3, the other three, simulated regressed anomalies are of smaller magnitude, in 

comparison to the longer period ones. (Fig. 2.6, left column, lower four panels). 

Regressed salinity anomalies are analyzed as a vertical mean along the sfc–50m layer 

(Fig. 2.6, central column) and as a vertical profile (Fig. 2.6, right column). Contained, positive, 

vertically-averaged (sfc-50m) salinity maxima are noted in observations in the mid-latitudes, 

south of Greenland (Fig. 2.6, central column, upper two left panels), while negative values are 

evident in NODC along the northeastern US coast. We note that the negative salinity anomalies in 

NODC agree with the observed, negative SST anomalies, a co-occurrence absent from the 

SODA-derived regressions. Negative salinity anomalies are also found in the western northern 

tropical Atlantic, between the Equator and 25° N, while positive anomalies are discernible over 

the Davis and Fram Straits as well as over the Labrador and Greenland Seas, in both NODC and 

SODA datasets.  

The latitudinal profile of the regressed salinity anomalies along the 35°-50°W band in the 

upper 50m indicates a coherent vertical structure (Fig. 2.6, right column, upper two panels). The 

observed contrasting anomalies identified in the vertical average (south of Greenland and in the 

northern tropical Atlantic) extend into the subsurface. It is worth noting that lead/lag regressed 

salinity anomalies (not shown) indicate a counterclockwise propagation of sub-Arctic water into 

the North Atlantic, from the Davis Strait extending southward into the Labrador, Greenland and 

Norwegian Seas. Such decadal pulses are evident in past incidents of low salinity and sea surface 
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temperature anomalies in the region, such as the Great Salinity Anomaly of 1968-82 (Slonosky et 

al. 1997). Our analysis, hence, supports the notion that N. Atlantic surface temperature and 

salinity show coherent, low frequency fluctuations, which are consistent with heat and freshwater 

interactions between the Arctic and the N. Atlantic basins (Polyakov et al. 2005). 

Mean regressed positive salinity anomalies from the four models (Fig. 2.6, central 

column, four lower panels) are reminiscent of the regressed SST positive anomalies that have 

already been analyzed (Fig. 2.6, left panels). While GFDL-CM3, ECHAM6/MPI-ESM-LR and 

UKMO-HadCM3 exhibit maximum positive salinity anomalies over the regions of maximum 

SST positive anomalies in the mid-latitudes, CCSM4 manifests negative anomalies, with only 

hints of a positive signal off of the southwestern tip of Greenland; anomalies over the subtropical 

region off of the northwest African coast are portrayed in different ways by all four models. 

GFDL-CM3 captures the extent and spatial variability of AMO-related salinity anomalies, while 

exaggerating, however, their magnitude; prominent positive anomalies are evident south of 

Greenland, along with negative anomalies off of the northeastern US (seen in the NODC map) 

and off of the northwestern African coast. ECHAM6/MPI-ESM-LR and UKMO-HadCM3 depict 

salinity maxima slightly displaced eastward (in comparison to the observations). Finally, none of 

the models is able to simulate the positive salinity anomalies over the Straits around Greenland 

(from the NODC and SODA maps).  

The salinity profiles from the model simulations (Fig. 2.6, four lower right panels) show 

that the profile from the GFDL-CM3 model is the closest to the observed one, even though it 

manifests mid-latitude negative anomalies that are not present in observations. Salinity profiles 

from CCSM4 and ECHAM6/MPI-ESM-LR are in the least agreement with observations, despite 

the fact that they demonstrate a coherent salinity structure through the sfc-50m layer. On the other 
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hand, the salinity profile from UKMO-HadCM3 does not show any resemblance to the observed 

profiles and is characterized by negative salinity anomalies underneath the positive ones, in the 

mid-latitudes. In short, the models appear challenged in portraying the position and magnitude of 

AMO-related, salinity anomalies, with GFDL-CM3 being the most successful in capturing the 

spatial variability of the SSTA-associated, salinity field. 

 

2.3.3 Subsurface features of the AMO: Ocean Heat Content  
 

As mentioned in the Introduction, heat content has been identified as an important marker 

in climate variability studies. It is therefore important to examine some of the directly observable 

sub-surface signatures of the AMO, such as the sub-surface temperature and oceanic heat content.   

Subsurface temperatures from NODC, SODA and model simulations are used to obtain 

vertically integrated heat content anomalies for the sfc-400m layer. Figure 2.7 shows lead/lag 

regressions of the AMO on the oceanic heat content four years before and after its mature phase, 

at two-year intervals. It is worth noting the coincidence of the anomalies between the NODC and 

SODA datasets. Four years before the mature warm phase of the AMO, the Atlantic is crossed by 

negative heat content anomalies in the mid-latitudes (~45°N), extending from the Newfoundland 

to the UK (along the Gulf Stream’s northern extension) and positive anomalies in the subtropics, 

off of the eastern US coast and along the southern tip of Greenland that reach as far as the Nordic 

Sea; the deep tropics are marked by cold heat content anomalies. Two years later (that is, two 

years before the mature warm phase), the cold heat content anomalies that were crossing the mid-

Atlantic earlier, have now moved to the Nordic Sea and along the eastern US coast, while the 

warm heat content anomalies over southern Greenland appear expanded southward. The warm 



 23 
 

anomalies off of the eastern US have moved further to the east, toward the central subtropics, at 

about 30°N, with a southward extention to the tropics, off of the northwest African coast. Finally, 

the cold anomalies that were present in the deep tropics earlier have almost disappeared.  

As time evolves toward the mature phase, the positive anomalies over southern Greenland 

propagate southeastward along the European and African western coasts, while the subtropical 

warm anomalies weaken. The cold anomalies along the eastern US extend toward the central 

Atlantic and the ones over the western northern tropical Atlantic are being replaced by warm 

anomalies. During the post-mature phases, in both the NODC and SODA maps, the cold 

anomalies continue to propagate toward the central mid-Atlantic; warm anomalies around the 

southern tip of Greenland are being displaced further to the east, allowing for cold anomalies to 

develop over the Labrador Sea and the Davis Strait. Furthermore, the warm link between the mid 

and tropical Atlantic off of the northwestern African coast is weakened. It is important to note 

that the SST anomalies (Fig. 2.6) over the Davis Strait and Labrador Sea, as well as those over the 

Fram Strait (northeast of Greenland) and along the coastal, eastern US, are coincident with the 

same sign anomalies in heat content over the same regions, not only during the mature phase (e.g. 

compare Fig. 2.6, upper two panels in left column with Fig. 2.7 upper two panels in central 

column) but also in the pre- and post-mature phases (not shown).  

GFDL-CM3 appears to be the most efficient model in capturing the spatial pattern and 

systematic evolution of the observed, warm and cold heat content interchanges, especially during 

the mature and post-mature phases. Among the other 3 models, CCSM4 lacks the ability to 

efficiently portray a reasonable evolution of the AMO-related, heat content anomalies, whereas 

UKMO-HadCM3 and ECHAM6/MPI-ESM-LR exhibit a better propagation of sub-surface 

temperature anomalies, with a principal focus in the northern mid-latitudes. The tropical North 
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Atlantic in the latter two models appears more quiescent during the pre- and post-mature phases, 

similarly to the pre- and post-cursor periods of the SSTA evolution (not shown for this shorter 

period but very similar to the ones examined in Fig. 2.5).  

 

2.3.4 AMO’s Atmospheric Footprint 
 

A thorough characterization of the AMO is not complete without its associated signature 

on the atmosphere and surface climate over the neighboring continents. Investigation of 

seasonality is of great importance, given the possibility of canceling/building effects that may 

arise from season to season throughout the year. The seasonality of AMO’s influence on the 

overlying atmosphere is analyzed via regressions of the AMO index on the 500mb circulation 

anomalies (Fig. 2.8). It is important to note that these simultaneous regressions include both the 

atmospheric weather noise (the part of atmospheric variability that does not emerge as a result of 

boundary or external forcing mechanisms (Schneider and Fan 2007) and AMO’s atmospheric 

response, which tends to abate SST variability. To extract AMO’s forced response in atmospheric 

and other climate features (i.e. hydroclimate), one needs to remove the weather noise-related 

surface fluxes and variability from the observed SST evolution, as shown in Fan and Schneider 

(2012), by i.e. employing an interactive model configuration of a coupled GCM forced by 

weather noise surface fluxes, to isolate the individual contribution of local weather surface fluxes 

to the N. Atlantic SST variability. Such an approach could advance investigation of the 

mechanisms that lead to such low-frequency SST pulses, as shown in Schneider and Fan (2012).  

Observations (top four panels, Fig. 2.8) show prominent winter geopotential height 

anomalies that decrease to a minimum during the summer. A resemblance to the negative NAO 
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pattern of high pressure over the Icelandic region and a contrasting pattern of low pressure over 

the western Atlantic-Azores region are discernible during winter. Furthermore, the geopotential 

height patterns exhibit same-sign anomalies for different atmospheric levels (not shown here), 

indicating the existence of an equivalent barotropic structure. A supplemental feature that is 

worth mentioning is the high-low-high wave pattern that emerges during the fall season over the 

US-Labrador Sea region, with a ridge (trough) over the western (eastern) US; this is essential in 

relating circulation anomalies to perturbations in surface temperature and precipitation over the 

continental US (examined further below.)  

The four models exhibit some problems while attempting to simulate the observed 

seasonality of the atmospheric, SST-related features and the associated regional circulation 

patterns. While portraying their own version of the observed winter ridge/trough over the 

Icelandic/western Atlantic-Azores region, most of them are unable to capture the atmospheric 

seasonality that is characterized by a summer minimum in the anomalies. It is revealing to find 

out that while GFDL-CM3 was shown to be the best model in reproducing observed features over 

the ocean, it is the worst in capturing the respective atmospheric patterns via geopotential height 

regressions; some of the key, contradictory features (with respect to observations) include 

maximum positive anomalies over the Icelandic region during spring rather than winter, as well 

as minimum height anomalies during the winter and fall seasons (instead of summer). On the 

other hand, CCSM4, which was the worst in simulating the observed oceanic features of the 

AMO, exhibits a reasonable seasonal cycle on the atmospheric front (the strongest among all 

models): it displays maximum (minimum) anomalies in winter (summer), but of greater 

amplitude in comparison to observations, including an enhanced subtropical/tropical response, 

which is not seen in observations. The respective atmospheric features in ECHAM6/MPI-ESM-
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LR are marginally stronger than in GFDL-CM3, with a seasonal cycle of similar skill to the one 

in GFDL-CM3, however: maximum anomalies are displayed in winter, with the strongest 

minimum anomalies being observed during fall. Finally, in UKMO-HadCM3 a seasonal cycle 

similar to the one in observations is discerned, but of much weaker amplitude: in fact, the 

response is so weak that it is characterized by normal conditions during the defined summer 

season. At last, it is worth noting that none of the models captures the fall wave pattern over 

North America and parts of the northeastern Atlantic; this is important as low and mid-

tropospheric geopotential height variability can be related to winds and low-level circulation that 

is associated with moisture transport and is therefore conducive to more efficiently understanding 

and modeling hydroclimate changes and extreme events (i.e. droughts) over the US Great Plains 

and other regions (Ruiz-Barradas and Nigam 2005). 

 

2.3.5 AMO and Precipitation Patterns 
 

The main rainy season for the majority of the domain examined in this study occurs in the 

months of summer and fall, but among these seasons, fall is the season during which we observe 

the greatest association between the AMO and regional geopotential height anomalies, as well as 

circulation and surface climate features. The warm phase of the AMO is characterized by 

prominent SST anomalies that are linked to important precipitation anomalies in observations 

(Fig. 2.9, upper panel). The structure of the fall- SST anomalies in the mid-latitudes and northern 

tropical Atlantic5 is similar to the all-season regressed anomalies (Fig. 2.1) but with a stronger 

                                                
5 The AMO-related SST anomalies in the North Atlantic are minimum in spring, a time when the SST anomalies over the northern tropical 
Atlantic reach the maximum extension and have the largest impact on the Northeast region of Brazil rainy season (not shown). This is all 
reminiscent of the so called interhemispheric mode. 
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maximum in the mid-latitudes. The associated precipitation anomalies display a general decrease 

in rainfall over the US, which is particularly prominent in the eastern half6; furthermore, a rainfall 

decrease is noted over the western and southeastern portions of northern South America. On the 

other hand, enhanced rainfall is observed over Central America, the Guinean zone in Africa7, 

southern Europe, and the UK (Fig. 2.9, upper panel). The previously studied 500mb anomalous 

geopotential height pattern (ridge-trough-ridge) that is present during fall, is a good example of 

how mid-level circulation anomalies generate precipitation anomalies over land: the wave pattern 

of high-low-high at the 500mb pressure level over the US enables the generation of near-the-

surface, northerly winds, reduced moisture transport and a low-level subsidence that can 

subsequently lead to enhanced dryness over the central and southeastern US.  

As far as the models are concerned, fall SST anomalies manifest some similarities to the 

all-season regressions, with some distinct differences, however, due to the seasonality of the 

phenomenon (Fig. 2.9, middle and lower panels). As in the case of the all-season regressions, 

models (with the exception of GFDL-CM3) tend to place the maximum SST anomalies in the 

North Atlantic too far to the east of the Labrador Sea, in comparison to observations. CCSM4 is 

the only model with no subtropical/tropical extension of the SST anomalies; on the other hand, 

GFDL-CM3 and ECHAM6/MPI-ESM-LR demonstrate a similar-magnitude, subtropical/tropical 

extension of the North Atlantic SST anomalies (as in observations), a phenomenon that was 

absent from the all-season regressions. Finally, UKMO-HadCM3’s fall SSTA structure appears 

similar to the all-season one, remaining unable to match the observed magnitude of the SSTA 

extension into the Tropics.  

                                                
6 The influence of the AMO in central US rainfall is considerably less extensive in summer than in fall (not shown). 
7 The impact of the AMO on regional rainfall over Africa depends on the season. As noted above, the Guinean zone is affected in fall, but the 
Sahelian zone to its north is most affected in summer (not shown).	
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Now the four models remain challenged when focusing on their ability to capture the vast 

hydroclimate features that are related to the warm phase of the AMO, during fall. The 

observation- based, reduced rainfall in central and eastern US is only partially captured by 

ECHAM6/MPI-ESM-LR and in a minimum way by UKMO-HadCM3. On the other hand, the 

reduced rainfall over South America is broadly captured by GFDL-CM3 in its western portion, 

with CCSM4 and UKMO-HadCM3 having only a few hints of the reduced rainfall over its 

southeastern part. The broad region of enhanced rainfall over the Guinean zone in Africa is also 

problematic for all four models; while GFDL-CM3 portrays decreased rainfall over the region, 

accompanied with enhanced rainfall over the Sahelian zone (extending too far to the north, 

however, with respect to observations), the other three models are unable to simulate the 

magnitude and spatial extent of these precipitation anomalies. 

 

2.3.6 AMO Related, Surface Air Temperature Variability 
 

Given the decadal scale of the phenomenon, it is also important to identify AMO’s signal 

in surface air temperature, in order to differentiate it from the man-induced impact on regional 

temperatures. Regressions of the AMO indices on surface air temperature during fall are shown in 

Figure 2.10. Warming associated with the warm phase of the AMO in observations is manifested 

over the western US, the Labrador Peninsula and southern Greenland, large parts of Europe, 

northwestern Africa, as well as western South America (Figure 2.10, upper panel). The AMO 

influence on surface air temperature is seasonally dependent: while fall is the season with the 

most extended warming over the domain used for the current study, winter is the season when 

warming appears to be maximum over eastern US and Canada, with a generalized cooling 



 29 
 

observed over Europe, except for a region of intense warming occurring over the Scandinavian 

Peninsula (not shown).  

AMO-related fall surface air temperature anomalies are not being fully captured, in 

magnitude or position, by any of the four model simulations employed here. The warming over 

western US is only timidly shown by ECHAM6/MPI-ESM-LR. The remaining models (with the 

exception of CCSM4) weakly portray the warming over the Labrador Peninsula and southern 

Greenland. In addition, the broad extension of the warming over northwestern Africa is also 

weakly and sparsely simulated by all four models. Finally, the warming over western South 

America appears exaggerated by GFDL-CM3, with an extent that surpasses the one in 

observations, while ECHAM6/MPI-ESM-LR depicts the warming in a muted way.  

 

2.4 Summary and Discussion 
 

The basin-wide, sea surface temperature variability known as the Atlantic Multidecadal 

Oscillation and its signature on surface and sub-surface fields, as well as its impact on the climate 

of neighboring continents, has been analyzed in this study, in an effort to construct an integrated 

view of the phenomenon. North Atlantic SSTs exert a significant and oftentimes predictable 

influence on climate, with devastating socioeconomic impacts, such as the ones derived from 

multi-year drought and enhanced rainfall incidents over N. America. Thus, the characterization of 

the AMO is of vital significance in assessing the efficiency of decadal climate prediction 

experiments of current state-of-the art models participating in the CMIP5 project. The need for a 

proper incorporation of such low frequency natural variability phenomena, such as the AMO, has 

been noted in past studies (Meehl et al. 2009, Hurrell et al. 2009, Nigam et al. 2011) and is 
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essential for a better attribution of natural and human-induced effects in model projections of 

present and future climate events.  

A clarified description of AMO’s spatiotemporal structure and evolution emerges from 

century-long observations. The mature warm phase of the smoothed AMO is associated with 

warm anomalies in the North Atlantic mid-latitudes over the sub-polar gyre region and the 

Labrador sea and a secondary maximum of warm anomalies in the northern tropical Atlantic (also 

see Nigam et al. 2011). The relative magnitude of the maximum SST anomalies is inverted when 

the analysis is confined to the second half of the 20th century, despite the fact that the structure 

remains unchanged.  

A period of 58 years is inferred for the smoothed AMO from observations, which is 

smaller than other estimations in the 65-75 years range (e.g., Enfield et al. 2001, Sutton and 

Hodson 2005); these other estimates are based on the use of heavy smoothing of the area-

averaged anomalies, as compared with the 1-2-1 binomial filter used here. Spectral analysis 

shows that oscillations in the 70-80 year range are dominant in the observed smoothed AMO 

index, but are combined with oscillations in the 30-40 year range and shorter periods. Models, 

however, underestimate the life span of the phenomenon by increasing variability in the 10-20 

year range, to the extent that it becomes more dominant than variability in the 70-80 year range. 

