
ABSTRACT

This study used remotely sensed land cover and topographic data, maximum likelihood 

classification, and spectral mixing analysis to characterize current landscape patterns and quantify 

land cover change from 1985 to 2003 in the Southeastern Bolivian Andes. Current land cover was 

mapped into 9 classes with an overall accuracy of 89%. The change analysis demonstrated 

significant gains in bare and cultivated land (4.4% and 4.1%, respectively) at the expense of 

forest and pasture (losses of 4.8% and 3.9%, respectively). Spectral mixture analysis indicated 

that communal rangeland degradation (as measured by changes in proportions of green 

vegetation, non-photosynthetic vegetation and bare soil on the landscape) may have occurred, 

especially where conversion of land to more productive uses is restricted by soil fertility, 

topography, and climate. The study demonstrated that remotely sensed data and traditional image 

analysis techniques can be used to characterize land cover and land cover change in remote, 

mountainous areas.
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1.0 INTRODUCTION

Many regions of the developing world are experiencing profound and rapid change.  

Adoption of modern standards of living and farming systems in lieu of traditional practices is 

often accompanied by population growth, resulting in a change in both the type and extent of 

human activity on the land.  The outcome is rapid landscape transformation and the subsequent 

degradation of water resources.  Ideally, the management of the resulting environmental problems 

is guided by science; however, assessing the implications of landscape transformation in rapidly 

changing and remote regions of developing countries is difficult because limited field data are 

available and detailed field analyses are not practical. Therefore, expedient regional assessments 

must be designed to produce applicable, high-quality scientific data with limited resources so that 

important landscape dynamics in critical watersheds can be identified and targeted for 

management, conservation, and continued investigation.  In addition, research must be designed 

and performed as a basis for future research assessing changes in ecological condition of the 

landscape and water resources.

Ecosystems of the high elevation (3000 – 5500 m above sea level) Central Andes region 

(Peru, Bolivia, Chile, and Argentina, Figure 1) of South America are extremely vulnerable to 

climatic factors and anthropogenic activities (Brush 1982).  Historically, global climate change 

cycles have been shown to profoundly influence shifting vegetation zones and hydrologic regimes 

(Barry and Seimon 2000).  In contrast to temperate mountain regions, the South American 

highlands have a long history of human occupation and landscape transformation driven by 

anthropogenic activity (Ellenberg 1979; Messerli et al. 1997). In recent years, population growth 

and infrastructure development have caused agricultural intensification and changes in traditional 

land use practices (Baied and Wheeler 1993; Hamilton and Bruijnzeel 1997; Grau and Brown 

2000). Consequently, landscape transformation is occurring in multiple forms and at an 
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accelerated rate.  The combined impacts of global climate change and accelerated land use 

change on hydrologic regimes in this region are of great concern. 

Figure 1. Shaded Relief Map of South America (Hearn et al. 2000) Showing Study Site Location.

The utility of remote sensing (RS) and Geographic Information System (GIS) data to 

explore relationships between terrestrial and aquatic processes has been clearly demonstrated. 

These are valuable tools for determining how catchment land use, geomorphology, and landscape 

pattern affect water quality and biotic integrity (Roth et al. 1996; Allan et al. 1997; Johnson et al.

1997; Wang et al. 1997; Wang and Yin 1997; Ballester et al. 2003). RS/GIS data provides 

information on current and past landscape patterns, which can be used in models to estimate 

future landscape dynamics and their affects on hydrologic regime (Allan et al. 1997; Miller et al.

2002). RS and GIS are especially useful tools in the study of remote regions where extensive field 

data collection is limited for economic and logistical reasons. For example, the RS/GIS approach 

has been used successfully in high altitude landscapes to identify watersheds most vulnerable to 

Study Site
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degradation in the Himalayans (Smadja 1992; Millette et al. 1995) and to investigate changes in 

vegetation zones due to global climate change in (Grace et al. 2002) .  

The study of land cover change using RS in Latin America has mostly occurred in flat, 

low-altitude, humid rainforest regions. RS has been used to study patterns and rates of 

deforestation, agricultural conversion, and urbanization with increasing accessibility into and 

colonization of these vast and previously uninhabited areas (Adams et al. 1995; Roberts et al.

1998; Ballester et al. 2003; Lu  et al. 2003; Roberts et al. 2003; Souza et al. 2003). In comparison, 

there are few examples of the use of RS in the mountainous Andean region of Latin America 

(Washington-Allen et al. 1998; Allan et al. 2002). 

The current study area is in the Central, high-altitude Andes, a region that has been 

densely populated for thousands of years. The arid climate and mountainous terrain control the 

ways in which humans can use the land. Soils suitable for agricultural are limited to the flat, 

moist, fertile soils of the valleys. Forested areas are scarce, and limited to very steep slopes where 

cultivation or grazing is not possible. Low, seasonal rainfall and cold nighttime temperatures limit 

agricultural production and forest regeneration. Due to these environmental constraints and the 

present dense population, land available and appropriate for increased use and production are 

extremely limited, and potential for land cover conversion is very low. Yet, population and 

pressure on the land continues to grow, resulting in intensification of current land use along with 

land use conversion.

The primary objectives of this study are to: (1) identify rates and types of land use and 

land cover change (LULCC) in a rapidly changing, extremely sensitive region, (2) determine 

relationships between landscape change and environmental and anthropogenic factors, (3) 

develop a model that can estimate future change, and (4) determine regions of South America 

with environmental conditions similar to those of the study site and therefore subject to similar 

degradation pressures. A variety of geospatial data and methods are used to address these 

objectives. Shuttle Radar Topography Mission (SRTM) data and a Geographic Information 
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System (GIS) allow an assessment of the boundaries, topography, and demographic 

characteristics of the region. Recent and historical remote sensing data facilitate the determination 

of current environmental conditions as well as the nature and rate of vegetation and land cover 

change through the past two decades. The Clue-S model framework (Verburg et al. 2002) allows 

the testing of the hypothesized drivers of landscape change. Finally, a multivariate ecoregional 

analysis of South America will facilitate the identification of regions where environmental 

conditions are similar to those at the study site and to determine other watersheds where the 

model can appropriately be applied.

1.1  Environmental Conditions and Hydrologic Regime of the Central High Andes 

The environmental conditions and ecosystems of the high elevation (3000-6000 meters 

a.s.l) cordillera (mountain range) and altiplano (high plateau) regions of the Central Andes are 

unique.  The climate of the region is tropical and dry in that seasonal temperature differences are 

small and the low annual rainfall (300- 800 mm/yr) occurs almost exclusively during the 4-month 

rainy season (Seibert 1983). Large diel temperature fluctuations and intense solar radiation at the 

higher elevations combine with this dry, seasonal precipitation regime to create extremely harsh 

environmental conditions (Baied and Wheeler 1993). Vegetation has evolved according to this 

harsh climatic regime. The dominant ecosystem of the Central High Andes is the Puna, or the 

Highland Andean Grassland (Baied and Wheeler 1993). Vegetation type and distribution in the 

Puna is driven by elevation and localized wind-driven climatic patterns and include a diverse 

plant cover of grasses, dwarf shrubs, and peat bog vegetation in local wet areas and spiny shrubs 

and cactuses, deserts, and salt lakes in the arid regions (Seibert 1983).  Vegetation zones below 

the Puna include the Elfin forest (Pre-puna), the Highland Andean forest, dominated by dwarf and 

evergreen forests and meadows.

Paleoclimatic and hydrologic studies in the Altiplano of the Central Andes have 

demonstrated the vulnerability of the hydrologic regime to climatic change (Baied and Wheeler 

1993; Barry and Seimon 2000). Modern recharge of groundwater in the area is very limited, and 
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current pools were formed during past humid periods (Messerli et al. 1997; Rundel and Palma 

2000).  Periodic climatic cycles, such as El Niño and the Southern Oscillation (ENSO), drive 

annual precipitation and river flow variation (Carril et al. 1997) and can trigger major flooding 

events (Depetris and Paolini 1991), which are often the impetus for ecological change and can be 

disastrous for humans (Hamilton and Bruijnzeel 1997).  

The seasonal precipitation regime has a profound impact on stream hydrology and 

chemistry. Precipitation falls almost exclusively from December to March.  Accordingly, large 

water flows and material fluxes occur during the rainy season, and the magnitude of this seasonal 

variability depends on basin geomorphology (Wurtsbaugh et al. 1985; Wasson et al. 1991; Guyot

et al. 1992; Wasson et al. 1998).  Basins can be divided into two general types: highly erodible 

sedimentary formations of the Altiplano and relatively resistant igneous and metamorphic 

formations of the Cordilleras. Guyot et al. (1992) compared two adjacent Bolivian highland 

basins of distinct geological origin but similar annual discharge and dissolved erosion rates. Total 

annual sediment erosion rates were much higher for the sedimentary Altiplano basin due to large 

sediment fluxes during the rainy season.  These sediment fluxes act as a disturbance event to 

benthic communities of the sedimentary basin and are the primary drivers of benthic community 

dynamics. In granite basins, seasonal variability is less pronounced, and benthic communities are 

under biotic control (Wasson, Marin et al. 1998). Phosphorous (P) and nitrogen (N) dynamics are 

also driven by basin geology.  Low N:P ratios of rivers can be linked to the high contribution of 

dissolved and particulate P from the volcanic and sedimentary formations compared to the 

relatively low amounts of biologically fixed N contributed by the sparsely vegetated grass and 

shrublands (Wurtsbaugh et al. 1985; Carney  et al. 1993) .

1.2  Land Use Practices and Impacts on Watershed Dynamics

1.2.1 Traditional Practices as a Driver of Landscape Change

Throughout the region, traditional agricultural and grazing practices of the ancient Incan 

civilization still persist today in varying degrees (Ellenberg 1979; Baied and Wheeler 1993).  
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“Staggered” cropping systems maximize the productive potential of the different elevation zones, 

and terrace and irrigation systems maximize agricultural production on the steep slopes and with 

limited precipitation (Hamilton and Bruijnzeel 1997).  Cultivation is traditionally performed by 

hand, causing minimal disturbance of existing vegetation of cultivated fields. In addition, the 

Incans domesticated the endemic llama and alpaca, specifically adapted to the fragile soils, harsh 

climate, steep slopes, and low-nutrient vegetation, and which provide wool, meat, dung and labor 

(Seibert 1983).

Landscape transformation at a regional scale resulted from these traditional agricultural 

and pastoral practices. Vast areas of grassland (traditionally believed to be the climax vegetation 

of the Altiplano) are now considered to have replaced natural dense forest (Ellenberg 1979; 

Laegaard 1992; Kessler 1995; Kok et al. 1995; Sarmiento and Frolich 2002). Kessler (1995) 

studied environmental conditions of distribution of the dominant high altitude forest species 

Polylepis throughout Bolivia and concluded that its distribution is only about 11% of its potential 

distribution.

1.2.2 Recent Land Use as a Driver of Landscape Change

Land use has changed since the Spanish Conquest (1500’s) and with increased 

modernization, infrastructure development, and population growth since the 1950’s (Ellenberg 

1979; Hamilton and Bruijnzeel 1997).  Widespread deleterious affects of changes in land use 

resulted from the introduction of European domestic animals (Baied and Wheeler 1993; Rundel 

and Palma 2000). Moreover, an increase in individual property and profit incentives have driven 

an increase in use of inappropriate, steep sloped lands, and a decrease in the maintenance and use 

of communal irrigation systems and terraces.  These changes also drive a need to increase crop 

and pasture area, and consequently, the use of fire to clear forest and stimulate pasture growth 

(Ellenberg 1979).  
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1.2.3 Effects of Landscape Change

Landscape-scale transformation from forest or shrubland to grassland has profound 

implications for hydrologic regime at the catchment scale. Vegetation cover and land use are 

important determinants of infiltration and erosive processes of precipitation, and therefore of 

biological integrity and stream water quality (Roth et al. 1996; Allan et al. 1997; Johnson et al.

1997; Wang et al. 1997; Wang and Yin 1997). Mountain streams are particularly vulnerable to 

influences of catchment vegetation cover and land use change as highland streams are generally 

smaller and lower-order, and therefore relatively unable to buffer water flow and material flux 

variability (Flecker and Feifarek 1994; Monaghan et al. 2000).  Canopy and litter of natural 

forests protect the soil from rainfall energy, its tree roots aerate and hold the soil in place, and the 

forest soils maintain high infiltration rates. With deforestation, total runoff and magnitude of peak 

flows increase (Likens et al. 1970). The decrease in soil water retention and water buffering 

capacity observed in a catchment in transition from forest to agriculture in the Ecuadorian Andes 

(Buytaert et al. 2002) has great implications for watersheds with steep slopes and thin soils 

subject to seasonal, episodic rainfall. Permanent replacement of forest vegetation with land uses 

such as grazing, agriculture, road construction, and human settlements severely compact the soil 

and reduce its vegetation cover. This results in a decrease in infiltration, evapotranspiration, and 

stream dry season baseflows, and an increase in overland flow, erosion, stream peak flow, and 

stream sediment loads (Hamilton and King 1983). Deforestation also drives changes in the 

physical structure of streams (Karwan et al. 2001), which in turn determines factors such as 

stream discharge, depth, and current velocity that are important factors in nutrient uptake, 

sediment movement, and biotic integrity (Peterson et al. 2001).  

  Although traditional land uses have caused gradual broad-scale deforestation, they cause 

relatively little erosion and degradation when compared to more modern practices (Ellenberg 

1979; Seibert 1983; Sarmiento 2000). On soils with agricultural land cover, management 

strategies such as contour cropping and low intensity grazing practices can greatly reduce soil 
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erosion and compaction rates (Seibert 1983; Brooks et al. 1991). Carney (1993) demonstrated the 

ability of traditional raised-bed agricultural fields to use nutrients, moderate seasonal nutrient 

load variability, and improve stream-water quality in the Lake Titicaca basin of Bolivia compared 

to stream reaches of the modern flat crop and pasture fields.  

Road construction and mining in the region are recent agents of landscape change and 

watershed deterioration (Seibert 1983).  For example, a 500-fold increase in suspended sediment 

and a 200-fold decrease in total invertebrate abundance was observed downstream of a road 

construction site in a small tributary of the Coroico River in the Bolivian Andes (Fossati et al.

2001).

1.3  Land Use and Land Cover Change Assessment

Remotely sensed (RS) data allows assessment of landscape characteristics at a spatial and 

temporal scale not possible using other techniques. It can be used to study remote regions where 

field data collection is prohibitively expensive, and for past time periods for which field data does 

not exist. RS data is commonly interpreted to classify the landscape into land cover classes, 

allowing a categorical and quantitative representation of the landscape. In this way, study regions 

can be compared with each other and with past conditions. The most common classification 

technique is to categorize an entire study area based on classification algorithms derived from 

training areas of distinct land uses identified in the field (Lillesand and Kiefer 1994). 

A relatively new technique, spectral mixing analysis (SMA), has also been used to 

characterize landscape composition in regions where historical and contemporary land cover data 

are scarce. SMA is based on the premise that a landscape consists of a very few pure materials, 

called endmembers, e.g. water, bare soil, and green vegetation. SMA is used to assess each cell’s 

spectral reflectance according to the type and proportion of each endmember in the pixel. 

Different land cover types differ in their relative proportion of each endmember leading to 

differences in spectral reflectance. Land cover classification has been performed based on SMA 

results, but did not include rigorous assessments of the classification accuracy (Adams et al.
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1995; Roberts et al. 1998; Souza et al. 2003). Perhaps its greatest utility lies in its potential to 

identify differences within broad land cover types. For example, it has proven effective in the 

classification of successional forest stages (Lu et al. 2003), to identify spectral changes occurring 

with pasture age (Numata et al. 2003), and to detect vegetation cover and change in vegetation 

abundance in a semi-arid region of California (Elmore et al. 2000; Okin et al. 2001).

1.4  Land Use and Land Cover Change Modeling

Growing awareness of the impact of land cover change on terrestrial and aquatic systems has 

stimulated considerable interest in the development of LULCC models. LULCC models attempt 

to predict transitions between defined landscape states (Figure 2). The simplest models calculate 

transition probabilities from the proportion of change that actually occurred during a specified 

time interval (Baker 1989; Urban and Wallin 2002). More advanced models incorporate the 

influence of neighborhood functions and locational characteristics (Turner 1987; Wear et al.

1998; Jenerette and Wu 2001; Parker et al. 2002; Peterson 2002; Urban and Wallin 2002), 

socioeconomic factors (Wear and Bolstad 1998; Parker et al. 2002), and empirical relationships 

between land cover and driving factors (Hall et al. 1995; Wear and Bolstad 1998).

(Forest) (Pasture)

P13

P31

P23P121 2 3

Figure 2. A hypothetical representation of transitions between forest, agriculture, and pasture. 
Arrows indicate probability (P) of transition between classes.

The CLUE-S modeling framework, used in this study, incorporates several factors shown to 

influence LULCC (Veldkamp and Fresco 1996; Veldkamp and Fresco 1996; Verburg et al. 1999; 
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Verburg and Chen 2000; Kok et al. 2001; Veldkamp and Lambin 2001; Verburg et al. 2002; 

Verburg et al. 2002; Verburg et al. 2002; Veldkamp and Verburg 2004). Logistic regression 

models are developed to determine the empirical relationships between landscape composition 

and environmental and demographic variables. The model then decides the land cover of a cell 

based on pixel characteristics, the logistic regression, land use conversion elasticity (resistance to 

change), and overall demand for each land cover. Since demand is determined at the regional 

scale, the model incorporates a multi-scale allocation approach.

1.5  Ecoregional Theory

Ecoregions are geographical zones where environmental factors combine to form similar 

ecosystem processes and, possibly, responses to anthropogenic disturbance. The development of 

the idea of ecosystems as formed by environmental conditions has had implications for 

biodiversity conservation activities and has been a powerful tool for environmental managers and 

ecological scientists. Ecoregional theory calls for a switch from species-based conservation to a 

focus on the persistence of landscape-level environmental processes (Delcourt and Delcourt 

1998), and is also the basis in many attempts to predict vegetation and habitat shifts due to global 

climate change (Davis 1989). It also has been used to highlight regions that are most distinctive in 

their biodiversity features such as species endemism and species richness (Olson et al. 2001). The 

utility of ecoregional theory in the classification of aquatic systems is a field of current 

exploration and debate (Gerritsen et al. 2000; Hawkins et al. 2000) .

 Ecoregions have been identified using many different approaches, depending on the 

method and objective of the delineation. One general approach is the determination of regional 

boundaries based on detailed information about ecosystems at the site level.  The most prominent 

example is the global ecoregional delineation of the World Wildlife Fund (WWF) (Dinerstein et 

al. 1995). It is an intensive and subjective method, in that the delineation is based on 

collaboration between regional biogeographers, taxonomists, conservation biologists, ecologists, 

and a diverse set of data sources, including existing habitat classification, vegetation and life zone 
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maps. Similarly, Abell et al. (2000) delineated North America into freshwater aquatic ecoregions 

based on site-specific knowledge of species assemblages in freshwater aquatic environments. 

Omernik (1987) delineated the U.S. into ecoregions to provide a framework for classification and 

management of aquatic systems. He used pre-existing maps of land use, potential natural 

vegetation, land surface form, and soil taxonomy to draw ecoregional boundaries on a single map.  

A second general approach to ecoregional delineation is based on environmental factors 

that contribute to and create variation among ecosystems. For example, Bailey (1983) divided the 

continental US into ecosystem units where the same kinds of vegetation and soil associations are 

expected. Approaches of the WWF and Bailey are hierarchical in that successively smaller 

ecosystems are defined within larger regions. In contrast, a non-hierarchical ecoregional 

classification addresses ecosystem variability through the clustering of principal environmental 

factors into similar regions based on the multivariate analyses (Bernert et al. 1997; Hargrove and 

Hoffman 1999). Units are not nested within larger regions, but are defined only by relative 

similarity.  

The non-hierarchical clustering technique is non-subjective in that site-specific 

knowledge or pre-existing maps are not used, and results are based entirely on the environmental 

data. Whereas many ecoregional maps represent species biodiversity or actual vegetation cover, 

clustering approach determines similarity between landscape characteristics, and can be used to 

investigate various processes, dependent on the focus of interest. For example, clustering has also 

been performed in other types of landscape classification, such as determination of relative risk to 

forest fire (Omi et al. 1979) or a regional assessment of relative watershed degradation (Jones et 

al. 1997). In the current study, ecoregions were delineated based on topographic and climatic 

drivers of landscape composition to determine areas of South America with similar environmental 

characteristics, landscape processes, and response to disturbance and change.
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1.6  Research Questions

The study site is a 5,367 km2 area in southeastern Bolivia encompassing the Sama 

Mountain Range Biological Reserve (Sama). Sama is a protected area of the Bolivian government 

established to 1) conserve a representative area of the Puna biome, and 2) protect the headwaters 

of the Guadalquivir River, that provides water for the city of Tarija and other rural populations 

(Ayala Bluske 1998). The main threats to the landscape in the region have been identified as: 1) 

the advance of the agricultural and pastoral frontier caused by population growth and 

deterioration of existing cropland and pasture; 2) deterioration of the landscape due to 

unsustainable agricultural practices, overgrazing, and the presence of non-native grazing species; 

and 3) deforestation due to logging for firewood (Ayala Bluske 1998). To determine the rate, 

extent, and pattern of landscape transformation occurring in and around Sama due to these 

processes, my research addressed the following question:  

What are the changes occurring on the landscape and their relationship with environmental 

and anthropogenic factors?  

This overall question was investigated by asking the following component questions:

What was the distribution and proportion of land cover/land use in 1985?

What was the distribution and proportion of land cover/land use in 2003?

How was land cover/land use (in both 1985 and 2003) related to environmental and 
anthropogenic factors?

What was the rate and pattern of land use change between 1985 and 2003? Were rates and 
patterns of land use change consistent throughout the study area? 

How does the rate and pattern of landscape change relate to specific environmental and 
anthropogenic factors?

Can the rate and pattern of landscape change be accurately quantified?

Can a model be developed that can accurately predict future landscape change in the two 
study watersheds and to estimate landscape change in other watersheds? 

For what other watersheds can the model be used (where are environmental conditions 
similar)?
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1.7  Hypotheses

I hypothesize that environmental and demographic factors combine to drive the pattern of 

land cover and landscape transformation in the study area.  

• Elevation is a primary driver of landscape dynamics. It has been shown in other 

Andean regions that elevation determines potential vegetation zones which 

control human land use practices (Etter and van Wyngaarden 2000; Allan et al.

2002).

o The direct effect of elevation will be tested by examining the 

relationships between LULCC and elevation.

• Slope and aspect influence potential vegetation and human land use, e.g., 

relatively flat land is more appropriate for agriculture than steep mountainsides.

o Topographic effects will be tested by characterizing the relationships 

between LULCC and 1) slope and 2) aspect.

• Along with the constraints that high altitude creates for vegetation, moisture 

availability also restricts vegetation growth in the Central Andes (Baied and 

Wheeler 1993). Zones of relatively high moisture or close proximity to water 

bodies have a higher potential for vegetation and higher potential for use by 

humans as agricultural land. In addition, stream buffer zones may be more highly 

impacted by grazing disturbance because streams are an important water source 

for livestock.

o Moisture availability will be tested by characterizing the relationships 

between LULCC and 1) measures of relative landscape moisture and 2) 

stream buffer zones of varying widths.
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• Population density and accessibility influence landscape dynamics. Patterns of 

human settlement and transit have been shown to correlate with landscape 

transformation in Latin America (Allan et al. 1997) (Hall et al. 1995).

o Anthropogenic effects will be tested by characterizing the relationships 

between LULCC and 1) population density and 2) proximity to major 

roads.

I hypothesize that the combined influences of these factors drive LULCC. Therefore, I 

will also examine the relationship between current land cover classes and hypothesized drivers of

LULCC using logistic regression. 

2.0  STUDY AREA

The study site is a 5,367 km2 area in southeastern Bolivia encompassing the Sama 

Mountain Range Biological Reserve (Sama) (Figure 3). It is part of the Paraná/Plata River basin, 

the second largest drainage system in South America. Sama is a protected area of the Bolivian 

government established to 1) conserve a representative area of the Puna biome, and 2) protect the 

headwaters of the Guadalquivir River, that provides water for the city of Tarija and other rural 

populations (Ayala Bluske 1998). Sama is managed by the local non-governmental organization, 

PROMETA, with support from The Nature Conservancy (TNC). Sama encompasses a unique 

area of the Andean mountain range, the transition between the Eastern Cordillera and the 

Altiplano (high plain). The reserve encompasses 108,500 hectares, contains four distinct eco-

regions, and is home to several floral and faunal species endemic to the unique combination of 

climate, altitude and geomorphology. In addition to biodiversity, the park region contains the 

headwaters for downstream rivers and has great importance as a hydrologic regulator for the 

region.

Within the reserve are 18 indigenous communities containing approximately 5,000 

people that still employ traditional land use practices. The region surrounding the reserve has in 

recent years been experiencing dynamic change. The exploitation of natural gas reserves in Tarija 
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has made the region more prosperous than much of Bolivia, resulting in an increase in 

immigration, infrastructure, and urban development. Landscape transformation is occurring in 

multiple forms, resulting in the degradation in both stream water quality and biotic integrity. This 

study was designed in conjunction with TNC and PROMETA to investigate landscape dynamics 

and hydrologic processes in the headwater catchments of Sama and the surrounding region which 

supply water for local communities and for Tarija, a city of 110,000 inhabitants.
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Figure 3. The Sama Reserve and elevation contours in the study area.
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2.1  Physiographic Zones

The Sama reserve straddles the north-south trending Sama Cordillera, the highest 

mountain range in the region. It separates two physiographic zones of distinctly different climatic 

and topographic characteristics. To the east of the Sama Cordillera lie the steep mountains and 

narrow valleys of the eastern Andean Cordillera (hereafter referred to as the Mountain region). To

the west is the semi-arid, high-altitude plain between the eastern and western Andean ranges 

(Altiplano), consisting mostly of flat and undulating plains between moderately sloping mountain 

ranges.

2.2  Climate and Topography

The study area has a seasonal precipitation regime with greater than 85% of the annual 

precipitation falling between November and March (Carpio et al. 2002). Temporal patterns in 

vegetation growth are controlled by this seasonal precipitation pattern, and all vegetation, except 

for irrigated agriculture, has limited growth during the dry season. At the onset of the rainy 

season vigorous growth of all vegetation ensues and continues throughout the wet period.

Elevations climb dramatically from 1400 m at the eastern edge of the study area to 4650 

meters at peaks of the Sama Cordillera in the center of the study area (Figure 3, Table 1). The 

extreme orography drives considerable climatic differences within and between the two 

physiographic zones. Annual average rainfall in Tarija is low, averaging 500 mm/year (Carpio et 

al. 2002). Air systems move west and rise with the Sama range, and precipitation increases to 

1318 mm/year in Calderillas (Figure 3). As the air rises to the top of the Sama mountain range, it 

is depleted of most of its moisture. West of the Sama range in the arid Altiplano, average annual 

precipitation ranges from 350-500mm. The Mountain region is at a lower elevation (2367m) than 

the Altiplano region (3619m), and has a temperate climate with an annual average temperature of 

18ºC. The Altiplano has a cold, arid climate with an average annual temperature of 11ºC. Intense 

solar radiation during the day causes high maximum temperatures while nighttime temperatures 

commonly drop to below freezing.
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Watersheds in the Mountain region drain into the Guadalquivir River and then south into 

Argentina and the Plata River. The Altiplano region contains two hydrologic systems, 1) Tajzara, 

an endorrheic region which forms a cluster of lakes, and 2) headwater catchments of the 

Pilcomayo River, which also drains eventually into the Plata River.

Table 1. Topographic and Climatic Characteristics of the Mountain and Altiplano Regions.

Elevation (m) Slope (deg) Precip. (mm) Temp. (deg C)

Region Area (km2) min Max mean min max mean Avg. Annual Avg. Annual

Mountain 3357 1491 4623 2367 14 68 11 500-1300 18

Altiplano 1359 2535 4671 3619 11 58 9 350-500 11

2.3  Demography

The environmental differences between the two physiographic zones drive differences in 

patterns of human settlement and activity (Ayala Bluske 1998). In the Altiplano region, arable 

land is extremely limited. The vast majority of the land is used as rangeland, and apportioned by 

long tradition to particular communities. The rights to forests and sand and rock deposits are also 

communally used. Each family has a plot of arable land that they can use in agreement with the 

rest of the community. The Altiplano is sparsely populated, and its inhabitants are extremely poor 

(gross income averages 380$US/year). The major economic activity is llama and sheep herding 

and subsistence agriculture. Seasonal migration to the lowlands during harvest times is common 

(72%).

Land use patterns and traditions in the Mountain region are considerably different, due to 

its higher amount of arable land. Agriculture, pasture, and forest plots are generally viewed as 

private property, although titles to land are not common. Mountain forests and rangelands are 

communal. The mountain region is more populated and less poor (529$US/year), with a lower 

rate of seasonal migration (42%), relative to the Altiplano region. Primary economic activities 

include agricultural production, and cow and sheep herding for crops, meat, leather, and milk for 

subsistence and for commercial sale.
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2.4  Broad Land Use Patterns

The Altiplano landscape is less suited to human habitation than the mountain region. 

Rocky and shallow soils originating from colluvial sediments of the mountain ranges characterize 

most of the region. Aeolian soils are common, sometimes in the form of sand dunes, around the 

saline lakes. The infertile soils and the harsh climatic conditions drive the formation of a vast 

landscape of grassland, shrub, and cactus vegetation, which is used as communal rangeland. Due 

to the scarcity of water, there are no irrigation systems. Agricultural production is confined to 

narrow riparian zones and human habitation occurs in small communities adjacent to perennial 

watercourses. Forests are extremely rare.