Sea surface temperature anomalies are shown to be associated with vertically-integrated 

heat content anomalies (sfc-400m) that evolve coherently in time, as well as vertically integrated 

(sfc.-50m) salinity anomalies - particularly the positive anomalies developing over the Labrador 

Sea and the negative ones off of the US coast. While this configuration of SST/salinity/heat 

content anomalies over the deep water formation region of the sub-polar gyre points toward a 

more active thermohaline circulation during the warm phase of the AMO, the cold phase of the 
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AMO suggests a weaker thermohaline circulation and fresh water anomalies, similar to the ones 

evolving during Great Salinity Anomaly events (as noted in Slonosky et al. 1997). An 

atmospheric signal associated with the N. Atlantic low-frequency variability is also discerned 

from observations, when looking at regressions of the seasonal AMO index on the respective 500 

mb geopotential height field. Regional geopotential height anomalies, including both the weather 

noise that is forcing the SSTA evolution, as well as the atmospheric feedback to the Atlantic 

impact, appear stronger in winter and weaker during summer, while persisting, however, 

throughout the entire year, as noted in Kushnir et al. 2010 and Wang et al. 2010. The fall season 

appears to be of critical importance as far as the interactions between the AMO and the regional 

surface climate of the adjacent continents are concerned; an anomalous wave pattern extending 

from North America to eastern Europe is linked to reduced (enhanced) rainfall over large portions 

of the Americas (western Africa, over the Guinean region) and generalized warming over the 

western Americas, Greenland, Europe and northwestern Africa, during that season.  

The four CMIP5 models examined in this study capture the focus of North Atlantic 

SSTAs in the mid-latitudes, while moving, however, the maximum anomalies further to the east 

than observations indicate, and while remaining, in general, unable to portray the extension of 

same-sign anomalies into the tropics, during the pre- and post-mature phases of the AMO. The 

characteristic period of the AMO remains underestimated with an error range between 6 (UKMO-

HadCM3) and 18 years (ECHAM6/MPI-ESM-LR). UKMO HadCM3 appears to be most 

successful in simulating the AMO’s spatial evolution and variability around the mature phase (±4 

years). Furthermore, the models tend to associate N. Atlantic SST anomalies (especially the warm 

ones) with the sfc-400m heat content variations (as seen in observations), while appearing more 

challenged, however, when simulating the observed temporal evolution of these anomalies close 
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to the mature phase of the AMO. At the mature phase, GFDL-CM3 and UKMO-HadCM3 portray 

some of the observed features (of the SST and heat content fields), such as the contrasting warm 

anomalies over the sub-polar gyre region (Labrador Sea and Davis Strait) and the cold anomalies 

off of the eastern US coastline. GFDL-CM3 is the only model capturing the spatial distribution of 

the salinity anomalies, while exaggerating however their spatial extent off of the US coast. In 

general, GFDL-CM3 exhibits the most favorable oceanic description associated with the AMO, 

while CCSM4 exhibits the least favorable one (CCSM4 salinity and heat content anomalies are 

the weakest among models, and have the least resemblance to the observed structure). 

None of the four models employed in this study is able to capture the anomalous 

circulation pattern that is seen in observations during the fall season. CCSM4, despite its 

unsuccessful depiction of the AMO-related, oceanic features, displays a more realistic 

atmospheric structure (in comparison to the other models) via the seasonality of the 500mb 

geopotential heights. Regarding the fall hydroclimate characteristics associated with the AMO, 

ECHAM6/MPI-ESM-LR is best at representing the reduced rainfall over the US (although it is 

deficient in capturing its spatial extent); over the same region, UKMO-HadCM3 displays similar 

to the observations but of minimum amplitude features, whereas CCSM4 and GFDL-CM3 are 

unable to reproduce the reduced precipitation impact, manifesting normal and increased 

precipitation patterns, respectively. Finally, regarding the AMO-related, surface air temperature 

anomalies, GFDL-CM3 demonstrates the strongest, warming signal among the models but is 

unable to capture the warming over western North America, while ECHAM6/MPI-ESM-LR 

marginally captures the extensive warming; CCSM4 and UKMO-HadCM3 are only able to 

represent the warming over northwestern Africa, in a minimum way. One can therefore argue that 

representation of low frequency variability and its associated hydroclimate structure remains 
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challenged in these simulations and that there is an uneven (incoherent) progress noted between 

these models and their respective predecessors (their CMIP3 versions), as noted in recent studies 

(Ting et al. 2011; Ruiz-Barradas et al. 2012). Furthermore, the models remain unable to 

efficiently depict a holistic perspective of the AMO-related oceanic and atmospheric features. 

More research is therefore necessary to unravel potential mechanisms that are critical in low 

frequency variability structure and evolution in the North Atlantic and that might not be well 

represented in models, hindering thus their ability to more efficiently portray the observed, AMO 

signature. Such mechanisms include the ability of climate models (or lack thereof) to a. 

efficiently produce the Pacific basin link of the Atlantic impact (Ting et al. 2011, Guan and 

Nigam 2008) - this connection has been noted in several studies in the past (Enfield and Mayer 

1997; Ruiz-Barradas et al. 2000, Latif 2001), b. to capture the role of the ocean in long-term 

variability (i.e. by efficiently simulating its surface and sub-surface structure), c. to understand 

and simulate the coupling between the ocean and the overlying atmosphere and the connection 

between circulation features, weather noise (momentum, heat, freshwater) and ocean-induced 

surface fluxes (via the atmospheric response to SST evolution) and regional hydroclimate (for 

instance, the relation between the recent N. American drought events of 2012 in the context of 

North Atlantic and equatorial and northern  Pacific impact). Some research questions that arise 

from the current study and are yet to be fully answered include: a. the connection between the 

region of origin, the excitation mechanism and the propagation of salinity anomalies between the 

Arctic and N. Atlantic basins (Sundby and Drinkwater 2007) and the ways in which these 

anomalies relate to low-frequency, sea surface temperature variability in the N. Atlantic and b. the 

relative contribution of the surface versus deeper layers of the ocean to the increase in oceanic 
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heat content and the ways in which this relates to the spatiotemporal pattern of multi-decadal, N. 

Atlantic SST variability.  

 

2.5 Conclusions 
 

To conclude, we believe that our analysis sheds light on the structure and evolution of the 

low-frequency AMO, while also inciting supplemental interest for AMO’s footprint on both 

surface and sub-surface variables.  The modeled AMO image that emerges via the newly released 

historical simulations demonstrates limited success, particularly on the continental climate impact 

front. A greater focus on building AMO’s sub-surface signature, throughout the entire North 

Atlantic basin and its co-variability with salinity and meridional overturning circulation 

fluctuations could potentially help improve the incorporation of AMO-related mechanisms in 

climate models. However, this may not be enough to substantially advance the way the 

atmosphere responds to mid-latitude sea surface temperature anomalies in the models. Without a 

proper incorporation of low-frequency natural variability in climate simulations, the accuracy of 

both climate projections under climate change scenarios and decadal predictions remains 

compromised.  
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Table 2.1 Ensemble members used for Figs. 2.1-3, 2.7 and 2.8. The bold numbers indicate the 
model runs that were used for the remaining figures 2.4-2.6. 
 

IPCC CMIP5 20th CENTURY 
MODELS 

RUNS USED 

GFDL-CM3 1,2,3,4,5 
CCSM4 1,2,3,4,5,6 
ECHAM6/MPI-ESM-LR 1,2,3 
UKMO-HadCM3 1,2,3,4,5,6,7,8,9 

 
 
 
Table 2.2 Correlations of the smoothed AMO indices between model simulations of the 20th 
century climate and the observed smoothed AMO index for the period 1900-1999. The statistical 
significance of the regressions is assessed via a two-tailed Student’s t-test at the 5% level, using 
an effective sample size Ne=25 (degrees of freedom). Critical correlation is found to be (Rc) equal 
to 0.38. Correlations above this value are statistically significant. 
 
 

IPCC AR5 
20th Century 
Simulations 

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 

GFDL-CM3 0.40 0.51 0.49 0.56 0.75 - - -  
CCSM4 0.14 0.14 -0.39 0.29 -0.03 -0.18 - -  

ECHAM6/MPI-
ESM-LR 

-0.47 -0.1 0.01 - - - - -  

UKMO-HadCM3 0.38 0.36 -0.23 0.11 0.48 0.23 -0.14 0.39 0.29 
 
 
Table 2.3 Timescale in years of the smoothed AMO indices estimated from their autocorrelation 
functions displayed in Fig. 2.2. If considering the anomalies of a given sign decay until the 
autocorrelation reaches a certain value, this defines a quarter of the period of the phenomenon. If 
the zero line is used to define the period of the smoothed AMO index, its period is given in the 
zero-Crossing column, but if the 1/e line is used instead, the period is given under the 1/e-
crossing column.  
 
MODEL/OBS Zero-Crossing 1/e-crossing 
Observations 58 44 
GFDL CM3.1 (4 runs) 48 22 
CCSM4 (6 runs) 50 16.5 
ECHAM6 (3 runs) 40 15.5 
HadCM3 (9runs) 52 16.5 
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Figure 2.1 All-season regressions of standardized smoothed AMO indices on SSTs for the winter 1900 – 
fall 1999 period. Regressions for the models are calculated for each ensemble member separately and then 
an average is computed for each model. Red/blue shading denotes positive/negative SST anomalies; 
contour interval is 0.1K. The indices are constructed by first calculating a spatial average of SST 
anomalies over the (5°-75°W, 0°-60°N) region and then detrended, using the least squares method. The 
indices are finally smoothed by applying a 1-2-1 binomial filter 50 times and normalized by using their 
standard deviation. Regressions are shown after 5 applications of smth9 in the GRADS plotting software. 
Bottom Panel: Observed HadISST smoothed AMO index and other four model-derived smoothed AMO 
indices which have the highest correlations, R, with the observed index: GFDL-CM3, Ensemble 5 
(R=0.75), UKMO-HADCM3, Ensemble 4 (R=0.56), ECHAM6/MPI-ESM-LR, Ensemble 3 (R=0.01) and 
CCSM4 Ensemble 4 (R=0.29). The correlation range for the different ensembles within each model is 
shown adjacent to the model’s name. 
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Figure 2.2: Taylor diagrams of smoothed AMO indices and their regressions from observations and 
CMIP5 climate model simulations for the period 1900-1999. Normalized standard deviations, correlations 
and standard deviations are calculated between observations and the different ensembles’ mean for each 
model, to compare the temporal and spatial variability and correlations between observations and the four 
models. The temporal (spatial) standard deviations are normalized with respect to the observed, temporal 
(spatial) standard deviation of 0.17K (0.46K). The horizontal (x axis) shows normalized standard deviation 
values, whereas the arc-part of the diagrams shows the respective correlation values. Each model is shown 
in a different color (see legend) and the number in parenthesis denotes the number of ensembles used from 
each model to generate the mean standard deviation and mean correlation. 
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Figure 2.3: Standardized smoothed AMO indices are calculated for each ensemble member of each 
model; subsequently, their corresponding autocorrelations are calculated and a mean autocorrelation is 
finally computed and displayed. Autocorrelations are calculated for t-15 to t+15 years and compared to the 
autocorrelation time series derived from observations (black line). The standard deviation (SD) error bars 
among the different autocorrelations are also calculated and drawn here, to indicate the dispersion of the 
individual ensemble autocorrelations for each model from the ensemble mean.  
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Figure 2.4: Histogram of mean spectral analysis’ peaks from smoothed AMO time series. A histogram of 
the dominant frequency peaks derived from a spectral analysis of the mean smoothed, AMO indices 
derived from the four models are shown for the January 1900 – October 1999 time period. The sum of 
normalized variance is shown on the y axis and the dominant periods in years are shown on the x-axis. The 
dominant frequencies for each model are shown in different colors (see legend) and the number in 
parenthesis denotes the number of ensembles used from each model to generate the mean spectrum 
(corresponding to the mean, model-derived AMO time series.) 
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Figure 2.5 All-season lead/lag regressions of the smoothed AMO indices on SSTs for the winter 1900 – 
fall 1999 period: SST anomalies are shown four years before and after the mature phase: pre-mature 
conditions are shown 4 years (t-4 column) and 2 years (t-2 column) before the mature phase (t column), 
while post-mature conditions are shown 2 years (t+2 column) and 4 years (t+4 column) after the mature 
phase. The upper two rows show regression anomalies from observations by HadISST and by the SODA 
2.2.4 ocean reanalysis.  The remaining rows show the related AMO SST anomalies from model 
simulations of the 20th century climate from GFDL CM3, CCSM4, ECHAM6/MPI-ESM-LR and UKMO-
HadCM3.  Regressions are calculated for each ensemble member separately and a mean regression is 
subsequently computed. Red/blue shading denotes positive/negative anomalies; contour interval is 0.1K. 
Regressions are shown after 5 applications of the smth9 function in the GrADS plotting software.  
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Figure 2.6 All-season regressions of the smoothed AMO indices on SST and salinity for the period winter 
1955 – fall 1999. Regressions on SSTs are displayed in the left-hand side panels, on the vertically 
averaged (0-50m) salinity field are displayed on the central panels, while on salinity latitudinal profiles are 
shown on the right-hand side panels. Regressions are calculated for each ensemble member separately and 
a mean value is subsequently computed and shown. Red/blue shading denotes positive/negative SST and 
salinity anomalies. The contour intervals for the maps are 0.1K and 0.2ppt for SST and salinity anomalies, 
respectively, having skipped the zero contour line. The right-hand side panels show latitude-depth cross-
sections of the longitudinally averaged (35°-50°W) regressions of the AMO index with the 3-dimensional 
salinity field; the contour interval is 0.1ppt. The upper two rows show regression anomalies from 
observations by NODC and SODA 2.2.4 ocean reanalysis. The remaining rows show the related AMO 
salinity anomalies from model simulations of the 20th century climate from GFDL-CM3, CCSM4, 
ECHAM6/MPI-ESM-LR and UKMO-HadCM3. 
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Figure 2.7  All season regressions of the smoothed AMO indices on (0–400m) vertically integrated, de-
trended ocean heat content for the period, winter 1955 – fall 1999.  The upper two rows show regression 
anomalies from observations by NODC and by the SODA 2.2.4 ocean reanalysis, and the remaining rows 
show the related AMO heat content anomalies from model simulations of the 20th century climate from 
GFDL CM3, CCSM4, ECHAM6/MPI-ESM-LR and UKMO-HadCM3. Model regressions are calculated 
for each ensemble member separately, and a mean value is subsequently computed and plotted here. 
Red/blue shading denotes positive/negative anomalies; the contour interval is 5×107 J/m2.  Regressions are 
displayed after five applications of the smth9 function in the GrADS plotting software. 
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Figure 2.8  Seasonal regressions of the smoothed AMO indices on 500 mb geopotential heights for the 
period winter 1949 – fall 1999. The upper row was generated by regressing seasonal smoothed AMO 
indices from the HadISST data set on the NCEP reanalysis heights. The remaining rows show the related 
AMO height anomalies from model simulations of the 20th century climate from GFDL CM3, CCSM4, 
ECHAM6/MPI-ESM-LR and UKMO-HadCM3. Model regressions are calculated for each ensemble 
member separately and a mean value is subsequently computed and plotted here. Red/blue shading denotes 
positive/negative anomalies; contour interval is 4m. Regressions are shown after two applications of the 
smth9 function in the GRADS plotting software. 
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Figure 2.9 Fall regressions of smoothed AMO indices on SST and precipitation for the winter 1901– fall 
1999 time period. The upper panel shows the regression of the observed HadISST smoothed AMO index 
on its own SSTs and CRUTS3.1 precipitation. The remaining panels show the related AMO SST and 
precipitation anomalies from model simulations of the 20th century climate from GFDL-CM3, CCSM4, 
ECHAM6/MPI-ESM-LR and UKMO-HadCM3. Regressions are calculated for each ensemble member 
separately and an average is subsequently calculated and shown here. Blue/red and green/brown denote 
positive/negative anomalies for SST and precipitation fields, respectively; contour intervals are 
0.075mm/day and 0.1K, respectively.  
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Figure 2.10 Fall regressions of smoothed AMO indices on surface air temperature for the winter 1901– 
fall 1999 time period. The upper panel shows the regression of the observed HadISST smoothed AMO 
index on CRUTS3.1 surface air temperature. The remaining panels show the related air temperature 
anomalies from model simulations of the 20th century climate from GFDL CM3, CCSM4, ECHAM6/MPI-
ESM-LR and UKMO-HadCM3. Regressions are calculated for each ensemble member separately and an 
average is subsequently calculated and shown here. Blue/red denotes positive/negative anomalies; contour 
interval is 0.1K. 
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Chapter 3: The Atlantic Multidecadal Oscillation in 20th Century 
Climate Simulations: Uneven Progress from CMIP3 to CMIP5 
 

3.1 Introduction 
 

Decadal climate prediction has taken a prominent role for the first time in the experiments 

of the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2011). The need for 

useful decadal predictions has been made not only from scientific papers (e.g., Meehl et al. 2009, 

Hurrell et al. 2010), but also from the impact of climate-related events like the current melting of 

the Greenland glaciers, the ongoing drought in northern Mexico and central US, as well as past 

decade-long droughts over the same region in the recent 20th century and over western Africa. 

Properties of the components of the climate system determine the time scales of the variations 

within the system: days to weeks for the atmosphere, weeks to years for the biosphere, months to 

decades for the ice, and months to decades to centuries for the oceans. Thus, perturbations to the 

slower climate system components can produce climate variability at these long timescales. 

Therefore, if one aspires to have reliable decadal predictions, climate models have to properly 

incorporate the processes that give rise to decadal variability in specific components of the 

climate system, in addition to the mechanisms through which these processes impact the surface 

climate affecting human societies. 

Phenomena with defined decadal variability that climate models must properly include are 

the Pacific Decadal Oscillation (PDO, Mantua et al. 1997) and the Atlantic Multidecadal 

Oscillation (AMO, Enfield et al. 2001, Guan and Nigam 2009). However, it is not always clear 

what drives a given phenomenon, as it is the case of the AMO. One of the most accepted theories 
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relates the Atlantic SST fluctuations to variations in the Atlantic Meridional Overturning 

Circulation (Latif et al. 2004; Medhaug and Fuverik 2011, Zhang et al. 2013), but one of the 

newest and most controversial relates the SST variations to fluctuations in atmospheric 

concentrations of anthropogenic and natural aerosols (Evan et al. 2009; Booth et al. 2012). 

Decadal control of hydroclimate from the AMO over North America and Africa is one of the 

main reasons to worry about having this phenomenon properly incorporated in climate models. 

Multi‐year, summer and fall droughts over North America and Africa have been observationally 

linked to decadal sea surface temperature (SST) variability in the Atlantic (e.g., Enfield et al. 

2001; Ruiz-Barradas and Nigam 2005; Wang et al. 2006; Zhang and Delworth 2006; McCabe et 

al. 2008; Shanahan et al. 2009; Kushnir et al. 2010; Nigam et al. 2011). 

The focus of this chapter is not to unveil the nature of the AMO or assess its predictability 

but to provide a comparison of the capabilities of the current state-of-the-art models in simulating 

the AMO. In other words, the main goal of this paper is to assess the way models from the 

CMIP3 and CMIP5 projects depict the AMO in the 20th century climate, an important component 

of decadal variability on the climate system, and a key element for decadal prediction. This 

evaluation will provide elements to find out if AMO-like decadal variability, of great importance 

for hydroclimate variability over North America and Africa, has improved in the latest CMIP5 

models over those from the CMIP3 project.  A detailed analysis of the spatiotemporal features of 

the AMO in the atmosphere and ocean, and its hydroclimate impact over North America, in 

CMIP5 models has already been carried out (Kavvada et al. 2013), so the focus here will be on 

the model inter-comparison and assessment against observations. 

3.2 Datasets 
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The present analysis uses SSTs and precipitation from observations and simulations of the 

20th century climate from models participating in CMIP3 and CMIP5 projects for the 

Intergovernmental Panel on Climate Change (IPCC). Observed SST data comes from the U.K. 

Met Office’s Hadley Centre Sea Ice and Sea Surface Temperature dataset, version 1.1 (HadISST 

1.1, Rayner et al. 2003). On the other hand observed precipitation is obtained from the University 

of East Anglia Climate Research Unit high resolution gridded data analysis of station data, 

version 3.1 (CRUTS3.1; Mitchell and Jones 2005). While the main analysis is carried on with a 

selected set of models, a complementary analysis is done with an extended set of models. The 

models used in the main analysis come from leading international climate research centers from 

the U.S., NCAR and NOAA’s GFDL, the U.K. Met Office Hadley Centre, and the German Max 

Plank Institute for Meteorology (MPI-M). On the other hand, the larger set of models used in the 

complementary analysis are models that participated in the CMIP3 project and were also used in 

an updated version in the CMIP5 project. The historical simulations analyzed are run by imposing 

changing conditions, consistent with observations, which may have included: atmospheric 

composition, due to both anthropogenic and volcanic influences, solar forcing, emissions or 

concentrations of short-lived species and natural and anthropogenic aerosols as well as land use. 

a. CMIP3 Models 

The CMIP3 models analyzed include: 1) version 3 of NCAR’s Community Climate 

System Model CCSM3 (Collins et al. 2006, and additional references in the CCSM special issue 

in the Journal of Climate), 2) version 2.1 of NOAA’s GFDL Coupled Climate Model GFDL-

CM2.1 (Delworth et al. 2006), 3) version 3 of U. K. Meteorological Office and Hadley Centre 

Coupled Climate Model UKMO-HadCM3 (Gordon et al. 2000; Pope et al. 2000), and 4) 

Germany’s version 5 of European Centre Hamburg Model/MPI-M’s Ocean Model 
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ECHAM5/MPI-OM (Roeckner et al. 2003, Marsland et al. 2003).  The 20th century climate 

simulations started from the late 19th century and went through 1999 or 2000 with no apparent 

standardization of the time series of atmospheric composition greenhouse gases and atmospheric 

aerosols. The CMIP3 models used in the complementary analysis are listed in Table 1. 

b. CMIP5 Models 

The CMIP5 models analyzed include: 1) version 4 of NCAR’s Community Climate 

System Model CCSM4 (Gent et al. 2011), 2) version 3 of NOAA’s GFDL Coupled Climate 

Model GFDL-CM3 (Donner et al. 2011; Griffies et al. 2011), 3) UKMO Hadley Centre Global 

Environment Model version 2, I nits Earth System configuration, UKM-HadGEM2-ES (Collins 

et al. 2008),  and 4) Germany’s version 6 of European Centre Hamburg Model/MPI-M’s Earth 

System Model, Low Resolution version, ECHAM6/MPI-ESM-LR (Raddatz et al. 2007; Marsland 

et al. 2003). The historical 20th century climate simulations started from the mid 19th century and 

finished in 2005, but unlike the CMIP3 simulations, the forcing was standardized for all models. 

Note that the CMIP5 versions of the models from NCAR and GFDL are updated versions of the 

CMIP3 models, but the CMIP5 versions of the models from UKMO and MPI are Earth System 

models. The CMIP5 models used in the complementary analysis are listed in Table 1. 

c) Methods 

The current analysis is based on seasonal data. Seasons are defined in terms of their boreal 

hemisphere 3-month means: winter, December-February; spring, March-May; summer, June-

August; and fall, September-November. Seasonal anomalies were created by extracting the long-

term mean (1900-1999). AMO indices were generated by taking the spatial average of SST 

anomalies in the Atlantic domain (5° to 75° West and 0° to 60° North), and then linearly 

detrended by using the least squares method; the index is then smoothed by applying a (1-2-1) 
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binomial filter 50 times which preserves the decadal-to-interdecadal variability. Smoothed 

versions of the AMO index are generated for observations and each ensemble member available 

for the models. Lead/lag regression and correlation analyses are then used to investigate the 

spatial and temporal structures associated with the smoothed AMO in observations and model 

simulations of the 20th century climate. Model results are presented as the mean of the all-season 

regressions/correlations of the different ensemble members in each model, and are compared 

against all-season regressions/correlations from observations in section 3 and the first part of 

section 4, while summer and fall regressions/correlations are used in the second part of section 4. 

The number of ensembles used in each of the CMIP3 and CMIP5 models is: 8 for CCSM3 and 6 

for CCSM4, 3 for GFDL-CM2.1 and 5 for GFDL-CM3, 2 and 4 for UKMO-HadGEM2-ES, and 

4 for ECHAM5/MPI-OM and 3 for ECHAM5/MPI-ESM-LR. The complementary analysis with 

the extended set of models relies on the first ensemble member only of the historical simulations. 

3.3 Features of the Atlantic Multi-decadal Oscillation 

3.3.1 Structure 
 

The warm phase of the mature AMO is characterized by maximum SST anomalies in the 

north Atlantic, to the south of Greenland and to the east of Newfoundland, and a secondary 

maximum on the northern tropical Atlantic in front of the Western African coasts; the secondary 

maximum is enclosed for a subtropical/tropical extension of the anomalies over the north Atlantic 

(Fig. 3.1a) that reaches the Caribbean Sea and leaves under normal conditions the Gulf of Mexico 

and western Sargasso Sea. The focus of the SST anomalies on the region of the sub-polar gyre, 

where major water masses pass from/to higher latitudes, suggests these anomalies may be more 

than the response to atmospheric conditions and be linked to subsurface ocean processes 
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involving heat content and salinity anomalies as well (Kavvada et al. 2013). Thus, a reasonable 

depiction of the observed structure of the AMO by the models may suggest that the underlying 

processes that generate the AMO are reasonably incorporated. 

Analysis of the structure of the AMO-related SST anomalies in the 20th century climate 

simulations from the CMIP3 models (Fig. 3.1b, d, f, h) emphasizes that the region with the largest 

anomalies are in the Labrador Sea. This region, that is to the northwest of the region of maximum 

anomalies in observations, has maximum SST anomalies in all models, however, the maximum 

has an eastward extension in CCSM3 that is placed to the south of Iceland over the northern half 

of the sub-polar North Atlantic; in any case, the models are misplacing the maximum SST 

anomalies found in observations. Only CCSM3 depicts negative anomalies in front of 

Newfoundland over the region of the Grand Banks, which are not present in observations. It is 

also noted that models tend to put SST anomalies to the north of Iceland, which are not present in 

observations8. The secondary maximum of SST anomalies in the northern tropical Atlantic found 

in observations is absent from the model simulations, however, the models produce the 

subtropical/tropical extension of the northern anomalies with a varied degree of success. While 

the southward extension in CCSM3 and GFDL-CM2.1 models barely reaches the 20°N line, it 

reaches the deep tropics and Caribbean Sea as in observations in UKMO-HadCM3 and 

ECHAM5/MPI-OM models. It is interesting to note that while the tropical Pacific has 

climatological conditions (or close to zero anomalies) associated to the AMO in observations, 

SST anomalies over that region from the model simulations are extensive. 

The Labrador Sea focus in the structure of the AMO-related SST anomalies seen in 

CMIP3 models is reduced in CMIP5 models (Fig. 3.1c, e, g, i); this is more evident in CCSM4. 
                                                
8 The region is data-sparse but not data-void, and the quality of the data when compared with in-situ data is 
reasonable according to an analysis made by Hughes et al. (2009; J. Mar. Sci., 66 (7): 1467-1479). 
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Models also tend to place the maximum SST anomalies farther to the east than observed; these 

anomalies are in the range of the observed anomalies. Except for the GFDL-CM3 model, all the 

other models show negative anomalies in front of Newfoundland over the region of the Grand 

Banks which are no existent in observations. The anomalies to the north of Iceland have also been 

reduced in the CMIP5 models, except by the CCSM4 model which present the largest anomalies 

over the Greenland Sea. The structure of the northern tropical Atlantic anomalies still have 

marked deficiencies; while CCSM4 has no tropical component at all, and ECHM6/MPI-ESM-LR 

has reduced its extension, GFDL-CM3 has extended it into the deep tropical Atlantic, and 

UKMO-HadGEM2-ES has increased its magnitude as in observations. The fictitious tropical 

Pacific   signature of the AMO in the models has increased in GFDL-CM3 and CCSM4, but it is 

reduced in the other two models. From these models, UKMO-HadGEM2-ES seems to be in better 

accord with observations, while CCSM4 is the one with the most obvious deficiencies. 

 

3.3.2 Characteristic period 
 

The period of the AMO indices can be obtained via their autocorrelation functions (Fig. 3.2). 

The crossing of the observation-based AMO autocorrelation (thick black line) with the zero line 

shows a dominant period of approximately 56 years (the intersection point allows for an estimate 

of the time series’ half-period). The continuous colored lines representing the mean 

autocorrelation for each of the CMIP5 models (Fig. 3.2a) display a general underestimation of the 

AMO period: 40 years in ECHAM6/MPI-ESM-LR, 44 years in GFDL-CM3, and 52 years in 

CCSM4; however the period is 68 years in UKMO-HadGEM2-ES. It is interesting to point out 
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that if the temporal comparison is done using the time needed for the autocorrelation to decay to 

1/e of its value models are farther apart from observations: while observations indicate a 44 year 

de-correlation period, models are grouped together around the 16-24 years range! Note that these 

estimations of the time scale of the smoothed AMO tend to be shorter than others using heavier 

filters that maximize the low frequency modulation of the decadal pulses (e.g. Enfield et al 2001, 

Ting et al. 2011). 

Comparison of the AMO autocorrelations from CMIP5 models with the corresponding from 

the CMIP3 models does not show a marked difference between the associated periods of the 

AMO (Fig.3.2 b-e), except in the case of the UKMO models whose period went from a 16-year 

period in the CMIP3 model to a 68-year period in the CMIP5 model. De-correlation times 

decreased in the CMIP5 versions of the NCAR, GFDL and MPI models, while it increased in the 

UKMO models. 

The integrated view of the autocorrelation of the smoothed AMO indices can be expanded via 

the spectral analysis of the time series (Fig. 3.3) to provide a deeper insight into what may be 

behind the variability in observations and models. It is clear that both sets of CMIP3 and CMIP5 

models underestimate low frequency variability in the 70-80 and 30-40 year ranges while 

overestimate variability in the 10-20 year range. Variability in the 10-20 year range has increased, 

and exceeded that variability from observations, in GFDL, UKMO and MPI CMIP5 models with 

respect to the CMIP3 models, but not in the NCAR models. Conversely, variability in the 70-80 

years range has increased, but it is still under that variability from observations in GFDL, UKMO 

and MPI CMIP5 models with respect to the CMIP3 models, but decreased significantly in the 

NCAR models. 
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3.3.3 Evolution 
 

A more complete view of the surface features of the AMO is reached by displaying the 

evolution of the SST anomalies around the mature stage via all-season lead/lag regressions (Fig. 

3.4). During the warm phase of the AMO positive SST anomalies emerge from the Davis Strait 

and Labrador Sea in observations (Fig. 3.4a) and follow a southeastward propagation in the 

higher mid-latitudes and a subsequent southwestward displacement toward the lower latitudes 

which track the east branch of the subtropical gyre as time progresses until they reach maximum 

amplitude and extension in the mature state; the subtropical anomalies are weaker than those in 

the mid-latitudes, with a local maximum developing off the western Africa coasts. Anomalies 

gradually decrease in magnitude, with the signal first dissipating over the tropical latitudes and 

subsequently further to the north. 

The structure and evolution around the mature stage of the SST anomalies associated with 

the warm phase of the AMO in the models have only a general agreement with observations and 

have marked differences between the CMIP3 and CMIP5 versions.  All modeled SST anomalies 

associated with the AMO reach maximum values and extension at the mature phase, as in 

observations, without consideration of the type of model. However the magnitude of the 

anomalies and structure in general do not match those from observations. The CMIP5 version of 

the NCAR model, CCSM4, changed dramatically the magnitude and structure of the SST 

anomalies displayed by the CMIP3 version of the model, CCSM3 (Fig. 3.4b, c): while CCSM3 

has a similar propagation to the one in observations originating over the Labrador Sea and 

anomalies reach a maximum extension on the northern tropical Atlantic, the anomalies from 

CCSM4 seem to originate over the Greenland Sea and never reach tropical latitudes. The CMIP5 
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version of the GFDL model, GFDL-CM3, also exhibits notable changes of the AMO-related SST 

anomalies when compared with the corresponding from its CMIP3 version, GFDL-CM2.1 (Fig. 

3.4d, e): while GFDL-CM2.1 has little propagation of the anomalies over the Labrador Sea and 

anomalies reach tropical latitudes in the mature stage, the anomalies from GFDL-CM3 are 

smaller, propagate more actively in the mid-latitudes, and reach tropical latitudes 2 years before 

and after the mature stage similarly to observations, but their structures have some differences, 

including anomalies over the eastern tropical Pacific and negative anomalies over the Labrador 

Sea 2 and 4 years after the mature state which are not seen in observations.  The CMIP5 version 

of the UKMO model, UKMO-HadGEM2-ES, similarly to the GFDL model, also has some 

changes on the SST anomalies when compared with those from its CMIP3 version, UKMO-

HadCM3 (Fig. 3.4f, g): while UKMO-HadCM3 has anomalies with little change over the 

Labrador Sea, with anomalies that reach the tropical latitudes in the mature state and linger just 

off the African coasts 2 years after it, the anomalies from the UKMO-HadGEM2-ES are smaller, 

and propagate in the mid-latitudes and reach the tropical latitudes 2 years before and after the 

mature stage as in observations; UKMO-HadGEM2-ES is the only model that reproduces the 

magnitude of the observed AMO-related anomalies in the tropical North Atlantic as well as their 

structure in the mature stage and 2 years before and after it, although negative anomalies are 

evident over the Greenland Sea which are not displayed in observations. The CMIP5 version of 

the MPI model, MPI-ESM-LR, is not the exception and also has changes when the AMO-related 

anomalies are compared with those from the CMIP3 version, ECHAM5/MPI-OM (Fig. 3.4h, i): 

while ECHAM5/MPI-OM has the largest anomalies over the Greenland Sea and anomalies reach 

the tropical latitudes only in the mature stage, the MPI-ESM-LR reduces the anomalies over the 



 56 
 

Greenland Sea, increases the anomalies in the mid-latitudes but reduces the extension of the 

tropical anomalies in the mature state. 

 

3.4 Assessment 
 

An objective way to compare the temporal and spatial features of the smoothed AMO 

indices and regressed precipitation and SST anomalies can be achieved by the use of Taylor 

diagrams (Fig. 3.5). Comparison of the temporal features of the AMO indices (Fig. 3.5a) indicates 

the majority of the models have poor correlation with observations and under-estimate the 

observed variability, except for the GFDL and the UKMO-HadGEM2-ES models. While the 

CMIP5 version of the GFDL model improves the variability of the smoothed AMO index from 

the CMIP3 version, it slightly decreases the correlation with the observed index; on the other 

hand, the CMIP5 version of the UKMO model greatly improves the variability as well as the 

correlation with the observed index. 

Comparison of the spatial variability from the regressed precipitation and SST anomalies 

on the smoothed AMO indices is carried on summer and fall, the seasons when the AMO impacts 

the most the regional hydroclimate. It is clear that the models are not up to the task of simulating 

the impact of the regional hydroclimate yet (Fig. 3.5b, c): the spatial variability of the 

precipitation anomalies is under-estimated, and the spatial correlations with observations are 

under 0.3 over the North American domain in either season. On the other hand, the spatial 

variability and spatial correlations in the SST anomalies improve from CMIP3 to CMIP5 versions 

of the MPI and UKMO models, being the most successful the UKMO-HadGEM2-ES model in 

both seasons; the most dramatic degeneration, is in the NCAR models. 
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While the previous analysis uses the ensembles available of four models, the ensuing 

comparison uses the first ensemble of a larger sample of CMIP3 and CMIP5 models. Smoothed 

indices for the AMO were created for each of the models and regressed on SST and precipitation 

in summer and fall. Regressions from observations, multi-model means and their differences with 

observations are shown in Fig. 3.6a-c. Observations indicate that SST anomalies increase in the 

midlatitudes from summer to fall but decrease in extension in the northern tropical Atlantic. 

Concomitant to the seasonal evolution of oceanic anomalies is the deficit in precipitation over 

North America in summer, which expands and intensifies from northern Mexico to the US in fall; 

on the other hand, western Africa experiences wet conditions in both seasons. Both CMIP3 and 

CMIP5 multi-model means do not simulate the intensification of SST anomalies over the Mid 

Atlantic from summer to fall, and are colder than observations indicate, especially in fall. The 

associated impact on the regional precipitation anomalies in the multi-model means show 

increased precipitation in summer and a very weak deficit in precipitation in fall over North 

America. In short, the multi-model means show wetter North America and drier western Africa 

than observations in summer and fall. 