The Mountain region is a more fertile and arable region relative to the Altiplano. Figure 4 

shows the Central Tarija Valley portion of the Mountain region divided into several topographic 

and land use zones: 1) the deep and fertile alluvial floodplain terraces from currently existing 

watercourses (Zone F), 2) mountain foothills (Zone D), 3) plains made up of erodible fluvio-

lacustrine deposits of ancient lakes (Zone E), and 4) steep, rocky, mountains and foothills 

dissected by narrow valleys (Zones A, B, and C).



20

Figure 4.  3D Model of Landscape Units and Vegetation Types for the Central Tarija Valley of 
the Mountain Region (from Zonisig 2003)

Agriculture is intensively managed, and confined mostly to the alluvial terraces. 

However, with increasing development of irrigation systems and increased availability of 

chemical fertilizers, agricultural expansion is occurring into the foothills and the lacustrine plains. 

Small-plot, subsistence agriculture prevails, producing a mixed landscape of homesteads, crop 

fields, pastures, and forest plots. Rotation between crops and pasture from year-to-year is a 

commonly observed practice. Most of the urban land in the study area is concentrated in the 

valleys. Small towns, and to a lesser extent the city of Tarija, are also a patchwork landscape of 

houses, garden plots, neighborhood parks, forest patches, roads, and soccer fields.

The primary land cover in the fluvio-lacustrine plains is a dryland evergreen shrub 

vegetation commonly known as churquial. It is distinctive for its large spines, which prohibit its 

Zone Topographic Unit Primary Vegetation Land Use
A medium mountains Grassland, valley forest Communal Rangeland
B high mountains Grassland, arbustives Communal Rangeland
C low hillsides Shrubs, grassland Communal Rangeland
D foothill plains Grassland, crops Pasture, Agriculture
E Fluvio-lacustrine plains Churquial Communal Rangeland
F alluvial terraces Crops, pasture, trees Agric., Pasture, Forest, 

Homesteads
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consumption by grazing animals. Its presence and density in relation to other vegetation is an 

indicator of degradation. In areas of low degradation, churquial is mixed with grasses and other 

shrub and forest vegetation. Severely degraded areas are stripped of all edible vegetation leaving 

only bare soil and dispersed churquial shrubs. Its ubiquity in the fluvial-lacustrine plains indicates 

that landscape degradation in the region is not only dependent upon the intensity of use, but also 

on the vulnerability of the particular landscape unit to degradation. Since these sediments are 

easily eroded with minimal disturbance, normal grazing pressure has caused a loss of topsoil and 

extremely eroded gullies and cliffs.

The humid and sparsely populated foothills and mountains support abundant grassland 

vegetation and are used as communal rangelands. Degraded areas, indicated by bare hillsides or 

churquial-dominated vegetation, were observed during fieldwork. Springs are abundant 

throughout the mountains and provide plentiful water for local communities and the city of 

Tarija. Dense shrub and forest persist in the narrow and steep mountain valleys where the land 

surface becomes inaccessible for livestock.
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3.0  METHODS

3.1  Field Data Collection

Field data for geocorrection and image analysis were collected throughout the study area in 

January - March 2004. Easting, northing, altitude, and descriptive information were recorded for 

35 ground control points (GCP’s). To characterize vegetation cover and to test classification 

accuracies, 85 training points (TP’s) and 64 field verification points (FVP’s) were collected. TP’s 

were selected in the field as representatives of the various land covers present in the study area. 

FVP’s were randomly chosen prior to fieldwork, and subset to include only points within 2 km of 

a road. When possible, each point in this subset was visited in the field. However, due to private 

property boundaries, rugged terrain, and time constraints, many points could not visited. In these 

cases, the point was collected as close to the coordinates as possible. 

In addition to easting, northing, and altitude, I recorded land use and land cover (LULC) 

observations and took photographs at each FVP and TP to aid in image processing and 

classification. LULC observations were recorded for an approximate 100 x 100m sampling area 

surrounding each GPS point. The size of the  sampling area was determined by the equation

A = P(1+2E),   

where A is the dimension of the sample area, P is the pixel size (30 meters for Landsat TM 

imagery) and E is the rectification error (rectification error < 15 m) plus the GPS error (< 15 

meters) (Justice and Townshend 1981). When the 100m x 100m sample area consisted of more 

than one LULC type, a “fuzzy” classification technique was used in field data collection. I 

determined each land cover type present in the area, its proportion relative to entire sample area, 

and its ranked class assignment (Gopal and Woodcock 1994).

In addition to FVP’s and TP’s, incidental points (IP’s) were collected as training data for 

image analysis and classification. IP’s included a description of the land cover and its distance 

and direction from a GPS or reference point while driving or walking.
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3.2  Image Selection

Comparison of a dry season (October 31, 1999) and rainy season (April 1, 1985 and April 

29, 2003) Landsat (LS) images demonstrated the profound effect of seasonal precipitation on 

vegetation cycles. During the dry season, most vegetation is senesced, harvested, or extremely 

reduced due to drought and grazing pressure. Only coniferous tree species and irrigated 

agricultural plots reflect highly in the near-infrared during the dry season. However, during the 

rainy season, all vegetation types are vigorously growing and vegetation patterns are more readily 

detected. Therefore, two rainy season images, April 1, 1985 and April 29, 2003, were used for the 

LULCC analyses. 

The 1985 image was collected with the Landsat-5 TM sensor, whereas the 2003 image 

was collected with an updated sensor (Landsat-7 ETM). Although the updated sensor was 

designed to collect spectral information comparable to that collected with the earlier sensor, 

transformations and spectral enhancements of the bands of different sensors can result in slight 

variations in representation of spectral information. 

3.3  Image Normalization

Spectral normalization is necessary when directly comparing cell values of different 

images to account for differences in atmospheric conditions, sensor variation, or other factors. 

Normalization was performed by extracting cell values from both images of temporally invariant 

areas of extreme brightness and darkness to encompass the entire reflectance range (Collins and 

Woodcock 1996). A linear regression model was generated and applied to the 1985 image to 

calibrate it to the 2003 image. The calibrated 1985 image was used for the spectral mixing 

analysis because cell values from both images were directly compared. The original 1985 image 

was used for the land cover classification and change analysis because the land cover 

classifications were derived from each image separately and the cell values were not directly 

compared. 
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3.4  Topographic Correction

In areas with mountainous terrain, spectral information of Landsat (LS) bands is 

influenced by differences in solar illumination on the landscape, causing variable reflectance 

values for similar vegetation types depending on their topographic location. We attempted several 

methods of topographic correction to normalize the differences in shaded and illuminated slopes, 

including an empirical cosine I correction (Meyer et al. 1993), the SCS correction (Gu, D., 

Gillespie, A., 1998) and the C method (Riano et al 2003). The topographic heterogeneity between 

the two physiographic zones prevented a successful correction of the entire study area. No single 

topographic correction was effective for both the hilly grasslands of the Altiplano region and 

steep grass and forest slopes of the Mountain region.

Variability in surface illumination was addressed indirectly by choosing bands for 

classification that are minimally influenced by shade effects. In some spectral enhancements (e.g. 

tasseled cap transformation) shading effects were accentuated, whereas others were relatively 

unaffected. The Soil Adjusted Vegetation Index (SAVI; derived as {LS band 4 – LS band 3} * 

1.5/{LS band 4 + LS band 3 + 0.5}) (Huete 1989) and the clay mineral index (derived as the ratio 

of LS bands 5 and 7) were especially effective at diminishing shade effects, and in these images 

shaded slopes had similar spectral information as illuminated slopes of the same LULC. 

3.5  Geocorrection

The 2003 image was geocorrected using the GCP’s collected during fieldwork. Root 

mean square (RMS) error for the 2003 image was 5.7 meters (x = 4.0m and y = 4.0m) using 29 

field GCP’s. Many field GCP’s were features that have appeared or moved since 1985, such as 

dirt road intersections, newly constructed asphalt roads, or impoundments. Therefore, the 1985 

image was co-registered to the corrected 2003 image. RMS error was less than 1 pixel (21.4 

meters) (y = 19.8m and y = 8.0m) using 18 GCP’s.
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3.6  Digital Elevation Model

I used a 90m-resolution digital elevation model (DEM) derived by the US Geological 

Survey (USGS) from data collected in February 2000 on the Shuttle Radar Topography Mission 

(SRTM). Gaps in the satellite data caused by incomplete SRTM sensor coverage were filled with 

a DEM developed from 1:50,000 topographic maps of the study area. The 90m DEM was re-

sampled to 30m-resolution for use with the 30m-resolution LS images using the nearest neighbor 

algorithm. 

Derivative images of the DEM that demonstrate incident illumination from the sun were 

compared with the geo-referenced images for co-registration. I measured the offset between the 

DEM and the image at fifteen points throughout the study area. The DEM was shifted according 

to the average offset (x = -82.4m, y = 70.4m).

3.7  Cloud and Shadow Masks

Cloud and shadow masks for the 1985 and 2003 images were developed using the 

software Ecognition version 3.0 (Baatz et al. 2003). Ecognition is an object-based image analysis 

software that considers both spectral characteristics of individual pixels as well as their spectral 

and geometric context. The masks were applied prior to image processing techniques that are 

affected by extreme spectral values (e.g. principal components analysis).

3.8  Primary Classification of the 2003 image 

Classification of the 2003 image was performed using the image processing software 

Erdas Imagine version 8.6 (Erdas 2002) using a 2-step methodology incorporating both 

supervised and unsupervised classification techniques. Supervised classification assigns image 

pixels to land cover classes based on training areas of known land cover identified in the field. All 

supervised classifications in this study used the maximum likelihood classification (MLC) 

parametric rule. During unsupervised classification, the user specifies only the number of classes, 

and image pixels are assigned to classes at first randamonly, then, iteratively based on their 

relative similarity using an Isodata algorithm (Tou and Gonzalez 1974). All unsupervised 
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classifications in this study used a convergence threshold of 0.95 (i.e. class assignments are 

considered stable when greater than 95% of pixels stay in the same cluster between iterations).

Various spectral enhancements were effective in mitigating shade effects and 

emphasizing spectral information of landscape materials. For example, principal components 

analysis (PCA) reduces a multivariate dataset to a smaller number of synthetic variables, 

effectively minimizing noise and accentuating important information. The first step in the 

primary classification was a supervised classification using a stack of layers least affected by 

topographic shading effects. The 5 layer stack included 1) PCA of LS bands 1,2,3 (visible bands); 

2) PCA of LS bands 5 and 7 (middle infrared bands); 3) Soil Adjusted Vegetation Index (SAVI); 

4) clay mineral band, and 5) surface slope. Classes separable with this layer combination were 1) 

forest and shrub, 2) agriculture 3) abundant grassland in the Mountain and Altiplano regions, 4) 

sparse grassland in the Mountain and Altiplano regions, 5) bare lacustrine sediments of the Tarija 

Valley and sand dunes of the altiplano region, 6) urban areas, riverbeds, churquial, and cactus, 

and 7) water. In this classification, agriculture in the fertile river valleys was identified as one 

cover class, rather than separated into its actual composition of small plots of rotational crops, 

pasture, forest, and homesteads. The spectral information in this 5-layer stack was not sufficient 

to separate  the heterogeneous land covers of the intensively managed agricultural regions. 

To effectively characterize this mixed landscape, I subset the agricultural class from the 

initial classification. The agricultural regions of the study area are flat (0-2% slope), and therefore 

unaffected by illumination and shading effects prevalent in the mountains. I performed an 

unsupervised classification to divide the agriculture class into 50 classes using a stack of layers 

with high spectral information for vegetation cover types, including 1) LS band 4; 2) PCA of LS 

bands 1, 2, and 3; 3) PCA of LS bands 5 and 7, and 4-6) Tasseled Cap bands 1, 2, and 3 (which 

emphasize the soil, vegetation, and moisture properties of landscape materials, respectively) 

(Crist and Cicone 1984). Using training data, I manually labeled each of the 50 classes as crops, 
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valley pasture, or forest. I then superimposed the new subset classification onto the original 

supervised classification. 

The final classification consisted of 1) forest and shrub, 2) agricultural crops 3) valley 

grassland, 4) abundant mountain grassland, 5) sparse mountain grassland, 6) bare lacustrine 

sediments of the Tarija Valley and sand dunes of the altiplano region, 7) urban areas, riverbeds, 

churquial, and cactus, and 8) water. 

3.9  Secondary Classification of the 2003 and 1985 Images

It was necessary to derive LULC maps with consistent classification schemes from both 

the 1985 and 2003 images to investigate recent changes in LULC that have occurred in the study 

area. Two factors prevented the use of the primary classification scheme and methodology for the 

1985 image. First, I used transformations and spectral enhancements of the Landsat-7 ETM  

sensor bands in the 2003 primary classification that did not perform similarly for the 1985 image 

collected with the Landsat-5 TM sensor. The combination of bands effective in the 2003 image 

classification produced different landscape patterns in the 1985 image. For example, using the 

same 5-layer stack of the primary classification, large areas of the Altiplano rangelands classified 

as forest in 1985, for which there is no historical evidence. The second limitation of the 2-step 

methodology is its heavy reliance on detailed field data, especially in the agricultural regions. 

Intensively managed agricultural regions are easily discernible from the communal mountain 

rangelands in the image due to differences in geometric pattern, topographic location, and 

spectral reflectance. However, separation of crop fields, small forests, and intensive pasture plots 

in the flat, fertile valleys requires field data.

A supervised classification for both the 2003 and 1985 images was performed using a 7-

layer stack that included the raw LS bands 1,2,3,4,5,7 and slope. The final secondary 

classification categorized the study area into 1) forest, 2) rotational agriculture and intensive 

pasture, 3) extensive pasture (open communal grazing), 4) barren, and 5) water. The secondary 

classification differs from the primary classification in three important ways: 1) it does not 
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distinguish intensive pasture, small tree plots and borders, and cultivated plots in the flat valleys, 

2) it lumps sparse and abundant mountain grassland into a single grassland class, and 3) it does 

not distinguish an urban/churquial/cactus class. However, the secondary classification scheme 

could be used for both the 1985 and 2003 images, allowing an assessment of land cover change 

over time.

3.10  Accuracy Assessment

Accuracy assessment for the 2003 primary classification included 109 field reference 

points. Accuracy assessment for the 2003 secondary classification included 112 field reference 

points. The classification points and the reference points were compared and quantitatively 

summarized into a confusion matrix and accuracy assessment report. Classification of the point 

was considered accurate if the class of the pixel matched the primary land cover class assigned to 

that point in the field. In the case that the pixel was not classified accurately, and had been 

assigned a fuzzy land cover classification in the field (i.e. the location could reasonably be 

labeled as more than one class), a fuzzy classification accuracy assessment was performed. The 

fuzzy accuracy assessment identifies the proportion of pixels mapped to the best possible class or 

an acceptable class compared to those that were classified entirely incorrectly.

Data to test the accuracy of the 1985 classification were not available. However, the 

assumption was made that many areas, such as sand dunes, lakes, roads, the airport runway, and 

valley forests, were unchanged in both years. Agricultural areas, valley forests, and rangeland 

have distinct geometric shape and spectral signatures and are easily discernible in the image. Site 

knowledge and close comparison of the image and the classification allowed an anecdotal 

accuracy assessment. 