Spatial correlations of the observed and simulated anomalies do not indicate an 

improvement of the CMIP5 vs. CMIP3 models (Fig. 3.6d, e). While there are some CMIP5 

models that perform better than their CMIP3 comparison models (refer to Table 1 to identify the 

models), their multi-model means have smaller spatial correlations with observations than those 

from the CMIP3 multi-model means: 0.43/0.58 for SST anomalies (over the oceanic domain 

displayed in the Fig. 3.6) from CMIP5/CMIP3 multi-model mean in summer, and 0.38/0.58 in 

fall; 0.13/0.14 and 0.06/0.25 for precipitation anomalies (over the continental domain to the west 

of 60°W shown in Fig. 3.6) from CMIP5/CMIP3 in summer and fall respectively. 
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It is worth to point out that in the context of North American hydroclimate, particularly 

over the central US, models are unable to properly simulate the impact of the AMO in summer 

and fall. This is in spite of having the broad oceanic features of the AMO, better in CMIP3 than in 

CMIP5 multi-model means. Independently of the version, this problem seems to be related to the 

inability of the models to modify the regional low level circulation that modulates the moisture 

fluxes affecting the region (Kavvada et al 2013, Sheffield et al 2013). 

 

3.5 Concluding Remarks 
 

Decadal variability in the climate system from the AMO is one of the major sources of 

variability at this temporal scale that climate models must aim to properly incorporate because its 

surface climate impact on the neighboring continents. This issue has particular relevance for the 

current effort on decadal climate prediction experiments been analyzed for the IPCC in 

preparation for the Fifth Assessment Report. The current analysis does not pretend to investigate 

into the mechanisms behind the generation of the AMO in model simulations, but to provide 

evidence of improvements, or lack of them, in the portrayal of spatiotemporal features of the 

AMO from the previous to the currents models participating in the IPCC. If climate models do 

not incorporate the mechanisms associated to the generation of the AMO (or any other source of 

decadal variability like the PDO) and in turn incorporate or enhance variability at other 

frequencies, then the models ability to simulate and predict at decadal time scales will be 

compromised and so the way they transmit this variability to the surface climate affecting human 

societies. 
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The current analysis of historical simulations of the 20th century climate from state-of-the-

art climate models from the CMIP5 and CMIP3 projects assesses how these models portray the 

structure of the evolving SST anomalies associated with the AMO and its variability. In addition, 

spatial variability of SST and precipitation anomalies associated with the AMO is evaluated for 

summer and fall. Comparisons with observations help to establish if the CMIP5 models are 

improving over their previous CMIP3 versions. 

The mature stage of the warm phase of the AMO has evolved from the CMIP3 to the 

CMIP5 version but it has not progressed consistently through the models. Observations show that 

the AMO has a maximum of SST anomalies to the south of Greenland and a secondary maximum 

in the northern tropical Atlantic. The renditions of the AMO from CMIP3 models have maximum 

SST anomalies over the Labrador Sea with a secondary maximum to the east of Greenland and 

weak anomalies over the tropics. The CMIP5 versions of the models in general reduce the double 

maximum of SST anomalies over the mid-latitudes of the Atlantic to a one maximum 

southeastward of Greenland and varied representations of the maximum in the tropics: while 

CCSM4 has no extension over the tropical Atlantic, and GFDL-CM3 highlights more the eastern 

tropical Pacific than the tropical Atlantic, UKMO-HadGEM2-ES portrays the best the AMO 

structure, followed by the MPI-ESM-LR. 

The evolution of the SST anomalies associated with the warm phase of the AMO in 

models reaches maximum values and extension at the mature stage as in observations but have 

marked differences in magnitude and structure between the CMIP3 and CMIP5 versions. 

Anomalies seem to originate along the Davis Strait and Labrador Sea before the mature stage in 

observations, then propagate southeastward and reach maximum magnitude south of Greenland 

and extend into the tropics in the mature stage; in the post-mature stages the anomalies over the 



 60 
 

tropics start to abate and the anomalies in the mid-latitudes move to the east of Greenland. While 

the CMIP3 models seem to have this general displacement of anomalies originating along the 

Davis Strait and Labrador Sea, their CMIP5 versions seem to originate over the Greenland Sea. 

As in the case of the analysis of the mature stage, the evolution of anomalies is captured poorly 

by CCSM4, and in a better way by UKMO-HadGEM2-ES. 

The evolution of the SST anomalies associated with the AMO is closely related to the 

characteristic period of the AMO in the models. While observations indicate a period close to 56 

years, the NCAR, GFDL and MPI CMIP3 and CMIP5 models underestimate this value with 

periods in the 40-52 years range; the UKMO models however go from an extremely low period 

close to 16 years in the CMIP3 version, to an overestimation close to 68 years. On the other hand, 

if the period is judged using the time at which correlations decay to a 1/e of its value, all models 

underestimate the 44-year value suggested from observations with periods in the 16-24 years 

range. It is clear that both sets of CMIP3 and CMIP5 models underestimate low frequency 

variability in the 70-80 and 30-40 year ranges, while overestimating variability in the 10-20 year 

range. Variability in the higher 10-20 year range increases from CMIP3 to CMIP5 in three of the 

models surpassing the variability in this range from observations. 

The temporal variability and correlations of the AMO indices from the majority of the 

models are low when compared with the observed AMO index. The exceptions are for the indices 

from the CMIP5 versions of the GFDL and the UKMO models with variability close to 

observations and correlations slightly above 0.5. The success of the CMIP5 version of the GFDL 

model in these assessments of the AMO indices is surprising considering that the structure and 

the evolution of the SST anomalies were not the best among the models, as it was the case for the 

CMIP5 version of the UKMO model. 
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On the other hand, comparison of the observed spatial variability and spatial correlations 

of the regressed precipitation and SST anomalies of the AMO indices in summer and fall 

indicates that models are not up to the task of simulating the impact on the regional hydroclimate. 

On the other hand, the spatial variability and correlations in the SST anomalies improve from 

CMIP3 to CMIP5 versions of the MPI and UKMO models, being the most successful the 

UKMO-HadGEM2-ES model in both seasons; the most dramatic degradation is in the NCAR 

models. 

Analysis of AMO regressions from the extended set of models reveals no improvements 

in the oceanic and hydroclimate impact associated with the AMO from CMIP3 to CMIP5 

projects. Pattern correlations with observed SST and precipitation anomalies are smaller in 

CMIP5 than in CMIP3 models in summer and fall. 

The current chapter does not provide evidence on why the models perform in the way they 

do but suggests that that the spurious increase in high 10-20 year variability from CMIP3 to 

CMIP5 models may be behind the unsatisfying progress in depicting the spatiotemporal features 

of the AMO. This problem, coupled with the inability of the models to perturb the regional low-

level circulation, the driver of moisture fluxes, seem to be at the center of the poor representation 

of the hydroclimate impact of the AMO.  

 

 

 

 

 



 62 
 

Table 3.1 Models used in the complementary analysis from CMIP3 and CMIP5 projects (Fig. 3.6) 

CMIP3 
Model 

CMIP5 
Model 

Model # used in Fig. 
3.6d,e) 

Institution 

--- BCC-CSM1.1 1 Beijing Climate 
Center, China 

Meteorological 
Administration, China 

CGCM3.1 CanESM2 2 Canadian Center for 
Climate Modeling and 

Analysis, Canada 

CCSM3 CCSM4 3 National Center for 
Atmospheric 

Research, USA 

CNRM-CM53 CNRM-CM5.1 4 National Centre for 
Meteorological 

Research, France 

CSIRO-MK3.5 CSIRO-MK3.6 5 Commonwealth 
Scientific and 

Industrial Research 
Organization/Queensl
and Climate Change 
Centre of Excellence, 

AUS 

GFDL-CM2.1 GFDL-CM3 6 NOAA Geophysical 
Fluid Dynamics 

Laboratory, USA 

--- GFDL-ESM2G/M 7 NOAA Geophysical 
Fluid Dynamics 

Laboratory, USA 

GISS-ER GISS-E2-H/R 8 NASA Goddard 
Institute for Space 

Studies, USA 

UKMO-HadCM3 UKMO-HadCM3 9 Met Office Hadley 
Centre, UK 
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Table 3.1 Continued. 

CMIP3 
Model 

CMIP5 
Model 

Model # used in 
Fig.6 d, e 

Institution 

UKMO-HadGEM1 UKMO-HadGEM2-
ES 

10 Met Office Hadley 
Centre, UK 

INMCM3 INMCM4 11 Institute for 
Numerical 

Mathematics, Russia 

IPSL-CM4 IPSL-CM5A-LR 12 Institute Pierre Simon 
Laplace, France 

MIROC3.2 MIROC5 13 Japan Agency for 
Marine-Earth Science 

and Technology, 
Atmosphere and 
Ocean Research 

Institute (The 
University of Tokyo), 
and National Institute 

for Environmental 
Studies 
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Table 3.1 Continued. 

CMIP3 
Model 

CMIP5 
Model 

Model # used in Fig. 
3.6 d, e 

Institution 

--- MIROC-ESM 14 Japan Agency for 
Marine-Earth Science 

and Technology, 
Atmosphere and 
Ocean Research 

Institute (The 
University of Tokyo), 
and National Institute 

for Environmental 
Studies 

ECHAM5/MPI-OM MPI-ESM-LR 15 Max Planck Institute 
for Meteorology, 

Germany 

MRI-CGCM2 MRI-CGCM3 16 Meteorological 
Research Institute, 

Japan 

BCCR-BCM2 NorESM1-M 17 CMIP3: Bjerknes 
Centre for Climate 
Research, Norway 

CMIP5: Norwegian 
Climate Center, 

Norway 
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Figure 3.1 All-season regressions of smoothed AMO indices on corresponding SST anomalies in 
observations (top), CMIP3 (left panels) and CMIP5 (right panels) climate simulations for the period 1900-
1999.  a) Observed regressed anomalies from HadISST; mean regressed anomalies from CMIP3 
simulations from b) CCSM3, d) GFDL-CM2.1, f) UKMO-HadCM3, and h) ECHAM5/MPI-OM models; 
mean regressed anomalies from CMIP5 simulations from c) CCSM4, e) GFDL-CM3, g) UKMO-
HadGEM2-ES, and i) ECHAM6/MPI-ESM-LR models. Regressions from model simulations were 
calculated for all the ensembles available for a given model, then the mean regression was calculated; the 
number in parenthesis denotes the number of ensembles used from each model to generate the mean 
regressed anomalies. Yellow-to-red/blue shading denotes positive/negative SST anomalies plotted with a 
0.1K contour interval. 
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Figure 3.2 Autocorrelations of the smoothed AMO indices from observations and CMIP3 (dashed lines) 
and CIMP5 (continuous lines) climate simulations for the period 1900-1999. Autocorrelations from 
observations come from HadISST (black), mean autocorrelations from CMIP5 simulations come from 
CCSM4 (continuous red), GFDL-CM3 (continuous green), UKMO-HadCM3 (continuous blue), and 
ECHAM6/MPI-ESM-LR (continuous violet) models, while mean autocorrelations from CMIP3 
simulations come from CCSM3 (dashed red), GFDL-CM2.1 (dashed green), UKMO-HadCM3(dashed 
blue), and ECHAM5/MPI-OM (dashed violet) models. a) Autocorrelations from observations and CMIP5 
simulations, mean autocorrelations from b) CCSM4 and CCSM3 simulations, c) GFDL-CM3 and GFDL-
CM2.1 simulations, d) UKMO-HadCM3 and UKMO-HadGEM2-ES simulations, and e)ECHAM5/MPI-
OM and ECHAM6/MPI-ESM-LR simulations. Autocorrelations from AMO indices from model 
simulations were calculated for all the ensembles available for a given model, then the mean 
autocorrelation and the standard deviation among the ensembles were calculated; the number in 
parenthesis denotes the number of ensembles used from each model to generate the mean autocorrelation, 
while the error bars represent the standard deviation. The thin gray line represents the 1/e value used to 
visually estimate the e-folding time of the correlations. The x-axis is given in years. 
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Figure 3.3 Histogram of mean spectral analysis peaks from spectral analyses of smoothed AMO indices 
for the period 1900-1999. The y-axis denotes the sum of relative variance in the following ranges 2.5-10 
years, 11-20 years, 21-30 years, 31-40 years, and 71-80 years. Spectral peaks from the AMO index from 
observations are shown with the gray bars; the corresponding peaks for the CMIP5 models are shown by 
the symbols in blue, and those for the CMIP3 models are in red; see legend to identify particular models. 
The number in parenthesis denotes the number of ensembles used for each model. Spectral analyses were 
calculated for each ensemble member, and then a mean spectrum was obtained by averaging the spectrum 
of the ensembles for each model. 
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Figure 3.4 Lead/lag regressions of the all-season smoothed AMO indices on SST anomalies from 
observations and CMIP3 and CMIP5 climate model simulations for the period 1900-1999. The first two 
columns display regressions 4 and 2 years in advance of the mature phase of the AMO (t-4yrs and t-2yrs 
respectively), the center column displays the mature phase (t), and the last two columns display 
regressions 2 and 4 years after the mature phase of the AMO (t_2yrs and t+4yrs). Regressed anomalies 
from a) HadISST observations, b) CMIP3’s CCSM3, c) CMIP5’s CCSM4, d) CMIP3’s GFDL-CM2.1, e) 
CMIP5’s GFDL-CM3, f) CMIP3’s UKMO-HadCM3, g) CMIP5’s UKMO-HadGEM2-ES, h) CMIP3’s 
ECHAM5/MPI-OM, and i) CMIP5’s MPI-ESM-LR simulations. Regressions from model simulations 
were calculated for all the ensembles available for a given model, then the mean regression was calculated; 
the number in parenthesis denotes the number of ensembles used from each model to generate the mean 
regressed anomalies. Yellow-to-red/blue shading denotes positive/negative SST anomalies plotted with a 
0.1K contour interval. 
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Figure 3.5 Taylor diagrams of smoothed AMO indices and their regressions from observations and 
CMIP3 and CMIP5 climate model simulations for the period 1901-1999. a) Diagram for temporal features 
of the all-season smoothed AMO indices; standard deviations have been normalized with respect to the 
observed standard deviation of 0.17K. b) and c) diagrams for spatial features of regressed continental 
precipitation anomalies over the (130°-60°W, 0°-60°N) domain in summer and fall respectively; spatial 
standard deviations have been normalized with respect to the observed standard deviations in summer, 
0.16 mm day-1, and fall, 0.18 mm day-1. d) and e) diagrams for spatial features of regressed SST anomalies 
over the (130°W-10°E, 0°-75°N) domain in summer and fall respectively; spatial standard deviations have 
been normalized with respect to the observed standard deviations in summer, 0.09K, and fall, 0.10K. 
Displayed standard deviations and correlations from models are the means of the different ensembles from 
each model; the number in parenthesis denotes the number of ensembles used from each model to generate 
the mean standard deviation and mean correlation. CMIP3 models are shown in red symbols, and CMIP5 
models in blue.	
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Figure 3.6 Observed and multi-model mean SST and precipitation regressions on smoothed AMO indices 
and spatial pattern correlations in summer and fall for the period 1901-1999. a) regressions from 
observations in summer (left) and fall (right), b) mean multi-model regressions from CMIP3 and CMIP5 
models in summer (left panels) and fall (right panels), c) difference between multi-model mean regressions 
and observations in summer (left panels), and fall (right panels).  d) diagrams for spatial correlations 
between regressed SST anomalies over the domain (130°W-10°E, 0°-75°N) from CMIP3 and CMIP5 
models with the corresponding from observations in summer (left) and fall (right). e) diagrams for spatial 
correlations between regressed continental precipitation anomalies over the domain (130°-60°W, 0°-60°N) 
from CMIP3 and CMIP5 models with the corresponding from observations in summer (left) and fall 
(right). Yellow-to-red/blue shading denotes positive/negative SST anomalies plotted with a 0.1K contour 
interval, and brown/green shading denotes positive/negative precipitation anomalies with a 0.02 mm day-1 
interval in panels a-c). Lines in red/blue denote CMIP3/CMIP5 model correlations in panels d) and e); 
continuous lines with marks are for the individual models while the dashed lines are correlations for the 
multi-model means. Spatial correlations for the regressed SST anomalies from the CMIP5/CMIP3 multi-
model means are 0.43/0.58 in summer and 0.36/0.58 in fall, and spatial correlations for the regressed 
precipitation anomalies from the CMIP5/CMIP3 multi-model means are 0.13/0.14 in summer and 
0.06/0.25 in fall. 
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Chapter 4: North Atlantic Upper-Ocean Thermohaline Variability. 
Decadal-to-Multidecadal Evolution Linked with the AMO. 
 

4.1 Introduction 
 
 The previous chapters have shown that the AMO is not a thoroughly understood 

phenomenon of the climate system. The limited success of the climate models in simulating the 

spatiotemporal features of the AMO attests to it. The restricted understanding of the AMO starts 

with the uncertainty in the nature of the AMO, which is a current theme of scientific debate and is 

further complicated by the spatiotemporal limitations of the data record. The decadal-to-

multidecadal time scale associated with the AMO requires access to long data records, which is a 

particular challenge if one is interested in unraveling the subsurface features of the AMO in the 

North Atlantic. In this chapter, the spatiotemporal features associated with the AMO are 

investigated by using a newly released, century-long ocean data set from the UK’s Met. Office, 

and by defining a new way to characterize the decadal-to-multidecadal variability of the Atlantic 

Ocean; also, the nature of the AMO is explored by analyzing its relationship with the North 

Atlantic Oscillation (NAO), the main mode of atmospheric variability that has the potential of 

perturbing the ocean at several levels. 

Hydrographic changes in the Subpolar North Atlantic Ocean are of particular importance 

on interannual to decadal and multidecadal timescales as they provide an insight to the connection 

that exists between surface and deep ocean circulations. There is considerable evidence that the 

deep ocean behaves as a damped oscillator on decadal to multidecadal timescales, with the 

atmosphere providing the energy needed to sustain these oscillations from dissipation (Deser 

1996, Danabasoglu 2008, Keenlyside et al. 2008, Latif et al. 2006, Smith et al. 2008).  
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Atmospheric variability can excite significant fluctuations in the thermohaline circulation (THC), 

when acting in collaboration with ocean dynamics, in the context of a stochastic, white noise 

process9. An example of this behavior involves the synergy between the enhanced westerly winds 

and heat fluxes over the subpolar gyre in relation to the positive phase of the North Atlantic 

Oscillation (NAO) and ocean temperature and salinity anomalies, a combination that helps further 

intensify deep convection and vertical mixing in the deep-water formation regions. Shifts in the 

mean atmospheric circulation are also accompanied by changes in the mid-latitude storm tracks’ 

position and the associated synoptic eddy activity, which links these to large-scale variations in 

the ocean’s interior and thermohaline structure. The North Atlantic Subpolar gyre is an oceanic 

feature of key importance that has the potential to alter the density-driven Atlantic Meridional 

Overturning Circulation (AMOC) via its influence on freshwater exchanges between the North 

Atlantic and Arctic basins, and on the advection of salinity and temperature anomalies to and 

from regions of deep convection and sinking/deep water formation (Yoshimori et al. 2009, 

Jungclaus et al. 2005).  