3.11  Land Use and Land Cover Change

Land use and land cover change (LULCC) analysis was performed by stacking the 

secondary classifications of the 1985 and 2003 images and comparing land cover class for each 

pixel. LULCC was summarized for the entire region, and for the Mountain and Altiplano regions 
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separately. Cloud, cloud shadow, and deep shadow caused by topographic shading were masked 

from the analysis.

3.12  Drivers of Landscape Change

The relationships between seven environmental and demographic variables and land 

cover distribution in 2003, as well as and land cover change from 1985 and 2003, were examined. 

Hypothesized drivers of LULCC dynamics included elevation, slope, aspect, Topographic 

Convergence Index (TCI) (Beven and Kirkby 1979; Moore et al. 1991), distance from a non-

ephemeral river, distance from a main road, and population density. Elevation, slope, TCI, and 

aspect were derived from the DEM. Continuous variables were categorized to allow graphical 

analysis and interpretation of the data. Elevation was divided into 200m altitudinal zones. Slope 

was divided into 9 classes of flat (0%), 0.1-2%, 2-5%, 5-8%, 8.1-13%, 13-20%, 20-30%, 30-40%, 

and >40%. TCI is calculated as ln(α/tanβ), where α = upstream contributing area of a sampling 

site and β = local slope angle, as normalized by contour length. TCI variously represents relative 

wetness, drainage characteristics or water supply on a landscape and is often used to distinguish 

between convergent zones (e.g. lower slopes, coves) where intensive land use may 

disproportionately contribute to stream quality (Urban 2000; Sturtevant et al. in review). The TCI 

ranged between 20 and 230 and was classed into 20 classes of equal distribution (intervals of 10.5 

units). Aspect was divided into 9 classes, with 0 corresponding to flat land, and 1 through 8 as 

north, northeast, east, southeast, south, southwest, west and northwest, respectively. One hundred 

meter intervals from roads and rivers were derived from 1:250,000 topographic maps. The 

population density dataset was derived from the 1992 national census and 1:250,000 topographic 

maps. Communities and their surrounding area (a 1km-diameter circle) were identified on the 

map, and assigned the population density reported in the 1992 census. Population densities were 

categorized into four zones: 1) low (areas greater than 0.5km from a community; 0-5 

inhabitants/km2,), 2) medium (5-10 inhabitants/km2), 3) high (10-15 inhabitants/km2), and 4) very 

high (>15 inhabitants/km2) (ZONISIG 2001). 
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3.13  LULCC Simulation

The CLUE-S modeling framework, used in this study, incorporates several factors shown 

to influence LULCC (Veldkamp and Fresco 1996; Veldkamp and Fresco 1996; Verburg et al. 

1999; Verburg and Chen 2000; Kok et al. 2001; Veldkamp and Lambin 2001; Verburg et al. 

2002; Verburg et al. 2002; Verburg et al. 2002; Veldkamp and Verburg 2004). Logistic 

regression models are developed to determine the empirical relationships between landscape 

composition and environmental and demographic variables. The model then decides the land 

cover of a cell based on pixel characteristics, the logistic regression, land use conversion elasticity 

(resistance to change), and overall demand for each land cover.

3.13.1 Logistic Regression

The primary empirical component of the CLUE-S model is a statistical analysis relating 

actual land cover with drivers of landscape change. A binomial logistic regression was performed 

using a random subset of 2/3 of the classified 1985 image (n = 215,296). The presence or absence 

of each land cover type was regressed against the hypothesized drivers of landscape change. 

Results of the regression are then used to estimate the probability of a grid cell for the occurrence 

of each land cover type, as described by the equation: 

Pforest = α+ β1*elevation + β2*slope +β3 *TCI +….βn *n 

Where Pforest is the probability of a grid cell for the occurrence of forest. To test the sensitivity of 

the model to different variables, logistic regression models were derived from 3 different data sets 

(Table 2): V Set 1) a 4-variable dataset consisting only topographic variables (slope, elevation, 

tci, and aspect), V Set 2) the 7 hypothesized drivers used in the analysis of LULC change, and V 

Set 3) a 13-variable data set that included additional coarse-resolution variables of geology, soils, 

accessibility, land unit, rainfall, and temperature.
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Table 2. Variable sets used in the logistic regression analysis.

Variable Set Variables

V Set 1 Elevation, Slope, TCI, Aspect

V Set 2 Elevation, Slope, TCI, Aspect, Distance from River
Distance from Road, Population Density

V Set 3 Elevation, Slope, TCI, Aspect, Distance from River
Distance from Road, Population Density
Access to Market, Precipitation, Temperature,
Geology, Soil Unit, Topographic Unit

3.13.2 Elasticity

Elasticity is a relative measure ranging from 0 to 1 that indicates a land cover class’s 

resistance to change. For example, rotational agriculture has an elasticity of 0 because it can be 

removed at one place and allocated to another place in the same timestep. As values increase 

between 0 and 1, they represent an increasing resistance to change. A value of 1 indicates a land 

cover type that cannot disappear from one pixel to be allocated to another pixel in the same 

timestep because the its transition requires more than a single timestep. This is appropriate for 

land cover types that are difficult to convert, e.g., urban settlements and primary forests. Various 

elasticity sets were used in model simulation to determine the influence of model results to 

elasticity (Table 3).

Table 3. Elasticity sets used in the Clue-S Model

Elasticity Value

Elasticity Set Forest Ag Pasture Bare

E Set a 1.0 0.6 0.6 0.2

E Set b 0.9 0.2 0.2 0.9

E Set c 0.9 0.9 0.9 0.9

3.13.3 Demand

A non-spatial demand module specifies the amount of each land cover required on an 

annual basis. This number was derived by calculating the difference between the area of land in 

each land cover class in 2003 and in 1985. I assumed linear change, and divided the total change 
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in demand that occurred from 1985 to 2003 by the number of years (18) to determine the annual 

demand for each land cover type.

3.13.4 Allocation

Clue-S uses a spatially explicit allocation procedure that incorporates the logistic 

regression results, regional demand, and elasticity (Figure 5). Probability maps are derived for 

each land cover type based on pixel characteristics and logistic regression results. The model then 

determines the future land cover of a cell based on its actual land cover, the relative probabilities 

for each land cover type, each land cover’s elasticity, and the land use demand. Since demand is 

determined by the dynamics of the entire study area, the model incorporates a multi-scale 

allocation approach. Not only the characteristics of the pixel determine its land cover. Overall 

demand can overrule local suitability. For example, although a cell may have higher probability 

for agriculture than pasture based on its environmental characteristics, the region as a whole may 

have a greater demand for pasture.

Figure 5. Allocation procedure of the CLUE-S framework (from Verburg et al. 2002)

Land use type specific settings

Conversion Elasticity Allowed Conversions

Land use (t) Calculation of Change

Regional 
Demand

GRID CELL SPECIFIC 

Location Suitability
(based on logistic regression)

Spatial Policies

Land use (t+1)

Does total 
land area = 
demand?

Competitive Strength

yes

No – update competitive strength
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3.13.5 Simulation and Validation

All datasets were resampled from their original format and resolution to grids of 1-

hectare resolution using the nearest neighbor algorithm. Using the 1985 secondary classification 

as the initial landscape state, land cover was simulated on an annual basis for 18 timesteps to 

predict land cover in 2003. The model was run for the entire study area, and on the Mountain and 

Altiplano regions separately, to test the effects of spatial scale. Different combinations of variable 

and elasticity sets were used to examine the sensitivity of the model. Validation was performed 

by comparing the simulated land cover in 2003 with the 2003 secondary classification. Results of 

the comparison were quantitatively summarized in an error matrix and accuracy assessment 

report.

3.14  Spectral Mixing Analysis

Spectral mixing analysis (SMA), an image analysis technique that quantifies relative 

abundance of specific landscape components (called endmembers), was conducted to assess 

landscape change and degradation within land cover classes by determining changes in 

endmember abundance.

3.14.1 Endmember Selection

Endmembers were selected from the image using the pixel purity index (PPI) (RSI 2000), 

field data, and analysis of spectral signatures (a pixel’s spectral reflectance in each image band). 

The PPI iteratively scans the principal components of Landsat bands to search for extreme, or 

pure, pixels. Once the purest pixels were identified using automated routines in the image 

processing software ENVI (RSI 2000), I determined from its location in the actual image and its 

spectral signature its representation on the landscape and suitability as an endmember. Target 

endmembers were: 1) green vegetation (GV), 2) non-photosynthetic vegetation (NPV), 3) bare 

soil, and 4) shade.

Upon selection of an endmember set, SMA is performed to determine the proportion of 

each endmember in each pixel. SMA produces a fraction image for each endmember and a band 
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of root mean square (RMS) error values demonstrating the ability of the model to explain the 

composition of each pixel. Endmember selection is an iterative process, and SMA results are very 

sensitive to endmember selection. The ability of the endmember set to model the study area is 

determined by satisfying the following conditions: 1) patterns of fraction images coincide with 

actual field conditions; 2) endmember fractions for the landscape components of interest are 

between 0 and 1, indicating that the purest pixels were selected as endmembers; 3) endmember 

fractions for a pixel sum to one, indicating that the endmember set adequately characterizes the 

materials in the field; and 4) the error band shows low average RMS error (< 2 units of image 

brightness). Areas of high RMS error indicate materials that are not adequately modeled by the 

endmember set.

The final endmember set of green vegetation (GV), non-photosynthetic vegetation 

(NPV), bare soil, bare rock, and shade/water was extracted from the 2003 image. The GV 

endmember was taken from an agricultural field in the Tarija Valley. The NPV endmember was 

taken from a flat area of senesced grass near the runway of the Tarija airport. Due to the aridity 

and geomorphologic variability within the study area, it was necessary to include two bare ground 

endmembers to adequately model the images. The soil endmember, taken from a bare, eroded 

sedimentary cliff north of Tarija, represents the light and erodible lacustrine soils of the Tarija 

valley. The rock endmember, extracted from a bare ridge top, represents the darker igneous and 

metamorphic formations of the ridges. The shade/water endmember, although not a physical 

material, was necessary to account for illumination effects. It was taken from Laguna Tajzara, the 

deepest and clearest water body in the image, which reflected very little in all TM bandpasses.

The five fraction bands were imported into Imagine for change detection analysis. The 

bare rock and bare soil fractions were added together to form a single bare ground band. Not all 

image components can be effectively modeled with the simple endmember model used (e.g. 

clouds), and therefore some fraction values were greater than 1.0 or less than zero (Adams et al.

1995; Elmore et al. 2000; Souza et al. 2003). All bands were truncated so that any negative 
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values were assigned to be zero and values greater than 1.0 were assigned to be 1.0. Then, all 

bands were normalized so that for each pixel, the sum of the GV, NPV, soil, and shade bands for 

each image date summed to 1.0. Following normalization, the shade fractions from both image 

dates were compared. An overall increase in shade fraction from 1985 to 2003 was evident, 

possibly due to differences in the sensor or atmospheric conditions on specific image dates. 

Therefore, shade was removed and the three other endmembers, GV, NPV, and soil, were 

renormalized to sum to one. Fraction bands from 1985 and 2003 were stacked to perform change 

detection in endmember fractions on a pixel-by-pixel basis.

3.14.2 Statistical Methods

Average endmember fraction for each land cover class was calculated to determine the 

coincidence of the land cover mapping with the spectral mixing analysis. For each endmember, I 

tested whether the average fraction varied according to land cover class using a non-parametric 

equivalent of a 1-way ANOVA. I then ranked the data and tested for pairwise significant 

differences among the land cover classes.

The mean and standard deviation were calculated for each fraction change image. Pixels 

with values between +1 and –1 standard deviation from the mean were considered to be areas of 

no change to account for potential error due to co-registration, according to the threshold level 

recommended by Singh (1989) and used by others (Washington-Allen et al. 1998; Elmore et al.

2000). 

3.15  Ecoregional Analysis

3.15.1 Environmental Data

Environmental data available for the clustering analyses included temperature, 

precipitation, elevation, soil texture, soil depth, slope, and compound topographic index (CTI, a 

function of the upstream contributing area and the slope of a landscape).  Elevation, slope, and 

CTI were obtained at 1 km resolution (USGS 2000), annual temperature and precipitation at 0.5 
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degree resolution (approximately 55 km) (Leemans and Cramer 1991) and soil texture, class, and 

depth data at 1 degree resolution (approximately 110 km) (FAO 1978).  

All data were disassembled into cells by transforming them into GIS grids with a 

common projection [Universal Transverse Mercator (UTM)] and resolution (1 km). Original 

resolution of the terrain variables was 1 km. Soil texture was re-sampled from 1 degree to 1 km 

pixels. Excel and S-plus software were used to build a multiple regression model with the 0.5 

degree precipitation/temperature data as the dependent variable and latitude, longitude, elevation, 

slope, and CTI as the independent variables. The regression model and the 1 km terrain data were 

then used to generate precipitation and temperature data in 1 km pixels.  The regression model for 

temperature had an R2 of 0.8223 (p-values significant for all independent variables). The 

regression model for precipitation had an R2 of 0.4519 (p-values significant for all independent 

variables).  

3.15.2 Multivariate Clustering Technique

The 1-km resolution UTM grids were stacked and the ARC/INFO Version 8.3 (ESRI 

2002) commands ISOCLUSTER and MLCLASSIFY used to cluster similar pixels and produce a 

grid of the classified pixels (Tou and Gonzalez 1974).  First, a value for each pixel in the 

multivariate data space is calculated.  Next, kernels are placed randomly in the multivariate data 

space, and pixels are assigned to the closest kernel.  When all pixels have been assigned, new 

kernel locations are calculated to be the mean of all pixels in its cluster.  All pixels are then 

reassigned based on the new kernel locations. The process is reiterative, and continues until 

cluster assignments stabilize (i.e. until 95% of pixels remain in the same class between iterations). 

A grid of all pixels with their final cluster assignments is created.

3.15.3 Validation

Due to the scale of ecoregional analysis, and its use mostly as a descriptive tool, a 

rigorous, quantitative assessment of the ability of ecoregional delineation to accurately define 

regions of similar ecological processes is impossible. Ecoregional classifications can be evaluated
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through comparison with other ecoregional classifications (Bernert et al. 1997; Wright et al.

1998), independently derived vegetation maps (Host et al. 1996; Wright et al. 1998), or with 

actual data (Harding and Winterbourn 1997; Harding et al. 1997). For example, Omernik’s 

(1987) delineation has been widely used by scientists and federal agencies, but the adequacy of 

this map to represent actual variation in stream ecology or vegetation cover measured in the field 

is inconclusive (Rohm et al. 1987; Wright et al. 1998; Jenerette et al. 2002). I validated my 

ecoregional delineation by qualitatively assessing the similarity between my map and the WWF 

delineation of South America (Dinerstein et al. 1995).
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4.0  RESULTS

4.1 Primary Classification of the 2003 image

Figure 6 presents the LULC map for the study area produced from the primary classification 

of the 2003 image. Comparison of the Mountain and Altiplano regions shows that their distinct 

topographic and environmental conditions drive differences in landscape pattern. The majority of 

the Mountain region consists of abundant mountain grassland (55%), but many areas have the 

climate and soils suitable for agricultural production and forest (Table 4). The floodplain valleys 

are a patchwork of intensively managed and individually owned agriculture, intensive pasture, 

forest and homestead plots. In the highly erodible lacustrine sediments around Tarija, sparse 

grassland, urban settlements and churquiales are common. Portions of this region are so degraded 

that they are completely bare. The fertile valleys and eroded formations are surrounded by rocky, 

steep mountain ranges. Mountain hillsides consist largely of communal rangelands of abundant 

grassland dissected by steep, densely forested headwater and ephemeral stream valleys.

Table 4. Results of primary classification of the 2003 image

Land Cover Class Mountain Altiplano

Unclassified 2% 1%

Forest 8% 0%

Crops 4% 1%

Valley grassland 5% 2%

Abundant mountain grassland 55% 12%

Sparse grassland 16% 74%

Urban/churquial/cactus 7% 5%

Bare 1% 4%

Water 0% 0%

The Altiplano region, with its harsh climatic conditions and poorly developed soils, 

consists mostly of sparse grassland (74%). In the low elevation areas and valleys where moisture 

accumulates, there is abundant grassland (12%). Those lands classifying in the 

urban/churquial/cactus class are almost entirely cactus and churquial, as the region is sparsely 
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populated. The bare class (4%) consists of the sand dunes around the lakes. Cultivation (1%) and 

intensive pasture (2%) is limited to the narrow stream and river floodplains. 

Figure 6. Primary LULC classification of the 2003 image.
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Classification accuracy was 89%, with an overall Kappa statistic (KHAT) of 0.85 (Table 

5). The fuzzy classification increased the overall accuracy to 95%, with a KHAT of 0.94 (Table 

6). The fuzzy classification accuracy indicates whether a classification is reasonable, although not 

necessarily the best class assignment, for pixels of mixed land cover.

Table 5. Error matrix from comparison of the 2003 primary classification and reference data.

Classification Actual LULC - Reference Data

Data F A VG MG UC B total

F 8 1 1 10

A 13 1 14

VG 3 1 14 18

MG 3 1 48 52

UC 1 12 13

B 2 2

total 14 17 15 48 13 2 109

Producer Accuracy 0.57 0.76 0.93 1.00 0.92 1.00 -

User Accuracy 0.80 0.93 0.78 0.92 0.92 1.00 -

Overall Accuracy 0.89

KHAT 0.85

Note:  F = forest; A = agriculture; VG = valley grassland; MG = mountain grassland

U = urban/churquial/cactus; B = bare

Table 6. Error matrix from comparison of the 2003 primary fuzzy classification and reference 
data.

Classification Actual LULC - Reference Data

Data F A VG MG UC B total

F 10 10

A 13 1 14

VG 1 1 16 18

MG 1 51 52

UC 1 12 13

B 2 2

total 11 16 16 51 13 2 109

Producer Accuracy 0.91 0.81 1.00 1.00 0.92 1.00 -

User Accuracy 1.00 0.93 0.89 0.98 0.92 1.00 -

Overall Accuracy 0.95

KHAT 0.94
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4.2  Secondary Classification

The secondary classification scheme was used for both the 1985 and 2003 images, 

allowing an assessment of land cover change over time. Broad land cover patterns of the 

secondary classification were very similar to those of the primary classification (Table 7, Figure 

7). The secondary classification differs from the primary classification in three important ways, 1) 

it does not distinguish intensive pasture, small tree plots and borders, and cultivated plots in the 

flat valleys, 2) it lumps sparse and abundant mountain grassland into a single pasture class, and 3) 

it does not distinguish an urban/churquial/cactus class.

Table 7. Results of secondary classification for 1985 and 2003.

ENTIRE STUDY AREA MOUNTAIN ALTIPLANO

Land Use Class 1985 2003 1985 2003 1985 2003

forest 7% 3% 9% 4% 0.1% 0.0%

ag 9% 11% 12% 16% 5% 3%

pasture 77% 75% 75% 71% 82% 84%

bare 7% 10% 5% 9% 11% 13%

water 0.4% 0.2% 0.0% 0.1% 1% 0.3%
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Figure 7. Secondary LULC classification of the 2003 image.
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Overall classification accuracy of the secondary classification was 88%, with a Kappa 

statistic (KHAT) of 0.82 (Table 8). The fuzzy classification increased the overall accuracy to 

93%, with a KHAT of 0.89 (Table 9). 

Table 8. Error matrix from comparison of the secondary classification and reference data.

Classification Actual LULC - Reference Data

Data F A P B total

F 6 6

A 7 37 1 1 46

P 2 2 41 45

B 1 14 15

total 15 39 43 15 112

Producer accuracy 0.40 0.95 0.95 0.93 -

User Accuracy 1.00 0.80 0.91 0.93 -

Overall 0.88

KHAT 0.82

Note:  F = forest; A = agriculture; P = pasture; B = bare

Table 9. Error matrix resulting from comparison of the secondary fuzzy classification and 
reference data.

Classification Actual LULC - Reference Data

Data F A P B total

F 6 6

A 4 40 1 1 46

P 1 1 43 45

B 15 15

total 11 41 44 16 112

Producer accuracy 0.55 0.98 0.98 0.94 -

User Accuracy 1.00 0.87 0.96 1.00 -

Overall 0.93

KHAT 0.89

Field data were not available to assess classification accuracy of the 1985 image (Figures 

8 and 9). Historical information collected during fieldwork was considered along with close 

analysis of the image and allowed an anecdotal accuracy assessment. Overall landscape patterns 

of the distribution of mountain rangelands, floodplain agriculture, and valley forests of 1985 
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match those in 2003. Certain features have remained unchanged from 1985 to 2003, such as sand 

dunes, altiplano lakes, major roads, the airport runway, and the city of Tarija (Figure 8) and 

classified accordingly in both years. In addition, land cover changes characterized in the 

classified image matched patterns of known agricultural development and forest regeneration. For 

example, a known area of forest plantation and protection by the airport runway since 1985 was 

accurately represented by both classifications. Agricultural development, especially around and 

downstream of the San Jacinto reservoir constructed in the late 1980’s, is also evident in the 

classifications (Figure 8). 

Figure 8. Qualitative accuracy assessment of the 1985 classification was performed by verifying 
known unchanged (airport runway) and changed (reforestation/protection, irrigation development, 
and reservoir construction) areas in both the 1985 and 2003 secondary classifications.
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Figure 9. LULC classification of the 1985 image.
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4.3  Land Use Change

The 1985 and 2003 classifications were used to quantify proportions of the study area 

that have experienced land cover conversion during this time period. Conversion classes that 

represented at least 1% of the entire study area, and their proportions for both the Mountain and 

Altiplano regions, are shown in Table 10. For both regions, the majority of the landscape in 2003 

did not change from 1985. Only 14% of the Altiplano region has experienced land use 

conversion, compared to 23% of the mountain region.

Table 10. Land Use Conversions as a Proportion of the Mountain and Altiplano Regions.
LAND USE CONVERSION 1985 - 2003

Land Use Mountain Altiplano

No Change 77% 86%
Pasture to Agriculture 5% 1%

Forest to Pasture 5% <1%
Pasture to Bare 3% 3%

Agriculture to Bare 3% 2%
Forest to Agriculture 2% <1%

Pasture to Forest 2% <1%
Agriculture to Pasture 1% 2%

Bare to Agriculture 1% <1%
Bare to Pasture 1% 3%
Water to Bare <1% 1%

Table 11 presents net changes in land use as a proportion of each region and as a 

proportion of 1985 composition. Net land use conversion as a proportion of the entire region is 

higher in the Mountain region compared to the Altiplano. The Mountain region has experienced a 

4.8% decrease in forest, a 4.4% increase in bare land, and a 4.1% increase in agricultural land. 

Compared to the land cover in 1985, forest has decreased by more than half, and bare ground has 

almost doubled. Net changes in land cover for the Altiplano include a 2% loss in agricultural 

land, a 2% gain in bare land, and a 1% gain in pasture land. Although small as a percentage of the 

entire Altiplano region, the rate of change as a proportion of the region in 1985 is very high. For 

example, the reduction in forest was almost 100%. The shrinkage of the Altiplano lakes accounts 
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for the 80% reduction in water. The increase in water in the Mountain region (992%) is a result of 

the construction of the San Jacinto reservoir.

Table 11. Net Changes in Land cover as a Proportion of the Entire Region and as a Proportion of 
Land Cover in 1985 of the Mountain and Altiplano Regions

Change Over Time Change over time 

Percent of Region as proportion as proportion

Land Cover Class 1985 2003 of region in 1985

MOUNTAIN

forest 9.1% 4.4% -4.8% -52%
ag 12% 16% 4.1% 35%

pasture 75% 71% -3.9% -5%
bare 4.6% 9.1% 4.4% 96%

water 0.01% 0.14% 0.1% 992%

ALTIPLANO

forest 0.09% 0.01% -0.1% -90%

ag 5.4% 3.4% -2.0% -38%
pasture 82% 84% 1.2% 1%

bare 11% 13% 2.0% 19%
water 1.4% 0.28% -1.1% -80%

4.4  Drivers of Land Cover Change

I performed the analysis of the hypothesized drivers of LULCC on the Mountain region 

only because of 1) high rates of observed recent land cover change and 2) high potential for 

future change. Figures 10 through 12 are highly simplified and provide descriptive information on 

the relationship between LULCC and each hypothesized driver. Continuous variables were 

classed in order to examine broad trends in the data. Figure 10 demonstrates current land cover as 

a function of the driving variables, and figures 11 and 12 show land cover conversion as a 

function of driving variables. Consistently, the largest conversion class was land that had not 

undergone conversion (NC = No Change). The range of the y-axis of figure 11 is 0 to 100%, and 

demonstrates the relationship between NC and the drivers. Figure 12 reduces the range of the y-

axis, omitting the NC class and highlighting the other conversion classes.
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Figure 10. Percent of total land area for each land cover class as a function of topographic and 
demographic drivers of landscape change.
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Figure 11. Percent of total land area for each conversion class as a function of topographic and 
demographic drivers of landscape change.
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Figure 12. Percent of total land area for each conversion class (excluding No Change) as a 
function of topographic and demographic drivers of landscape change.
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4.4.1 LULCC as a function of elevation

The proportion of the landscape in each cover class changes according to elevation 

(Figure 10). Bare land, pasture, and agriculture are equally distributed on the landscape at the 

lowest elevations (< 2000 meters). Above 2000m, pasture increases dramatically, and agriculture 

and bare land decrease to less than 5% of the landscape above 2600m. Above 2400m, pasture is 

ubiquitous (> 85% of total landscape). Forest proportions peak at 2200 to 3000m. 

Patterns of observed land cover change also show similar trends and elevation thresholds 

(Figures 11 and 12). The NC class increases with elevation at especially high rates in the 1800m 

to 2400m elevation zone. Between 2400 and 2800m, and above 3200m conversion rates are low. 

Above 3200, less than 5 percent of the landscape is experiencing change.

4.4.2 LULCC as a function of Slope

The proportion of the landscape in each cover class changes according to slope (Figure 

10). Pasture and forest are positively related to slope, whereas agriculture and bare land decline 

on steeper slopes. Agriculture and bare ground are the dominant land covers on the flatter slopes 

(0%, 0-2%, and 2-5% slope classes), but then decline abruptly on land with greater than 5% 

slope. Cultivated and bare land is virtually non-existent on lands with a slope greater than 13%. 

The decreases in agricultural and bare land are complemented by an abrupt increase in pasture for 

slopes greater than 5%. By 13% slope, pasture covers greater than 90% of all land. Pasture 

reaches its highest proportion at 95% of the total landscape in the 13-20% slope class, and then 

decreases slightly for the steepest slopes. The proportion of forest land increases steadily from 

very low proportions on the flattest lands to greater than ten percent of the landscape on the 

steepest slopes.

Steep land is less vulnerable to land cover conversion than flat and moderate slopes 

(Figures 11 and 12). Approximately 50% of land with 0 to 8 percent slopes experienced a change 

in land cover, with the highest rate of change (55%) occurring in the 2-5% slope class. The rate of 

land cover conversion decreases dramatically in the 5-8% slope class, and levels off at slopes 
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greater than 13%. The most prominent conversions occurring at the lower slopes are conversion 

to bare ground, pasture to agriculture, and forest to agriculture (Figure 12). All three peak in the 

2-5% class and then decline to very low rates of change. The conversion of forest to pasture was 

low in the lower slopes, but peaks in the 8-13% slope class where agricultural production is 

unsuitable.

4.4.3 LULCC as a function of aspect

There are clear differences in the patterns of LULCC between sloped lands and those 

with no measurable aspect (flat land). On flat lands, agriculture (60%) and bare (30%) dominate, 

but decrease considerably on inclined surfaces (Figure 10). Flat land has a much higher rate of 

land cover conversion than steeper areas (Figure 11). On sloped land, the relationship between 

aspect and LULCC is not clear, but it appears that aspect is influencing landscape dynamics. For 

example, forest is greatest on the SE, S, and SW facing slopes, whereas agriculture is highest on 

the NE, E, and SE slopes (Figure 12).

4.4.4 LULCC as a function of proximity to major rivers

Land cover patterns are dynamic in the approximately 1km river buffer zone, and 

relatively stable further than 1km away from a river (Figure 10). Forest and agriculture decline 

and pasture increases moving further away from perennial surface water sources (Table 12). 

Agriculture is most prevalent closest to the rivers, indicating the use of rivers for irrigation. Bare 

ground is at its highest proportion in the 100m buffer zone, due to the wide, rocky river channels 

created by high flows in the rainy season.

Table 12. Land cover distribution in successive riparian buffer zones.

Buffer Zone Forest Ag Pasture Bare Water

0 - 100m 8% 27% 51% 13% 1%

100m - 500m 5% 22% 66% 7% 0%

500m - 1km 4% 15% 72% 9% 0%

>1km 4% 10% 76% 10% 0%
Land cover conversion was not highly sensitive to distance from a major river, although 

it appeared most dynamic within a 500m-buffer zone (Figures 11 and 12). Land experiencing 
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conversion is at the highest rate of 55% changed in the 0-100m buffer, probably due to shifting 

river channels. Steady decrease in land conversion occurs from 0 to 500 meters from rivers, 

where it levels out. In the 0-500m buffer region the dominant conversions are pasture to 

agriculture, forest to pasture, forest to agriculture, and conversion to bare, indicating a heavy 

conversion to agriculture and deforestation close to an irrigation source.

4.4.5 LULCC as a function of TCI wetness index

Agriculture, pasture, and bare land covers are influenced by the relative wetness of the 

landscape (Figures 10, 11, and 12). Agriculture and bare land covers increase, and pasture 

decreases, steadily with increasing TCI. Forest does not change with changes in TCI (Figure 10). 

The percentage of land experiencing conversion increases steadily with increasing wetness. The 

most dominant conversions occurring in the wetter regions (classes 10-15) are conversion of 

pasture and forest to agriculture, and conversion to bare. 