Propagation of the AMO surface signal into the deeper ocean and its link with changes in 

the North Atlantic thermohaline (density-driven) circulation remain not fully understood and 

accounted for, however, due to the lack of consistent spatio-temporal observations, and an 

incomplete understanding of ocean dynamics and the large-scale, atmosphere-ocean interaction. 

In an effort to identify long-term trends and decadal to multidecadal climate signals in the North 

Atlantic and their respective contributions to regional warming (cooling) and fluctuations in 

oceanic heat uptake, various studies have focused on analyzing the patterns of surface versus 

subsurface temperature, salinity and potential density across the subpolar and subtropical North 
                                                
9 “The assumption of white noise is useful for modeling phenomena in which the correlation time of the noise is much 
shorter than any other time-scales of interest.” (Hunter 2009).	
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Atlantic basins (Polyakov et al. 2010, Colbourne 2004, Mauritzen et al. 2012, Wang et al. 2010).  

Generally speaking, north Atlantic SST variability has been linked to thermohaline fluctuations 

(and the enhancement or slowing down of the Meridional Overturning Circulation ―MOC) at 

decadal to multidecadal scales (Polyakov et al. 2010). Some regions such as the Labrador, 

Irminger and Nordic Seas have been studied due to the occurrence of deep convective ventilation 

events, which create a bridge between fluctuations in the ocean surface - subsurface structure and 

the overlying atmosphere  (H. M. van Aken et al. 2011, Vage et al. 2011, Femke de Jong et al. 

2012). In particular, the AMO signal at the surface can be identified in the subsurface in both 

salinity and temperature, with the potential density demonstrating compensating contributions 

from both the salinity and temperature fields (Wang et al. 2010)[3]. Such compensation is notable 

in parts of the Labrador and Irminger basins examined in the current study; however, this 

compensation is found to be incomplete, with the temperature and salinity fields contributing 

unevenly to the potential density field. 

Ocean currents and properties are not only influenced by the overlying wind stress but 

also by the ocean bottom topography (Fig. 4.1). Ocean topography canalizes bottom water from 

regions of deep-water formation (i.e. the Labrador Sea), while more superficial features, such as 

the continental shelves, including the Grand Banks also modify surface currents, such as the Gulf 

Stream, the Labrador Current and the subpolar gyre. However, while the bottom topography is 

not changing, the atmospheric forcing of the surface ocean features changes, requiring further 

investigation within the context of the AMO. 

While it is known that the NAO can drive changes to the Gulf Stream, the role of the 

AMO on the latter is little known.Seasonally the Gulf Stream is displaced to the north in fall and 

to the south during spring (e.g., Tracey and Watts 1986), while it reaches its maximum baroclinic 
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transport in early summer (Sato and Rossby 1995). On the other hand, decadal north to south 

excursions of the GS position have been linked to large-scale shifts in the atmospheric mass 

distribution between the subpolar and subtropical North Atlantic (i.e., the NAO ―Chaudhri et al. 

2011), perturbations in the southward flow of the Labrador surface water (LSW), which in 

retrospect is associated with large-scale convective variability and the respective strengthening or 

weakening of the subpolar gyre, as well as fluctuations in the equatorward flow of the Deep 

Western Boundary Current (DWBC) (Perez-Hernandez and Joyce, 2014). Exploring, thus, the 

shift between the GS latitude and AMO-related perturbations in the thermohaline structure of the 

North Atlantic basin is well justified, for the purposes of our study, and provides substantial 

insight on the lead lag relationship between North Atlantic SSTs, surface-subsurface salinity, 

changes in ocean heat content and mixed layer depth, as well as high latitude deep water 

formation and north-to-south movements of the Gulf Stream.  

Atlantic multidecadal variability has been traditionally investigated via the analysis of 

SSTs, however new subsurface ocean data offer us new possibilities. In the current study, we 

propose an area-averaged AMO index based on deep ocean observations (5-967m vertically-

integrated, ocean heat content) in an effort to a) depict a potentially more pristine AMO signal in 

the subsurface, impartial to atmospheric perturbations; b) characterize AMO variability at deeper 

levels; c) investigate the variability of thermohaline properties in the northern North Atlantic in 

two distinct timescales, decadal and multidecadal. We focus on the link between subpolar North 

Atlantic hydrographic changes and the AMO, while describing the spatiotemporal evolution of 

related surface temperature, surface salinity, vertically–averaged salinity and vertically-integrated 

ocean heat content signals, as well as the temporal evolution of the upper 500m profiles of 

thermohaline properties. Analysis of the thermal and haline anomalies between consecutive 
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winter seasons is also presented in order to identify the vertical propagation and re-emergence of 

the surface signals of the AMO (Cassou and Deser 2007). 

Chapter 4 is divided as follows: Section 2 describes the observational datasets along with 

the methods and statistical tools that are used to carry out the current analysis. Section 3 discusses 

the importance of characterizing the AMO by using deep ocean observations and provides a 

detailed description of the spatial and temporal evolution of AMO-related changes in key 

hydrographic properties in decadal versus multidecadal timescales. Section 4 examines the 

vertical thermohaline structure of two 9° areas found in the Labrador and Irminger basins; 

seasonal profiles are also shown here, in the context of investigating the vertical propagation of 

surface signals and their re-emergence during consecutive seasons. Section 5 examines important 

questions pertaining to the role of the NAO and the Gulf Stream in generating subpolar North 

Atlantic low frequency variability. Section 6 touches upon the general evolution of the subpolar 

North Atlantic basin’s hydrographic properties in the past 60 years. 

 

4.2 Datasets and Methodology 

4.2.1 Datasets  
 

In order to characterize Atlantic Multidecadal variability, the current study uses surface 

and subsurface ocean data as well as surface pressure data from the following Met Office Hadley 

Centre products.  

1. The	
  sea	
  ice	
  and	
  sea	
  surface	
  temperature	
  data	
  set	
  (HAdISST	
  1.1,	
  Rayner	
  et	
  al.	
  

2005),	
  available	
  on	
  a	
  1°×1°	
  grid	
  at	
  a	
  monthly	
  resolution	
  for	
  the	
  1870-­‐present	
  

period.	
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2. The	
  quality	
  controlled	
  subsurface	
  temperature	
  and	
  salinity	
  objective	
  analysis	
  

EN4.0.2,	
  a	
  development	
  of	
  the	
  previous	
  versions	
  EN2	
  and	
  EN3	
  datasets.	
  This	
  

is	
  provided	
  on	
  a	
  grid	
  with	
  1° spacing	
   in	
   the	
  horizontal,	
  42	
  vertical	
   levels	
   at	
  

monthly	
  resolution	
  starting	
  in	
  1900	
  (Good	
  et	
  al.	
  2013).	
  EN4.0.2	
  is	
  comprised	
  

of	
  data	
  from	
  all	
  types	
  of	
  ocean	
  profiling	
  instruments	
  that	
  measure	
  subsurface	
  

temperature	
  and	
  salinity.	
  The	
  data	
  are	
  subjected	
  to	
  a	
  series	
  of	
  quality	
  control	
  

checks	
  and	
  an	
  objective	
  analysis	
  with	
  uncertainty	
  estimates.	
  

3. The	
  mean	
  sea	
  level	
  pressure	
  (MSLP)	
  data	
  set,	
  HadSLP2,	
  available	
  at	
  monthly	
  

resolution	
  on	
  a	
  5°×5°	
  latitude-­‐longitude	
  grid	
  from	
  1850	
  to	
  the	
  present.	
  

 In order to characterize the variability of the displacements of the Gulf Stream, a Gulf 

Stream Index (GSI) was sought and provided by Terrence Joyce from the Woods Hole 

Oceanographic Institution. The index is defined by the use of the 15oC isotherm at 200m-depth in 

order to characterize the position of Gulf Stream’s northern wall and it spanned the period 1954-

2012 (Perez-Hernandez and Joyce 2014). Finally, characterization of the atmospheric variability 

over the North Atlantic was done by means of the North Atlantic Oscillation, which is captured 

by the widely used Hurrell’s NAO index (Hurrell et al. 1995) for the period 1865-2013.  

Now, because we were interested in knowing the density changes in ocean water, as 

density changes can drive the thermohaline circulation, density was calculated from the 

temperature and salinity fields from the EN4.0.2 data set by using the UNESCO equation of state 

(Fofonoff and Millard 1983). In this case, we obtained the potential density of seawater, which is 

the density the sample of ocean water would have if it was raised adiabatically and without 

change of salinity to the surface, that is, at the conditions of atmospheric pressure.  
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4.2.2 Methodology 
 

Much	
  of	
  the	
  methodology	
  is	
  based	
  on	
  applied	
  statistical	
  techniques.	
  The	
  mean	
  state	
  

of	
   key	
   oceanic	
   and	
   atmospheric	
   fields	
   (i.e.	
   SST,	
   subsurface	
   potential	
   temperature,	
  

subsurface	
   salinity,	
   subsurface	
   vertically-­‐averaged	
   heat	
   content,	
   sea	
   level	
   pressure)	
   is	
  

obtained	
   at	
   seasonal	
   resolution	
   and	
   calculated	
   	
   from	
  monthly	
   mean	
   quantities.	
   Seasonal	
  

anomalies	
   are	
   calculated	
   by	
   removing	
   the	
   seasonal	
   climatology.	
   These	
   anomalies	
   provide	
  

the	
  basis	
  for	
  statistical	
  analysis,	
  such	
  as	
  linear	
  regression	
  and	
  correlation.	
  As in the previous 

chapters, lead-lag regressions and correlations are used to capture the spatiotemporal features of 

the AMO.  

The	
  AMO	
  indices	
  are	
  constructed	
  by	
  spatially	
  averaging	
  the	
  sea	
  surface	
  temperature	
  

anomalies	
   (for	
   the	
   traditional	
   SST-­‐based	
   definition	
   of	
   the	
   AMO)	
   and	
   vertically-­‐integrated	
  

heat	
   content	
   anomalies	
   (for	
   the	
   proposed	
   subsurface-­‐based	
   AMO	
   index)	
   over	
   the	
   North	
  

Atlantic	
   basin	
   (5°-­‐75°W,	
   0°-­‐60°N);	
   then,	
   the	
   area-­‐averaged	
   indices	
   are:	
   a)	
   linearly	
   de-­‐

trended	
  over	
  the	
  January	
  1950-­‐	
  November	
  2013	
  period,	
  using	
  the	
  least-­‐squares	
  method;	
  b)	
  

smoothed	
  by	
  applying	
  a	
  local	
  regression	
  filter	
  to	
  remove	
  high-­‐frequency	
  variations	
  without	
  

aliasing	
   the	
   decadal-­‐to-­‐multidecadal	
   scale	
   pulses;	
   and	
   c)	
   normalized	
   to	
   unit	
   variance,	
   by	
  

dividing	
   each	
  detrended	
   and	
   smoothed	
   index	
   by	
   the	
   respective	
   standard	
  deviation	
   of	
   the	
  

calculated	
  index. 

Smoothing	
  of	
  the	
  indices	
  is	
  done	
  differently	
  now	
  by	
  using	
  a	
  different	
  technique,	
  the	
  

local	
   regression	
  method	
   (aka,	
   LOESS[4])	
   (Cohen,	
   1999),	
   to	
   avoid	
   losing	
   information	
   at	
   the	
  

ends	
  of	
   the	
   time	
  series	
  as	
   it	
  was	
   the	
  case	
  by	
  using	
   the	
  binomial	
   filter	
   in	
   the	
  previous	
   two	
  

chapters.	
   Local	
   regression	
   smoothing	
   is a non-­‐parametric	
  method	
   to	
   fit smooth	
   curves	
   to	
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empirical	
  data,	
  by	
  depicting the “local” relationship between a response variable and a predictor 

variable over parts of their ranges.	
  It	
  is	
  non-­‐parametric	
  so	
  it	
  does	
  not	
  require	
  knowledge	
  of	
  the	
  

specific	
  functional	
  relationship	
  that	
  may	
  exist	
  within	
  the	
  data.	
  Instead,	
  the	
  fitting	
  algorithm 

follows the empirical concentration of the plotted points. At each point in the data set, a low-

degree polynomial is fitted to a subset of data (e.g., 5% in the indices discussed later) using 

weighted least squares, giving more weight to points near the point whose response is being 

estimated. The LOESS fit is complete after regression function values have been computed for 

each of the data points.  

4.3 Surface and subsurface fingerprints and timescale of the AMO  
  

 Historical and modern hydrographic data show substantial, multidecadal variability in the 

surface and subsurface temperature, salinity and vertically integrated heat content of the North 

Atlantic basin. Superimposed on this long-term variability, stand decadal pulses of measurable 

amplitude, observed in regions of intermediate and deep-water formation  (Irminger and Nordic 

Seas, Icelandic basin, Labrador Sea etc.), as well as in the entire North Atlantic basin. The 

physical mechanisms associated with this variability remain an issue of debate, due to the lack of 

consensus regarding the governing feedback processes that drive phenomena like the AMO and 

its perturbations in the North Atlantic THC. Among them, one can distinguish the temperature 

and salinity advection mechanisms between the subtropical and the subpolar North Atlantic 

(Stommel 1961), as well as feedback processes that operate through the atmosphere, such as local 

air-sea coupling and atmospheric heat transport (Power et al. 1995), changes in atmospheric water 

vapor (Nakamura et al. 1994) and in wind forcing (Fanning and Weaver 1997a), in response to 

SST variations. Understanding, thus, the vertical extent and low-frequency propagation of surface 
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signals and their connectivity to the subsurface thermohaline circulation can provide substantial 

insight with respect to the origins of interdecadal perturbations in the North Atlantic and the 

respective role of ocean versus atmospheric dynamics in sustaining such patterns of large-scale 

variability. 

 Characterization and understanding of the subsurface features associated with the AMO is 

one of the main goals of this research. Thus, it is apparent that the use of an AMO index based on 

SSTs will be subject to atmospheric forcing and will have limited information from the 

subsurface. Therefore in this section an AMO index based on the subsurface thermal structure is 

defined aiming to 1) have a more pristine AMO signal in the subsurface, 2) capture lower 

frequencies, and 3) characterize variability at deeper levels with an index. Heat content-based 

AMO (AMO-HC) indices were calculated for several layers and compared among them and 

against the traditional SST-based, AMO index (Fig. 4.2). It is found that the subsurface AMO-HC 

indices lead the surface AMO-SST index and that a good choice for an AMO-HC index is the one 

using the layer 5-967m (red line), as this is similar to some other shallower indices, and indices 

using heat content at deeper layers have the shadow of uncertainty due to sparse data. Of 

particular interest is the very recent period where the subsurface signal suggests that we are past 

the peak of the AMO phase identified by the traditional AMO index (black line). 

Figure 4.3[5] shows the time series of five normalized[6] AMO indices, which differ from 

each other in the spatially averaged field, the smoothing filter and the method used to construct 

each one of them, for the common, January 1950 –November 2013 time period. The AMO-SST 

index (raw data) as well as its respective smoothed (LOESS 5% and 25%) versions are shown, 

along with the AMO-HC index that is defined using spatially averaged, vertically integrated (5-

967m) heat content data, smoothed by LOESS 25%, and finally, the AMO principal component, 
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product of an EEOF analysis (Guan and Nigam, 2008), also smoothed by LOESS 25%.  It is 

noteworthy that the AMO-SST index is shown to lag the AMO-HC index, with maximum 

correlation of 0.69 (0.49), observed at a 4 year lag between the two (LOESS 25% (5%)) time 

series (Fig. 4.4). Furthermore, the AMO-HC index is suggestive of a cooling North Atlantic 

subsurface in the recent years (mid-2000s –present), a feature that is almost absent (minimal) in 

the ocean surface and could have tremendous implications in a) predicting future North Atlantic 

climate, b) attributing its variability to human versus natural fluctuations and forcings and c) 

anticipating its co-variability with global climate, especially in the context of a recent slowdown 

in the rise of global average temperatures (hiatus) which was noted in the last assessment report 

of the IPCC.  

Autocorrelations of these indices are shown in Figure 4.5, in order to estimate the AMO 

time period. If the zero autocorrelation is used as a guide to estimate the timescale of the AMO, it 

is found that this lasts for approximately 50 years when the smoothed (LOESS 25%) AMO-SST 

and AMO-PC indices are used to characterize the AMO. The decorrelation timescale decreases 

significantly to about 25 years, when using the subsurface index to describe the phenomenon. An 

immediate question that arises is what causes the estimated periods to be so different. If the ocean 

were passively responding to atmospheric variability, its heat capacity would turn the atmospheric 

high frequency into much lower frequencies in SSTs (e.g., Hasselmann 1974). While the 

traditional AMO seems to be responding to this type of interaction, this is not the case for the 

AMO-HC index whose time scale is smaller and seems to be responding to a different 

atmosphere-ocean interaction in which the ocean circulation plays a more active role in the 

interaction (e.g., Bjerknes 1964, Bryan and Stouffer 1991). 
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Several mechanisms have been proposed throughout the years as principal drivers of such 

diverse periods of North Atlantic low-frequency variability, observed in model simulations and 

observations of the North Atlantic climate system; these include a) the ocean’s response to 

atmospheric large-scale perturbations (Delworth and Greatbatch, 2000), b) coupled ocean-

atmosphere changes that might be influenced by variability in other basins (i.e. the Pacific basin) 

(Dima and Lohmann, 2007), c) delayed advection of the Atlantic Multidecadal Overturning 

Circulation (Lee and Wang, 2010), d) interconnectivity between the tropical and the northern 

North Atlantic (Knight et al., 2005) and finally e) the interaction between the Arctic and the 

supbolar North Atlantic basins (Frankcombe and Dijkstra, 2011).  

Frankcombe and Dijkstra (2011) investigated the role of an internal ocean mode, the so-

called thermal Rossby mode, in the existence of multidecadal fluctuations and shorter timescales 

in the North Atlantic variability. The pattern and period of this thermal Rossby mode are 

consonant with westward propagating, subsurface temperature anomalies in the North Atlantic 

and sea level changes on the European and North American coasts (Frankcombe and Dijkstra, 

2011), which occur every 20–30 years. It was thus suggested that such westward-propagating, 

temperature anomalies, which are moving across the background, basin temperature gradient, 

along with internal ocean variability integrate stochastic, atmospheric weather patterns to increase 

the variance and dominant period of dynamic ocean properties, producing in this way a red 

spectrum in thermocline depth or sea surface height variability (Frankignoul et al. 1997, Kwon et 

al. 2009). This mechanism might well be responsible for the 25-year AMO time period, which is 

inferred when using the vertically integrated, subsurface index, in the current study. 