4.4.6 LULCC as a function of proximity to major roads

The distance of a land unit from a major road represents its accessibility. There is a 

strong relationship between road access and land cover. Pasture increases with distance from 

roads, while forest, agriculture, and bare land decreases as accessibility decreases (Figure 10). 

Road access also drives land cover conversion, especially urbanization, agricultural 

conversion, and desertification. Overall land cover change decreases as distance from a major 

road increases (Figure 11). Conversion to bare, conversion of pasture to agriculture, and the 

conversion of forest to agriculture declines, while the conversion of forest to pasture increases 

(Figure 12). Further than 2 km from a road, the conversion of forest to pasture, probably in the 

steep valleys where cultivation is inappropriate, is the most prominent LULCC process.

4.4.7 LULCC as a function of population density

Population density influences land cover and land cover conversion. Agriculture and bare 

ground increase while pasture decreases with higher population densities. There is an apparent 

threshold between High and Very High population density where the proportion of bare ground 
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increases dramatically. Land cover conversion increases steadily with increasing population 

density. In the most densely populated areas, conversion to bare and conversion of pasture to 

agriculture are the dominant processes. In the less populated regions, conversion of pasture to 

agriculture, conversion to bare, and conversion of forest to pasture are the most common changes.

4.5  Model Simulation

The primary empirical component of the CLUE-S model is the logistic regression relating 

actual land cover with potential drivers of landscape change. Slopes, intercepts, and R2 values 

from the logistic regression are shown in Table 13. Low R2 values, especially for the forest and 

bare classes, indicate that the variables included in the model account for a limited amount of the 

variability observed on the landscape.

Using the 1985 classification as the starting landscape condition, land cover change was 

simulated on an annual timestep for 18 years using several different scenarios. First, LULCC for 

the entire study area, including both the Altiplano and Mountain regions, was simulated. Overall 

accuracy from modeling the entire study area was 73% (Table 14). Comparison of the model 

simulation and the 2003 image classification showed that the simulation misallocated the bare 

ground in the Mountain Region (mostly a product of urbanization and pasture degradation in the 

fluvial plains) to the Altiplano region. Subsequent simulations were run on the separate regions. 

Separation of the two regions improved the accuracy of the simulation for the mountain region 

(Figures 13 and 14). However, the model was unable to simulate land cover change in the 

Altiplano region because the rate of change in the region is very low.
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Table 13. Results of the logistic regression of spatial distribution of land cover (n = 215296).

Driver Forest Agriculture Pasture Bare

Constant -1.32267 -1.01858 0.055 1.51

Beta

Aspect -0.00038 -0.00051 0.00087 0.00044

Population density 0.02081 0.26404 -0.3841 0.2506

Distance from road 0.00010 -0.00007 -0.00002 -0.00002

Distance from river -0.00021 0.00001 0.00016 0.00014

Elevation -0.00087 0.00062 0.00077 -0.00159

Slope 0.02099 -0.51547 0.08964 -0.2441

TCI 0.00887 0.00073 -0.012 -0.00458

R-Square 0.02 0.26 0.23 0.08

Percent Concordant 61.8 92.3 82.0 86.2

Table 14 shows the differences in model performance with various elasticity and variable 

sets. Comparison of the entire study region simulation with the Mountain region simulation using 

the same variable and elasticity set shows that overall accuracy increased to 76% with the 

separation of regions, with the largest improvement in the prediction of the bare ground class 

(40% accuracy versus 29%). Agriculture and pasture were also predicted more accurately, but 

accuracy for forest composition decreased. As demonstrated in the LULCC analysis, pasture is by 

far the largest class, and therefore, overall accuracy and KHAT values are particularly influenced 

by the ability of the model to simulate the pasture class.

Table 14. Model verification using different drivers and elasticity factors (best simulation in 
bold).

Simulation KHAT Overall Forest Ag Pasture Bare

Entire study area, V Set 3, E Set a 0.33 0.73 0.26 0.49 0.84 0.29
Mountain Region Only:
V Set 1, E Set a 0.46 0.75 0.16 0.56 0.88 0.37

V Set 2, E Set a 0.47 0.75 0.16 0.56 0.88 0.37

V Set 2, E Set b 0.48 0.76 0.17 0.58 0.88 0.45
V Set 2, E Set c 0.43 0.74 0.20 0.54 0.86 0.36

V Set 3, E Set a 0.47 0.76 0.17 0.57 0.88 0.40

V Set 3, E Set b 0.47 0.76 0.17 0.58 0.87 0.43

1985 Land Cover Classification 0.47 0.77 0.41 0.47 0.90 0.37
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Figure 13. Results of simulation of land cover in 2003 in the Mountain region only.
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Figure 14. Actual land cover in 2003 according to the Secondary LULCC classification 
(resampled to 1 ha resolution).
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Model simulations for the mountain region were influenced by changes in the elasticity 

set and, to a lesser degree, the variable set. In general, the terrain and demographic variables (V 

Set 2) performed the best of the three variable sets. Elasticity Set A was used in combination with 

all 3 variable sets, resulting in slight differences in accuracy. V Set 2 used with Elasticity Set B 

produced the best overall accuracy, the highest KHAT, and best accuracy in the agriculture, 

pasture, and bare classes. However, V Set 2 used with E Set C was the most effective at 

predicting forest (0.17 versus 0.20). The intercepts and slopes of the logistic regression for each 

variable in Variable Set 2 are shown in Table 13.

Land cover in 1985 was a good predictor of 2003 land cover (overall accuracy = 77%). It 

was more effective at predicting forest presence than any of the model simulations. Since the 

1985 map was used as the starting point for the simulations, and forest composition was halved 

by 2003, this high forest accuracy represents an overestimation of forest at the expense of 

decreased ability to predict agriculture and bare ground.

4.6  Spectral Mixing Analysis

Spectral mixing analysis (SMA) was performed to determine relative proportions of 

green vegetation (GV), bare soil, and non-photosynthetic vegetation (NPV) throughout the study 

area. Various characteristics of the study area, including the prevalence of the “mixed pixel”, 

changes in land cover condition (e.g. pasture degradation) and the absence of field data for 1985, 

called for the use of SMA to investigate landscape dynamics. Instead of a subjective assignment 

of land cover class to the pixels, the proportion of each endmember can be quantified for each 

pixel in both images, allowing assessment of changes in endmember proportions. 

Others have investigated the ability and limitations of SMA to accurately quantify 

vegetation cover in semi-arid environments (Elmore et al. 2000; Okin et al. 2001). Elmore et al. 

(2000) determined that estimates of percentage of live cover in a LS pixel is accurate to within +/-

4% (one sd from the mean), and that estimates of change in live cover are accurate to within +/-

3.8% (one sd from the mean). SMA correctly determined the sense of change (i.e. positive or 
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negative) in 87% of the samples. Okin et al (2001) found that SMA can accurately model 

vegetation cover at proportions greater than 10%.

4.6.1 Comparison of LULC Classification with Endmember Fractions

4.6.1.1 MOUNTAIN REGION

Average endmember proportions for each LULC class were calculated for the Mountain 

region in 1985 and 2003 (Table 15, Figure 15). In both years, average endmember fractions were 

significantly different in each land cover class. In 1985, soil fraction is very low in forest (0.04). 

It increases in the other land cover classes, reaching a maximum in the bare land class (0.52). GV 

fraction complements the soil fraction well, with the highest value in the forest class (0.51), and 

the lowest value in the bare class (0.13). NPV trends are more ambiguous. NPV represents many 

different components on the landscape, and therefore many different processes can affect its 

pattern (Adams et al. 1995; Roberts et al. 1998; Okin et al. 2001). In the current study area, NPV 

on the landscape includes senesced pasture, mature annual crops, perennial crops (grape trees), 

woody material from living vegetation (tree branches, cactus), and plant material from dead 

vegetation (debris from deforestation or from crop harvest). Its variability is highly dependent on 

vegetation stage (Numata et al. 2003) as well as land use practices. For example, a deforestation 

event will result in an immediate decrease in GV. However, the trend in NPV fraction will 

depend on whether the branches and dead leaves are left on the landscape (increased NPV), or 

scavenged for firewood (decrease in NPV and increase in soil fraction). 

It is important to note the differences in the image dates when comparing fraction results 

of the two different years (April 1, 1985 versus April 29, 2003). The rainy season in this region is 

both pronounced and short, with greater than 85% of the precipitation falling between November 

and March (Carpio et al. 2002). At the beginning of April, rainfall has been plentiful and 

moisture available for vegetation growth is still abundant. Conversely, at the end of April 

available moisture has already become limited. It is a dynamic period in environmental 

conditions, and considerable changes in vegetation development that alter relative proportions of 
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GV and NPV (e.g. plant maturity and senescence) in response to these dynamic environmental 

conditions almost certainly occur. Therefore, the decrease in GV fraction in the agriculture class 

(from 0.33 in 1985 to 0.21 in 2003) and the accompanying increase in NPV (0.42 in 1985 to 0.62 

in 2003) is potentially a result of advanced crop senescence in the 2003 image, rather than an 

indicator of degradation. Fraction changes over time for the other land cover classes are discussed 

in detail later in this paper.
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Table 15. Mean endmember fractions for each land cover class in the Mountain region in 1985 
and 2003.

Mountain Region

1985

Land Cover Soil GV NPV Description

Forest 0.04 0.51 0.45 very low Soil, high GV, high NPV

Ag 0.25 0.33 0.42 moderate Soil, moderate GV, moderate NPV

Pasture 0.25 0.25 0.50 moderate Soil, moderate-low GV, high NPV

Bare 0.52 0.13 0.34 high Soil, low GV, moderate NPV

2003

Soil GV NPV Description

Forest 0.03 0.36 0.61 very low Soil, high GV, high NPV

Ag 0.17 0.21 0.62 low Soil, moderate GV, high NPV

Pasture 0.27 0.09 0.64 moderate Soil, low GV, high NPV

Bare 0.55 0.03 0.42 high Soil, low GV, moderate NPV

Average Endmember Proportions in 1985 and 2003
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Figure 15. Mean endmember fractions for each land cover class in the Mountain region in 1985 
and 2003. MF = Mountain Forest, MA = Mountain Agriculture, MP = Mountain Pasture, MB = 
Mountain Bare.

4.6.1.2 ALTIPLANO REGION

Average endmember proportions for each LULC class were calculated for the Altiplano 

region in 1985 and 2003 (Table 16, Figure 16). In both years, average endmember fractions were 

significantly different in each land cover class. All pairwise comparisons were significant in 1985 
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except for the NPV fraction in forest and pasture, and the NPV fraction for forest and bare. In 

2003, all pairwise comparisons were significant except for the GV fraction of the forest and 

agriculture class. It is important to note that the forest class was very small in both 1985 and 

2003, consisting of 0.09% and 0.01% of the landscape, respectively. 

Trends for 1985 look very similar to those in the Mountain region. Forest has the lowest 

average soil fraction (0.08), and the highest GV fraction (0.60). Soil fractions increase and GV 

fractions decrease in the agriculture, pasture, and bare classes. Bare ground has the highest soil 

fraction (0.54) and the lowest GV fraction (0.11). 

 In 2003, relative endmember proportions deviate from 1985 patterns for the pasture and 

bare classes. Pasture has a higher average soil fraction (0.68) than bare ground (0.59), and lower 

GV fraction (0.02) than bare ground (0.03). This deviation from the patterns observed in the 

Altiplano region in 1985 and in the Mountain region in both years is probably due to limitations 

of the SMA to correctly model vegetation cover at very low proportions. Both Elmore et al.

(2000) and Okin et al. (2001) found that SMA was unable to accurately model vegetation cover at 

very low percentages. The average proportion of GV in the pasture (2%) and bare ground (3%) 

classes in the Altiplano region in 2003 are well below the 10% GV fraction threshold determined 

by Okin et al. (2001).
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Table 16. Mean endmember fractions for each land cover class in the Altiplano region in 1985 
and 2003.

Altiplano Region

1985

Land Cover Soil GV NPV Description

Forest 0.08 0.60 0.32 very low Soil, high GV, moderate NPV

Ag 0.35 0.27 0.37 moderate Soil, moderate GV, moderate NPV

Pasture 0.53 0.15 0.32 high Soil, moderate-low GV, moderate NPV

Bare 0.54 0.11 0.36 high Soil, low GV, high NPV

2003

Land Cover Soil GV NPV Description

Forest 0.09 0.31 0.60 very low Soil, high GV, high NPV

Ag 0.34 0.22 0.45 moderate Soil, moderate GV, moderate-high NPV

Pasture 0.68 0.02 0.30 high Soil, low GV, moderate NPV

Bare 0.59 0.03 0.38 high Soil, low GV, moderate NPV

Average Endmember Proportions in 1985 and 2003
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Figure 16. Mean endmember fractions for each land cover class in the Altiplano region in 1985 
and 2003. AF=Altiplano Forest, AA = Altiplano Agriculture, AP = Altiplano Pasture, AB = 
Altiplano Bare.

4.6.2 Comparison of SMA and LULCC

4.6.2.1 MOUNTAIN REGION

The change in endmember fraction for each land cover conversion class was quantified to 

determine how endmember proportions change with land cover conversion (Table 17).  Changes 
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in endmember proportions occurred in areas that have not been converted, possibly due to 

vegetation maturity, climatic conditions, or degradation within a land cover class. For example, 

there was a decrease of 0.14 in GV fraction complemented by an increase of 0.16 in NPV for 

areas that were forest in both 1985 and 2003. In order to isolate endmember fraction changes due 

to land cover conversion, fraction changes were calculated relative to areas of no conversion, and

rounded to one significant figure for simple comparison. For example, areas converted from 

forest to agriculture experienced a 0.27 gross loss in GV, but only a 0.13 loss relative to forest 

that was not converted (rounded to 0.1).

Table 17. Average change in endmember fraction for each conversion class and normalized 
endmember fraction changes for the Mountain region.

Change in Change in Change in
Conversion Change in Soil Fraction Change in GV Fraction Change in NPV Fraction

Type Soil Fraction Relative to NC GV Fraction Relative to NC NPV Fraction Relative to NC
Forest Conversion

No Change -0.01 - -0.14 - 0.16 -
For-Ag 0.03 0.0 -0.27 -0.1 0.25 0.1
For-Past 0.05 0.1 -0.28 -0.1 0.24 0.1
For-Bare 0.34 0.4 -0.50 -0.4 0.16 0.0

Agricultural Conversion
No Change -0.01 - -0.18 - 0.19 -

Ag-For -0.09 -0.1 -0.10 0.1 0.20 0.0
Ag-Past 0.19 0.2 -0.17 0.0 -0.01 -0.2
Ag-Bare 0.13 0.1 -0.17 0.0 0.04 -0.2

Pasture Conversion
No Change 0.04 - -0.16 - 0.13 -

Past-For -0.06 -0.1 -0.08 0.1 0.14 0.0
Past-Ag -0.06 -0.1 -0.10 0.1 0.17 0.0

Past-Bare 0.06 0.0 -0.14 0.0 0.09 0.0
Bare Conversion

No Change 0.05 - -0.08 - 0.04 -
Bare-For -0.33 -0.4 0.21 0.3 0.13 0.1
Bare-Ag -0.21 -0.3 0.06 0.1 0.16 0.1
Bare-Past 0.05 0.0 -0.07 0.0 0.03 0.0

Clear and expected trends are obvious in the Soil and GV fractions. Soil fractions 

increase and GV fractions decrease with forest conversion. Conversion of forest to bare shows the 

largest increase in soil fraction (0.4) and decrease in GV (-0.4). In the agriculture class, soil 

fraction decreases and GV fraction increases with conversion to forest. Soil fraction increases 
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with agriculture conversion to both pasture and bare. A decrease in soil fraction occurs with the 

conversion of bare ground to agriculture (-0.3) and forest (-0.4), accompanied by increases in GV.