To discern the antecedent and latter phases of the AMO and their imprint on surface 

temperature and salinity, as well as vertically averaged (5-315m) salinity and vertically integrated 
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(5-315m, 372-967m) heat content, we compute the lead lag regression coefficients using the 

AMO heat content (AMO-HC; 5-967m) index smoothed with the LOESS 5% filter (Fig. 4.6) and 

LOESS 25% filter (Fig. 4.7); regressions are shown for a period of  T-8 to T+8 (T-16 to T+16) 

years, in 2-year (4-year) time steps. Evident in the first panel of lead-lag regressions (Fig. 4.6) is 

the lag relationship between AMO-SST and AMO-HC indices. Maximum AMO-regressed SST 

anomalies peak at T+4 years (instead of T=0 years in the case of regressions with the AMO-SST 

index). In the course of the 16-year regression period (which entails a full AMO cycle, based on 

the discerned time period from the figure of autocorrelations (Fig. 4.5), we observe strong 

negative anomalies centered in the northern latitudes and around the regions of interest (Labrador 

and Irminger seas), which are subsequently replaced by warm anomalies in the mature and post-

mature phases. Furthermore, a build-up of the link between the subpolar and the subtropical 

basins is noted at the T=0 phase and the follow-up years.  

When focusing on the second and third panels, the salinity signal appears stronger at the 

surface. Negative (fresh) anomalies, centered over the water around the southern tip of Greenland 

and over the Gulf Stream region, off of the coast of southeastern US, are gradually dissipating 

and being replaced by positive (saline) anomalies. At T-8 years, the deep western boundary 

(DWB) and West Greenland currents appear strengthened, whereas the Gulf Stream has declined 

and is pushed southward. In the follow-up phases, local saline anomalies develop over the 

Labrador Sea (T-6 years), without an evident connection with the lower latitudes and the Gulf 

Stream’s northern extension until 2 years before the mature phase of the AMO. At T-2 years and 

onward, the salinification of the Labrador basin, which seems to be at least partially originating in 

the Gulf Stream region, is followed by an eastward expansion of the signal toward the Irminger 

basin, the Denmark Strait and the Nordic seas. 
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Finally, the heat content anomalies reflect a subsurface footprint of the surface signal, 

with the upper 315m showing cooling in the northern latitudes during the T-8 and T-6 years, 

followed by a warming of the central and northern North Atlantic and a subsequent cooling of the 

Gulf Stream region and the area off of Newfoundland. The penetration depth of the surface 

warming (cooling) reaches the 372-967m layer in many cases, with the deeper layer displaying a 

delayed warming by approximately 6 years (compared to the upper ocean layer), over the 

subpolar North Atlantic regions of interest. Several factors control and influence changes in such 

vertically integrated properties in the northern latitudes, including the interaction between 

convectively formed waters (i.e. the Labrador Sea Water (LSW)) and other intermediate waters of 

the North Atlantic, via mixing and entrainment disseminating vertically. 

 Regressions of the LOESS 25% smoothed index on the same 5 fields for a T-16 years to 

T+16 years time range (Fig. 4.7) reveal an entire AMO cycle, imprinted on the surface and 

subsurface hydrographic features of the North Atlantic. The salinity signal remains primarily 

focused on the surface, while AMO related, heat content anomalies penetrate throughout the 

upper and deeper layers in a not-always coherent manner. In the course of a full AMO-cycle, the 

Labrador and Irminger seas are dominated by fresh and cold anomalies that are subsequently 

replaced by warm and saline anomalies, after approximately 8 years. 

4.4 Decadal-to-multidecadal variability in the Subpolar North Atlantic   
The North Atlantic Ocean is a key region for the thermohaline circulation, which drives 

the so-called global conveyor belt. Water is cooled by arctic air masses in the subpolar North 

Atlantic, which also gets saltier because the salt is left behind in the surrounding water after ice 

forms. In this way, the cold water gets denser due to the added salts, and sinks toward the ocean 

bottom. Surface water moves in to replace the sinking water, and the process is repeated, to create 
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the deep ocean currents that drive the conveyor belt. Two regions of great importance within the 

suboplar North Atlantic are the Labrador and Irminger Seas. The Labrador Sea, situated between 

the Labrador Peninsula and southern Greenland, and the Irminger Sea, situated between southern 

Greenland and the Reykjanes Ridge (an underwater mountain range that extends from Iceland –

see Fig. 4.4 for reference) are critically important areas of the North Atlantic. While the Labrador 

Sea hosts a region of deep-water formation (as explained above), the Irminger Sea is a region 

where ocean currents meet, forming new kinds of dense water.  Thus, due to the importance of 

these regions, changes in their water properties linked to the AMO are analyzed next. 

4.4.1 AMO-related evolution of hydrographic properties in the Labrador Sea  
 

 The Labrador Sea is a region of particular importance in characterizing the subpolar North 

Atlantic climate and in investigating the interconnectivity between the Arctic and North Atlantic 

Basins, as well as in refining our understanding of deep water mass production, large-scale, North 

Atlantic air-sea interactions and the influence of northern North Atlantic latitudes in the 

Meridional Overturning Circulation (MOC), which in its turn, regulates the great ocean conveyor 

belt (Haupt and Seidov 2007).  Among the principal water inflows that affect the Labrador basin 

are the Labrador and West Greenland currents, two distinct baroclinic boundary currents 

originating in the Canadian Arctic Archipelago and the East Greenland shelf, the Irminger current 

stemming from the Irminger sea, as well as an inflow of Subpolar Mode Water emerging from a 

branch of the North Atlantic Current (warm and salty water). Finally, the Nordic Seas deep and 

bottom water masses also intrude into the Labrador basin, crossing the Greenland-Scotland Ridge 

and mixing with the Labrador Sea intermediate Waters (LSW) (Yashayaev, 2007). Additional 

factors influencing long-term, LSW changes include perturbations in the winter North Atlantic 
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atmospheric circulation (i.e. NAO) and the associated intensity of westerly winds and wintertime 

convection, as well as in other, non-local processes such as Arctic sea ice melting, Arctic inflow 

and continental runoff (Peterson et al. 2006).  

Labrador Sea intermediate Waters  properties -temperature, salinity, and thickness- exhibit 

significant variability through time. Igor Yashayaev (2007) describes some of the key 

hydrographic variations that have been observed in the Labrador basin during the period of 1960-

2005. Distinct warm and salty conditions prevailed between the mid-1960s and early 1970s; these 

were subsequently replaced by fresher and colder conditions between the late 1960s and early 

1970s, as well as the late 1980s and mid-1990s, which were reversed again to a phase of positive 

thermal and haline anomalies, from the mid-1990s and onward. It is important to note here the 

distinct, low salinity and low surface density conditions that prevailed during the 1967-72 and the 

early 1980s periods, known as the Great Salinity Anomalies (GSA), which inhibited convection 

in the Labrador Sea. 

In our study, we concentrate in a similar time period to the one examined by Yashayaev 

(2007) –extended by approximately 20 years (1950-2013), to characterize the thermohaline 

oceanographic conditions in the Labrador Sea, in relation to low-frequency North Atlantic surface 

variability (AMO). To carry out our observationally based analysis, we choose a 4° longitude x 4° 

latitude area in the Labrador basin (51° -55°W, 56°-60°N) (Fig. 4.6). The results have been 

compared to the ones derived, when choosing one single grid point (i.e. 53°W, 58°N)-not shown 

here, to assure that they are not an area-averaging artifact, but represent the temporal evolution 

and propagation of the AMO-related signal through the top 500m ocean layer. The AMO-SST 

index (classical definition, see §4.2.2) is used in this part of the analysis, as our goal is to capture 

the vertical extent and propagation of AMO-related surface signals through time; a vertically-
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integrated property (i.e. AMO-HC index) would tend to lessen the magnitude of signal 

differences between surface and subsurface and is therefore discarded for this part of the analysis. 

Lead-lag regressions (correlations) of the AMO SST-index on the 0-500m potential temperature, 

salinity, and potential density fields are shown for a T-10 years to T+10 years period and are 

shaded blue-to-red (drawn using white contour lines) when the index is smoothed with the 

LOEES 5% filter (Fig. 4.8), and the LOESS 25% filter (Fig. 4.9). Before carrying out the 

regressions, the AMO index is smoothed for the January 1950 –November 2013 period, using the 

LOESS 5% (25%) local regression filter, to underline the AMO-linked decadal (multidecadal) 

evolution of the Labrador Sea thermohaline features, and normalized by its standard deviation. 

The individual contributions of potential temperature and salinity to LSW’s net potential density 

are being examined separately, to emphasize the relative importance of each field in shaping 

density changes in the region, in an effort to deduce possible mechanisms driving these surface-

subsurface footprints. 

 The potential temperature, salinity and potential density based only on 

temperature/salinity profiles indicate a downward propagation of positive, surface anomalies 

through time, with the penetration depth increasing as we move forward in time. Surface salinity 

maxima seem to precede surface temperature and are constrained to the top ~100m; fluctuations 

in the net density field are dominated by salinity changes. Finally, two distinct surface signals 

with duration of about 8 years and a subsurface signature extending to the top 500 m of the ocean 

are discernible in the net density profile, characteristic of the decadal pulses embedded in the 

multidecadal North Atlantic surface variability. These features are less noticeable when carrying 

out the same lead-lag regression analysis with the more highly smoothed (LOESS 25%) AMO-

SST index. In this case (Fig. 4.9), we arrive at similar patterns of downward propagation of 
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temperature, salinity and density anomalies through time, with a more temporally coherent signal 

at different depths. In the interest of examining the statistical significance of these results, we use 

a two-tail student t-test at the 5% (0.05) level and found that  correlations above the |±0.27| value 

are considered statistically significant at all lags.  

Next, we focus on the seasonal variability over the Labrador sector, by extracting the 

smoothed AMO-SST index corresponding to each season and using the seasonal versions to 

regress on potential temperature, salinity and potential density fields. Figure 4.10 shows the case 

for a winter index extracted from the LOESS 5% smoothed AMO-SST index: persistent year-to-

year thermal anomalies extend to 100-150m below the surface and reach deeper and deeper levels 

with time (~ 450-500m at T+10 years). Winter anomalies persist within the stratified thermocline 

through spring and summer, due to reduced surface winds and a shallow mixed layer, and 

reemerge in the following fall/early winter with the deepening of the ocean mixed layer due to the 

late fall/early winter, extratropical atmospheric forcing (Cassou and Deser, 2007). The detection 

of such seasonally recurring anomalies that are linked to low-frequency variability is a non-trivial 

task as a. advection of such mixed-layer anomalies by mean ocean currents can lead to their zonal 

or meridional propagation and reemergence at different regions and b. the amplitude of the 

reemergence mechanism depends on a variety of factors including mixed layer depth, the strength 

of summer surface anomalies and the magnitude of vertical mixing (Frankignoul 1997). 

  The winter pattern in Fig. 4.10 contains year-to-year temperature and salinity signals that 

extend to ~500m depth at lags of ~ T+10 years. Observed near-surface temperature and salinity 

anomalies tend to persist with a relatively uniform magnitude for approximately 4 consecutive 

winter seasons. Potential density anomalies also demonstrate year-to-year variability in the 

vertical, in a less homogeneous way, due to the partial compensation of the temperature and 
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salinity influence on density. Despite the relatively shallow mixed layer, the wintertime 

persistence is high, due in part to the redness of the SST anomaly timeseries that is linked to the 

AMO. Finally, we note that the amplitude of the reemergence of the wintertime anomalies in the 

follow-up seasons is more evident when focusing on the top 250m layer. Fig 4.11 shows a close-

up of the regressed SST and salinity anomalies in this layer during a period of T-3 to T+3 years 

that indicate the existence of a re-entrainment mechanism linked to the seasonal cycle of the 

mixed layer depth that helps maintain the SST and salinity anomalies and with them the decadal 

signal. 

   

4.4.2 AMO-related evolution of hydrographic properties in the Irminger Sea 
 
 The Irminger basin is another highly influential region of the subpolar North Atlantic, due 

to its key position in the intersection of Arctic freshwater outflow and the dense overflows from 

the Nordic seas, which contribute to the formation and propagation of the Deep Western 

Boundary Current (Vage et al. 2011). Water from the Irminger Sea can also be of importance for 

the Labrador Sea as relatively less cold and saltier waters from the Irminger Sea can be identified 

in the Labrador Sea (Pickart et al. 2003). Figures 4.12 and 4.13 show the lead-lag time-versus-

depth profiles in the Irminger Sea of the same regressed anomaly fileds that we examined over 

the Labrador basin, in the previous section; Fig. 4.12 shows anomalies when the AMO index is 

smoothed with the LOESS 5%, and Fig. 4.13 when it is smoothed with the LOESS 25%. Overall, 

the Irminger basin displays a similar temperature and salinity vertical structure to the one over the 

Labrador Sea (positive/negative salinity anomalies coincide with warm/cold temperature 

anomalies), with positive surface anomalies being noted at about T-2 years, propagating 

downward to about 450-500m, while the AMO-SST time series is leading potential temperature 
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and salinity by 0-12 years[7].  The increases in temperature and salinity do not compensate 

completely, leading to negative (lighter) potential density anomalies. Temperature appears to be 

more influential than salinity in determining the sign and magnitude of the aforementioned 

density changes, in contrast to what happens in the Labrador Sea where the density anomalies are 

driven by the salinity anomalies.  

To efficiently interpret such downward propagating signals, a thorough knowledge and 

understanding of the ocean currents that dominate the region’s circulation, as well as of the 

oceanic and atmospheric processes that are present in the Northeastern North Atlantic is 

necessary. Furthermore, topography not only below the ocean’s surface (as shown in Fig. 4.1) but 

also high topography over land becomes very important. The high topography of Greenland, for 

instance, forces the westerly winds to go around the continent, causing them to accelerate. In 

addition, river runoff and melting of the Greenland ice sheet can lead to supplemental freshening 

of the Northeastern, North Atlantic region.   

The effect of local convective mixing on the thermohaline structure in the Irminger Sea 

remains unclear, despite various studies on the gyre circulation and convection over the Irminger 

basin (Vage et al. 2011, McCartney and Talley, 1984, Pickart et al. 2003). Deep convection, 

which occurs during winter due to large heat loss from the ocean surface to the atmosphere, leads 

to mixing down to about ~400m (~1000m during the 2007-2008 cold winter event ―Vage et al. 

2009). This can potentially influence the stability of the Labrador Sea water, via advection by the 

East Greenland and Irminger currents. Additional small-scale processes, such as lateral and 

vertical turbulent mixing (salt fingering) of adjacent water masses (Ruddick and Kerr, 2003) 

caused by differences in the molecular diffusion of heat and salt (double diffusion), as well as 

mechanical forcing such as wind stirring processes can lead to changes in the hydrographic 
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properties of neighboring water masses and surface signal intrusions into the subsurface, with a 

vertical extension of a few hundred meters.  

 Smaller scale, seasonal variability is discerned via regressions of the seasonal AMO-SST 

time series on the temperature, salinity and density fields; regressions using the winter smoothed 

(LOESS 5%) AMO index are shown in Fig. 4.14. The horizontal scale (lead-lag time) shows us 

that it takes about two to three years (i.e. winters) for vertical intrusions of a few hundred meters 

to occur. As noted earlier, density anomalies are driven by temperature anomalies so the year-to-

year variability of the water properties could be the result of mesoscale eddy shedding by the 

boundary currents and shifts in the seasonal eddy kinetic energy, which have a substantial 

signature in both Irminger and Labrador Seas (Volkov 2005, Flatau et al. 2003). Re-entrained 

winter anomalies can contribute to the winter to-winter persistence of the same SSTA pattern, 

which may subsequently project upon the overlying atmospheric circulation via transient eddies 

(Rodwell and Folland, 2002). This can influence the weather patterns over the subpolar North 

Atlantic, leading to milder or stronger winters, via modulation of the North Atlantic Oscillation 

(NAO), an atmospheric mode of variability reflecting a surface pressure correlation pattern within 

the North Atlantic.  

 

4.5 NAO and the Gulf Stream influence 
 

The NAO-AMO relationship is a subject that requires supplemental research and 

understanding, due to the possibility of the atmospheric forcing of the AMO. While a non-

stationary relationship between the NAO and the AMO has been identified before (Walter and 

Graf, 2002), a 10-15 years leading window of the AMO over the NAO in winter has also been 
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proposed in the more recent years (Peings and Magnusdottir, 2014). On the other hand, while the 

Gulf Stream appears to be responding to the NAO variability (Taylor and Stephens, 2002), it is 

also capable of altering the NAO (Wu and Rodwell, 2004). However, it was clear from the 

lead/lag regressions in SSTs, salinity and heat content shown in the previous sections that the 

Gulf Stream is experiencing important changes, while under the AMO influence. Thus, this 

section will focus on the interplay among these climatic features. 

In the early twentieth century, Walker analyzed the spatial correlation of seasonal weather 

patterns and noticed a surface pressure correlation signature within the northern North Atlantic 

that he referred to as the "North Atlantic Oscillation" (NAO) (Walker and Bliss 1932). About 30 

years later, Bjerknes also discussed air-sea interactions in the northern North Atlantic (Bjerknes 

1964), to address the driving mechanisms of year-to-year and longer-term variations in the 

surface temperature of the Atlantic Ocean. In the more recent years, the NAO has been accepted 

as a leading atmospheric mode of key significance for local as well as global climate variability 

(Hurrell et al. 2001, Marshall et al. 2001).  Hurrell et al. (2001) showed that the NAO forcing is 

stronger during the late fall and winter / early spring months (November through April), when the 

ocean mixed layers are deep and ocean-atmosphere heat fluxes are the greatest. In the current 

study we use a widely used NAO index (Hurrell et al. 1995) to investigate the lead-lag 

relationship between the AMO-SST and AMO-HC time series, as well as the relationship 

between the NAO and the Gulf Stream (which is closely connected to low-frequency, subpolar 

North Atlantic variability via its northern extension). The Gulf Stream index (GSI) used provides 

an estimate of the latitudinal shifts of the Gulf Stream, measured by using the 15°C isotherm at 

200m depth (Perez-Hernandez and Joyce 2014). The following analysis is focused on the period 

1954-2012 due to availability of the GSI. 
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Lead/lag relationships between the NAO and GS indices (Fig. 4.15 and the GS and AMO 

indices (Fig. 4.16) are analyzed now. We find the simultaneous correlation between the GS and 

NAO indices to be 0.58 when smoothed heavily (LOESS 25%) and 0.40 when the smoothing is 

less severe (LOESS 5%) The two time-series are best correlated at one-year lag, with the NAO 

leading the Gulf Stream Index (maximum correlation of 0.59).[8] On the other hand, the lead-lag 

correlations between the GSI index and the two AMO indices (Fig. 4.16 indicate that the GSI 

index leads both AMO-HC and AMO-SST indices. Maximum correlation between GSI and 

AMO-SST indices is -0.64 when the indices are heavily smoothed (LOESS 25%), and -0.52 when 

the smoothing is less severe (LOESS 5%) at 35 seasons. Maximum correlation between the GSI 

and AMO-HC indices is 0.49 when the indices are heavily smoothed (LOESS 25%) at 10 seasons 

lag, and 0.43 when the smoothing is less severe (LOESS 5%) at 13 season lag.  

The simultaneous regression maps of the influence of the North Atlantic Oscillation and 

Gulf Stream indices on mean sea level pressure for the common period January 1954- November 

2012 are also examined (Fig. 4.17[9]) in order to discern the full structure of sea level pressure 

anomalies and the dominant circulation conditions in response to the NAO and Gulf Stream 

variability. As expected by the suggestion that the NAO drives the GS latitudinal interannual 

variability, both regressed pressure anomaly patterns exhibit a meridional dipole consisting of a 

zonally elongated band of negative anomalies constrained in the northern latitudes (north of 

55°N, with a center north of Iceland) and a band of positive anomalies in the subtropics with a 

center around 35°N. The spatially coincident (to a certain extent) regression patterns in MSLP 

can be attributed to the coordination between the Gulf Stream’s excursions in mean position and 

the wind stress associated with NAO (Joyce et al. 2000; Frankignoul et al., 2001). During a high 

NAO index phase, the Gulf Stream flow path is displaced to the north of its climatological 
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position while it is displaced southward in the low index phase. We expect anomalous southerly 

geostrophic winds across the Greenland and Barents Seas, consistent with enhanced ice melting 

and thus reduced ice extent and enhanced freshening, as well as northwesterly winds over the 

Labrador Sea, consistent with colder conditions and increased sea ice.  

Hydrographic features of the GS index are reminiscent of the NAO. Lead-lag regressions 

of the GS index on SSTs (top panel, Fig.4.18) show an incipient tripole SST pattern at T-2 lags 

that reaches maximum anomalies at T=0 lag, with negative anomalies situated south of Greenland 

and off of the western African coast in the tropics and a band of positive anomalies between them 

over the Gulf Stream region. This pattern is also discernible in the subsurface (heat content 

panels, Fig. 4.18). As time evolves, the northern latitudes become warmer (T+4 phase and 

onward), while the anomalies over the Gulf Stream region weaken. At lags T-8 to T-2, we note a 

southward propagation of fresh (negative salinity) anomalies originating from the northwestern, 

subpolar North Atlantic and Labrador Sea, which is accompanied by a retreat of the saltier Gulf 

Stream water further to the south. This southward influx of freshwater is halted and then replaced 

by a northward propagation of saltier water, at lag 0 and forward in time.  The intrusion of saline 

waters at T+8 years lag is first directed toward the Labrador basin, with a subsequent propagation 

toward the Irminger Sea, southeast of Greenland. During this time, more saline and warmer 

waters characterize the entire northern North Atlantic latitudes.  

4.6 Multidecadal signal in the Subpolar North Atlantic 
 
 Decadal-to-multidecadal variability in the subpolar North Atlantic is very similar to that 

from the AMO. To conclude this chapter, area-averaged subpolar North Atlantic (75°W-5°E, 45°-

75°N) vertically-averaged (~sfc-700m) hydrographic properties are analysed (Fig. 4.19); the 
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chosen depth (700m) is used not only for reference purposes (e.g., Wang et al. 2010), but because 

there is more confidence on the quality of the subsurface data at these levels than in data from 

deeper levels. It is apparent that a cooler and fresher subpolar North Atlantic emerges, in 

accordance with AMO’s cold phase during the 1970-1990 period (Fig. 4.19, top panel); the 

opposite is observed during the warm phases of the AMO, before 1970 and 1995 and onward. 

The net density is shown to be tracking salinity (temperature) in the post (pre)-1980s period (Fig. 

4.19, bottom panel). A vertical profile of the subpolar North Atlantic temperature and salinity 

(Fig. 4.20) reveals that it takes about 5 years for the surface signal to propagate downward, with 

no compensation occurring in the vertical. These observations are suggestive of the link between 

the ocean surface and sub-surface perturbations in hydrographic properties in the northern North 

Atlantic, in relation to low-frequency modes of variability (AMO, AMOC) (e.g., Delworth and 

Mann 2000, Dijkstra et al. 2006, Wang et al. 2010).   

4.7 Summary and Conclusions 
 

This chapter focuses on the vertical extension of the AMO signal in the deeper ocean and the 

link between surface variability and low-frequency changes in the North Atlantic thermohaline 

(density-driven) circulation. We have proposed an ocean heat content-based AMO index (AMO-

HC) in an effort to capture the thermal state of the ocean (0-1000m heat content) and to 

understand the origin of AMO variability, especially its surface-subsurface link on decadal- to- 

multidecadal timescales in the North Atlantic basin. The most traditional SST based AMO index 

is found to lag the AMO-HC index by about 5 years, with maximum correlation of 0.69 at a 4-

year lag when the two indices are smoothed (LOESS 25%). This lead of the heat content index 

over the SST index, along with the indication of a decadal respite in warming which is indicated 
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by the subsurface index, has profound implications for both decadal prediction and more accurate 

estimations of the anthropogenic warming. In addition, the AMO timescale is found to shrink by 

about 25 years, when using the heat content based index to describe the phenomenon; this result 

suggests that the ocean circulation (via the thermal Rossby mode and/or ocean currents) is 

playing an active role in the integration of the ocean-atmosphere interactions associated with the 

AMO. Under this view, it is not surpising to find out that exists a  coherent AMO evolution and 

northward excursions of the Gulf Stream that precede the AMO, as envisioned by Bjerknes 

(1964). 

The AMO signal in the subsurface hydrographic properties is not the same in the entire 

subpolar Atlantic domain. In the Labrador basin, the potential temperature, salinity and potential 

density based only on temperature/salinity profiles indicate a downward propagation of positive, 

surface anomalies through time, with the penetration depth increasing as we move forward in 

time. Surface salinity maxima seem to precede surface temperature and are constrained to the top, 

near surface layers (~300-400m); fluctuations in the net density field are dominated by salinity 

changes.	
   In the Irminger basin, changes in temperature and salinity do not compensate 

completely, leading to negative (lighter) potential density anomalies. Here,	
  temperature appears 

to be more influential than salinity in determining the sign and magnitude of the potential density 

fluctuations. As both cold-fresh (negative density) anomalies in the Labrador Sea during the 

negative phase of the AMO, and warm-salty (negative density) anomalies in the Irminger Sea 

during the positive phase of the AMO mix downward, wind-induced turbulent mixing must 

dominate; AMO’s temperature and salinity anomalies take about 8 years to reach a depth of 

approximately 400m.	
  A	
  year-to-year variability	
   is	
  also	
  noted in both basins, when	
  focusing	
  on	
  

season-­‐to-­‐season	
   variations,	
   indicative of recurring wintertime SST anomalies that are being 
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sequestered below the seasonal thermocline during the spring and summer seasons and re-emerge 

in the following late fall/early winter.   

Finally,	
  while	
  the	
  evolution	
  of	
  the	
  AMO-­‐related	
  oceanic	
  anomalies	
  seem	
  to	
  be	
  associated	
  

with	
   surges	
   of	
   the	
   Gulf	
   Stream,	
   the	
   NAO	
   seems	
   to	
   be	
   linked	
   with	
   the	
   AMO	
   via	
   the	
   Gulf	
  

Stream.	
   It	
   is	
   found	
   that	
   the Gulf Stream Index leads both the AMO-HC and traditional SST 

based AMO indices by 10 (35) seasons, but it lags the NAO index by 4-8 seasons; the lagged 

relationship with the NAO-wind forcing is consistent with enhanced or reduced Ekman transports 

within the North Atlantic basin, indicative of a potential mechanistic interaction between the 

AMO, NAO and the GSI.   
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Figure 4.1. Topography of northern North Atlantic Ocean. The acronyms of the topographic features indicated in the 
figure are (from west to east): ER:Eirik Ridge, MAR: Mid-Atlantic Ridge, CGFZ: Charlie-Gibbs Fracture Zone, RR: 
Reykjanes Ridge, RHB: Rockall-Hatton Plateau and Rickall-Hatton Bank, RT: Rockall Trough, FBC: Faroe Bank 
Channel, WTH: Wyville Thomson Ridge. (Atlantic Ocean Floor by Heinrich Berann, 1977, National Geographic, 
2012) 
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Figure 4.2 The plotted indices are calculated as the area average of seasonal SST and vertically-integrated heat 
content anomalies over the North Atlantic domain (75°W-5°E, 0°-60°N) for the January 1950- November 2013 
period. They are shown after applying the LOESS 25% smoothing filter and subtracting the linear trend for the 
same, aforementioned time period. The de-trending is intended to remove the influence of greenhouse-gas 
induced global warming from the analysis. In addition, the standard deviation of the data points of each index 
from its corresponding mean value is also shown in parentheses (legend). In sum, we are showing the SST index 
from the HadISST v1.1 dataset and eight heat content (HC)-based indices from the EN4 v2.a dataset.   
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Figure 4.3 AMO-SST and AMO-HC, normalized indices are shown here for the period January 1950 – 
November 2013. Indices are calculated by spatially averaging seasonal anomalies over the North Atlantic 
domain (75°W-5°E, 0°-60°N) and subsequently de-trending them, by removing the linear trend calculated 
based on the least squares method and finally, normalizing them. The raw AMO-SST index (derived from 
the HadISST v1.1 dataset) is shown, along with two smoothed versions, one using a LOESS 5% filter and 
one using a LOESS 25% filter, to discern decadal vs. multidecadal signals, respectively. The AMO-HC 
index is calculated by spatially averaging seasonal, heat content anomalies over the same, aforementioned 
domain, and subsequently de-trending and smoothing them by a LOESS 25 % filter. The heat content 
anomalies are calculated by a. vertically integrating subsurface temperatures (EN4 .0.2 dataset) from 5m to 
967m depth and b. removing the long-term seasonal mean. 
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Figure	
   4.4	
  Lead-Lag Correlations of AMO-SST index smoothed by LOESS 5% (25%) with AMO-HC index, 
smoothed by LOESS 5% (25%), respectively, are shown for a lead-lag period of T-12 to T+12 years. Positive 
(negative) correlations indicate that the AMO-SST index is leading (lagging) the subsurface (AMO-HC) index. 
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Figure 4.5 Autocorrelations of AMO-SST indices from the HadISST v1.1 dataset (raw, smoothed by LOESS 
5%, smoothed by LOESS 25%), AMO-HC index (EN4.0.2) smoothed by LOESS 25% and finally AMO 
principal component (PC) smoothed by LOESS 25%. The indices are calculated as in Fig 1. The AMO PC is 
derived from an EEOF analysis (Guan and Nigam, 2009). Autocorrelations are shown for a time span of T-12 
to T+12 years.  
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Figure 4.6 Lead-Lag regressions of sea surface temperature (HadISST, v1.1), EN4.0.2 surface and 0-315m 
vertically averaged salinity, 5-315m and 372-967m vertically integrated heat content on smoothed (by a 5% LOESS 
filter) and normalized by its standard deviation, heat content (5-967m)-AMO index (EN4.0.2). Regressions are 
calculated for the period January 1950 –November 2013 and are shown for a time span of T-8 to T+8 years, after 5 
applications of the smooth9 function in the Grads plotting software. The contour intervals are: 0.05K, 0.01 PSU and 
5×10707 J/m2, respectively. The boxed areas and marked grid points represent two regions, one over the Labrador 
Sea (48°-58°W, 53°-63°N, Grid point: 53°W, 58°N) and one over the Irminger basin (28°-38°W, 56°-66°N, Grid 
point: 33°W, 61°N). 
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Figure 4.7 Lead-Lag regressions of sea surface temperature (HadISST, v1.1), EN4.0.2 surface and 0-315m 
vertically averaged salinity, 5-315m and 372-967m vertically integrated heat content on smoothed (by a 25% 
LOESS filter) and normalized by its standard deviation, heat content (5-967m)-AMO index (EN4.0.2). Regressions 
are calculated for the period January 1950 –November 2013 and are shown for a time span of T-16 to T+16 years, 
after 5 applications of the smooth9 function in the Grads plotting software. The contour intervals are: 0.05K, 0.01 
PSU and 5×10707 J/m2, respectively. The boxed areas and marked grid points represent two regions, one over the 
Labrador Sea (48°-58°W, 53°-63°N, Grid point: 53°W, 58°N) and one over the Irminger basin (28°-38°W, 56°-
66°N, Grid point: 33°W, 61°N). 
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Figure 4.8 Profiles of lead-lag regressions/correlations of potential temperature, salinity and potential density on 
normalized smoothed (LOESS 5%) AMO-SST index.  Density in the upper row is calculated by using both the 
anomalous temperature and salinity, while density in the lower left panel is calculated using only the anomalous 
temperature while maintaining the climatological salinity, and density in the lower right panel is calculated using 
only the anomalous salinity while maintaining the climatological temperature.   All fields are products of the EN4.0.2 
dataset. Regressions are calculated for the period January 1950- November 2013 and shown for a span of T-10 to 
T+10 years and a depth of 0-500m.  We have used one application of the smooth9 function in the Grads plotting 
software. Profiles are shown for the boxed area: 51-55°W, 56-60°N in the Labrador Sea region. Correlations are 
shown as white contour lines with contour interval 0.1. 
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Figure 4.9 Profiles of lead-lag regressions/correlations of potential temperature, salinity and potential density on 
normalized smoothed (LOESS 25%) AMO-SST index. Positive (negative) values correspond to AMO leading 
(lagging) the potential temperature/salinity /potential density field. Density in the upper row is calculated by using 
both the anomalous temperature and salinity, while density in the lower left panel is calculated using only the 
anomalous temperature while maintaining the climatological salinity, and density in the lower right panel is 
calculated using only the anomalous salinity while maintaining the climatological temperature.   All fields are 
products of the EN4.0.2 dataset. Regressions are calculated for the period January 1950- November 2013 and shown 
for a span of T-10 to T+10 years and a depth of 0-500m.  We have used one application of the smooth9 function in 
the Grads plotting software. Profiles are shown for the boxed area: 51-55°W, 56-60°N in the Labrador Sea region. 
Correlations are shown as white contour lines with contour interval 0.1. 
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Figure 4.10 Profiles of lead-lag regressions of potential temperature, salinity and potential density on normalized 
smoothed (LOESS 5%) AMO-SST index for winter only. Density in the upper row is calculated by using both the 
anomalous temperature and salinity, while density in the lower left panel is calculated using only the anomalous 
temperature while maintaining climatological salinity, and density in the lower right panel is calculated using only 
anomalous salinity while maintaining climatological temperature.  All fields are products of the EN4.0.2 dataset. 
Regressions are calculated for the period January 1950- November 2013 and shown for a span of T-10 to T+10 years 
and a depth of 0-500m.  We have used one application of the smooth9 function in the Grads plotting software. 
Profiles are shown for the grid point 51-55°W, 56-60°N in the Labrador region. 
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Figure 4.11 Profiles of lead-lag regressions of potential temperature and salinity on smoothed (LOESS 5%) and 
normalized AMO index for winter. All fields are products of the EN4.0.2 dataset. Regressions are calculated for the 
period January 1950- November 2013 and shown for a span of T-3 to T+3 years and a depth of 0-250m.  We have 
used one application of the smooth9 function in the Grads plotting software. Profiles are shown for the grid point 51-
55°W, 56-60°N in the Labrador region; vertical lines mark winter.  
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Figure 4.12 Profiles of lead-lag regressions/correlation of potential temperature, salinity and potential density on 
normalized smoothed (LOESS 5%) AMO-SST index. Positive (negative) values correspond to AMO leading 
(lagging) the potential temperature/salinity /potential density field. Density in the upper row is calculated by using 
both the anomalous temperature and salinity, while density in the lower left panel is calculated using only the 
anomalous temperature while maintaining climatological salinity, and density in the lower right panel is calculated 
using only anomalous salinity while maintaining climatological temperature.  All fields are products of the EN4.0.2 
dataset. Regressions are calculated for the period January 1950- November 2013 and shown for a span of T-10 to 
T+10 years and a depth of 0-500m.  We have used one application of the smooth9 function in the Grads plotting 
software. Profiles are shown for the grid point 57°W, 61°N in the Irminger Sea region. Correlations are shown as 
white contour lines with contour interval 0.1. 
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Figure 4.13 Profiles of lead-lag regressions/correlation of potential temperature, salinity and potential 
density on normalized smoothed (LOESS 25%) AMO-SST index. Positive (negative) values correspond to 
AMO leading (lagging) the potential temperature/salinity /potential density field. Density in the upper row is 
calculated by using both the anomalous temperature and salinity, while density in the lower left panel is 
calculated using only the anomalous temperature while maintaining climatological salinity, and density in 
the lower right panel is calculated using only anomalous salinity while maintaining climatological 
temperature.  All fields are products of the EN4.0.2 dataset. Regressions are calculated for the period 
January 1950- November 2013 and shown for a span of T-10 to T+10 years and a depth of 0-500m.  We 
have used one application of the smooth9 function in the Grads plotting software. Profiles are shown for 
the grid point 57°W, 61°N in the Irminger Sea region. Correlations are shown as white contour lines with 
contour interval 0.1. 
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Figure 4.14 Profiles of lead-lag regressions of potential temperature, salinity and potential density on normalized 
smoothed (LOESS 5%) AMO-SST index for winter only.  Density in the upper row is calculated by using both the 
anomalous temperature and salinity, while density in the lower left panel is calculated using only the anomalous 
temperature while maintaining climatological salinity, and density in the lower right panel is calculated using only 
anomalous salinity while maintaining climatological temperature. All fields are products of the EN4.0.2 dataset. 
Regressions are calculated for the period January 1950- November 2013 and shown for a span of T-10 to T+10 years 
and a depth of 0-500m.  We have used one application of the smooth9 function in the Grads plotting software. 
Profiles are shown for the grid point 31-35°W, 59-63°N in the Irminger region. 
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Figure 4.15 Time series of the Gulf Stream (GSI) (Joyce 2013) and NAO indices  (Hurrell et al. 
1995) are shown after having been de-trended by subtracting the linear trend for the period January 
1954-October 2012 (common period among the data sets), smoothed by using LOESS 5% (25%) in 
the top (bottom) panel and finally normalized by dividing by the standard deviation. At t=0, 
correlation between the GSI and NAO-Hurrell is 0.58 for the LOESS 25% case and 0.40 for the 
LOESS 5% smoothed indices. 
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Figure 4.16. Lead-Lag Correlations of AMO-SST index smoothed by LOESS 5% (25%) with AMO-HC and Gulf 
Stream indices, smoothed by LOESS 5% (25%) respectively are shown for a lead-lag period of T-12 to T+12 years. 
Positive (negative) correlations indicate that the AMO-SST index is leading (lagging) the subsurface (AMO-HC) and 
Gulf Stream indices. 
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Regressions of NAO (Hurrell et al. 2005) (smoothed, LOESS 5%) on MSLP, 1954-2012 