4.6.2.2 ALTIPLANO REGION

The change in endmember fraction for each land cover conversion class was also 

quantified for the Altiplano region and normalized relative to areas of no change (Table 18). 

Patterns in the Altiplano are similar to those in the Mountain region. Only the pasture and bare 

classes deviate from expected patterns due to very low GV proportions in 2003. Conversion to 

agricultural and bare land to forest was extremely low and not included in the analysis.

Table 18. Average change in endmember fraction for each conversion class and normalized 
endmember fraction changes for the Altiplano region.

Change in Change in Change in
Conversion Change in Soil Fraction Change in GV Fraction Change in NPV Fraction

Type Soil Fraction Relative to NC GV Fraction Relative to NC NPV Fraction Relative to NC
Forest Conversion

No Change -0.04 - -0.23 - 0.28 -
For-Ag 0.12 0.2 -0.31 -0.1 0.19 -0.1
For-Past 0.32 0.4 -0.43 -0.2 0.11 -0.2
For-Bare 0.17 0.2 -0.48 -0.2 0.32 0.0

Agricultural Conversion
No Change 0.10 - -0.16 - 0.08 -

Ag-For Not Analyzed

Ag-Past 0.38 0.3 -0.20 0.0 -0.18 -0.3

Ag-Bare 0.27 0.2 -0.17 0.0 -0.10 -0.2

Pasture Conversion

No Change 0.14 - -0.13 - 0.00 -

Past-For -0.17 -0.3 -0.04 0.1 0.22 0.2

Past-Ag 0.01 -0.1 -0.11 0.0 0.11 0.1
Past-Bare 0.10 0.0 -0.17 0.0 0.08 0.1

Bare Conversion
No Change 0.09 - -0.08 - 0.00 -
Bare-For Not Analyzed
Bare-Ag -0.08 -0.2 -0.09 0.0 0.18 0.2
Bare-Past 0.16 0.1 -0.07 0.0 -0.08 -0.1

Various factors complicate the interpretation of the SMA results. In this study, I 

considered simple and substantial differences in GV and Soil within a land cover class as 

indicators of degradation. However, various processes can influence endmember composition, 
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such as changing species composition and climatic conditions. To some extent, these results 

should be considered exploratory, as necessary ground data to validate changes through time 

within classes did not exist.

4.7  Ecoregional Analysis

4.7.1 South America

Ecoregions were delineated based on topographic and climatic drivers of landscape 

composition to determine areas of South America with similar environmental characteristics, 

landscape processes, and response to disturbance and change. The initial analysis used the 

variables of elevation, temperature, precipitation, slope, and the wetness index.  I clustered these 

variables into various numbers of classes ranging from 5 to 40 classes.  Figure 17 shows the 

results of this clustering analysis into 9 classes. Although vague landscape patterns are 

discernible, such as the Andes mountain range, the Venezuelan highlands, and the Brazilian 

highlands, the clustering analysis was not successful because adjacent pixels were generally 

assigned to different classes and actual clusters were not formed.  

Consultation of the literature aided in the determination of appropriate variables for 

subsequent clustering analyses. In the identification of customizable ecoregions of the 

southeastern US, Hargrove and Luxmoore (1997) used six variables important to tree growth:  

annual temperature, annual precipitation, elevation, and three soil parameters, including plant-

available water content, total organic matter, and total Kjeldahl nitrogen. Clinebell et al. (1995)

found very strong relationships between vegetation biodiversity and precipitation patterns in his 

examination of tree species and environmental data from 69 lowland forest plots throughout 

South America. Annual rainfall, rainfall seasonality, and available soil nutrient concentrations 

were the most important variables in accounting for variation in species richness.  

Accordingly, I selected temperature, precipitation, soil texture, and elevation from my 

limited suite of variables. Analysis using this new data stack into shows that clustering results 

vary greatly depending on the input variables (Figure 18). Increasing representation of detail 
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results as the number of classes grows, and experimentation demonstrated that the ISOCLUSTER 

algorithm could identify a maximum of 40 distinct classes using these 4 variables (Figure 19).  
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Figure 17.  Results of 16-class clustering analysis using 5 variables: precipitation, temperature, 
elevation, slope and wetness index.
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Figure 18.  Results of 9-class clustering analysis using revised stack of variables.
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Figure 19.  Results of 40-class clustering analysis
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Region
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The WWF ecoregional map identifies approximately 100 classes throughout South 

America (Figure 20).  More detail is represented by the WWF map than the cluster maps for 

many regions. For example, northern South America is delineated into several small ecoregions 

on the WWF map. Divisions are less numerous and ecoregions are more continuous on the cluster 

maps, especially the 9-class and 16-class (Figure 21) cluster maps. For northern South America, 

the 40-class cluster map most closely resembles the WWF ecoregion map.  However, for other 

regions the clustered maps are more detailed.  For example, the Cerrado ecoregion is large and 

continuous on the WWF map, whereas a single, clear, continuous class is not created in the 40-

class or the 16-class cluster maps.  For the Cerrado ecoregion, the 9-class cluster map most 

closely resembles the WWF ecoregion map. The differences between the maps created by the 2 

methods may be due to the ability of the WWF approach to identify areas of known distinct 

biodiversity, whereas the clustering technique cannot represent very localized patterns of 

diversity because it is based on a limited number of variables at a broad scale resolution. On the 

other hand, the more detailed division of the WWF map could result from bias due to the 

subjectivity of experts consulted or differences in the scale and resolution of their data sources.

WWF also created a habitat map, which condenses the ecoregional delineation into 16 

general habitat types (Figure 22), which allows a comparison of the 16-class cluster map with the 

16-class WWF habitat map. Broad-scale patterns of the divisions are remarkably similar, which is 

to be expected since broad-scale habitat formation is driven by broad spatial and temporal scale 

environmental factors. Close comparison reveals distinct fine scale differences that may be due to 

the subjective approach of the WWF habitat map or to the low-resolution data used in the cluster 

analysis. A key feature in the comparison of these two maps is their different representation of 

habitat boundaries. The WWF map divides the continent into discrete units with definite 

boundaries. On the other hand, the 16-class cluster map shows a more realistic representation of 

habitat transition zones. For example, in northern South America, the transition from the yellow 

class to the blue class moving from north to south does not occur abruptly.  There is a transition 
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zone containing both blue and yellow pixels. This gradual transition between classes portrays a 

more realistic representation of habitat gradients on a real landscape.

Figure 20.  WWF Ecoregional Map of South America
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Figure 21.  Results of the 16-class clustering analysis.
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Figure 22.  WWF Habitat Map of South America

Study
Region
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4.7.2 Bolivia

The next figures show Bolivia on the WWF ecoregion map, the WWF habitat map, and 

the 16-class cluster map (Figures 23, 24, and 25). A visual comparison of the classification of the 

Bolivian highlands region for the three maps shows several key features. General patterns (e.g. 

size, shape, location) of the Altiplano, steep valleys, and vegetation zones are similar for the 3 

maps. The 16-cluster map detects more variability in an east-west direction, whereas the WWF 

ecoregion map represents more variability in the north-south direction as the mountain grassland 

habitat changes from Wet Puna to Puna to Dry Puna. This variability is absent in the WWF 

habitat map and the 16-class cluster map and clusters are relatively continuous moving from north 

to south. Again, these differences could be caused by the broad-scale climate data used in the 

cluster analysis or the arbitrary nature of boundary definition of the WWF maps.

Classes 3, 14, 15, 16 are the dominant regions in my study area (Figure 25). Classes 7 

and 13 are in close proximity to the study area. Figure 26 is a dendrogram demonstrating the 

distance measures between the 16 classes formed from the cluster analysis.  It is apparent that 

classes 3, 14, 15, and 16 form a distinct branch of the dendrogram. They have relatively small 

distance measures between them (2 – 6 units), and have a relatively high distance measure (~19 

units) from the other branches. Other regions of South America that also cluster into classes 3, 14, 

15, and 16 should have similar environmental conditions as my study area. The dendrogram 

demonstrates that although classes 7 and 13 are close to the study area, they are distinct from 

classes 3, 14, 15, and 16.  Figure 27 shows the various highland regions of South America and 

their cluster assignments. The Orinoco highlands (eastern Venezuela) cluster in classes 11 and 12 

and the Brazilian highlands cluster into classes 1 and 13, implying that environmental conditions 

are distinct from those at my study site. 

Therefore, environmental conditions of my site are very unique and are restricted to the 

high-elevation Andes region. However, Andean highlands as far north as western Venezuela and 



76

Colombia, and as far south as Central Argentina and Chile, cluster into classes 3, 14, 15, and 16. 

Therefore, the results of some of the change analyses and modeling may be germane to other 

areas, when controlling for differences in economic and social factors.

Figure 23.  WWF Ecoregional Map showing Bolivian Highland Ecoregions and the location of 
the study site.
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Figure 24.  WWF Habitat Map showing Bolivian highland habitats and the location of the study 
site.
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Figure 25.  16-class cluster map showing Bolivian Highland classification and the location of the 
study site.
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Figure 26.  Dendrogram of the 16-class Cluster Analysis.  The y-axis shows clusters 1 through 16 
and the x-axis shows the difference measures between the clusters.  The clusters in the study site 
region (classes 3, 14, 15 and 16) form a distinct branch of the dendrogram.
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Figure 27.  The 16-class cluster map showing classification of the various highland regions of 
South America.  
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5.0 DISCUSSION

The Andean region of South America has been densely populated for thousands of years. 

The majority of its inhabitants are subsistence farmers using traditional agricultural and pastoral 

practices especially adapted to these sensitive mountain ecosystems. With changes in land use 

practices and increased population pressure, the precarious balance between humans and the land 

is threatened. Once degraded, vegetation and soil regeneration is restricted by climatic and 

topographic conditions, leading to the loss of productive topsoil, which is irreversible on 

anthropogenic time scales. The result of landscape degradation in arid, vulnerable environments 

is two-fold: 1) the productivity of the land is severely and permanently diminished and 2) the 

hydrologic cycle is disturbed. In a region where people depend on untreated surface water for 

drinking, household use, and irrigation, the decrease in dry season stream flows and the 

contamination of drinking water with harmful pathogens are devastating consequences of 

landscape degradation. 

The assessment of regional patterns of land use and land cover conversion (LULCC) is 

the first step in developing sound land management plans. One objective of this study was to test 

whether land cover in the current study area could be accurately characterized using limited field 

data, remotely sensed land cover and topographic data (Landsat and Shuttle Radar Topography 

Mission), and traditional image analysis techniques. A regional fine-scale landscape analysis 

would be logistically impossible in any other way due to constraints in financial resources and 

accessibility. Similar techniques have been applied throughout the developing world, but almost 

exclusively in flat, humid, low-elevation regions. Application of these techniques to the current 

study area, or other high elevation regions of South America, is not documented in the published 

literature. 

In addition to the inherent challenges of conducting research with extremely limited 

resources in a remote region of a developing country, various unique characteristics of the study 

area complicated efforts to accurately evaluate land cover using remotely sensed data. 
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Topographic heterogeneity confounded attempts at topographic correction and complicated land 

cover classification. Limited collection of field data for geocorrection and land cover mapping 

introduced error and bias into the analysis. “Mixed pixels”, areas with different land covers 

comprising an image cell, are prevalent. Finally, both change in landscape condition (e.g. pasture 

degradation), as well as land cover conversion, are occurring within the study area. This study 

demonstrated that, despite these challenges, land cover and landscape change in the study region 

cover could be effectively characterized using established techniques and limited field data.

5.1  Development of a Regional Land Cover Map

Land cover in 2003 was mapped into 9 classes with an overall accuracy of 89%. 

Compared to the overall accuracy, the forest (57% omission error) and agriculture (76% 

comission error) classes contained considerable error. The major sources of classification error 

were 1) image registration error, and 2) the inability to separate areas of mixed land cover at a 

very fine scale, including small agricultural plots and narrow strips of forest.

Co-registration error between the GPS locations and the images is a common source of 

classification inaccuracy. Permanent, accessible ground points that were identifiable in the image 

were very limited throughout the study area. Isolated pixels often classified out as forest adjacent 

to, but not exactly aligned with, the exact GPS training point location. The fuzzy classification 

accuracy accounted for these co-registration errors. If a feature described in the field notes (e.g. a 

plot of forest) was represented in the classification but not on the exact pixel of the GPS point, it 

was counted as accurate in the fuzzy classification. This accounts for a considerable improvement 

when considering the fuzzy classification producer’s accuracy for the forest class (90%). 

Mixed pixels are also common sources of classification error. In many cases of mixed 

pixels, neither the basic nor the fuzzy classification is accurate. For example, a 50 x 50 meter 

forest plot surrounded by pasture can be represented in three pixels of mixed forest and pasture. 

These three mixed pixels are classified in the field as forest (in the basic classification) and 

pasture (fuzzy classification). However, due to their mixed composition, their spectral signature 
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may resemble the agriculture class more than either the forest or pasture class. If the pixels 

classify as agriculture, they are incorrect for both the regular and the fuzzy accuracy assessment. 

This problem was evident in the agriculture class, as there was only a slight improvement in 

accuracy from the basic assessment (76%) to the fuzzy assessment (81%).

The assessment of regional, fine-scale land cover patterns had not previously been 

performed for this region. Managers and scientists can use this classification as 1) a reliable map 

of current land cover from which to base land management plans, 2) a foundation for future land 

use change monitoring, and 3) the basis for a stream survey designed to examine the relationship 

between streams and their watersheds. 

5.2  Trends in Land Cover Conversion

The secondary classification methodology was developed to allow classification of both 

the 1985 and 2003 images and the subsequent analysis of rates, trajectories, and drivers of land 

cover change in the region. The secondary classification represents a profound loss in detail 

relative to the primary classification. It is unable to distinguish 1) intensive pasture, small tree 

plots and borders, and cultivated plots in the flat valleys, 2) sparse from abundant mountain 

grassland, and 3) an urban/churquial/cactus class. Overall accuracy (88%) and producer’s 

accuracy for agriculture, pasture and bare ground (>90%) were quite good for the secondary 

classification. However, forest composition was poorly predicted in the secondary classification 

(40% basic, 55% fuzzy). Small forest plots and tree boundaries in the intensively-used, floodplain 

valleys are classified as agriculture since there was no attempt to further separate forest, pasture 

and crop plots in the secondary classification. However, the secondary classification methodology 

did produce consistent and comparable landscape patterns for both the 1985 and 2003 images, 

allowing the assessment of land use and land cover conversion (LULCC).

The Altiplano region has experienced minimal LULCC, probably due to environmental 

conditions that severely restrict land use activities. The Mountain region has experienced 

increases in both agricultural and bare land at the expense of forest and pasture (Figures 28 and 
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29). Agricultural expansion is a result of forest clearing and the development of irrigation 

systems. The construction of the San Jacinto reservoir after 1985 provided a perennial water 

source and stimulated development of irrigation canals around and downstream of the reservoir. 

Figure 28. Areas converted to agriculture and bare ground in the Mountain region.
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Figure 29. Areas converted from forest and pasture in the Mountain region.
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Continued irrigation development and agricultural conversion is limited by topographic 

and climatic conditions. The proportion of agriculture as a function of elevation and slope 

suggests that within the Mountain region there are discrete zones where agricultural production is 

possible (Figure 9). Cultivated land is most common between 1600 and 2000 meters and on flat 

land (0-5% slope). At elevations above 2000m and slopes greater than 5%, the proportion of the 

landscape in cropland plummets, indicating topographical thresholds for agricultural production.

Forest cover in the Mountain region was halved between 1985 and 2003. Deforestation 

occurred throughout the study area, with the most accessible areas suffering alarming forest loss 

(Figures 10 and 11) and only the steepest, most inaccessible terrain maintaining forest cover 

(Figures 9). Forest loss was high in the flat, low elevation areas due to agricultural conversion and 

at intermediate slopes and elevations due to pasture conversion (Figure 11). At current rates, 

forest in the Mountain region will disappear by 2020.

The extent of bare land doubled in the Mountain region between 1985 and 2003. The 

large increase in bare land is both surprising and alarming because desertification is permanent on 

anthropogenic time scales. Regeneration of topsoil on steep, arid slopes will take hundreds to 

thousands of years. Much of this desertification has occurred in communal rangelands in the 

densely populated area around the city of Tarija (Figures 28 and 29) and where agricultural land 

and population density are at their highest (Figures 10, and 11). Interestingly, although steep 

slopes and arid conditions generally make landscapes more vulnerable to erosion and 

desertification, bare ground is clearly more prominent on flat slopes and on land with high 

moisture levels (i.e. TCI) (Figure 9). Bare ground closely corresponds to the prevalence of 

agriculture in the wettest and most highly populated areas, indicating that intense agricultural use 

and high population densities are driving desertification.

This study showed that alarming deforestation and desertification at a regional scale has 

occurred in the last 20 years and that future agricultural development is limited by topography. 
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The analysis suggests that with continuation of present population density, land use practices, and 

management, complete forest loss and eventual desertification of all of the communal rangeland 

is inevitable. At current rates of change, forest in the mountain region will disappear by 2020 and 

complete desertification of the communal rangelands will take less than 300 years. These 

dramatic landscape transformations will have disastrous consequences for both landscape 

productivity and the hydrologic cycle, decreasing both the quantity of base flows and the quality 

of surface water. Urgent measures to manage grazing practices in this area and to protect 

remaining forests must be implemented to avoid continued deforestation and desertification in the 

immediate future.

5.3  Changing Condition of Communal Rangeland

Spectral mixing analysis (SMA) was performed to determine changing proportions of 

green vegetation (GV), bare soil, and non-photosynthetic vegetation (NPV) as indicators of 

changes in landscape condition, especially in communal rangelands. The degradation of pasture 

as a result of overgrazing is a subject of much debate in traditionally pastoral regions throughout 

South America (Ellenberg 1979; Brush 1982; Seibert 1983; Laegaard 1992; Baied and Wheeler 

1993; Kessler 1995; Kok et al. 1995; Messerli et al. 1997; Rundel and Palma 2000; Sarmiento 

2000; Buytaert et al. 2002; Sarmiento and Frolich 2002). Deterioration of the landscape due to 

unsustainable agricultural practices, overgrazing, and the presence of non-native grazing species 

is considered one of the most dangerous threats to Sama and the surrounding area (Ayala Bluske 

1998). Others contend that empirical data does not support the hypothesis of landscape 

deterioration as a result of unsustainable grazing practices in the Bolivian Altiplano (Washington-

Allen et al. 1998; Preston et al. 2003) . 

The land cover change analysis clearly demonstrated that bare ground is replacing 

intensively used communal rangeland at a rapid rate (Figures 28 and 29). However, the 

conversion analysis allowed no assessment of changes in landscape condition leading to 
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desertification. From a management perspective, the identification of areas in the process of 

degradation is essential to prevent irreversible conversion and erosion. 

To address the question of rangeland deterioration in my study area, I first determined 

whether differences in landscape composition within a land cover class could be detected by 

comparing proportions of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil 

in the two different physiographic regions. The significant differences in the climatic and 

geomorphologic conditions of the Mountain and Altiplano regions drive distinct differences in 

vegetation composition. Specifically, the predominant grassland vegetation of the Altiplano is the 

Paja Brava, a fibrous, yellowish-brown tall grass that grows in dispersed tufts surrounded by rock 

and bare soil. Grassland in the Mountain region consists of abundant, green, short grasses that 

provide continuous cover on the soil surface.

Comparison of endmember fractions between the two physiographic regions illustrated

expected differences in communal rangeland composition as well as differences in the other cover 

classes (Figure 30). Pasture soil fractions in the Altiplano region (0.53) are much higher than 

those in the mountain region (0.25), consistent with field observations. Soil fractions are higher 

for Altiplano cropland (0.35) relative to Mountain cropland (0.25), and GV fractions are lower 

(0.27 vs. 0.33, respectively). Differences in forest composition are also evident, with higher NPV 

fractions in Mountain forest (0.45) than Altiplano forest (0.32). These results compare well with 

differences in crop type, forest species composition, and plant vitality observed in the field. 
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Figure 30. Average endmember proportions in each land cover class for both regions.  AF = 
Altiplano Forest, MF = Mountain Forest, AA = Altiplano Agriculture, MA = Mountain 
Agriculture, AP = Altiplano Pasture, MP = Mountain Pasture, AB = Altiplano Bare, MB = 
Mountain Bare

These results demonstrate that differences in class condition can be detected from relative 

endmember proportions. Thus, I next explored change in landscape condition over time in areas 

that did not experience land cover conversion. In the Mountain region, there are consistent losses 

in GV replaced by gains in NPV in the forest and agriculture classes, accompanied by a slight 

decrease in soil fraction (Table 19). This may be attributed to vegetation maturity and senescence, 

because loss of GV due to degradation in agricultural and forested land would intuitively be 

accompanied by higher soil fractions (e.g. forest degradation due to tree extraction). The pasture 

and bare classes show a different pattern. The loss of GV cannot be entirely attributed to 

senescence, as the gain in NPV does not fully account for GV loss. Instead, a gain in soil is 

partially responsible for the loss in GV, indicating actual degradation.
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Table 19. Changes in endmember fractions for areas that did not experience land cover 
conversion for the Mountain region.

Land Cover Change in Change in Change in

Type Soil Fraction GV Fraction NPV Fraction

NC Forest -0.01 -0.14 0.16
NC Agriculture -0.01 -0.18 0.19
NC Pasture 0.04 -0.16 0.13
NC Bare 0.05 -0.08 0.04

The Altiplano region shows a similar, but more pronounced, pattern for areas that have 

not experienced land cover conversion (Table 20). As in the Mountain region, the loss in GV in 

Altiplano forest is accompanied by a gain in NPV and a loss in soil, typical of leaf maturation 

(Adams et al. 1995; Lu et al. 2003). The agriculture class has experienced a larger gain in soil 

than in NPV, which is most likely due to a post-harvest image date in 2003. The pasture and bare 

classes experienced a loss in GV, but no increase in NPV. Instead, loss of GV is accounted for 

completely by an increase in soil fraction, indicating substantial vegetation loss and bare soil 

gain. 

Table 20. Changes in endmember fractions for areas that did not experience land cover 
conversion for the Altiplano region.

Land Cover Change in Change in Change in

Type Soil Fraction GV Fraction NPV Fraction

NC Forest -0.04 -0.23 0.28
NC Agriculture 0.10 -0.16 0.08
NC Pasture 0.14 -0.13 0.00
NC Bare 0.09 -0.08 0.00

Both the Mountain and Altiplano regions show vegetation loss and bare soil gain in the 

communal rangelands, but the suggestion of degradation is much stronger in the Altiplano than in 

the Mountain region. The land cover conversion analysis detected little change in the Altiplano 

region. However, the SMA results indicate a large region in the process of desertification. 

Immediate action to identify the conditions and manage the grazing practices driving this wide-

scale degradation is necessary.
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5.4  Identification of Areas of Extreme Change 

I used the SMA results to identify areas of moderate change (1 – 2 standard deviations 

from the mean change) and extreme change (greater than 2 standard deviations from the mean 

change) in green vegetation (GV) (Figure 31). Obvious, extreme changes in GV occurred in the 

Altiplano lakes due to changing water levels. Moderate and severe GV loss is evident in the 

Central Tarija Valley and mountain headwater stream valleys where deforestation was observed 

from the land cover conversion analysis. Extreme increases in GV fraction have occurred both in 

the recently developed agricultural areas below the San Jacinto reservoir and in the upper Victoria 

watershed, which supplies greater than 90% of the potable water for the city of Tarija. 

The upper Victoria was subject to the same anthropogenic pressures (i.e. communal 

grazing and sparse habitation) as the rest of the medium and high ridges of the Mountain region 

until the late 1980’s, when main access to the upper watershed was blocked with a steel gate and 

24-hour guarded access. The guarded access and daily patrol of the entire watershed above the 

gate has curtailed livestock grazing and human activity. Therefore, the Upper Victoria has been 

undisturbed (relative to its surroundings) for the past several years, providing a valuable reference 

area for the rest of the study region. The regeneration of the protected area, in contrast with the 

wide-scale vegetation degradation of adjacent, unmanaged watersheds, indicate the ability of 

local management activities to influence landscape processes. 
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Figure 31. Change in GV endmember fraction from 1985 to 2003.
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5.5  Extrapolation to National and Continental Scales

Remote sensing (RS) technology and analysis techniques allowed a fine scale regional 

analysis of land cover change based on very few field observations at a temporal and spatial scale 

that would otherwise be impossible. Conducting similar research for all of South America would 

be prohibitively resource-intensive. Using a multivariate clustering technique of basic 

environmental drivers, I identified ecoregions of South America where topographic and climatic 

conditions are similar to those at my study site, allowing the extrapolation of these results to other 

regions, and the estimation of landscape transformation at a national and continental scale. The

WWF South American Ecoregional Map was not appropriate for this purpose, as it was 

developed to determine areas of distinct biological diversity. The clustering technique described 

in this paper permits not only the empirical delineation of similar units based on basic 

environmental drivers, but also allows non-subjective comparison between the units. The 

dendrogram provided a useful tool to determine the different ecoregional units that are most 

likely to respond similarly to disturbance and management activities.

The ecoregional analysis showed that the study area is part of a broad region of the South 

American Andes extending from northern Colombia to southern Argentina. Large areas of 

Bolivia, Peru, Chile, and Argentina have similar environmental conditions, indicating that 

managers working throughout the Andean mountains could 1) appropriately refer to the results of 

the current study and 2) successfully use the same research methodology. The ecoregional 

analysis also suggests that alarming rates of deforestation and desertification may be occurring 

throughout a large extent of the Andean mountains. Additional research at a few sites within the 

ecoregional cluster is needed to verify these extrapolations. 

The study of other sites within the ecoregion would also facilitate the improvement of the 

research methodology. Separation of physiographic regions prior to image analysis should 

improve classification efficiency and accuracy. Satellite data with higher spatial resolution would 

diminish the “mixed pixel” problem. RS data with finer spectral resolution would improve the 
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separation of agriculture, intensive pasture, and forest. Experimentation with alternative 

classification techniques (e.g. discriminant functions) would likely improve classification ability 

(Cingolani et al. 2004). Increasing the field data set would reduce error by enhancing both the 

density and the spatial coverage of the field data.
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6.0 CONCLUSIONS AND MANAGEMENT IMPLICATIONS

The Sama Reserve and the surrounding area have been under increased pressure from 

development and population growth in the past several decades. Local environmental managers in 

the region target deforestation, agricultural conversion, and rangeland degradation as main threats 

to the region (Ayala Bluske 1998). However, a formal assessment of the patterns of land cover 

change at the regional scale had not been performed. This study was conducted to determine 1) if 

traditional remote sensing techniques, readily available data sources (e.g. Landsat images and the 

SRTM DEM), and very limited field data could be used to effectively characterize LULCC in the 

region and 2) if the LULCC characterization could provide information relevant for management.

Certain aspects of the study region make it a unique and challenging area to study. The 

collection of field data was severely restricted by limited financial resources and the remoteness 

of the study area. Historical field data for interpretation of the 1985 image were completely 

absent. The geomorphologic heterogeneity, mountainous terrain, and subpixel mixed land cover 

patterns of the region presented additional challenges in the application of traditional RS 

methods. Results of this study show that, despite these challenges, LULCC in the study region 

cover can be effectively characterized using established techniques and limited field data.

Land cover in 2003 was mapped into 9 classes with an overall accuracy of 89%. This 

classification can be used by managers as 1) a reliable base map for the development of land 

management plans, 2) a foundation for future land use change monitoring, and 3) the basis for a 

stream survey designed to examine the relationship between streams and their watersheds. 

Results of the secondary classifications demonstrate that past land cover can also be effectively 

characterized. Although classification without field data could not be performed with the same 

degree of detail and accuracy as the primary classification, it did allow a valuable analysis of 

change that would have otherwise been impossible. 

The LULCC analysis showed that extensive deforestation and desertification at a regional 

scale has occurred in the last 20 years. If current trends persist, forest in the mountain region will 
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disappear by 2020 and complete desertification of the communal rangelands will occur in less 

than 300 years. The land cover conversion analysis detected little change in the Altiplano region, 

but the SMA results indicated that large areas of the Altiplano are in the process of 

desertification. Such dramatic landscape transformations have disastrous consequences for both 

landscape productivity and the hydrologic cycle, decreasing both the quantity of base flows and 

the quality of surface water. 

Management to protect remaining forest and control degradation of communal rangeland 

is necessary to avoid severe landscape deterioration in the near future. This research demonstrated 

that local management activities have greatly influenced landscape dynamics in the study area. 

Conversion to agriculture land since 1985 was very much a result of reservoir construction and 

irrigation development. The protection of the Victoria watershed has been a huge success, as seen 

by the large area of green vegetation regeneration in the protected area. Actions of the local 

government, communities, and environmental managers could potentially moderate the severe 

future changes implied by the results of this study. 

Conducting similar research for all of South America would be prohibitively resource-

intensive. The ecoregional analysis identified large areas of Bolivia, Peru, Chile, and Argentina 

that have similar environmental conditions, indicating that managers working throughout the 

Andes could refer to the results of this study. The ecoregional analysis also suggested that 

alarming rates of deforestation and desertification may be occurring throughout large areas of the 

Andean region. The selection of additional sites for similar research within the ecoregional cluster 

will allow validation of these extrapolations and improve the research methodology.
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