Regressions of GSI (Joyce 2013) (smoothed, LOESS 5%) on MSLP, 1954-2012 

Figure 4.17 Simultaneous regressions (shaded blue-to-red) and correlations (white contours of 0.05) of 
smoothed (LOESS 5%) NAO (Gulf Stream) index on the seasonal, mean sea level pressure field, 
derived from the HadISST data set, for the January 1954 – October 2012 time period (common period 
between the different datasets). 
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Figure 4.18 Lead-Lag regressions of sea surface temperature (HadISST, v1.1), EN4.0.2 surface and 0-315m vertically 
averaged salinity, 5-315m and 372-967m vertically integrated heat content on smoothed (by a 5% LOESS filter) and 
normalized by its standard deviation Gulf Stream index (T. Joyce). Regressions are calculated for the period January 1954 – 
November 2012 and are shown for a time span of T-8 to T+8 years, after 5 applications of the smooth9 function in the Grads 
plotting software. The contour intervals are: 0.05K, 0.01 PSU and 5×107 J/m2, respectively. The boxed areas and marked grid 
points represent two regions, one over the Labrador Sea (48°-58°W, 53°-63°N, Grid point: 53°W, 58°N) and one over the 
Irminger basin (28°-38°W, 56°-66°N, Grid point: 33°W, 61°N). 
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Figure 4.19 Vertically averaged (5-657m) temperature, salinity and potential density 
seasonal anomalies are spatially averaged over the North Atlantic Subpolar basin  (75°W-­‐
5°E,	
  45°-­‐75°N) and shown for the period January 1950-November 2013 after applying Loess 
25% smoothing to detect the AMO-related, decadal to multidecadal pulses embedded in the 
time series. The EN4.0.2 temperature and salinity profiles are used to calculate the 
corresponding domain’s potential density time series and the individual contributions of 
temperature and salinity. 
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Figure 4.20 Depth versus time temperature (shaded blue-to-red) and salinity (contoured) profiles 
(EN4.0.2) are shown for the spatially averaged, seasonal anomalies over the North Atlantic Subpolar Basin 
(75°W-­‐5°E,	
   45°-­‐75°N) for the January 1950-November 2013 period. The profiles are smoothed using 
Loess 25% filter, to discern the decadal and multi-decadal pulses embedded in the AMO time series. We 
have used one application of the smooth9 function in the Grads plotting software. Positive (negative) 
salinity values are contoured using solid (dashed) black lines.  
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Chapter 5: Summary and Concluding Remarks 

5.1 Outline and main issues 
 
  In this thesis, we have examined the variability of the North Atlantic Ocean on 

decadal to multidecadal timescales, focusing on the surface-subsurface thermohaline structure and 

the overlying atmospheric circulation (Chapter 2). The spatial pattern and time scale of the AMO 

has attracted considerable attention in recent decades, particularly in the context of the attribution 

of large-scale climate variations, such as the recent upward trend in Atlantic hurricane activity, 

the rapid increase in North Atlantic sea surface temperatures as well as in the frequency of 

extreme events. Additionally, there is growing debate on the origin of the AMO itself, especially 

the role of external forcing (i.e. aerosols) versus natural variability. Despite a growing body of 

literature on the characterization of AMO’s spatiotemporal evolution and its impact on regional as 

well as global climate, there is considerable uncertainty and little consensus on the driving 

mechanisms of low frequency variability in North Atlantic thermal structure, especially the 

propagation of the temperature signal in the vertical.  

Climate models remain challenged when it comes to portraying the AMO structure and 

evolution through time, as well as its hydroclimate impact over neighboring continents. Chapter 3 

provides a detailed comparison of the CMIP3 vs. CMIP5 coupled ocean-atmosphere model 

simulations, along with a parallel comparison with observations, in an effort to assess any 

substantial improvements of the CMIP5 models over their CMIP3 versions in capturing decadal-

to-multidecadal pulses in North Atlantic climate and in improving their decadal prediction skill of 

AMO’s robust hydroclimate impacts.  
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Chapter 4, finally, seeks to characterize the AMO variability at deeper ocean levels, 

motivated by the prospect of detecting a pristine signature of AMO variability – one that is 

sequestered from atmospheric forcing (e.g., surface fluxes). Decadal-scale thermohaline pulses 

embedded in the AMO time series, along with AMO-related hydrographic changes are therefore 

targeted, with a particular focus on the subpolar North Atlantic basin and more specifically, the 

Labrador and Irminger Seas. The current study uses salinity and potential temperature data from 

the Met Office Hadley Center’s EN4.0.2 dataset that extend to the present time, and consist of 

subsurface profiles derived from the ARGO global observing system, which is based on profiling 

floats and is complemented by Conductivity Temperature Depth (CTD) profilers and mooring 

data. 

The central issues of the thesis can be summarized as follows:  

• The	
  3-­‐dimensional	
   structure	
  of	
   the	
  AMO,	
  based	
  on	
  observations	
   and	
  CMIP5	
  

20th	
  century	
  historical	
  climate	
  simulations	
  (chapter	
  2).	
  

• Uneven	
  progress	
   in	
   the	
   representation	
  of	
  AMO	
  and	
   its	
   hydroclimate	
   impact	
  

between	
   CMIP3	
   and	
   CMIP5	
   simulations	
   of	
   20th	
   century	
   climate	
   by	
   coupled	
  

ocean-­‐atmosphere-­‐land-­‐surface	
  models	
  (chapter	
  3).	
  	
  

• Proposed	
   definition	
   of	
   the	
   AMO,	
   using	
   (5-­‐967m)	
   vertically	
   integrated	
   heat	
  

content	
  data,	
   in	
   an	
  effort	
   to	
   capture	
   low-­‐frequency	
  variability	
   in	
   the	
  deeper	
  

ocean	
  layers	
  (chapter	
  4).	
  

• Decadal-­‐to-­‐multidecadal	
   variations	
   in	
   the	
   thermohaline	
   structure	
   of	
   the	
  

subpolar	
  North	
  Atlantic	
  in	
  relation	
  to	
  the	
  AMO,	
  with	
  a	
  particular	
  focus	
  on	
  the	
  

Labrador	
  and	
  Irminger	
  Seas	
  (chapter	
  4).	
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• Link	
   between	
   AMO’s	
   decadal	
   variability	
   and	
   meridional	
   surges	
   of	
   the	
   Gulf	
  

Stream,	
  and	
  thus	
  with	
  the	
  low-­‐frequency	
  North	
  Atlantic	
  Oscillation.	
  

• Hints	
   of	
   subpolar,	
   North	
   Atlantic	
   subsurface	
   cooling	
   leading	
   the	
   surface	
  

during	
  the	
  past	
  decade	
  (chapter	
  4). 

5.2 Summary and Concluding Remarks 
 

A clarified description of AMO’s spatiotemporal structure and evolution emerges from 

century-long observations. A period of 58 years is inferred for the smoothed AMO from 

observations, which is smaller than other estimations in the 65-75 years range (e.g., Enfield et al. 

2001, Sutton and Hodson 2005); these other estimates are based on the use of heavy smoothing of 

the area-averaged SST anomalies, as compared with the 1-2-1 binomial filter used in chapter 2. 

Spectral analysis shows that oscillations in the 70-80 year range are dominant in the observed 

smoothed AMO index; these are combined with oscillations in the 30-40 year range and shorter 

periods. Models, however, underestimate the life span of the phenomenon by exhibiting more 

power in the 10-20 year range, to the extent that it becomes more dominant than variability in the 

70-80 year range. 

Sea surface temperature anomalies are shown to be associated with vertically-integrated 

heat content anomalies (sfc-400m) that evolve coherently in time, as well as vertically integrated 

(sfc.-50m) salinity anomalies - particularly the positive anomalies developing over the Labrador 

Sea and the negative ones off of the US coast. While this configuration of SST/salinity/heat 

content anomalies over the deep water formation region of the sub-polar gyre points toward a 

more active thermohaline circulation during the warm phase of the AMO, the cold phase of the 

AMO suggests a weaker thermohaline circulation and fresh water anomalies, similar to the ones 
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evolving during Great Salinity Anomaly events. The atmospheric anomalies associated with the 

North Atlantic low-frequency SST variability was obtained from regressions of the seasonal 

AMO index on the 500 hPa geopotential height field. This regional height anomaly potentially 

includes the impact of synoptic transients (i.e., weather noise) which also influences regional SST 

evolution (through surface-flux modulation) as well as the feedback of the altered SST 

distribution on the atmosphere. The tropospheric height signal is stronger in winter and weaker 

during summer, but present year-round.  

The fall season appears to be of critical importance as far as interactions between the 

AMO and the regional surface climate of the adjacent continents are concerned; an anomalous 

wave pattern extending from North America to eastern Europe is linked to reduced (enhanced) 

rainfall over large portions of the Americas (western Africa, over the Guinean region) and 

generalized warming over the western Americas, Greenland, Europe and northwestern Africa, 

during that season. 

The modeled AMO structure that emerges via the CMIP5 historical simulations 

demonstrates limited success, particularly on the continental climate impact front. Furthermore, 

spatial correlations of the observed and simulated anomalies do not indicate significant 

improvement between the CMIP5 20th century climate simulations and their previous, CMIP3 

versions. For instance, the representation of the mature warm phase of the AMO shows some 

improvement, but not across all the models. As far as the AMO timescale is concerned, while 

observations indicate a period close to 56 years, the NCAR, GFDL and MPI CMIP3 and CMIP5 

models underestimate this value, whereas the UKMO models go from exhibiting an extremely 

low period (~16 years) in their CMIP3 version to overestimation (~68 years) in their CMIP5 

version. It is clear that both sets of models underestimate low frequency variability in the 70-80 
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and 30-40 year ranges, while overestimating variability at higher frequencies (10-20 year range). 

Finally, analysis of the AMO regressions in model simulations reveals no significant CMIP3-to-

CMIP5 improvement in the related oceanic and hydroclimate impacts. Pattern correlations with 

observed SST and precipitation anomalies are smaller in CMIP5 than in the CMIP3 simulations 

in both summer and fall! 

The final chapter of the thesis focuses on the vertical extension of the AMO signal in the 

deeper ocean and the link between surface variability and low-frequency changes in the North 

Atlantic thermohaline (density-driven) circulation (THC). We have proposed a vertically 

integrated, ocean heat content AMO index definition, in an effort to capture the thermal state of 

the ocean (0-1000m heat content) and not just of the sea surface as in the canonical AMO-SST 

indices. The principal findings of this part of the analysis are:  

• The AMO-SST index lags the AMO-HC index by about 5 years, with maximum 

correlation of 0.69, observed at a 4-year lag between the two smoothed (Loess 25%) time 

series.  

• The AMO-HC index is suggestive of a cooling North Atlantic subsurface in the recent 

years (mid-2000s –present), a feature that is almost absent (minimal) from the ocean 

surface and one with significant implications in a) predicting future North Atlantic 

climate, b) attributing its variability to human versus natural fluctuations and forcing, and 

c) anticipating its co-variability with global climate, especially in the context of a recent 

slowdown in the rise of global average temperatures (hiatus) which was noted in the last 

assessment report of the IPCC.  
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• The AMO-HC index’s lead over the SST index and its indication of a decadal respite in 

warming has profound implications for both decadal prediction and estimation of 

anthropogenic warming. 

• The AMO timescale shrinks significantly (by almost 25 years) when estimated using the 

subsurface (i.e., heat-content) based index to describe the phenomenon; the timescale 

estimated using the surface (i.e., SST) based index, in contrast, is close to 50 years. The 

difference is potentially attributable to the thermal Rossby mode, an internal oceanic mode 

representing westward-propagating temperature anomalies in the ocean subsurface, with a 

period of 20-30 years. This propagation is not expected to be pronounced at the surface 

(i.e., manifest in SSTs) as it can be   overwhelmed by the influence of atmospheric 

‘weather noise’ and the presence of the eastward-propagating Gulf Stream. It can however 

remain uncorrupted at subsurface levels, and could possibly be responsible for the 

dominance of the 20-30-year time period in the AMO-HC index. 

• Lead-­‐lag	
   regressions	
   of	
   AMO-­‐HC	
   index	
   on	
   SST	
   and	
   upper-­‐ocean	
   (5-­‐315m)	
   salinity	
  

and	
   heat	
   content	
   reveal	
   coherent	
   AMO	
   evolution	
   beginning	
   with	
   northward	
  

excursions	
  of	
  the	
  Gulf	
  Stream,	
  as	
  envisioned	
  by	
  Vilhelm	
  Bjerknes	
  in	
  1964.	
  

• In the Labrador basin, the potential temperature, salinity and potential density based only 

on temperature/salinity profiles indicate a downward propagation of positive, surface 

anomalies through time, with the penetration depth increasing as we move forward in 

time. Surface salinity maxima seem to precede surface temperature and are constrained to 

the top, near surface layers (~300-400m); fluctuations in the net density field are 

dominated by salinity changes. 
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• Thus, with positive salinity anomalies, the water density increases in the Labrador Sea, in 

the positive AMO phase. 

• In the Irminger basin, changes in temperature and salinity do not compensate completely, 

leading to negative (lighter) potential density anomalies. Temperature appears to be more 

influential than salinity in determining the sign and magnitude of the potential density 

fluctuations.  

• As both cold-fresh (negative density) anomalies in the Labrador Sea during the negative 

phase of the AMO, and warm-salty (negative density) anomalies in the Irminger Sea 

during the positive phase of the AMO mix downward, wind-induced turbulent mixing 

must dominate; AMO’s temperature and salinity anomalies take about 8 years to reach a 

depth of approximately 400m. 

• On seasonal timescales, we note year-to-year variability in both basins, indicative of 

recurring wintertime SST anomalies that are being sequestered below the seasonal 

thermocline during the spring and summer seasons and re-emerge in the following late 

fall/early winter.  This is consistent with past studies on the re-emergence of wintertime 

SSTs (i.e. Cassou and Deser 2007, Deser et al. 2000).  

• Salinity and temperature profiles are characterized by statistically significant correlations, 

at the given lags. 

• Analysis of the vertically averaged (5-657m) thermohaline anomalies in the subpolar 

North Atlantic shows net density to track salinity (temperature) in the post (pre)-1980s 

period. It is shown that it takes about 5 years for the surface signals to propagate 

downward into the subsurface, with no compensation of the anomalies occurring in the 

vertical. This feature can be further explored in future research, both in context of North 
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Atlantic subsurface cooling in the 2005-onward period (Fig. 4.2) and the evolution of 

extreme interannual conditions in the subpolar North Atlantic, such as the years 2008 and 

2012 (years with extremely cold winter seasons and a deeper, more expanded mixed layer, 

starting from the Labrador Sea, including all of the Irminger Sea and progressing 

southward along the coast of northeastern US). 

• Finally, and importantly, our quest to understand the origin of AMO variability, especially 

its surface-subsurface variability on decadal-multidecadal timescales in the subtropical, 

midlatitude, and subpolar basins of the North Atlantic led us to the Gulf Stream, and its 

variability index (GSI, Joyce, WHOI, personal communication). Our analysis of GSI’s 

temporal relationship with the AMO indices shows AMO’s decadal variability to be 

linked with meridional surges of the Gulf Stream, and thus with the low-frequency NAO. 

• The Gulf Stream Index is found to lead both the AMO-HC and AMO-SST indices by 10 

(35) seasons, while lagging the NAO index by 4-8 seasons; the lagged relationship with 

the NAO-wind forcing is consistent with enhanced or reduced southward Ekman 

transports within the North Atlantic basin.   

5.3 Future Research 
 

The current work is in early stages in context of the understanding of AMO variability – 

its structure and mechanisms. Additional research will clearly be necessary to advance our 

understanding of AMO-related surface, subsurface and overlying atmosphere variability in 

various North Atlantic basins, and especially their links to the other slowly-varying phenomena in 

this basin. First, a more refined description of the links between thermohaline variability at the 

ocean’s surface and the vertical propagation of AMO signals on intraseasonal-to-decadal and 
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multidecadal timescales needs to be obtained from various observational data sets and climate 

simulations.  

Much remains unknown also about the drivers of net sinking processes leading to different 

mixed layer depths in key regions, such as the Labrador and Irminger Seas. Second, an extended-

EOF analysis of the AMO-HC is warranted as an index-based analysis is not keyed to 

spatiotemporal recurrence and inter-basin connections. Finally, the Gulf Stream’s latitudinal 

shifts and their link to the North Atlantic atmospheric circulation and hydrographic changes in the 

northern latitudes require additional investigation.  

A mechanistic model of the NAO-GSI-AMO decadal interaction is proposed based on the 

thesis findings. Coupled ocean-atmosphere modeling will be helpful in corroborating or 

invalidating this model. The model building blocks include: 

– NAO (linked with -ve SSTs and +ve westerlies in subpolar Atlantic) leads to 

northward excursion of the Gulf Stream; the dynamical processes leading to 

northward excursion of the Gulf Stream remain to be elucidated. 

– Inundation of the Labrador and  Irminger Basins with warm-salty water, and its 

continued intrusion in Iceland & Greenland Seas leads to a –ve NAO  

– Resulting northeasterlies drive cold-fresh water from the sub-Arctic to the subpolar 

North Atlantic (from strengthened E. Greenland current), setting the stage for 

return of +ve NAO phase; completing the cycle.	
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